
PingFederate Server

 | Contents | ii

Contents

PingFederate.. 9

Release Notes.. 9
PingFederate 10.3.14 - April 2024..10
PingFederate 10.3.13 - August 2023..10
PingFederate 10.3.12 - February 2023...10
PingFederate 10.3.11 - February 2023...11
PingFederate 10.3.10 - October 2022.. 11
PingFederate 10.3.9 - August 2022..11
PingFederate 10.3.8 - June 2022... 12
PingFederate 10.3.7 - May 2022.. 12
PingFederate 10.3.6 - March 2022... 12
PingFederate 10.3.5 - January 2022.. 13
PingFederate 10.3.4 - November 2021.. 13
PingFederate 10.3.3 - October 2021.. 14
PingFederate 10.3.2 - September 2021... 15
PingFederate 10.3.1 - August 2021..16
PingFederate 10.3 - June 2021.. 17
Known issues and limitations..21
Deprecated features.. 24
Previous releases.. 26

Introduction to PingFederate... 26
About identity federation and SSO... 27

Service providers and identity providers.. 27
Federation hub..27

Supported standards... 28
Federation roles..28
Terminology.. 29
Browser-based SSO... 30
Web services standards... 47
OAuth 2.0..49
System for Cross-domain Identity Management (SCIM)..58
Transport and message security..59

SSO integration overview..59
SSO integration concepts...59
Identity provider integration.. 60
Service provider integration..62
Integrations and deployment scenarios..64

Security token service... 65
OAuth authorization server..66
User account management... 67
Enterprise deployment architecture...67
Additional features...68
Key concepts... 69

WS-Trust STS...70
About OAuth... 74

Copyright ©2024

 | Contents | iii

SSO integration kits and adapters... 83
Security infrastructure...86
Hierarchical plugin configurations...90
Identity mapping... 90
User attributes.. 92
User provisioning.. 96
Customer identity and access management.. 98
Federation hub use cases..99
Federation planning checklist... 104

Installing PingFederate... 108
System requirements... 109

Database driver information... 114
Port requirements.. 116
Installing Java..119
Installation options...120

Installing PingFederate on Windows.. 121
Installing PingFederate on Linux systems..122
Installing the PingFederate service on Linux manually..123
Installing PingFederate service on Windows manually.. 126

Uninstalling PingFederate...126
Uninstalling PingFederate from a Windows server...127
Uninstalling PingFederate from a Linux server...127

Upgrading PingFederate... 128
Downloading PingFederate... 129
Preparing to upgrade PingFederate..129
Upgrade considerations...130

Upgrade considerations introduced in PingFederate 9.x... 132
Upgrade considerations introduced in PingFederate 8.x... 133
Upgrade considerations introduced in PingFederate 7.x... 135
Upgrade considerations introduced in PingFederate 6.x... 137

Updating to the latest maintenance release... 138
Upgrading PingFederate on Windows using the installer... 139
Upgrading PingFederate on Windows using the Upgrade Utility..140
Upgrading PingFederate on Linux systems.. 143
Custom mode.. 145
Reviewing post-upgrade tasks.. 146

Reviewing administrative users.. 146
Copying customized files or settings..146
Reviewing database changes...149
Reviewing log configuration..153
Migrating other components... 154
Resetting files and variable for HSM... 156
Verifying the new installation..156

Getting Started with PingFederate.. 156
Start and stop PingFederate... 156

Starting and stopping PingFederate on Windows.. 157
Starting and stopping PingFederate on Linux..158

Opening the PingFederate administrative console... 158

Copyright ©2024

 | Contents | iv

Set up PingFederate... 159
Importing your license.. 159
Entering basic information.. 160
Configuring identity provider settings... 160
Creating an administrator account... 162
Reviewing your configuration... 163

PingFederate administrative console.. 163
Navigation tabs and menus..163
Customizing shortcuts...166
Tasks and steps... 166
Console buttons..167

Third-party cryptographic solutions... 167
Supported hardware security modules...168
Supported software security package.. 178

Server Clustering Guide... 180
Overview of clustering...180
Cluster protocol architecture... 182
Runtime state-management architectures...183

Adaptive clustering... 183
Directed clustering.. 187

Runtime state-management services..192
Inter-Request State-Management (IRSM) Service...193
IdP Session Registry Service...194
SP Session Registry Service... 194
LRU memory management schemes...195
Assertion Replay Prevention Service... 195
Artifact-Message Persistence and Retrieval Service... 196
Back-Channel Session Revocation Service... 197
Account Locking Service.. 198
Other services...198

Deploying cluster servers..199
Enabling dynamic discovery for clustering... 204

Deploying provisioning failover..209
Configuration synchronization... 211

Console configuration push.. 211
Configuration-archive deployment.. 211

Administrator's Reference Guide...212
Attribute mapping expressions.. 213

Enabling and disabling expressions... 213
Construct OGNL expressions...214
Using the OGNL edit window...218

Authentication policies...219
Selectors... 221
Policies..239
Policy fragments... 273
Policy contracts...274
Adapter Mappings...275
Sessions..278

Bundled adapters.. 285
Composite Adapter... 285
HTML Form Adapter...290
HTTP Basic Adapter...308

Copyright ©2024

 | Contents | v

Identifier First Adapter.. 312
Kerberos Adapter..319
OpenToken Adapter... 324
Configuring a Reference ID adapter.. 331
Configuring an X.509 Certificate IdP adapter.. 334

Customer IAM configuration..337
Setting up PingDirectory for customer identities.. 337
Managing local identity profiles.. 339
Configuring the HTML Form Adapter for customer identities...348
Setting up self-service registration... 349
Enabling third-party identity providers without registration...365

Customizing assertions and authentication requests..368
Message types and available variables... 369
Sample customizations...371

Fulfillment by datastore queries.. 374
Attribute mapping with multiple data sources.. 374
Datastore query configuration.. 375

IdP-to-SP bridging... 384
Adapter-to-adapter mappings... 384
Token translator mappings... 390

Identity provider SSO configuration.. 395
IdP application integration settings...396
IdP protocol endpoints..409
SP connection management.. 411
SP affiliations.. 484

OAuth configuration...486
Configuring OAuth use cases.. 486
Configuring authorization server settings... 488
Scopes and scope management..499
Adding virtual issuers for OpenID Connect..509
Configuring client settings.. 509
Managing Client Registration Policy instances.. 525
Managing OAuth clients... 528
Grant contract mapping..543
Token mapping... 564
Client Initiated Backchannel Authentication (CIBA)... 594
OAuth attribute mapping using a datastore... 607
OAuth client session management...608
OAuth token exchange...609

Security management..614
Certificate and key management..615
System integration.. 648
Account lockout protection... 654
Password spraying prevention... 655
Implementing a MasterKeyEncryptor using AWS KMS..656

Self-service user account management..658
Configuring self-service password management..658
Configuring self-service account recovery... 660
Configuring self-service user name recovery...665

Service provider SSO configuration..666
SP application integration settings... 666
Federation settings... 674
Managing IdP connections... 678
OpenID Connect Relying Party support... 757
Configuring IdP discovery using a persistent cookie... 770

System administration... 771

Copyright ©2024

 | Contents | vi

Configuring PingFederate properties..771
Configuring size limits...776
PingFederate log files...778
Alternative console authentication..799
Configuring automatic connection validation..811
Automating configuration migration.. 812
Outbound provisioning CLI... 817
Customizable user-facing pages.. 820
Customizable email notifications.. 832
Customizable text message... 839
Localizing messages for end users..839
Configuring a password policy... 841
Managing cipher suites...842
Manage externally stored authentication sessions...843
OAuth persistent grants cleanup..848
Specifying the domain of the PF cookie.. 853
Specifying the domain of the PF.PERSISTENT cookie... 853
Extending the lifetime of the PingFederate cookie...854
Configuring forward proxy server settings..855
Adding custom HTTP response headers... 855
Configuring validation for the AudienceRestriction element...856
Customizing the OpenID Provider configuration endpoint response....................................856
Customizing the heartbeat message..857
Customizing the favicon for application and protocol endpoints.. 858
Configuring the behavior of searching multiple datastores with one mapping......................858

System settings... 859
Server..859
Metadata... 878
Monitoring and notifications..883
Datastores...886
Password Credential Validators... 926
Active Directory and Kerberos... 936
External systems.. 940
Configuring general settings...957

Troubleshooting... 958
Enabling debug messages and console logging..958
Resolving startup issues...961
Troubleshooting data store issues... 961
Resolving URL-related errors... 961
Resolving service-related errors...962
Troubleshooting authentication policy issues...963
Troubleshooting registration and profile management issues..965
Troubleshooting runtime errors.. 966
Troubleshooting OAuth transactions.. 969
Other runtime issues.. 974
Collecting support data...974

WS-Trust STS configuration..976
Server settings..976
Identity provider STS configuration.. 978
Service provider STS configuration..1001

Performance Tuning Guide.. 1014
Logging.. 1014
Operating system tuning... 1015

Linux tuning.. 1015

Copyright ©2024

 | Contents | vii

Windows tuning.. 1016
Concurrency...1017

Tuning the acceptor queue size...1017
Tuning the server thread pool.. 1018
Configuring connection pools to datastores... 1019

Memory.. 1020
JVM heap..1020
Garbage collectors..1021
Young generation bias..1022
The memoryoptions utility...1023

Hardware security modules...1030
Configuration at scale..1030
References...1030

PingFederate Monitoring Guide... 1031
Liveliness and responsiveness..1031
Resource metrics...1034

Connecting with JMX..1034
Monitoring.. 1036
Thread pool... 1040
Logging, reporting, and troubleshooting..1041

Creating an error-only server log... 1042
Splunk dashboards and audit logs...1043

SDK Developer's Guide...1047
SDK directory structure... 1049
Developing your own plugin..1049
Implementation guidelines...1050

Shared plugin interfaces...1050
Developing IdP adapters.. 1051
Developing SP adapters...1054
Developing token processors... 1055
Developing token generators..1056
Developing authentication selectors...1056
Developing data source connectors... 1057
Developing password credential validators.. 1059
Developing identity store provisioners..1059
Developing notification publishers.. 1065
Building and deploying with Ant... 1066
Building and deploying manually..1067
Log messages.. 1068

Developer's Reference Guide...1068
OAuth 2.0 endpoints... 1068

Authorization endpoint.. 1069
Client-initiated backchannel authentication endpoint... 1076
Token endpoint... 1083
Introspection endpoint...1093
Token revocation endpoint... 1097
Grant-management endpoint.. 1099
Dynamic client registration endpoint.. 1100
Device authorization endpoint.. 1104
User authorization endpoint..1106

Copyright ©2024

 | Contents | viii

OpenID Provider configuration endpoint.. 1108
UserInfo endpoint... 1112
Pushed authorization requests endpoint.. 1113
OAuth Playground.. 1114

Web service interfaces and APIs..1115
Connection Management Service.. 1116
SSO Directory Service..1119
SOAP request and response examples... 1121
OAuth Client Management Service.. 1122
OAuth Access Grant Management Service... 1144
OAuth Persistent Grant Management API... 1147
Session Management API by session identifiers... 1150
Session Management API by user identifiers.. 1153
Session Revocation API endpoint.. 1156
PingFederate administrative API.. 1158

Application endpoints.. 1166
IdP endpoints..1167
SP endpoints.. 1173
System-services endpoints...1186

Authentication API... 1190
Exploring the authentication API.. 1192
Mobile application authentication through REST APIs...1194

Development of authentication API-capable adapters and selectors..1198
Authentication API states, actions, and models...1198
Specification of the plugin API... 1199
State model contents..1202
Non-interactive plugins... 1202
Runtime behavior implementation.. 1202
Session state management.. 1205
Error messages and localization.. 1206

Legal Information...1206

Index.. 1208

Copyright ©2024

 | PingFederate | 9

PingFederate

PingFederate is an enterprise federation server that enables user authentication and single sign-on (SSO).
It serves as a global authentication authority that lets your customers, employees, and partners securely
access applications.

 Release Notes

▪ Current

 Get Started with PingFederate

▪ Introduction to PingFederate on page
26

▪ Installing PingFederate on page 108

▪ PingFederate administrative console on
page 163

 Use PingFederate

▪ Administrator's Reference Guide on page
212

▪ SDK Developer's Guide on page 1047

▪ Developer's Reference Guide on page
1068

▪ Integrations

 Troubleshoot PingFederate

▪ Enabling debug messages and console
logging

▪ Resolving startup issues
▪ Troubleshooting data store issues
▪ Resolving URL-related errors
▪ Resolving service-related errors
▪ Troubleshooting authentication policy

issues

▪ Troubleshooting registration and profile
management issues

▪ Troubleshooting runtime errors
▪ Troubleshooting OAuth transactions
▪ Other runtime issues
▪ Collecting support data

 Learn More

▪ Community
▪ Support

▪ PingFederate customer training (existing
customers only)

▪ Partner Portal (partners)

Release Notes

These release notes summarize the changes in current and previous product updates.

PingFederate enables outbound and inbound solutions for single sign-on (SSO), federated identity
management, mobile identity security, API security, social identity integration, and customer identity and
access management. PingFederate extends employee, customer, and partner identities across domains
without passwords, using only standard identity protocols: SAML, WS-Federation, WS-Trust, OAuth, and
SCIM.

Copyright ©2024

https://docs.pingidentity.com/category/all-integrations
https://support.pingidentity.com/s/topic/0TO1W000000Q9o7WAC/pingfederate
https://support.pingidentity.com/s/global-search/%40uri#t=KnowledgeBase&sort=relevancy&f:Product=[PingFederate]
https://education.pingidentity.com/learn/course/760/introduction-to-pingfederate-110-administration?generated_by=13429&hash=28ca9a0326e37deb3a5c303a76a7da926c3ee581
https://www.pingidentity.com/en/account/sign-on.html?retURL=/bin/pic/sso/community?retURL=/PartnerPortal/s/

 | Release Notes | 10

PingFederate 10.3.14 - April 2024
Potential security vulnerability PF-34896 Security

Fixed a potential security vulnerability that will be described in a future security advisory.

Potential security vulnerability PF-35081 Security

Fixed a potential security vulnerability that will be described in a future security advisory.

Slow log consumption affects performance PF-33368 Fixed

Fixed a defect that caused performance issues for PingFederate when third-party logging services were
slow to consume logging events.

PingFederate 10.3.13 - August 2023
PingFederate 10.3.13 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-33449 We've resolved a potential security vulnerability that is described in security
advisory SECADV037.

PF-34017 We've resolved a potential security vulnerability that is described in security
advisory SECADV037.

PingFederate 10.3.12 - February 2023
PingFederate 10.3.12 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-33037 We've added a warning to server logs if the ds-pwp-state-json attribute is not
present in PingDirectory's LDAP Response. Please enable this attribute to adhere
to PingDirectory's security configuration best practices. This warning appears in
the log every time a user interacts with the profile management page.PingDirectory
version 8.1 and later supports this attribute, and customers running older versions
are encouraged to upgrade to a supported version as soon as possible.

Copyright ©2024

https://support.pingidentity.com/s/article/SECADV037-PingFederate-Security-Rollup-Denial-of-Service-Information-Disclosure-Authentication-Bypass-Vulnerabilities
https://support.pingidentity.com/s/article/SECADV037-PingFederate-Security-Rollup-Denial-of-Service-Information-Disclosure-Authentication-Bypass-Vulnerabilities

 | Release Notes | 11

PingFederate 10.3.11 - February 2023
PingFederate 10.3.11 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-32805 We've resolved a potential security vulnerability that is described in security
advisory SECADV035.

PingFederate 10.3.10 - October 2022
PingFederate 10.3.10 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-31735 Resolved an issue that sometimes occurred when IPV6 addresses were specified in
the HTTP Header for Client IP Addresses field on the Incoming Proxy Settings
window.

PingFederate 10.3.9 - August 2022
PingFederate 10.3.9 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-31929 When using rule matching for fragment nodes, PingFederate no longer raises a
NullPointerException (NPE) if a fragment fails.

PF-31966 Resolved an issue that caused PingFederate to generate a zero byte archive when
it couldn't read a file in the <pf_install>/pingfederate/server/default/
data directory.

Copyright ©2024

https://support.pingidentity.com/s/article/SECADV035-PingID-integration-for-PingFederate-offline-MFA-bypass

 | Release Notes | 12

PingFederate 10.3.8 - June 2022
PingFederate 10.3.8 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-31795 When PingFederate is using a custom
MasterKeyEncryptor that relies on an SSL call to
an external service, cluster replication no longer
causes cascading failures because PingFederate is
unable to open Java key store files.

PingFederate 10.3.7 - May 2022
PingFederate 10.3.7 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-30776 To resolve an issue in which PingFederate
occasionally stopped responding after a restart, the
UnboundID LDAP SDK for Java was updated to
version 6.0.4.

PF-31057 Resolved an issue that caused single sign-on from
browsers on iOS to fail when an authentication
policy terminated on a Kerberos adapter fallback
that had an existing session.

PingFederate 10.3.6 - March 2022
PingFederate 10.3.6 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-30804 Resolved an issue that caused LDAP connections
to periodically fail during provisioning.

Copyright ©2024

 | Release Notes | 13

PingFederate 10.3.5 - January 2022
PingFederate 10.3.5 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-30272 Reduced memory usage during certificate revocation list (CRL) parsing, which speeds
up CRL retrieval and avoids memory exhaustion in the case of very large CRLs.

PF-30450 Resolved a potential security vulnerability that is described in security bulletin
SECBL021.

PF-30536 Resolved a potential security vulnerability by updating Apache Log4j2 to version 2.17.1.

PF-30567 Fixed a case where the expiry period for SSO transaction state would not be enforced
if the server was idle and no new transactions had been initiated since a transaction
expired.

PF-30637 Resolved an issue that caused certificate revocation list (CRL) checks to return "issuer
not found in trusted CAs store" even though the issuer certificate is present.

PingFederate 10.3.4 - November 2021
PingFederate 10.3.4 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-29376 and
PF-29927

Previously, some security scanners might find some of the PingID components
susceptible to CVE-2020-25649 and CVE-2019-10219. While these vulnerabilities do
not apply to our products, we have now replaced them with newer versions that are
not susceptible to the aforementioned CVEs in the product distribution .zip file and the
Windows installer.

The latest components are:

▪ PingID Adapter 2.11.1
▪ PingID PCV (with integrated RADIUS server) 2.9.1
▪ PingID Connector 1.1.1

If you're using the In-Place Update .zip file to update to 10.3.4, you must download the
PingID Integration Kit 2.15 (or a more recent version when it becomes available) from
the PingFederate Downloads > Add-ons tab and follow its documentation to update
those components manually.

PF-29975 Resolved an issue that caused an increase in load time for the Client Management
window when a large number of OAuth clients are stored in external LDAP storage.

Copyright ©2024

https://support.pingidentity.com/s/article/SECBL021-PingFederate-Password-Reset-via-Authentication-API-Mishandling
https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Release Notes | 14

Ticket ID Description

PF-30043 The Password Reset Token Validity time can now be set for any value from 1 to 4320
minutes or 72 hours.

PF-30231 Resolved a session validation error when trying to sign on to the PingFederate
administrative console with single login mode enabled.

PingFederate 10.3.3 - October 2021
PingFederate 10.3.3 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-29401 PingFederate now allows the wildcard character " \ *" in the Subject DN for OAuth
client certificate authentication.

PF-29595 When PingFederate fails to create an XML object from a payload, it no longer
mistakenly adds the following system error to server.log:

ERROR [SystemErr] [Fatal Error] :1:1: Content is not allowed
 in prolog.

PF-29662 Upgrading PingFederate to version 10.3 no longer causes outbound provisioning with a
PingID connector to fail.

PF-29679 Fixed an issue where changes in cluster membership could cause missed notifications
for certificate expiry.

PF-29722 PingFederate can now decrypt encrypted request objects that OAuth clients send to
its Authorization and PAR endpoints. Also, administrators can configure PingFederate
to accept only request objects that are encrypted by enabling the front-channel-
encryption-required setting in jwt-request-object-options.xml.

PF-29759 Now the Kerberos adapter removes escape characters in principal names as defined in
RFC 1964 2.1.1.

PF-29817 When the response-header-admin-configuration.xml file is customized, the
configured headers are now returned in administrative console HTTP responses.

PF-29819 The ${BASE_URL} variable works correctly now in email templates.

PF-29924 Resolved a potential security vulnerability involving authentication policies.

PF-29938 Resolved an issue that stopped PingFederate from completing a device authorization
flow when using IdP connection OAuth attribute mapping.

Copyright ©2024

https://datatracker.ietf.org/doc/html/rfc1964#section-2.1.1

 | Release Notes | 15

PingFederate 10.3.2 - September 2021
PingFederate 10.3.2 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-29377 Resolved an issue that caused CIDR selectors in PingFederate authentication policies
to fail for client IPv4 addresses retrieved from request headers containing a port.

PF-29393 Resolved an issue that caused repeated JGroups warning messages about channels
not connected when you used DNS_PING for dynamic engine discovery.

PF-29394 Resolved an issue that prevented PingFederate from setting the PF cookie's SameSite
flag to None. This caused problems when using the authentication API with a client that
had a different hostname than PingFederate had.

PF-29438 Upgrading PingFederate on a supported Windows OS with a supported Java 11 JDK
no longer fails.

PF-29482 Resolved an issue that prevented access to the secondary HTTPS port when BCFIPS
mode was enabled.

PF-29597 When a client uses a reference access token that is tied to an expired grant to make a
request to the UserInfo endpoint, now the response is 401 Unauthorized instead of
403 Forbidden.

PF-29621 In the in-place upgrade .zip package for maintenance releases, configurable files in
the <pf_install>/pingfederate/bin directory are now placed under the /pf-
maintenance/merge_required directory to indicate that you must merge these
updated files with your existing copies.

PF-29629 Now PingFederate initializes correctly when it's in BCFIPS mode and has a legacy-
encrypted hsmpasswd.txt file in the <pf_install>/pingfederate/server/
default/data directory.

PF-29674 Updated the bundled X.509 Certificate IdP adapter to 1.3.1.

 Note:

The PingFederate 10.3.2 in-place update .zip does not include the updated adapter. If
you use the in-place update .zip to upgrade PingFederate, you can manually download
and upgrade to the latest X.509 Certificate IdP adapter.

Copyright ©2024

https://docs.pingidentity.com/bundle/integrations/page/ofs1578676352586.html
https://docs.pingidentity.com/bundle/integrations/page/ofs1578676352586.html

 | Release Notes | 16

PingFederate 10.3.1 - August 2021
PingFederate 10.3.1 is a cumulative maintenance release for PingFederate 10.3. For a summary of the
features introduced in the 10.3 release, see PingFederate 10.3 - June 2021 on page 17.

Resolved issues

Ticket ID Description

PF-28712 Added the ability to dynamically brand the Identifier First Adapter's login page using the
velocity variables available to the template identifier.first.template.html.

PF-28951 When upgrading PingFederate from a version earlier than 9.3, the default value of the
Enable PingDirectory Detailed Password Policy Requirement Messaging setting in
password credential validators in the UI is now correctly set to false, which matches
the runtime behavior.

PF-29175 Resolved an issue that caused the administrative console to fail to load with some
navigation sequences when the environment has child plugin instances.

PF-29190 Resolved an issue that caused windows to load slowly when you navigate away from
the IdP Adapters window.

PF-29192 The UserInfo endpoint no longer returns a 401 Unauthorized HTTP status code
instead of 403 Forbidden, which had interfered with PingFederate's compatibility
with PingAccess.

PF-29200 Resolved an issue that sometimes caused PingFederate cluster replications to fail and
log a Timer already canceled error.

PF-29204 Resolved an issue that caused the Page Expired error to appear when users
initiated single sign-on (SSO) after they closed the browser, the persistent session
expired, and then they reopened the browser.

PF-29208 Changed the format of the maxFormKeys and maxFormContentSize attributes in
jetty-admin.xml so that PingFederate no longer fails to honor their values.

PF-29242 Verified that PingFederate supports the following profiles for Financial-grade API (FAPI)
1 Advanced Final (Generic):

▪ FAPI Adv. OP w/ MTLS
▪ FAPI Adv. OP w/ MTLS, PAR
▪ FAPI Adv. OP w/ Private Key
▪ FAPI Adv. OP w/ Private Key, PAR

PF-29310 Resolved a security vulnerability, exploitable XXE caused by pre-parsing validation.
See security advisory SECADV028 (requires sign on).

PF-29323 Resolved an issue that prevented the importation of PKCS12 key pairs with large
fileData sizes using the administrative console or API.

PF-29366 Resolved a security vulnerability, XMLDSig processing leads to disclosure of any XML
file. See security advisory SECADV028 (requires sign on).

Copyright ©2024

https://support.pingidentity.com/s/article/SECADV028-PingFederate-XML-Processing-Bypass
https://support.pingidentity.com/s/article/SECADV028-PingFederate-XML-Processing-Bypass

 | Release Notes | 17

PingFederate 10.3 - June 2021
PingFederate 10.3 provides the following enhancements and resolved issues.

Enhancements

Customer IAM

Mandatory email ownership verification

Administrators now have the option to make email ownership verification a requirement in
their customer IAM configurations. If configured, PingFederate prompts the newly registered
users to verify the email address they provided, and until the users complete the verification
process, they won’t be able to SSO to their target applications. This optional capability can
improve the data quality of customer identities as well as unify the end-user experience in the
area of email ownership verification process.

Session Management API

Query and revoke by user identifiers

PingFederate 10.3 allows OAuth applications to query PingFederate authentication sessions
based on user identifiers. When multiple session identifiers exist—a user has signed on
using multiple browsers, for example—PingFederate groups session information by session
identifiers. Equipped with this information, applications can better understand the behavior of
their users.

Version 10.3 also allows OAuth applications to revoke all sessions associated with a given
user. This bulk revocation capability provides an easy way to close server-side authentication
sessions on a per-user basis, perhaps because of changes in employment conditions or
security concerns as a result of compromised credentials. This new capability can improve
access security because once revoked and without valid credentials, such end-users will not
be able to fulfill authentication requirements and access protected resources.

Delete individual session data

When responding to a query, the Session Management API groups session information
per authentication source; each session data block comes with its unique identifier. Version
10.3 allows OAuth applications to remove individual session data based on those unique
identifiers. This enhancement allows applications to clean up after themselves without
affecting applications.

OpenID Connect

Virtual issuers

Administrators can now define multiple virtual issuers for OpenID Connect. If configured,
when minting ID tokens, PingFederate populates the issuer (iss) claim based on the Virtual
Issuers configuration as well as the initial authorization requests. If the relying parties use the
private key JWT authentication scheme, the same configurations apply when validating the
audience (aud) claim from the inbound JWTs.

ID token signing keys

PingFederate 10.3 allows administrators to create multiple ID token signing key sets, each
associated with one or more virtual issuers. When minting an ID token, PingFederate signs
the ID token with a key from the applicable key set based on the Token Signing Keys
configuration, the Virtual Issuers configuration, and the destination of the initial authorization
request.

Copyright ©2024

 | Release Notes | 18

For customers who participate in Open Banking or need to maintain multiple brands, the
Virtual Issuers and Token Signing Keys configurations eliminate the need for separate
environments, thus significantly lowering the total cost of ownership.

Bundled integration kits

We have added more integration kits to our product distribution for the following scenarios:

▪ Identity risk scoring (PingOne Protect)
▪ Multi-factor authentication (PingOne MFA)

For more information, see Integration Directory.

Security Enhancements

Bouncy Castle FIPS Provider

PingFederate 10.3 now includes the Bouncy Castle FIPS (BCFIPS) Provider as part of the
installation. As needed, customers can operate PingFederate using only FIPS-approved
algorithms that satisfy cryptographic-related FedRAMP data processing controls.

PKCE relying party support

Both the IdP connections using the OpenID Connect protocol and the SSO-via-OpenID
Connect authentication scheme for the administrative console now support the Proof Key for
Code Exchange (PKCE) open standard (RFC7636). This enhancement helps mitigate the
authorization code interception attack.

Other improvements

▪ The character set used by the Email One-Time Password option, part of the self-service
password reset (SSPR) configuration, is now customizable.

▪ Email templates are now configurable per HTML Form Adapter instance.
▪ Password management and username recovery HTML templates now come with additional

variables, such as $adapterId and $client_id, for maximum flexibility in customization and
branding.

▪ In the context of OIDC authentication for the administrative console, the domain portion of the
redirect URL that PingFederate sends to an OpenID Provider is now customizable through a
new setting (pf.admin.baseurl) in the run.properties file, most suitable for environments
where the network device—a reverse proxy server or a load balancer—fronting the console
uses a different hostname, port number, or both.

▪ The PingFederate SDK now supports custom storage for persistent authentication sessions.
Look for the SessionStorageManager interface in our SDK documentation for more
information.

We also updated the following bundled components and third-party dependencies:

▪ Apache Commons BeanUtils 1.9.4
▪ Apache JSP 8.5.54
▪ Apache Taglibs 1.2.5
▪ Jackson-Databind 2.11.4
▪ Jetty 9.4.40.v20210413
▪ jose4j 0.7.8
▪ UnboundID LDAP SDK 5.1.3

Copyright ©2024

https://www.pingidentity.com/en/permalinks/pingfederate/integrations
https://tools.ietf.org/html/rfc7636

 | Release Notes | 19

Resolved issues

Ticket ID Description

PF-24719 The $CurrentPingFedBaseURL variable in the HTML error page template is now correctly
set with the virtual hostname.

PF-24720 Resolved an issue where email templates did not use virtual hostnames specified in the
request.

PF-26977 The PingFederate Authentication API now supports external password management.
A new state has been added to the SDK that can be used by adapters that support
redirection to an external password management system.

PF-27822 When PingFederate cannot connect to the Google reCAPTCHA verify service, a debug
message is now logged containing the verify service URL.

PF-27918: A reflected cross-site scripting (XSS) issue in the registration functionality of Local Identity
Profiles has been resolved.

PF-27946 Increased the security around the Forgot Username functionality in the HTML Form
Adapter.

PF-28136 Client JWT Authentication now returns a 400 response code when the sub claim in the
client assertion is unknown.

PF-28204 Resolved a problem causing RSASSA-PSS signing algorithms to fail for HSM providers
using Java 8u261 or later.

PF-28233 Resolved an issue causing the administrative console to become locked during
concurrent console requests involving data sources and plugins.

PF-28254 Dynamic Client Registration Management (DCRM) now handles the context path for the
registration_client_uri attribute correctly.

PF-28312 Resolved a problem causing provisioning to fail when querying timestamps in
PingDirectory.

PF-28315 Resolved an issue causing null attributes to result in an UnsupportedOperationException
in the UserInfo endpoint.

PF-28331 Fixed Authentication API error messages for certain Local Identity Profile registration
flows when an account has already been linked.

PF-28350 Using the administrative API to import an adapter that uses a datasource no longer
throws a validation error when X-BypassExternalValidation is set to true.

PF-28351 Resolved an issue that prevented PingFederate from starting up post-upgrade when a
connection-based override existed for a Reference ID adapter instance.

PF-28459 Twilio exceptions detected by PingFederate when it tries to send an SMS using the Twilio
service are now logged accurately rather than erroneously indicating the SMS was sent
successfully.

PF-28466 When /idp/userinfo.openid is called with an invalid access token, the endpoint
now returns the correct error response in JSON format, and audit.log records a failure
status.

PF-28477 Resolved a problem causing provisioning to fail when the timestamp attribute had a null
value.

PF-28478 Removed an erroneous warning message that was logged after upgrading Java runtime.

Copyright ©2024

 | Release Notes | 20

Ticket ID Description

PF-28503 Resolved a problem causing a scheduled metadata update not to finish downloading from
an external URL.

PF-28678 Resolved a problem causing a dependency error to display erroneously when Save was
clicked on the IdP Adapter page.

PF-28687 Resolved a problem where changes made to the datastore configurations used for OAuth
Grants do not take effect until restart.

PF-28691 Resolved a problem where configuration data could be corrupted in a PingFederate
cluster by the replication of partially modified files. This could occur if a configuration
change was made through the administrative console or API while replication was in
progress.

PF-28720 PasswordValidationException is now logged at DEBUG level rather than WARN level.

PF-28766 JQuery has been updated to 3.5.1.min.js.

PF-28781 Updated PingFederate's mechanism for determining whether to display the current
password field in profile management to a more secure alternative.

PF-28807 Resolved a problem causing an OAuth refresh grant request to fail if the request issued
a refresh token alongside the access token. This was occurring when PingFederate was
configured to use external consent management.

PF-28813 Resolved a problem causing OpenID Connect’s ui_locales parameter not to enforce
the specified language on the Forgot Password (or any SSPR) page. On those pages, the
language would default back to the default setting.

PF-28825 Resolved a problem causing PingFederate to send a request security token response
(RSTR) without the actual security token to Microsoft Office 365 when WS-Trust 1.3 was
in use.

PF-28832 Resolved a problem that occurred when a user attempted logging in using the HTML
Form Adapter after an administrator had reset their password through PingDirectory.
PingFederate redirected the user to the Change Password form without verifying their
credentials. The current password was, however, validated at the Change Password
form. Now if the user enters an invalid password, PingFederate does not redirect them to
the Change Password form.

PF-28845 The java.security.krb5.conf property is no longer set automatically unless one or
more Kerberos realms is defined. This ensures that the system-wide krb5.conf will take
effect if Kerberos realms are not managed within PingFederate.

PF-28846 Enhanced security by no longer allowing the PingFederate web service to serve the files
contained in <pf_install>/pingfederate/server/default/conf/template.

PF-28885 Enhanced security by adding HTML output escaping to the OAuth Default Scope
Description.

PF-28915 Resolved an issue where username was listed as "unknown" in the admin-api.log file
when using certificate authentication for Administrative API.

PF-29026 Resolved a problem causing every authentication selector and authentication policy to be
validated when a user navigated to the cluster replication page from the selector page.
The validation now runs only when a specific selector is saved.

Copyright ©2024

 | Release Notes | 21

Known issues and limitations
PingFederate has some known issues and limitations.

Known issues

Administrative API

/sp/idpConnections

For IdP connections, the administrative API connection support is limited to Browser SSO,
WS-Trust STS, and OAuth Assertion Grant connections. As a result, when updating an IdP
connection using the administrative API, it is possible to lose inbound provisioning settings
previously configured using the administrative console.

/bulk

Only resource types currently supported by the administrative API are included in the
exported data. Resources not yet supported include:

▪ Identity Store Provisioners
▪ Inbound provisioning settings from IdP connections
▪ SMS Provider settings
▪ WS-Trust STS settings

Known limitations

Updating Java 8 to 11

Updating Java version 8 to version 11 results in an error when PingFederate is already
installed and running. To work around this issue, uninstall and reinstall the PingFederate
Windows service by running the UninstallPingFederateService.bat and
InstallPingFederateService.bat files located in <pf_install>/pingfederate/sbin/
wrapper.

Administrative console and administrative API

▪ Previously, the administrative API did not accurately reflect a Persistent Grant Max Lifetime
setting of 29 days (or shorter) with the selection of the Grants Do Not Timeout Due To
Inactivity option. As a result, if you have configured such OAuth authorization server settings
and have generated a bulk export in version 10.0 through 10.0.2, we recommend that you re-
generate a new bulk export after upgrading to version 10.0.3 (or a more recent version). The
newly exported data does not contain the aforementioned flaw, and you can safely import it to
version 10.0.3 (or a more recent version).

▪ When enabling mutual TLS certificate-based authentication, administrators often configure a
list of acceptable client certificate issuers. When an administrator uses a browser to access
the console or the administrative API documentation, PingFederate returns to the browser the
list of acceptable issuers as part of the TLS handshake. If the browser's client certificate store
contains multiple client certificates, the browser often presents to the user only the certificates
whose issuer matches one of the acceptable issuers. However, when PingFederate runs in a
Java 11 environment, Chrome presents to the administrator all its configured client certificates,
regardless of whether the issuer matches one of the acceptable issuers or not.

▪ Prior to toggling the status of a connection with the administrative API, an administrator must
ensure that any expired certificates or no longer available attributes are replaced with valid
certificates or attributes; otherwise, the update request fails.

▪ When creating or updating a child instance of a hierarchical plugin, the administrative API
retains objects with an "inherited": false name/value pair (or without such name/value

Copyright ©2024

 | Release Notes | 22

pair altogether), ignores those with a value of true, and returns a 200 HTTP status code. No
error messages are returned for the ignored objects.

▪ Using the browser's navigation mechanisms (for example, the Back button) causes inconsistent
behavior in the administrative console. Use the navigation buttons provided at the bottom of
windows in the PingFederate console.

▪ Using the PingFederate console in multiple tabs on one browser might cause inconsistent
behavior which could corrupt its configuration.

▪ If authenticated to the PingFederate administrative console using certificate authentication,
a session that has timed out might not appear to behave as expected. Normally (when using
password authentication), when a session has timed out and a user attempts some action in
the console, the browser is redirected to the login page, and then back to the administrative
console after authentication is complete. Similar behavior applies for certificate authentication,
in principle. However, because the browser might automatically resubmit the certificate for
authentication, the browser might redirect to the administrative console and not the login page.

Hardware security modules (HSM)

▪ PingFederate must be deployed with Oracle Server JRE (Java SE Runtime Environment) 8, or
Amazon Corretto 8.

▪ When using PingFederate with an HSM from Thales or Entrust, it is not possible to use an
elliptic curve (EC) certificate as an SSL server certificate.

▪ When using PingFederate with an HSM from Thales, it is not possible to generate a self-signed
elliptic curve (EC) certificate.

▪ When using PingFederate with an HSM from Thales, it is not possible to use an elliptic curve
(EC) certificate as a signing certificate.

SSO and SLO

▪ When consuming SAML metadata, PingFederate does not report an error when neither
the validUntil nor the cacheDuration attribute is included in the metadata. Note that
PingFederate does reject expired SAML metadata as indicated by the validUntil attribute
value, if it is provided.

▪ The anchored-certificate trust model cannot be used with the SLO redirect binding because the
certificate cannot be included with the logout request.

▪ If an IdP connection is configured for multiple virtual server IDs, PingFederate will always use
the default virtual server ID for IdP Discovery during an SP-initiated SSO event.

Composite Adapter configuration

▪ SLO is not supported when users are authenticated through a Composite Adapter instance that
contains another instance of the Composite Adapter.

Self-service password reset

Passwords can be reset for Microsoft Active Directory user accounts without the permission to
change password.

OAuth

PingFederate does not support a case-sensitive naming convention for OAuth client ID values when
client records are stored in a directory server. For example, after creating a client with an ID value
of sampleClient, PingFederate does not allow the creation of another client with an ID value of
SampleClient.

Although it's possible to create clients using the same ID values with different casings when client
records are stored in XML files, a database server, or custom storage, we recommend not doing so
to avoid potential record migration issues.

Customer identity and access management

Copyright ©2024

 | Release Notes | 23

Some browsers display a date-picker user interface for fields that have been designed for date-
specific inputs. Some browsers do not. If one or more date-specific fields are defined on the
registration page or the profile management page (or both), end users must enter the dates
manually if their browsers do not display a date-picker user interface for those fields.

Provisioning

▪ LDAP referrals return an error and cause provisioning to fail if the user or group objects are
defined at the DC level, and not within an OU or within the Users CN.

▪ The totalResults value in SCIM responses indicates the number of results returned in the
current response, not the total number of estimated results on the LDAP server.

Logging

If a source attribute has been configured for masking in an IdP adapter or IdP connection and the
source attribute is mapped to OAuth's persistent grant USER_KEY attribute, the USER_KEY attribute
will not be masked in the server logs. Other persistent grant attributes will be masked.

Even if a source attribute has been configured for masking in an IdP adapter and the source
attribute is mapped as the adapter's unique user key, the user key attribute is not masked in the
server or audit logs.

Database logging

If PingFederate cannot establish a Java Database Connectivity (JDBC) connection at startup,
PingFederate will continue to write log messages to the failover log file, despite the failover and
resume configuration. When the JDBC connectivity issue is resolved, restart PingFederate. On
restart, PingFederate will start writing log messages to the database.

If PingFederate is able to establish a JDBC connection at startup, PingFederate will be able to write
log messages to the failover log when it encounters a JDBC connectivity issue and resume writing
log messages to the database when it re-establishes the JDBC connection.

RADIUS NAS-IP-Address

The RADIUS NAS-IP-Address is only included in Access-Request packets when the
pf.bind.engine.address is set with an IPv4 address. IPv6 is not supported.

Configcopy

 Note:

As of PingFederate 10.2, the configcopy tool has been deprecated and will be removed in a
future release.

▪ When the configcopy tool is used to copy all connections, channels, data sources, adapters,
or token translators, the overridden properties are applied to all instances. Proceed cautiously
when applying overrides for copy-all operations.

▪ The configcopy tool supports copying only a single reference for each of the following
configuration items that are defined for a given connection: adapter, data source, Assertion
Consumer Service URL, Single Logout Service URL, and Artifact Resolution Service URL.
When multiple items are associated with a given connection, only the first reference to each is
copied.

▪ The configcopy tool does not support creation of configuration data that does not exist in
the source. If an override parameter is set for a parameter that does not exist in the source
configuration, the behavior of the target system is not guaranteed.

▪ The configcopy tool, when used for copying plugin configurations (including adapters,
token translators, and other data stores), does not currently support overrides of complex data
structures, including tables, extended contract attributes, and masked fields.

Copyright ©2024

 | Release Notes | 24

▪ When the configcopy tool is used to copy connection data, any SOAP Single logout (SLO)
endpoints defined in the source are not copied to the target, even if the SOAP SLO endpoint is
the only SLO endpoint defined at the source. These must be manually added to the target.

Microsoft Internet Explorer 11

The Dashboard # Cluster pane does not align the spokes of nodes in the center. Instead, it
displays them left-aligned.

Deprecated features

Configcopy tool, Connection Management Service, SSO Directory Service

As of PingFederate 10.2, these features have been deprecated and will be removed in a future
release.

Oracle Directory Server Enterprise Edition

As Oracle ended its Premier Support for Oracle Directory Server Enterprise Edition (ODSEE
11g) in December 2019, we no longer include ODSEE as part of the PingFederate qualification
process (starting with PingFederate 10.2). We continue to qualify against Oracle Unified Directory
(www.oracle.com/middleware/technologies/unified-directory.html) and other supported directory
servers. For a full list, see System requirements on page 109.

SNMP

Starting with PingFederate 10.2, monitoring and reporting through the Simple Network Management
Protocol (SNMP) has been removed.

Roles and protocols

Starting with PingFederate 10.1, roles and protocols are always enabled and no longer configurable
through the administrative console and API.

S3_PING discovery protocol

Starting with PingFederate 10.1, the S3_PING discovery protocol has been deprecated. Customers
running on AWS infrastructure should instead use NATIVE_S3_PING.

Red Hat Enterprise Linux install script

Starting with PingFederate 10.0, the Red Hat Enterprise Linux install script is no longer available.
To install PingFederate 10.0 for Linux, you must download and extract the product distribution .zip
file.

Email configuration

Starting with version 9.3, PingFederate provides a pluggable architecture to publish notifications in
a variety of ways, configurable based on the types of events and users. PingFederate 9.3 includes
both SMTP and AWS Simple Notification Service (SNS) publishers out of the box. As a result,
the upgrade process now migrates email server settings from the source installation as an SMTP
Notification Publisher instance in the new PingFederate installation. See Configuring an SMTP
Notification Publisher instance on page 955 for more information.

Cookie-based IRSM tracking

Cookie-based Inter-Request State-Management (IRSM) tracking was discontinued in PingFederate
9.2. Group RPC-based session tracking remains the default choice.

Oracle Solaris 10

Starting with version 9.2, Oracle Solaris 10 is no longer included in the PingFederate qualification
process. For a list of supported operating systems, see System requirements on page 109.

Copyright ©2024

https://www.oracle.com/middleware/technologies/unified-directory.html

 | Release Notes | 25

Auto-Connect

The Auto-Connect feature has been discontinued in PingFederate 9.2. If such usage is detected
in the source installation during an upgrade, the upgrade tool warns the administrator about it.
Administrators should remove Auto-Connect configuration from the source installation and re-run
the upgrade tool.

JMX monitoring support for outbound provisioning

JMX monitoring of outbound provisioning is no longer an option starting with version 9.2. If
such usage is detected in the source installation during an upgrade, the upgrade tool warns the
administrator about it. No further action is required. Outbound provisioning transactions are written
to the provisioner-audit.log file in the new installation. See Outbound provisioning audit
logging on page 789 for more information.

Logging configuration

The default logging configuration has been optimized since PingFederate 8.2. As a result,
the product distribution no longer includes the terse.example.log4j2.xml file in the
<pf_install>/pingfederate/server/default/conf directory, starting with version 8.4.

See Log4j 2 logging service and configuration on page 779 for more information.

Plain text email notification templates

Starting with version 8.2, PingFederate has switched the format of its email notification from plain
text to HTML. The new HTML-based templates (message-template-*.html) are located in the
<pf_install>/pingfederate/server/default/conf/template/mail-notifications
directory. As a result, PingFederate no longer maintains the plain text templates (message-
template-*.txt).

To preserve previous modifications, you must migrate custom changes manually. For more
information, see Copying customized files or settings on page 146 for more information.

SpSessionAuthnAdapterId and SourceResource (query parameters for the /sp/startSLO.ping endpoint)

Support for the previously optional SpSessionAuthnAdapterId and SourceResource have
been dropped in favor of the SLO improvements introduced in version 8.2.

BoneCP as the JDBC connection pool library

As of PingFederate 8.0, support for BoneCP as the JDBC connection pool library has been
deprecated and replaced with Apache Commons DBCP™ 2, which requires JDBC 4.1 or later
drivers.

Verify the database-driver JAR files, found in the <pf_install>/pingfederate/server/
default/lib directory, meet the minimum version requirement. If you are using JDBC drivers
of version 4.0 (or earlier), contact your vendors for the latest drivers and replace the older JDBC
database-driver JAR files.

DSA certificate creation

Starting with PingFederate 7.3, it is no longer possible to create DSA key pairs in the certificate
management pages of PingFederate. Import of DSA key pairs continues to be supported.

Username Token Translator

As of PingFederate 7.2, the Username Token Translator has been deprecated and replaced with
an integrated Username Token Processor. While the integrated Username Token Processor and
the deprecated Username Token Translator can be simultaneously deployed, we recommend you
migrate to the new token processor.

See Migrating to the integrated Username Token Processor on page 155 for more information.

LDAP Adapter

Copyright ©2024

 | Introduction to PingFederate | 26

Starting with PingFederate 7.2, the LDAP Adapter is no longer supported. This adapter was
deprecated in PingFederate 6.6 and replaced by the LDAP Username Password Credential
Validator (PCV), which can be used with the HTML Form or HTTP Basic Adapters. See Migrating to
the integrated LDAP Username PCV on page 155 for more information.

Previous releases
For information about enhancements and issues resolved in previous major and minor releases of
PingFederate, follow the links below to their release notes. From there you can also access the release
notes for older maintenance releases.

▪ 10.2 December 2020
▪ 10.1 June 2020
▪ 10.0 December 2019
▪ 9.3 June 2019
▪ 9.2 December 2018
▪ 9.1 June 2018
▪ 9.0 December 2017 and previous releases

Introduction to PingFederate

PingFederate is an enterprise federation server and identity bridge for user authentication and standards-
based single sign-on (SSO) for employee, partner, and customer identity types.

PingFederate enables outbound and inbound solutions for SSO, federated identity management, customer
identity and access management, mobile identity security, API security, and social identity integration.
Browser-based SSO extends employee, customer, and partner identities across domains without
passwords using standard identity protocols, such as SAML, WS-Federation, WS-Trust, OAuth, OpenID
Connect, and System for Cross-domain Identity Management (SCIM).

Copyright ©2024

https://docs.pingidentity.com/bundle/pingfederate-102/page/qem1584122852896.html
https://docs.pingidentity.com/bundle/pingfederate-101/page/ejm1564002949565.html
https://docs.pingidentity.com/bundle/pingfederate-100/page/ejm1564002949565.html
https://docs.pingidentity.com/bundle/pingfederate-93/page/ejm1564002949565.html
https://docs.pingidentity.com/bundle/pingfederate-92/page/releaseNotes/pf_c_releaseNotes.html
https://docs.pingidentity.com/bundle/pingfederate-91/page/releaseNotes/pf_c_releaseNotes.html
https://docs.pingidentity.com/bundle/pingfederate-90/page/releaseNotes/pf_c_90.html

 | Introduction to PingFederate | 27

About identity federation and SSO
Federated identity management, or identity federation, allows enterprises to exchange identity information
securely across domains, providing browser-based single sign-on (SSO).

Identity federation also integrates access to applications across distinct business units within a single
organization. As organizations grow through acquisitions, or when business units maintain separate user
repositories and authentication mechanisms across applications, a federated solution to browser-based
SSO is desirable.

This cross-domain, identity-management solution provides numerous benefits, ranging from increased end
user satisfaction and enhanced customer relations to reduced cost and greater security and accountability.

For complete information about identity federation and the standards that support it, see Supported
standards on page 28.

Service providers and identity providers
Identity federation standards identify two operational roles in an SSO transaction: the identity provider (IdP)
and the service provider (SP).

An IdP might be an enterprise that manages accounts for a large number of users who need secure
access to the web-based applications or services of customers, suppliers, and business partners. An
SP might be a SaaS provider or a business-process outsourcing (BPO) vendor wanting to simplify client
access to its services.

Secure single sign-on

Identity federation allows both types of organizations to define a trust relationship whereby the SP
provides access to users from the IdP. The IdP continues to manage its users, and the SP trusts the IdP to
authenticate them.

A single instance of PingFederate provides complete support for both roles even when a single
organization's business processes encompass both SP and IdP use cases.

Federation hub
As a federation hub, PingFederate can bridge browser-based SSO between IdPs and SPs, reducing
administrative overhead.

Identity federation refers to the negotiation and management of federation settings with partners.
Supporting different federation protocols can hinder application development and SSO implementation.

Configuring PingFederate as a federation hub:

▪ Allows you to simplify application development and SSO implementation by extending federated
access across partners supporting different federation standards

▪ Provides a centralized console to simplify SSO administration

Bridging IdPs and SPs through a federation hub allows you to multiplex a single connection for multiple
partners.

Copyright ©2024

 | Introduction to PingFederate | 28

Supported standards
PingFederate supports a variety of federation roles, protocols, and standards.

PingFederate provides flexible, integrated support for the SAML protocols, WS-Federation, OAuth,
OpenID Connect, and WS-Trust. In addition, PingFederate supports System for Cross-domain Identity
Management (SCIM) for inbound and outbound provisioning.

Federation roles
A variety of federation roles work together in an identity federation partnership.

The most recent sets of standards, SAML 2.0 and WS-Federation, define two roles in an identity federation
partnership: an identity provider (IdP) and a service provider (SP).

 Note:

Earlier SAML 1.x specifications used the terms asserting party (for IdP) and relying party (for SP). For
consistency and clarity, PingFederate adopts the later terms IdP and SP across all specifications.

A third role, defined in the SAML 2.0 specifications and available in PingFederate, is that of an IdP
Discovery provider.

OAuth 2.0 and OpenID Connect 1.0 can configure PingFederate as an authorization server (AS), an
OpenID provider (OP), and a relying party (RP).

Identity provider

An IdP, also called the SAML authority, is a system entity that authenticates a user, or SAML subject, and
transmits referential identity information based on the authentication.

 Note:

The SAML subject may be a person, a web application, or a web server. Since the SAML subject is often a
person, our documentation employs the term "user" throughout.

Service provider

An SP is the consumer of identity information provided by the IdP. Based on trust, technical agreements,
and verification of adherence to protocols, SP applications and systems determine how to use information
contained in an SSO token: a SAML assertion, a JSON Web Token (JWT), or an OAuth access token in
conjunction with an ID token.

Copyright ©2024

 | Introduction to PingFederate | 29

IdP Discovery provider

This role provides an IdP look-up service that can be incorporated into the implementation of either an IdP
or an SP, or employed as a standalone server.

Authorization server

An OAuth authorization server issues access tokens and refresh tokens to OAuth clients after the resource
owner fulfills the authentication requirement.

OpenID provider

An OpenID provider (OP) is an AS that is capable of authenticating the resource owner and providing
claims (user attributes) to an RP about the authentication event and the user.

Terminology
Definitions for the list of SAML specifications that provide a system of building blocks and support
components for achieving secure data exchange in an identity federation.

The list of SAML specifications includes:

▪ Assertions
▪ Bindings
▪ Profiles
▪ Metadata
▪ Authentication Context

Assertions

Assertions are XML documents sent from an identity provider (IdP) to a service provider (SP). Each
assertion contains identifying information about a user who has initiated a single sign-on (SSO) request.

Bindings

A SAML binding describes the way transport protocols exchange messages. PingFederate supports the
following bindings:

HTTP POST

Describes how to transport SAML messages in HTML form-control content, which uses a base-64
format.

HTTP Artifact

Describes how to use an artifact to represent a SAML message. An HTML form control or a query
string in the URL transports the artifact.

HTTP Redirect (SAML 2.0)

Describes how to transport SAML messages using HTTP 302 status-code response messages.

SOAP (SAML 2.0)

Describes how to transfer SAML messages across the back channel.

Profiles

Profiles describe processes and message flows combining assertions, request/response message
specifications, and bindings to achieve a specific desired functionality or use case. Profiles define the
application of the specifications and play a large part in PingFederate.

Copyright ©2024

 | Introduction to PingFederate | 30

Metadata

SAML 2.0 defines an XML schema to standardize metadata to facilitate the exchange of configuration
information among federation partners, such as profile and binding support, connection endpoints, and
certificate information.

Whether you publish or consume metadata, PingFederate supports the use of XML digital signatures to
ensure the integrity of the data.

Authentication context

Before allowing access to a protected resource, an SP might want information about the assertion and the
user's original authentication by the IdP. The SP uses this information for an access control decision or to
provide an audit trail for regulatory or security-policy compliance.

The SAML 2.0 specification provides an XML schema whereby partners create authentication-context
declarations. Partners might choose to reference a URI to implement a set of classes provided by
the specification to help categorize and simplify context interpretation (see the OASIS document:
Authentication Context for the OASIS Security Assertion Markup Language (SAML) V2.0). However, it
is up to partners to decide if they require additional authentication context and if these classes supply an
adequate description. For SAML 1.x, if using the authentication context, called AuthenticationMethod, the
context must appear as a URI (see oasis-sstc-saml-core-1.1.pdf).

An administrator can configure PingFederate, acting as an IdP, to include a specific authentication context
in assertions for browser SSO or WS-Trust.

Several PingFederate integration kits provide methods for the developer to insert authentication context
from external IdP applications into the assertion. The SP developer has the option to:

▪ Call methods for extracting authentication context from an assertion.
▪ Work with the application to create access control or other processing based on the context.

Browser-based SSO

Browser-based single sign-on (SSO) includes SAML 1.x profiles on page 30, SAML 2.0 profiles on
page 33, WS-Federation on page 44, and OpenID Connect on page 82 and provides standards-
based SSO, single logout (SLO), attribute query and X.509 attribute sharing profile (XASP), and the WS-
Federation Passive Requestor Profile for service provider (SP)-initiated SSO.

SAML 1.x profiles
SAML 1.0 and 1.1 profiles provide for browser-based single sign-on (SSO), initiated by an identity provider
(IdP), using either the POST or artifact bindings.

The SAML 1.x specifications provide for a non-normative service provider (SP)-initiated scenario called
“destination-first.” This scenario lets web developers create applications that enable a user to initiate SSO
from the SP site.

Copyright ©2024

https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
https://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf

 | Introduction to PingFederate | 31

SSO—Browser-POST
In this scenario, a user logged on to the identity provider (IdP) attempts to access a resource on a remote
service provider (SP) server. HTTP POST transports the SAML assertion to the SP.

SSO—Browser-POST profile

Processing steps

1. A user logs on to the IdP.

If a user is not logged on for some reason, the IdP challenges them to do so at step 2.
2. The user clicks a link or otherwise requests access to a protected SP resource.
3. Optionally, the IdP retrieves attributes from the user data source.
4. The IdP's SSO service returns an HTML form to the browser with a SAML response containing the

authentication assertion and any additional attributes. The browser automatically posts the HTML form
back to the SP.

 Note:

SAML specifications require digitally-signed POST responses.

5. (Not shown) If the IdP returns a valid SAML assertion to the SP, a session is established on the SP
and the browser is redirected to the target resource.

Copyright ©2024

 | Introduction to PingFederate | 32

SSO—Browser-Artifact
In this scenario, the identity provider (IdP) sends a SAML artifact to the service provider (SP) through either
HTTP POST or a redirect. The SP uses the artifact to obtain the associated SAML response from the IdP.

SSO—Browser-Artifact profile

Processing steps

1. A user logs on to the IdP.

If a user is not logged on for some reason, the IdP challenges them to do so at step 2.
2. The user clicks a link or otherwise requests access to a protected SP resource.
3. Optionally, the IdP retrieves attributes from the user datastore.
4. The IdP federation server generates an assertion, creates an artifact, and sends an HTTP redirect

containing the artifact through the browser to the SP's Assertion Consumer Service (ACS).
5. The ACS extracts the Source ID from the SAML artifact and sends an artifact-resolve message to the

identity federation server's Artifact Resolution Service (ARS).
6. The ARS sends a SAML artifact response message containing the previously-generated assertion.
7. (Not shown) If the IdP returns a valid SAML assertion to the SP, a session is established on the SP

and the browser is redirected to the target resource.

SP-initiated (destination-first) SSO
In service provider (SP)-initiated, destination-first transactions, the user connects to an SP site and
attempts to access a protected resource in the SP domain. The user might have an account at the SP site,
but according to the federation agreement, the identity provider (IdP) manages authentication. The SP
sends an authentication request to the IdP.

Copyright ©2024

 | Introduction to PingFederate | 33

SP-initiated SSO

Processing steps

1. The user requests access to a protected SP resource. The request redirects to the federation server to
handle authentication.

2. The federation server sends a SAML request for authentication to the IdP's single sign-on (SSO)
service, also called the Intersite Transfer Service.

3. If the user is not already logged on to the IdP site or needs to re-authenticate, The IdP asks for
credentials, such as ID and password, and the user logs on.

4. The user data store can provide additional information about the user for inclusion in the SAML
response. The federation agreement between the IdP and the SP predetermines these attributes. See
User attributes on page 92.

5. The IdP's Intersite Transfer Service returns an artifact representing the SAML response to the SP.
6. The SP's artifact handling service sends a SOAP request with the artifact to the IdP's artifact resolver

endpoint.
7. The IdP resolves the artifact and returns the corresponding SAML response with the SSO assertion.
8. (Not shown) If the IdP returns a valid SAML assertion to the SP, a session is established on the SP

and the browser is redirected to the target resource.

SAML 2.0 profiles

PingFederate supports the following major profiles defined under the SAML 2.0 standard:

▪ Single sign-on on page 34 (SSO)
▪ Single logout on page 43 (SLO)
▪ Attribute Query and XASP on page 43
▪ Standard IdP Discovery on page 44

Copyright ©2024

 | Introduction to PingFederate | 34

Single sign-on
Pairing service provider (SP)- and identity provider (IdP)-initiated protocols with transport-binding
specifications results in eight practical SSO scenarios.

Enabling SP-initiated transactions through SAML 2.0 increases the number of possible SSO profile
variations. The following profile variations each illustrate a specific scenario:

▪ SP-initiated SSO—POST-POST on page 34 A user attempts to access a protected resource
directly on an SP website without logging on. The user does not have an account on the SP site but
does have a third-party IdP-federated account. The SP sends an authentication request to the IdP.
The user's browser sends both the request and the returned SAML assertion through HTTP POST.

▪ SP-initiated SSO—Redirect-POST on page 36 The SP sends an HTTP redirect message to the IdP
containing an authentication request. The IdP returns a SAML response with an assertion to the SP
via HTTP POST

▪ SP-initiated SSO—Artifact-POST on page 37 The SP sends a SAML artifact to the IdP through
an HTTP redirect. The IdP uses the artifact to obtain an authentication request from the SP's SAML
artifact resolution service. The IdP returns a SAML response to the SP via HTTP POST.

▪ SP-initiated SSO—POST-Artifact on page 38 the SP sends an authentication request to the IdP
through HTTP POST. The returned SAML assertion is redirected through the user's browser. The
response contains a SAML artifact.

▪ SP-initiated SSO—Redirect-Artifact on page 39 The SP sends an HTTP redirect message to the
IdP containing a request for authentication. The IdP returns an artifact through HTTP redirect. The SP
uses the artifact to obtain the SAML response.

▪ SP-initiated SSO—Artifact-Artifact on page 40 The SP sends a SAML artifact to the IdP through an
HTTP redirect. The IdP uses the artifact to obtain an authentication request from the SP, and then the
IdP sends another artifact to the SP, which the SP uses to obtain the SAML response.

▪ IdP-initiated SSO—POST on page 41 A user is logged on to the IdP and attempts to access a
resource on a remote SP server. The SAML assertion is transported to the SP through HTTP POST.

▪ IdP-initiated SSO—Artifact on page 42 The IdP sends a SAML artifact to the SP through an HTTP
redirect. The SP uses the artifact to obtain the associated SAML response from the IdP.

SP-initiated SSO—POST-POST
In this scenario, a user attempts to access a protected resource directly on a service provider (SP) website
without logging on. The user does not have an account on the SP site but does have a third-party identity
provider (IdP)-federated account. The SP sends an authentication request to the IdP. The user's browser
sends both the request and the returned SAML assertion through HTTP POST.

Copyright ©2024

 | Introduction to PingFederate | 35

SP-initiated SSO—POST-POST

Processing steps

1. The user requests access to a protected SP resource. The request redirects to the federation server to
handle authentication.

2. The federation server sends an HTML form back to the browser with a SAML request for
authentication from the IdP. The HTML form automatically posts to the IdP's SSO service.

3. If the user is not already logged on to the IdP site or needs to re-authenticate, The IdP asks for
credentials, such as ID and password, and the user logs on.

4. The user data store can provide additional information about the user for inclusion in the SAML
response. The federation agreement between the IdP and the SP predetermines these attributes. See
User attributes on page 92.

5. The IdP's SSO service returns an HTML form to the browser with a SAML response containing the
authentication assertion and any additional attributes. The browser automatically posts the HTML form
back to the SP.

 Note:

SAML specifications require digitally-signed POST responses.

6. (Not shown) If the signature and the assertion, or the JSON Web Token, are valid, the SP establishes
a session for the user and redirects the browser to the target resource.

Copyright ©2024

 | Introduction to PingFederate | 36

SP-initiated SSO—Redirect-POST
In this scenario, the service provider (SP) sends an HTTP redirect message to the identity provider (IdP)
containing an authentication request. The IdP returns a SAML response with an assertion to the SP
through HTTP POST.

SP-initiated SSO: redirect/POST

Processing steps

1. A user requests access to a protected SP resource. The user is not logged on to the site. The request
redirects to the federation server to handle authentication.

2. The SP returns an HTTP redirect code, 302 or 303, containing a SAML request for authentication
through the user's browser to the IdP's single sign-on (SSO) service.

3. If the user is not already logged on to the IdP site or needs to re-authenticate, The IdP asks for
credentials, such as ID and password, and the user logs on.

4. The user data store can provide additional information about the user for inclusion in the SAML
response. The federation agreement between the IdP and the SP predetermines these attributes. See
User attributes on page 92.

5. The IdP's SSO service returns an HTML form to the browser with a SAML response containing the
authentication assertion and any additional attributes. The browser automatically posts the HTML form
back to the SP.

 Note:

SAML specifications require digitally-signed POST responses.

6. (Not shown) If the signature and the assertion, or the JSON Web Token, are valid, the SP establishes
a session for the user and redirects the browser to the target resource.

Copyright ©2024

 | Introduction to PingFederate | 37

SP-initiated SSO—Artifact-POST
In this scenario, the service provider (SP) sends a SAML artifact to the identity provider (IdP) through an
HTTP redirect. The IdP uses the artifact to obtain an authentication request from the SP's SAML artifact
resolution service (ARS), and the IdP returns a SAML response to the SP through HTTP POST.

SP-initiated SSO—Artifact-POST

Processing steps

1. A user requests access to a protected SP resource. The user is not logged on to the site. The request
redirects to the federation server to handle authentication.

2. The SP generates an authentication request and creates an artifact. The SP sends an HTTP redirect
containing the artifact through the user's browser to the IdP's single sign-on (SSO) service.

 Note:

The artifact contains the source ID of the SP's artifact resolution service and a reference to the
authentication.

3. The SSO service extracts a source ID from the SAML artifact and sends a SAML artifact-resolve
message over SOAP containing the artifact to the SP's ARS.

 Note:

The federation agreement made prior to this action maps the SP and IdP's source IDs and remote
ARS.

4. The SP's ARS returns a SAML message containing the previously-generated authentication request.
5. If the user is not already logged on to the IdP site or needs to re-authenticate, The IdP asks for

credentials, such as ID and password, and the user logs on.

Copyright ©2024

 | Introduction to PingFederate | 38

6. The user data store can provide additional information about the user for inclusion in the SAML
response. The federation agreement between the IdP and the SP predetermines these attributes. See
User attributes on page 92.

7. The IdP's SSO service returns an HTML form to the browser with a SAML response containing the
authentication assertion and any additional attributes. The browser automatically posts the HTML form
back to the SP.

 Note:

SAML specifications require digitally-signed POST responses.

8. (Not shown) If the signature and the assertion, or the JSON Web Token, are valid, the SP establishes
a session for the user and redirects the browser to the target resource.

SP-initiated SSO—POST-Artifact
In this single sign-on (SSO) scenario, the service provider (SP) sends an authentication request to the
identity provider (IdP) through HTTP POST. The returned SAML assertion redirects through the user's
browser, and the response contains a SAML artifact.

SP-initiated SSO—POST-Artifact

Processing steps

1. A user requests access to a protected SP resource. The user is not logged on to the site. The request
redirects to the federation server to handle authentication.

2. The federation server sends an HTML form back to the browser with a SAML request for
authentication from the IdP. The HTML form automatically posts to the IdP's SSO service.

3. If the user is not already logged on to the IdP site or needs to re-authenticate, The IdP asks for
credentials, such as ID and password, and the user logs on.

Copyright ©2024

 | Introduction to PingFederate | 39

4. The user data store can provide additional information about the user for inclusion in the SAML
response. The federation agreement between the IdP and the SP predetermines these attributes. See
User attributes on page 92.

5. The IdP federation server generates an assertion, creates an artifact, and sends an HTTP redirect
containing the artifact through the browser to the SP's Assertion Consumer Service (ACS).

6. The ACS extracts the source ID from the SAML artifact and sends an artifact-resolve message to the
federation server's Artifact Resolution Service (ARS).

7. The ARS sends a SAML artifact response message containing the previously-generated assertion.
8. (Not shown) If the IdP returns a valid SAML assertion to the SP, a session is established on the SP

and the browser is redirected to the target resource.

SP-initiated SSO—Redirect-Artifact
In this scenario, the service provider (SP) sends an HTTP redirect message to the identity provider (IdP)
containing a request for authentication. The IdP returns an artifact through HTTP redirect, and the SP uses
the artifact to obtain the SAML response.

SP-initiated SSO—Redirect-Artifact

Processing steps

1. A user requests access to a protected SP resource. The user is not logged on to the site. The request
redirects to the federation server to handle authentication.

2. The SP returns an HTTP redirect, either code 302 or 303, containing a SAML request for
authentication through the user's browser to the IdP's single sign-on (SSO) service.

3. If the user is not already logged on to the IdP site or needs to re-authenticate, The IdP asks for
credentials, such as ID and password, and the user logs on.

4. The user data store can provide additional information about the user for inclusion in the SAML
response. The federation agreement between the IdP and the SP predetermines these attributes. See
User attributes on page 92.

Copyright ©2024

 | Introduction to PingFederate | 40

5. The IdP federation server generates an assertion, creates an artifact, and sends an HTTP redirect
containing the artifact through the browser to the SP's Assertion Consumer Service (ACS).

6. The ACS extracts the Source ID from the SAML artifact and sends an artifact-resolve message to the
identity federation server's Artifact Resolution Service (ARS).

7. The ARS sends a SAML artifact response message containing the previously-generated assertion.
8. (Not shown) If the IdP returns a valid SAML assertion to the SP, a session is established on the SP

and the browser is redirected to the target resource.

SP-initiated SSO—Artifact-Artifact
In this scenario, the service provider (SP) sends a SAML artifact to the identity provider (IdP) through an
HTTP redirect. The IdP uses the artifact to obtain an authentication request from the SP, then the IdP
sends another artifact to the SP, which the SP uses to obtain the SAML response.

SP-initiated SSO—Artifact-Artifact

Processing steps

1. A user requests access to a protected SP resource. The user is not logged on to the site. The request
redirects to the federation server to handle authentication.

2. The Assertion Consumer Service (ACS) generates an authentication request and creates an artifact.
It sends an HTTP redirect containing the artifact through the user's browser to the IdP's single sign-on
(SSO) service.

 Note:

The artifact contains the source ID of the SP's Artifact Resolution Service (ARS) and a reference to the
authentication request.

Copyright ©2024

 | Introduction to PingFederate | 41

3. The SSO service extracts the source ID from the SAML artifact and sends a SAML artifact resolve
message containing the artifact to the SP's artifact resolution service.

 Note:

The federation agreement maps the SP and IdP's source IDs and remote artifact resolution services
prior to this action.

4. The SP's artifact resolution service sends back a SAML artifact response message containing the
previously-generated authentication request.

5. If the user is not already logged on to the IdP site or needs to re-authenticate, The IdP asks for
credentials, such as ID and password, and the user logs on.

6. The user data store can provide additional information about the user for inclusion in the SAML
response. The federation agreement between the IdP and the SP predetermines these attributes. See
User attributes on page 92.

7. The IdP federation server generates an assertion, creates an artifact, and sends an HTTP redirect
containing the artifact through the browser to the SP's Assertion Consumer Service (ACS).

8. The ACS extracts the Source ID from the SAML artifact and sends an artifact-resolve message to the
identity federation server's Artifact Resolution Service (ARS).

9. The ARS sends a SAML artifact response message containing the previously-generated assertion.
10. (Not shown) If the IdP returns a valid SAML assertion to the SP, a session is established on the SP

and the browser is redirected to the target resource.

IdP-initiated SSO—POST
In this scenario, a user is logged on to the identity provider (IdP) and attempts to access a resource on a
remote service provider (SP) server. HTTP POST transports the SAML assertion to the SP.

IdP-initiated SSO--POST

Copyright ©2024

 | Introduction to PingFederate | 42

Processing steps

1. A user logs on to the IdP.

If a user is not yet logged on for some reason, he or she is challenged to do so at step 2.
2. The user requests access to a protected SP resource.
3. After the user requests access, the IdP might also retrieve attributes from the user datastore..
4. The IdP's SSO service returns an HTML form to the browser with a SAML response containing the

authentication assertion and any additional attributes. The browser automatically posts the HTML form
back to the SP.

 Note:

SAML specifications require digitally-signed POST responses.

5. (Not shown) If the signature and the assertion, or the JSON Web Token, are valid, the SP establishes
a session for the user and redirects the browser to the target resource.

IdP-initiated SSO—Artifact
In this single sign-on (SSO) scenario, the identity provider (IdP) sends a SAML artifact to the service
provider (SP) through an HTTP redirect. The SP uses the artifact to obtain the associated SAML response
from the IdP.

IdP-initiated SSO--Artifact

Processing steps

1. A user logs on to the IdP.

If a user has not yet logged on for some reason, he or she is challenged to do so at step 2.
2. The user clicks a link or otherwise requests access to a protected SP resource.
3. After the user requests access, the IdP might also retrieve attributes from the user datastore.

Copyright ©2024

 | Introduction to PingFederate | 43

4. The IdP federation server generates an assertion, creates an artifact, and sends an HTTP redirect
containing the artifact through the browser to the SP's Assertion Consumer Service (ACS).

5. The ACS extracts the Source ID from the SAML artifact and sends an artifact-resolve message to the
identity federation server's Artifact Resolution Service (ARS).

6. The ARS sends a SAML artifact response message containing the previously-generated assertion.
7. (Not shown) If the IdP returns a valid SAML assertion to the SP, a session is established on the SP

and the browser is redirected to the target resource.

Single logout
The single logout (SLO) profile enables users to log out of all participating sites in a federated session from
any site.

The associated identity provider (IdP) federation deployment manages all logout requests and responses
for participating sites. If a participating site returns an error, other participating sites might not receive their
logout requests. In this scenario, PingFederate returns an error message to the end users.

The logout messages can be transported using any combination of bindings described for SSO (POST,
artifact, or redirect). See the diagrams under SAML 2.0 profiles on page 33 for illustrations of these
message flows.

About session cleanup

When a service provider (SP) receives an SLO request from an IdP, the session creation adapters must
handle any session clean-up involving the local application.

Attribute Query and XASP
The SAML 2.0 Attribute Query profile allows a service provider (SP) to request user attributes from an
identity provider (IdP) in a secure transaction separate from single sign-on (SSO).The X.509 Attribute
Sharing Profile (XASP) defines a specialized extension of the general Attribute Query profile.

The IdP, acting as an attribute authority, accepts attribute queries, performs a datastore lookup into a
user repository such as an LDAP directory, provides values to the requested attributes, and generates
an attribute response back to the originating SP requester. The SP then returns the attributes to the
requesting application.

 Tip:

When privacy is required for sensitive attributes, you can configure PingFederate to obfuscate, or mask,
their values in the server and transaction logs.

Web SSO is distinct from the Attribute Query use case. You can configure PingFederate servers to
implement either of these profiles without regard to the other.

The XASP specification enables organizations with an investment in Public Key Infrastructure (PKI) to
issue and receive Attribute Queries based on user-certificate authentication.

Under XASP a user authenticates directly with an SP application by providing their X.509 certificate. After
the user is authenticated, the SP application requests additional user attributes by contacting the SP
PingFederate server. A portion of the user's X.509 certificate is included in the request and can be used
to determine the correct IdP to use as the source of the requested attributes. Finally, the SP generates an
Attribute Query and transmits it to the IdP over the SOAP back channel.

Because the user arrives at the SP server already authenticated, no PingFederate adapter is used in this
case.

Copyright ©2024

 | Introduction to PingFederate | 44

Standard IdP Discovery
SAML 2.0 identity provider (IdP) Discovery provides a cookie-based look-up, when the IdP is not otherwise
specified, to dynamically identify a user's IdP during a service provider (SP)-initiated single sign-on (SSO)
event.

This mechanism is helpful in cases where an SP is a hub for several IdPs in an identity federation.

 Tip:

In addition to supporting standard IdP Discovery, PingFederate provides a cross-protocol, proprietary
mechanism that allows an SP server to write a persistent browser cookie. The cookie contains a reference
to the previous IdP-authentication partner for SSO. For more information, see Configuring IdP discovery
using a persistent cookie on page 770.

In the standard scenario, when a user requests access to a protected resource on the SP, common-
domain browser cookies are used to determine where a user has previously authenticated. Using
this information, a PingFederate server can determine which IdP connection to use for sending an
authentication request.

PingFederate can serve in up to three different IdP Discovery provider roles: common domain server,
common domain cookie writer, and common domain cookie reader. Each of these roles is necessary to
support IdP Discovery. The roles can be distributed across multiple servers at different sites.

Common domain server

In this role, the PingFederate server hosts a domain that its federation partners share in common.
The common domain server allows partners to manipulate browser cookies that exist within that
common domain. PingFederate can serve in this role exclusively or as part of either an IdP or an SP
federation role, or both.

Common domain cookie writer

When PingFederate is acting in an IdP role and authenticates a user, it can write an entry in the
common domain cookie, including its federation entity ID. An SP can look up this information on the
common domain (not the same location as the common domain server described above).

Common domain cookie reader

When PingFederate is acting as an SP and needs to determine past IdP authentications, it reads
the common domain cookie. Based on the information contained in the cookie, PingFederate can
then initiate an SSO authentication request using the correct IdP connection.

WS-Federation
PingFederate supports the WS-Federation Passive Requestor Profile for service provider (SP)-initiated
single sign-on (SSO), enabling interoperability with Microsoft's Active Directory Federation Service (ADFS).

This profile allows for straightforward redirects and HTTP GET and POST methods to transport SAML
assertions or JSON web tokens (JWTs) as security tokens for SSO and logout request and response
messages for single logout (SLO).

 Note:

Unlike SAML, WS-Federation consolidates the endpoints for SLO and SSO. When you set up a WS-
Federation connection in PingFederate, both types of transactions are available to an SP web application
that supports them both.

For more information about WS-Federation and the Passive Requestor Profile, see web services
Federation Languages.

Copyright ©2024

https://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
https://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html

 | Introduction to PingFederate | 45

Passive Requestor profile

This profile permits a user's browser, the passive requestor, to request a security token from an identity
provider (IdP) when the user requests access to a protected web service or other resource at an SP.

WS-Federation SSO

Processing steps:

1. A user requests access to a protected SP resource. The user is not logged on to the site. The request
is redirected to the federation server to handle authentication.

2. The SP generates a security token request and redirects the browser to the identity provider's WS-
Federation implementation.

3. If the user is not already logged on to the IdP site or if re-authentication is required, the IdP asks for
credentials, such as ID and password, and the user logs on.

4. Additional information about the user can be retrieved from the user datastore for inclusion in the
SAML response. These attributes are predetermined as part of the federation agreement between the
IdP and the SP. For more information, see User attributes on page 92.

5. The federation server creates a response containing a signed SAML assertion, or a JSON Web Token,
and returns it to the SP through POST.

6. (Not shown) If the signature and the assertion, or the JWT, are valid, the SP establishes a session for
the user and redirects the browser to the target resource.

Single logout using WS-Federation is handled in much the same way as with SAML. For more information,
see Single logout on page 43. However, HTTP GET/POST is always used as the transport mechanism.

Copyright ©2024

 | Introduction to PingFederate | 46

About account linking
Account linking provides a means for a user to log on to disparate sites with just one authentication when
the user has established accounts and credentials at each site.

All protocols support this method of interconnecting accounts across domains.

Account linking involves a persistent name identifier associated with accounts at each participating site.
The assertion conveys the name identifier, which can be an opaque pseudonym. Once established locally,
the service provider (SP) can use the account link to look up the user and provide access without re-
authentication.

Account linking

Processing steps

1. David Smith logs on to Site A as davidsmith. He then decides to access his account on Site B through
Site A.

2. Optionally, the federation server looks up additional attributes from the datastore.
3. The Site A federation server sends a persistent name identifier to Site B, along with any other

attributes.

 Note:

When using a pseudonym and sending other attributes, be careful not to send attributes that could
identify the subject.

4. The federation server on Site B uses the information to associate the pseudonym with the existing
account of dsmith and optionally might ask David to provide consent to the linking.

Once the link has been established, Site B stores the information so that David only has to log on to
Site A to access Site B.

Copyright ©2024

 | Introduction to PingFederate | 47

Web services standards
The PingFederate WS-Trust security token service (STS) interoperates with many different web-service
environments that support varying standards.

PingFederate supports multiple versions of SOAP and WS-Trust specifications and operates with any
combination of these standards simultaneously.

PingFederate supports namespace aliasing to eliminate common trailing-slash inconsistencies for WS-
Trust 1.3. The server does not support namespace aliasing for WS-Trust 2005.

The following table lists supported SOAP/WS-Trust versions and corresponding namespaces.

SOAP/WS-Trust versions

Spec Version Namespace

1.1 http://schemas.xmlsoap.org/soap/envelope/SOAP

1.2 http://www.w3.org/2003/05/soap-envelope

2005 http://schemas.xmlsoap.org/ws/2005/02/trust/WS-Trust

1.3 http://docs.oasis-open.org/ws-sx/ws-trust/200512/

Web Services Security
Web Services Security (WSS or WSSE) is a set of specifications defined by the OASIS Web Services
Security (WSS) Technical Committee..

WSS defines XML extensions used to secure web service invocations, providing a standard way for
partners to add message integrity and confidentiality to web service interactions. The WSS-defined
token profiles describe standard ways of binding security tokens to these messages, enabling a variety
of additional capabilities. Defined profiles include SAML assertions, Username, Kerberos, X.509, and
other existing security tokens. SSL/TLS is often used in conjunction with deployments of WSS. For more
information see https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

 Note:

The implementation of WSS in the deployment of web services identity federations is outside the scope
of PingFederate, which provides a standalone, standard means of handling the tokens needed for such
federations. See WS-Trust on page 48.

WSS token transfer

Processing steps

1. A user requests content from an application.
2. The web service client sends a web service request to the WSP, including the SAML assertion in a

WSS header.

Copyright ©2024

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

 | Introduction to PingFederate | 48

3. The WSP responds to the request and sends an SSL/TLS token back to the application.
4. The web service client returns an HTML page to the user.

WS-Trust
WS-Trust comprises a protocol that systems and applications use when requesting a service to issue,
validate, and exchange security tokens.

Organizations can leverage WS-Trust to centralize their security-token processing. The WS-Trust
specification defines the role of a Security Token Service (STS) as the entity responsible for responding to
requests using the protocol. In this role, the STS creates new security tokens, validates existing security
tokens, exchanges security tokens of one type for those of another, or any combination of these.

The WS-SX (Secure Exchange) technical committee manages the WS-Trust specification through its
contribution to the OASIS standards organization. For more information, see www.oasis-open.org/
committees/tc_home.php?wg_abbrev=ws-sx.

Request types
The WS-Trust protocol defines two request types in securing web services: Issue and Validate, often
associated with the web service client (WSC) and web service provider (WSP), respectively.

▪ The WSC requests that a security token service (STS) issue a SAML token to convey information
between the WSC and the WSP.

▪ The WSP sends the STS a request to validate the incoming token. Optionally, the WSP can request
that the STS issue a local token for the service provider (SP) domain.

When issuing and validating security tokens, PingFederate enforces security policies, defined by
administrators, generating the token types that are required for a web service request to pass between two
security domains (whether these domains are within the same organization or in separate organizations).

Token exchange (example)

Processing steps

1. A user requests content from an application.

Copyright ©2024

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-sx
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-sx

 | Introduction to PingFederate | 49

2. The application acts as a WSC to respond to the user's request. The application calls PingFederate,
passing the existing user security token to exchange it for the appropriate SAML assertion.

3. PingFederate verifies the existing security token, creates a new SAML assertion representing the user,
and returns it to the requesting application.

4. The application sends a web service request to the WSP, including the SAML assertion in a WS-
Security header.

5. The WSP retrieves the SAML assertion from the WS-Security header in the incoming request and
sends a message to its own deployment of PingFederate to determine if the assertion is valid.

6. PingFederate validates the SAML assertion, creates a new security token for the local domain, and
returns the new token to the WSP.

7. The WSP responds to the request according to its policy for the user.
8. The web application returns an HTML page to the user.

 Note:

This example shows PingFederate deployed in both the WSC and WSP sides of the interaction.
However, other deployment options are also supported.

OAuth 2.0 and PingFederate AS
OAuth 2.0 defines a protocol for securing application access to protected resources by issuing access
tokens to clients of REST APIs and non-REST APIs.

Instead of the client directly authenticating to the API using credentials, or the credentials of a user, OAuth
enables the client to authenticate by presenting a previously-obtained token. The token represents or
contains a set of attributes, policies, or both appropriate to the client and the user. Using these tokens
is more secure than using passwords directly on the API call. The attributes are used by the API to
authenticate the call and authorize access.

Participants

Client

Wants access to a resource protected by a resource server and interacts with an authorization
server to obtain access tokens.

Resource server (RS)

Hosts and protects resources and makes them available to authenticated and authorized clients.

Authorization server (AS)

Issues access tokens and refresh tokens to clients on behalf of the resource servers.

Resource owner (RO)

Denies, grants, or revokes authorization to a client requesting access to resources protected by the
resource servers.

Tokens

Access token

Allows clients to authenticate to a resource server and claim authorizations for accessing particular
resources. Access tokens have specific authorization scope and duration.

Refresh token

Allows clients to obtain a fresh access token without re-obtaining authorization from the resource
owner. A refresh token is a long-lived token that a client can trade in to an authorization server to

Copyright ©2024

 | Introduction to PingFederate | 50

obtain a new short-lived access token with the same attached authorizations as the existing access
token.

PingFederate OAuth AS

Based on the Internet Engineering Task Force (IETF) OAuth 2.0 Authorization Framework, the OAuth AS
in PingFederate supports several interaction models for different types of clients such as servers, desktop
applications, or mobile applications. Administrators can also enable Cross-origin Resource Sharing
(CORS) support for OAuth endpoints.

Web redirect flow
The web redirect flow process takes place between the user, website, PingFederate authorization server
(AS), and resource server (RS).

In this scenario, a user attempts to access a protected resource through a third-party web server client.
The client sends an authorization request to the resource server, and receives an authorization code back
through a HTTP redirect. The client trades the authorization code for an access token, and uses the token
in an API call to obtain data.

User/Browser

User/Browser

Website (client)

Website (client)

PingFederate AS

PingFederate AS

RS

RS

1Request to access resources

Realizes that this request requires
user data from another site (RS)

2 Redirect ...

... Authorization request

Authenticates the user

Redirect ...

... Authorization code

3 Token request

Access token

4 Request to access user data

5 Validates access token

6 Requested user data

7 Requested resources

Web redirect flow

Processing steps

1. User navigates to an OAuth client website and requests access to protected resources from another
website. Flow chart depicting the process of web redirect flow between the User/Browser, Website
(client), PingFederate AS and RS.

 Note:

To reduce the risk of code interception attach, the OAuth client can optionally include the parameter
code_challenge with or without code_challenge_method . For more information, see step 3 and

Copyright ©2024

https://tools.ietf.org/html/rfc6749

 | Introduction to PingFederate | 51

Flow chart depicting the process of web redirect flow between the User/Browser,Proof Key for Code
Exchange by (PKCE) OAuth Public Clients.

2. The browser is redirected to the PingFederate OAuth AS with a request for authorization.

If the user is not logged on, the OAuth AS challenges the user to authenticate. The OAuth AS
authenticates the user and prompts for authorization. After the user authorizes, the OAuth AS redirects
the browser to the requesting site with an authorization code. If the user does not authenticate, the
OAuth AS returns an error rather than the authorization code.

3. The requesting site makes a HTTPS request to the OAuth AS to exchange the authorization code for
an access token.

 Note:

If the OAuth client has provided the optional parameter code_challenge in step 1, it must submit the
corresponding code_verifier in this request.

The OAuth AS validates the grant and user data associated with the code and then returns an access
token.

4. The requesting site uses the access token in an API call to request user data.
5. The RS asks PingFederate for verification that the token is valid and has not expired. PingFederate

returns data about the user, the granted scope, and the client ID.
6. Once verified, the RS returns the requested data to the requesting site.
7. The requesting site displays data from the API call to the user.

Device authorization grant
The device authorization grant process takes place between the user, device, PingFederate authorization
server (AS), and resource server (RS).

In this scenario, a user attempts to access a protected resource through a device client that lacks a
browser or has limited user-input capabilities, such as a smart TV, digital picture frame, or printer. The
OAuth device authorization grant type allows a user to grant authorization to the device client using a
browser on a second device, such as a smart phone or computer. For more information about the grant
type, see the OAuth 2.0 Device Authorization Grant specification.

User

User

Device

Device

PingFederate AS

PingFederate AS

RS

RS

1Device authorization request

2 Device authorization response

3 Displays URL and user code

4 Starts polling for authorization status

5 Browses to URL on second device and enters user code

6 Continues polling for authorization status

7 Access token

8 Request to access protected resources with the access token

9 Validates access token

10 Requested data

OAuth device authorization grant

Copyright ©2024

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc8628

 | Introduction to PingFederate | 52

Processing steps

1. The device sends a device authorization request to PingFederate, the authorization server (AS), at its
device authorization endpoint.

2. PingFederate returns a device authorization response. Among other parameters, the response
contains a device code, a user code, a user authorization endpoint, and a user authorization endpoint
with the user code in a query parameter.

3. The device provides the user authorization endpoint with the user code in a query parameter, the user
code, and instructions to the user, as in the following example.

Using a browser on another device, visit:
https://www.example.com/authorizeDevice

Enter the code:
HVF7-B4KW

4. The device starts sending device access token requests to PingFederate at its token endpoint to poll
whether the user has completed the authorization process.

The device access token request must include the device authorization grant type,
urn:ietf:params:oauth:grant-type:device_code, the device code, and the user code.

For each device access token request it receives, PingFederate returns a device access token
response. The payload varies depending on the authorization status.

5. The user completes the authorization process by performing the following actions:

a. Goes to the user authorization endpoint on a second device that has a browser, such as a
smartphone or a computer.

b. Fulfills the authentication requirements.
c. Enters the user code or confirms a pre-populated user code.
d. Approves or denies the scope of permissions requested by the device.

6. The device continues polling PingFederate for an authorization status.
7. PingFederate validates the user code and provides the device with an access token in the device

access token response.

If the user denies the scope of permissions, PingFederate provides the device with a relevant error
message in the device access token response.

8. The device provides the access token to the RS to access protected resources.
9. The RS validates the access token.

10. The RS provides the requested data to the device.

CIBA grant
Client Initiated Backchannel Authentication (CIBA) is an extension to OpenID Connect that improves the
end-user experience during authentication and authorization in a federated environment.

Like OpenID Connect, CIBA is an authentication flow, governing how clients are identified and granted
access. With CIBA, user consent can be requested through an out-of-band flow. For example, when
making an online purchase, CIBA improves user experience because the customer’s browser will not have
to redirect to a financial institution for authorization. Instead, the customer receives a push notification from
the financial institution’s mobile app to complete authorization. This allows the customer to avoid confusing
browser redirects.

CIBA by poll
The OAuth Client Initiated Backchannel Authentication (CIBA) grant by poll process takes place between
the client, user, authentication device, PingFederate, and resource server (RS).

After receiving an authentication request acknowledgment, the client starts polling the OpenID Provider
(OP)'s token endpoint on a regular interval to obtain the authorization results. When the OP receives the
authorization granted by the user through the authentication device, it returns an access token to the client.

Copyright ©2024

 | Introduction to PingFederate | 53

Client

Client

User

User

Authentication Device

Authentication Device

PingFederate AS/OP

PingFederate AS/OP

RS

RS

1Authentication request

2 Identifies the user
based on the hint
provided in the request
and validates the request

3 Authentication request acknowledgement

4 Starts polling for authorization status

5 Information to obtain authorization

6 Information to obtain authorization

7 Authorization grant

8 Authorization grant

9 Continues polling for authorization status

10 Access token

11Request to access protected resources with the access token

12 Validates access token

13 Requested data

OAuth CIBA grant by poll

Processing steps

1. The client sends an authentication request to PingFederate at its client-initiated backchannel
authentication endpoint. The client must include in its authentication request the desired scope of
permissions and one identity hint for PingFederate to identify the user. When providing an identity hint,
the client has three options:

▪ login_hint
▪ login_hint_token
▪ id_token_hint

The client can include a user code using the user_code parameter in the authentication request,
transmit all request parameters of the authentication request in a signed request object, or do both.

2. PingFederate validates the authentication request and identifies the user based on the hint provided
by the client.

3. PingFederate returns an authentication request acknowledgement to the client. The response contains
the identifier, auth_req_i, that PingFederate assigns to the authentication request.

4. The client starts polling PingFederate at its token endpoint to check whether the user has completed
the authorization process.

The client must include in its token request the CIBA grant type, urn:openid:params:grant-
type:ciba, and the corresponding auth_req_id value.

For each token request it receives, PingFederate returns a token response. The payload varies
depending on the authorization status.

5. PingFederate invokes a CIBA authenticator based on the applicable CIBA request policy to reach
out to the user with the information (for example, the requested scopes) that the user needs to obtain
authorization.

6. The authentication device presents the information and works with the user to obtain authorization.

Copyright ©2024

 | Introduction to PingFederate | 54

7. The user reviews the information presented by the authentication device and then approves or denies
the scopes requested by the client.

8. The authentication device sends the authorization result back to PingFederate.
9. The client continues polling PingFederate for an authorization result.

10. PingFederate returns an access token in a token response to the client.

If the user denies the requested scopes, PingFederate provides the client with a relevant error
message in the token response.

11. The client provides the access token to the RS to access protected resources.
12. The RS validates the access token.
13. The RS provides the requested data to the client.

CIBA by ping
The OAuth Client Initiated Backchannel Authentication (CIBA) grant by ping process takes place between
the client, user, authentication device, PingFederate, and resource server (RS).

After receiving an authentication request acknowledgment, the client waits for a ping callback message
from the OpenID Provider (OP). When the OP receives the authorization granted by the user through the
authentication device, it sends a ping callback message to the client's notification endpoint. The client then
sends a token request to retrieve an access token.

Client

Client

User

User

Authentication Device

Authentication Device

PingFederate AS/OP

PingFederate AS/OP

RS

RS

1Authentication request

2 Identifies the user
based on the hint
provided in the request
and validates the request

3 Authentication request acknowledgement

4 Information to obtain authorization

5 Information to obtain authorization

6 Authorization grant

7 Authorization grant

8 Ping callback

9 Token request

10 Access token

11Request to access protected resources with the access token

12 Validates access token

13 Requested data

OAuth CIBA grant by ping

Copyright ©2024

 | Introduction to PingFederate | 55

Processing steps

1. The client sends an authentication request to PingFederate at its client-initiated backchannel
authentication endpoint.

The client must include in its authentication request the desired scope of permissions, one identity hint
for PingFederate to identify the user, and a bearer token that PingFederate can use to authenticate the
ping callback message. When providing an identity hint, the client has three options:

▪ login_hint
▪ login_hint_token
▪ id_token_hint

For the bearer token, the client must follow the syntax as defined in RFC 6750, section 2.1 and
transmit it using the client_notification_token parameter.

The client can include a user code using the user_code parameter, transmit all request parameters
of the authentication request in a signed request object, or do both.

The authentication request can be signed or unsigned.
2. PingFederate validates the authentication request and identifies the user based on the hint provided

by the client.
3. PingFederate returns an authentication request acknowledgment to the client. The response contains

the identifier, auth_req_id, that PingFederate assigns to the authentication request.
4. PingFederate invokes a CIBA authenticator based on the applicable CIBA request policy to reach

out to the user with the information (for example, the requested scopes) that the user needs to obtain
authorization.

5. The authentication device presents the information and works with the user to obtain authorization.
6. The user reviews the information presented by the authentication device and then approves or denies

the scopes requested by the client.
7. The authentication device sends the authorization result back to PingFederate.
8. PingFederate sends a ping callback message using the HTTP POST method to the client at its

notification endpoint.

Per specification, PingFederate includes the client_notification_token value in the
Authorization HTTP request header and the auth_req_id value in the message body.

9. The client sends a token request to PingFederate at its token endpoint.

The client must include in its token request the CIBA grant type, urn:openid:params:grant-
type:ciba, and the corresponding auth_req_id value.

10. PingFederate returns an access token in a token response to the client.

If the user denies the requested scopes, PingFederate provides the client with a relevant error
message in the token response.

11. The client provides the access token to the RS to access protected resources.
12. The RS validates the access token.
13. The RS provides the requested data to the client.

Token exchange grant
You can configure the PingFederate OAuth server to support the token exchange grant type.

This feature uses the protocol defined in the OAuth 2.0 token exchange specification RFC 8693. For
information about the protocol, see OAuth 2.0 Token exchange. For information about configuring the
OAuth server for token exchange, see OAuth token exchange on page 609.

An OAuth token exchange begins when an OAuth client sends a token exchange request to the
PingFederate OAuth server. The request contains the token exchange grant type parameter, a subject
token, and a subject token type parameter. For impersonation use cases, the request also contains an
actor token and actor token type parameter. The request might also contain resource, audience, scope,
and requested token type parameters.

Copyright ©2024

https://tools.ietf.org/html/rfc6750#section-2.1
https://tools.ietf.org/html/rfc8693

 | Introduction to PingFederate | 56

The optional resource parameter identifies an Access Token Management (ATM) instance or token
generator instance. The optional audience parameter identifies another client that will use the new token
to get access to a resource. If a request includes an audience parameter, the OAuth server will select the
ATM instance specified in the audience client's configuration as seen in step 2.

A successful token exchange ends when the OAuth server sends the client a message containing the
requested token. The response also contains an issued token type parameter and a token type parameter.

When setting up token exchange on the OAuth server, you must create at least one Token Exchange
Processor Policy (TEPP). A TEPP includes a map of subject token types to token processor instances
and a map of attributes from the request and other sources to a TEPP attribute contract. You must assign
a default TEPP to the OAuth server. Optionally, you can assign a TEPP to OAuth clients that need to
exchange tokens.

When the OAuth server receives a token exchange request from an OAuth client:

1. The OAuth server selects a TEPP and fulfills the TEPP attribute contract as follows:

▪ If the OAuth client's configuration specifies a TEPP, the OAuth server selects that TEPP.
Otherwise, the OAuth server selects the default OAuth server TEPP.

▪ The OAuth server uses the TEPP's map of subject token types to select a token processor
instance. The token processor then uses the TEPP's attribute map to produce a TEPP attribute
contract.

2. The OAuth server selects a token generator instance or ATM instance as follows:

▪ If the request does not have an audience or resource parameter, the OAuth server selects the
default OAuth server ATM instance.

▪ If the request includes resource parameters, audience parameters, or both, and if OAuth server
determines that they identify a single ATM or token generator instance, the OAuth server selects
it.

▪ If the request includes resource parameters, audience parameters, or both, and if OAuth server
determines that they do not identify a single ATM or token generator instance, the OAuth server
returns an error.

3. The token generator or ATM uses the attribute contract to generate the token as follows:

▪ The default token type is generated if the request does not include a requested token type
parameter.

▪ If the request includes a requested token type parameter, that type of token is generated.
▪ If the request includes a requested token type but the token generator or ATM does not support

that token type, the OAuth server returns an error.
4. The OAuth server sends the client a response containing the requested token.

Copyright ©2024

 | Introduction to PingFederate | 57

Assertion grant profile for OAuth 2.0 authorization grants
The assertion grant profile process takes place between the user or requesting application. client
application, PingFederate identity provider (IdP), PingFederate authorization server (AS) and resource
server (RS).

In this scenario, a client obtains an assertion, either a SAML 2.0 bearer assertion or a JSON Web Token
(JWT) bearer token, and makes an HTTP request to the PingFederate OAuth AS to exchange the
assertion for an access token. The OAuth AS validates the assertion and returns an access token. The
client uses the token in an API call to the RS to obtain data.

User or
Requesting application

User or
Requesting application

Client application

Client application

PingFederate IdP

PingFederate IdP

PingFederate AS

PingFederate AS

RS

RS

1Request to access resources

Realizes that this request requires
user data from another site (RS)

2 Assertion request

Assertion

3 Token request

Acccess token

4 Request to access user data

Validates access token

Requested user data

Requested resources

Assertion grant profile

Processing steps

1. A user-initiated or client-initiated event, such as a mobile application or a scheduled task, requests
access to software as a service (SaaS) protected resources from an OAuth client application.

2. The client application obtains an assertion from an IdP.

 Note:

When using SAML assertions as authorization grants, client applications must obtain assertions that
meet the requirements defined in RFC7522. Do not use SAML assertions acquired through browser
single sign-on (SSO) profiles here.

3. The client application makes an HTTP request to the PingFederate OAuth AS to exchange the
assertion for an access token. The OAuth AS validates the assertion and returns the access token.

4. The client application adds the access token to its API call to the RS. The RS returns the requested
data to the client application.

Copyright ©2024

 | Introduction to PingFederate | 58

OpenID Connect support
As an extension of OAuth capabilities, PingFederate supports an optional configuration for OpenID
Connect.

OpenID Connect is a modern protocol for secure, lightweight transfer of authentication and user attributes.
For more information, see openid.net/connect.

PingFederate can be deployed as an OpenID Provider (OP), a Relying Party (RP), or both. PingFederate
supports both the Basic Client and the Implicit Client profiles.

Client management
PingFederate provides features that support OAuth client management.

provides administrators the flexibility to manage OAuth clients using the following interfaces:

▪ The administrative console
▪ The administrative API
▪ The OAuth Client Management Service

Additionally, supports dynamic client registration based on the OAuth 2.0 Dynamic Client Registration
Protocol specification.

System for Cross-domain Identity Management (SCIM)
PingFederate supports the SCIM 1.1 protocol for outbound and inbound provisioning.

At an identity provider (IdP) outbound site, you have the option to automatically provision and maintain
user accounts at service provider (SP) sites that have implemented SCIM. When you have PingFederate
configured as an SP inbound site, you can automatically provision and manage user accounts and groups
for your own organization using the standard SCIM protocol. For a brief summary of supported features,
see the following table.

Feature Outbound provisioning Inbound provisioning

SCIM specification SCIM 1.1 SCIM 1.1

Data format JSON JSON

User and group create, read,
update, and delete (CRUD)
operations

Yes Yes

Custom schema support Yes Yes

List/query and filtering support Not applicable Yes

PATCH Yes No

Authentication method HTTP Basic and OAuth Resource
Owner Password Credentials
grant type

HTTP Basic and client certificate
(mutual TLS)

Source data stores PingDirectory, Microsoft Active
Directory,and Oracle Unified
Directory

Not applicable

Target data stores Not applicable Active Directory and other data
stores via the Identity Store
Provisioner Java SDK interface

For detailed information about SCIM, see www.simplecloud.info.

Copyright ©2024

https://openid.net/connect/
http://www.simplecloud.info/

 | Introduction to PingFederate | 59

Transport and message security
Two main ways of securing interactions are Secure Sockets Layer with Transport Level Security (SSL/TLS)
and digital signatures.

Use SSL/TLS in environments the require both message confidentiality and integrity. For SAML
messaging, digital signatures ensure the identity of both parties involved in the transaction and validate
that a particular partner received a message. To achieve increased privacy, PingFederate also lets you
encrypt SAML 2.0 messages, including SAML metadata files, as well as WS-Trust STS assertions.

For more information, see Security and Privacy Considerations for the OASIS Security Assertion Markup
Language (SAML) V2.0.

SSO integration overview
To complete the implementation of a federated-identity network, you must integrate PingFederate
programmatically with end-user applications and identity management (IdM) systems. Documentation for
integration kits is available on the Ping Identity website.

This content provides an overview of the approaches to integrating systems and applications with
PingFederate for browser-based single sign-on (SSO).

To enable both the identity provider (IdP) and service provider (SP) sides of this integration, Ping Identity
provides integration kits, including various connectors for secure single sign-on (SSO) to software as a
service (SaaS) providers. You can download these integration kits from Downloads.

PingFederate also includes an SDK that software developers can use to write custom interfaces for
specific systems. For more information, see the SDK Developer's Guide on page 1047.

For integration with the PingFederate WS-Trust security token service (STS), we provide a range of token
translators. These plugin token processors for an IdP, and token generators for an SP, connect the STS
with web service providers and clients for access to identity-enabled web services.

SSO integration concepts
PingFederate supports both identity provider (IdP) and service provider (SP) integration.

For an IdP, the first step in the integration process involves sending identity attributes from an
authentication service or application to PingFederate. PingFederate uses those identity attributes to
generate a SAML assertion. For information about SAML, see Supported standards on page 28.
IdP integration typically provides a mechanism through which PingFederate looks up a user's current
authenticated session data, such as a cookie, or authenticate a user without such a session.

For an SP, the last step of the integration process involves sending identity attributes from PingFederate
to the target application. PingFederate extracts the identity attributes from the incoming SAML assertion
and sends them to the target application to set a valid session cookie or other application-specific security
context for the user.

The following diagram illustrates the basic concepts of integration with PingFederate.

Copyright ©2024

https://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
https://docs.pingidentity.com/bundle/integrations/page/ebi1563994984697.html

 | Introduction to PingFederate | 60

Identity provider integration
Identity provider (IdP) integration involves retrieving user-identity attributes from the IdP domain and
sending them to the PingFederate server.

An IdP is a system entity that authenticates a user, or “SAML subject,” and transmits referential identity
attributes based on that authentication to PingFederate. Typically, the IdP retrieves the identity attributes
from an authenticated user session. Depending on the IdP deployment/implementation enviornment, a
number of attribute-retrieval approaches are used for IdP integration. Ping Identity offers a broad range
of commercial integration kits that address various IdP scenarios, such as custom-application integration,
integration with a commercial identity management (IdM) product, or integration with an authentication
system.

 Tip:

For IdPs implementing single sign-on (SSO) to selected software as a service (SaaS) providers such as
Google Apps and Salesforce, PingFederate also provides automated user provisioning.

Copyright ©2024

 | Introduction to PingFederate | 61

Custom applications

Many applications use their own authentication mechanisms, typically through a database or LDAP
repository, and are responsible for their own user-session management. Custom-application integration
is necessary when there is limited or no access to the web or application server hosting the application.
Integration with these custom applications is handled by application-level integration kits, which allow
software developers to integrate their applications with a PingFederate server acting as a service provider
(SP).

With these integration kits, PingFederate sends the identity attributes from the SAML assertion to the
SP application, which then uses them for its own authentication and session management. As for the
IdP, application-specific integration kits include an SP agent, which resides with the SP application and
provides a simple programming interface to extract the identity attributes sent from the PingFederate
server. PingFederate cam use this information to start a session for the SP application.

Ping Identity provides custom-application integration kits for a variety of programming environments,
including:

▪ Java
▪ .NET
▪ PHP

Ping Identity provides an Agentless Integration Kit, which allows developers to use direct HTTP calls to the
PingFederate server to temporarily store and retrieve user attributes securely, eliminating the need for an
agent interface.

IdM systems

An IdP enterprise that uses an IdM system expands the reach of the IdM domain to external partner
applications through integration with PingFederate. IdM integration kits typically use the IdM agent API

Copyright ©2024

 | Introduction to PingFederate | 62

to access identity attributes in the IdM proprietary session cookie and transmit those attributes to the
PingFederate server.

IdM integration kits do not require any development; the PingFederate administrative console
accomplishes all integrations.

Ping Identity provides integration kits for many of the leading IdM systems, such as Oracle Access
Manager.

Authentication systems

An authentication application or service normally handles initial user authentication outside of the
PingFederate server. To access applications outside the security domain, PingFederate authentication-
system integration kits leverage this local authentication.

Authentication integration kits do not require any development; the PingFederate administrative console
accomplishes all integrations with PingFederate. Ping Identity offers integration kits for authentication
systems including:

▪ X.509 Certificate
▪ RSA SecurID Integration Kit
▪ Symantec VIP Integration Kit

PingFederate also packages two IdP adapters, an HTML Form Adapter and an HTTP Basic Adapter, which
delegate user authentication to plugin password credential validators (PCVs). Supplied validators use
either an LDAP directory, RADIUS server, or a simple username/password verification system maintained
by PingFederate. Customized validators can also be developed. When the PingFederate IdP server
receives an authentication request for SP-initiated SSO or a user clicks a link for IdP-initiated SSO,
PingFederate invokes the implemented adapter and prompts the user for credentials, if the user is not
already logged on.

Service provider integration
Service provider (SP) integration involves passing the identity attributes from PingFederate to the target SP
application.

An SP is the consumer of identity attributes provided by the identity provider (IdP) through a SAML
assertion. The SP application uses this information to set a valid session or other security context for
the user, represented by the identity attributes. Session creation involves a number of approaches. For
the IdP, Ping Identity offers commercial integration kits that address the various SP scenarios. Most SP
scenarios involve custom-application integration, server-agent integration, integration with an identity
management (IdM) product, or integration with a commercial application.

Copyright ©2024

 | Introduction to PingFederate | 63

Custom applications

Many applications use their own authentication mechanisms, typically through a database or LDAP
repository, and are responsible for their own user-session management. Custom-application integration
is necessary when there is limited or no access to the web or application server hosting the application.
Application-level integration kits handle integration with these custom applications and allow software
developers to integrate their applications with a PingFederate server acting as an SP.

With these integration kits, PingFederate sends the identity attributes from the SAML assertion to the
SP application, which can then use them for its own authentication and session management. As for the
IdP, application-specific integration kits include an SP agent, which resides with the SP application and
provides a simple programming interface to extract the identity attributes sent from the PingFederate
server. PingFederate cam use this information to start a session for the SP application.

Ping Identity provides custom-application integration kits for a variety of programming environments,
including:

▪ Java
▪ .NET
▪ PHP

In addition, Ping Identity provides an Agentless Integration Kit, which allows developers to use direct HTTP
calls to the PingFederate server to temporarily store and retrieve user attributes securely, eliminating the
need for an agent interface.

Server agents

Server-agent integration with PingFederate allows SP enterprises to accept SAML assertions and provide
single sign-on (SSO) to all applications running on that web or application server; there is no need to
integrate each application. Since integration occurs at the server level, server-agent integration maximizes

Copyright ©2024

 | Introduction to PingFederate | 64

ease of deployment and scalability. Applications running on the web or application server must delegate
authentication to the server. If the application employs its own authentication mechanism, integration must
occur at the application level.

With server-agent integration kits, PingFederate sends the identity attributes from the SAML assertion to
the server agent, which is typically a web filter or Java Authentication and Authorization Service (JAAS)
Login Module. The server agent extracts the identity attributes, which the server then uses to authenticate
and create a session for the user.

SP server-integration kits do not require any development work: the PingFederate administrative console
accomplishes all integrations with PingFederate.

Ping Identity provides integration kits for many web and application servers, including:

▪ Internet Information Services (IIS)
▪ Apache (Red Hat)
▪ Apache (Windows)
▪ NetWeaver
▪ WebSphere

IdM systems

IdM integration with PingFederate allows an SP enterprise to accept SAML assertions and provide SSO to
applications protected by the IdM domain. IdM integration kits typically use the IdM agent API to create an
IdM proprietary session token based on the identity attributes received from PingFederate.

IdM integration kits do not require any development; the PingFederate administrative console and the IdM
administration tool accomplish integration with PingFederate.

Ping Identity provides integration kits for leading IdM systems, such as Oracle Access Manager.

Commercial applications and SaaS

Commercial-application integration with PingFederate allows an SP enterprise to accept SAML assertions
and provide SSO to those commercial applications.

These integration kits do not require any development; the PingFederate administrative console
accomplishes all integrations.

Ping Identity offers integration kits to many commercial applications and SaaS vendors, including:

▪ Citrix
▪ SharePoint
▪ Box
▪ Google
▪ Office 365
▪ Salesforce
▪ Slack
▪ Workday
▪ Zendesk

Integrations and deployment scenarios
Ping Identity provides integrations that support many PingFederate deployment scenarios.

Here are some of the deployment scenarios that the integrations support:

Identity management

Identity management integrations allow PingFederate to extend the domain of identity systems to
include the partner applications that you integrate with PingFederate.

Copyright ©2024

 | Introduction to PingFederate | 65

Authentication systems

Authentication systems allow users to authenticate with PingFederate through a variety of methods,
such as web forms and certificates.

Custom applications

Custom application integrations allow PingFederate to extend single sign-on capabilities to
applications that may not have access to a web or application server. They support a variety of
programming languages, including Java, .NET, and PHP.

Server agents

Server agents allow PingFederate to extend single sign-on abilities to applications running on a
variety of web servers.

Multi-factor authentication (MFA)

MFA integrations allow PingFederate to include third-party MFA providers as part of the sign-on
flow.

Mobile device management (MDM)

Mobile device management integrations allow PingFederate to adjust the sign-on flow based on
device information.

Risk/Intelligence

Risk intelligence integrations allows PingFederate to retrieve a security risk assessment when a
user signs on. You can use this information to dynamically adjust authentication requirements based
on the risk level for each sign-on event.

Provisioning

Provisioning connectors allow PingFederate to propagate users and groups from a user directory to
a SaaS service. Connectors also include single sign-on integration with the service.

Social login

Cloud identity connectors allow PingFederate to use third-party identity provider services for single
sign-on. This allows users to sign on to PingFederate partner applications with popular social
platforms such as LinkedIn, Google, or Facebook.

For a current list of integrations, go to the Ping Identity Integration Directory.

For integrations documentation, go to Integrations Overview.

Security token service
The PingFederate WS-Trust Security Token Service (STS) allows organizations to extend single sign-on
(SSO) identity management (IdM) to web services.

The STS shares the core functionality of PingFederate, including console administration, identity and
attribute mapping, and certificate security management. With PingFederate, web services identify the end
user who has initiated a transaction across domains, providing enhanced service while simultaneously
ensuring appropriate information access and regulatory accountability. For information about WS-Trust and
the role of an STS, see Web services standards on page 47.

You can use PingFederate in many different scenarios to address different identity and security problems
as they relate to web services, service-oriented architecture (SOA), and Enterprise Service Buses. All of
these scenarios share a recommended architectural approach that uses a SAML assertion as the standard
security token shared between security domains. For more information, see WS-Trust STS on page 70.

Copyright ©2024

https://support.pingidentity.com/s/marketplace-integration-home-page
https://docs.pingidentity.com/bundle/integrations/page/ebi1563994984697.html

 | Introduction to PingFederate | 66

WS-Trust Security Token Service SSO

OAuth authorization server
PingFederate can act as an OAuth authorization server (AS), allowing a resource owner to grant
authorization to a client requesting access to resources protected by a resource server (RS).

The OAuth AS issues tokens to clients on behalf of a resource for use in authenticating a subsequent API
call—typically, but not exclusively a REST API. The PingFederate OAuth AS issues tokens to clients in
several different scenarios, including:

▪ A web application wants access to a protected resource associated with a user and needs the user's
consent.

▪ A native application client on a mobile device or tablet wants to connect to a user's online account and
needs the user's consent.

▪ An enterprise application client wants to access a protected resource hosted by a business partner,
customer, or software as a service (SaaS) provider.

For information about OAuth and the role of an AS, see OAuth 2.0 and PingFederate AS.

You can configure the PingFederate OAuth AS independently or in conjunction with security token service
(STS) and browser-based single sign-on (SSO) for either an identity provider (IdP) or a service provider
(SP) deployment. For more information, see About OAuth on page 74.

 Note:
OAuth AS capabilities might require additional licenses. For more information, contact
sales@pingidentity.com.

Copyright ©2024

 | Introduction to PingFederate | 67

User account management
Typically, the identity provider (IdP) repository maintains user accounts in an identity federation. However,
a service provider (SP) often has its own set of user accounts, which might not always correspond to IdP
users.

The SP might need to establish and maintain parallel accounts for remote single sign-on (SSO) users to
enforce authorization policy, customize user experience, comply with regulations, or a combination of such
purposes.

PingFederate provides two kinds of user provisioning for browser-based SSO to facilitate cross-domain
account management, one designed for an IdP, and one for an SP:

▪ At an IdP site, an administrator automatically provisions and maintains user accounts for partner
SPs who have implement the System for Cross-domain Identity Management (SCIM) or, when using
optional plugin software as a service (SaaS) connectors, for selected hosted-software providers..

▪ At an SP site, an administrator provisions accounts within the organization automatically from SCIM-
enabled IdPs or usesinformation from SAML assertions received during SSO events.

For more information, see User provisioning on page 96.

Enterprise deployment architecture
PingFederate's enterprise-deployment architecture provides one location to manage your environment
eliminating the need to maintain redundant copies of these configurations and trust relationships.

One-time configuration, available everywhere

PingFederate houses all protocol definitions, public key infrastructure (PKI) keys, policies, and profiles in a
single location. You can add new protocols, profiles, or use cases, and then make them available to your
entire organization.

Improved security

PingFederate improves security by creating a single “doorway” through which all your identity information
is exchanged. The same doorway is used regardless of who the users are or in which direction information
is shared, such as internal users accessing external applications and external users accessing internal
systems.

Copyright ©2024

 | Introduction to PingFederate | 68

Extensive audit and logging capabilities

With PingFederate's extensive auditing and logging capabilities, you can complete logging-related
compliance and service-level requirements without having to acquire and consolidate disparate logs from
throughout your organization.

Business use case driven configuration

The PingFederate administrative console supports various protocols while reducing complexity and
learning curves. You are guided through configuration steps applicable only to the business use cases you
need to support.

Additional features
PingFederate’s lightweight, standalone architecture allows server integration and partnering with existing
home-grown and commercial identity management (IdM) systems and applications providing standards-
based single sign-on (SSO) and API security integration benefits.

PingOne

The PingOne Cloud Platform offers one platform for unifying all your digital identities and allowing your
users and devices to securely access cloud, mobile, SaaS and on-premises applications and APIs. With
PingFederate, you can leverage these services to accelerate the digital transformation of your environment
for better security and compliance.

Integration kits

Use PingFederate's software development kit (SDK) for creating custom integrations with existing
authentication services and target applications as well as quick connections to various partners. For more
information, see SSO integration kits and adapters on page 83. Download PingFederate integration kits
from the Ping Identity Downloads website.

Multiple security-domain, multi-protocol federation

Token translators

Ping Identity offers special token processors for an IdP and token generators for a SP that enable the
WS-Trust security token service (STS) to validate and issue a variety of token types. These plug-ins
supplement built-in SAML token processing and generation and handle the local identity tokens required in
many security contexts. For more information, see Token processors and generators on page 71.

SaaS connectors

SaaS connectors offer a streamlined approach for browser-based SSO to selected SaaS providers,
including automatic user provisioning and deprovisioning. The connector packages include quick-
connection templates, which automatically configure endpoints and other connection information for each
provider. For more information, see Outbound provisioning for IdPs on page 97.

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Introduction to PingFederate | 69

Cloud identity connectors

Offer your users the option to login, register, and access your cloud-based applications with their social
identity from sites like Apple, Facebook, Google, LinkedIn, Microsoft, and Twitter.

Key concepts
This section provides background information and preparation to help administrators understand and use
PingFederate.

Connection Types

PingFederate features an integrated administrative console for configuring connections to identity-
federation partners. The four connection types include:

▪ Browser-based single sign-on (SSO) – Called Browser SSO in the administrative console, this term
refers to standards-based secure SSO, which generally depends on a user's browser to transport
identity assertions and other messaging between partner endpoints. For more information, see
Supported standards on page 28.

▪ WS-Trust security token service (STS) – Employs the PingFederate STS, which enables web service
clients (WSCs) and web service providers (WSPs) to extend SSO to identity-enabled web services
at provider sites. For more information, see the WS-Trust STS on page 70. These standards,
including WS-Trust, do not rely on the user's browser for message transport.

▪ OAuth Assertion Grant – Exchanges a SAML assertion or a JSON Web Token for an OAuth access
token with the PingFederate authorization server (AS). For more information, see About OAuth on
page 74.

▪ Provisioning – Provides automated cross-domain inbound and outbound user management. For more
information, see User provisioning on page 96.

You can configure the types of connections together for the same partner or independently.

WS-Trust STS

PingFederate WS-Trust STS allows organizations to extend SSO identity management (IdM) to web
services. For more information see, About WS-Trust STS.

OAuth
You can configure PingFederate to act as an OAuth authorization server (AS), allowing a resource owner
to grant authorization to an OAuth client requesting access to resources hosted by a resource server (RS).
For more information, see About OAuth.

SSO integration kits and adapters

PingFederate provides bundled and separate integration kits that include adapters that plug into the
PingFederate server and agent toolkits that interface with local IdM systems or applications as needed. For
more information, see SSO integration kits and adapters.

Security infrastructure

PingFederate security infrastructure supports encrypted messaging, certificates, and digital signing. For
more information, see Security infrastructure.

Hierarchical plugin configuration

PingFederate allows you to use a configuration of an adapter, as well as certain other PingFederate
plugins, as a parent instance from which you can create child instances. For more information, see
Hierarchical plugin configurations.

Copyright ©2024

 | Introduction to PingFederate | 70

Identity mapping

PingFederate enables identity mapping between domains for browser-based SSO and WS-Trust STS. For
more information, see Identity mapping.

User attributes

Federation transactions require the transmission of a unique piece of information that identifies the user for
identity mapping between security domains. For more information, see User attributes.

User provisioning

PingFederate provides cross-domain user provisioning and account management. For more information,
see User provisioning.

Customer identity and access management
PingFederate empowers administrators to deliver a secure and easy-to-use customer authentication,
registration, and profile management solution. For more information, see Customer identity and access
management.

Federation hub use cases

As a federation hub, PingFederate can bridge browser-based SSO between IdPs and SPs. For more
information, see Federation hub use cases.

Federation planning

An essential first step in establishing an identity federation involves discussions and agreements between
you and your connection partners. For more information, see the Federation planning checklist.

WS-Trust STS
The PingFederate WS-Trust Security Token Service (STS) allows organizations to extend single-sign on
(SSO) identity management (IdM) to web services.

You can configure the WS-Trust STS for partner connections independently or in conjunction with browser-
based SSO for either an identity provider (IdP) or a service provider (SP) deployment. The STS is bundled
with separate plug-ins for standard SAML token processing and generation.

For information about WS-Trust and the role of an STS, see Web services standards on page 47.

Connection-based policy

PingFederate employs a partner-connection configuration for both IdP and SP roles, which enables the
association of web services authentication policies with federation partners. For more information, see
Connection-based policy.

Token processor and generator

PingFederate provides support for a variety of security-token formats through token processors and
generators. For more information, see Token processors and generators.

WSC and WSP support

Ping Identity provides the Java client software development kit (SDK) for enabling web service applications
to interact with the PingFederate STS. For more information, see WSC and WSP support.

Copyright ©2024

 | Introduction to PingFederate | 71

STS OAuth integration

PingFederate STS provides several ways to facilitate the use of issued tokens with an OAuth authorization
server (AS). For more information, see STS OAuth integration.

Connection-based policy
For both the identity provider (IdP) and service provider (SP) roles, PingFederate employs a partner-
connection configuration, which enables the association of web services authentication policies with
federation partners.

For Security Token Service (STS) processing, these policies define configurations for handling WS-Trust
requests and transferring identity information between security domains. For more information, see Web
services standards on page 47.

IdP configuration

Use the administrative console in an IdP role to configure WS-Trust request-processing policy for your SP
partner including:

▪ The type of SAML token to create in response to an issue request from a web service client (WSC)
application

▪ The mapping of attributes to include within the issued SAML token
▪ The key used to create a digital signature for the issued SAML token

SP configuration

Use the administrative console in an SP role to configure WS-Trust request-processing policy for your IdP
partner including:

▪ Whether to validate the incoming SAML token only, or to validate the incoming token and also issue a
local token

▪ The mapping of attributes to include in the locally issued token when applicable
▪ The certificate used to verify the digital signature for the incoming SAML token
▪ The key used to decrypt the incoming SAML token when needed

Token processors and generators
PingFederate provides support for a variety of security-token formats through token processors and
generators.

These token processors and generators plug into the PingFederate server and deploy similarly to browser-
based single sign-on (SSO) adapters. For more information, see SSO integration kits and adapters on
page 83.

For an identity provider (IdP), token processors provide a mechanism through which PingFederate can
validate an incoming token from a web service client (WSC) and map attributes to be included in the issued
SAML token.

For a service provider (SP), token generators provide a mechanism through which PingFederate can
generate a local token based upon the incoming SAML token from a WSP and map attributes to be
included in that token.

PingFederate only generates SAML 1.1 or 2.0 token when it is configured as an IdP for sending across
trust boundaries to a federate SP partner. PingFederate only accepts SAML tokens when configured as
an SP. Token plug-ins allow a modular approach for validating and producing the token types used by
different applications or systems within a conceptual trust domain. PingFederate provides bundled and
separately available token plug-ins.

 Tip:

Copyright ©2024

 | Introduction to PingFederate | 72

For direct security token service (STS) token exchange within the same domain or trust boundary, use the
PingFederate STS to exchange one token type for another directly, without generating a transitional SAML
token. For more information, see Token translator mappings on page 390.

PingFederate allows you to use a configuration of a token processor or generator as a parent instance
from which you create child instances. For more information, see Hierarchical plugin configurations on
page 90.

Bundled token plug-ins

PingFederate comes installed with token processors for an IdP configuration that accept and validate
SAML 1.1 or 2.0 tokens, OAuth bearer access tokens, JSON web tokens (JWT), username tokens, and
Kerberos tokens. For more information, see Token models and management on page 75. SAML tokens
are issued on the IdP side through built-in browser-based SSO capabilities.

For an SP configuration, PingFederate provides token generators for issuing local SAML 1.1 or 2.0 tokens.
PingFedearate validates incoming SAML tokens using built-in capabilities.

Commercial token plug-ins

Ping Identity provides token plug-ins called token translators to work with various authentication systems
and identity management (IdM) systems. You can download the available plug-ins from the Downloads
website.

WSC and WSP support
Ping Identity provides the Java client software development kit (SDK) for enabling web service applications
to interact with the PingFederate security token service (STS).

For web service client (WSC) STS clients, PingFederate provides built-in protocol support for Windows
Identity Foundation (WIF) applications based on the Windows Communication Foundation (WCF)
framework.

 Note:
The WIF framework includes WS-* protocol support and can interact natively with PingFederate.

Client SDK

The STS Java client SDK provides interfaces that create the WS-Trust Request Security Token (RST) and
Request Security Token Response (RSTR) messaging to interact with the PingFederate STS endpoints.
Using the SDK library, applications are not responsible for forming these WS-Trust protocol messages, and
instead interact only with the tokens themselves.

The SDK is available for download on the Ping Identity Downloads website.

Windows Identity Foundation clients

PingFederate natively supports STS clients using claims-based WIF technology. Claims-based federated
identity for web services is a part of the WS-Trust standard that permits client applications to make access-
policy decisions, when specifically categorized user attributes are sent in the security token. For more
information, see Attribute contracts on page 92.

The PingFederate STS supports the following bindings in the .NET federated-security scenarios with WS-
Trust:

▪ WSFederationHttpBinding
▪ WS2007FederationHttpBinding

Copyright ©2024

 | Introduction to PingFederate | 73

Additionally, the PingFederate STS supports the following bindings for RST and RSTR interactions
with .NET. Support for these bindings is limited to the Username, x509, SAML 1.1, and SAML 2.0 token
types:

▪ WSHttpBinding
▪ WS2007HttpBinding

 Note:
For token types such as Kerberos, where customizing default bindings might be necessary, the
PingFederate STS supports the use of customBinding.

For more information about bindings, see Microsoft's System-Provided Bindings.

To expedite configuring their applications, PingFederate provides metadata for developers. PingFederate
offers two varieties of metadata, which work together to arrive at functional WSC and web service provider
(WSP) configurations:

▪ STS Metadata Exchange, which contains connection details relating to the SP partner. See the /pf/
sts_mex.ping section in System-services endpoints on page 1186.

▪ Federation Metadata, which contains details on the PingFederate public signing certificate and other
information required to establish the trust relationship. See the /pf/federation_metadata.ping section
in System-services endpoints on page 1186.

For more information about claim-based federated identity, see Microsoft's A Guide to Claims–based
Identity and Access Control.

STS OAuth integration
PingFederate security token service (STS) provides several ways to facilitate the use of issued tokens with
an OAuth authorization server (AS).

OAuth token processor

This token processor provides a mechanism through which PingFederate STS can validate an
incoming OAuth Bearer access token. The token processor reads and validates the access token
and returns any additional user attributes defined.

JWT bearer token grant type

urn:ietf:params:oauth:grant-type:jwt-bearer

This token request returns a JSON Web Token (JWT) that a web service client (WSC) can use to
request OAuth access tokens from any OAuth AS that supports using JWTs as authorization grants,
as defined in JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization
Grants specification.

OAuth access token with JWT bearer token grant type

oauth-v2:access:token:response|via|urn:ietf:params:oauth:grant-type:jwt-
bearer

This proprietary token request is similar to the JWT Bearer Token grant type but returns an OAuth
access token directly. Acting as an identity provider (IdP), PingFederate generates the intermediate
JWT and requests an access token from the OAuth AS on behalf of the WSC. The AS endpoint is
obtained from the AppliesTo element of the WS-Trust request security token (RST) message.

SAML 2.0 bearer assertion grant type

urn:ietf:params:oauth:grant-type:saml2-bearer

Copyright ©2024

https://docs.microsoft.com/en-us/dotnet/framework/wcf/system-provided-bindings
https://msdn.microsoft.com/library/ff423674.aspx
https://msdn.microsoft.com/library/ff423674.aspx
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7523

 | Introduction to PingFederate | 74

This token request returns an encoded SAML assertion that a WSC can use to request OAuth
access tokens from any OAuth AS that supports the SAML 2.0 Profile for OAuth 2.0 Client
Authentication and Authorization Grants specification.

OAuth access token with SAML 2.0 bearer assertion grant type

oauth-v2:access:token:response|via|urn:ietf:params:oauth:grant-
type:saml2-bearer

This proprietary token request is similar to the SAML 2.0 Bearer Assertion grant type but returns an
OAuth access token directly. Acting as an IdP, PingFederate generates the intermediate, encoded
SAML assertion and requests an access token from the OAuth AS on behalf of the WSC. The AS
endpoint is obtained from the AppliesTo element of the WS-Trust RST message.

These capabilities bridge the WS-Trust client-STS relationship and the trust relationship the same client
with an OAuth AS, allowing the client to obtain additional resources on behalf of already-authenticated
users in follow-on transactions.

About OAuth
Configuring PingFederate as an OAuth authorization server (AS) allows a resource owner (RO), typically
an end user, to grant authorization to an OAuth client requesting access to the resource server (RS).

The OAuth AS issues tokens to clients on behalf of an RO for use in authenticating a subsequent API call
to the RS, typically, but not exclusively, a REST API call.

 Tip:
If your PingFederate license does not include the OAuth AS capabilities, contact sales@pingidentity.com.

You can configure the PingFederate OAuth AS independently or in conjunction with security token service
(STS) or browser-based single sign-on (SSO) for either an identity provider (IdP) or a service provider (SP)
deployment.

In an IdP deployment, an IdP adapter is used to authenticate and provide user information for the access
token. In an SP deployment, the inbound SAML assertion is used to provide authentication information
about the user associated with the access token through an OAuth attribute mapping in the IdP connection.

For an STS IdP, PingFederate provides an OAuth token processor that validates incoming OAuth Bearer
access tokens.

Delegated access types
To enhance access control, PingFederate supports both explicit and implicit delegation of transaction
approval.

Explicit delegation

This is the most common OAuth use case, which involves a resource owner (RO) who explicitly
delegates the authority to a client to make API calls to a resource server (RS) and is asked to
approve the transaction. This is the type of delegation inherent in web redirect flow.

Implicit delegation

Implicit delegation also generally involves a client who calls an API on behalf of a user. However,
the client's authority is implied by the nature of the transaction, and the user is not specifically asked
to approve the transaction.

Copyright ©2024

https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc7522

 | Introduction to PingFederate | 75

Token models and management
Successful OAuth transactions require an OAuth authorization server (AS) to issue tokens characterized
by both security model and data model for use in authenticating an API call.

Token security model

A token security model refers to the conditions that must be met by a client in order to use a token on
an API call. The currently supported model is a Bearer Token. A client's presentation of the token – for
example, as a parameter on the API call – to the resource server (RS) is interpreted as providing sufficient
proof to the RS that the client received the same token from the OAuth AS.

Token data model

A token data model refers to whether the token carries identity and security information or acts as a pointer
to the information.

Self-contained tokens (JSON Web Tokens)

Contain identity and security information and attributes in a transport format such as JSON, signed
by the AS and verified directly by the RS.

Reference tokens (Internally Managed Reference Tokens)

Serve as a reference to some set of attributes. The RS must de-reference the token for the
corresponding identity and security information at the OAuth AS that issued it.

Token management
PingFederate supports multiple access token management instances, providing flexibility for enterprises
where deployments require different token data models, token lifetimes, attribute contracts, token validation
rules, or any combination of them for various clients.

Grant types
To obtain an access token, a client interacts with an OAuth authorization server (AS), sending a request for
an access token that includes an access grant. An access grant is also used when a resource server (RS)
requests validation of an access token from the AS.

Primary grant types

OAuth defines several different access grant types. Each grant type reflects different authorization
mechanisms.

Authorization code

authorization_code

An authorization code is returned to the client through a browser redirect after the resource owner
(RO) gives consent to the AS. The client subsequently exchanges the authorization code for an
access token and often a refresh token. RO credentials are never exposed to the client.

Resource owner password credentials

password

The client collects the RO's password and exchanges it at the AS for an access token and often
a refresh token. This grant type is suitable in cases where the RO has a trust relationship with the
client, such as its computer operation system or a highly-privileged application because the client
must discard the password after using it to obtain the access token.

Refresh token

refresh_token

Copyright ©2024

 | Introduction to PingFederate | 76

A refresh token often returns with an access token. Once the original access token expires, the
corresponding refresh token sends to the AS to obtain a fresh access token without requiring the
RO to re-authenticate. This allows short-lived access tokens to exist between the client and the
resource server and long-lived tokens between the client and the AS.

The refresh token grant type only works in conjunction with either the authorization code or RO
password credentials grant type.

Implicit

implicit

A browser redirect responds to the RO authorization request, rather than an intermediate
authorization code, and returns an access token to the client. This grant type works for clients
incapable of keeping client credentials confidential for use in authenticating with the AS, such as
client applications implemented in a browser using a scripting language like JavaScript.

Client credentials

client_credentials

The client presents its own credentials to the AS in order to obtain an access token. This access
token is either associated with the client's own resources, and not a particular RO, or with a RO for
whom the client is otherwise authorized to act.

Extension grant types

OAuth provides an extension mechanism for defining new extension grant types to support additional
clients or to provide a bridge between OAuth and other trust frameworks. An OAuth client uses an
extension grant type by specifying an absolute URI as the value of the grant_type parameter and by
adding any additional parameters necessary when contacting the token endpoint at /as/token.oauth2.

PingFederate supports the following extension grant types:

Assertion grants

JWT Bearer

urn:ietf:params:oauth:grant-type:jwt-bearer

The client obtains a JSON web token (JWT) and uses it to request an access token from the
AS. This grant type allows a client to use an existing trust relationship, expressed through a
JWT, without a direct user approval step at the AS.

SAML 2.0 Bearer

urn:ietf:params:oauth:grant-type:saml2-bearer

The client obtains a SAML 2.0 Bearer assertion and uses it to request an access token from
the AS. Similar to the JWT Bearer grant type, this grant type allows a client to use an existing
trust relationship, expressed through a SAML assertion, without a direct user approval step at
the AS.

 Note:

The SAML assertion used for this grant type generally cannot be a browser-based SSO
assertion. To ensure its validity, the assertion must be associated with WS-Trust security
token service (STS) processing.

Client-initiated backchannel authentication (CIBA) grant

urn:openid:params:grant-type:ciba

Copyright ©2024

 | Introduction to PingFederate | 77

The client presents an identity hint to the AS. The AS identifies the RO based on the hint provided
and then authenticates and obtains authorization from the RO through an out-of-band flow.
Depending on the setup, the client either polls the AS for the authorization result or wait for a signal
from the AS to return to the AS for the authorization result. If the RO approves the authentication
request, the AS returns an access token to the client. Otherwise, the AS returns an error message
per the specification.

Device authorization grant

urn:ietf:params:oauth:grant-type:device_code

The client presents a device code and user code to the AS in order to identify the device-
authorization session and obtain an access token. This access token is associated with a RO for
whom the client is otherwise authorized to act.

token exchange grant

urn:ietf:params:oauth:grant-type:token-exchange

The client presents a security token to the AS. In exchange, the AS returns another kind of security
token to the client. The new token might be an access token that is more narrowly scoped for a
downstream service or it could be an entirely different kind of token. This grant type supports subject
and actor tokens employing impersonation and delegation.

Validation grant

urn:pingidentity.com:oauth2:grant_type:validate_bearer

This proprietary PingFederate OAuth extension enables an RS to act as a client in the request/
response exchange with PingFederate as the AS in this scenario. The grant type allows an RS to
check with PingFederate on the validity of a bearer access token received from a client making a
protected-resources call.

Scopes
In addition to OAuth, PIngFederate supports the use of scopes to constrain and define access privileges.

OAuth provides a mechanism to constrain the privileges associated with an access token, whereas scopes
provide a way to more specifically define the privileges requested and granted. Generally, a client specifies
the desired scopes when sending an authorization request to the authorization server. If the user approves,
the authorization server issues an access token with these scopes.

Scopes are configured globally using the System # OAuth Settings # Scope Management configuration
wizard. Once defined, you can manage the availability of scopes on a client-by-client basis.

Static scopes and dynamic scopes

As an authorization server, supports the concepts of static scopes and dynamic scopes. To define a static
scope, use a text value such as read_bank_account. To define a dynamic scope, use a text value with
a variable component represented by a wildcard, such as read_bank_account_txn:*. As illustrated,
dynamic scopes allow clients to request authorization using scope values with a variable component from
one request to another.

Consent approval
With Authorization Code, Implicit, and Device Authorization grant types, an authorization server (AS)
prompts the user to grant authorization to share user information. Once granted, the AS issues an access
token to the client who uses it to access information from the resource server (RS).

Default consent user interface

PingFederate handles the consent approval process by presenting the Request for Approval
window to the user by default. This window displays a list of requested permissions, scopes,
along with their descriptions as configured in PingFederate. It is up to the user to approve or deny
individual scopes.

Copyright ©2024

 | Introduction to PingFederate | 78

External consent user interface

As use cases evolve towards giving users more control over their data, it becomes more important
to provide detailed information about the requests. While the scope description can help,
PingFederate also supports the use of an external web application to prompt for authorization
consent. This approach opens up the opportunity to retrieve additional information specific to the
users. For example, the web application can be written in such a way that when a client requests the
read_bank_account scope, the web application retrieves the user's customer information file and
gives the user the ability to choose which accounts to make available to the client.

Client management and storage
OAuth clients interact with an authorization server (AS) to obtain access tokens and optionally refresh
tokens to access protected resources on resource servers.

provides administrators the flexibility to manage OAuth clients using the following interfaces:

▪ The administrative console
▪ The administrative API
▪ The OAuth Client Management Service

Additionally, supports dynamic client registration based on the OAuth 2.0 Dynamic Client Registration
Protocol specification.

Storing client records in XML files by default allows administrators to manage clients using the
administrative console and the administrative API. It also allows developers to submit client creation
requests based on the Dynamic Client Registration protocol specification. The configuration archive
contains client records.

Alternatively, because the OAuth Client Managment Service requires external storage of client records,
PingFederate supports configuration to store client records externally on a database server, a directory
server, or some other storage medium through the use of the PingFederate SDK. Under this configuration,
the configuration archive does not include client records.

Client authentication schemes
Most OAuth and OpenID Connect use cases require the client application to authenticate successfully
before its requests can be processed further.

As an OAuth authorization server (AS), PingFederate supports the following client authentication schemes:

▪ Client secret for HTTP Basic authentication
▪ Client TLS certificate for mutual TLS authentication
▪ Private key JWT for the private_key_jwt client authentication method, as defined in the OpenID

Connect specification
▪ None when authentication is not required

When deployed as an OpenID Connect Relying Party (RP), PingFederate authenticates through client
secret and private key JSON web tokens (JWT). It also handles the scenario where authentication is not
required.

Dynamic client registration
As an OAuth provider, PingFederate supports a number of OAuth protocols.

PingFederate supports dynamic client registration based on the OAuth 2.0 Dynamic Client Registration
Protocol specification. When enabled, it allows developers to register OAuth clients through an API based
on open standards.

Copyright ©2024

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591

 | Introduction to PingFederate | 79

Transient grants and persistent grants
There are two types of OAuth authorization grants: transient grants and persistent grants.

Transient grants

Transient grants are valid only for the lifetime of their respective access tokens. Transient authorizations
include those obtained by OAuth clients in the following manners:

▪ Grants obtained by using the authorization code, resource owner credentials, or device authorization
grant type, without the refresh token grant type

▪ Grants obtained by using client credential, JWT bearer, SAML 2.0 bearer assertion, or token exchange
grant type

Transient grants are not preserved.

Persistent grants

Persistent grants typically bear a longer lifetime than their respective access tokens do. Persistent
authorizations include those obtained by OAuth clients in the following ways:

▪ Grants obtained or updated using the authorization code, resource owner credentials, or device
authorization grant type, in conjunction with the refresh token grant type

 Note:

If the use cases involve mapping attributes from authentication sources, such as IdP adapter instances
or IdP connections, or password credential validator (PCV) instances to the access tokens, directly
or through persistent grant-extended attributes, storing these attributes from authentication sources
and their values along with the persistent grants maintains them for reuse when clients subsequently
present refresh tokens for new access tokens.

▪ Grants obtained or updated by using the implicit grant type, for which is configured to reuse existing
persistent grants

 Note:

If the use cases involve mapping attributes from authentication sources or PCV instances to the
access tokens, runtime procedures obtain attribute values for each token request, but persistent grants
do not store with attributes or their values.

Persistent grant lifetime and maintenance

Persistent grants and any associated attributes and their values remain valid until the grants expire or until
explicitly revokes or cleans them up.

Grants persist without any expiration information. Grants also persist with an idle timeout window, a
maximum lifetime, or both. If you configure an idle timeout value, the idle timeout window slides when a
persistent grant updates. When you have an idle timeout value configured without a maximum lifetime,
persistent grants remain valid until they expire due to inactivity or until the grant storage revokes or
removes them. When you have an idle timeout value configured with a maximum lifetime, persistent grants
remain valid until they expire due to inactivity or lifetime expiration or until the grant storage removes them.

removes expired grants and the associated attributes from the grant datastore once a day. The frequency
and the size of the cleanup batch are configurable. Optionally, caps the number of persistent grants on a
basis of the combination of user, client, and grant type.

Copyright ©2024

 | Introduction to PingFederate | 80

Persistent grant storage

Support for persistent grants requires the use of a database server or a directory server for long-term
storage. PingFederate also supports other storage solutions through the PingFederate SDK. For more
information, see OAuth grant datastores on page 910.

PingFederate uses a built-in HSQLDB database as its grant datastore after the initial setup.

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

Grant storage and management
PingFederate uses a built-in HSQLDB database as its persistent grant datastore after the initial setup.

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

Persistent grants and any associated attributes and their values remain valid until the grants expire or until
explicitly revokes or cleans them up.

removes expired grants and the associated attributes from the grant datastore once a day. The frequency
and the size of the cleanup batch are configurable. Optionally, caps the number of persistent grants on a
basis of the combination of user, client, and grant type.

For revocation, PingFederate provides two endpoints.

Token revocation endpoint

The token revocation endpoint allows clients to notify the authorization server that they no longer
need a previously-obtained refresh or access token. The revocation request invalidates the actual
token and possibly other tokens based on the same authorization grant.

Grant-management endpoint

The grant-management endpoint allows resource owners to view and optionally revoke the
persistent access grants they have authorized.

Intended for OAuth clients, the token revocation endpoint is the endpoint to which clients send their token
revocation requests. The grant-management endpoint is for resource owners. It displays a list of grants the
resource owners have made. Resource owners can view and optionally revoke one or more grants as they
see fit.

Mapping OAuth attributes
Mapping OAuth attributes is a two-stage processing workflow.

The two stages of mapping OAuth attributes include:

▪ The first stage: map from authentication sources, such as IdP adapter instances or IdP connections,
authentication policy contracts, or Password Credential Validator instances (for resource owner
credentials) to persistent grants.

Copyright ©2024

 | Introduction to PingFederate | 81

▪ The second stage: map from persistent grants, authentication sources, authentication policy contracts,
authentication context, or Password Credential Validator instances to access tokens.

 Note:

This two-stage mapping workflow is different from other mapping scenarios in PingFederate, which involve
just a one-phase configuration.

The first stage
To accomplish the first stage, setting up persistent grants requires mapping, including a user key and all
extended attributes.

The mappings use attributes obtained during initial authentication events within PingFederate, namely
attributes from IdP adapter instances, attributes from assertions through IdP connections, attributes from
authentication policy contracts, or attributes returned by password credential validator instances. Configure
data store queries to accomplish different tasks, such as retrieving the user identifier from an LDAP
directory server as the user key.

 Important:

The USER_KEY attribute values must be unique across all end users, because the USER_KEY attribute is
the user identifier to store and to retrieve persistent grants. For example, the sAMAccountName attribute
value of an end user in one domain might match that of another end user in another domain. In this case,
you can map the Subject DN attribute to the USER_KEY attribute.

The second stage

The second mapping configuration involves mapping from persistent grants the user keys, any extended
attributes derived from the first stage, or both into OAuth access tokens.

When the authentication context matches specific mappings between the authentication sources,
authentication policy contracts, or password credential validators, the attributes map into access tokens.
The HTTP RequestJava object retrieves the authentication method that a client uses, or the private key
JWT for client authentication if the client uses the private_key_jwt authentication method. The HTTP
Request Java object maps it into the access tokens.

Data stores used here retrieve any required user attributes.

Runtime processing
At runtime, the first time a client requests an OAuth token, the process employs the two mapping
sequences. Every time an existing persistent grant requests a new access token, the process invokes the
second mapping.

Copyright ©2024

 | Introduction to PingFederate | 82

OAuth user-facing windows
The PingFederate OAuth authorization server (AS) presents five windows to end users during OAuth
transactions.

The windows include:

▪ One prompting for approval of the requested scopes
▪ One providing a means of revoking persistent access grants
▪ Three others displaying information for the purpose of connecting OAuth-capable internet of things

(IOT) based on the OAuth 2.0 Device Authorization Grant specification

Administrators can customize these windows as needed.

OpenID Connect
As an extension of OAuth capabilities, PingFederate supports an optional configuration for OpenID
Connect, a modern protocol for secure, lightweight transfer of authentication and user attributes.

OpenID Provider support
As an OpenID Provider (OP), PingFederate supports both the Basic Client and Implicit Client profiles
defined in the standard. In both profiles, the end result releases an ID token and an OAuth access token;
however, depending on associated grant types, PingFederate might also release a refresh token.

The ID token is an integrity-secured, self-contained token in JSON Web Token (JWT) format containing
claims about the user. A client uses the ID token to identify the user accessing the client application
through an OP. A client may subsequently use the OAuth access token to retrieve additional claims about
the user, such as a complete profile containing full name, email, phone, and other schema elements
defined in an OpenID Connect policy from the Userinfo endpoint (/idp/userinfo.openid).

For session management, PingFederate provides a front-channel endpoint for OAuth clients using
the OpenID Connect protocol to close other associated sessions at /idp/startSLO.ping and a
back-channel web service for clients to revoke end-user sessions at /pfws/rest/sessionMgmt/
revokedSris.

As an OP, PingFederate optionally accepts request parameters through self-contained, signed JWTs.
This capability enables PingFederate to validate the integrity of the request parameters it receives before
processing the request further. PingFederate also includes a state hash (s_hash) in the ID token to protect
the integrity of the state parameter.

Relying Party support

As a Relying Party (RP), PingFederate is capable of leveraging identities from OPs to complete browser-
based SSO requests. In this use case, PingFederate is the requesting OAuth client application.

The setup involves establishing an IdP connection to the OP. retrieves identity information from the
OP and passes the end-user claims, which are user attributes in an ID token, to one or more target
applications. This configuration allows administrators to take advantage of their existing last-mile
integration and expand the horizon of their applications to additional partners using the OpenID Connect
protocol.

PingFederate is also capable of sending request parameters through self-contained, signed JWTs, thus
adding a layer of security to the transmission of the request parameters. Additionally, if the ID token
contains a state hash, PingFederate validates it.

CORS support for OAuth endpoints
PingFederate supports cross-origin resource sharing (CORS) for several OAuth endpoints.

The supported OAuth endpoints include:

▪ /as/token.oauth2
▪ /as/revoke_token.oauth2
▪ /idp/userinfo.openid

Copyright ©2024

https://tools.ietf.org/html/rfc8628

 | Introduction to PingFederate | 83

▪ /pf-ws/rest/oauth/grants/
▪ /pf/JWKS
▪ /.well-known/openid-configuration
▪ /as/bc-auth.ciba

As needed, administrators can add or remove allowed origins using the administrative console on the
Authentication Application page. For more information, see Configuring authentication applications on
page 407. Once configured, client-side web applications from the trusted origins are allowed to make
requests to the authorization server for the purpose of accessing protected resources, such as obtaining
or renewing access tokens with refresh tokens, presenting access tokens for revocation, querying
additional claims (user attributes), and retrieving OpenID Provider configuration information and JSON
Web Key Sets. .

SSO integration kits and adapters
As a standalone server, PingFederate must be programmatically integrated with end-user applications and
identity management (IdM) systems to complete the “first- and last-mile” implementation of a federated
identity network for browser-based single-sign-on (SSO). Documentation for integration kits is available on
the Ping Identity website.

For an identity provider (IdP), the first mile of this integration process involves providing a mechanism
through which PingFederate looks up a user's current authenticated session data, such as a cookie, or
authenticates a user without such a session. For a service provider (SP), the last mile involves enabling
PingFederate to supply information needed by the target application to set a valid session cookie or other
application-specific security context for the user. To enable both sides of this integration, PingFederate
provides bundled and separately available integration kits, which include adapters that plug into the
PingFederate server and agent toolkits that interface with local IdM systems or applications, as needed.
In addition, PingFederate provides plugin authentication selectors, which enable dynamic selection of
authentication sources based on administrator-specified criteria. For more information, see SSO integration
overview on page 59.

PingFederate also includes a robust software development kit (SDK) for developers to write their own
adapters, data stores, and other components, for specific systems.

Bundled adapters

PingFederate comes bundled with a set of adapters.

Identifier First Adapter

When a variety of user types authenticate at , it is often better to ask the user for their identifier first,
determine their user population, and prompt the user with the desired authentication requirements
and experience. The Identifier First Adapter is designed to handle this use case. For more
information, see Identifier First Adapter on page 312.

HTML Form Adapter

Used in conjunction with Password Credential Validators. These adapters provide integration with
user-datastores in directory servers or locally. For more information, see HTML Form Adapter on
page 290.

Kerberos Adapter

Provides a seamless desktop SSO experience for Windows environments and supports
authentication mechanism assurance from the Active Directory domain service. For new
configurations and as a simpler alternative to the separately-available IWA Integration Kit, use this
adapter. For more information, see Kerberos Adapter on page 319.

OpenToken Adapter

Provides a generic interface for integrating with various applications, including Java- and .NET-
based applications. For more information, see OpenToken Adapter on page 324.

Copyright ©2024

https://docs.pingidentity.com/bundle/integrations/page/ebi1563994984697.html

 | Introduction to PingFederate | 84

Composite Adapter

Allows multiple configured IdP adapters to execute in sequence. Depending on the authentication
context, use this capability, called adapter chaining, for either single-adapter usage or to support
multi-factor authentication through a series of adapters. For more information, see Composite
Adapter on page 285.

HTTP Basic Adapter

Used in conjunction with Password Credential Validators. These adapters provide integration with
user-data stores in directory servers or locally. For more information, see HTTP Basic Adapter on
page 308.

PingID

PingID is a cloud-based authentication service that binds user identities to their devices,
making it an effective multi-factor authentication solution. For more information, see the PingID
documentation.

PingOne MFA Adapter

Allows PingFederate to use the PingOne MFA service for multi-factor authentication (MFA). For
more information, see PingOne MFA Integration Kit.

PingOne Protect Adapter

When a user signs on through PingFederate, the adapter sends the transaction information to the
PingOne Protect service and retrieves a risk evaluation and other information about the user's
current and previous transactions. For more information, see PingOne Risk Integration Kit.

Bundled authentication selectors

PingFederate provides plugin authentication selectors, which enable dynamic selection of authentication
sources based on administrator-specified criteria. Along with the Composite Adapter and token
authorization, the selectors enable dynamic integration with an organization's authentication or
authorization policies, also known as adaptive federation.

 Tip:
To select subsequent selectors or authentication sources for handling complex hierarchical access-
policy decisions, use the results of authentication-selection criteria evaluation. For more information, see
Authentication policies on page 219.

CIDR Authentication Selector

Provides a means of choosing authentication sources or other authentication sources at runtime
based on whether an end-user's IP address falls within specified ranges using Classless Inter-
Domain Routing notation. This selector allows administrators to determine, for example, whether
an SSO request originates inside or outside the corporate firewall and use different authentication
integration accordingly. For more information, see Configuring the CIDR Authentication Selector on
page 222.

Cluster Node Authentication Selector

Provides a means of picking authentication sources or other authentication sources at runtime
based on the PingFederate cluster node that is servicing the request. For example, you can
configure this selector to choose whether PingFederate attempts Integrated Windows Authentication
based on the PingFederate cluster node with which a Key Distribution Center is associated. For
more information, see Configuring the Cluster Node Authentication Selector on page 224.

Connection Set Authentication Selector

Copyright ©2024

https://docs.pingidentity.com/bundle/pingid/page/kor1564020462373.html
https://docs.pingidentity.com/bundle/pingid/page/kor1564020462373.html
https://docs.pingidentity.com/bundle/integrations/page/cal1599060087050.html
https://docs.pingidentity.com/bundle/integrations/page/fnd1592583282135.html

 | Introduction to PingFederate | 85

Provides a means of selecting authentication sources or other authentication sources at
runtime based on a match found between the target SP connection used in an SSO request
and SP connections configured within PingFederate. For example, administrators with different
requirements for SP connections can override connection adapter selection on an individual
connection basis. For more information, see Configuring the Connection Set Authentication Selector
on page 225.

Extended Property Authentication Selector

Enables PingFederate to choose configured authentication sources or other selectors based on
a match found between a selector result value and an extended property value from the invoking
browser-based SSO connections or OAuth client. For more information, see Configuring the
Extended Property Authentication Selector on page 225.

HTTP Header Authentication Selector

Provides a means of choosing authentication sources or other authentication sources at runtime
based on a match found using wildcard expressions in an HTTP header. This selector allows
administrators to determine, for example, authentication behavior based on the type of browser. For
more information, see Configuring the HTTP Header Authentication Selector on page 227.

HTTP Request Parameter Authentication Selector

Provides a means of selecting authentication sources or other authentication sources at runtime
based on query parameter values in the HTTP request. For more information, see Configuring the
HTTP Request Parameter Authentication Selector on page 229.

OAuth Client Set Authentication Selector

Enables PingFederate to choose configured authentication sources or other selectors based on a
match found between the client information in an OAuth request and the OAuth clients configured
in the PingFederate OAuth authorization server (AS). This selector allows you to override client
authentication selection on an individual client basis in one or more authentication policies. For more
information, see Configuring the OAuth Client Set Authentication Selector on page 231.

OAuth Scope Authentication Selector

Provides a means of selecting authentication sources or other authentication sources at runtime
based on a match found between the scopes of an OAuth authorization request and scopes
configured in the PingFederate OAuth authorization server (AS). For example, if a client requires
write access to a resource, administrators can configure the selector to choose an adapter that
offers a stronger form of authentication such as the X.509 client certificate rather than username
and password. For more information, see Configuring the OAuth Scope Authentication Selector on
page 232.

Requested AuthN Context Authentication Selector

Provides a means of picking authentication sources or other authentication sources at runtime
based on the authentication context requested by an SP, for SP-initiated SSO. Configured
authentication sources are mapped either to SAML-specified contexts or any ad-hoc context agreed
upon between the IdP and SP partners. For more information, see Configuring the Requested
AuthN Context Authentication Selector on page 233.

Session Authentication Selector

Enables PingFederate to choose a policy path at runtime based on whether the user already has a
PingFederate authentication session for a particular source. For more information, see Configuring
the Session Authentication Selector on page 234.

 Note:

Copyright ©2024

 | Introduction to PingFederate | 86

Authentication selectors rely on HTTP requests, HTTP headers, POST data, or a combination of them.
Ensure that standard security measures are in place when using these selectors.

Integration kits

Ping Identity regularly develops and maintains integration kits and adapters to work with applications and
leading identity management systems. Download available kits from the Ping Identity Downloads website.
Ping Identity adds additional authentication selectors to the download site. Contact sales@pingidentity.com
with your specific authentication-selection capabilities.

Software development kit (SDK)

The PingFederate SDK provides a flexible means of creating custom adapters to integrate federated
identity management into your system environment. For more information, see the PingFederate SDK
Developer's Guide on page 1047.

Security infrastructure
This section describes the PingFederate security infrastructure that supports encrypted messaging,
certificates, and digital signing.

PingFederate's configuration windows integrate these functions to provide complete control over certificate
generation and authentication verification.

Digital signatures
A digital signature is a way to verify the identity of a person or entity who originates an electronic document
and ensure that the message has not been altered.

Both SAML, including security token service (STS) tokens, and WS-Federation electronic documents use
digital signatures.

Handling a digital signature involves message signing, signature and certificate validation, and signing-
policy coordination between connection partners.

Message signing
Certificates contain information about the certificate owner along with a public key. Applying a digital
signature creates and encrypts a hash from the signing message using the private key.

PingFederate provides a choice of signature encryption algorithms when you require a stronger algorithm.

To ensure the integrity of SAML messages or security token service (STS) tokens, we recommend digital
signing practices using public/private keypairs in conjunction with X.509 certificates.

 Note:

Digital signatures do not encrypt the contents of a message; instead, messages use XML encryption when
needed.

Ping Identity recommends a certificate signed by a certificate authority (CA); however, PingFederate will
work with self-signed or untrusted third-party-signed certificates. After generating a keypair and a self-
signed certificate, use PingFederate to create a certificate signing request (CSR) and send it to a CA for
signing. After the CA has generated a CSR, import it into PingFederate’s certificate management system.
PingFederate’s trusted store or the Java runtime cacerts store must contain the CA’s certificate.

PingFederate enables signing and validation of requests and responses. Additionally, PingFederate
provides for certificate generation, import and export functionality, CSR generation, and application of
digital signatures. You have the option to create reusable global signing certificates across your federated
connection base and import signature verification certificates for each partner. For more information, see
Manage digital signing certificates and decryption keys on page 625.

Copyright ©2024

 | Introduction to PingFederate | 87

 Note:

Ping Identity recommends generating unique certificates for each connection, which limits exposure if the
private key becomes compromised.

Signature validation

After receiving a signed message, PingFederate verifies the signature using the public key that
corresponds with the private key used to sign the message or token. Verification involves creating a hash
of the received message, using the signing partner's public key to decrypt the hash sent with the original
message, and verifying that both hash values are equal.

Certificate validation
PingFederate always checks certificates to see if they have expired when they are initially imported. It also
checks certificates at runtime when they are used to verify incoming signed assertions.

PingFederate also checks to see whether a certificate has been revoked, using either certificate revocation
lists (CRLs) or the online certificate status protocol (OSCP). Depending on the content of the certificate in
question and your requirements, the server will perform either of these checks during single sign-on (SSO)
or single log-out (SLO) processing for the following cases:

▪ Signature verification
▪ Validation of a client certificate used for authentication to PingFederate when the server is handling

direct client requests
▪ Validation of the server SSL certificate when PingFederate acts as the client making an HTTPS

request to a separate server

If the system encounters an expired or revoked certificate, the associated SSO or SLO transaction fails at
runtime and writes an error to the transaction log. In the administrative console, the Status column of the
respective Certificate Management list identifies the expired or revoked certificate.

CRL revocation checking

This process involves querying a CRL distribution-point URL and ensuring that a certificate is not on the
returned revocation list maintained at the site. The certificate specifies the URL.

The administrative console does not need any setup to enable CRL checking. PingFederate automatically
checks CRLs under the following conditions:

▪ The certificate contains the URL where the CA maintains its CRL.
▪ The URL is accessible.
▪ The CRL returns signed with a verified signature.
▪ The OCSP setup does not explicitly disable CRL validations as a failover option.

OCSP revocation checking

OCSP exists as an alternative to CRL validation and provides a more centralized and potentially more
reliable means of checking certificate status. In this scenario, the incoming certificate embeds an OCSP
Responder URL or a configured default URL to query the certificate status.

The primary difference between OCSP and CRL checking is how the verification occurs. CRL checking
requires the requesting client to determine if the certificate has been revoked, or if any of the certificates in
the chain of issuer certificates has been revoked, based on the returned CRL. With OCSP, the client sends
the certificate itself, and the Responder server handles revocation checking to return the certificate status.

As a PingFederate administrator, enable and configure OCSP processing in the administrative console
exclusively or in conjunction with CRL checking as a backup.

For more information about OCSP, see tools.ietf.org/html/rfc2560.

Copyright ©2024

https://tools.ietf.org/html/rfc2560

 | Introduction to PingFederate | 88

For configuration steps, see Configuring certificate revocation on page 640.

Digital signing policy coordination
To coordinate digital signature policy, partners must first agree about whether they will sign SAML
messages or tokens.

In some cases, such as SAML security token service (STS) tokens and single sign-on (SSO) assertions
sent across the POST binding, the protocol specifications require signatures. The PingFederate
administrative console and the runtime protocol engine enforce these requirements. Some partner
connections specify other, optional uses of the digital signatures between partners.

If a trusted, self-signed certificate authority (CA) does not issue a digital-signing certificate, then the signing
partner must send the public-key certificate out-of-band, such as through email, to the partner. The partner
must import the certificate into PingFederate when configuring a connection to the signing partner for SSO,
single log-out (SLO), or STS.

If a trusted CA signs the certificate and the signing partner chooses to embed the certificate in all signed
messages, then the verifying partner uses the embedded certificate for signature verification, after
validating it against the Subject Distinguished Name (DN) of the original certificate. Because validation only
requires the Subject DN, the public-key certificate might not be sent out-of-band.

 Tip:

During the signature verification configuration, PingFederate extracts the Subject DN from the certificate
when available.

The next section provides more information about the two alternative signature-verification trust models
described above from the standpoint of the verifying partner.

Trust models

For validating digital signatures, PingFederate provides a selection of trust models in the administrative
console for each partner connection, based on the certificate categories listed below. For each trust model,
PingFederate always verifies the currency of the certificate and the validity of the message in the certificate
specified. Additional checks depend upon the trust model selected.

Anchored certificate

In this case, certificates used for signature verification must be issued by a trusted CA, and the
certificate chain must be verifiable recursively back to the root issuer. PingFederate validates
the certificate, including recursive revocation checking (when enabled) back to the issuer,for all
signed messages from the partner. By default, PingFederate also prompts for the Issuer DN of
the certificates to mitigate potential man-in-the-middle attacks and to provide a means to isolate
certificates used by different connections.

In addition, when choosing the anchored trust model, the incoming message must include the
verification certificate for the signature. PingFederate uses that certificate to verify signatures
from the partner if its Subject DN matches the partner's public certificate (as specified in the
administrative console), the Issuer DN (if specified) matches one of the issuers in the chain, and the
Issuer CA certificate is part of the trusted store. This feature provides a dynamic trust model that
overcomes the problem of interrupting service to change out expired certificates.

Unanchored Certificate

In the unanchored certificate model, incoming signature verification exclusively uses the certificates
imported for a connection into PingFederate or a secondary, backup certificate, either self-signed or
trusted CA-issued, when specified. This verification does not apply to the certificate chain. However,
when enabled, existing chains receive revocation checking as far as available.

Copyright ©2024

 | Introduction to PingFederate | 89

Secure sockets layer
A certificate authority (CA)-signed SSL certificate identifies one or both ends of the federation. SSL/TLS
provides an encrypted connection between the two parties to avoid exposing the content of a message.
This promotes confidentiality and message integrity.

SAML SSL and TLS scenarios

SSL/TLS should be used in association with the SOAP responder URL and Single Sign-on Service located
at an identity provider (IdP) site. On the service provider (SP) side, the Artifact Resolution Service should
also use SSL/TLS. Optionally, SSL/TLS can also be used to secure communication between internal data
stores and PingFederate and between the PingFederate security token service (STS) and web service
client or provider applications.

The SSL/TLS server-client handshake involves negotiating cipher suites to use for encryption and
decryption on each side of a secured transaction. You can find cipher suites in the following configuration
files:

▪ com.pingidentity.crypto.SunJCEManager.xml
▪ com.pingidentity.crypto.AWSCloudHSMJCEManager.xml
▪ com.pingidentity.crypto.LunaJCEManager.xml
▪ com.pingidentity.crypto.NcipherJCEManager.xml
▪ com.pingidentity.crypto.BCFIPSJCEManager.xml

These cipher-suite configuration files are located in the <pf_install>/server/default/data/
config-store directory. These files comment out weaker cipher suites. To ensure the most secure
transactions, retain this cipher-suite configuration.

 Important:

Due to the import restrictions of some countries, Oracle Server Java SE Runtime Environment (JRE) 8 has
built-in restrictions on available cryptographic strength (key size). To use larger key sizes, enable the Java
Cryptography Extension (JCE) unlimited strength jurisdiction policy. For more information, see the Java 8
release notes in Oracle's documentation.

For Oracle Java SE Development Kit 11, the JCE jurisdiction policy defaults to unlimited strength. For more
information, see the Oracle JDK Migration Guide in Oracle's documentation.

Starting with version 9.1, PingFederate selects cipher suites based on the order that they appear in the
cipher-suite configuration file for new installations. For upgrades, enable the same selection mechanism.
For more information, see Managing cipher suites on page 842.

Authentication

PingFederate browser-based single sign-on (SSO) uses three methods to authenticate connection partners
making SOAP requests. For STS client SOAP authentication, configure a separate option using either
or both of the first two methods listed here. Partners must agree upon the selection of methods and
synchronize within IdP and SP federation implementations.

HTTP Basic authentication

Partners identify themselves by passing username and password credentials.

SSL client certificate authentication

Partners use SSL client certificates presented during SOAP request transactions. Each partner
needs to import the other partner's certificate out-of-band For more information, see Manage SSL
client keys and certificates on page 622.

Digital signatures

Copyright ©2024

 | Introduction to PingFederate | 90

Partners sign the XML message transmitted through the SSL/TLS connection. The receiver verifies
the signatures based upon the certificates configured for that connection. Each partner should
import the others' certificates out-of-band. For more information, see Manage digital signing
certificates and decryption keys on page 625.

Trusted certificates
PingFederate validates the trust of all certificates. PingFederate trusts certificates if the issuer's certificate
is also in PingFederate's trusted certificate store. You must import the root certificate of the CA into
PingFederate's trusted certificate store or into the Java runtime cacerts store.

Encryption
PingFederate supports the optional SAML 2.0 specification allowing for encryption of assertions, including
security token service (STS) SAML tokens, which further enhances confidentiality when required.

For SAML 2.0 single sign-on (SSO) connections, you can choose to encrypt entire assertions or individual
user attributes, including the user's name identifier. You can use signature verification and signing keys to
encrypt and decrypt messages, respectively.

Hierarchical plugin configurations
PingFederate allows you to use a configuration of an adapter along with other PingFederate plugins as a
parent instance for any created child instances.

After this, you can then modify the inherited configuration for child instances as needed. This feature
provides easier management of adapter settings in cases where only small changes to an existing adapter
or plugin configuration need to be made for a particular use case.

For example, different service provider (SP)-connection adapter instances might have their own identity
provider (IdP) sign-on URLs, for branding or other application ownership reasons, while the majority of
the other adapter configuration settings are the same. In this case, you might want to use a parent/child
configuration to override the logon URLs.

 Tip:

Override adapter instances as part of mapping them into either SPor IdP connections for cases where
overridden settings apply only to one particular connection configuration.

Any changes to a parent configuration propagate to its child or connection-based configurations so long as
the derived instance has not overridden the changes.

In addition to adapters, PingFederate allows you to create parent/child configurations for the following
plugin types:

▪ Token Translators (see Token processors and generators on page 71)
▪ Access Token Management instances (see Access token management on page 564)
▪ Password Credential Validators (see Password Credential Validators on page 926)
▪ Identity Store Provisioners (see Configuring Identity Store Provisioners on page 671)

Identity mapping
Identity mapping is at the core of identity federation. One of the primary goals of SAML is to provide a
way for an identity provider (IdP) to send a secure token, called the assertion, containing user-identity
information that a service provider (SP) translates or maps to local user stores.

For browser-based single sign-on (SSO), PingFederate enables two modes of identity mapping between
domains: account linking and account mapping.

For WS-Trust security token service (STS), PingFederate uses account mapping.

See subsequent topics for more information about these identity mapping options.

Copyright ©2024

 | Introduction to PingFederate | 91

Account linking
Under the standards, use account linking for browser-based single sign-on (SSO) in cases where each
domain maintains separate accounts for the same user.

Account linking uses the SAML assertion to create a persistent association between these distinct user
accounts. The account link, or name identifier, such as an email address or identity provider (IdP)-
generated pseudonym, identifies individual users. When privacy is a concern, use pseudonyms because
they prevent tracing back to a user's identity at the partner site.

During the user's first SSO request, the service provider (SP) prompts for local credentials, which enables
the SP to link the name identifier contained within the assertion—either an open attribute or a pseudonym
—with the user's local account. Subsequent SSO events will not prompt the user to authenticate with the
SP because the SP federation server keeps a table associating remote users' name identifiers with local
user accounts. The SP associates the link to the user's corresponding local account and provides access
to the account without separate authentication.

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

The name identifier optionally includes additional attributes. When using a pseudonym as the account link,
take care to send only general attributes, such as a user's organizational role or department, that will not
compromise privacy.

Linking permission and defederation

The SAML specification also allows the SP application to build in user verification and approval of account
linking and provides a means for the user to permanently cancel the linking, known as defederation. For
more information, see /sp/defederate.ping on page 1176. A defederated user might later elect to re-
associate with a local user account.

SP affiliations
Under the SAML 2.0 specifications, an iIdP configures PingFederate to enable a group of SPs, called an
SP affiliation, to share the same persistent name identifier. For more information, see SP affiliations on
page 484. An SP affiliation facilitates the use case where a number of business partners have an existing
relationship and where sharing a single name identifier among all parties reduces the federation integration
effort.

Account mapping
Account mapping, also called attribute mapping, enables a service provider (SP) to use PingFederate to
perform a user lookup and map a user's identity dynamically based on one or more attributes received in
the assertion.

Looking up the user always exposes the attributes. In other words, both the identity provider (IdP) and the
SP know these attributes, such as an email address.

Account mapping achieves one-to-one mapping where individual user accounts exist on both sides of a
federated connection or many-to-few mapping where IdP users without accounts at destination sites map
to guest accounts or to a role-based general account.

For browser-based single sign-on (SSO), transient identifiers provide an additional level of privacy—virtual
anonymity—by generating a different opaque ID each time the user initiates SSO. Transient IDs are often
used in conjunction with federation role mapping to map the user to a guest account or to a role-based
account based on the user's association with the IdP organization rather than personal attributes.

Copyright ©2024

 | Introduction to PingFederate | 92

As with pseudonyms, additional attributes might be sent with the transient identifier. Again, take care to
preserve privacy.

In B-to-B or B-to-E use cases where an administrator might create a user lookup on behalf of the user, the
administrator might implement account mapping.

User attributes
Federation transactions require, at a minimum, the transmission of a unique piece of information, such as
an email address, that identifies the user for identity mapping between security domains.

In addition to attributes used for identity mapping, the identity provider (IdP) can pass other user attributes
in an assertion, including SAML tokens for web services. The service provider (SP) uses this supplemental
information for several purposes. For example, the SP can use attributes to map and authorize the user
into a specific role with associated site permissions or to customize the end application display for a more
robust user experience.

The SP can also incorporate additional attributes prior to creating a session for the target application.
This is common where the SP also maintains an account for the user and wants additional information for
profiling or access-policy purposes.

Attributes must be carefully managed between IdPs and SPs. PingFederate facilitates the process by
providing configuration steps that enable administrators to:

▪ Define and enforce attribute_contract for each partner connection.
▪ Define and retrieve attributes from the IdP adapter, authentication policy contracts, or security token

service (STS) token processor to populate an attribute contract directly or use these attributes to look
up additional attributes in IdP data stores.

▪ Define and enforce a set of required attributes needed by SP adapters or STS token generators to
interface local systems or applications.

▪ Set up connections to local data stores.
▪ Configure specific attribute sources and lookups based on the data stores and map attributes into IdP

assertions or into SP adapters or token generators used to interface target applications.
▪ Selectively mask attribute values recorded in transaction logs.

Attribute contracts
An attribute contract represents an agreement between partners about user attributes sent in a SAML
assertion, a JSON web token (JWT), or an OpenID Connect ID token.

The contract is a list of case-sensitive attribute names. Partners must configure attribute contracts to
match.

 Tip:

When privacy is required for sensitive attributes, you can configure PingFederate to mask their values in
log files. For more information, see Attribute masking on page 95.

For an identity provider (IdP) or an OpenID Provider (OP), the attribute contract defines which attributes
PingFederate sends in an assertion, a JWT, or an ID token. While all users authenticate to the partner
through this fixed contract, the values used to fulfill the contract might differ from one user to the next.
Relying on a combination of different data sources might also fulfill the attribute contract:

▪ The IdP adapter or security token service (STS) token processor
▪ An IdP attribute source, which identifies the location of individual attributes in a datastore
▪ Static text values for some attributes, or text values combined with variables
▪ Expressions (see Attribute mapping expressions on page 213)

For a service provider (SP) or an OpenID Connect Relying Party, the attribute contract defines the
attributes PingFederate expects in a SAML assertion, an ID token, or from the UserInfo endpoint at the

Copyright ©2024

 | Introduction to PingFederate | 93

OP. To pass these attributes to the SP adapter or, for web services, to the SP token generator, configure
PingFederate accordingly. For more information, see Managing SP adapters on page 667 or Managing
token generators on page 1001. In addition, you can configure PingFederate to use attributes to look up
additional attributes in local data stores, which often help start a user session or create a local security
token for web services. For more information, see Adapter contracts on page 93 or STS token contracts
on page 94.

The attribute contract always contains the user identifier SAML_SUBJECT in a SAML assertion and sub in
a JWT or an ID token unless you are using account linking for browser-based single sign-on (SSO). This
attribute is automatically included when creating a new contract.

 Note:

You create attribute contracts on a per-connection basis. For example, if an SP has deployed two session-
creation adapters for two separate applications, the IdP connection partner creates a single attribute
contract. This single contract supplies all the attributes required by both SP adapters.

Name formats
By agreement with an SP partner, an IdP might specify a format, such as email, associated with the
SAML_SUBJECT. The SP might further require this information to facilitate handling of the format.

The partner agreement might also include a requirement for the IdP to provide format specifications
associated with other attributes.

PingFederate provides a means for an IdP administrator to select from among standard subject, attribute
formats, or both, depending on the relevant SAML specifications. An administrator also defines a
customized selection of additional attribute formats. For more information, see Setting up an attribute
contract on page 427.

 Note:

The designation of formats does not apply to SP administrators. The information about formats remains
available in the incoming assertion to an SP application that needs the information for particular processing
requirements.

For the WS-Trust IdP configuration, attribute-name formats remain unspecified. If needed however, an
administrator might user a special variable in the attribute contract to set the subject-name format. For
more information, see Defining an attribute contract for IdP STS on page 989. Browser-based SSO
attribute contracts also use the same variable, but the feature has deprecated.

STS namespaces

By agreement with an SP partner for a WS-Trust STS connection, an IdP specifies an XML namespace
to associate with an attribute, for example, to use claims-based authorization with WIF clients. For
more information, see WSC and WSP support on page 72. The only attributes that allow specified
namespaces belong to a WS-Trust IdP configuration usingSAML 1.1 or SAML 1.1 for Office 365 as
the default token type. For more information, see Defining an attribute contract for IdP STS on page 989.

Adapter contracts
An adapter contract represents an agreement between the PingFederate server and an external
application.

In concert with the attribute contract between partners, adapter contracts specify the transfer of attributes.
Adapter contracts consist of a list of case-sensitive attribute names.

Copyright ©2024

 | Introduction to PingFederate | 94

On the identity provider (IdP) side of a federation, an IdP adapter supplies attributes to PingFederate for
more information, see SSO integration kits and adapters on page 83 and Managing IdP adapters on
page 396.

On the service provider (SP) side, adapters require adapter contract attributes to start a session with an
application. Each security domain requires at least one adapter type. Then, you must configure an adapter
instance for each target application. For more information, see Managing SP adapters on page 667.

Attributes from the attribute contract fulfill the adapter contracts on the SP side, possibly enhanced with
other attributes from local data stores. For example, if the same security context controls several target
applications and provides the same set of attributes to start a session for the user, you would deploy an
adapter type and configure an adapter instance for each protected application. For more information, see
Managing target session mappings on page 692.

Extended adapter contract

When PingFederate deploys an adapter type, it creates adapter contracts. Developing these adapters
"hard-wires" them to look up or set a specific set of attributes. Attribute requirements might change after
deployment. To streamline adjustment of adapter contracts, PingFederate allows an administrator to add
additional attributes to the adapter instance through the administrative console, called extended adapter
contracts.

STS token contracts
Similar to an adapter contract for broswer-based single sign-on (SSO), A security token service (STS)
token-processor or token-generator contract represents an agreement between the PingFederate server
and an external application in the context of a web services transaction.

In concert with the attribute contract between partners, token contracts specify the transfer of attributes,
consisting of a list of case-sensitive attribute names.

On the identity provider (IdP) side of a federation, PingFederate receives token-processor attributes. For
more information, see Token processors and generators on page 71 and Managing token processors
on page 978.

On the service provider (SP) side, a token generator requires token-generator contract attributes to pass
identify information from the token to the web service client application. Each security domain requires
at least one token generator type. Then a token-generator instance must be configured for each target
application. For more information, see Managing token generators on page 1001. If several target
applications are controlled by the same security context and can receive the same set of attributes for the
user, you would deploy a token generator type and configure a token generator instance for each target
application. For more information, see Managing SP token generator mappings on page 1005.

Extended token generator contract

When PingFederate deploys a token-generator type, it creates token-generator contracts. When
developed, these token generators are “hard-wired” to look up or set a specific set of attributes. After
deployment, your attribute requirements might change. To streamline adjustment of token-generator
contracts, PingFederate allows an administrator to add additional attributes to the token-generator instance
through the administrative console. These adjustments are called extended token-generator contracts.

Datastores
Datastores represent external systems that store user attributes and other data.

Once defined, PingFederate configurations retrieve user attributes from datastores for contract
fulfillment and token authorization in various use cases. configurations write certain records or log
messages to datastores. supports a wide variety of database servers and directory servers. As needed,
the SDK supports the creation of custom drivers for connecting to other types of data repositories,
such as flat files or SOAP-connected databases. For more information, see the Javadoc for the
CustomDataSourceDriver interface, the SamplePropertiesDataStore.java file for a sample
implementation, and the SDK Developer's Guide on page 1047 for build and deployment information.

Copyright ©2024

 | Introduction to PingFederate | 95

 Tip:

The Javadoc for and the sample implementation are in the <pf_install>/pingfederate/sdk
directory.

Attribute masking
At runtime PingFederate logs user attributes. To preserve user privacy, you can mask the values of logged
attributes.

For more information about log files, see PingFederate log files on page 778. PingFederate provides this
masking capability at all points where the server logs attributes. These points include:

▪ Datastore lookup at either the identity provider (IdP) or service provider (SP) site. For more
information, see Datastores on page 886.

▪ Retrieval of attributes from an IdP adapter or token processor. For more information, see Setting
pseudonym and masking options on page 398 and Setting attribute masking on page 984.

▪ SP-server processing of incoming attributes based on the single sign-on (SSO) attribute contract. For
more information, see Defining an attribute contract on page 691.

 Note:

The SAML Subject ID is not masked; the SAML specifications provide for either pseudonymous
account linking or transient identification to support privacy for the Subject ID. For more information,
see Account linking on page 91.

▪ SP-server processing of incoming attributes in response to an Attribute Request under X.509 Attribute
Sharing Profile (XASP). For more information, see Configuring security policy for Attribute Query on
page 717.

For information about XASP, see Attribute Query and XASP on page 43.

 Important:

Many adapter implementations, along with other product extensions, can independently write
unmasked attribute values to the PingFederate server log. PingFederate does not control these
implementations. If using such a component raises a concern about sensitive attribute values, you can
adjust the component's logging threshold in log4j2.xml to prevent the recording of attributes.

Token authorization
PingFederate provides an optional configuration known as token authorization to evaluate user attributes
as well as other runtime variables, such as authentication context, for authorization purposes.

Token authorization provides a way for administrators to extend access policy directly to many areas,
such as browser single sign-on (SSO), security token service (STS), and OAuth events, by conditionally
allowing or disallowing the issuance of relevant security tokens such as SAML assertions, STS tokens,
OAuth access tokens, or session cookies. The option is also available for extending authorization policy to
attribute-query responses, identity provider (IdP) adapter contracts, and authentication policy contracts.

Administrators can configure token authorization using Issuance Criteria windows immediately following
the configuration of attribute mapping at all applicable points in the administrative console. See Defining
issuance criteria for IdP Browser SSO on page 436 as an example.

Issuance criteria

The token-authorization configuration consists of rules that evaluate attribute values against selected
conditions. Depending on the type of configuration that contains the token-authorization setup, choose

Copyright ©2024

 | Introduction to PingFederate | 96

from among several sources for the attributes. The sources always consist of all of those available for
attribute mapping, including configured data stores and runtime information related to the context of
an event. In addition, the sources use values of mapped attributes to provide access to any plain-text
mappings or the runtime results of any attribute mapping expressions.

 Tip:

When more than one condition is configured, all are evaluated and all the conditions must be met at
runtime (evaluated as true) for authorization to succeed and processing to continue. In cases where
you might need “or” conditions or layered evaluations, you can create one or more attribute mapping
expressions.

 Note:

When authorization fails and a transaction halts, the system passes back a configurable Error Result
code, potentially to an application layer or as a variable on a PingFederate user-facing template. How this
code is interpreted depends on the use case and application integration.

Single and multivalued conditions

Each token-authorization configuration provides a choice of conditions for evaluating attribute values:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ... conditions
when you want to validate whether one of the attribute values matches or does not match the specified
value. Using a single-value condition when an attribute has multiple values causes the criteria to fail
consistently.

User provisioning
PingFederate provides cross-domain user provisioning and account management.

User provisioning is an important aspect of identity federation. When organizations enable SSO for
their users, they must ensure that some form of account synchronization is in place. Automated user
provisioning features within free administrators from having to devise a manual strategy for this.

Provisioning support takes different forms, depending on what role PingFederate plays in an identity
federation, and you can configure it either in conjunction with partner SSO connections or separately:

▪ IdP sites support automatic provisioning and maintaining user accounts at service provider (SP)
sites that have implemented the system for cross-domain identity management (SCIM) or at selected

Copyright ©2024

 | Introduction to PingFederate | 97

software as a service (SaaS) providers. For more information, see the next section, Outbound
provisioning for IdPs on page 97.

For information about SCIM, see www.simplecloud.info.
▪ When PingFederate is configured as a SP, it supports provisioning and managing user accounts

and groups for your own organization automatically by using the standard SCIM protocol or by using
identity information received during SSO events from SAML assertions. For more information, see
Provisioning for SPs on page 98.

Outbound provisioning for IdPs
For identity provider (IdP) sites, PingFederate provides built-in automated provisioning and user-account
management to system for cross-domain identity management (SCIM)-enabled services providers and to
selected software as a service (SaaS) providers through their proprietary provisioning APIs.

User provisioning is an important aspect of identity federation. When organizations enable SSO for
their users, they must ensure that some form of account synchronization is in place. Automated user
provisioning features within free administrators from having to devise a manual strategy for this.

Outbound provisioning also provides an automated means of account disabling or deprovisioning, which
might be of key importance to system auditors.

 Tip:

Support for provisioning for SaaS applications, including quick-connection templates to expedite the
configuration effort, is available separately. Contact sales@pingidentity.com for more information.

With outbound provisioning enabled, the PingFederate runtime engine, the provisioner, polls the IdP
organization's user store periodically. The server uses a separate database to monitor the state of the
user store and keeps user data synchronized between the organization and the target service provider, as
illustrated in the following diagram.

LDAP user store

PingFederate provides built-in support for PingDirectory, Microsoft Active Directory, Oracle Unified
Directory; pre-configuration of many provisioning settings uses templates. Although Ping Identity
has only formally tested these datastores for support, other LDAP datastores will likely work as well.

Internal datastore

PingFederate is tested with Amazon Aurora (MySQL and PostgreSQL), Microsoft SQL Server,
Oracle Database, Oracle MySQL, and PostgreSQL as internal provisioning datastores. A
demonstration-only, embedded HSQLDB database is installed by default. Scripts to aid setup are in
the directory <pf_install>/pingfederate/server/default/conf/provisioner/sql-
scripts.

Copyright ©2024

http://www.simplecloud.info/

 | Introduction to PingFederate | 98

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

Provisioning for SPs
PingFederate offers two provisioning options when configured as a service provider (SP).

User provisioning is an important aspect of identity federation. When organizations enable SSO for
their users, they must ensure that some form of account synchronization is in place. Automated user
provisioning features within free administrators from having to devise a manual strategy for this.

When configured as an SP, PingFederate offers two provisioning options:

Inbound provisioning

SCIM inbound provisioning provides support for incoming SCIM messages containing requests to create,
read, update, delete, or deactivate user and group records in Microsoft Active Directory datastores or
custom user stores through the Identity Store Provisioners. supports SCIM attributes in the core schema
and custom attributes through a schema extension. Configuring this provisioning feature has two options:
by itself or in conjunction with SSO or other connection types.

In effect, inbound provisioning provides an organization with a dedicated SCIM service provider, which
routes user-managment requests to an organization's centralized user store. The requests usually
originate from trusted applications within an organization, such as a human-resources on-boarding
software as a service (SaaS) product, or from trusted partner identity providers (IdPs).

For setup information, see Configuring SCIM inbound provisioning on page 727. To integrate inbound
provisioning with custom user stores, see Configuring Identity Store Provisioners on page 671. For
application-development information about using PingFederate endpoints for SCIM provisioning, see SCIM
inbound provisioning endpoints on page 1178.

Just-in-time provisioning

At an SP site, creates and updates local user accounts in an external LDAP directory or Microsoft SQL
Server as part of SSO processing, called Just-in-time (JIT) provisioning or, formerly, Express Provisioning.
When provisioning requires local accounts, this feature allows SPs to maintain accounts for users who
authenticate through IdP partners without having to provision accounts manually.

When configured, the SP server writes user information to the local user store using attributes from the
incoming SAML assertion. For SAML 2.0 partner connections, supplement assertion attributes with user
attributes returned from an Attribute Query.

also updates existing user accounts based on assertions. Using this option, adds or overwrites attributes
for a local user account each time processes SSO for a user.

For information about enabling JIT Provisioning, see Choosing IdP connection options on page 682. For
configuration information, see Configuring just-in-time provisioning on page 717.

Customer identity and access management
PingFederate empowers administrators to deliver a secure and easy-to-use customer authentication,
registration, and profile management solution.

This solution leverages the HTML Form Adapter to offer users the options to authenticate through third-
party identity providers, self-register as part of the sign-on experience, and manage their accounts
through a self-service profile management page. The registration and profile management pages are fully

Copyright ©2024

 | Introduction to PingFederate | 99

customizable and localizable, which allows administrators to present a consistent branding experience
based on the needs of the users and the organizations.

Federation hub use cases
Configuring PingFederate as a federation hub accomplishes two primary functions.

Configure PingFederate as a federation hub to:

▪ Bridge partners using different federation protocols to circumvent partner or application limitations.
▪ Multiplex a connection for multiple partners to reduce costs and expand use cases.

As a federation hub, PingFederate bridges browser-based single sign-on (SSO) between identity providers
and service providers. It stands in the middle of the SSO and single log-out (SLO) flow, acting as the
service provider (SP) for the identity providers and as the identity provider (IdP) for the service providers.
The four use cases are:

▪ Bridging an IdP to an SP
▪ Bridging an IdP to multiple SPs
▪ Bridging multiple IdPs to an SP
▪ Bridging multiple IdPs to multiple SPs

PingFederate also supports protocol translation among SAML 1.0, 1.1, 2.0, OpenID Connect, and WS-
Federation. For SAML-based connections, this also means it is possible to bridge between various
bindings between identity providers and service providers.

The federation hub capability deploys alongside with other OAuth use cases, IdP connections, SP
connections, or any combination of them, to your partners. This flexibility helps in streamlining your
federation infrastructure and reducing operating costs.

Bridging an IdP to an SP
PingFederate bridges single sign-on (SSO) and single log-out (SLO) transactions between an identity
provider (IdP) and a service provider (SP).

About this task
If you have a legacy IdP system only capable of sending SAML 1.1 assertions through POST and an
SP that requires SAML 2.0 assertions through the artifact binding, configuring the federation hub allows
PingFederate to consume inbound SAML 1.1 assertions by POST, translate them to SAML 2.0 assertions,
and send them through the artifact binding the SP.

Steps

1. Create a contract to bridge the attributes between the IdP and the SP. For more information, see
Federation hub and authentication policy contracts on page 103.

2. Create an IdP connection between the IdP and PingFederate, the federation hub as the SP, and add
the applicable authentication policy contracts to the IdP connection on the Target Session Mapping
tab.

3. Create an SP connection between PingFederate, the federation hub as the IdP, and the SP and add
to the SP connection the corresponding authentication policy contract on the Authentication Source
Mapping window.

4. Work with the IdP to connect to PingFederate, the federation hub, as the SP.

Copyright ©2024

 | Introduction to PingFederate | 100

5. Work with the SP to connect to PingFederate, the federation hub, as the IdP.

Bridging an IdP to multiple SPs
PingFederate bridges single sign-on (SSO) and single log-out (SLO) transactions between an identity
provider (IdP) and multiple service providers (SPs).

About this task

For example, your company wants to route federation requests from a recently acquired subsidiary through
its federation infrastructure. PingFederate multiplexes one IdP connection to multiple SP connections to the
desired SPs. The federation hub consumes assertions from the subsidiary and creates new assertions to
the respective SPs.

Steps

1. For each SP, create a contract to the IdP. For more information, see Federation hub and
authentication policy contracts on page 103. Because each SP likely requires a unique set of
attributes, you will need to create multiple contracts.

2. Create an IdP connection between the IdP and PingFederate, the federation hub as the SP.

3. Add the applicable authentication policy contract(s) to the IdP connection on the Target Session
Mapping window.

4. For each SP, create an SP connection between PingFederate, the federation hub as the IdP, and the
SP.

5. Add the corresponding authentication policy contract to the SP connection on the Authentication
Source Mapping window.

6. For each SP supporting the SAML IdP-initiated SSO profile, map the expected target resources to the
corresponding SP connections on the Applications # Integration # Target URL Mapping window.

7. Work with the IdP to connect to PingFederate , the federation hub as the SP.

8. Work with each SP to connect to PingFederate, the federation hub as the IdP.

Bridging multiple IdPs to an SP
With PingFederate, you can bridge single sign-on (SSO) and single log-out (SLO) transactions between
multiple identity providers (IdPs) and a service provider (SP).

About this task

For example, you are tasked to provide federated access to resources on Microsoft SharePoint for
various business partners. With PingFederate, you can multiplex one SP connection, to SharePoint, to
multiple IdP connections for all your business partners. The federation hub can also, as needed, translate
SAML assertions from the business partners to WS-Federation security tokens and send them over to
SharePoint.

Copyright ©2024

 | Introduction to PingFederate | 101

Steps

1. Create a contract to bridge the attributes between the IdPs and the SP. For more information, see
Federation hub and authentication policy contracts on page 103.

You likely need only one contract unless the SP requires a different set of attributes from each IdP.

2. For each IdP, create an IdP connection between the IdP and PingFederate, the federation hub as the
SP.

3. On the Target Session Mapping window, add the applicable authentication policy contracts to the IdP
connection.

4. On the Selectors window, configure an authentication selector. For example, see an instance of the
Identifier First Adapter on page 312 to map each IdP to the corresponding IdP connection in an
authentication policy.

5. Create an SP connection between PingFederate, the federation hub as the IdP, and the SP.

6. Add the corresponding authentication policy contract to the SP connection on the Authentication
Source Mapping window.

 Important:

PingFederate includes the Entity ID of the original IdP (Authenticating Authority) in SAML
2.0 assertions so that the SP can determine the original issuer of the assertions. This is especially
important when bridging multiple IdPs to one SP—the SP should take the information about the
original issuer into consideration before granting access to protected resources.

For SAML 1.x assertions and WS-Federation security tokens, you can add an attribute on the
Attribute Contract window and then map Context: Authenticating Authority as the attribute value
on the Attribute Contract Fulfillment window.

For information about Authenticating Authority, see section 2.7.2.2 Element <AuthnContext>
in the SAML 2.0 specification.

 Note:

If the SP does not take action based on Authenticating Authority, depending on the attributes
from the IdPs, you can define validation rules on the Issuance Criteria window to protect against user
impersonation between IdPs.

7. Work with each IdP to connect to PingFederate, the federation hub as the SP.

8. Work with the SP to connect to PingFederate, the federation hub as the IdP.

Copyright ©2024

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

 | Introduction to PingFederate | 102

Bridging multiple IdPs to multiple SPs
PingFederate can bridge single sign-on (SSO) and single log-out (SLO) transactions between multiple
identity providers (IdPs) and service providers (SPs).

About this task

This PingFederate federation hub use case is a combination of Bridging an IdP to multiple SPs on page
100 and Bridging multiple IdPs to an SP on page 100.

Steps

1. Create multiple contracts to bridge the attributes between the IdPs and the SPs. For more information,
see Federation hub and authentication policy contracts on page 103.

2. For each identity provider, create an IdP connection between the IdP and PingFederate, the federation
hub as the SP.

3. Add the applicable authentication policy contracts to the IdP connection in the Target Session
Mapping window.

4. In the Selectors window, configure an authentication selector to map each IdP to the corresponding
IdP connection in an authentication policy. For example, see an instance of the Identifier First Adapter
on page 312.

5. For each service provider, create an SP connection between PingFederate, the federation hub as the
IdP, and the SP.

6. Add the corresponding authentication policy contract to the SP connection in the Authentication
Source Mapping window.

 Important:

PingFederate includes the Entity ID of the original IdP, Authenticating Authority, in SAML
2.0 assertions so that the SP can determine the original issuer of the assertions. This is especially
important when bridging multiple IdPs to one SP—the SP should take the information about the
original issuer into consideration before granting access to protected resources.

In the Attribute Contract window, add an attribute for SAML 1.x assertions and WS-Federation
security tokens. Then, in the Attribute Contract Fulfillment, map Context: Authenticating
Authority as the attribute value.

For information about Authenticating Authority, see section 2.7.2.2 Element <AuthnContext>
in the SAML 2.0 specification.

 Note:

If the SP does not take action based on Authenticating Authority, in the Issuance Criteria
window, you can define validation rules to protect against user impersonation between IdPs.

Copyright ©2024

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

 | Introduction to PingFederate | 103

7. For each SP supporting the SAML IdP-initiated SSO profile, map the expected target resources to the
corresponding SP connections in the Applications # Integration # Target URL Mapping window.

8. Work with each IdP to connect to the federation hub as the SP.

9. Work with each SP to connect to the federation hub as the IdP.

Federation hub and authentication policy contracts
PingFederate uses two connections to bridge an identity provider (IdP) to a service provider (SP). It fuses
these two connections together by using an authentication policy contract as the medium to carry user
attributes from the IdP to the SP.

The two connections are:

▪ An IdP connection where end users authenticate and PingFederate, the federation hub, is the SP
▪ An SP connection to the target application where PingFederate, the federation hub, is the IdP

Each authentication policy contract comes with one default attribute, subject. You can extend the
contract to include additional attributes as needed. In most federation hub use cases, you configure
PingFederate to pull attribute values from inbound assertions into the authentication policy contract in
an IdP connection and to push those values from the authentication policy contract into the outbound
assertions through an SP connection. For advanced use cases, you can configure the IdP connections, SP
connections, or both, to look up values from multiple data store instances.

PingFederate can use OGNL expressions to customize authentication request and response messages
from IdP connections before sending them to SPs. To customize messages, the expressions
can use the variables #FedHubIncomingAuthnResponse, #FedHubIncomingAuthnRequest, and
#FedHubOutgoingAuthnRequest in an SP connection when an authentication policy is used to select the
IdP connection. For more information, see Customizing assertions and authentication requests on page
368 and Message types and available variables on page 369.

When bridging one IdP to one SP, you must create one authentication policy contract and associate the
contract with both the IdP connection and the SP connection.

When bridging one IdP to multiple SPs, you need to create an authentication policy contract per
SP because each SP likely requires a different set of attributes. In addition, you need to map all the
authentication policy contracts into the IdP connection and add the respective authentication policy
contracts to each SP connection to the SP.

When bridging multiple IdPs to one SP, you likely need only one contract unless the SP requires a different
set of attributes from each IdP. In addition, you need to add the authentication policy contract to the SP
connection and the applicable IdP connections.

You can manage authentication policy contracts on the Policy Contracts window (Authentication #
Policies # Policy Contracts).

Federation hub and virtual server IDs
PingFederate manages the federation hub differently based on how the server provider (SP) connection
uses virtual server IDs.

PingFederate uses two connections to bridge an identity provider (IdP) to a SP:

▪ An IdP connection where end users authenticate and PingFederate, the federation hub, is the SP
▪ An SP connection to the target application where PingFederate, the federation hub, is the IdP

Generally speaking, PingFederate consumes assertions from the IdP through the IdP connection and
generates new assertions to the SP through the SP connection.

If the SP connection does not use a virtual server ID, the issuer of the assertions to the SP is the ID
defined for the protocol between PingFederate, the federation hub as the IdP, and the SP.

If the SP connection uses multiple virtual server IDs for the purpose of connecting to multiple environments
serviced by the same partner using one connection, PingFederate automatically retains information about
AuthnRequest messages sent to the virtual server ID specific endpoint for SP-initiated single sign-on

Copyright ©2024

 | Introduction to PingFederate | 104

(SSO). When the IdP returns the corresponding assertions to PingFederate as the SP, PingFederate
retrieves the preserved information and uses that specific virtual server ID as the issuer in assertions sent
to the SP. For IdP-initiated SSO, the issuer of the assertions to the SP is the default virtual server ID.

Federation planning checklist
An essential first step in establishing an identity federation involves discussions and agreements between
you and your connection partners. The sections below comprise a partial checklist of items that should be
coordinated before you deploy PingFederate.

Standards and specifications

Choose which federation protocols your deployment will support. For SAML single sign-on (SSO)
configurations, decide which profiles and bindings will be used. For more information, see Supported
Standards.

Signing and validation

Decide which SAML messages—assertions, responses, requests—will be digitally signed and how the
messages will be verified by your federation partner. If messages are signed, decide how certificates will
be exchanged, for example, secure email. For more information, see Security infrastructure on page 86.

Back-channel security

Determine what type of SOAP channel authentication will be used: Basic or SSL/TLS. If SSL/TLS is used,
determine whether server-only or both server and client certificates will be needed and how they will be
managed. Also decide what level of security will be required for connections to back-end datastores or
identity management systems.

Trusted certificate management

Determine whether both partners are using SSL/TLS runtime certificates, signing certificates, or both
that have been signed by a major certificate authority (CA). If self-signed certificates or nonstandard CAs
are used, the signed certificates must be exchanged and imported into Trusted Certificate stores. Also,
determine whether you want to adopt a trust model that uses embedded certificates. For more information,
see Digital signing policy coordination on page 88.

Deployment

Decide how PingFederate fits into your existing network. Also, determine whether high-availability, failover
options, or both, are required. For more information, see the PingFederate Server Clustering Guide on
page 180.

Federation server identification

Determine how you and your partners will identify your respective federation deployments. Under
federation standards, both the sender, the identity provider (IdP), and the receiver, service provider
(SP), of an assertion must be uniquely identified within the identity federation. For more information, see
Configuration data exchange on page 107.

With PingFederate, you define a unique ID for each supported protocol. For more information, see
Specifying federation information on page 860. Optionally, you can also use a list of multiple virtual
server IDs on a connection-by-connection basis. For more information, see Multiple virtual server IDs on
page 105.

 Tip:

PingFederate also provides for virtual host names, which differ from virtual server IDs but are not mutually
exclusive; they are intended for use when your network configuration is such that you receive federation

Copyright ©2024

 | Introduction to PingFederate | 105

messages under more than one domain name. For more information, see Configuring virtual host names
on page 877.

Server clock synchronization

Ensure that both the SP and IdP server clocks are synchronized. SAML messages and security token
service (STS) tokens provide a time window that allows for small synchronization differentials. However,
wide disparities will result in assertion or request time-outs.

User data stores

Identify the type of datastore that contains user data when needed. For more information, see Datastores
on page 94.

Web application and session integration

Decide how PingFederate as an IdP receives subject identity information, either from an STS token or a
user session.

For an SP, decide how PingFederate will forward user identity information to the destination web
application or system to start a session. For more information, see SSO integration kits and adapters on
page 83 and Token processors and generators on page 71.

Transaction logging

PingFederate provides basic transaction logging and monitoring. Decide whether transaction logging
should be integrated with a systems management application and whether you have regulatory compliance
requirements that affect your logging processes. For more information, see PingFederate log files on page
778.

Identity mapping

For browser-based SSO, decide whether you will use PingFederate to link accounts on your respective
systems using a persistent name identifier, or whether you will use account mapping. For more information,
see Identity mapping on page 90.

Attribute contract agreement

If your federation partnership will not use account linking, or will not use it exclusively, then you and your
partner must agree on a set of attributes that the IdP will send in an assertion for either SSO or web
service access. For more information, see Attribute contracts on page 92

Metadata exchange

If you are using SAML, decide whether you will use the metadata standard to exchange XML files
containing configuration information. PingFederate makes it easy to use this protocol, which provides a
significant shortcut to setting up your partner connections.

Multiple virtual server IDs
Virtual server IDs provide more configuration flexibility in cases where you need to identify your server
differently when connecting to a partner in one connection for multiple environments or in multiple
connections where the partner also supports multiple federation IDs.

Connecting to a partner in one connection

This is a use case where you need to connect to multiple environments serviced by the same partner
using one federation ID, multiplexing one service provider (SP) connection to access multiple subdomain
accounts in Microsoft Office 365.

Copyright ©2024

 | Introduction to PingFederate | 106

Suppose both the marketing and the engineering departments of contoso.com, the identity provider (IdP),
have their own departmental subdomains, marketing.contoso.com and engineering.contoso.com. They are
both registered in Office 365, the SP, under the parent domain, contoso.com.

To include both marketing.contoso.com and engineering.contoso.com as the virtual server IDs in the
Office 365 SP connection, configure the PingFederate IdP server. Each virtual server ID has its own set
of protocol endpoints obtained in the connection metadata. For more information, see Metadata export on
page 880 and System-services endpoints on page 1186.

After providing the protocol endpoints information to Office 365, when Office 365 sends login requests
to PingFederate, PingFederate picks the correct IdP adapter to authenticate the end users based on the
virtual server ID in the requests.

For each successful login, PingFederate builds an assertion with the issuer set to the corresponding virtual
server ID. When Office 365 receives the assertion, it creates the end user session with the right subdomain
settings based on the issuer value in the assertion.

Connecting to a partner in multiple connections

In this use case, you connect to your partner in multiple connections. In each connection, you identify
yourself and your partner differently.

For example, you as the SP provide separate environments for the end users based on their regions.
Your IdP operates in two regions, Europe (EU) and North America (NA). Their federation IDs are
eu.idp.local and na.idp.local respectively.

In the PingFederate SP server, you can create two IdP connections to federate identities for end users
from both regions as follows.

Partner's federation ID Your virtual server ID

IdP connection #1 eu.idp.local idp-eu.sp.tld

IdP connection #2 na.idp.local idp-na.sp.tld

Based on the issuer (the partner's federation ID) and the audience values (your virtual server ID),
PingFederate determines at runtime which IdP connection the assertion is intended for, validates as per
the connection settings, and passes attribute values to the SP adapter to create the end-user session.

Working with multiple virtual server IDs

You can assign virtual server IDs either as an IdP during configuration of an SP connection or as an SP
configuring an IdP connection for both Browser single sign-on (SSO) Profiles and WS-Trust security token
service (STS) for access to identity-enabled web services. For more information, see Identifying the SP on
page 420 and Identifying the partner on page 685.

If a connection has only one virtual server ID, it becomes the default virtual server ID for the connection.
If the list contains several entries, you must specify one of them as the default virtual server ID for that
connection. The connection uses the default virtual server ID when a request does not include virtual
server ID information. For more information, see IdP endpoints on page 1167 for an IdP or SP endpoints
on page 1173 for an SP.

In a connection with multiple virtual server IDs, you can restrict each adapter added to the connection to
certain virtual server IDs to enhance the end-user experience. For more information, see Restricting an
authentication source to certain virtual server IDs on page 433 and Restricting a target session to certain
virtual server IDs on page 695.

 Tip:

Copyright ©2024

 | Introduction to PingFederate | 107

Restrict each token processor or token generator added to a WS-Trust STS SP connection or IdP
connection. For more information, see Restricting a token processor to certain virtual server IDs on page
992 or Restricting a token generator to certain virtual server IDs on page 1007.

 Important:

To protect against unauthorized access, configure Issuance Criteria to verify virtual server ID in conjunction
with other conditions, such as group membership information. For more information, see Defining issuance
criteria for IdP Browser SSO on page 436 or Defining issuance criteria for SP Browser SSO on page
698.

Configuration data exchange
If your partner's deployment does not produce or consume a metadata file that conforms to SAML
metadata specifications, you might need to exchange connection information manually. If the deployment
does not use metadata, some common configuration details must be exchanged.

Identity provider (IdP) to service provider (SP)

If you are the IdP, your SP partner will need some or all of the following connection information, depending
upon which profiles and bindings you configure:

▪ Unique ID—Identifies the IdP that issues an assertion or other SAML message. For SAML 2.0, the ID
is the IdP entity ID; for SAML 1.x, it is the IdP issuer; for WS-Federation, it is the IdP realm.

PingFederate also supports the optional use of virtual IDs. For more information, see Federation
planning checklist on page 104.

▪ SOAP artifact resolution URL—The endpoint your site uses to receive an SP's SOAP requests when
the artifact binding is used.

▪ Single logout (SLO) service URL—The destination of SLO request messages.
▪ Single sign-on (SSO) service URL—The endpoint where you receive and process assertions.

SP to IdP

If you are the SP, your IdP partner will need some or all of the following connection information depending
upon which profiles and bindings you configure:

▪ Unique ID—Identifies the SP. For SAML 2.0, the ID is the entity ID; for SAML 1.x, it is the SP's
audience; for WS-Federation, it is the SP's realm.

PingFederate also supports the optional use of virtual IDs. For more information, see Federation
planning checklist on page 104.

▪ SOAP artifact resolution service URL—The endpoint to use for SOAP requests when the artifact
binding is used.

▪ Single logout service URL (SAML 2.0)—The destination of SLO request messages.
▪ Assertion consumer service URL—The location where the SP receives assertions.
▪ Target URLs—The URLs for the protected resources that a user is trying to access.

Mutual settings between parties
The parties must mutually determine the settings. These settings might include:

▪ Attributes—User information sent in an assertion. For more information, see User attributes on page
92.

▪ Signing certificates—SAML and WS-Federation protocols specify a number of conditions built into the
PingFederate connection-setup windows that might or might not require digital signatures.

▪ SOAP connection type and authentication style—For SAML connections using the back channel, such
as artifact binding, HTTP Basic authentication, SSL client certificate authentication, digital signatures,

Copyright ©2024

 | Installing PingFederate | 108

or some combination of the three is required. You and your partner must exchange the necessary
credentials, certificates, and signing keys.

Installing PingFederate

PingFederate operates as a standalone server based on Java EE application server technology. This
section shows you how to properly install PingFederate.

A new installation involves:

▪ Determining the deployment architecture
▪ Reviewing system and port requirements
▪ Installing a Java runtime environment
▪ Installing PingFederate
▪ Completing the Initial Setup wizard

Deployment options

Depending on your needs and infrastructure capabilities, you can choose a standalone or proxy
configuration. For information about configuring proxy settings, see Configure incoming proxy settings on
page 652 and Configuring forward proxy server settings on page 855.

The following diagram illustrates a standalone PingFederate deployment in a DMZ.

In this configuration, the users access PingFederate through a web application server, an enterprise
identity management (EIM) system, or both. PingFederate then retrieves information from a datastore to
use in processing the transaction.

You can also deploy PingFederate with a proxy server. The following diagram depicts a proxy-server
configuration in which users and web browsers access the proxy. The proxy then communicates with
PingFederate to request single sign-on (SSO).

Copyright ©2024

 | Installing PingFederate | 109

 System requirements
PingFederate has the following system requirements. This section lists recommended versions and
requirements.

Operating systems and virtualization

 Note:

PingFederate is tested with default configurations of operating-system components. If your organization
customizes implementations or installs third-party plug-ins, deployment efforts might affect the
PingFederate server.

Operating systems

▪ Amazon Linux 2
▪ Canonical Ubuntu 16.04 LTS
▪ Canonical Ubuntu 18.04 LTS
▪ Canonical Ubuntu 20.04 LTS
▪ Microsoft Windows Server 2012 R2, 2016, and 2019
▪ Oracle Enterprise Linux 7.9 (Red Hat compatible kernel)
▪ Oracle Enterprise Linux 8.2 (Red Hat Compatible Kernel)
▪ Red Hat Enterprise Linux ES 7.9

Copyright ©2024

 | Installing PingFederate | 110

▪ Red Hat Enterprise Linux ES 8.2
▪ SUSE Linux Enterprise 12 SP5
▪ SUSE Linux Enterprise 15 SP2

 Note:

If you have a Windows Server 2012 R2 environment, you should upgrade to a later version. For
more information, including the end of support for Windows Server 2012 R2 in July 2023, see
Upgrade considerations on page 130.

Docker support

▪ Docker version: 18.09.0 and later

View the PingFederate Docker image on DockerHub. Visit Ping Identity’s DevOps
documentationfor more information. Note that only the PingFederate software is licensed under
Ping Identity’s end user license agreement, and any other software components contained
within the image are licensed solely under the terms of the applicable open source/third party
license.

 Note:

Ping Identity accepts no responsibility for the performance of any specific virtualization software
and in no way guarantees the performance or interoperability of any virtualization software with
its products.

Virtualization

Although Ping Identity does not qualify or recommend any specific virtual-machine (VM) or container
products other than those listed above, PingFederate has run well on several, including Hyper-V,
VMWare, and Xen.

 Note:

The list of products is provided for example purposes only. We view all products in this category
equally. Ping Identity accepts no responsibility for the performance of any specific virtualization
software and in no way guarantees the performance, interoperability, or both of any VM or container
software with its products.

Java environment

▪ Amazon Corretto 11
▪ Amazon Corretto 8
▪ OpenJDK 11
▪ Oracle Java SE Development Kit 11 LTS
▪ Oracle Java SE Runtime Environment (Server JRE) 8

 Note:

Ping Identity Java Support Policy applies. For more information, see Java Support Policy in the Ping
Identity Knowledge Base.

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingfederate
https://devops.pingidentity.com/

 | Installing PingFederate | 111

 Important:

PingFederate does not support any JDK 11 version prior to 11.0.4 due to an error covered in the Oracle
Java Bug Database.

Browsers

Runtime server

▪ Apple Safari
▪ Google Chrome
▪ Microsoft Edge
▪ Microsoft Internet Explorer 11
▪ Mozilla Firefox
▪ Apple iOS 14 (Safari)
▪ Google Android 10 (Chrome)

Administrative server

▪ Google Chrome
▪ Microsoft Edge
▪ Microsoft Internet Explorer 11
▪ Mozilla Firefox

 Note:

For a modern browser experience, you should migrate off Microsoft Internet Explorer 11. For more
information, including the end of support of Internet Explorer 11 in December, 2021, see Upgrade
considerations on page 130.

TLS protocol

Runtime server and administrative server

▪ TLS 1.2 and 1.3

 Note:

TLS 1.3 requires Java 11.

Datastore integration

User-attribute lookup

▪ PingDirectory 7.0, 7.2, 7.3, 8.0, 8.1, 8.2, 8.3
▪ Amazon Aurora (MySQL 5.6.10a)
▪ Amazon Aurora (PostgreSQL 10.11)
▪ Microsoft Active Directory 2012 R2 and 2016
▪ Microsoft SQL Server 2016 SP2 and 2017
▪ Oracle Unified Directory 12c
▪ Oracle Database 12c Release 1 (12.1.0.2.0)

Copyright ©2024

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8215790
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8215790

 | Installing PingFederate | 112

▪ Oracle Database 19c
▪ Oracle MySQL 8.0
▪ PostgreSQL 9.6.19 and 11.9

SaaS or SCIM outbound provisioning

Provisioning channel data source

▪ PingDirectory 7.0, 7.2, 7.3, 8.0, 8.1, 8.2, 8.3
▪ Microsoft Active Directory 2012 R2 and 2016
▪ Oracle Unified Directory 12c

Provisioning internal datastore

▪ Amazon Aurora (MySQL 5.6.10a)
▪ Amazon Aurora (PostgreSQL 10.11)
▪ Microsoft SQL Server 2016 and 2017
▪ Oracle Database 12c Release 1
▪ Oracle Database 19c
▪ Oracle MySQL 8.0
▪ PostgreSQL 9.6.19 and 11.9

SCIM inbound provisioning

▪ Microsoft Active Directory 2012 R2 and 2016
▪ Custom implementation through the PingFederate SDK

Just-in-time (JIT) inbound provisioning

▪ PingDirectory 7.0, 7.2, 7.3, 8.0, 8.1, 8.2, 8.3
▪ Microsoft Active Directory 2012 R2 and 2016
▪ Oracle Unified Directory 12c
▪ Microsoft SQL Server 2016 SP2 and 2017

Account linking

▪ PingDirectory 7.0, 7.2, 7.3, 8.0, 8.1, 8.2, 8.3
▪ Microsoft Active Directory 2012 R2 and 2016
▪ Oracle Unified Directory 12c
▪ Amazon Aurora (MySQL 5.6.10a)
▪ Amazon Aurora (PostgreSQL 10.11)
▪ Microsoft SQL Server 2016 SP2 and 2017
▪ Oracle Database 12c Release 1
▪ Oracle Database 19c
▪ Oracle MySQL 8.0
▪ PostgreSQL 9.6.19 and 11.9

OAuth client configuration and persistent grants

▪ PingDirectory 7.0, 7.2, 7.3, 8.0, 8.1, 8.2, 8.3
▪ Microsoft Active Directory 2012 R2 and 2016
▪ Oracle Unified Directory 12c
▪ Amazon Aurora (MySQL 5.6.10a)
▪ Amazon Aurora (PostgreSQL 10.11)
▪ Microsoft SQL Server 2016 SP2 and 2017

Copyright ©2024

 | Installing PingFederate | 113

▪ Oracle Database 12c Release 1
▪ Oracle Database 19c
▪ Oracle MySQL 8.0
▪ PostgreSQL 9.6.19 and 11.9
▪ Custom implementation through the PingFederate SDK

Registration and profile management of local identities

▪ PingDirectory 7.0, 7.2, 7.3, 8.0, 8.1, 8.2, 8.3

Persistent authentication sessions

▪ PingDirectory 7.2, 7.3, 8.0, 8.1, 8.2, 8.3
▪ Amazon Aurora (MySQL 5.6.10a)
▪ Amazon Aurora (PostgreSQL 10.11)
▪ Microsoft SQL Server 2016 SP2 and 2017
▪ Oracle Database 12c Release 1 and 19c
▪ Oracle MySQL 8.0
▪ PostgreSQL 9.6.19 and 11.9
▪ Custom implementation through the PingFederate SDK.

 Note:

If you have Microsoft Active Directory environments on the 2012 R2 functional level, you should upgrade to
a later version. For more information, including the end of support for the 2012 R2 functional level in July
2023, see Upgrade considerations on page 130.

 Note:

was tested with vendor-specific JDBC drivers. For more information, see Database driver information on
page 114.

Hardware security modules (optional)

 Note:

When integrating with a hardware security module (HSM), you must deploy with Oracle Server JRE (Java
SE Runtime Environment) 8 or Amazon Corretto 8.

AWS CloudHSM

▪ Client software version: 3.3.1

PingFederate must be deployed on one of the Linux operating systems supported by both AWS
CloudHSM and PingFederate .

Entrust nShield Connect HSMs (in FIPS 140-2 Level 3 mode)

▪ Host and Firmware version: 12.40.0
▪ Client driver version: 12.40.2
▪ Hardware Models: 6000+ and XC High

Thales Luna Network HSMs

Copyright ©2024

 | Installing PingFederate | 114

▪ Universal Client 10.2

For more information about the Universal Client, including compatible HSMs, HSM firmware,
appliance software, and client software, see the documentation from Thales.

Hardware requirements

Minimum hardware recommendations

▪ Multi-core Intel Xeon processor or higher

4 CPU/Cores recommended
▪ 4 GB of RAM

1.5 GB available to PingFederate
▪ 1 GB of available hard drive space

 Note:

Although it is possible to run PingFederate on less powerful hardware, the guidelines provided
accommodate disk space for default logging, auditing profiles, and CPU resources for a moderate level of
concurrent request processing.

Database driver information
PingFederate is compatible with the following vendor-specific JDBC drivers.

PingFederate and JDBC driver compatibility

Database server Driver information

Amazon Aurora (MySQL
5.6.10a)

Driver version information

mysql-connector-java version 8.0.22

Driver class

com.mysql.cj.jdbc.Driver

JDBC URL

jdbc:mysql://databaseservername/databasename

Database location

Regional

Database features

One writer and multiple readers

Copyright ©2024

https://thalesdocs.com/gphsm/Content/luna/network/luna_network_10-2.htm

 | Installing PingFederate | 115

Database server Driver information

Amazon Aurora
(PostgreSQL 10.11)

Driver version information

postgresql version 42.2.5

Driver class

org.postgresql.Driver

JDBC URL

jdbc:postgresql://databaseservername/databasename

Database features

One writer and multiple readers

Microsoft SQL Server
2016 SP2 and 2017

Driver version information

sqljdbc version 8.4.1

Driver class

com.microsoft.sqlserver.jdbc.SQLServerDriver

JDBC URL

jdbc:sqlserver://databaseservername;databaseName=databasename

Oracle Database 12c
Release 1 and 19c

Driver version information

ojdbc8 version 12.2.0.1.0

Driver class

oracle.jdbc.OracleDriver

JDBC URL

jdbc:oracle:thin:@databaseservername:databasename

Oracle MySQL 8.0 Driver version information

mysql-connector-java version 8.0.22

Driver class

com.mysql.cj.jdbc.Driver

JDBC URL

jdbc:mysql://databaseservername/databasename

Copyright ©2024

 | Installing PingFederate | 116

Database server Driver information

PostgreSQL 9.6.19 and
11.9

Driver version information

postgresql version 42.2.5

Driver class

org.postgresql.Driver

JDBC URL

jdbc:postgresql://databaseservername/databasename

For additional information about these drivers, contact the respective vendors.

Port requirements
The following table summarizes the ports and protocols that PingFederate uses to communicate with
external components. This information provides guidance for firewall administrators to ensure the correct
ports are available across network segments.

 Note:

Direction refers to the direction of the initial requests relative to PingFederate. Inbound refers to requests
PingFederate receives from external components. Outbound refers to requests PingFederate sends to
external components.

PingFederate required ports and protocols

Service Protocol,
direction,
transport,
default port

Source Destination Description

Administrative
console

HTTPS,
inbound, TCP,
9999

Browsers
accessing the
administrative
console, REST
calls to the
administrative API,
web service calls
to the Connection
Management
Service.

Applicable to the
console node
in a clustered
PingFederate
environment.

Administrative
node

Used for incoming requests
to the administrative
console. Configurable in the
run.properties file.

Copyright ©2024

 | Installing PingFederate | 117

Service Protocol,
direction,
transport,
default port

Source Destination Description

Administrative
console

HTTPS,
outbound, TCP,
443

Administrator
accessing online
documentation.

Applicable to the
console node
in a clustered
PingFederate
environment.

docs.pingidentity.comUsed for accessing online
documentation from the
administrative console.

Runtime
engine

HTTPS,
inbound, TCP,
9031 (and 9032
if configured)

Browsers
accessing the
runtime server for
SSO or SLO; web
service calls to
the SSO Directory
Service; REST
calls to the OAuth
Client Management
Service, the OAuth
Access Grant
Management
Service, the
Persistent Grant
Management API,
and the Session
Revocation API.

Applicable
to all runtime
engine nodes
in a clustered
PingFederate
environment.

Runtime engine
nodes

Used for incoming requests to
the runtime engine.

Configurable in the
run.properties file.

Cluster traffic JGroups,
inbound, TCP,
7600

PingFederate
peer servers
in a clustered
PingFederate
environment.

Administrative
node and
runtime engine
nodes

Used for communications
between engine nodes in a
cluster when the transport
mode for cluster traffic is set to
TCP (the default behavior).

Configurable in the
run.properties file.

Cluster traffic JGroups,
inbound, TCP,
7700

PingFederate
peer servers
in a clustered
PingFederate
environment.

Administrative
node and
runtime engine
nodes

Used by other nodes in the
cluster as part of the cluster's
failure-detection mechanism
when the transport mode for
cluster traffic is set to TCP (the
default behavior).

Configurable in the
run.properties file.

Copyright ©2024

 | Installing PingFederate | 118

Service Protocol,
direction,
transport,
default port

Source Destination Description

Cluster traffic
(if configured)

JGroups,
outbound, TCP,
443

PingFederate
peer servers
in a clustered
PingFederate
environment.

Amazon Simple
Storage Service
(Amazon S3) or
an OpenStack
Swift server

Used by all nodes when the
optional dynamic discovery
mechanism is enabled.

Cluster traffic JGroups,
inbound,UDP,
7601

PingFederate
peer servers
in a clustered
PingFederate
environment.

Administrative
node and
runtime engine
nodes

Used for communications
between engine nodes in a
cluster when the transport
mode for cluster traffic is set to
UDP. By default, the transport
mode is TCP.

Configurable in the
run.properties file.

PingOne
connections (if
configured)

HTTPS,
outbound, TCP,
443

All nodes pingone.com The administrative node
uses PingOne APIs to create
connections to PingOne.
Engine nodes use PingOne
APIs to obtain access tokens
and call PingOne services.

PingOne for
Enterprise
integration (if
configured)

HTTPS
and secure
WebSocket,
TCP, 443

PingFederate

Applicable to the
console node
in a clustered
PingFederate
environment.

pingone.com Used for communications
between PingFederate and
PingOne for Enterprise for
establishing and maintaining
a managed SP connection
to PingOne for Enterprise,
monitoring ofPingFederate
from the PingOne admin
portal, authenticating end
users against the PingOne for
Enterprise Directory.

Active
Directory
domains/
Kerberos
realms (if
configured)

Kerberos,
outbound, TCP
or UDP, 88

PingFederate Windows
domain
controllers

Used for communications
between PingFederate and
Windows domain controllers
for the purpose of Kerberos
authentication.

reCAPTCHA (if
configured)

HTTPS,
outbound, TCP,
443

PingFederate www.google.com/
recaptcha/api/
site verify

Used by the HTML Form
Adapter when invisible
reCAPTCHA from Google is
enabled to prevent automated
attacks.

Administration
notification

SMTP,
outbound,
TCP, 25 (465 if
SMTPS)

All nodes SMTP server Used to send notification
messages for various events.
For more information, see
Runtime notifications on page
883.

Copyright ©2024

 | Installing PingFederate | 119

 Note:

For PingID integration, see PingID required domains, URLs, and ports

Depending on the integration kits deployed and the connecting third-party systems, such as email server or
SMS service provider, additional ports may be required.

 Important:

If you are using PingFederate as your PingOne for Enterprise identity repository, see Connect to
PingFederate Bridge for a list of domains that must be allowed access on the PingFederate server.

Installing Java
PingFederate requires a Java runtime to be installed on your server.

About this task
PingFederate has been tested in the following Java environments:

▪ Amazon Corretto 11
▪ Amazon Corretto 8
▪ OpenJDK 11
▪ Oracle Java SE Development Kit 11 LTS
▪ Oracle Java SE Runtime Environment (Server JRE) 8

 Note:

Ping Identity Java Support Policy applies. For more information, see Java Support Policy in the Ping
Identity Knowledge Base.

 Important:

PingFederate does not support any JDK 11 version prior to 11.0.4 due to an error covered in the Oracle
Java Bug Database.

 Important:

Due to the import restrictions of some countries, Oracle Server Java SE Runtime Environment (JRE) 8 has
built-in restrictions on available cryptographic strength (key size). To use larger key sizes, enable the Java
Cryptography Extension (JCE) unlimited strength jurisdiction policy. For more information, see the Java 8
release notes in Oracle's documentation.

For Oracle Java SE Development Kit 11, the JCE jurisdiction policy defaults to unlimited strength. For more
information, see the Oracle JDK Migration Guide in Oracle's documentation.

Steps

1. Download and install a Java runtime.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingid/page/dip1564020451497.html
https://docs.pingidentity.com/bundle/pingone/page/xvo1564020478884-2.html
https://docs.pingidentity.com/bundle/pingone/page/xvo1564020478884-2.html
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8215790
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8215790

 | Installing PingFederate | 120

2. Set the JAVA_HOME environment variable to the Java installation directory path and add its bin
directory to the PATH environment variable.

 Note:

If you intend to use the PingFederate installer for Windows or run PingFederate as a service, you must
set the JAVA_HOME environment variable and modify the PATH environment variable at the system
level. If you are not using the PingFederate installer or running PingFederate as a service, you can set
the variables at either the system or user level.

 CAUTION:

When running for Windows, switching the Java version from 8 to 11 (or the reverse) will prevent
the service from running, and you will not be able to start . The problem occurs because garbage
collection logging configuration arguments that are used by Java 8 are incompatible with those used
by Java 11.

To change Java versions:

a. Run <pf_install>\pingfederate\sbin\win-x86-64\uninstall-service.bat to de-
register the service.

b. Install the new Java version and update the JAVA_HOME and PATH environment variables.
c. Run <pf_install>\pingfederate\sbin\win-x86-64\install-service.bat to register

the service.

Installation options
PingFederate installs on Windows and Linux operating systems.

Install PingFederate using the following methods:

▪ Install PingFederate on a Windows system by running the installer for Windows or by extracting the
distribution .zip file. Using the installer for Windows is the preferred method.

▪ Install PingFederate on a Linux system by extracting the distribution .zip file.

 Note:

This documentation refers to the installation directory path as <pf_install>. This is where the
pingfederate directory is located. For example, <pf_install>/pingfederate/bin.

 Important:

To avoid future problems with automated upgrades, do not rename the installed pingfederate directory.

If you are installing multiple instances of PingFederate on the same machine, for example, a console node
and an engine node in a clustered environment, install each instance using a unique <pf_install>
directory.

If you are upgrading an existing PingFederate environment, see Upgrading PingFederate in the
PingFederate Server documentation.

Copyright ©2024

 | Installing PingFederate | 121

Installing PingFederate on Windows
You can install PingFederate on a Windows system using the installer for Windows or the distribution .zip
file. Using the installer for Windows is the preferred method.

Before you begin

▪ Request a license key through the Ping Identity licensing page.
▪ Ensure your are logged on to your system with sufficient privileges to install and run an application.
▪ Verify that you have installed the Java runtime and that you have set the required environment

variables correctly. For more information, see Installing Java on page 119 in the PingFederate
Server documentation.

Steps

1. Install PingFederate using the installer for Windows or the distribution .zip file as described in the
following table.

Installation medium Steps

PingFederate installer for
Windows

To install PingFederate using the installer for Windows:

a. Download the PingFederate installer for Windows from the
Ping Identity website.

b. Double-click the .msi file to open the PingFederate Setup
Wizard, and follow the instructions to complete the installation.

PingFederate is configured to run as a service and starts
automatically at the end of the installation process.

 Note:

The PingFederate installer for Windows installs only one instance
of PingFederate on a Windows server. If you need additional
PingFederate instances on the same Windows server, install them
using the distribution .zip file.

You must manually configure various port settings in the
<pf_install>/pingfederate/bin/run.properties file for
each instance to avoid port conflicts.

Distribution .zip file To install PingFederate using the distribution .zip file:

a. Download the distribution .zip file from the Ping Identity
website. The distribution .zip file is identical for both
Windows and Linux.

b. Extract the file into an installation directory.

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html
https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Installing PingFederate | 122

2. If you have installed PingFederate by extracting the distribution .zip file, start PingFederate manually
by running the following script:

<pf_install>/pingfederate/bin/run.bat

Wait for the script to finish—the startup process completes when this message appears near the end
of the sequence:

PingFederate running...

 Tip:

To configure PingFederate to run as a service, follow the steps in Installing PingFederate service on
Windows manually on page 126 in the PingFederate Server documentation.

 CAUTION:

When running for Windows, switching the Java version from 8 to 11 (or the reverse) will prevent
the service from running, and you will not be able to start . The problem occurs because garbage
collection logging configuration arguments that are used by Java 8 are incompatible with those used
by Java 11.

To change Java versions:

a. Run <pf_install>\pingfederate\sbin\win-x86-64\uninstall-service.bat to de-
register the service.

b. Install the new Java version and update the JAVA_HOME and PATH environment variables.
c. Run <pf_install>\pingfederate\sbin\win-x86-64\install-service.bat to register

the service.

Result

If your organization plans to manage keys and certificates using a hardware security module (HSM), see
Supported hardware security modules.

Installing PingFederate on Linux systems
You can install PingFederate on a Linux system using the distribution .zip file.

Before you begin

▪ See System requirements for a list of qualified Linux operating systems.
▪ Request a license key through the Ping Identity licensing website.
▪ Ensure you are signed on to your system with sufficient privileges to install and run an application. You

must install and run PingFederate under a local user account.
▪ Verify that you have installed the Java runtime and that you have set the required environment

variables correctly. For more information, see Installing Java on page 119.

Steps

1. Download the latest version of the PingFederate Server distribution .zip file from the Downloads
website.

2. Extract the file into the target installation directory.

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html
https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Installing PingFederate | 123

3. Start PingFederate manually by running the following script.

<pf_install>/pingfederate/bin/run.sh

 Tip:

To configure PingFederate to run as a service, follow the steps in Installing PingFederate service on
Linux manually.

Result:

The startup process is complete when the following message appears near the end of the sequence.

PingFederate running...

Result

If your organization plans to manage keys and certificates using a hardware security module (HSM), see
Supported hardware security modules.

Installing the PingFederate service on Linux manually
If you have not installed PingFederate on Linux using the distribution .zip file, you can install it manually.

Before you begin

▪ Request a license key through the Ping Identity licensing website.
▪ Ensure you are logged on to your system with sufficient privileges to install and run an application.
▪ Verify that you have installed the Java runtime and that you have set the required environment

variables correctly. For more information, see Installing Java on page 119 in the PingFederate
Server documentation.

About this task

To install the PingFederate service on Linux manually:

Steps

1. Download the distribution .zip file from the Ping Identity website.

2. Extract the file into an installation directory, <pf_install>.

3. Create a new local user account for the PingFederate service; for example, pingfederate.

 Note:

The service account is referred to as <pf_user>.

4. Change the ownership of the PingFederate installation directory <pf_install> and update the read
and write permissions using the following commands.

chown -R <pf_user> <pf_install>
chmod -R 775 <pf_install>

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Installing PingFederate | 124

5. If the operating system supports systemd, follow these steps to install the PingFederate unit file.

a. Edit the pingfederate.service systemd unit file, located in the <pf_install>/
pingfederate/sbin/linux directory.

Replace the following variables with information from your environment:

${PF_VERSION}

The version of PingFederate.

${PF_USER}

The local user account for the PingFederate service.

${PF_HOME}

The <pf_install>/pingfederate directory.

For example, if <pf_install> is /opt/identity.fed, replace ${PF_HOME} with /
opt/identity.fed/pingfederate.

${PF_JAVA_HOME}

The JAVA_HOME environment variable value (a directory).

b. Copy the pingfederate.service file to the systemd unit files directory. For example, /etc/
systemd/system.

 Note:

Depending on the operating system, the exact location might vary. Consult your system
administrators as needed. The rest of the step assumes /etc/systemd/system is the systemd
unit files directory.

c. Use the following command to update the read and write permissions of the
pingfederate.service systemd unit file.

chmod 664 /etc/systemd/system/pingfederate.service

d. Use the following commands to load the new system configuration changes and start the
PingFederate service.

systemctl daemon-reload ;\
systemctl start pingfederate

e. Use the following commands to configure the PingFederate service to start automatically as the
server boots.

systemctl enable pingfederate ;\
systemctl daemon-reload ;\
systemctl restart pingfederate

Result:

After setting up the PingFederate systemd unit file, you can use the following systemctl command to
manage the PingFederate service.

systemctl start pingfederate
systemctl stop pingfederate
systemctl restart pingfederate
systemctl status pingfederate

Copyright ©2024

 | Installing PingFederate | 125

6. If the operating system supports SysV initialization, follow these steps to install the PingFederate
script.

a. Edit the pingfederate script, located in the <pf_install>/pingfederate/sbin/linux
directory.

Replace the following statements with information from your environment:

PF_HOME=$PF_HOME

Replace $PF_HOME with the <pf_install>/pingfederate directory.

For example, if <pf_install> is /opt/identity.fed, replace $PF_HOME with /opt/
identity.fed/pingfederate.

USER="pingfederate"

If the PingFederate service account is not pingfederate, replace pingfederate with the
local user account for the PingFederate service.

For example, if <pf_user> is pingfed, replace pingfederate with pingfed.

Example:

Example (truncated)

If <pf_install> and <pf_user> are /opt/identity.fed and pingfederate
respectively, the required modifications are as follows

...
PF_HOME=/opt/identity.fed/pingfederate
DIR="$PF_HOME/sbin"
USER="pingfederate"
...

b. Copy the pingfederate script to the SysV initialization directory; for example, /etc/rc.d/
init.d.

The exact location might vary, depending on the operating system. Consult your system
administrators, as needed. The rest of the step assumes /etc/rc.d/init.d is the SysV
initialization directory.

c. Use the following command to update the read and write permissions of the pingfederate SysV
initialization script.

chmod 755 /etc/rc.d/init.d/pingfederate

d. Configure the operating system to start the PingFederate service at various runlevels.

On an RHEL server, you can use the Service Configuration utility to do so.

Alternatively, the initialization directories associated with various runlevels can accept manual
symbolic links of the pingfederate script using the ln -s source target command.

Example:

You can create the following symbolic links on an RHEL server where runlevels 2 and 4 are not
used.

ln -s /etc/rc.d/init.d/pingfederate /etc/rc3.d/S84pingfederate
ln -s /etc/rc.d/init.d/pingfederate /etc/rc5.d/S84pingfederate
ln -s /etc/rc.d/init.d/pingfederate /etc/rc0.d/K15pingfederate
ln -s /etc/rc.d/init.d/pingfederate /etc/rc1.d/K15pingfederate

Copyright ©2024

 | Uninstalling PingFederate | 126

ln -s /etc/rc.d/init.d/pingfederate /etc/rc6.d/K15pingfederate

Some operating systems might require a restart of the system to activate the new scripts. Consult
your system administrators as needed.

Result:

After setting up the PingFederate SysV initialization script, you can use the Service
Configuration utility or the following service commands to manage the PingFederate service.

service pingfederate start
service pingfederate stop
service pingfederate restart
service pingfederate status

Installing PingFederate service on Windows manually
If you have not installed PingFederate using the installer for Windows, you can install the PingFederate
service manually.

Before you begin

▪ Request a license key through the Ping Identity licensing website
▪ Ensure you are logged on to your system with sufficient privileges to install and run an application.
▪ Verify that you have installed the Java runtime and that you have set the required environment

variables correctly. See Installing Java on page 119 in the PingFederate Server documentation.

About this task

If you have installed PingFederate using the installer for Windows, skip these steps, because PingFederate
has already been configured to run as a service and to start automatically at the end of the installation
process.

Steps

1. Download the distribution .zip file from the Ping Identity website. The distribution .zip file is identical
for both Windows and Linux.

2. Extract the file into an installation directory, <pf_install>.

3. Start PowerShell or Command Prompt as an administrator.

4. Run the <pf_install>\pingfederate\sbin\win-x86-64\install-service.bat file.

5. Open the Control Panel # Administrative Tools # Services management console.

6. Right-click the PingFederate service and select Start.

Result

PingFederate service starts automatically on reboot.

Uninstalling PingFederate

This section explains how to uninstall PingFederate from a Windows or Linux server.

Uninstalling PingFederate involves removing the previously-installed PingFederate service and the
installation directory, <pf_install>.

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Uninstalling PingFederate | 127

Uninstalling PingFederate from a Windows server
The method you use to uninstall PingFederate depends on whether you installed it using the installer for
Windows or the distribution .zip file.

Before you begin

▪ Ensure you are logged on to your system with sufficient privileges to uninstall an application.
▪ Optionally, make a backup copy of the PingFederate installation directory <pf_install>.

Steps

1. Verify the installation medium in Control Panel # Uninstall a Program.

 Note:

The existence of a PingFederate entry indicates a previous installation of PingFederate using the
Windows installer. If there is no existing PingFederate entry, the distribution .zip file was used to
perform the installation.

2. Depending on the type of installation, uninstall PingFederate using one of the following methods.
Choose from:

▪ PingFederate installer for Windows

Use Control Panel # Uninstall a Program to uninstall PingFederate. Doing this removes the
PingFederate service and the installation directory.

▪ Distribution .zip file

a. Open the Control Panel # Administrative Tools # Services management console.
b. Right-click the PingFederate service and select Stop.
c. Run uninstall-service.bat from the <pf_install>\pingfederate\sbin

subdirectory that corresponds to your platform processor.
d. Optionally, remove the PingFederate installation directory <pf_install>.

Uninstalling PingFederate from a Linux server
You can use the systemd service or the SysV initialization script to uninstall PingFederate from a Linux
server.

Before you begin

▪ Ensure you are logged on to your system with sufficient privileges to uninstall an application.

Steps

1. Uninstall PingFederate using one of the following methods.
Choose from:

▪ PingFederate systemd service

Use the following systemctl commands to stop and disable Pingfederate.

systemctl stop pingfederate ;\
systemctl disable pingfederate ;\

Copyright ©2024

 | Upgrading PingFederate | 128

systemctl daemon-reload

You can also remove the PingFederate systemd unit file pingfederate.service from the
systemd unit files directory/etc/systemd/system prior to running the systemctl daemon-
reload command.

▪ PingFederate SysV initialization script

Do one of the following:

▪ Use the Service Configuration utility to stop and disable the PingFederate service.
▪ Remove any symbolic links from various initialization directories to stop the PingFederate

service.
▪ Remove the PingFederate SysV initialization script pingfederate from the SysV

initialization directory /etc/rc.d/init.d.

 Note:

Depending on the operating system, the exact directory locations may vary. Consult your system
administrators as needed.

2. Optional: Remove the PingFederate installation directory, <pf_install>.

Upgrading PingFederate

The following topics describe how to upgrade your PingFederate environment to the latest version on
Windows and Linux systems.

Depending on your PingFederate installation, you can upgrade by using the PingFederate installer for
Windows or the Upgrade Utility, which automatically migrates existing PingFederate installations of 6.0
and later to the latest version. As of PingFederate 10.0, the Upgrade Utility is included with the software
distribution rather than being a separate download.

For general information about upgrading Ping Identity products and an upgrade planning guide, see
Planning your upgrade.

 Important:

Before upgrading your production environment, you should upgrade your test environment and verify
that the new installation meets your expectations. Also thoroughly retest the behavior of any customized
components. After you complete the upgrade process, you can create a backup of your previous
installation and remove it from the server.

End users might experience service disruptions as you upgrade your PingFederate environment. As
needed, schedule a maintenance window to perform the upgrade.

Upgrade paths

Operating
system

Source version Source installation medium Possible upgrade paths

Microsoft
Windows

8.x through 10.x PingFederate installer for
Windows

PingFederate installer for
Windows, or PingFederate
Upgrade Utility

Copyright ©2024

https://docs.pingidentity.com/bundle/solution-guides/page/piw1575669702172.html

 | Upgrading PingFederate | 129

Operating
system

Source version Source installation medium Possible upgrade paths

6.x through 10.x PingFederate product
distribution.zip file

PingFederate Upgrade Utility

Linux 6.x through 10.x PingFederate product distribution
.zip file

PingFederate Upgrade Utility

If you are upgrading from PingFederate 5.3 or earlier, contact Support for more information.

Both the PingFederate installer for Windows and the Upgrade Utility create a new installation based on the
new product distribution .zip file and then copy the relevant files and property values from the existing
installation (the source) to the new installation (the target). As a result, neither tool affects the source
installation.

Integration kits

Both upgrade tools also copy the program files for the deployed adapters, connectors, and token
translators (the integration kits in general) from the source installation to the target installation. Although
the tools do not upgrade the integration kits automatically, you can download newer versions from the Ping
Identity Downloads website and upgrade the integration kits manually. For integration kit documentation,
see the Ping Identity website.

Downloading PingFederate
You can download the latest version of PingFederate from the PingFederate Downloads website.

Steps

▪ To download the PingFederate installer for Windows, click Windows Installer (MSI).
▪ To download the PingFederate product distribution .zip file, click Product Distribution (ZIP). The

distribution .zip file can be used to upgrade PingFederate on both Windows and Linux.

Preparing to upgrade PingFederate
You should prepare to upgrade PingFederate by completing a number of tasks.

Steps

▪ Review the PingFederate release notes for enhancements, upgrade considerations, deprecated
features, and other known issues and limitations.

▪ Review the post-upgrade tasks.
▪ Review potential changes in system and port requirements.
▪ Obtain a new license key if needed.

Copyright ©2024

https://support.pingidentity.com/s/
https://docs.pingidentity.com/bundle/integrations/page/ebi1563994984697.html
https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Upgrading PingFederate | 130

▪ Update the Java runtime environment (JRE) to version 8 or 11 on your PingFederate servers if
needed.

When you upgrade the JRE, modify the previously defined paths for the system <JAVA_HOME> and
<PATH> environment variables.

 Important:

PingFederate 7.2 and earlier will not start using the currently supported Java runtime. If you need to
start the previous PingFederate version on the same server after the upgrade, retain the older Java
installation and change environment variables back when needed.

▪ Complete any unfinished connections (Drafts) in the administrative console if you want to include them
in the migration.

Upgrade considerations
Several specific modifications since PingFederate 10.0 might affect existing deployments.

Delayed heartbeat response due to archive import on startup

Starting with version 10.2, when you place an archive in the <pf_install>/pingfederate/
server/default/data/drop-in-deployer directory on startup, the heartbeat endpoint will not
return 200 until archive import completes. Depending on how long archive import and configuration
loading takes, the first successful heartbeat response may be significantly delayed relative to earlier
versions. If you have configured a health check or probe that can trigger a restart of the server,
crash loop behavior can result. Review the configuration of these checks to ensure time thresholds
are set appropriately.

TLS 1.0 and 1.1 disabled

Starting with version 10.3, PingFederate disables TLS 1.0 and 1.1 for both inbound and
outbound connections by default. As a result, clients using TLS 1.0 or 1.1 will no longer be
able to connect to the administrative port or the runtime port. If you must re-enable TLS 1.0
or 1.1, add TLSv1 or TLSv1.1 to the run.properties file: look for the “TLS Protocol
Settings” section and follow the inline instructions. Additionally, you might need to add back
the weaker cipher suites, such as TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, or
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA. For more information, see Managing cipher
suites on page 842.

Bouncy Castle FIPS mode

When upgrading an installation where Bouncy Castle FIPS mode is enabled, it is no longer
necessary to place the bc-fips jar file in the JAVA_HOME/jre/lib/ext directory. It is also no
longer necessary to modify the JAVA_HOME/jre/lib/security/java.security

SameSite cookie configuration

As of PingFederate 10.3, the Jetty configuration uses the native servlet SameSite cookie
configuration. This moves the SameSite specifier declaration to its own attribute in the Jetty
configuration as follows:

▪ New format for jetty-admin.xml in the DeploymentManager:

<Call name="setContextAttribute">
 <Arg>org.eclipse.jetty.cookie.sameSiteDefault</Arg>
 <Arg>None</Arg>
</Call>

Copyright ©2024

 | Upgrading PingFederate | 131

▪ New format for jetty-runtime.xml in the WebAppContext:

<Call name="setAttribute">
 <Arg>org.eclipse.jetty.cookie.sameSiteDefault</Arg>
 <Arg>None</Arg>
</Call>

▪ If you want to specify a default value for session management cookies, such as JSESSIONID,
in servlets hosted in PingFederate, add a <comment> like the one in the following snippet to the
existing session-config in the web.xml file:

<session-config>
 <session-timeout>30</session-timeout>
 <cookie-config>
 <http-only>true</http-only>
 <!--
 The following comment adds a default SameSite value
 to the JSESSIONID cookie in any servlet context.
 Available options are:
 __SAME_SITE_NONE__
 __SAME_SITE_LAX__
 __SAME_SITE_STRICT__
 -->
 <comment>__SAME_SITE_NONE__</comment>
 </cookie-config>
</session-config>

Microsoft Internet Explorer 11

Ping Identity commits to deliver the best experience for administrators and users. As we continue to
improve our products, we encourage our customers to migrate off of Microsoft Internet Explorer 11.
We intend to remove Internet Explorer 11 from our qualification process in December 2021.

Microsoft Windows Server 2012 R2 and Active Directory 2012

Because Microsoft will end extended support for Windows Server 2012 R2 in late 2023 (see
here), you should upgrade your Windows servers and Active Directory to a later version, such
as Windows Server 2019. For a full list, see System requirements on page 109. We intend to
remove Windows Server 2012 R2 and Active Directory 2012 from our qualification process in July
2023.

Authorization endpoint

Before version 10.2, PingFederate did not validate the NumericDate value of exp claims in a
signed request object's JWT. To ensure the JWT does not expire too far in the future, PingFederate
10.2 and later do validate the value. PingFederate rejects any JWT that expires more than 720
minutes later. You can change that default value in <pf_install>/pingfederate/server/
default/data/config-store/jwt-request-object-options.xml.

 Note:
PingFederate interprets the NumericDate value as seconds, not milliseconds. So PingFederate
10.2 will reject a JWT that has the NumericDate value based on milliseconds, because
PingFederate calculates the JWT to live more than 720 minutes.

Expression Admin role

When upgrading to PingFederate 10.1 or later from an earlier version, administrative users who
were granted the Admin role in the earlier installation are granted the Expression Admin role
automatically. You can achieve the same result by using the /bulk/import administrative API
endpoint to bulk-import a configuration that was bulk-exported from PingFederate 10.0.

Copyright ©2024

https://docs.microsoft.com/en-us/lifecycle/products/windows-server-2012-r2

 | Upgrading PingFederate | 132

Additionally, all four administrative roles, namely User Admin, Admin, Expression Admin, and Crypto
Admin, are required to access and make changes through the following services:

▪ The /bulk, /configArchive, and /configStore administrative API endpoints
▪ The System # Server # Configuration Archive window in the administrative console
▪ The Connection Management configuration item on the Security # System Integration #

Service Authentication window

Configuration change necessary for MFA adapters

As of PingFederate 10.2, when you define policies using multi-factor authentication (MFA) adapters,
you must select the User ID Authenticated check box in the Incoming User ID popup to allow
users to register as a new MFA user. You should only select this check box if the previous
authentication source has verified the Incoming User ID. You should not select the check box if the
MFA adapter is part of a policy used for password reset or password change. For more information,
see Defining authentication policies on page 242.

 Important:
Administrators using the PingID adapter must review existing policies and select this check box if
appropriate. Otherwise, the adapter will prevent new user registration.

Authentication session created after user registration

As of PingFederate 10.1, an authentication session is automatically created for a user after
registration, preventing the user from having to log in again during the next SSO transaction. This
feature is enabled by default for all new and existing local identity profiles. However, if needed, you
can disable it through the /localIdentity/identityProfiles administrative API endpoint by
setting the createAuthnSessionAfterRegistration attribute to false.

Template html.form.login.template.html

Starting with PingFederate 10.0, the html.form.login.template.html template no longer
includes the $forgotPasswordUrl variable.

Upgrade considerations introduced in PingFederate 9.x

Gemalto SafeNet Luna HSM 6.3

When integrating with Gemalto SafeNet Luna Network HSM 6 (hardware security module),
PingFederate 9.2 requires firmware version of 6.3.0 and client driver version of 6.3. See Integrating
with Thales Luna Network HSM on page 172 for setup information.

Weaker cipher suites disabled

Starting with PingFederate 9.1, weaker cipher suites TLS_RSA_WITH_AES_128_CBC_SHA and
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA are disabled in new installations and upgrades. As
a result, the administrative and runtime servers support only TLS 1.2. If you must re-enable these
cipher suites for legacy clients, refer to Managing cipher suites on page 842 for more information.

LDAP service accounts on PingDirectory

If PingFederate 9.3.1 or newer has an LDAP connection with PingDirectory, then add the config-
read privilege to its service account in PingDirectory. Otherwise, users will not receive password
expiry notifications. For more information, see Assigning Privileges to Normal Users and Individual
Root Users in the PingDirectory documentation.

Improved validation for AudienceRestriction

If an IdP connection is configured with multiple virtual server IDs, the AudienceRestriction
value in a SAML response must now match the virtual server ID information embedded in the
protocol endpoint at which PingFederate receives the message. Otherwise the SSO attempt

Copyright ©2024

https://docs.pingidentity.com/bundle/pingdirectory-81/page/krc1564011446575.html
https://docs.pingidentity.com/bundle/pingdirectory-81/page/krc1564011446575.html

 | Upgrading PingFederate | 133

fails. To override this validation on a per-connection basis, see Configuring validation for the
AudienceRestriction element on page 856.

Custom authentication selector

If you have created a custom authentication selector that returns an IdP adapter instance ID or
the connection ID of an IdP connection, you must update the associated descriptor instance. See
Updating the custom authentication selector on page 154 for more information.

Provisioning datastore reset

Upgrading to PingFederate 9.0 or 9.0.1 when using its outbound provisioning capability can result in
user records being disabled at SaaS applications. The issue is resolved in version 9.0.2.

If you are upgrading from version 8.4.4 (or earlier) or from version 9.0.2, 9.0.3, and 9.0.4 to version
10.0, the upgrade process automatically resolves this issue. No further action is required.

If you are upgrading from version 9.0 or 9.0.1 to PingFederate 10.0, you must use the provmgr
command-line tool to reset the provisioning datastore on the upgraded installation. See Reviewing
database changes on page 149 for more information.

Security enhancement in JDBC datastore queries

A security enhancement has been made in PingFederate 9.0 to safeguard JDBC datastore queries
against back-end SQL injection attacks. This protection is enabled for all new installations.For
upgrades, see Reviewing database changes on page 149.

Access token validation response

Starting with PingFederate 9.2, the access token validation response no longer includes the
username and subject elements by default. Responses include them only if they were mapped in
the issuing access token management instance.

Upgrade considerations introduced in PingFederate 8.x

InterReqStateMgmtMapImpl.expiry.mins renamed

The InterReqStateMgmtMapImpl.expiry.mins setting in the size-limits.conf file has
been renamed in PingFederate 8.4.2. If you have previously modified the value of this setting,
please refer to Copying customized files or settings on page 146 for more information.

An improved index (IDX_FIELD_NAME) in the database table for OAuth clients

PingFederate 8.4 has modified an existing index (IDX_FIELD_NAME) in the
pingfederate_oauth_clients_ext database table as a general improvement. For information
about modifying this index in your existing table, see Reviewing database changes on page 149.

Security enhancement to the OAuth token endpoint

Starting with version 8.3, a new PingFederate installation no longer allows OAuth clients to send
access token validation requests to its token endpoint (/as/token.oauth2) by the HTTP GET
method.

For upgrades, the Upgrade Utility applies this new behavior to the new installation as well unless
the <pf_install>/pingfederate/server/default/data/config-store/oauth-token-
endpoint-binding.xml file has been modified in the older version, in which case the Upgrade
Utility preserves the modified configuration.

SSLv2Hello disabled

Starting with PingFederate 8.3, SSLv2Hello is disabled. Customers are encouraged to update
their applications to use TLSv1, TLSv1.1, or TLSv1.2 when establishing HTTPS connections with
PingFederate.

Copyright ©2024

 | Upgrading PingFederate | 134

As needed, SSLv2Hello can be re-enabled as needed. See Enabling SSLv2Hello for more
information.

License management simplification

Starting with version 8.2, PingFederate no longer maintains its license information in the
<pf_install>/pingfederate/server/default/data/.pingfederate.lic file,
which is known as the secondary license file in the previous versions of PingFederate. The
.pingfederate.lic, if any, is ignored.

We recommend using the administrative console to simplify the license management aspect of a
standalone PingFederate server or a clustered PingFederate environment.

Security enhancement for a clustered PingFederate environment

As of PingFederate 8.1, when encryption is enabled for the network traffic sent between nodes in a
clustered PingFederate environment, you must provide an authentication password for the cluster
as well; otherwise PingFederate aborts during its startup process.

For more information about the pf.cluster.encrypt and pf.cluster.auth.pwd properties,
see Deploying cluster servers on page 199.

Metadata signing

Previously, when no signing certificate was chosen on the Metadata Signing tab on the System
Protocol Metadata # Metadata Settings window, the /pf/sts_mex.ping and /pf/
federation_metadata.ping system-services endpoints provided signed WS-Trust and WS-
Federation metadata using one of the certificates configured on the Security # Certificate & Key
Management # Signing & Decryption Keys & Certificates window.

Starting with PingFederate 8.1, if no certificate is selected in the Metadata Signing menu,
PingFederate provides unsigned metadata at both aforementioned endpoints. Select a certificate in
the Metadata Signing window if signed metadata is desired.

Hostname verification for email server

For email notification using SSL or TLS, hostname verification of the certificate is available starting
with PingFederate 8.1. This option is enabled automatically when the Use SSL or Use TLS check
box is selected for a new configuration. When upgrading from a previous version of PingFederate,
if email notification had already been configured to use SSL or TLS, the Upgrade Utility preserves
the configuration without activating the hostname verification option for compatibility reasons.
Administrators should consider activating this new option to improve security.

New login template file for the HTML Form Adapter

Previously, when multiple instances of the HTML Form Adapter are chained together (for example,
in an instance of the Composite Adapter), the subsequent instance tried authenticating the
end user with the credentials from the previous login, which might fail when the HTML Form
Adapter instances were configured to use different password credential validators (PCVs).
Although this use case is rare, PingFederate 8.1 has corrected the behavior. As a result, the
login template file, <pf_install>/pingfederate/server/default/conf/template/
html.form.login.template.html, has been modified.

If you have previously customized this login template file and if you have authentication use cases
that chain multiple instances of the HTML Form Adapter, you should re-customize using the new
html.form.login.template.html file.

New connection pool library

As of PingFederate 8.0, support for BoneCP as the JDBC connection pool library has been
deprecated and replaced with Apache Commons DBCP 2, which requires JDBC 4.1 or later drivers.

Verify the database-driver JAR files, found in the <pf_install>/pingfederate/server/
default/lib directory, meet the minimum version requirement. If you are using JDBC drivers

Copyright ©2024

https://support.pingidentity.com/s/article/Enabling-SSLv2Hello

 | Upgrading PingFederate | 135

of version 4.0 (or earlier), contact your vendors for the latest drivers and replace the older JDBC
database-driver JAR files with the latest.

For more information, including re-enabling BoneCP as the JDBC connection pool library, see
Reviewing database changes on page 149.

Log4j 2 upgrade

PingFederate 8.0 has upgraded its logging framework from Log4j to Log4j 2.

If you have previously customized <pf_install>/pingfederate/server/default/conf/
log4j.xml, you will need to manually migrate your changes to the new log4j2.xml in the same
conf directory. See Reviewing log configuration on page 153 for instructions.

 Note:

was tested with vendor-specific JDBC drivers. For more information, see Database driver
information on page 114. To obtain the database driver JAR file, contact your database vendor.
Install the database driver file to the <pf_install>/pingfederate/server/default/lib
directory then restart the server.

Upgrade considerations introduced in PingFederate 7.x

Hostname verification for LDAPS

For LDAP type datastores with LDAPS enabled, hostname verification of the certificate is enabled
by default for all new datastores beginning with PingFederate 7.3. When upgrading from a previous
version of PingFederate, this option is disabled for existing datastores for compatibility reasons.
Administrators should consider activating this new option for greater security.

Changes in a database table supporting nested group membership

Outbound provisioning of groups and nested group membership requires an update in the internal
datastore. Follow the instructions in Reviewing database changes on page 149 to add or update
the group_membership table.

SSLv3 disabled

To mitigate the POODLE attack, the SSLv3 protocol is disabled by default starting in PingFederate
7.3. It can be re-enabled by modifying the connector configuration in jetty-runtime.xml and
jetty-admin.xml found in the <pf_install>/pingfederate/etc directory.

New representation for multivalued attributes in WS-Federation assertions

Starting with PingFederate 7.3, multivalued attributes in WS-Federation assertions are now
represented as multiple AttributeValue elements under a single Attribute element.
Previously, they were represented as a series of Attribute elements with the same name. The
new behavior was implemented for compatibility with ADFS 2.0. To revert to the previous behavior,
a setting is available in wstrust-global-settings.xml.

A new index (EXPIRESIDX) in the database table for OAuth persistent grants

PingFederate 7.3 added an index (EXPIRESIDX) for the expires column in the
pingfederate_access_grant database table. For information on adding this index to your
existing table, see Reviewing database changes on page 149.

A new database table for OAuth persistent grant extended attributes

Starting with PingFederate 7.2 R2, a new database table needs to be created to support OAuth's
persistent grant extended attributes. The database scripts to create this table can be found in
<pf_install>/pingfederate/server/default/conf/access-grant/sql-scripts/

Copyright ©2024

 | Upgrading PingFederate | 136

access-grant-attribute-<databaseServer>.sql. See Reviewing database changes on
page 149for more information.

LDAP filter syntax checking

Starting with PingFederate 7.2, LDAP filters only allow spaces in matched-against values.

Examples

(|(sAMAccountName=${username})(employeeID=ID for ${username})) is allowed;
spaces in the matched-against value of “ID for ${username}” are valid.

(| (sAMAccountName=${username}) (employeeID=ID for ${username})) is not
allowed because this filter contain spaces outside of matched-against values.

Invalid filters cause SSO runtime failures. Error messages logged to server.log include:

Caused by: javax.naming.NamingException: [LDAP: error code 87 -
 Expected a closing parenthesis...

Caused by: javax.naming.NamingException: [LDAP: error code 87 -
 Unexpected closing parenthesis found...

We recommend reviewing LDAP filters and removing spaces outside of matched-against values
after upgrade.

HTML Form Adapter enhancement

Starting with version 7.1 R3, PingFederate tracks login attempts in the HTML Form Adapter. When
the number of login failures reaches the Challenge Retries threshold defined in the adapter, the user
is locked out for one minute. See HTML Form Adapter on page 290 for more information.

A new index (CLIENTIDIDX) in the database table for OAuth persistent grants

PingFederate 7.1 R3 added an index (CLIENTIDIDX) for the client_id column in the
pingfederate_access_grant database table. For information on adding this index to your
existing table, see Reviewing database changes on page 149.

Requested (formerly SAML) AuthN Context authentication selector process order changed

In releases prior to 7.1 R2, when the Requested AuthN Context Authentication Selector received
a list of authentication contexts, it used the last context that it could match, rather than the first.
However, both the SAML and OpenID Connect specifications treat an authentication context list as
appearing in order of preference. To align the Requested AuthN Context Authentication Selector
with these specifications, the selection order was changed in 7.1 R2. With this release, the selector
will use the first authentication context it can match, rather than the last.

Multivalued LDAP attributes passed to outbound provisioning OGNL expressions

In releases before version 7.1, if an OGNL expression was used to populate a SaaS-partner field
in outbound provisioning, only the first value of a selected multivalued LDAP attribute was used in
the OGNL expression. As of PingFederate 7.1, this behavior was changed to use all values in the
expression.

 Note:
If this new behavior conflicts with existing deployments, it can be reverted
via the supportMultiValuesFromDirectory property located in the
<pf_install>/pingfederate/server/default/data/config-store/
com.pingidentity.provisioner.mapping.OgnlFieldMapper.xml file.

OAuth clients reconfiguration

Copyright ©2024

 | Upgrading PingFederate | 137

Neither the Upgrade Utility nor the platform-specific installers migrates OAuth clients that are
created from 6.5 through 7.0. Use any of the following interfaces to reconfigure your OAuth clients:

▪ The Clients window (Applications # OAuth # Clients) in the administrative console.
▪ The /oauth/clients administrative API endpoint.
▪ The REST-based web service for OAuth client management at the /pf-ws/rest/oauth/
clients and /pf-ws/rest/oauth/clients/id endpoints. This web service requires the
client records to be stored in a database.

Note that has been storing OAuth clients in XML files since version 7.1; these clients are migrated
to the new installation. In addition, if you have configured 6.8 (or a more recent version) to store
OAuth clients in an external database, the new installation retains that configuration as well.

Upgrade considerations introduced in PingFederate 6.x

Cluster bind address required

Starting with PingFederate 6.11, the pf.cluster.bind.address property located in
<pf_install>/pingfederate/bin/run.properties is required when running PingFederate
in a cluster. The default value is NON_LOOPBACK.

Decryption and digital signing policy changes

Potential security vulnerabilities have resulted in the following changes to PingFederate as of
version 6.11. In some cases, these might impact interoperability with partners:

▪ When acting as an SP and using the POST binding, PingFederate decrypts an assertion only
when the SAML response has been signed. An unsigned SAML response that contains an
encrypted assertion is rejected.

 Note:

Although strongly discouraged, this policy change can be reverted on a per-connection basis
via the EntityIdsToAllowAssertionDecryptionWithoutResponseSignature list
located in the <pf_install>/pingfederate/server/default/data/config-store/
org.sourceid.saml20.profiles.sp.HandleAuthnResponse.xml file.

▪ When acting as an IdP, PingFederate always signs a SAML response (even when the assertion
is also signed) if it contains an encrypted assertion.

 Note:

Although strongly discouraged, this policy change can be reverted on a per-connection basis
via the EntityIdsToOmitResponseSignatureOnSignedEncryptedAssertion list
located in the <pf_install>/pingfederate/server/default/data/config-store/
org.sourceid.saml20.profiles.idp.HandleAuthnRequest.xml file.

▪ When acting as an IdP, PingFederate decrypts an encrypted NameID in an Attribute Query only
when the request has been signed or the client has authenticated with basic or mutual TLS.

Key transport algorithm deprecated

Due to security risks associated with the RSA-v1.5 algorithm used for key transport, it is no longer
available for new connections starting with PingFederate 6.11. Existing connections in which this
algorithm is configured continue to support it. However, we recommend upgrading to use the newer
RSA-OAEP algorithm. See Selecting an encryption certificate on page 464 for SP connections
and Choosing an encryption certificate (SAML 2.0) on page 755 for IdP connections.

Copyright ©2024

 | Upgrading PingFederate | 138

OAuth persistent grants expiration

When upgrading to PingFederate 6.8 later, all persistent grants for any existing OAuth deployments
using an Oracle MySQL database will expire. To address this issue, the expires column in the
pingfederate_access_grant table should be set to null prior to the upgrade. If necessary,
contact Ping Identity support for assistance.

OAuth clients reconfiguration

Neither the Upgrade Utility nor the platform-specific installers migrates OAuth clients that are
created from 6.5 through 7.0. Use any of the following interfaces to reconfigure your OAuth clients:

▪ The Clients window (Applications # OAuth # Clients) in the administrative console.
▪ The /oauth/clients administrative API endpoint.
▪ The REST-based web service for OAuth client management at the /pf-ws/rest/oauth/
clients and /pf-ws/rest/oauth/clients/id endpoints. This web service requires the
client records to be stored in a database.

Note that has been storing OAuth clients in XML files since version 7.1; these clients are migrated
to the new installation. In addition, if you have configured 6.8 (or a more recent version) to store
OAuth clients in an external database, the new installation retains that configuration as well.

OGNL library upgraded

The OGNL library has been upgraded in version 6.4. If you use OGNL expressions in versions prior
to 6.4, we recommend retesting the expressions using the PingFederate administrative console or
runtime tests.

Updating to the latest maintenance release
For PingFederate maintenance releases, you have the option to update your installation using the
incremental update package. This in-place update method lets you replace and merge only the files that
have changed.

Before you begin

▪ Ensure your installation is running PingFederate 10.3.x, where "x" represents an older maintenance
release of 10.3.

▪ Make a backup copy of the PingFederate home directory.

About this task

You can incrementally update your PingFederate 10.3 installation to the latest 10.3 maintenance release.
For example, if you are on PingFederate 10.3.1 and the latest maintenance release is version 10.3.4, you
can use the in-place update method to update your installation to version 10.3.4.

The in-place update doesn't contain files from Ping Identity integration kits. You can upgrade an integration
kit manually by downloading the latest kit from the PingFederate Downloads page's Add-ons tab and
following the instructions provided by the kit's documentation.

 Important:

You cannot use the in-place update method to upgrade an older version of PingFederate, such as 9.3.3
or 10.0.2, to version 10.3.x. For those older versions, you must use the standard upgrade method for your
platform described in Upgrading PingFederate on page 128.

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Upgrading PingFederate | 139

 Note:

The in-place update method involves manual modification of PingFederate files. If you're not comfortable
moving and editing these files, then instead use the standard upgrade method for your platform described
in Upgrading PingFederate on page 128.

If your installation includes a cluster, perform the following procedure on each node starting with the
administrative console node.

Steps

1. Go to the PingFederate Previous Releases page on the Ping Identity website.

2. In the PingFederate 10.3.x section, download the maintenance in-place update and extract its
contents from the .zip file.

3. Stop PingFederate.

4. Copy the files in the in-place update's pingfederate directory and paste them into their
corresponding locations in your current PingFederate installation, replacing the old files.

For example, if the in-place update contains pingfederate/server/default/lib/pf-
protocolengine.jar, copy the pf-protocolengine.jar file to the same location in your
PingFederate installation: <pf_install>/pingfederate/server/default/lib.

5. Compare each file in the in-place update's merge_required directory with the version of the file in
your current PingFederate installation and manually merge the changes into the file in your current
installation.

For example, if the in-place update contains merge_required/pingfederate/server/
default/conf/language-packs/pingfederate-messages.properties, copy the changes
in the new version into the pingfederate-messages.properties file in your PingFederate
installation.

6. Start PingFederate.

Upgrading PingFederate on Windows using the installer
If you used the PingFederate installer for Windows to install the previous version of PingFederate, you can
use it to upgrade to the current version of PingFederate.

Before you begin

▪ Read the Upgrading PingFederate on page 128 topic for an overview of the upgrade process.
▪ Ensure that you are logged on to your server with appropriate privileges to install and run an

application.

About this task

Upgrade results are contained in the upgrade.log file. If the upgrade succeeds, upgrade.log is
located in <pf_install_target>\pingfederate\upgrade\log. If the upgrade fails, upgrade.log
is located in <pf_install_target>. The default location for <pf_install_target> is C:\Program
Files\Ping Identity. Administrators can change the location during the upgrade process.

 Note:

The PingFederate installer for Windows does not support custom mode. If you want to override the newer
default security settings or upgrade the OpenToken Adapter, use the PingFederate Upgrade Utility.

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate/previous-releases.html

 | Upgrading PingFederate | 140

 Important:

If you are upgrading a clustered PingFederate environment, start with the console node, and then follow
the additional steps to upgrade the engine nodes.

Steps

1. Download the PingFederate installer for Windows from the Ping Identity website.

2. Double-click the pingfederate-10.1.0.msi file to begin the upgrade.

3. Follow the instructions in the PingFederate Setup Wizard to upgrade PingFederate.

Result:

Errors are rare, but might include problems such as missing or malformed configuration files
in the source installation. If the upgrade tool reports an error, review the error messages in the
upgrade.log file.

 Note:

You can rerun the tool as many times as needed to correct any problems.

When the tool completes the upgrade, it automatically starts the new installation.

4. If you are upgrading a clustered environment, repeat from step 1 to upgrade on each engine node.

 Note:

End users might experience disruptions while you upgrade your environment.

5. Open the administrative console and verify the new installation.

6. If you are upgrading a clustered PingFederate environment:

a. Ensure all nodes are shown on the System # Server # Cluster Management window.
b. Click Replicate Configuration on the Cluster Management window.

Upgrading PingFederate on Windows using the Upgrade Utility
If you used the server distribution .zip file to install the previous version of PingFederate on Windows,
you must use the Upgrade Utility to upgrade to the current version of PingFederate.

Before you begin
Read the Upgrading PingFederate on page 128 topic for an overview of the upgrade process.

About this task

Upgrade results are contained in the upgrade.log file, which is located in
<pf_install_target>\pingfederate\upgrade\log.

 Important:

If you are upgrading a clustered environment, start with the console node, and then follow the additional
steps to upgrade the engine nodes. All servers in a cluster must use the same version of .

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Upgrading PingFederate | 141

Steps

1. Download the latest version of the PingFederate Server distribution .zip file from the Ping Identity
website.

 Note:

The distribution .zip file is identical for both Windows and Linux.

2. Extract the distribution.zip file into the target installation directory.

3. Stop PingFederate.

4. At the command prompt, change the current directory to <pf_install>\pingfederate\upgrade
\bin within the target installation and enter the following command.

upgrade <pf_install_source> [-l <newLicense>] [-c] [--release-notes-
reviewed]

where:

<pf_install_source>

The full or relative path of the base directory where the existing software (pingfederate) is
installed.

 Note:

The pingfederate subdirectory must exist by that name for the Upgrade Utility to function
correctly.

<newLicense>

The optional path and file name of the license to use for the upgraded version.

 Note:

If your current license is valid, the Upgrade Utility automatically copies it from the source
installation to the target installation, and you do not need to specify the <newLicense>
parameter.

If your license is not valid, obtain a valid license file and specify its path and file name for this
parameter.

-c

The optional parameter to run the tool in custom mode, which allows you to override newer
default security settings (if any) and to upgrade to the newest version of each installed plugin.

--release-notes-reviewed

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Upgrading PingFederate | 142

An optional parameter that indicates that you have already reviewed the release notes. This
parameter prevents prompts during the upgrade that ask if you have read the release notes and
the upgrade considerations.

Result:

The command prompt displays messages indicating upgrade progress. The process is complete when
the following message appears.

Upgrade completed with [N] errors and [N] warnings

If there are errors, scroll up the command window to see them and then correct the indicated
problems. Errors during the upgrade should be rare but might include problems such as missing
or malformed configuration files in the source installation. The messages are also logged to the
upgrade.log file in the Upgrade Utility base directory.

5. If you are upgrading a clustered environment, repeat from step 1 to upgrade on each engine node.

 Note:

End users might experience disruptions while you upgrade your environment.

6. Start the new installation.

If you are upgrading a clustered environment, start the new instance on the console node.

If you have configured single sign-on using OpenID Connect as the console authentication scheme
and set the endpoint settings back to your environment, start the new instance on the console node
and one of the engine nodes.

7. Open the administrative console and verify the new installation.

8. If you are upgrading a clustered PingFederate environment:

a. Start the new installation on each engine node, and then ensure all nodes are shown on the
System # Server # Cluster Management window.

b. Click Replicate Configuration on the Cluster Management window.

9. If PingFederate is running as a service, re-install the service.

a. Remove the existing PingFederate service (see Uninstalling PingFederate from a Windows server
on page 127).

b. Install the new PingFederate service (see Installing PingFederate service on Windows manually
on page 126).

For a clustered PingFederate environment, re-install the PingFederate service on all nodes.

10. The upgrade utility automatically merges, migrates, and copies the language packs' .properties
files into the upgraded PingFederate installation. Verify the language packs in the upgrade installation
by looking at the .properties files located in the upgraded <pf_install>\pingfederate
\server\default\conf\language-packs directory.

▪ Standard .properties files include pingfederate-email-messages.properties,
pingfederate-messages.properties, and pingfederate-sms-
messages.properties. During upgrade, these files are migrated and merged into the upgraded
PingFederate installation.

▪ Localized .properties files (for example, pingfederate-messages_fr_CA.properties),
are also migrated and merged into the upgraded PingFederate installation.

▪ If the PingOne MFA or PingOne Protect integration kit was installed on PingFederate, you must
manually migrate its .properties file after the upgrade.

▪ All other .properties files in <pf_install>\pingfederate\server\default\conf
\language-packs that do not fit the previous criteria are copied (not merged) into the upgraded
PingFederate installation.

Copyright ©2024

 | Upgrading PingFederate | 143

Upgrading PingFederate on Linux systems
On Linux servers, use the Upgrade Utility to upgrade to the current version of PingFederate.

Before you begin
Read the Upgrading PingFederate on page 128 topic for an overview of the upgrade process.

About this task

The Upgrade Utility migrates the existing versions of all PingFederate plugins by default. If preferred, you
can use the -c command line parameter to override the default behavior and install the latest versions of
each plugin.

Upgrade results are contained in the upgrade.log file, which is located in <pf_install_target>/
pingfederate/upgrade/log.

 Important:

If you are upgrading a clustered PingFederate environment, start with the console node, and then follow
the additional steps to upgrade the engine nodes.

Steps

1. Download the latest version of the PingFederate Server distribution.zip file from the Ping Identity
website.

2. Extract the distribution .zip file into the target installation directory.

3. Stop PingFederate.

4. On the command line, change the current directory to <pf_install>/upgrade/bin within the
target installation and execute the following command:

./upgrade.sh <pf_install_source> [-l <newLicense>] [-c] [--release-notes-
reviewed]

where:

<pf_install_source>

The full or relative path of the base directory where the existing software (pingfederate) is
installed.

 Note:

The pingfederate subdirectory must exist by that name for the Upgrade Utility to function
correctly.

<newLicense>

The optional path and file name of the license to use for the upgraded version.

 Note:

If your current license is valid, the Upgrade Utility automatically copies it from the source
installation to the target installation, and you do not need to specify the <newLicense>
parameter.

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Upgrading PingFederate | 144

If your license is not valid, obtain a valid license file and specify its path and file name for this
parameter.

-c

The optional parameter to run the tool in custom mode, which allows you to override newer
default security settings (if any) and to upgrade to the newest version of each installed plugin.

--release-notes-reviewed

An optional parameter that indicates that you have already reviewed the release notes. This
parameter prevents prompts during the upgrade that ask if you have read the release notes and
the upgrade considerations.

Result:

The command prompt displays messages indicating upgrade progress. The process is complete when
the following message appears.

Upgrade completed with [N] errors and [N] warnings

If there are errors, scroll up the command window to see them and then correct the indicated
problems. Errors during the upgrade should be rare but might include problems such as missing
or malformed configuration files in the source installation. The messages are also logged to the
upgrade.log file in the Upgrade Utility base directory.

5. If you are using AWS CloudHSM version 2.0.x:

a. Update the CloudHSM client and the CloudHSM Software Library for Java to version 3.2.0 and
restart the client.

b. Copy <pf_install>/pingfederate/lib-ext/pf-aws-cloud-hsm-wrapper.jar to the
JAVA_HOME/jre/lib/ext directory.

c. Copy all of the files under /opt/cloudhsm/java and /opt/cloudhsm/lib to the
JAVA_HOME/jre/lib/ext directory.

6. If you are upgrading a clustered environment, repeat from step 1 to upgrade on each engine node.

 Note:

End users might experience disruptions while you upgrade your environment.

7. Start the new installation.

If you are upgrading a clustered environment, start the new instance on the console node.

If you have configured single sign-on using OpenID Connect as the console authentication scheme
and set the endpoint settings back to your environment, start the new instance on the console node
and one of the engine nodes.

8. Open the administrative console and verify the new installation.

9. If you are upgrading a clustered PingFederate environment:

a. Start the new installation on each engine node, and then ensure all nodes are shown on the
System # Server # Cluster Management window.

b. Click Replicate Configuration on the Cluster Management window.

10. If PingFederate is running as a service, re-configure the service.

PingFederate systemd service

Edit the PingFederate systemd unit file and reconfigure the PingFederate service (see step 5 in
Installing the PingFederate service on Linux manually on page 123).

Copyright ©2024

 | Upgrading PingFederate | 145

PingFederate SysV initialization script

Edit the PingFederate SysV initialization script and reconfigure the PingFederate service (see
step 6 in Installing the PingFederate service on Linux manually on page 123).

11. The upgrade utility automatically merges, migrates, and copies the language packs' .properties
files into the upgraded PingFederate installation. Verify the language packs in the upgrade installation
by looking at the .properties files located in the upgraded <pf_install>/pingfederate/
server/default/conf/language-packs directory.

▪ Standard .properties files include pingfederate-email-messages.properties,
pingfederate-messages.properties, and pingfederate-sms-
messages.properties. During upgrade, these files are migrated and merged into the upgraded
PingFederate installation.

▪ Localized .properties files (for example, pingfederate-messages_fr_CA.properties),
are also migrated and merged into the upgraded PingFederate installation.

▪ If the PingOne MFA or PingOne Protect integration kit was installed on PingFederate, you must
manually migrate its .properties file after the upgrade.

▪ All other .properties files in <pf_install>/pingfederate/server/default/conf/
language-packs that do not fit the previous criteria are copied (not merged) into the upgraded
PingFederate installation.

Custom mode
The custom-mode feature in the Upgrade Utility (invoked with the -c option on the command line) allows
you to override several default security settings. In addition, if the installed OpenToken Adapter is out of
date, running the tool in custom mode allows you to replace the adapter with the latest version.

Security defaults

Using the security defaults should not cause significant issues for most PingFederate installations. The
more recent default security settings include:

▪ Disabling weaker cipher suites for both the SUN and LUNA Java Cryptography Extension (JCE) in
PingFederate version 6.2 and later. To see which cipher suites are commented out, choose yes (y)
when prompted on whether to use the new defaults. After the upgrade is complete, refer to one of
the following configuration files in the new installation's <pf_install>/pingfederate/server/
default/data/config-store directory:

▪ com.pingidentity.crypto.SunJCEManager.xml
▪ com.pingidentity.crypto.AWSCloudHSMJCEManager.xml
▪ com.pingidentity.crypto.LunaJCEManager.xml
▪ com.pingidentity.crypto.NcipherJCEManager.xml
▪ com.pingidentity.crypto.BCFIPSJCEManager.xml

Adapter upgrade

Upgrading the OpenToken Adapter from an earlier version will not normally require any follow-on
configuration changes.

▪ If your existing installation uses a version of the OpenToken Adapter earlier than 2.3, upgrading
requires minor configuration modifications in the PingFederate console and redeployment of the agent
configuration file.

▪ If you are upgrading from an OpenToken version earlier than 2.5.1, we recommend that you redeploy
agent configuration files, if applicable, as well as any new agent libraries contained in recent versions
of PingFederate integration kits and other plug-ins that use OpenToken.

Copyright ©2024

 | Upgrading PingFederate | 146

 Note:

Starting in PingFederate 7.2, the LDAP Java Adapter is no longer supported. This adapter was deprecated
in PingFederate 6.6 and replaced by the LDAP Username Password Credential Validator (PCV), which can
be used with the HTML Form Adapter or HTTP Basic Adapter.

Reviewing post-upgrade tasks
Review the following topics for post-upgrade tasks:

▪ Reviewing administrative users on page 146
▪ Copying customized files or settings on page 146
▪ Reviewing database changes on page 149
▪ Reviewing log configuration on page 153
▪ Migrating other components on page 154
▪ Resetting files and variable for HSM on page 156
▪ Verifying the new installation on page 156

It is also important to perform runtime tests to ensure the new PingFederate installation fulfills your existing
use cases.

Reviewing administrative users
As of PingFederate 10.1, the use of expressions is enabled by default. Additionally, a new administrative
role, Expression Admin, has been added.

When upgrading to the PingFederate 10.1 or later from a previous version, administrative users who were
granted the Admin role in the earlier installation are granted the Expression Admin role automatically. You
can achieve the same result by using the /bulk/import administrative API endpoint to bulk-import a
configuration that was bulk-exported from PingFederate 10.0.

If preferred, administrators can disable the use of expressions by setting evaluateExpressions to false
as described in Enabling and disabling expressions on page 213. Also, go to the System # Server #
Administrative Accounts window and remove the Expression Admin role from all Admin users. Doing
this will prevent Admin users from entering expressions into PingFederate if the evaluateExpressions
element is set to true at a later time. For more information, see Administrative accounts on page 864.

Copying customized files or settings
After you upgrade PingFederate, you must copy files that were customized in the previous release to the
current installation.

User-facing windows
If you modified any Velocity templates for user-facing windows, to preserve the customized user
experience, you must migrate your custom changes to the new installation manually for each server node.

The templates are located in the <pf_install>/pingfederate/server/default/conf/template
directory.

 CAUTION:

Supporting CSS and image file names changed as of PingFederate 7.0. For each modified HTML template
copied, add .1 to the base name for each CSS file referenced in the header, such as <link rel="..."
href="assets/css/window.1.css"/>.

Copyright ©2024

 | Upgrading PingFederate | 147

Add .1 to any references in the copied templates to the installed image files contained in the assets/
images directory, such as .

Email notifications
If you modified the email notification templates prior to PingFederate 9.2, manually migrate your custom
changes to the new HTML-based templates for each server node.

The plain text templates (message-template-*.txt) are located in <pf_install>/pingfederate/
server/default/conf in the source installation. The new HTML-based templates are located in
<pf_install>/pingfederate/server/default/conf/template/mail-notifications with
the same file naming convention but an .html file extension.

Jetty or JBoss configuration
If you have modified any Jetty or JBoss settings that need to be carried forward, you must make the
corresponding changes manually in the new PingFederate deployment.

If you are upgrading from PingFederate 6.9 or later, you can copy over the relevant files from the Jetty
configuration directory: <pf_install>/pingfederate/etc.

If you are upgrading from PingFederate 6.0 through 6.8, first identify any changes made to the JBoss
configuration, then make corresponding changes for the newer Jetty configuration.

For example, if you modified the <pf_install>/pingfederate/server/default/deploy/
jetty.sar/META-INF/jboss-service.xml file prior to version 6.9, identify the changes and make
the same modifications at corresponding points in either the jetty-admin.xml or jetty-runtime.xml
files located in the new Jetty configuration directory, <pf_install>/pingfederate/etc.

size-limits.conf
Prior to PingFederate 8.4.2, the InterReqStateMgmtMapImpl.expiry.mins setting in the
<pf_install>/pingfederate/server/default/conf/size-limits.conf file defines the
lifetime of the Adapter session-state data and Inter-request state information data sets.

Adapter session-state data

The state information, along with the associated attributes and any of their values, maintained or
used by the adapters.

Inter-request state information

The state information between the redirects to complete a request.

PingFederate 8.4.2 and later splits the InterReqStateMgmtMapImpl.expiry.mins settings into two
settings, one setting for each data type.

New settings Data type Default value in
minutes

InterReqStateMgmtMapImpl.expiry.mins.state.mapInter-request state
information

30

InterReqStateMgmtMapImpl.expiry.mins.attr.mapAdapter session-state
data

1440 (24 hours)

The new settings reduce the memory footprint of PingFederate by purging the inter-request state
information after 30 minutes and retaining adapter session-state data during the day.

If you previously modified the value of the InterReqStateMgmtMapImpl.expiry.mins setting,
when migrating your change to the latest version, adjust the value of the new settings based on your
requirements.

Copyright ©2024

 | Upgrading PingFederate | 148

Cross-origin resource sharing (CORS) support for OAuth endpoints
If you previously edited the <pf_install>/pingfederate/etc/webdefault.xml file to enable
CORS support for OAuth endpoints, instead of updating the webdefault.xml file, define the allowed
origins manually using the PingFederate administrative console after the upgrade.

For more information, see Configuring authorization server settings on page 488.

Configuration files in the config-store directory
If you added or replaced setting values in configuration files stored in the <pf_install>/
pingfederate/server/default/data/config-store directory, the PingFederate upgrade tools
copy these setting values to the new installation.

 Note:

The upgrade tools do not copy comments from the existing installation to the new installation.

If you removed a setting or a block of settings from a configuration file in the config-store directory, the
upgrade tool preserves your changes by removing the setting or block of settings from the new installation
and records the removals in its log file. To re-add a setting or block of settings to the new installation,
compare the configuration file found in the new installation to the file found in the product distribution .zip
file and make your changes.

Other configuration files
As of PingFederate 10.0, the upgrade process copies many files automatically. However, there are
still some files that you must copy manually, which you can find in <pf_install>/pingfederate/
server/default/conf.

The following files are copied automatically:

▪ Properties files with the .conf extension
▪ The log4j2.db.properties file
▪ The jmx-remote-config.xml file
▪ Non-default files located in the template directory

If you modified the default templates located in <pf_install>/pingfederate/server/default/
conf/template, you must customize these templates in the new PingFederate installation.

If you modified versions of tcp.xml, udp.xml, and log4j2.xml, they are copied over intact. The default
files are saved in the target directory with a different extension. To take advantage of the improvements in
the default versions of these files, merge your changes into the current default files and then rename them
appropriately.

 Note:

If you are upgrading from 8.0 or earlier, PingFederate might not start until you have merged your changes
into the current default files because of JGroups errors.

Other files, such as jmx.remote.access, are not copied to the new installation automatically. To
preserve any custom settings, create a backup of the current configuration files and merge your changes to
the current files.

If you previously customized Java virtual machine (JVM) options in the run.bat or run.sh files, instead
of updating these files, manually merge your JVM options to the <pf_install>/pingfederate/
bin/jvm-memory.options file. For more information, see Fine-tuning JVM options on page 1028 and
memoryoptions and upgrade on page 1025.

Copyright ©2024

 | Upgrading PingFederate | 149

Reviewing database changes
Occasionally, PingFederate introduces database-related changes, such as adding a new table, modifying
an existing table, or updating connection pool library, for the purpose of product improvement.

Neither the Upgrade Utility nor the PingFederate installer for Windows migrates data maintained in the
internal HSQLDB database or any external database. For instance, if outbound provisioning is enabled in
the new PingFederate instance using the internal database, it is re-initialized from the provisioning source.

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

If your PingFederate environment connects to one or more database servers, review the following topics
and make changes accordingly.

▪ Provisioning datastore reset on page 149
▪ Security enhancement in JDBC datastore queries on page 150
▪ New connection pool library on page 150
▪ An improved index in the database table for OAuth clients on page 151
▪ Changes in the database tables for log messages on page 151
▪ Changes in the database table for account linking on page 151
▪ Changes in the database tables for OAuth clients on page 152
▪ Changes in the database tables for OAuth persistent grants and extended attributes on page 152
▪ A new database table for OAuth persistent grant extended attributes on page 152
▪ New indexes in the database table for OAuth persistent grants on page 152
▪ Changes in a database table supporting nested group membership on page 152

Provisioning datastore reset

About this task

Upgrading to PingFederate 9.0 or 9.0.1 when using its outbound provisioning capability can result in user
records being disabled at SaaS applications. The issue has since been resolved in version 9.0.2.

If you are upgrading from version 8.4.4 (or an earlier version) or 9.0.2 to version 10.1, the upgrade process
automatically resolves this issue. No further action is required.

If you are upgrading from version 9.0 or 9.0.1 to version 10.1, use the following provmgr commands to
reset the provisioning datastore on the upgraded installation:

The provmgr command-line tool, used in the following steps, is located in the <pf_install>/
pingfederate/bin directory: provmgr.bat for Windows and provmgr.sh for Linux. For more
information about the provmgr command-line tool, see Outbound provisioning CLI on page 817.

Steps

1. Run the following command to obtain a list of provisioning channel IDs.

provmgr --show-channels

Copyright ©2024

 | Upgrading PingFederate | 150

2. Reset the provisioning datastore for a given channel by its ID.

provmgr -c <channel_id> --reset-all

 Note:

If you have multiple provisioning channels, run the command for each channel. The order of the
parameters does not matter.

Security enhancement in JDBC datastore queries
A security enhancement has been made in PingFederate 9.0 to safeguard JDBC datastore queries against
back-end SQL injection attacks. This protection is enabled for all new installations.

About this task

For upgrades, you can enable this protection by modifying the <pf_install>/pingfederate/
server/default/data/config-store/org.sourceid.common.SqlFilterManager.xml file.

To enable this security enhancement:

Steps

1. Edit the org.sourceid.common.SqlFilterManager.xml file.

2. Set the <item name="enableSqlFilters"/> element value to true; for example:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://www.sourceid.org/2004/05/config">
 <item name="enableSqlFilters">true</item>
</config>

3. Save the file.

4. Restart PingFederate.

If you have a clustered PingFederate environment:

a. Perform the previous steps on the console node.
b. Sign on to the PingFederate administrative console.
c. Go to the System # Server # Cluster Management window.
d. Click Replicate Configuration to push this change to all engine nodes.

5. Verify your use cases to make sure your search filters return the expected results.

New connection pool library
As of PingFederate 8.0, support for BoneCP as the JDBC connection pool library has been deprecated and
replaced with Apache Commons DBCP 2, which requires JDBC 4.1 (or more recent) drivers.

About this task

Verify that the database-driver .jar files, located in the <pf_install>/pingfederate/server/
default/lib directory, meet the minimum version requirement. If you are using JDBC drivers of version
4.0 (or earlier), contact your vendors for the latest drivers and replace the older JDBC database-driver
.jar files with the latest.

 Important:

Support for BoneCP as the JDBC connection pool library has been deprecated and will be removed in a
future release.

Copyright ©2024

 | Upgrading PingFederate | 151

 Note:

was tested with vendor-specific JDBC drivers. For more information, see Database driver information on
page 114. To obtain the database driver JAR file, contact your database vendor. Install the database
driver file to the <pf_install>/pingfederate/server/default/lib directory then restart the
server.

To upgrade the older JDBC drivers at a later time, use the following steps to revert the JDBC connection
pool library to BoneCP.

Steps

1. Edit the <pf_install>/pingfederate/server/default/data/config-store/
com.pingidentity.jdbc.DataSourceDeployerFactory.xml file.

2. Replace dbcp with bonecp.

3. Save the file.

4. Restart PingFederate.

If you have a clustered PingFederate environment:

a. Perform the previous steps on the console node.
b. Sign on to the PingFederate administrative console.
c. Go to the System # Server # Cluster Management window.
d. Click Replicate Configuration to push this change to all engine nodes.

An improved index in the database table for OAuth clients
PingFederate 8.4 added the value column to an existing index (IDX_FIELD_NAME) in the
pingfederate_oauth_clients_ext table as a general improvement.

This information is applicable only to customers who configured PingFederate to store OAuth clients on a
database server.

You must modify the index in your existing pingfederate_oauth_clients_ext table.

While there is no alter-table script provided, you can derive the setup from the new table-setup
scripts, oauth-client-management-<databaseServer>.sql, found in the <pf_install>/
pingfederate/server/default/conf/oauth-client-management/sql-scripts directory.

Changes in the database tables for log messages
For performance reasons, PingFederate 8.0 started using the NVARCHAR data type instead of the VARCHAR
data type.

This information is applicable only to customers who have configured Log4j or Log4j 2 to write log
messages to database tables on Microsoft SQL Server.

The table-setup scripts (targeted for Microsoft SQL Server) in the <pf_install>/pingfederate/
server/default/conf/log4j/sql-scripts directory have been updated. If you are upgrading from
PingFederate 7.3 or an earlier version, consider updating the data type in the applicable tables accordingly
for performance reasons.

Changes in the database table for account linking
For columns in the pingfederate_account_link table using the VARCHAR data type, PingFederate 7.3
updated the data type to NVARCHAR for performance reasons.

This is information is applicable only to customers who have created a database table for account linking
on Microsoft SQL Server.

The table-setup script, <pf_install>/pingfederate/server/default/conf/account-
linking/sql-scripts/account-linking-sqlserver.sql, has been updated. If you are
upgrading from PingFederate 7.2 R2 or an earlier version, consider updating the data type in the

Copyright ©2024

 | Upgrading PingFederate | 152

pingfederate_account_link table accordingly for performance reasons. Consult with your database
administrator, as needed.

Changes in the database tables for OAuth clients
For columns in the pingfederate_oauth_clients and pingfederate_oauth_clients_ext tables using the
VARCHAR data type, PingFederate 7.3 updated the data type to NVARCHAR for performance reasons.

This information is applicable only to customers who have deployed Microsoft SQL Server to store their
OAuth clients.

The table-setup script, <pf_install>/pingfederate/server/default/conf/oauth-client-
management/sql-scripts/oauth-client-management-sqlserver, has been updated. If you are
upgrading from PingFederate 7.2 R2 or an earlier version with OAuth use cases, consider updating the
data type in both tables accordingly for performance reasons. Consult with your database administrator, as
needed.

Changes in the database tables for OAuth persistent grants and extended attributes
For columns in the pingfederate_access_grant and pingfederate_access_grant_attr tables using the
VARCHAR data type, PingFederate 7.3 updated the data type to NVARCHAR for performance reasons.

This information is applicable only to customers who have deployed Microsoft SQL Server to host their
OAuth grant datastore.

The table-setup scripts (targeted for Microsoft SQL Server) in the <pf_install>/pingfederate/
server/default/conf/access-grant/sql-scripts directory have been updated. If you are
upgrading from PingFederate 7.2 R2 or an earlier version with OAuth use cases, consider updating the
data type in both tables accordingly to avoid potential issues caused by incompatible data types between
these two tables. Consult with your database administrator, as needed.

A new database table for OAuth persistent grant extended attributes
PingFederate 7.2 R2 introduced the capability to map attributes from initial authentication context to an
access token attribute contract, which requires an update in the OAuth grant datastore.

If you are upgrading from PingFederate 7.2.1 or an earlier version with OAuth use cases, run the table-
setup script, <pf_install>/pingfederate/server/default/conf/access-grant/sql-
scripts/access-grant-attribute-<database>.sql, for your database server.

New indexes in the database table for OAuth persistent grants
Since PingFederate 7.1 R3, two indexes have been added to the pingfederate_access_grant table.

PingFederate version Column Index

7.3 expires EXPIRESIDX

7.1 R3 client_id CLIENTIDIDX

If you are upgrading from PingFederate 6.5 through 7.1.4, you must add both indexes to your existing
pingfederate_access_grant table.

If you are upgrading from PingFederate 7.1 R3, 7.2.x, or 7.2 R2, you must add the EXPIRESIDX index for
the expires column.

While there is no alter-table script provided, you can derive the setup from the new table-setup
scripts,<pf_install>/pingfederate/server/default/conf/access-grant/sql-scripts/
access-grant-<databaseServer>.sql.

Changes in a database table supporting nested group membership
Outbound provisioning of groups and nested group membership requires an update in the internal
datastore.

If you are upgrading from PingFederate 8.0.x, no action is required.

Copyright ©2024

 | Upgrading PingFederate | 153

If you are upgrading from PingFederate 7.1.x through 7.3, consider running the alter-table script,
<pf_install>/pingfederate/server/default/conf/provisioner/sql-scripts/updates/
add-subgroup-membership-<database>.sql, for your database server to update the existing
group_membership table.

If you are upgrading from PingFederate 7.0.1 or an earlier version, consider using the table-
setup script, <pf_install>/pingfederate/server/default/conf/provisioner/sql-
scripts/provisioner-<database>.sql, for your database server as a reference to add the new
group_membership table to your existing internal datastore.

Alternatively, you can create a new database using the table-setup script and let the outbound provisioner
repopulate the new internal datastore on its next run, regardless of the PingFederate version you are
running.

 CAUTION:

The table-setup script removes the existing (outbound provisioning) tables. To keep a copy of the current
data, use the tools available from your database vendor to make a backup before running the table-setup
script.

Reviewing log configuration
Starting with version 8.0, PingFederate uses Log4j2 to write log messages. This upgrade improves
performance and allows real-time log level adjustments. If you have not modified the Log4j configuration
file (log4j.xml) in an earlier version, PingFederate 8.0 starts using Log4j2 after the upgrade process.

If the configuration file for Log4j 2 (or Log4j) has been modified in the source installation, refer to one of the
following sections for upgrade instructions.

Upgrading from PingFederate 8.x, 9.x, or 10.x
If the Upgrade Utility or the PingFederate installer for Windows determines that the Log4j2 configuration file
(<pf_install>/pingfederate/server/default/conf/log4j2.xml) has changed since it was
originally installed, new features are not activated.

About this task

The upgrade tools do not support automatic merging of customizations made to the existing logging
configuration. Instead, these upgrade tools copy the modified log4j2.xml file to the new installation
intact and rename the configuration file from the product.zip file using the new PingFederate version
number. Both configuration files are located in the same conf directory.

To activate new features:

Steps

1. Review the new features by comparing the renamed Log4j2 configuration file against log4j2.xml.

2. Modify log4j2.xml to suit your needs.

3. If you have a clustered PingFederate environment, repeat step 2 for all applicable PingFederate nodes
in the cluster.

Upgrading from PingFederate 6.x or 7.x
PingFederate 6.x and 7.x use Log4j to write log messages.

About this task

If the Upgrade Utility or the PingFederate installer for Windows determines that the Log4j configuration file
(<pf_install>/pingfederate/server/default/conf/log4j.xml) has changed since it was

Copyright ©2024

 | Upgrading PingFederate | 154

originally installed, these upgrade tools copy the modified log4j.xml to the new installation with a new
name and installs the new log4j2.xml from the product.zip file.

The new name for the previously customized log4j.xml is log4j-old-<SourceVersion>.xml,
where <SourceVersion> is the version number of the source PingFederate installation.

Both configuration files are located in the conf directory.

To migrate custom changes from Log4j to Log4j2:

Steps

1. Review custom changes by comparing log4j-old-<SourceVersion>.xml the pf-upgrade-
<NewVersion>/reference-files/<SourceVersion>/server/default/conf/log4j.xml
file from the upgrade tool.

 Important:

The <SourceVersion> values must match.

2. Modify the log4j2.xml file to suit your needs.

 Tip:

The configuration syntax between Log4j and Log4j2 varies. For more information, see the Apache
Log4j 2 documentation.

3. If you are writing log messages to a database server, enter the database information into
log4j2.db.properties in the same conf directory.

4. If you have a clustered PingFederate environment, repeat steps 2 and 3 for all applicable
PingFederate nodes in the cluster.

Migrating other components
Some custom and integrated components might require additional steps after upgrading PingFederate.

Updating the custom authentication selector
Through the use of the PingFederate SDK, you can create a custom authentication selector by
implementing the AuthenticationSelector interface.

Most implementations return AuthenticationSelectorContext.ResultType.CONTEXT as the
result type, which requires no further action after an upgrade.

If your implementation returns AuthenticationSelectorContext.ResultType.ADAPTER_ID
(an IdP adapter instance ID) or AuthenticationSelectorContext.ResultType.IDP_CONN_ID
(the connection ID of an IdP connection), you must update the descriptor instance of your custom
authentication selector to call the setSelectAuthnSourceResultType method with an input of true.
For each authentication policy path that ends with an instance of such custom authentication selector, you
must ensure that its action is set to Done.

For more information, refer to the Javadoc for the AuthenticationSelector interface and the
AuthenticationSelectorDescriptor class.

 Tip:

The Javadoc for is located in the <pf_install>/pingfederate/sdk/doc directory.

Copyright ©2024

https://logging.apache.org/log4j/2.x/manual/index.html

 | Upgrading PingFederate | 155

Migrating to the integrated LDAP Username PCV
As of PingFederate 7.3, the integrated LDAP Username Password Credential Validator (PCV) can return
additional attribute values upon successful validation.

About this task

If you have previously deployed the LDAPExtendedAttributesPCV-<version>.jar file from the
PingID integration kit and created an instance of the LDAP PCV with Extended Attributes, migrate to the
integrated LDAP Username PCV.

Steps

1. Create an instance of the integrated LDAP Username PCV.

a. On the System # Data & Credential Stores # Password Credential Validators window, click
Create New Instance.

b. On the Type tab, enter the required information and select LDAP Username Password
Credential Validator from the list.

c. On the Instance Configuration tab, select an LDAP datastore from the list, enter a search base
and a search filter, and select the scope of the search.

 Tip:

You can reuse the information from the existing LDAP PCV with Extended Attributes instance.

d. On the Extended Contract tab, enter memberOf under Extend the Contract and click Add.
e. On the Summary tab, review the setup and click Done.
f. On the Manage Credential Validator Instances window, click Save.

2. In the configuration where the LDAP PCV with Extended Attributes instance is used, replace it with the
newly created LDAP Username Password Credential Validator instance.

Example:

For example, if you have created an instance of the PingID PCV (with integrated RADIUS server)
instance and have selected an instance of the LDAP PCV with Extended Attributes as one of
the delegate PCVs, remove the selection and add the newly created LDAP Username Password
Credential Validator instance to the list.

3. After replacing the LDAP PCV with Extended Attributes instance, delete it from the Password
Credential Validators window.

4. Remove the <pf_install>/pingfederate/server/default/deploy/
LDAPExtendedAttributesPCV-<version>.jar file on all PingFederate servers.

5. Restart PingFederate on all PingFederate servers.

Migrating to the integrated Username Token Processor

About this task

As of PingFederate 7.2, the Username Token Translator has been deprecated and replaced with an
integrated Username Token Processor. While the integrated Username Token Processor and the
deprecated Username Token Translator may be simultaneously deployed, it is recommended to migrate to
the new token processor.

Steps

1. Go to the Identity Provider # Token Processors screen.

Copyright ©2024

 | Getting Started with PingFederate Server | 156

2. Click Create New Instance to create an instance of the integrated Username Token Processor.

 Important:

In the Type screen, select Username Token Processor from the list.

 Tip:

If you have multiple WS-Trust STS SP connections, you may reuse the same Username Token
Processor instance or create additional instances of the token processors as needed.

3. Map the new token processor instance to the applicable WS-Trust STS SP connection on the IdP
Token Processor Mapping screen.

Repeat this step if you have multiple WS-Trust STS SP connections.

4. Test your WS-Trust STS SP connections using the instance of the integrated Username Token
Processor.

5. Remove the token processor instance of the deprecated Username Token Translator from all WS-
Trust STS SP connections in the IdP Token Processor Mapping screen.

6. If you have set up token translator mappings, create new entries to replace those using instances of
the deprecated Username Token Translator, test the new mapping entries, and delete the entries that
use instances of the deprecated Username Token Translator.

7. Delete all token processor instances of the deprecated Username Token Translator in the Identity
Provider # Token Processors screen.

8. Remove the pf-username-token-translator-<version>.jar file from the <pf_install>/
pingfederate/server/default/deploy directory on all PingFederate servers.

9. Restart PingFederate on all PingFederate servers.

Resetting files and variable for HSM

If your PingFederate installation is configured in a clustered environment with Entrust nShield Connect, you
must copy the <pf_install>server/default/data/ncipher-kmdata-local directory to the new
installation manually and update the environmental variable NFAST_KMLOCAL to point to the new location.

Verifying the new installation
Integration kits and custom solutions might introduce third-party dependencies that could trigger runtime
errors. We recommend that you perform runtime tests, verifying that the previously deployed use cases,
including any OGNL expressions, are functional in the new installation.

Getting Started with PingFederate Server

This guide provides information about configuring PingFederate to deploy a secure Internet-identity
platform, including single sign-on (SSO), based on the latest security and business standards.

Start and stop PingFederate
Depending on the application mode and the operating system, the steps to start, stop, or restart
PingFederate vary.

When you install or upgrade PingFederate using its platform-specific installer, PingFederate configures to
run as a service. You can stop and disable the service and run PingFederate as a console application.

Copyright ©2024

 | Getting Started with PingFederate Server | 157

If you install or upgrade PingFederate manually by using the PingFederate product distribution file or
the Upgrade Utility in command line, you can run PingFederate as a console application or install the
PingFederate service manually and run it as a service.

Starting and stopping PingFederate on Windows

Steps

▪ Follow the relevant steps to start PingFederate on Windows.

Application mode Steps

Console application 1. Open a command prompt.
2. Go to <pf_install>/pingfederate/

bin.
3. Run run.bat.
4. Keep the command prompt open.

Windows service 1. Go to Control Panel # System and
Security # Administrative Tools #
Services.

2. Right-click on the PingFederate service and
click Start.

▪ Follow the relevant steps to stop PingFederate on Windows.

Application mode Steps

Console application 1. Locate the command prompt running
PingFederate.

2. Press CTRL+C to terminate PingFederate.

Windows service 1. Go to Control Panel # Administrative
Tools # Services.

2. Right-click on the PingFederate service and
click Stop.

▪ Follow the relevant steps to restart PingFederate on Windows.

Application mode Steps

Console application 1. Locate the command prompt running
PingFederate.

2. Press CTRL+C to terminate PingFederate.
3. When PingFederate stops, run run.bat.
4. Keep the command prompt open.

Windows service 1. Go to Control Panel # Administrative
Tools # Services.

2. Right-click on the PingFederate service and
select Restart.

Copyright ©2024

 | Getting Started with PingFederate Server | 158

Starting and stopping PingFederate on Linux

Steps

▪ Follow the relevant steps to start PingFederate on Linux.

Application mode Steps

Console application 1. Open a terminal window.
2. Go to <pf_install>/pingfederate/

bin.
3. Run run.sh.
4. Keep the terminal window open.

Service 1. Open a terminal window.
2. Enter the system-dependent service

command to start PingFederate.

▪ Follow the relevant steps to stop PingFederate on Linux.

Application mode Steps

Console application 1. Locate the terminal window running
PingFederate.

2. Press CTRL+C to terminate PingFederate.

Service 1. Open a terminal window.
2. Enter the system-dependent service

command to stop PingFederate.

▪ Follow the relevant steps to restart PingFederate on Linux.

Application mode Steps

Console application 1. Locate the terminal window that is running
PingFederate.

2. Press CTRL+C to terminate PingFederate.
3. When PingFederate stops, run run.sh.
4. Keep the terminal window open.

Service 1. Open a terminal window.
2. Enter the system-dependent service

command to restart PingFederate.

Opening the PingFederate administrative console
The PingFederate administrative console provides a wizard-like interface in which you configure your
federation use cases.

About this task

To open the administrative console:

Steps

1. Start PingFederate. See Start and stop PingFederate on page 156.

In a clustered PingFederate environment, start PingFederate on the console node.

Copyright ©2024

 | Getting Started with PingFederate Server | 159

2. Start a web browser.

3. Go to https://<pf_host>:9999/.

 Note:

For PingFederate 10.1 and earlier, the administrative console is accessed at https://<pf_host>:9999/
pingfederate/app.

<pf_host> is the network address of your PingFederate server. It can be an IP address, a host name,
or a fully qualified domain name. It must be reachable from your computer.

9999 is the default value of the pf.admin.https.port property in the run.properties file.

Set up PingFederate
The first time you access the PingFederate administrative console and after you have accepted the
subscription agreement, you see two choices on how to proceed:

▪ Yes, Connect to PingOne for Enterprise
▪ No, Set Up Without PingOne for Enterprise

To continue setting up PingFederate, select No, Set Up Without PingOne for Enterprise. Click Next.

 Important:

Selecting Yes, Connect to PingOne for Enterprise takes you to the setup for PingFederate Bridge.
PingFederate Bridge is a light-weight version of PingFederate that is meant for use primarily by new
customers who want to quickly and easily configure user authentication from an on-premise directory to
PingOne for Enterprise in the cloud. For information about setting up and using PingFederate Bridge, see
the associated documentation starting with Introduction to PingFederate Bridge.

Importing your license
In the PingFederate setup wizard, on the License tab, import your PingFederate license.

Before you begin

Make sure you have a PingFederate license or request a license key at the Ping Identity licensing website
or contact sales@pingidentity.com.

About this task

If a PingFederate license is pre-installed in your folder, the License Summary displays the relevant
license information.

Steps

1. To locate and import your PingFederate license file, click Choose File.

2. Review your License Summary. Click Next.

You can replace the current license with another license file later, see Installing a replacement license
key.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingfederatebridge-101/page/vyi1567013599057.html

 | Getting Started with PingFederate Server | 160

Entering basic information
On the Basic Information tab, enter your federation information.

Steps

1. In the Base URL field, verify your base URL. Update as needed.

The domain portion of the base URL should match the domain name of your organization because it is
part of the address where your applications, users, and partners communicate with your PingFederate
environment.

 Note:

You can add multiple virtual host names at a later time. For more information, see Virtual host names
on page 876.

2. In the Entity ID field, enter your Entity ID if prompted. Click Next.

 Note:

This is the unique identifier of your organization. It is how your partners identify you when
communicating with you based on SAML 2.0 specifications.

Configuring identity provider settings
If you have selected the Identity Provider role on the Enable Roles tab, the Identity Provider
Configuration tab becomes available.

About this task

On the Identity Provider Configuration tab, connect PingFederate to a directory server.

 Note:

If the directory is Microsoft Active Directory, you can enable Kerberos authentication for Windows users.

Steps

1. Click Begin and then follow the instructions to complete the configuration.

Result: The administrative console returns you to the Identity Provider Configuration tab.

2. Click Next.

Connecting to a directory
On the Connection tab, connect PingFederate to a directory server.

Steps

From the Directory Type list, select a directory type and provide the required information. Click Next.

For information about each field, see the following table.

Field Description

Directory Type Select the directory server type from the list.

For a list of supported directory servers, see System requirements on page
109.

Copyright ©2024

 | Getting Started with PingFederate Server | 161

Field Description

Data Store Name Enter the data store name.

Hostname Enter directory server location.

It can be the IP address, the host name, or the fully-qualified domain name of
the directory server. The entry can include a port number.

Service Account DN Enter the distinguished name (DN) of the service account that PingFederate
can use to communicate with the directory server.

Password Enter the service account password.

Search Base Enter the DN of the location in the directory where PingFederate begins its
data store queries.

Search Filter Enter the LDAP query to locate a user record for attribute lookup and
potentially credential validation.

Depending on the selected directory type, the default value is either
sAMAccountName=${username} or uid=${username}.

If you require a more advanced search filter, ensure the value is a valid LDAP
filter. For more information, consult your directory administrators.

Result:

When you click Next, PingFederate tries to establish a secure LDAPS connection to the directory server.

If the directory server does not support LDAPS, the Unsecure Connection window appears. To continue
without a secure connection, click Next. Alternatively, you can go back to the Connection tab and enter a
different directory server.

If PingFederate does not trust the certificate from the directory server, the Certificate Error window
appears. Import the directory server certificate and then click Next. Alternatively, you can go back to the
Connection tab and enter a different directory server.

Configuring Kerberos authentication
If you have chosen to connect PingFederate to Microsoft Active Directory, the Kerberos Authentication
tab becomes available.

About this task

You can enable Kerberos authentication for Windows users on the Kerberos Authentication tab.

 Important:

Prior to enabling Kerberos authentication, you must make several Active Directory configuration
changes to add the domain to PingFederate. For more information, see Configuring the Active Directory
environment on page 937.

Steps

1. Select the Configure Kerberos Authentication check box and provide the required information.

For information about each field, refer to the following table.

Field Description

Realm Name Enter the fully qualified domain name.

Copyright ©2024

 | Getting Started with PingFederate Server | 162

Field Description

Realm Username Enter the service account that PingFederate can use to communicate with
Active Directory for the purpose of Kerberos authentication.

Realm Password Enter the service account password.

Internal IP Ranges Enter one or more network ranges where PingFederate can try
authenticating with the Kerberos protocol when handling requests
originating from such IP addresses.

Typically, these are internal network ranges with access to one or more key
distribution centers (KDCs) in your domain.

To remove an entry, select it from the list and then click Delete.

KDC Hostnames

(Optional)

Enter the host name or the IP address of the applicable KDC.

This field is optional. Multiple hosts are allowed. If left unspecified,
PingFederate uses a DNS query to find a list of KDCs.

To remove an entry, select it from the list and then click Delete.

2. Optional: To verify your configuration, click Test.

 Note:

When PingFederate returns multiple Key Distribution Centers (KDCs) as a result of a DNS query or
as part of the configuration, the test stops when they succeed. As a result, PingFederate does not
necessarily verify all KDCs.

3. Click Next.

Next steps

Kerberos authentication also requires browser-specific configuration. For more information, see
Configuring end-user browsers on page 323.

Reviewing your directory configuration
On the Summary tab, review your directory configuration.

Steps

Perform the following actions as needed.

Action How to accomplish it

Amend your configuration Click the corresponding tab and follow the
configuration workflow

Keep your changes Click Done and continue with the configuration

Discard your changes Click Cancel

Creating an administrator account
On the Administrator Account tab, create an administrative account.

Steps

1. Replace the default value in the Username field with a username of your choice.

The default value is Administrator.

Copyright ©2024

 | Getting Started with PingFederate Server | 163

2. Enter a password in the Password and Confirm Password fields, and then click Next.

Reviewing your configuration
On the Confirmation tab, review your configuration.

Steps

Perform one of the following actions.
Choose from:

▪ To amend your configuration, click the corresponding tab, and then follow the configuration wizard.
▪ To keep your configuration, click Next, and then click Done.
▪ To discard your changes, close your browser and restart PingFederate.

PingFederate administrative console
The PingFederate administrative console provides a wizard-like interface in which you configure your
federation use cases.

The menu items depend on the administrator's permissions. For more information, see Administrative
accounts on page 864.

Navigation tabs and menus
PingFederate features navigation tabs and menus. When you select a tab at the top of the window, the
relevant menus appear on the left menu pane. When you select a menu, the menu items appear. The
names of some menu items and windows have changed so they match.

Each navigation tab provides access to multiple menus on the left menu pane

Authentication tab
menus

Applications tab
menus

Security tab menus System tab menus

▪ Integration
▪ Policies
▪ OAuth
▪ Token Exchange

▪ Integration
▪ OAuth
▪ Token Exchange

▪ Certificate & Key
Management

▪ System Integration

▪ Data & Credential
Stores

▪ Server
▪ OAuth Settings
▪ External Systems
▪ Monitoring &

Notifications
▪ Protocol Metadata

Navigation tabs, menus, and menu items in alphabetical order

Tab Menu Menu item and window name

Adapter-to-Adapter Mappings

Policy Contract Adapter Mappings

SP Adapters

SP Connections

SP Default URLs

Applications Integration

Target URL Mapping

Copyright ©2024

 | Getting Started with PingFederate Server | 164

Tab Menu Menu item and window name

Access Token Management

Access Token Mappings

CIBA Request Policies

Clients

OAuth

OpenID Connect Policy Management

Generator Groups

Processor Policies

Token Generator Mappings

Token Generators

Token Exchange

Token Translator Mappings

Authentication API Applications

IdP Adapters

IdP Connections

Integration

IdP Default URL

CIBA Authenticators

IdP Adapter Grant Mapping

Policy Contract Grant Mapping

OAuth

Resource Owner Credentials Grant Mapping

Fragments

Local Identity Profiles

Policies

Policy Contracts

Selectors

Policies

Sessions

STS Request Parameters

Authentication

Token Exchange

Token Processors

Certificate Revocation Checking

OAuth & OpenID Connect Keys

Partner Metadata URLs

Signing & Decryption Keys & Certificates

SSL Client Keys & Certificates

SSL Server Certificates

System Keys

Security Certificate & Key Management

Trusted CAs

Copyright ©2024

 | Getting Started with PingFederate Server | 165

Tab Menu Menu item and window name

Incoming Proxy Settings

Redirect Validation

System Integration

Service Authentication

Active Directory Domains/Kerberos Realms

Data Stores

Identity Store Provisioners

Data & Credential Stores

Password Credential Validators

CAPTCHA Settings

Connect to PingOne for Enterprise

Notification Publishers

PingOne Connections

External Systems

SMS Provider Settings

Runtime NotificationsMonitoring & Notifications

Runtime Reporting

Authorization Server Settings

Client Registration Policies

Client Settings

OAuth Settings

Scope Management

Attribute Requester Mapping

File Signing

Metadata Export

Metadata Settings

Protocol Metadata

SP Affiliations

Administrative Accounts

Cluster Management

Configuration Archive

Extended Properties

General Settings

License

System

Server

Virtual Host Names

Copyright ©2024

 | Getting Started with PingFederate Server | 166

Customizing shortcuts
Shortcuts allow you to access specific locations within the PingFederate administrative console
immediately. You can customize which shortcuts you want to use by opening the Shortcuts customization
menu available on the PingFederate main window.

About this task

Shortcuts are available for all PingFederate roles. You can customize up to ten shortcuts.

Steps

1. Click the Pencil icon beside Shortcuts to open the Shortcuts customization menu.

The currently configured shortcuts are shown in the upper pane.

2. You can perform the following tasks.

▪ To remove a current shortcut, click its icon in the upper pane. When you do this, the icon is
displayed underneath Recently Used. Click the icon if you want to move it back to the list of
current shortcuts.

▪ To rearrange the current shortcuts, click and drag them to different positions in the upper pane.
▪ To view the shortcuts that are available in every navigation section of the administrative console,

click Authentication, Applications, Security, and System. Click a shortcut's icon or drag it into
the upper pane to add it to the list of current shortcuts.

▪ To restore the default shortcut settings, click Restore Default.

3. When you have finished customizing your shortcuts, click Save.

Tasks and steps
Each task consists of a series of tabs. Each tab consists of a sequence of steps. The tasks and tabs
appear in the top portion of the window.

Sample tasks and steps

In this example, the primary task is managing one or more IdP adapter instances (IdP Adapters). The
secondary task is creating an adapter instance (Create Adapter Instance). The current tab selects the
type of adapter (Type). The subsequent tabs, which the administrator has not yet reached, are grayed out.

The administrator console displays a summary window at the end of every task, which offers the
opportunity to review and make changes as needed.

Some steps provide buttons that branch to secondary tasks with multiple tabs. When the secondary tasks
are complete, the administrative console returns to the primary task for the administrators to continue with
the configuration.

Copyright ©2024

 | Getting Started with PingFederate Server | 167

 Note:

Clicking Cancel or Done discards all unsaved changes for the tabs shown in the current task and returns
you to the window from which you accessed the task.

Example

When creating a connection to a partner, the administrator might need to create a new digital signing
certificate. The administrative console provides a button to begin creating a new signing certificate. When
the administrator completes the task, the administrative console returns to the primary task of creating a
connection to a partner.

Console buttons
The buttons at the bottom of the administrative console change depending on where you are in the
configuration process.

The following table describes these buttons.

Button Description

Save Saves changes for all tabs in the current task and returns to thewindow from
which the task or tab was accessed. This button is available only when the
Save operation is valid.

Done Marks all steps as complete for a current task, but does not save the
configuration because further tasks or steps are necessary. To save your
changes, click Save, or continue the configuration until you see a Save
button. When creating a new service provider (SP) or identity provider (IdP)
connection, click Save Draft.

Save Draft Saves a connection's draft configuration.

Cancel Discards all changes and returns to the window from which the current task
was accessed.

Previous Returns to the previous tab.

Next Proceeds to the next tab if all required steps are complete in the current tab.

 CAUTION:

Do not use the browser's Back, Forward, or Refresh buttons. Always use the navigation buttons in the
PingFederate user interface, Previous, Next, or Done.

Third-party cryptographic solutions
PingFederate can use third-party hardware and software cryptographic solutions.

You can configure to use a hardware security module (HSM) for cryptographic material storage and
operations. When configured, private keys and their corresponding certificate are stored on the HSM.
Related signing and decryption operations are processed there for enhanced security.

You can also integrate PingFederate with a third-party software cryptographic solution.

Copyright ©2024

 | Getting Started with PingFederate Server | 168

Hardware security modules

When integrating with an HSM, PingFederate must be deployed with Oracle Server JRE 8. Oracle Java SE
Development Kit 11 and OpenJDK 11 are not supported.

Typically, integrating with an HSM involves two steps:

1. Install and configure the HSM according to the manufacturer's documentation.
2. Follow the vendor-specific instructions to configure a new or existing PingFederate environment to use

the HSM for key generation, storage, and operation.

 Tip:

Use HSM hybrid mode to store each relevant key and certificate on the HSM or the local trust store. This
allows you to transition the storage of keys and certificates to an HSM without needing to deploy a new
PingFederate environment to mirror the setup. For more information, see Transitioning to an HSM on page
643.

 Note:

Configuring PingFederate to use an HSM for cryptographic material storage and operations might impact
performance. The level of impact depends on the performance of cryptographic functionality provided by
the HSM and the network latency between PingFederate and the HSM. Consult with your HSM vendor for
performance tuning if you plan to use an HSM in your PingFederate deployment.

Software cryptographic solution

PingFederate supports Bouncy Castle FIPS as the provider of its Java keystore and cryptographic
operations.

Supported hardware security modules
PingFederate supports multiple configurations for secure material storage and processing.

PingFederate supports the following modules:

▪ AWS CloudHSM
▪ Thales Luna Network HSM
▪ Entrust nShield Connect HSM

Integrating with AWS CloudHSM
PingFederate supports multiple hardware security modules (HSMs), including AWS CloudHSM.

Before you begin

▪ Make sure Oracle Server JRE 8 is installed on the PingFederate server. For more information, see
Installing Java on page 119.

▪ must be deployed on one of the Linux operating systems supported by both AWS CloudHSM and .
For more information, see System requirements on page 109 and Install and Configure the AWS
CloudHSM Client (Linux) in the AWS CloudHSM documentation.

Copyright ©2024

https://docs.aws.amazon.com/cloudhsm/latest/userguide/install-and-configure-client-linux.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/install-and-configure-client-linux.html

 | Getting Started with PingFederate Server | 169

Steps

1. Request a crypto user (CU) account from your AWS CloudHSM administrator.

 Note:

You need this account's username and password for your PingFederate installation.

2. Install and configure your AWS CloudHSM client and tools.

 Note:

Commands vary depending on the operating system. For more information, see Install the AWS
CloudHSM Client and Command Line Tools in the AWS CloudHSM documentation.

3. Install the AWS CloudHSM software library for Java.

 Note:

Commands vary depending on the Linux operating system. For instructions, see Installing Java Library
in the AWS CloudHSM documentation.

4. Validate the AWS CloudHSM client installation.

a. Using the command line, export four environment variables.

$ export LD_LIBRARY_PATH=/opt/cloudhsm/lib
$ export HSM_PARTITION=PARTITION_1
$ export HSM_USER=<HSM username>
$ export HSM_PASSWORD=<password>

b. To validate the AWS CloudHSM client installation, run the following Java program.

$ java -classpath "/opt/cloudhsm/java/*" org.junit.runner.JUnitCore
 TestBasicFunctionality

Result:

The result should be similar to the following output.

JUnit version 4.12
.2020-02-24 16:17:01,681 DEBUG [main] TestBasicFunctionality
 (TestBasicFunctionality.java:33) - Adding provider.
2020-02-24 16:17:01,749 DEBUG [main] TestBasicFunctionality
 (TestBasicFunctionality.java:42) - Logging in.
2020-02-24 16:17:01,749 INFO [main] cfm2.LoginManager
 (LoginManager.java:238) - Looking for credentials in
 HsmCredentials.properties
2020-02-24 16:17:01,750 INFO [main] cfm2.LoginManager
 (LoginManager.java:256) - Looking for credentials in
 System.properties
2020-02-24 16:17:01,750 INFO [main] cfm2.LoginManager
 (LoginManager.java:264) - Looking for credentials in System.env
2020-02-24 16:17:01,784 DEBUG [main] TestBasicFunctionality
 (TestBasicFunctionality.java:54) - Generating AES Key with key size
 256.
2020-02-24 16:17:01,995 DEBUG [main] TestBasicFunctionality
 (TestBasicFunctionality.java:63) - Encrypting with AES Key.
2020-02-24 16:17:02,005 DEBUG [main] TestBasicFunctionality
 (TestBasicFunctionality.java:84) - Deleting AES Key.

Copyright ©2024

https://docs.aws.amazon.com/cloudhsm/latest/userguide/install-and-configure-client-linux.html#install-client
https://docs.aws.amazon.com/cloudhsm/latest/userguide/install-and-configure-client-linux.html#install-client
https://docs.aws.amazon.com/cloudhsm/latest/userguide/java-library-install.html#install-java-library

 | Getting Started with PingFederate Server | 170

2020-02-24 16:17:02,006 DEBUG [main] TestBasicFunctionality
 (TestBasicFunctionality.java:92) - Logging out.

Time: 0.334

OK (1 test)

For more information, see Validating the Installation in the AWS CloudHSM documentation.

5. Update the JAVA_HOME/jre/lib/security/java.security file in your Java environment,
and then add the AWSCloudHSMProvider line to the list of security providers immediately after the
sun.security.provider.Sun provider.

Example:

List of providers and their preference orders (see above):
security.provider.1=sun.security.provider.Sun
security.provider.2=com.pingidentity.crypto.AWSCloudHSMProvider
security.provider.3=sun.security.rsa.SunRsaSign
security.provider.4=sun.security.ec.SunEC
security.provider.5=com.sun.net.ssl.internal.ssl.Provider
security.provider.6=com.sun.crypto.provider.SunJCE
security.provider.7=sun.security.jgss.SunProvider
security.provider.8=com.sun.security.sasl.Provider
security.provider.9=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.10=sun.security.smartcardio.SunPCSC

6. Configure a new PingFederate installation on the network interconnected to the HSM.

 Note:

Go to the next step to integrate an existing PingFederate installation with your HSM.

7. To enable the Java interface and PingFederate integration, copy the following files to the JAVA_HOME/
jre/lib/ext directory:

▪ <pf_install>/pingfederate/lib-ext/pf-aws-cloud-hsm-wrapper.jar
▪ <pf_install>/pingfederate/server/default/lib/disruptor.jar
▪ All files under the /opt/cloudhsm/java directory
▪ All files under the /opt/cloudhsm/lib directory

8. Update the hivemodule.xml file.

a. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/
hivemodule.xml file.

b. Go to the <!-- Crypto provider --> section.
c. Update the class attribute value of the construct element for both the JCEManager and

CertificateService service endpoint.

...
<!-- Crypto provider -->
<service-point id="JCEManager"
 interface="com.pingidentity.crypto.JCEManager">
 <invoke-factory>
 ...
 <construct class="com.pingidentity.crypto.AWSCloudHSMJCEManager"/>
 </invoke-factory>
</service-point>

<service-point id="CertificateService"
 interface="com.pingidentity.crypto.CertificateService">
 <invoke-factory>

Copyright ©2024

https://docs.aws.amazon.com/cloudhsm/latest/userguide/java-library-install.html#validate-install

 | Getting Started with PingFederate Server | 171

 ...
 <construct
 class="com.pingidentity.crypto.AWSCloudHSMCertificateServiceImpl"/>
 </invoke-factory>
</service-point>
...

9. Update the <pf_install>/pingfederate/bin/run.properties file.

a. Change the value of the pf.hsm.mode property from OFF to AWSCLOUDHSM.
b. If you are setting up a new PingFederate installation, set the value of the pf.hsm.hybrid

property to false to store newly-created or imported certificates on your HSM.
c. If you are configuring an existing PingFederate installation, set the value to true for the flexibility

to store each relevant key and certificate on the HSM or the local trust store.

This allows you to transition the storage of keys and certificates to your HSM without deploying
a new PingFederate environment. For more information, see Transitioning to an HSM on page
643.

10. Run the <pf_install>/pingfederate/bin/hsmpass.sh script for Linux.

a. Enter the password for the CU account when prompted. See step 1.

This procedure securely stores the password for communication to the HSM from PingFederate.

11. If the username of the CU account is not crypto_user, update the
com.pingidentity.crypto.AWSCloudHSM.xml file.

a. Edit the <pf_install>/pingfederate/server/default/data/config-store/
com.pingidentity.crypto.AWSCloudHSM.xml file.

The unmodified version of the com.pingidentity.crypto.AWSCloudHSM.xml file follows.

<?xml version="1.0" encoding="UTF-8"?>
<con:config xmlns:con="http://www.sourceid.org/2004/05/config">
 <con:item name="Partition">PARTITION_1</con:item>
 <con:item name="CryptoUser">crypto_user</con:item>
</con:config>

b. Replace crypto_user with the username of the CU account.

Example:

In the following example, the username of the CU account is example_user.

<?xml version="1.0" encoding="UTF-8"?>
<con:config xmlns:con="http://www.sourceid.org/2004/05/config">
 <con:item name="Partition">PARTITION_1</con:item>
 <con:item name="CryptoUser">example_user</con:item>
</con:config>

12. Repeat these steps on each node.

13. Start the new PingFederate server or restart the existing PingFederate server.

AWS CloudHSM operational notes
When using a hardware security module (HSM), some restrictions apply to PingFederate.

▪ PingFederate requires Oracle Server JRE (Java SE Runtime Environment) 8 or Amazon Corretto 8 for
deployment.

▪ PingFederate does not store public certificates on the hardware module for signature verification,
encryption, and back-channel authentication. Instead, the local trust store on the file system stores
these certificates.

▪ As an OpenID Provider, can use static or dynamically-rotating keys to sign ID tokens, JSON
web tokens (JWTs) for client authentication, and OpenID Connect request objects. When using
dynamically-rotating keys as part of the default configuration, the memory, not the HSM, stores short-
term keys. The HSM can store static keys.

Copyright ©2024

 | Getting Started with PingFederate Server | 172

▪ Private keys are not exportable. When configured for use with the HSM, disables administrative-
console options for this feature. Only the public portion of generated keys is exportable.

▪ When using the Configuration Archive feature, any keys, certificates, or objects generated and stored
on the HSM prior to saving a configuration archive must continue to exist unaltered when the archive
is restored. In other words, the user interface must execute any deletion or creation of objects on the
HSM for proper operation.

For example, you create and save objects A, B, and C to the HSM and create a data archive that
contains references to those objects. If you delete object C and attempt to recover it through the data
archive, fails. Because the data archive contains a reference to the object and the object has been
deleted from the HSM, you cannot use that data archive again.

▪ PingFederate limits cipher suites to those listed in the <pf_install>/pingfederate/server/
default/data/config-store/com.pingidentity.crypto.AWSCloudHSMJCEManager.xml
file.

 Note:

If the CloudHSM client daemon disconnects during runtime, PingFederate automatically attempts to
reconnect to the daemon.

Integrating with Thales Luna Network HSM
PingFederate supports multiple hardware security modules (HSMs), including Thales Luna Network HSMs.

Steps

1. Ensure the PingFederate server has Oracle Server JRE 8 installed.

To use larger key sizes, enable the Java Cryptography Extension (JCE) "unlimited strength"
jurisdiction policy. For more information, see Installing Java.

2. Install and configure your Thales Luna Network HSM, including the optional JSP package for Java,
according to Thales's instructions.

This includes creating a partition, creating a Network Trust Link (NTL), and assigning a client to a
partition.

a. Ensure the operation of the vtl verify command to indicate secure and proper communication
with the HSM.

b. Delete any unnecessary keys or objects created while testing communication to the HSM from the
host running PingFederate.

c. For your PingFederate installation, record the password used to open communication to the HSM
through the NTL.

3. To enable the Java interface, copy the Luna library and program files to the Java installation as
follows.

Operating system Steps

Windows Copy the LUNA_HOME\jsp\lib\LunaAPI.dll file to an arbitrary
directory and add the directory's path as a system variable. Alternatively,
you can copy the file to the Windows system directory (C:\Windows
\System32).

Copy the LUNA_HOME\jsp\lib\LunaProvider.jar file to the
JAVA_HOME\jre\lib\ext directory.

Copyright ©2024

 | Getting Started with PingFederate Server | 173

Operating system Steps

Linux Copy the libLunaAPI.so and LunaProvider.jar files from the
LUNA_HOME/jsp/lib directory to the JAVA_HOME/jre/lib/ext
directory.

Prior to installing PingFederate, Thales provides sample Java applications to test that the Java HSM
interface works. For more information, see the HSM documentation from Thales.

4. Update the JAVA_HOME/jre/lib/security/java.security file in your Java environment and
add the LunaProvider line to the bottom of the list of security providers.

Example:

List of providers and their preference orders (see above):
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=com.safenetinc.luna.provider.LunaProvider

5. On the network interconnected to the HSM, set up a new PingFederate installation.

 Note:

To integrate an existing PingFederate installation with your HSM, skip to the next step.

6. Update the hivemodule.xml file.

a. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/
hivemodule.xml file.

b. Go to the <!-- Crypto provider --> section.
c. Update the class attribute value of the construct element for both the JCEManager and

CertificateService service endpoint as follows.

...
<!-- Crypto provider -->
<service-point id="JCEManager"
 interface="com.pingidentity.crypto.JCEManager">
 <invoke-factory>
 ...
 <construct class="com.pingidentity.crypto.LunaJCEManager"/>
 </invoke-factory>
</service-point>

<service-point id="CertificateService"
 interface="com.pingidentity.crypto.CertificateService">
 <invoke-factory>
 ...
 <construct class="com.pingidentity.crypto.LunaCertificateServiceImpl"/>
 </invoke-factory>
</service-point>
...

Copyright ©2024

 | Getting Started with PingFederate Server | 174

7. Update the <pf_install>/pingfederate/bin/run.properties file.

a. Change the value of pf.hsm.mode from OFF to LUNA.
b. To configure a new PingFederate installation, set the value of pf.hsm.hybrid to false. When

set to false, the HSM stores newly created or imported certificates.

To configure an existing PingFederate installation, set the value to true for the flexibility to
store each relevant key and certificate on the HSM or the local trust store. This allows you to
transition the storage of keys and certificates to your HSM without deploying a new PingFederate
environment. For more information, see Transitioning to an HSM on page 643.

8. From the <pf_install>/pingfederate/bin directory, run the hsmpass.bat batch file for
Windows or the hsmpass.sh script for Linux.

a. Enter the NTL password when prompted. For more information, see step 2.

This procedure securely stores the password for NTL communication to the HSM from
PingFederate.

 Note:

The Thales Luna Network HSM supports configuration in a high-availability group. For more
information, see the Thales distributed-installation instructions. To properly synchronize data,
ensure that the HAOnly property is enabled using the vtl haAdmin –HAOnly –enable
command.

9. Repeat these steps on each node.

10. Start the new PingFederate server or restart the existing PingFederate server.

 Important:

Whenever you restart the Luna HSM, Thales recommends you also restart dependent processes such
as PingFederate and all server nodes in a cluster.

SafeNet Luna Network HSM operational notes
When using a hardware security module (HSM), some restrictions apply to PingFederate.

▪ PingFederate requires Oracle Server JRE (Java SE Runtime Environment) 8 or Amazon Corretto 8 for
deployment.

▪ PingFederate does not store public certificates on the hardware module for signature verification,
encryption, and back-channel authentication. Instead, the local trust store on the file system stores
these certificates.

▪ As an OpenID Provider, can use static or dynamically-rotating keys to sign ID tokens, JSON
web tokens (JWTs) for client authentication, and OpenID Connect request objects. When using
dynamically-rotating keys as part of the default configuration, the memory, not the HSM, stores short-
term keys. The HSM can store static keys.

▪ Private keys are not exportable. When configured for use with the HSM, disables administrative-
console options for this feature. Only the public portion of generated keys is exportable.

▪ When running in FIPS 140-2 level 3 compliance, also called strict FIPS mode, private keys cannot be
imported. In this mode, administrative-console options for this feature are disabled.

▪ When using the Configuration Archive feature, any keys, certificates, or objects generated and stored
on the HSM prior to saving a configuration archive must continue to exist unaltered when the archive
is restored. In other words, the user interface must execute any deletion or creation of objects on the
HSM for proper operation.

For example, you create and save objects A, B, and C to the HSM and create a data archive that
contains references to those objects. If you delete object C and attempt to recover it through the data
archive, fails. Because the data archive contains a reference to the object and the object has been
deleted from the HSM, you cannot use that data archive again.

Copyright ©2024

 | Getting Started with PingFederate Server | 175

▪ PingFederate limits cipher suites to those listed in the <pf_install>/pingfederate/server/
default/data/config-store/com.pingidentity.crypto.LunaJCEManager.xml file.

Integrating with Entrust nShield Connect HSM
PingFederate supports multiple hardware security modules (HSMs), including Entrust nShield Connect
HSM.

Steps

1. Ensure the PingFederate server has Oracle Server JRE 8 installed.

To use larger key sizes, enable the Java Cryptography Extension (JCE) unlimited strength jurisdiction
policy. For more information, see Installing Java on page 119.

2. Install and configure your Entrust nShield Connect HSM client software.

As part of the installation, install the optional Java Support (including KeySafe) and nCipherKM JCA/
JCE provider classes components.

3. After your installation, see the HSM documentation from Entrust to make your PingFederate server a
client of an HSM server.

 Note:

PingFederate supports both Operator Card Set (OCS) protected keys and module-protected keys.

For OCS, note the password. You need the password for your installation of PingFederate.

For module-protected keys, edit the pingfederate/server/default/data/config-store/
com.pingidentity.crypto.NCipherSettings.xml file to add the following entries:

<con:item name="protect">module</con:item>
<con:item name="ignorePassphrase">true</con:item>

4. To enable the Java interface, copy the NFAST_HOME/java/classes/nCipherKM.jar file to the
JAVA_HOME/jre/lib/ext directory.

Prior to installing PingFederate, Entrust offers sample Java applications to test that the Java HSM
interface works. For more information, refer to the HSM documentation from Entrust.

5. Update the JAVA_HOME/jre/lib/security/java.security file in your Java environment and
add the nCipherKM line to the list of security providers, after the sun providers.

List of providers and their preference orders (see above):
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=sun.security.mscapi.SunMSCAPI
security.provider.11=com.ncipher.provider.km.nCipherKM

6. Set up a new PingFederate installation on the network interconnected to the HSM.

 Important:

Skip to the next step to integrate an existing PingFederate installation with your HSM.

Copyright ©2024

 | Getting Started with PingFederate Server | 176

7. Update the hivemodule.xml file.

a. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/
hivemodule.xml file.

b. Look for the <!-- Crypto provider --> section.
c. Update the class attribute value of the construct element for both the JCEManager and

CertificateService service endpoint.

...
<!-- Crypto provider -->
<service-point id="JCEManager"
 interface="com.pingidentity.crypto.JCEManager">
 <invoke-factory>
 ...
 <construct class="com.pingidentity.crypto.NcipherJCEManager"/>
 </invoke-factory>
</service-point>

<service-point id="CertificateService"
 interface="com.pingidentity.crypto.CertificateService">
 <invoke-factory>
 ...
 <construct class="com.pingidentity.crypto.NcipherCertificateServiceImpl"/>
 </invoke-factory>
</service-point>
...

8. Update the <pf_install>/pingfederate/bin/run.properties file.

a. Change the value of pf.hsm.mode from OFF to NCIPHER.
b. If you are configuring a new PingFederate installation, set the value of pf.hsm.hybrid to false

to store newly created or imported certificates on your HSM.
c. If you are configuring an existing PingFederate installation, set the value to true, which provides

the flexibility to store each relevant key and certificate on the HSM or the local trust store. This
capability allows you to transition the storage of keys and certificates to your HSM without the
need to deploy a new PingFederate environment and to mirror the setup. For more information,
see Transitioning to an HSM on page 643.

9. From the <pf_install>/pingfederate/bin directory, run the hsmpass.bat batch file for
Windows or the hsmpass.sh script for Linux.

Enter the Operator Card Set password when prompted. See step 3.

This procedure securely stores the password for communication to the HSM from PingFederate.

Copyright ©2024

 | Getting Started with PingFederate Server | 177

10. If you are setting up a new or configuring an existing PingFederate cluster, repeat these steps on each
node.

When finished, use the following steps to replicate nShield data to the connected nodes in the cluster.

a. On the console node, go to the <pf_install>/pingfederate/server/default/data
directory and create a sub directory named ncipher-kmdata-local.

b. Copy to the ncipher-kmdata-local directory all files from the NFAST_KMDATA\local
directory, where NFAST_KMDATA is an environment variable created during the nShield Connect
installation.

For example, NFAST_KMDATA could be set to C:\ProgramData\nCipher\Key Management
Data.

c. Create a new environment variable named NFAST_KMLOCAL and set it to <pf_install>/
pingfederate/server/default/data/ncipher-kmdata-local.

 Note:

You must define this environment variable on all servers within the cluster.

d. Restart the nShield Connect hardserver on all PingFederate servers in the cluster. For instructions
on restarting the hardserver, see the HSM documentation from Entrust.

e. Sign on to the PingFederate administrative console and go to System # Server # Cluster
Management.

f. To push the configuration changes, including the nShield data, to the engine nodes, click
Replicate Configuration.

11. Start the new PingFederate server or restart the existing PingFederate server.

 Important:

Whenever you restart the nShield HSM, restart PingFederate and all server nodes in a cluster.

nShield Connect HSM operational notes
Some restrictions apply to PingFederate when using a hardware security module (HSM).

▪ PingFederate requires Oracle Server JRE (Java SE Runtime Environment) 8 or Amazon Corretto 8 for
deployment.

▪ When integrating PingFederate with Entrust nShield Connect on a platform with Oracle Server JRE
8u102, runtime errors might occur when handling certificates with a signing algorithm of RSA SHA256,
SHA384, or SHA512. To resolve these runtime errors, upgrade to Oracle Server JRE 8u112.

▪ PingFederate only supports Operator Card Set (OCS) protected keys. If you use a standard,
non-persistent OCS, removing the card from the smart card reader causes the HSM to remove
the protected keys from its memory. Requests will likely fail because almost all requests require
cryptographic processing. To resume operations, insert the card into the smart card reader and then
restart PingFederate.

Alternatively, use a persistent OCS so that protected keys remain in memory even after the card is
removed from the smart card reader. PingFederate will continue to process requests and to load keys
and certificates from the HSM as needed. Until the card is inserted back into the HSM, the HSM will
not support new key and certificate creation and storage. However, using a persistent OCS does not
require a restart of PingFederate in this situation. For more information about persistent OCS, consult
your HSM vendor.

▪ As an OpenID Provider, can use static or dynamically-rotating keys to sign ID tokens, JSON
web tokens (JWTs) for client authentication, and OpenID Connect request objects. When using
dynamically-rotating keys as part of the default configuration, the memory, not the HSM, stores short-
term keys. The HSM can store static keys.

▪ Private keys are not exportable. When configured for use with the HSM, disables administrative-
console options for this feature. Only the public portion of generated keys is exportable.

Copyright ©2024

 | Getting Started with PingFederate Server | 178

▪ When running in FIPS 140-2 level 3 compliance, also called strict FIPS mode, private keys cannot be
imported. In this mode, administrative-console options for this feature are disabled.

▪ When using the Configuration Archive feature, any keys, certificates, or objects generated and stored
on the HSM prior to saving a configuration archive must continue to exist unaltered when the archive
is restored. In other words, the user interface must execute any deletion or creation of objects on the
HSM for proper operation.

For example, you create and save objects A, B, and C to the HSM and create a data archive that
contains references to those objects. If you delete object C and attempt to recover it through the data
archive, fails. Because the data archive contains a reference to the object and the object has been
deleted from the HSM, you cannot use that data archive again.

▪ PingFederate limits cipher suites to those listed in the <pf_install>/pingfederate/server/
default/data/config-store/com.pingidentity.crypto.NcipherJCEManager.xml file.

Supported software security package
PingFederate supports the Bouncy Castle FIPS provider software security package.

Integrating with Bouncy Castle FIPS provider
In Bouncy Castle FIPS mode, all security-related cryptographic operations in PingFederate are handled
by the Bouncy Castle FIPS security provider. Bouncy Castle FIPS is a FIPS 140-2 validated software
cryptographic module. Operating in Bouncy Castle FIPS mode may be required if PingFederate is running
as part of a FedRAMP-certified cloud service.

Third-party libraries deployed in PingFederate, such as JDBC drivers, are not guaranteed to operate in a
FIPS-compliant fashion. When FIPS 140-2 compliance is a goal, you should confirm with the vendor before
using any third-party libraries.

Plugins such as adapters and password credential validators need to be individually assessed for FIPS
compliance. The FIPS status of a plugin is displayed in the Summary page inside its configuration. A
warning is also logged on start-up for any configured plugins that are not FIPS-compliant or have not yet
been assessed.

The integration of Bouncy Castle FIPS provider supports two phases:

▪ Hybrid to transition private keys from default keystore to the Bouncy Castle keystore.
▪ Non-Hybrid to start storing private keys only in the Bouncy Castle keystore.

Several properties in the <pf_install>/pingfederate/bin/run.properties file allow you to
configure these phases as shown in the following table.

Phase Properties

Hybrid pf.hsm.mode=BCFIPS

pf.hsm.hybrid=true

Non-Hybrid pf.hsm.mode=BCFIPS

pf.hsm.hybrid=false

You can run either Java 8 or 11 when integrating with the BCFIPS provider. The setup steps are the same
for both environments.

 Important:

The only way to switch from BCFIPS mode back to non-BCFIPS mode is to roll back PingFederate with an
archive.

Copyright ©2024

 | Getting Started with PingFederate Server | 179

Setting up with Java 8 or Java 11
This procedure describes how to integrate PingFederate with Bouncy Castle FIPS provider when you are
running either Java 8 or 11.

Steps

1. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml
file.

a. Go go the <!--Crypto provider --> section.
b. Update the class attribute value of the construct element for both the JCEManager and

CertificateService service endpoint.

<!-- Crypto provider -->
<service-point id="JCEManager"
 interface="com.pingidentity.crypto.JCEManager">
 <invoke-factory>
 ...
 <construct class="com.pingidentity.crypto.BCFIPSJCEManager"/>
 </invoke-factory>
</service-point>

<service-point id="CertificateService"
 interface="com.pingidentity.crypto.CertificateService">
 <invoke-factory model="autoreloadable">
 ...
 <construct
 class="com.pingidentity.crypto.BCFIPSCertificateServiceImpl"/>
 </invoke-factory>
</service-point>
...

2. Edit the <pf_install>/pingfederate/bin/run.properties file.

a. Change the pf.hsm.mode property to BCFIPS.
b. If you are setting up a new PingFederate installation, set the value of the pf.hsm.hybrid

property to false to store newly created or imported certificates on your HSM.
c. If you are configuring an existing PingFederate installation, set the pf.hsm.hybrid value to

true for the flexibility to store each relevant key and certificate on the HSM or the local trust
store.

This allows you to transition the storage of keys and certificates to your HSM without deploying
a new PingFederate environment. For more information, see Transitioning to an HSM on page
643.

3. On Linux systems, the Bouncy Castle FIPS-approved secure random number generator may drain a
large amount of entropy during initial seeding. If available entropy becomes too low, the PingFederate
server or bundled command-line tools may stall on startup for long periods of time. If this occurs,
then you will likely need to integrate with a hardware random number generator or install an entropy-
supplementing daemon like rngd.

Bouncy Castle operational notes
When using the Bouncy Castle FIPS provider, some restrictions apply to PingFederate.

▪ As an OpenID Provider, PingFederate can use static or dynamically rotating keys to sign ID tokens,
JSON web tokens (JWTs) for client authentication, and OpenID Connect request objects. When using
dynamically rotating keys as part of the default configuration, the memory, not the BCFIPS key stores,
stores short-term keys. The HSM can store static keys.

▪ PingFederate limits cipher suites to those listed in the <pf_install>/
pingfederate/server/default/data/config-store/
com.pingidentity.crypto.com.pingidentity.crypto.BCFIPSJCEManager file.

Copyright ©2024

 | Server Clustering Guide | 180

Server Clustering Guide

This section introduces the server clustering functionality of PingFederate.

Use this guide to learn the following concepts and tasks for deploying PingFederate server clusters:

▪ Overview of clustering on page 180
▪ Cluster protocol architecture on page 182
▪ Runtime state-management architectures on page 183
▪ Runtime state-management services on page 192
▪ Deploying cluster servers on page 199
▪ Deploying provisioning failover on page 209
▪ Configuration synchronization on page 211

Overview of clustering
Server clustering lets you define a single configuration for multiple PingFederate servers and address
single sign-on (SSO) and single logout (SLO) requests as a single system.

PingFederate includes clustering features that allow a group of PingFederate servers to appear as a single
system to browsers and partner federation servers. In this configuration, all client traffic normally goes
through a load balancer, which routes requests to the PingFederate servers in the cluster.

Server clustering can facilitate high availability of critical services and increase both performance and
overall system throughput. However, availability and performance are often at opposite ends of the
deployment spectrum, requiring you to balance them according to your deployment goals

 Note:

PingFederate provides separate failover capabilities specifically for outbound provisioning, which by
itself does not require either load balancing or state management. For more information, see Deploying
provisioning failover on page 209.

Running multiple maintenance versions

You can run multiple maintenance versions of PingFederate in a cluster. For example, a cluster can
contain servers running 10.0.0, 10.0.1, and 10.0.2. However, a cluster cannot contain servers running
multiple major or minor versions, such as 10.0.0 and 10.1.0.

When running multiple versions in a cluster, the following message appears at the top of the console: The
cluster is running more than one version of PingFederate. Visit the Cluster
Management page to see the versions. The Cluster management on page 876 window displays
the version of PingFederate running on each server node.

 Note:

Running multiple versions of PingFederate in a cluster might cause inconsistencies in runtime behavior.

Clustering with multiple maintenance versions can reduce the upgrade burden by eliminating downtime.
Running in mixed mode should be a temporary solution, letting you gradually update each node until all of
them are running the same maintenance version.

Copyright ©2024

 | Server Clustering Guide | 181

 Important:

When upgrading the servers in the cluster, upgrade the administrative console first. The maintenance
release might contain UI changes that need to be replicated throughout the cluster.

General cluster architecture

The cluster architecture has two layers:

Cluster-protocol layer

The cluster-protocol layer allows the PingFederate servers to discover a cluster, communicate with
each other, detect and relay connectivity failures, and maintain the cluster as individual servers join
and leave.

Runtime state-management services

The runtime state-management services communicate session-state information required to
process SSO and SLO requests. PingFederate abstracts its runtime state-management services
behind Java service interfaces, which enables PingFederate to use interface implementations
without regard to underlying storage and sharing mechanisms. Abstracting also provides a well-
defined point of extensibility in PingFederate. Depending on the chosen runtime state-management
architecture, each service can share session-state information with a subset of nodes or all nodes.

Runtime state-management architectures

PingFederate supports both adaptive clustering and directed clustering. Adaptive clustering offers the
benefits of scaling PingFederate horizontally with little or no configuration requirement. Directed clustering
allows administrators to specify which runtime state-management service uses which architecture model.

Group-RPC oriented approach

The prepackaged state-management implementations use a remote-procedure-call (RPC) framework for
reliable group communication in a variety of deployments, allowing PingFederate servers to share state
information within a cluster.

Load balancing

Clustered deployments of PingFederate for SSO and SLO transactions typically require the use of at least
one load balancer, fronting multiple PingFederate servers.

When a client accesses the load balancer's virtual IP, the balancer distributes the request to one of
the PingFederate servers in the cluster. Based on the configuration of the associated runtime-state
management service, the processing server contacts other PingFederate servers through remote
procedure calls as it processes SSO and SLO requests.

PingFederate does not automatically balance the traffic among the servers in the cluster. To avoid
overloading individual servers in the cluster, you must manage SSO and SLO requests externally. Because
each server can only handle a certain amount of traffic, see PingFederate Performance Tuning Guide on
page 1014 to plan ahead.

How you configure the balancer to select the appropriate server can vary from simple to highly complex,
depending on your deployment requirements. For specific balancing strategies, their strengths and
weaknesses, as well as the impacts on PingFederate performance, see Runtime state-management
architectures on page 183.

Load balancers can incorporate SSL/TLS accelerators or work closely with them. Because of the high
computational overhead of the SSL handshake, you should terminate SSL/TLS on a dedicated server

Copyright ©2024

 | Server Clustering Guide | 182

external to PingFederate for deployments in which performance is a concern. You can still use SSL
between the proxy or balancer and PingFederate but as a separate connection.

Server modes

In a cluster, you can configure each PingFederate instance, or node, as either an administrative console
or a runtime engine. Runtime engines, also known as engine nodes, service federated-identity protocol
requests, while the console server, also known as the console node, administers policy and configuration
for the entire cluster through the administrative console. A cluster can contain one or more engine nodes
but only one console node.

 Note:

To successfully process SSO requests, you must set the administrative console node to run outside of the
load-balanced group.

Cluster protocol architecture
PingFederate’s cluster-protocol services manage discovery, cluster messaging, connectivity failure
detection, membership, and merging of split clusters.

 Important:

Nodes in the cluster must be able to communicate with one another over both the cluster bind port and
the cluster failure detection port. This communication requirement remains true regardless of the chosen
cluster discovery method or runtime state-management architecture.

Cluster discovery

PingFederate supports two cluster discovery methods.

Static discovery

Static discovery is suitable for a small cluster with about five to six engine nodes. Configuration
requires no external component. You must configure each node with at least one expected node
in a cluster. In practice, the initial discovery list should contain all nodes known in advance in the
cluster, including itself, to increase the likelihood of new members finding and joining the cluster.

Dynamic discovery

Dynamic discovery is well-suited for environments where traffic volume may spike and require
additional resources during peak hours. Instead of configuring a static list of known nodes ahead
of time, configure new nodes to pull cluster membership information from a centralized repository.
Because safe storage and ready accessibility of the information by all nodes is crucial, PingFederate
supports IAM roles for Amazon Elastic Compute Cloud (Amazon EC2), Amazon Simple Storage
Service (Amazon S3), and OpenStack Swift. The dynamic discovery method requires only a one-
time setup. Once configured, maintaining a static discovery list requires no coordination effort.

Regardless of the discovery method, as individual nodes join and leave the cluster, the cluster-protocol
service synchronizes the new membership information across all nodes.

Failure detection

The failure detection mechanism detects network connectivity failures by establishing TCP connections
with other nodes at their cluster failure detection ports and sending occasional network messages. When

Copyright ©2024

 | Server Clustering Guide | 183

a node detects a failure, it propagates the condition to other nodes, sharing new membership information
across the cluster.

 Important:

If you deploy any networking devices, such as a firewall, between nodes, you must configure them to allow
inbound TCP connections to the cluster failure detection ports, and not to terminate these connections
based on their potentially low volumes of network activities.

Runtime state-management architectures
This section provides an overview of runtime state-managment architecture options available for
PingFederate.

Runtime state-management services distribute session-state information in the cluster, making it possible
for multiple nodes to handle SSO and logout requests as a single system. In a cluster consisting of a large
number of nodes, it might be desirable for performance reasons to share session-state information with
only a subset of nodes. PingFederate supports two runtime state-management architectures: adaptive
clustering and directed clustering.

Adaptive clustering
Adaptive clustering automatically distributes session-state information to multiple nodes. Administrators do
not have to modify individual configuration files to specify which nodes should participate in tracking user
sessions.

In essence, each session receives an address from within an internally-defined range. For redundancy,
multiple nodes store each session. These nodes form a replica set. Any node that receives a request and
must look up or store session-state information can do so by calculating the address of the session and
reaching out to the corresponding replica set.

As individual nodes join and leave the cluster, adaptive clustering redistributes session-state information to
maintain the replica set throughout the cluster.

The default size of a replica set is three, which provides redundancy in case two nodes fail and ensures
that a single node's slow response time doesn't delay requests. The replication.factor setting is in
the <pf_install>/pingfederate/server/default/conf/cluster-adaptive.conf file.

Enable adaptive clustering by setting the pf.cluster.adaptive property in the run.properties file
to true. This is the default state in new installations. For upgrades, if such property is not found or is set
to false, the system disables adaptive clustering and enables directed clustering instead. To enable or
disable adaptive clustering, set the pf.cluster.adaptive property to true or false on each node
and then restart PingFederate. The run.properties file is in the <pf_install>/pingfederate/bin
directory.

 Important:

After making changes to the cluster-adaptive.conf and the run.properties files, you must
manually repeat the changes to all nodes in the cluster. The configuration replication process does not
push these files across the cluster. When you are finished, restart PingFederate to apply the changes.

 Note:

Adaptive clustering does not support the SAML 2.0 single logout (SLO) profile using the SOAP binding.
If you have configured one or more SAML 2.0 connections to support SLO using SOAP, you must

Copyright ©2024

 | Server Clustering Guide | 184

either share all nodes or designate state servers deployment strategies in directed clustering. For more
information, see Directed clustering on page 187.

Other advanced settings

Fine-tune each runtime state-management service implementation separately by modifying a configuration
file located in the <pf_install>/pingfederate/server/default/conf directory. After making
changes in these files, you must apply the changes to all nodes in the cluster manually.

 Note:

The adaptive clustering concept is not applicable to the Artifact-Message Persistence and Retrieval
Service, which always shares messages across all nodes to fulfill its objectives. As needed, you can
modify other applicable properties, such as the rpc.timeout property. For more information, see Artifact-
Message Persistence and Retrieval Service on page 196.

The following tables indicate the configuration file that applies to each implementation and the applicable
properties. See the indicated sections for detailed information about each implementation.

Configuration file and service implementation

Configuration file RPC-based service implementation

cluster-account-
locking.conf

Account Locking Service on page 198

cluster-
artifact.conf

Artifact-Message Persistence and Retrieval Service on page 196

cluster-
assertion-replay-
prevention.conf

Assertion Replay Prevention Service on page 195

cluster-
idp-session-
registry.conf

IdP Session Registry Service on page 194

cluster-inter-
request-state.conf

Inter-Request State-Management (IRSM) Service on page 193

cluster-session-
revocation.conf

Back-Channel Session Revocation Service on page 197

cluster-
sp-session-
registry.conf

SP Session Registry Service on page 194

Property description

Property Description

rpc.timeout How long, in milliseconds, this node waits before timing out unresponsive RPC
invocations. The default value is 500, or half a second.

Copyright ©2024

 | Server Clustering Guide | 185

Property Description

synchronous.retrieve.majority.onlyIndicates how many responses to wait for when making synchronous remote
procedure calls. When set to true, this node waits for the majority of the
local replica set to respond. When set to false, it waits for all recipients to
respond. true is the default value.

 Note:
This property is not applicable to the Account Locking Service and not found in
the cluster-account-locking.conf file.

bulk.revoked.sris.timeout

(found only in the
cluster-session-
revocation.conf file)

A node downloads a full revocation list from another node during startup or
when it rejoins a cluster after being disconnected from it, for example due
to a temporary network issue. This setting determines the amount of time in
milliseconds PingFederate waits before aborting the download and reporting a
timeout error.

The default value is 10000, which is 10 seconds.

read.local.only

(found only in the
cluster-session-
revocation.conf file)

Determines how PingFederate should process queries for revocation status.

When set to true, PingFederate processes queries for revocation status
locally. When set to false, the processing node pulls revocation status from
other engine nodes in the cluster, subject to the rpc.timeout value. true is
the default value.

 Note:

When adding a session to the revocation list, the processing node always
propagates the information to all engine nodes in the cluster.For more
information, see Back-Channel Session Revocation Service on page 197.

 Note:

When you have enabled adaptive clustering, PingFederate ignores other properties found in these
configuration files—namely preferred.node.indices and preferred.node.group.id. The latter is
only in the cluster-idp-session-registry.conf file.

Multi-region support
PingFederate supports multi-region server clusters in adaptive clustering architecure.

When a cluster spans multiple regions, administrators can specify region identifiers for different groups
of nodes. When regions are defined, any node that receives a request and must store session-state
information can do so by sending the information to replica sets in both the local and remote regions.
Requests that require read-only access to session-state information are answered locally for optimal
performance.

As individual nodes in different regions join and leave the cluster, adaptive clustering redistributes session-
state information within the region where changes in the cluster membership occur. This approach strikes
a balance between minimizing the volume of session-state network traffic and improving the accuracy of
session-state information across regions.

Cross-region support is enabled by default when you configure region identifiers in adaptive clustering
environments. PingFederate provides cross-region support for the following functions:

Copyright ©2024

 | Server Clustering Guide | 186

▪ User session-state information maintained by the Inter-Request State-Management (IRSM) Service on
page 193, the IdP Session Registry Service on page 194, and the SP Session Registry Service on
page 194

▪ Assertion Replay Prevention Service on page 195
▪ Account Locking Service on page 198
▪ Replication, validation, and revocation of access tokens using the reference token data model

When cross-region support is disabled in individual areas, engine nodes only communicate session-state
information to and from the local replica set. To improve the accuracy of session-state information, you can
deploy a network traffic management solution to persist, or stick, user sessions so that each subsequent
request from the same user is directed to the same set of nodes.

 Note:

To reduce cross-region network traffic, PingFederate does not normally replicate SSO transaction states to
other regions. However, if DNS sends user requests to different regions during a single SSO transaction,
the transaction will fail with the error Unable to resume processing because saved state was
not found for key.

To let PingFederate asynchronously replicate SSO transaction states to other regions, open the cluster-
adaptive.conf file and change the value of inter.group.replicate.transaction.state to
true.

OAuth access token management

PingFederate shares reference token information with a replica set when adaptive clustering is enabled.
If region identifiers are defined, PingFederate shares reference token information among multiple replica
sets across regions. Like other services, you can optionally override this default behavior by changing
the inter.group.replicate.reference.tokens value in the <pf_install>/pingfederate/
server/default/conf/cluster-adaptive.conf file .

When you disable cross-region support for access tokens using the reference token data model,
PingFederate does not share reference token information across regions. As a result, PingFederate cannot
de-reference, validate, or revoke a reference-style access tokens issued outside of its region. For this
reason, we recommended switching to the self-contained token data model prior to disabling cross-region
support for the reference token data model.

Configuring multi-region support
Define region identfiers and configure cross-region settings for multi-region PingFederate server clusters.

Steps

1. To define a region identifier for a given node, update the node.group.id value in the
<pf_install>/pingfederate/server/default/conf/cluster-adaptive.conf file, which
is a per-server configuration.

Example: For example, if you have five engine nodes in the West Coast and six engine nodes in the
East Coast, you can update the node.group.id value to W for each of the West Coast nodes and E
for each of the six nodes in the East Coast.

a. Restart PingFederate after making changes to the cluster-adaptive.conf file.

Result:

Once defined, the identifiers for all nodes are displayed on the System # Server # Cluster
Management menu.

2. To configure cross-region support for individual areas, follow the inline instructions in the cluster-
adaptive.conf file to update the relevant setting values.

Copyright ©2024

 | Server Clustering Guide | 187

Directed clustering
This topic provides an overview of manual configuration of PingFederate sever nodes through directed
clustering.

Directed clustering allows administrators to manually specify which PingFederate nodes should participate
in tracking user sessions. Most group Remote Procedure Call (RPC)-based service implementations make
use of a preferred-nodes concept, which assigns each node a list of other nodes, identified by index, with
which it shares session-state information.

Each service implementation is controlled separately by a configuration file located in the <pf_install>/
pingfederate/server/default/conf directory. You must replicate any changes manually for each
cluster node.

The following tables indicate the configuration file that applies to each implementation and the applicable
properties.

 Note:

The Artifact-Message Persistence and Retrieval Service uses only the rpc.timeout setting.

Configuration file and service implementation

Configuration file RPC-based service implementation

cluster-account-
locking.conf

Account Locking Service on page 198

cluster-
artifact.conf

Artifact-Message Persistence and Retrieval Service on page 196

cluster-
assertion-replay-
prevention.conf

Assertion Replay Prevention Service on page 195

cluster-
idp-session-
registry.conf

IdP Session Registry Service on page 194

cluster-inter-
request-state.conf

Inter-Request State-Management (IRSM) Service on page 193

cluster-session-
revocation.conf

Back-Channel Session Revocation Service on page 197

cluster-
sp-session-
registry.conf

SP Session Registry Service on page 194

Copyright ©2024

 | Server Clustering Guide | 188

Property description

Property Description

preferred.node.indicesA comma-separated list of indices identifying the nodes with which this node
shares session-state information for the associated service. If left blank, this
node sends session-state information to all nodes in the cluster as it processes
SSO and logout requests.

The Artifact-Message Persistence and Retrieval Service and the Back-
Channel Session Revocation Service do not support this parameter.

Ignored when adaptive clustering is enabled.

This property has no default value.

preferred.node.group.id

(found only in
the cluster-
idp-session-
registry.conf file)

An alphanumeric group ID for a subcluster. If specified, each subcluster must
have a unique group ID. At startup, validates that the group ID is not already
registered in the cluster by another list of preferred nodes. If the validation
fails, aborts the startup process and exits.

When the group ID is specified, the session identifier contains the information
about the originating subcluster. This is helpful in deployments where has
been configured to manage authentication sessions on the Authentication
Policies # Sessions window. When an engine node receives a request
to query and extend a session, it can route the request to the corresponding
subcluster based on the session identifier value.

If subclusters are configured without specifying group IDs, a request to
query and extend a session is processed on the subcluster that received the
revocation status request, which may be different from the subcluster where
the session is being tracked. As a result, the session could reach the idle
timeout sooner than expected.

Ignored when adaptive clustering is enabled.

This property has no default value.

rpc.timeout How long, in milliseconds, this node waits before timing out unresponsive RPC
invocations.

The default value is 500, or half a second.

synchronous.retrieve.majority.onlyIndicates how many responses to wait for when making synchronous remote
procedure calls. When set to true, this node waits for the majority of
recipients to respond. When set to false, it waits for all recipients to respond.

The default value is true.

bulk.revoked.sris.timeout

(found only in the
cluster-session-
revocation.conf file)

Determines the amount of time (in milliseconds) waits before aborting the
download of revocation lists and reporting a timeout error. The default value is
10000, or 10 seconds.

 Note:
A node downloads a full revocation list from another node during startup or
when it rejoins a cluster after being disconnected from it.

Copyright ©2024

 | Server Clustering Guide | 189

Property Description

read.local.only

(found only in the
cluster-session-
revocation.conf file)

Determines how processes queries for revocation status.

When set to true, queries for revocation status are processed locally. When
false, the processing node pulls revocation status from other engine nodes
in the cluster (subject to the rpc.timeout value).

 Note:

When adding a session to the revocation list, the processing node always
propagates the information to all engine nodes in the cluster. See Back-
Channel Session Revocation Service on page 197 for more information.

The default value is true.

Preferred node indices

Configuring the preferred.node.indices property can reduce the network communications and
memory footprint. However, transaction volume and distribution can affect the resulting configuration. For
more information on performance tuning, see PingFederate Performance Tuning Guide on page 1014.

Individual services within a single cluster deployment can use different preferred nodes, meaning you can
set different values for the preferred.node.indices property for each service.

Using preferred nodes can translate into a variety of deployment configurations. The following sections
discuss three primary strategies to consider for meeting your network requirements:

▪ Sharing all nodes on page 189
▪ Designating state servers on page 190
▪ Defining subclusters on page 191

 Note:

It is possible to configure overrides for authentication-adapter processing based on the runtime node
servicing a request. See Configuring the Cluster Node Authentication Selector on page 224 for more
information.

Sharing all nodes
The default directed clustering is the simplest deployment case, where all nodes are shared within a
cluster.

Leaving the preferred.node.indices property blank in all cluster-configuration files results in a basic
deployment case. An advantage of this approach is simplicity, including the option of using straightforward
load-balancing strategies such as round robin. A disadvantage is that as additional nodes are added, the
throughput improvement rate that clustering offers may decline as the state-replication overhead increases.

The following diagram illustrates this node-sharing approach. Requests in this deployment are directed to
all nodes.

Copyright ©2024

 | Server Clustering Guide | 190

Designating state servers
A state servers clustering deployment model improves scalabiltity by reducing communication between
nodes.

You can select a few engine nodes as state servers. This deployment approach scales better than the all-
nodes approach because additional nodes do not require connections to every existing node, they only
require a connection between each server and each state server.

Configure this deployment by setting the preferred.node.indices of other servers in a group to those
of the state servers. Configure the load balancer to isolate the state-server nodes from end-user traffic.

 Note:
The underlying cluster protocol still requires that all nodes are able to communicate with one another. The
topology here is only an optimization for the runtime state-management services that support the concept
of preferred nodes.

The following diagram illustrates the state-server approach.

Copyright ©2024

 | Server Clustering Guide | 191

In this example, the two state-server nodes have indices of 1 and 2. The preferred.node.indices
property of the engine nodes handling requests would be preferred.node.indices=1,2.

Because the state servers are not processing transactions (based on the setup of the load balancer), the
preferred.node.indices property for them is not used and can be left blank.

 Note:

When acts as an OAuth authorization server (AS) and the access token management instance uses a
reference token data model, the resource server (RS) must send a request to to de-reference the access
token for the corresponding identity and security information. Because the OAuth clients and the RS send
their requests separately, shares reference token information among all engine nodes despite any state
server or subcluster setup.

Defining subclusters
Subclustering improves efficient scaling by limiting session-state communication to other nodes within a
subcluster.

Node indices can be configured to divide a cluster into subgroups, or subclusters, of a few nodes each.
Using this configuration, each node in a subcluster shares session-state information only with other
members of the subcluster. This approach requires a network traffic management solution to persist,
or stick, user sessions so that each subsequent request from the same user is directed to the same set
of nodes. The advantage of this approach is that cluster throughput scales more linearly, because the
creation of an additional subcluster will not degrade the performance of any other group.

 Note:
The underlying cluster protocol still requires that all nodes are able to communicate with one another. The
topology here is only an optimization for the runtime state-management services that support the concept
of preferred nodes.

Additionally, this architecture does not support the SAML 2.0 single logout (SLO) profile using the SOAP
binding. If one or more SAML 2.0 connections are configured to support SLO via SOAP, you must choose
between the sharing all nodes and designating state servers deployment strategies in directed clustering.

Copyright ©2024

 | Server Clustering Guide | 192

This architecture also does not support the capability to revoke sessions after password change or reset.
If you are using this capability, you are limited to the sharing all nodes and designating state servers
deployment strategies.

The following diagram illustrates the subcluster approach.

In this example, the preferred.node.indices property of each server in the cluster lists the indices of
all nodes in its subgroup (including itself). Requests are directed to all nodes but the load balancer directs
user sessions to the same subcluster.

 Note:

When acts as an OAuth authorization server (AS) and the access token management instance uses a
reference token data model, the resource server (RS) must send a request to to de-reference the access
token for the corresponding identity and security information. Because the OAuth clients and the RS send
their requests separately, shares reference token information among all engine nodes despite any state
server or subcluster setup.

Runtime state-management services
Runtime state-management services are a collection of interfaces defining the contract that PingFederate
uses to manage session states for each service.

The <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml file
specifies the implementation of each service. You only need to modify this file if you want to customize the
way services are handled in a cluster. You must manually replicate your changes in each cluster node.

By default, the interfaces listed in hivemodule.xml are proxies that select the best implementation
for each service, based on the operational mode of the server. For example, an in-memory-only
implementation applies if the server is in standalone mode, and a group RPC-based implementation
applies to servers in clustered mode. These proxies are provided for convenience. You can specifically
designate your desired implementation for each service, as described in the following sections.

Copyright ©2024

 | Server Clustering Guide | 193

▪ Inter-Request State-Management (IRSM) Service on page 193
▪ IdP Session Registry Service on page 194
▪ SP Session Registry Service on page 194
▪ LRU memory management schemes on page 195
▪ Assertion Replay Prevention Service on page 195
▪ Artifact-Message Persistence and Retrieval Service on page 196
▪ Back-Channel Session Revocation Service on page 197
▪ Account Locking Service on page 198
▪ Other services on page 198

Configuration files for the services are located in the <pf_install>/pingfederate/server/
default/conf directory.

Inter-Request State-Management (IRSM) Service
This topic is an overview of the two options for tracking session information between HTTP requests in
PingFederate.

The PingFederate server tracks user-session state information between HTTP requests, such as when
PingFederate, acting as an identity provider (IdP), redirects a user's browser to another system for
authentication. When the user's browser returns to PingFederate after authentication, the server needs
access to the state associated with that user from before the redirect. Generally, this state is short-lived.

The InterRequestStateMgmtProxy implementation chooses between two methods to track this state:
group RPC-based (the clustering default) and local memory-based (the standalone default).

The configuration file is <pf_install>/pingfederate/server/default/conf/cluster-inter-
request-state.conf.

Group RPC-based session tracking

The group RPC-based implementation supports both adaptive clustering and directed clustering.

For adaptive clustering, PingFederate shares user session-state information with a replica set. If region
identifiers are defined, PingFederate shares user session-state information among multiple replica sets
across regions. You can override this default behavior in the <pf_install>/pingfederate/server/
default/conf/cluster-adaptive.conf file.

For directed clustering, all preferred-node approaches are possible with this implementation.

The service-point InterRequestStateMgmt in the <pf_install>/pingfederate/server/
default/conf/META-INF/hivemodule.xml file uses the proxy InterRequestStateMgmtProxy
to assign this implementation as the clustering default. The specific class name is
org.sourceid.saml20.service.impl.grouprpc.InterRequestStateMgmtGroupRpcImpl

Local memory-based session tracking

The local memory-based session tracking implementation tracks users in the inter-request state in the local
memory of the processing server. This is the standalone default.

 Important:

Adaptive clustering does not support this implementation. Use the group RPC-based session tracking
instead.

The service-point InterRequestStateMgmt in the hivemodule.xml
file uses the proxy InterRequestStateMgmtProxy to assign this
implementation as the clustering default. The specific class name is
org.sourceid.saml20.service.impl.localmemory.InterReqStateMgmtMapImpl

Copyright ©2024

 | Server Clustering Guide | 194

Local memory-based session tracking and clustering

Group RPC-based session tracking is the clustering default. To use local memory-
based session tracking in a clustered environment, update the service-point
InterRequestStateMgmt to use the local memory-based session tracking class,
org.sourceid.saml20.service.impl.localmemory.InterReqStateMgmtMapImpl

 Note:

The load balancer must support sticky sessions to force all requests for the same user session to be
routed to the same server.

IdP Session Registry Service
PingFederate uses the IdP Session Registry Service to facilitate single logout (SLO) by tracking assertions
issued to Service Provider (SP) partners.

PingFederate uses this service only when acting in an Identity Provider (IdP) role and supports SLO with
one or more partner connections.

When PingFederate is in clustered mode, the service proxy uses a group RPC-based, preferred-nodes
implementation. The configuration file is <pf_install>/pingfederate/server/default/conf/
cluster-idp-session-registry.conf.

This service supports both adaptive clustering and directed clustering.

For adaptive clustering, PingFederate shares user session-state information with a replica set. If region
identifiers are defined, PingFederate shares user session-state information among multiple replica sets
across regions. You can optionally override this default behavior in the configuration file.

For directed clustering, all preferred-node approaches are possible with this implementation.

 Note:

Both adaptive clustering and the subcluster deployment strategies in directed clustering do not support
the SAML 2.0 SLO profile using the SOAP binding. If one or more SAML 2.0 connections are configured
to support SLO via SOAP, you must choose between the sharing all nodes and designating state servers
deployment strategies in directed clustering (see Directed clustering on page 187).

The service proxy uses the class
org.sourceid.saml20.service.impl.grouprpc.IdpSessionRegistryGroupRpcImpl

 Note:

If the IdP session registry is configured with the Directed Clustering - Subclusters state management
architecture, the capability to revoke sessions after password change or reset is not supported.

SP Session Registry Service
PingFederate uses the SP Session Registry Service to facilitate SLO by tracking assertions issued from
identity provider (IdP) partners. PingFederate uses this service only when the server is acting in a service
provider (SP) role and supports SLO with one or more partner connections.

When PingFederate is in clustered mode, the service proxy uses a group RPC-based, preferred-nodes
implementation. The configuration file is <pf_install>/pingfederate/server/default/conf/
cluster-sp-session-registry.conf.

This service supports both adaptive clustering and directed clustering.

Copyright ©2024

 | Server Clustering Guide | 195

For adaptive clustering, PingFederate shares user session-state information with a replica set. If region
identifiers are defined, PingFederate shares user session-state information among multiple replica sets
across regions. You can override this default behavior in the configuration file.

For directed clustering, all preferred-node approaches are possible with this implementation.

 Note:

Both adaptive clustering and the subcluster deployment strategies in directed clustering do not support
the SAML 2.0 SLO profile using the SOAP binding. If one or more SAML 2.0 connections are configured
to support SLO via SOAP, you must choose between the sharing all nodes and designating state servers
deployment strategies in directed clustering (see Directed clustering on page 187).

The service proxy uses the class
org.sourceid.saml20.service.impl.grouprpc.SpSessionRegistryGroupRpcImpl .

LRU memory management schemes
PingFederate uses an LRU memory manager to reduce memory usage by orphaned data.

During the normal course of transaction processing, the Inter-Request State-Management Service, the
IdP Session Registry Service, and the SP Session Registry Service manage memory for PingFederate.
End users abandoning web sessions results in orphaned data. To ensure that this orphaned data does
not result in excessive memory usage, the data structures used by these services employ a least-recently-
used (LRU) algorithm to purge old data. This algorithm automatically removes the oldest entries when a
data structure reaches the maximum size.

Configure the maximum size of each data structure in the <pf_install>/pingfederate/server/
default/conf/size-limits.conf file.

Assertion Replay Prevention Service
The Assertion Replay Prevention Service tracks POST assertions to prevent replay.

SAML standards specify that when a service provider (SP) receives assertions from the POST binding,
the SP should keep track of each assertion for the duration of its validity to ensure that it is not replayed
(that is, intercepted by a third party and re-posted). For OAuth and OpenID Connect, PingFederate can
mandate a unique signed JSON Web Token (JWT) from the client for each request when the client is
configured to authenticate via the private_key_jwt client authentication method, to transmit request
parameters using in signed request objects, or to do both. PingFederate delegates these responsibilities to
the Assertion Replay Prevention Service.

When PingFederate is in clustered mode, the service proxy uses a group RPC-based, preferred-nodes
implementation. The configuration file is <pf_install>/pingfederate/server/default/conf/
cluster-assertion-replay-prevention.conf.

The Assertion Replay Prevention Service supports both adaptive clustering and directed clustering.

For adaptive clustering, PingFederate shares token (assertion or JWT) information with a replica set. If
region identifiers are defined, PingFederate shares token information among multiple replica sets across
regions. You can optionally override this default behavior in the configuration file for adaptive clustering.

For directed clustering, you must choose between the sharing all nodes and designating state servers
deployment strategies in directed clustering for this service.

The service proxy uses the class
org.sourceid.saml20.service.impl.grouprpc.AssertionReplayPreventionServiceGroupRpcImpl.

Unlike other services, the Assertion Replay Prevention Service fulfills only a security condition, rather than
supporting normal SSO functionality, because there might be situations where the priority placed on cluster
performance outweighs the priority placed on this security check. If you are in this situation, you have the
option to change the implementation for the service point AssertionReplayPreventionService in the

Copyright ©2024

 | Server Clustering Guide | 196

<pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml file to one of
these classes:

▪ org.sourceid.saml20.service.impl.localmemory.AssertionReplayPreventionSvcInMemoryImpl

This is the implementation used in standalone mode. It performs all the appropriate replay checks but
does not share any data with other nodes. A replay attempt routed to the same server node would fail,
but other nodes would not have sufficient information to stop the transaction.

▪ org.sourceid.saml20.service.impl.localmemory.AssertionReplayPreventionServiceNullImpl

This implementation disables assertion-replay prevention. Use with caution when performance is an
absolute priority.

Artifact-Message Persistence and Retrieval Service
PingFederate's Artifact-Message Persistence and Retrieval Service keeps track of one-time keys and
associated data compliant with SAML and OAuth 2.0 standards.

The following standards require PingFederate to relay data to partners using a reference-style data
transportation model and to guarantee that the reference keys are valid for one-time use only.

SAML artifact binding

PingFederate sends an artifact to the partner when transmitting SAML-outbound messages using
the artifact binding. Later, the partner returns to PingFederate to exchange the artifact for the actual
message. If the request is valid, PingFederate delivers the message and invalidates the artifact.

OAuth 2.0 authorization grant type

When processing an authorization request from an OAuth client that uses the authorization code
grant type, PingFederate returns a code to the client based on specification. The client then includes
that code in its token request to PingFederate to obtain an access token. If the request is valid,
PingFederate delivers the access token and invalidates the code.

The Reference ID Adapter from the Agentless Integration Kit also applies the same data transportation
model and one-time-use restriction in its drop-off and pick-up operations.

In a standard environment, the PingFederate server saves the data in memory, generates a key for the
data, and sends the key to the partner. The Artifact-Message Persistence and Retrieval Service keeps
track of the key and the associated data until the partner contacts the PingFederate server to exchange the
key for the data.

Group RPC-based retrieval

When multiple PingFederate servers are deployed to form a cluster, the keys and their data are saved in
the server that creates them. Because they are not replicated to other PingFederate servers, it is possible
for a key resolution request to arrive at a server that does not contain the requested data. To handle this
scenario, the Artifact-Message Persistence and Retrieval Service uses a group Remote Procedure Call
(RPC) retrieval approach, where the server handling the key resolution request determines the data-
hosting server based on the key value and contacts the appropriate server to retrieve the requested data.
This group RPC implementation is compatible with the SAML artifact binding, the OAuth 2.0 authorization
code grant type, and the Reference ID Adapter.

 Note:
The Artifact-Message Persistence and Retrieval Service also supports a local memory approach for SAML
2.0. This approach is only suitable in clustered environments where the OAuth 2.0 authorization code grant
type and the Reference ID Adapter are not in use.

When PingFederate is in clustered mode, the service proxy selects a group RPC-based implementation,
which takes advantage of node indexing but not the preferred-nodes concept. Sticky-session load-

Copyright ©2024

https://www.pingidentity.com/developer/en/resources/agentless-integration-kit-developers-guide

 | Server Clustering Guide | 197

balancing strategies are not effective when the key request and its subsequent key resolution request can
come from different locations.

Although this implementation does not take advantage of adaptive clustering or the preferred-nodes
concept, you can configure the RPC time-out in the <pf_install>/pingfederate/server/
default/conf/cluster-artifact.conf file.

SAML 2.0 indexing (local memory)

A SAML 2.0 federation entitycan support multiple artifact resolution services, each identified by a
unique index number. Artifacts include this index, and a federation partner must send the artifact
resolution request to the appropriate endpoint for that index. This means that servers do not need to share
information concerning the artifact.

With this approach, partners must know about each of your backend servers. Generally, this means
providing partners with a list that includes multiple artifact-resolution service endpoints with the
corresponding indices.

 Note:

PingFederate does not automatically generate this information; an administrator must create it and send it
to partners who are using the artifact binding.

For example, if you have four servers in a cluster, the list might look like this:

<ArtifactResolutionService Binding="...” Location="https://node1/idp/
ARS.ssaml2" index="1"/>
<ArtifactResolutionService Binding="...” Location="https://node2/idp/
ARS.ssaml2" index="2"/>
<ArtifactResolutionService Binding="...” Location="https://node3/idp/
ARS.ssaml2" index="3"/>
<ArtifactResolutionService Binding="...” Location="https://node4/idp/
ARS.ssaml2" index="4"/>

In this case, the index corresponds to the node index configured in the run.properties file on each
individual server. This service encodes the node index in the artifact handle when running in a clustered
mode (it will always use an index of 0 in standalone mode).

Partners also need direct access to each ARS endpoint, which can complicate your configuration of load
balancers, proxies, and firewalls. This approach cannot be used for SAML 1.x, or with adapters that utilize
PingFederate's artifact-data management.

To use this approach for SAML 2.0 federation deployments, edit the <pf_install>/
pingfederate/server/default/conf/META-INF/hivemodule.xml file
and change the implementation for the ArtifactStore service point to the class name
org.sourceid.saml20.service.impl.localmemory.ArtifactPersistenceServiceMapImpl.

Back-Channel Session Revocation Service
PingFederate uses the Back-Channel Session Revocation Service to provide OAuth clients the capabilities
to add sessions to the revocation list and to query the revocation status.

When PingFederate is in clustered mode, the service proxy uses a group remote procedure call (RPC)-
based implementation. When adding a session to its revocation list, the processing node always
propagates the information to all engine nodes in the cluster. This allows you to choose whether queries
are processed locally or after collecting information from other engine nodes.

Processing queries locally results in faster response times for engine nodes in well-connected networks.
Requiring data from other engine nodes adds a layer of protection against inconsistency among engine
nodes revocation lists due to network outages.

Copyright ©2024

 | Server Clustering Guide | 198

You can configure the RPC time-out and other settings in the <pf_install>/pingfederate/server/
default/conf/cluster-session-revocation.conf file.

The service proxy uses the class
org.sourceid.saml20.service.impl.grouprpc.SessionRevocationServiceGroupRpcImpl .

FIFO memory management scheme

To ensure the revocation list does not result in excessive memory usage, the Back-Channel Session
Revocation Service employs a first-in-first-out (FIFO) algorithm to purge old data. When the maximum size
is reached, the oldest entries are automatically removed.

The maximum number of sessions is configurable by the
SessionRevocationServiceMapImpl.max.revoked.sris setting in the <pf_install>/
pingfederate/server/default/conf/size-limits.conf file. The default value is 50000.

The FIFO memory manager operates in addition to the Session Revocation Lifetime setting, globally
configured in the System # OAuth Settings # Authorization Server Settings menu.

Account Locking Service
The PingFederate Account Locking Service includes account lockout prevention and password spraying
prevention.

Account lockout protection prevents user accounts from locking at the underlying user repository based
on too many failed authentication attempts. It also adds a layer of protection against brute force and
dictionary attacks because the user is locked out for a time period when the number of failed attempts
exceeds the threshold. This protection is enabled in many areas of , including the HTML Form Adapter, the
Username Token Processor, the OAuth resource owner password credentials grant type, and the native
authentication scheme for the administrative console and API.

Password spraying prevention adds a layer of defense against the attack pattern where bad actors try to
gain access to protected resources by using the same password, typically weak or compromised, against
multiple accounts from multiple locations. When enabled, tracks the number of failed login attempts per
password. When the number of failures for a particular password reaches a threshold, that password is
temporarily locked out. Password spraying prevention applies to the HTML Form Adapter, the Username
Token Processor, and the OAuth 2.0 resource owner password credentials grant type.

When PingFederate is in clustered mode, the service proxy uses a group remote procedure call (RPC)-
based implementation. The configuration file is<pf_install>/pingfederate/server/default/
conf/cluster-account-locking.conf.

This service supports both the adaptive clustering and directed clustering.

For adaptive clustering, PingFederate shares state information with a replica set. If region identifiers
are defined, PingFederate shares state information among multiple replica sets across regions. You
can override this default behavior in the <pf_install>/pingfederate/server/default/conf/
cluster-adaptive.conf file.

For directed clustering, PingFederate shares state information across all nodes, which helps in scenarios
where PingFederate is deployed behind a load balancing infrastructure without sticky sessions.

Other services
PingFederate offers an account linking service and a pseudonym service to support SAML 2.0 federation
deployment needs.

Account linking service

The account linking service stores the association between the external and internal identifiers of an
end user when your implementation uses account linking as a service provider (SP) identity-mapping
strategy. The default, standalone implementation uses a Java Database Connectivity (JDBC) interface

Copyright ©2024

 | Server Clustering Guide | 199

to an embedded database within PingFederate. No information from the embedded database is shared
across the cluster. When an identity provider (IdP) connection deployed in a cluster uses account linking,
the default implementation will not work properly. In such cases, you must adjust the pointer for cluster use
by pointing the service to an external database. For more information, see Define an account-linking data
store.

Pseudonym service

The pseudonym service references the method needed by PingFederate to generate or look up a
pseudonym for a user. PingFederate uses this service only if your site is acting in an IdP role and
produces assertions containing pseudonyms as subject identifiers. The default implementation uses a
message digest to produce the value so that no session-state synchronization is required. Developers
who want to implement pseudonym handling differently can refer to the Javadoc reference describing
PseudonymService interface for more information.

Deploying cluster servers
A PingFederate cluster consists of multiple nodes, each of which are likely running on a dedicated host
system.

About this task

In a cluster, there are two types of nodes: engine nodes and an administrative console node. Engine
nodes service end user traffic, and multiple nodes are recommended to ensure high availability for your
deployment. Only one administrative console node can be running in a given cluster. This node hosts the
user interface and APIs that you use to configure the cluster. Additionally, the administrative console node
manages the following runtime functions:

▪ Performing periodic configuration archive backup
▪ Cleaning expired persistent authentication sessions
▪ Cleaning expired access grants
▪ Updating connections from metadata URLs, including PingOne SP connections if configured, and

sends email notifications
▪ Performing automatic rotation of signing certificates if enabled

 Note:

Additional steps are required to set up failover for provisioning. If you are grouping servers exclusively to
provide for provisioning failover, skip these steps and see Deploy provisioning failover.

These steps describe how to configure and deploy clustered PingFederate servers by editing each node in
the <pf_install>/pingfederate/bin/run.properties.

Steps

1. Install PingFederate on each node in a cluster.

Copyright ©2024

 | Server Clustering Guide | 200

2. Edit the clustering properties of each node in the <pf_install>/pingfederate/bin/
run.properties file. See the following table for information about each property.

Property Description

pf.operational.modeControls the operational mode of the PingFederate server. PingFederate
supports the following modes:

STANDALONE (default)

This server is a standalone instance that runs both the administrative
console and runtime engine.

 Important:

The value STANDALONE should only be used in a cluster where session-
state management is not needed for any reason and configuration-archive
deployment is used as the configuration synchronization method.

CLUSTERED_CONSOLE

This server is part of a cluster and runs only the administration
console.

 Important:

Only one node in a cluster can run the administrative console.

CLUSTERED_ENGINE

This server is part of a cluster and runs only the runtime engine.

pf.cluster.node.indexDefines a unique index number for the server in a cluster. The index
number is used to identify peers and optimize inter-node communication.
The allowed range is 0 to 65535.

If no value is set for the node index, the system assigns an auto-generated
value in the range of 0 to 2147483647.

This property has no default value. If you specify an index number, you can
configure instances of the Cluster Node Authentication Selector and place
them in authentication policies to customize authentication requirements
based on the runtime node servicing a request.

pf.cluster.auth.pwdSets the password that each node in the cluster must use to authenticate
when joining the cluster. This prevents unauthorized nodes from joining a
cluster. The value can be any string, or blank.

 Note:

Consider using a randomly-generated password with 22 or more
alphanumeric characters. A strong, obfuscated, Jgroups cluster password
can be generated with the clusterkey utility (clusterkey.bat for
Windows and clusterkey.sh for Linux), located in the <pf_install>/
pingfederate/bin directory.

All nodes in a cluster must share the same value, blank or otherwise.

Copyright ©2024

 | Server Clustering Guide | 201

Property Description

pf.cluster.encrypt Indicates whether to encrypt network traffic sent between nodes in a
cluster. The possible values are true or false (default).

When set to true, communication within the cluster is encrypted with a
symmetric key derived from the value of the pf.cluster.auth.pwd
property.

 Important:

When the pf.cluster.encrypt property is set to true, you must
provide a value for the pf.cluster.auth.pwd property. Otherwise
PingFederate aborts during its startup process.

All nodes in a cluster must have the same value for this property.

pf.cluster.encryption.keysizeThe length of the key that PingFederate takes into consideration when
deriving the symmetric key from the value of the pf.cluster.auth.pwd
property for the purpose of encrypting network traffic sent between nodes
in a cluster. Required only when the pf.cluster.encrypt is set to
true.

All nodes in a cluster must have the same value set for this property.

The default value is 128.

pf.cluster.bind.addressDefaults to NON_LOOPBACK, which leaves the system to choose an
available non-loopback IP address. Alternatively, enter an IP address of
the network interface to which the cluster communication should bind.
For machines with more than one network interface, provide a specific IP
address.

You can use this property to increase performance (particularly with UDP)
and improve security by segmenting cluster-communication traffic onto a
private network or VLAN.

 Tip:

Besides NON_LOOPBACK or an IP address, you can also use other values
supported by JGroups. For more information, see the bind_addr special
values in JGroups documentation.

 Important:

This field does not support DNS name. Use the default value
NON_LOOPBACK or replace it with an IP address.

pf.cluster.bind.portSpecifies the port associated with the pf.cluster.bind.address
property or with the default network interface used.

This is the port used by other cluster members
during their discovery process, usually via the
pf.cluster.tcp.discovery.initial.hosts property.

The default value is 7600.

Copyright ©2024

http://jgroups.org/manual/index.html#Transport

 | Server Clustering Guide | 202

Property Description

pf.cluster.failure.detection.bind.portIndicates the bind port of a server socket that is opened on the given
node and used by other nodes as part of the cluster's failure-detection
mechanisms. If set to 0 or unspecified, a random available port is used.
The default value is 7700.

pf.cluster.transport.protocolIndicates the transport protocol used for cluster communication. Values are
udp or tcp. The default value is tcp. All nodes in a cluster must have the
same value set for this property.

Use UDP when IP multicasting is enabled in the network environment
and the majority of cluster traffic is point-to-full-group. You must also
configure both the pf.cluster.mcast.group.address and
pf.cluster.mcast.group.port properties.

Use TCP for geographically dispersed servers or when multicast is not
available or disabled for some other reason. For example, when using
routers that do not support multicast messaging. TCP may also be
appropriate if your cluster configuration employs more point-to-point or
point-to-few messaging than point-to-group.You must also configure the
pf.cluster.tcp.discovery.inital.hosts property.

 Note:

This property is a reference to a protocol-stack XML configuration file
located in the <pf_install>/pingfederate/server/default/
conf/ directory. Two stacks are provided: one for UDP multicast and
one for TCP. You can customize either stack or add to it as needed by
modifying the associated configuration file.

pf.cluster.mcast.group.addressDefines the IP address shared among nodes in the same cluster for UDP
multicast communication; required when UDP is set as the transport
protocol. The valid range is 224.0.0.0 to 239.255.255.255. Some
addresses in this range are reserved for other purposes. This property is
not used for TCP.

All nodes in a cluster must have the same value set for this property.

The default value is 239.16.96.69.

pf.cluster.mcast.group.portDefines the port in conjunction with the
pf.cluster.mcast.group.address property value. This property is
not used for TCP configurations.

All nodes in a cluster must have the same value set for this property.

The default value is 7601.

Copyright ©2024

 | Server Clustering Guide | 203

Property Description

pf.cluster.tcp.discovery.initial.hostsDesignates a static list of PingFederate servers to be contacted
for cluster membership information when discovering, joining, and
rejoining the cluster. This value is required when TCP is set as the
transport protocol. The value is a comma-separated list of host
names (or IP addresses) and their cluster bind ports, for example,
host1[7600],10.0.1.4[7600],host7[1033],10.0.9.45[2231].

When using static discovery, add at least one node for the cluster to know
in advance. This property should contain all nodes in the cluster (including
itself) to increase the likelihood of new members finding and joining the
cluster.

When using dynamic discovery, leave this property blank and enable
dynamic discovery in the <pf_install>/pingfederate/server/
default/conf/tcp.xml file. For more information, see Enabling
dynamic discovery for clustering on page 204.

pf.cluster.adaptiveIndicates whether runtime state-management services should use the
adaptive clustering architecture.

The default value is true for new installations and false for upgrades.

pf.cluster.diagnostics.enabledfalse turns off JGroups diagnostics. true turns it on.

The default value is false.

pf.cluster.diagnostics.addr
and
pf.cluster.diagnostics.port

The multicast address and port this node listens on for diagnostic
messages.

The default values are 224.0.75.75 and 7500, respectively. Do not
change the default values.

node.tags Defines the tags associated with this node.

Configuration is optional. When configured, PingFederate considers
this property when processing requests. For example, you can use
tags to determine the datastore location that this PingFederate
node communicates with. You can also use tags in conjunction with
authentication selectors and policies to define authentication requirements.

You can specify one tag.

node.tags=north

You can also specify a list of prioritized, space-separated tags.

node.tags=1 123 234

Tags cannot contain spaces.

3. Optional: Edit configuration files in each node that control the cluster protocol and runtime state-
management service. For more information, see Runtime state-management architectures on page
183 and Runtime state-management services on page 192.

4. Optional: If outbound provisioning is configured for your site and you want to provide failover
capabilities, identify and configure the provisioning failover nodes. For more information, see Deploy
provisioning failover.

5. Start or restart PingFederate on all nodes.

6. Sign on to the administrative console.

Copyright ©2024

 | Server Clustering Guide | 204

7. If you have not done so, import your PingFederate license. For more information, see License
management on page 869.

8. On the System # Server # Cluster Management window, click Replicate Configuration to push the
license information from the console node to all engine nodes.

Result

After the clustered environment is set up, you can start configuring PingFederate through the
administrative console. When PingFederate detects a change, it prompts you to replicate the configuration
to all engine nodes.

Enabling dynamic discovery for clustering
Select and configure a dynamic discovery setup for clustered PingFederate environments.

About this task

PingFederate provides five dynamic discovery choices: AWS_PING, DNS_PING, S3_PING,
NATIVE_S3_PING, and SWIFT_PING.

 Note:

The S3_PING discovery method has been deprecated due to AWS deprecation of the SigV2 signing
method. When deployed in AWS, the suggested discovery method is NATIVE_S3_PING. See the JGroups
documentation for alternatives when deployed in other environments.

AWS_PING enables you to scale your PingFederate infrastructure using Amazon Elastic Compute
Cloud (Amazon EC2) instances in the Amazon Web Service (AWS) cloud, in one or multiple regions.
PingFederate queries AWS for a list of eligible EC2 instances. If PingFederate receives at least one
node, a cluster exists, and it joins that cluster. If PingFederate receives no node, it forms a new cluster.
Permissions to ec2:Describe* actions must either be enabled in the AWS Identity and Access
Management (IAM) role assigned to the EC2 instance or be associated with the access_key parameter
that you provide as part of the dynamic discovery configuration. Furthermore, you may also use a
combination of tags and filters, in which case only EC2 instances that satisfy both criteria are
returned.

S3_PING, SWIFT_PING, and NATIVE_S3_PING enable the flexibility to use both public and private cloud
storage. PingFederate maintains cluster membership information in a centralized repository, a bucket in
Amazon Simple Storage Service (Amazon S3) or a container in an OpenStack infrastructure. PingFederate
contacts the repository for a list of nodes. If PingFederate receives at least one node, a cluster exists, and
it joins the cluster and updates the repository with its information, including its IP address. If PingFederate
receives no node, it forms a new cluster and updates the repository with its information so that the next
node can find the new cluster. When PingFederate shuts down, it removes itself from the list and pushes
an update to the repository.

NATIVE_S3_PING uses AWS SDK and provides a more stable connection by using built-in security
features such as obtaining credentials through IAM server instance profiles. This protocol is the
recommended dynamic discovery mechanism when you are running in AWS but not using Kubernetes.

DNS_PING uses DNS A or SRV records to perform discovery. This protocol is the recommended dynamic
discovery mechanism when using Kubernetes. For more information, see http://www.jgroups.org/manual4/
index.html#_dns_ping.

You can configure dynamic discovery in the <pf_install>/pingfederate/server/default/
conf/tcp.xml file. You do not need to configure the pf.cluster.tcp.discovery.initial.hosts
property in the run.properties file.

 Important:

Copyright ©2024

http://www.jgroups.org/manual4/index.html#_dns_ping
http://www.jgroups.org/manual4/index.html#_dns_ping

 | Server Clustering Guide | 205

You must manually configure or synchronize the dynamic discovery properties in the tcp.xml file on each
node. The tcp.xml file is not synchronized automatically across the nodes in a cluster, nor is it part of the
Replicate Configuration process. Restart PingFederate servers if they are running.

Steps

1. To configure cluster protocol properties, edit the <pf_install>/pingfederate/bin/
run.properties file. Refer to the inline comments and the following table.

Property Description

pf.operational.mode Configure the operational mode of PingFederate. A a
value of CLUSTERED_CONSOLE denotes a PingFederate
administrative console node. CLUSTERED_ENGINE
denotes a PingFederate runtime engine node.

A PingFederate cluster has only one administrative console
node. As you scale your PingFederate infrastructure,
set the pf.operational.mode property value to
CLUSTERED_ENGINE to deploy additional PingFederate
runtime engine nodes.

pf.cluster.tcp.discovery.initial.hostsRemove any configured value. No IP addresses are
required here.

pf.cluster.transport.protocol Set the value to tcp.

pf.cluster.* Refer to the inline comments to configure the rest of the
pf.cluster.* property values.

 Important:

You must manually configure the clustering properties on each node. The run.properties file is
not copied from the console node to the engine nodes automatically, nor is it part of the Replicate
Configuration process. For more information, see Deploying cluster servers on page 199.

2. Configure dynamic discovery properties.

Edit the <pf_install>/pingfederate/server/default/conf/tcp.xml file. Refer to the inline
comments and one of the following tables.

AWS_PING

Property Description

port_number The port on which PingFederate listens for cluster communication.

The default value is ${pf.cluster.bind.port}, which pulls the value
defined by the pf.cluster.bind.port property in the <pf_install>/
pingfederate/bin/run.properties file.

Copyright ©2024

 | Server Clustering Guide | 206

AWS_PING

Property Description

port_range The number of additional ports that PingFederate can probe when attempting to
connect to other nodes in the event that it fails to connect to the port specified by
the port_number property.

For example if the port_number property is 7600, a port_range property
value of 0 means PingFederate will only try to connect at port 7600. If the
port_range property value is set to 2, PingFederate will make up to two
additional attempts, with the port value increasing by one each time. For
example, if PingFederate fails to connect at port 7600, it will try at port 7601. If it
fails again, it will try at port 7602.

The default value is 0.

regions A comma separated list of EC2 regions in which PingFederate will attempt
discovery.

If no regions are specified, only nodes in the same region as this node can be
discovered. List all regions where you have nodes running.

For information about regions, see the AWS documentation on Regions,
Availability Zones, and Local Zones.

tags A comma separated list of EC2 tag names.

When specified, only EC2 instances that have been assigned with the specified
tags can be discovered. If multiple tags are specified, only EC2 instances that
have been assigned with all tags can be discovered.

For information about tags, see the documentation from Amazon
(docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html).

filters A semi-colon separated list of key value pairs of system metadata.

When specified, only EC2 instances that match the specified filters can be
discovered. If multiple filters are specified, only EC2 instances that match all
filters can be discovered.

Note that you can enter a comma separated list of values for each
filter. In this case, a filter is considered a match if one of the values
is satisfied. For example, if you enter: filters="instance-
type=t2.small,t2.medium;architecture=x86_64", then only EC2
instances that have an instance-type of either t2.small or t2.medium
and also an architecture of x86_64 can be discovered.

For information about filters, see the describe-instances documentation from
Amazon.

access_key and
secret_key

The access key and its secret key for the purpose of querying AWS for EC2
instances.

Applicable and required only if permissions to ec2:Describe* actions are
associated with the access key.

Keys can be encrypted using the obfuscate utility (obfuscate.bat for
Windows or obfuscate.sh for Linux), located in the <pf_install>/
pingfederate/bin directory.

Copyright ©2024

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html

 | Server Clustering Guide | 207

AWS_PING

Property Description

log_aws_error_messagesWhen set to true (the default), error messages received from AWS are logged
to the server log.

S3_PING

Property Description

location The name of the bucket in your Amazon S3 environment.

For information about buckets, see the Create a bucket documentation from
Amazon.

access_key and
secret_access_key

The security credentials to access your Amazon S3 environment.

For information about both keys, see the Understanding and getting your
security credentials documentation from Amazon.

Keys can be encrypted using the obfuscate utility (obfuscate.bat for
Windows or obfuscate.sh for Linux), located in the <pf_install>/
pingfederate/bin directory.

remove_all_data_on_view_changeWhen set to true (the default), JGroups cleans up data when it detects a view
change.

For more information, see jgroups.org/manual4/index.html#FILE_PING.

write_data_on_findThe default value is true, which resolves the issue where subclusters could fail
to merge after a network partition.

SWIFT_PING

Property Description

auth_type The authentication type.

auth_url The authentication URL.

username and
password

The security credentials.

Password can be encrypted using the obfuscate utility (obfuscate.bat
for Windows or obfuscate.sh for Linux), located in the <pf_install>/
pingfederate/bin directory.

tenant The name of your OpenStack Keystone tenant.

container The name of the root container.

For more information about each of the SWIFT_PING properties, see
jgroups.org/manual4/index.html#_swift_ping.

Copyright ©2024

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
http://jgroups.org/manual/index.html#FILE_PING
http://jgroups.org/manual/index.html#_swift_ping

 | Server Clustering Guide | 208

SWIFT_PING

Property Description

remove_all_data_on_view_changeWhen set to true (the default), JGroups cleans up data when it detects a view
change.

For more information, see jgroups.org/manual4/index.html#FILE_PING.

NATIVE_S3_PING

Property Description

region_name The name of the region in which discovery should be attempted.

If no region is specified, only nodes in the same region as this
node can be discovered.

bucket_name The name of the bucket in your Amazon S3 environment.

For information about buckets, see the Create a bucket
documentation from Amazon.

remove_all_data_on_view_changeWhen set to true (the default), JGroups cleans up data when it
detects a view change.

For more information, see http://www.jgroups.org/manual4/
index.html#FILE_PING.

write_data_on_find Default value of true resolves the issue where subclusters
could fail to merge after a network partition.

DNS_PING

Property Description

dns_query A DNS query to the DNS Server and obtains information
about the cluster members. For example, jgroups-dns-
ping.myproject.svc.cluster.local.

For more information, see http://www.jgroups.org/manual4/
index.html#_dns_ping.

3. Start or restart PingFederate.

4. Repeat these steps for each node.

 Note:
You must repeat these steps for new nodes when they are added.

Next steps

After the initial setup, your nodes are ready to be deployed, undeployed, and redeployed as traffic volume
changes.

Discovery mechanisms are separate from runtime state-management architectures. Discovery
mechanisms determine how to find nodes to retrieve cluster information for the purpose of joining and
rejoining a cluster. Runtime state-management architectures determine which nodes session-state
information is shared to and fetched from.

PingFederate supports adaptive clustering and directed clustering runtime state-management
architectures. When opting for dynamic discovery, consider enabling adaptive clustering whenever

Copyright ©2024

http://jgroups.org/manual/index.html#FILE_PING
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://www.jgroups.org/manual4/index.html#FILE_PING
http://www.jgroups.org/manual4/index.html#FILE_PING
http://www.jgroups.org/manual4/index.html#_dns_ping
http://www.jgroups.org/manual4/index.html#_dns_ping

 | Server Clustering Guide | 209

possible. If multiple regions are involved, configure multi-region support for adaptive clustering as well. For
more information and configuration steps, see Adaptive clustering on page 183.

Regardless of the chosen runtime state-management architecture, all nodes must still be able to
communicate with other nodes for clustering-protocol messages. For more information, see Runtime state-
management architectures on page 183.

Deploying provisioning failover
After configuring outbound provisioning, you can set up one or more PingFederate failover servers
specifically for provisioning backup.

About this task

Provisioning runtime processing and failover is independent of single sign-on (SSO) or single logout (SLO)
runtime processing and server clustering. However, if you are already deploying, or have deployed, a
cluster for federation-protocol runtime processing, you can use a subset of those servers for provisioning
failover. Alternatively, you can mix the configuration or set up provisioning-failover servers independently.

 Note:

Each server in the failover network must be configured to use the same relational database.

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

Steps

1. Select two or more runtime instances of PingFederate to configure for provisioning failover.

Copyright ©2024

 | Server Clustering Guide | 210

2. For each server instance, edit provisioning properties in the <pf_install>/pingfederate/bin/
run.properties file as follows:

Property Description

pf.provisioner.modeThe status of outbound provisioning. Allowed values are:

OFF (default)

Outbound provisioning is disabled.

STANDALONE

Provisioning is enabled, without failover.

FAILOVER

Provisioning is enabled, with failover.

 Important:

The value STANDALONE cannot be used for failover configuration. This
property must be set to FAILOVER on the primary and secondary servers.

provisioner.node.idThe unique index number of the provisioning server.

Each server must have a unique index number, which is used to prioritize
which server is currently active and which is next in line in case of a failure.
Values are any number.

 Important:

The primary active primary server should have an index number of 1. The
lowest value in the environment becomes the primary.

These node IDs are not required to start at 1, but it is recommended that
they start at 1. The node IDs for each node must increase sequentially. The
number must not exceed the maximum integer value supported by Java,
which is 2147483647. Initial start-up performance degradation may result if
the node ID does not start at 1.

provisioner.failover.
grace.period

The time interval (in seconds) between the first indication that a node is
dead and failover to the next server in line. The time period should be
greater than the Synchronization Frequency set in the System # Server
Protocol Settings # Outbound Provisioning tab on the administrative
console.

The default value is 600, which is 10 minutes.

 Important:

You must seperately configure the failover properties in the run.properties file on each
provisioning server, because the run.properties file is not copied among the provisioning servers
automatically or as part of the Replicate Configuration process.

3. Start or restart all of the PingFederate servers.

Copyright ©2024

 | Server Clustering Guide | 211

4. If you have not already done so, set up an external database to facilitate provisioning and then update
the Provisioning Data Store setting on the System # Server # Protocol Settings # Outbound
Provisioning tab. See Configuring outbound provisioning settings on page 861 for more information.

5. After configuration, if the provisioning servers belong to the same PingFederate clustered
environment, go to the System # Server. In the Cluster Management window, replicate the new
Provisioning Data Store setting to all nodes. If the provisioning servers are individual PingFederate
servers, for each provisioning server, create a datastore connection to the same external database
and update the Provisioning Data Store setting manually.

Configuration synchronization
All nodes in a PingFederate clustered environment must have the same configuration settings, as set
through the administrative console. You can use any of the following methods to ensure that configuration
data is synchronized on all cluster nodes.

▪ Push from the administrative console.
▪ Deploy configuration archive.
▪ Make a RESTful API call to the /cluster administrative API endpoint.
▪ Make a web service call to the /pf-mgmt-ws/ws/ConfigReplication Connection Management

Service endpoint.

 Note:

Changes made directly to configuration files must be replicated manually across the cluster, as applicable.
If the PingFederate servers are running, you must restart them after you replicate the changes.

Console configuration push
When multiple PingFederate servers are set up to run as a cluster, the administrative console provides a
Cluster Management window.

Whenever applicable changes are made through the administrative console, a message appears at top of
the console as a reminder to go to the Cluster Management window and to replicate the current console
configuration to all server nodes in the cluster.

 Note:

You must also use the Replicate Configuration window to initiate the transmission of the license file from
the console node to all server nodes.

The Cluster Management window is also useful for verifying the current member servers of your
PingFederate cluster.

Configuration-archive deployment
Uploading configuration archives is an alternate method of copying configurations to clustered
PingFederate servers.

After you configure or reconfigure the console, you can also update cluster nodes by downloading a
configuration archive from the System # Server # Configuration Archive window and then deploying it
either manually or using a scripted process to the <pf_install>/pingfederate/server/default/
data/drop-in-deployer directory on each cluster node or provisioning-failover server.

 Attention:

If you use the drop-in deployment process:

Copyright ©2024

 | Administrator's Reference Guide | 212

▪ PingFederate will not let you import the configuration archive of an older or newer version, and to
ensure successful importation of the configuration archive file with this process, you must rename the
file data.zip.

▪ On startup, the heartbeat endpoint will not return 200 until the archive import completes. If you have
configured a health check or probe that can trigger a restart of the server, crash loop behavior can
result. Review the configuration of these checks to ensure time thresholds are set appropriately.

A configuration archive contains the same information sent during the configuration push from the
administrative console described in Console configuration push on page 211. However, configuration-
archive deployment also provides for scheduling and scripting cluster synchronization.

Runtime state-management services

If you have configured one of the following runtime state-management services on the engine nodes, you
must manually migrate the configuration files to the engine nodes. The configuration files are locted at
<pf_install>/pingfederate/server/default/conf

Configuration file and service implementation

Configuration file RPC-based service implementation

cluster-account-
locking.conf

Account Locking Service on page 198

cluster-
artifact.conf

Artifact-Message Persistence and Retrieval Service on page 196

cluster-
assertion-replay-
prevention.conf

Assertion Replay Prevention Service on page 195

cluster-
idp-session-
registry.conf

IdP Session Registry Service on page 194

cluster-inter-
request-state.conf

Inter-Request State-Management (IRSM) Service on page 193

cluster-session-
revocation.conf

Back-Channel Session Revocation Service on page 197

cluster-
sp-session-
registry.conf

SP Session Registry Service on page 194

Administrator's Reference Guide

This guide provides information about using PingFederate to deploy a secure internet single sign-on (SSO)
solution based on the latest security and e-business standards.

Use this guide to learn about the following:

▪ Attribute mapping expressions on page 213
▪ Authentication policies on page 219
▪ Bundled adapters on page 285
▪ Customer IAM configuration on page 337
▪ Customizing assertions and authentication requests on page 368

Copyright ©2024

 | Administrator's Reference Guide | 213

▪ Fulfillment by datastore queries on page 374
▪ IdP-to-SP bridging on page 384
▪ Identity provider SSO configuration on page 395
▪ OAuth configuration on page 486
▪ Security management on page 614
▪ Self-service user account management on page 658
▪ Service provider SSO configuration on page 666
▪ System administration on page 771
▪ System settings on page 859
▪ Troubleshooting on page 958
▪ WS-Trust STS configuration on page 976

Attribute mapping expressions
As of PingFederate 10.1, the use of expressions is enabled by default. You can use the Expression Admin
administrative role to map user attributes by using OGNL expressions.

If you upgraded to PingFederate 10.1 from a previous version, the use of expressions is still enabled or
disabled based on the configuration in the earlier version. Also, when upgrading PingFederate to 10.1
or later, administrative users who were granted the Admin role in the earlier installation are granted the
Expression Admin role automatically.

Enabling and disabling expressions
As of PingFederate 10.1, the use of expressions is enabled by default. You can manually disable the use
of expressions by editing a configuration file.

About this task

When upgrading PingFederate to 10.1 or later, administrative users who were granted the Admin role in
the earlier installation are granted the Expression Admin role automatically.

You can disable the use of expressions by setting evaluateExpressions to false as described
in the following procedure. Also, go to System # Server # Administrative Accounts and remove
the Expression Admin role from all Admin users. Doing this will prevent Admin users from entering
expressions into PingFederate if the evaluateExpressions element is set to true at a later time. For
more information, see Administrative accounts on page 864.

 Important:

If the current configuration contains expressions, disabling the feature causes errors during runtime
processing.

Steps

1. Edit the org.sourceid.common.ExpressionManager.xml file, located in the <pf_install>/
pingfederate/server/default/data/config-store directory.

 Note:

If you have a clustered PingFederate environment, edit the configuration file on the console node.

Copyright ©2024

 | Administrator's Reference Guide | 214

2. Change the value of the element named evaluateExpressions to either true or false and save
the file.

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://www.sourceid.org/2004/05/config">
 <item name="evaluateExpressions">true</item>
</config>

 Note:

The absence of an installed default value does not necessarily disable the use of expressions.
You can successfully import configuration archives containing expressions to facilitate backward
compatibility when no value is present, and further use of the feature is enabled. The term “silent” is
used for this condition in the server log.

3. If you have a stand-alone PingFederate environment, start or restart PingFederate.

 Tip:

If you are enabling expressions to use for mapping outbound provisioning attributes, you do not need
to restart the PingFederate server.

4. If you have a clustered PingFederate environment:

a. Sign on to the PingFederate administrative console.
b. From System # Server # Cluster Management, click Replicate Configuration.

Result

When you enable expressions, they are available for use in multiple locations:

▪ The Source list under each of the administrative-console contract fulfillment windows
▪ The Show Advanced Criteria section on the Issuance Criteria window following each of the

administrative-console contract fulfillment windows
▪ The provisioning attribute-mapping window when the Outbound Provisioning protocol is enabled

Construct OGNL expressions
Use OGNL expressions and syntax to evaluate and manipulate attribute values and return information
based on the results.

OGNL is based on the Java programming language. You can transform a range of values into a text
description or do the same for a sequence of ranges.

Use the # symbol to reference OGNL variables. For an identity provider (IdP), PingFederate provides
predefined OGNL variables for IdP-adapter attributes, any attributes retrieved from datastores, and
attributes for token authorization. For a service provider (SP), variables are available for attributes received
in an assertion, an attribute query, and attributes for token authorization. For example, you can retrieve the
SAML_SUBJECT value with #SAML_SUBJECT.

 Note:

Use the following construction for any attributes from any source that contain special characters that
cannot be parsed by OGNL: #this.get("<attribute_name>").

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 215

Because OGNL uses the “at” symbol (@) to reference static Java methods, expressions containing
the symbol must be enclosed in double quotes. Otherwise, expression parsing fails. For example, use
#SAML_SUBJECT="usr@msn.com", not #SAML_SUBJECT=usr@msn.com.

Data store syntax

For datastore attributes with an attribute source ID, use the #this.get("ds.attr-source-
id.attribute_name") syntax.

For datastore attributes without an attribute source ID, use the #this.get("ds.attribute_name")
syntax.

Other variable syntax

To access mapped attributes, use the #this.get("mapped.attribute_name") syntax.

To access most context attributes, use the #this.get("context.attribute_name") syntax.

To access the HTTP Request context attribute, use the
#this.get("context.HttpRequest").getObjectValue() syntax.

 Note:

The returned value is an instance of javax.servlet.http.HttpServletRequest. See http://
docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html.

Sample OGNL expressions
OGNL expressions provide the flexibility to evaluate and manipulate values. These applications include
using the following expressions to determine net worth, form a single sign-on (SSO) token, verify a user's
group, retrieve a value from an HTTP request object, and check the authenticity of a client certificate..

General

In this sample expression, the value of the attribute “net-worth” is transformed first to eliminate any dollar
signs or commas, then the result is evaluated to determine whether the user's net worth falls into a
“bronze,” “silver,” or “gold” category.

#result=#this.get("net-worth").toString(),
#result=#result.replace("$",""),
#result=#result.replace(",",""),
#result < 500000 ? "bronze" :
#result < 1000000 ? "silver" : "gold"

Multivalued attribute

new org.sourceid.saml20.adapter.attribute.AttributeValue({"Blue", "Gray",
 "Pink"})

This expression formulates a multivalued attribute in an SSO token.

<saml:Attribute Name="clrs" ...>
 <saml:AttributeValue ...>Blue</saml:AttributeValue>
 <saml:AttributeValue ...>Gray</saml:AttributeValue>
 <saml:AttributeValue ...>Pink</saml:AttributeValue>
</saml:Attribute>

Copyright ©2024

http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html

 | Administrator's Reference Guide | 216

and

{
 ...,
 "clrs": [
 "Blue",
 "Gray",
 "Pink"
],
 ...
}

In these truncated samples, clrs is the multivalued attribute. The former is a SAML assertion through a
SAML service provider (SP) connection. The latter is a JSON web token (JWT) through a WS-Federation
SP connection using JWT as the token type.

Token authorization

This expression verifies whether a user is a member of the “Engineering” or “Marketing” group.

#this.get("ds.memberOf")!=null?
(
 (
 #this.get("ds.memberOf").hasValue("CN=Eng,OU=E,DC=contoso,DC=com")
 &&
 #this.get("context.VirtualServerId").toString().equals("Engineering")
)
 ||
 (
 #this.get("ds.memberOf").hasValue("CN=Mkt,OU=M,DC=contoso,DC=com")
 &&
 #this.get("context.VirtualServerId").toString().equals("Marketing")
)
):false

The following expression extracts the domain information out of an email address (mail) and returns true
if it matches a specific domain.

#this.get("mail")!=null?
(
 #email=#this.get("mail").toString(),
 #atSign="@",
 #at=#mail.indexOf(#atSign),
 #at > 0?
 (
 #domain=#mail.subject(#at+1),
 #domain.matches("(?i)example.com")
):false
):false

 Note:

Line breaks are inserted to both samples for readability only. You must enter statements calling methods
whose arguments are enclosed in quote on a single line.

Copyright ©2024

 | Administrator's Reference Guide | 217

This sample expression returns true when the IP address of the client is within the specified CIDR range of
fe80::74da:14b:76d1:eba3/128.

#isWithinCidrRange =
 @com.pingidentity.sdk.CIDROperations@isInRange(#this.get("context.ClientIp"),"fe80::74da:14b:76d1:eba3/128")

The isInRange method supports both IPv4 and IPv6 CIDR notations.

HTTP request context

You can use the following example to retrieve a value from an HTTP request object. The expression
retrieves the User-Agent HTTP header value and compares it against a value required for token
authorization.

#this.get("context.HttpRequest").getObjectValue().getHeader("User-
Agent").equals("somevalue")

STS client authentication context

This security token service (STS) SSL Client Certificate Chain example checks that the issuer of the client
certificate matches the specified distinguished name (DN).

#this.get("context.StsSSLClientCertChain").getObjectValue()
[1].getSubjectX500Principal().equals(new
 javax.security.auth.x500.X500Principal("CN=Ping Identity
 Engineering,OU=Engineering,O=Ping Identity,L=Denver,ST=CO,C=USA"))

 Note:

#this.get("context.StsSSLClientCertChain").getObjectValue() returns an array of
java.security.cert.X509Certificate instances. This array starts with the client certificate itself.

For more information, see https://docs.oracle.com/javase/8/docs/api/java/security/cert/X509Certificate.html.

Issuance criteria and multiple virtual server IDs
Virtual server IDs offer critical information and functionality in the context of connections.

When you use virtual server IDs to connect to multiple environments in one connection, verifying at runtime
the virtual server ID in conjunction with other end-user attributes, such as group membership, protects
against unauthorized access.

For instance, both the sales and the support departments of contoso.com, the identity provider (IdP), have
their own departmental subdomains, sales.contoso.com and support.contoso.com. The service provider
(SP) identifies both environments under the parent domain, contoso.com.

In this scenario, you can configure the PingFederate IdP server to include both sales.contoso.com and
support.contoso.com as the virtual server IDs in the SP connection.

If you use one IdP adapter to authenticate end users from both departments, use an OGNL expression
to cross-check the virtual server ID information in the request and the end user's group membership
information.

#this.get("ds.memberOf")!=null?
(
 (
 #this.get("ds.memberOf").toString().matches("(?
i)CN=Eng,OU=E,DC=contoso,DC=com")
 &&
 #this.get("context.VirtualServerId").toString()=="Engineering"

Copyright ©2024

https://docs.oracle.com/javase/8/docs/api/java/security/cert/X509Certificate.html

 | Administrator's Reference Guide | 218

)||
 (
 #this.get("ds.memberOf").toString().matches("(?
i)CN=Mkt,OU=M,DC=contoso,DC=com")
 &&
 #this.get("context.VirtualServerId").toString()=="Marketing"
)
):false

 Note:

Line breaks are inserted for readability only. You must enter statements calling methods whose arguments
are enclosed in quotes on a single line.

Expressions for OAuth and OpenID Connect uses cases
You can use OGNL expressions to retrieve various request-attributes through the HTTP Request Java
object.

Client authentication method

The following sample expression retrieves the authentication method that a client uses. This sample
expression is applicable to all clients.

#this.get("context.HttpRequest").getObjectValue().getAttribute("com.pingidentity.oauth.client.authnType")

Private key JSON web token (JWT)

In the following sample expressions, the former retrieves a claim value from the private key JWT with
which a client authenticates and the latter retrieves the private key JWT itself. They are only applicable to
clients using the private_key_jwt authentication method.

Retrieving the aud claim value

#claims =
 #this.get("context.HttpRequest").getObjectValue().getAttribute("com.pingidentity.oauth.client.jwtClaimsMap"),
#claims.get("aud")

Retrieving the entire private key JWT

#this.get("context.HttpRequest").getObjectValue().getParameter("client_assertion")

Using the OGNL edit window
Access the in-line OGNL editor and test expressions.

About this task

An in-line editor is available for OGNL expressions. The editor validates the expression and allows an
administrator to enter input values and test the resulting output.

Copyright ©2024

 | Administrator's Reference Guide | 219

Steps

▪ To reach the OGNL editor, click Edit under Actions for an expression on any of the Attribute
Fulfillment windows or click Test in the Show Advanced Criteria section on the Issuance Criteria
window.

 Note:

The test function does not work for the context.httpRequest attribute because its value is an
object rather than text.

▪ To test an expression:

a. Enter an input value in the Value text box associated with the attribute.
b. Click the Testlink near the bottom-right of the window.

If the expression contains no errors, the result appears under Test Results.

 Important:

If you want to save changes to an expression, click Update under Actions. To discard changes,
click the Cancel link under Actions. Click the Cancel button near the bottom of the window to
discard all changes you made in the current task.

Authentication policies
Authentication policies are an optional configuration in PingFederate and help administrators implement
complex authentication requirements.

As needed, administrators can configure one or more authentication selector instances to evaluate
conditions of the requests and define policies to route the request to a series of approved authentication
sources or deny the request based on the results from the authentication selector instances, authentication
sources, or both. Administrators can also reuse an authentication policy by ending it with an authentication
policy contract or a local identity profile and then applying the authentication policy contract in multiple use
cases.

Copyright ©2024

 | Administrator's Reference Guide | 220

Copyright ©2024

 | Administrator's Reference Guide | 221

Processing steps

1. A client initiated authentication request is sent to PingFederate.
2. PingFederate evaluates the authentication policy, which defines the decision to route a request

through a series of approved authentication sources.
3. The authentication policy is mapped to the policy contract.

The authentication policy determines how the user signs on and drives the authentication experience,
such as form based authentication, Kerberos authentication, or MFA.

 Note:

PingFederate can enforce authentication policies based on the requesting OAuth client as well as only
enforce policy rules for authentication policy contract branches that are mapped to an access token
manager (ATM). For more information, see Policies.

4. For an OIDC/OAuth flow, the policy contract checks the attribute contract connected to authentication
sources or datastores, or for a SAML connection, the policy contract checks the SAML connection tied
to the policy contract.

 Important:

For an OIDC authentication flow, you must set up an OIDC application in PingFederate. For more
information, see Setting up an OIDC application in PingFederate.

5. The authentication request either succeeds or fails based on the results of the policy evaluation and
authentication requirements.

Selectors
Authentication selectors provide a plugin capability for PingFederate to evaluate various conditions related
to the requests. PingFederate comes bundled with a set of authentication selectors.

As an example, you can create an HTTP Header Authentication Selector to detect mobile browsers,
a CIDR Authentication Selector to evaluate whether the users' IP addresses fall within your internal
network ranges, or an HTTP Request Parameter Authentication Selector to identify identity provider (IdP)
connections based on the PartnerIdpId parameter values provided in the service provider (SP)-initiated
SSO requests.

Alternatively, you can create custom authentication selectors that suit your needs by using the
PingFederate SDK.

 Tip:

The Javadoc for is located in the <pf_install>/pingfederate/sdk/doc directory.

Managing authentication selector instances
You can manage authentication selectors on the Selectors window in the PingFederate administrative
console.

Steps

▪ Go to Authentication # Policies # Selectors.
▪ To configure a new instance, on the Selectors window, click Create New Instance.
▪ To modify an existing instance, select it by its name under Instance Name.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingfederate-103/page/jul1564002986701.html
https://docs.pingidentity.com/bundle/pingfederate-103/page/bnh1587498053557.html
https://docs.pingidentity.com/bundle/pingfederate-103/page/aat1564002989773.html
https://docs.pingidentity.com/bundle/pingfederate-103/page/qmq1564002987890.html
https://docs.pingidentity.com/bundle/solution-guides/page/ywg1598030491145.html

 | Administrator's Reference Guide | 222

▪ To remove an existing instance or to cancel the removal request, click Delete or Undelete.

 Note:

You can only remove a selector instance if it is not deployed in any authentication policy.

Choosing a selector type
Choose an authentication selector instance from the list of available selector types.

Steps

1. Go to Authentication # Policies # Selectors.

2. Click Create New Instance.

3. In the Instance Name field, enter an instance name.

4. In the Instance ID field, enter an instance ID.

5. From the Typelist, select the desired type of authentication selector.

Configuring an authentication selector instance
The configuration of an authentication selector instance varies depending on the authentication selectors
deployed on your server.

Steps

1. Refer to subsequent topics for configuration steps of each of the bundled authentication selectors.

2. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Configuring the CIDR Authentication Selector
The CIDR Authentication Selector enables PingFederate to choose configured authentication sources or
other selectors based on the IP address of an incoming single sign-on request.

About this task

Use this selector in authentication policies to choose from authentication sources that share a similar
level of assurance, such as among multiple HTML Form Adapter instances or between a Kerberos
Adapter instance and an X.509 identity provider (IdP) Adapter instance. For example, use this selector in
authentication policies to route internal requests to a Kerberos Adapter instance.

Steps

1. Go to Authentication # Policies # Selectors to open the Selectors window.

2. On the Selectors window, click Create New Instance to start the Create Authentication Selector
Instance workflow.

3. On the Type tab, configure the basics of this authentication selector instance.

Copyright ©2024

 | Administrator's Reference Guide | 223

4. On the Authentication Selector tab, click Add a new row to 'Networks' and enter a network range.
Click Update.

 Note:

To see the Add a new row to 'Networks' option, ensure you have set the Authentication Selector
Instance type to CIDR Authentication Selector on the Type tab.

Example:

Sample IPv4 network range

Enter 192.168.101.0/24 to cover 256 IPv4 addresses, ranging from 192.168.101.0
through 192.168.101.255.

Sample IPv6 network range

Enter 2001:db8::/123 to cover 32 IPv6 addresses, ranging from 2001:db8:: through
2001:db8::1f.

5. Optional: Repeat the previous step to add more network ranges.

 Note:
Display order does not matter.

 Tip:

If you want to include all IPv4 addresses for testing, add two separate ranges: 0.0.0.0/1 and
128.0.0.0/1. The CIDR Authentication Selector interprets a specification of 0.0.0.0/0 as an
empty range rather than as a wildcard for all addresses.

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

6. Optional: Enter a Result Attribute Name value.

 Note:

This field provides a means to indicate in the SAML assertion whether a network range was matched
during processing; the value is either Yes or No. Any authentication sources configured as a result of
this authentication selector must have their attribute contract extended with the value of the Result
Attribute Name field in order to use its value to fulfill an attribute contract or for issuance criteria.

7. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Result

When you place this selector instance as a checkpoint in an authentication policy, it forms two policy paths:
Yes and No. If the IP address of an incoming single sign-on (SSO) request matches one of the defined
network ranges, the selector returns true. The policy engine regains control of the request and proceeds
with the policy path configured for the result value of Yes. If the IP address of an incoming SSO request
matches none of the defined network ranges, the selector returns false. The policy engine regains control
of the request and proceeds with the policy path configured for the result value of No.

Copyright ©2024

 | Administrator's Reference Guide | 224

Configuring the Cluster Node Authentication Selector
The Cluster Node Authentication Selector enables PingFederate to choose configured authentication
sources or other selectors based on the PingFederate cluster node that is servicing the request in
authentication policies.

About this task

For example, this selector allows you to choose whether Integrated Windows Authentication (IWA)
is attempted based on the PingFederate cluster node with which a Key Distribution Center (KDC) is
associated.

Steps

1. Go to Authentication # Policies # Selectors to open the Selectors window.

2. On the Selectors window, click Create New Instance to start the Create Authentication Selector
Instance workflow.

3. On the Type tab, configure the basics of this authentication selector instance.

4. On the Authentication Selector window, select the Field Value on which to branch policy paths. The
authentication selector provides a means of choosing authentication sources at runtime based on the
cluster node on which it is executing.

Node Index

Select Node Index to use the pf.cluster.node.index value specified in
run.properties.

Node Tag

Select Node Tag to use the node.tags values specified in run.properties.

5. On the Selector Result Values window, specify the relevant node index or node tag values.

 Note:

Each selector result value forms a policy path when you place this selector instance as a checkpoint in
an authentication policy.

a. In the Result Values field, enter a node index or node tag value based on your cluster
configuration and click Add. This value should correspond to a node index or node tag of one of
the engine nodes in the cluster.

b. Optional: Add more values to differentiate criteria for authentication selection.

 Note:

Display order does not matter.

Use the Edit, Update, and Cancel workflow to make or undo a change to an existing entry. Click
Delete to remove an entry.

6. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Copyright ©2024

 | Administrator's Reference Guide | 225

Configuring the Connection Set Authentication Selector
The Connection Set Authentication Selector enables PingFederate to choose configured authentication
sources or other selectors based on a match found between the target service provider (SP) connection
used in a single sign-on (SSO) request and SP connections configured within PingFederate.

About this task

This selector allows you to override connection authentication selection on an individual connection basis
in one or more authentication policies.

Steps

1. Go to Authentication # Policies # Selectors to open the Selectors window.

2. On the Selectors window, click Create New Instance to start the Create Authentication Selector
Instance workflow.

3. On the Type tab, configure the basics of this authentication selector instance.

4. From the Type list, make sure you select Connection Set Authentication Selector.

5. Click Next. In the Authentication Selector window, click Add a new row to 'Connections'.

6. From the Connection list, select an SP connection and click Update.

7. Optional: Repeat the previous step to add more connections. Display order does not matter.

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

8. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Result

When you place this selector instance as a checkpoint in an authentication policy, it forms two Yes and
No policy paths. If the invoking SP connection matches one of the connections from the set, the selector
returns true. The policy engine regains control of the request and proceeds with the policy path configured
for the result value of Yes. If the invoking SP connection matches none of the connections from the set, the
selector returns false. The policy engine regains control of the request and proceeds with the policy path
configured for the result value of No.

Configuring the Extended Property Authentication Selector
The Extended Property Authentication Selector enables PingFederate to choose configured authentication
sources or other selectors based on a match found between a selector result value and an extended
property value from the invoking browser-based SSO connections or OAuth client.

Steps

1. Go to Authentication # Policies # Selectors to open the Selectors window.

2. On the Selectors window, click Create New Instance to start the Create Authentication Selector
Instance workflow.

3. On the Type tab, configure the basics of this authentication selector instance.

4. On the Authentication Selector tab, select a property from the Extended Property list.

 Note:

The extended property is the property that this selector instance should look for from the invoking
connection or client, and compare the populated property value, or values if it is a multivalued
extended property, against the selector result values defined in this selector instance.

Copyright ©2024

 | Administrator's Reference Guide | 226

5. On the Selector Result Values tab, specify one or more expected result values.

a. Enter the exact, case-sensitive, value under Result Values and click Add.
b. Optional: Add more values to differentiate criteria for authentication selection.

Display order might matter.

Expected result values are always sorted alphabetically in ascending order here.

When you place this selector instance as a checkpoint in an authentication policy, each selector
result value forms a policy path. The display order of the resulting policy paths matches the
display order here, which may impact the policy outcome. When the policy engine reaches this
selector instance, the selector starts from top to bottom. As soon as it finds a match, it exits and
returns true. The matching mechanism varies, depending on the type of the extended property
selected in step 4.

Matching mechanism for single-value extended properties

The selector compares the property value populated in the invoking connection or client
against the configured selector result value. When multiple selector result values exist, the
selector starts from the top. If the current selector result value is a case-sensitive exact
match, it returns true and exits. Otherwise, it moves on to the next selector result value and
tries again.

For example, assume this selector instance, named ExtProps, is configured with expected
result values of Alpha, Bravo, and Charlie. The invoking connection is populated with an
extended property value of Bravo, and this selector instance is placed as a checkpoint in
an authentication policy as follows.

ExtProps
+--Alpha
| <policy path>
|
+--Bravo
| <policy path>
|
+--Charlie
 <policy path>

Given this setup, the selector returns true and exits when it reaches the second selector
result value. The policy engine regains control of the request and proceeds with the policy
path configured for the selector result value of Bravo.

Matching mechanism for multivalued extended properties

The selector compares the property values populated in the invoking connection or client
against the configured selector result value. If any one of the property values from the
invoking connection or client is a case-sensitive exact match, the selector returns true
and exits. When multiple selector result values exist, the selector starts from the top. If the
current selector result value is a case-sensitive exact match to any one of the property
values from the invoking connection or client, it returns true and exits. Otherwise, it moves
on to the next selector result value and tries again.

For example, assume the previous selector instance remains. The invoking connection is
populated with extended property values of Alpha and Charlie, and this selector instance
remains as a checkpoint in an authentication policy.

In this scenario, the selector returns true and exits when it reaches the first selector result
value. The policy engine regains control of the request and proceeds with the policy path
configured for the selector result value of Alpha. Even though Charlie, the expected
selector result value, is also a case-sensitive exact match to Charlie, one of the property
values from the invoking connection, because the selector has already exited and returned

Copyright ©2024

 | Administrator's Reference Guide | 227

control to the policy engine when it reaches Alpha, the policy engine will never execute the
policy path configured for the selector result value of Charlie.

Use the Edit, Update, and Cancel workflow to make or undo a change to an existing entry. Click
Delete to remove an entry.

6. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Example

1. Go to System # Server # Extended Properties.
2. On the Extended Propertieswindow, define a multivalued extended property, and name it

configStatus.
3. Create an SP connection with the following characteristics:

▪ On the Extended Properties window, add two values for the configStatus extended property:
DEV and TEST.

▪ On the Attribute Source Mapping window, map an authentication policy contract to the service
provider (SP) connection. The policy contract name is APC.

4. Create an instance of the Extended Property Authentication Selector with the following characteristics:

▪ On the Type tab, name the selector instance ExProps.
▪ On the Authentication Selector tab, select configStatus from the list.
▪ On the Selector Result Values tab, enter DEV and TEST.

5. Create and activate the following identity provider (IdP) authentication policy.

ExtProps
+--DEV
| OpenToken
| +--Fail: Done
| +--Success: APC
|
+--TEST
 HTML
 +--Fail: Done
 +--Success: APC

Configure each APC to fulfill values obtained from its preceding adapter instance.

When processing SSO requests intended for this SP connection, because the policy engine is able to
match one of the populated property values, DEV, from the SP connection to the first selector result value,
also DEV, it will always invoke the OpenToken IdP Adapter instance based on the DEV policy path. The
TEST policy path is never executed for this SP connection.

On the other hand, if you remove DEV, an extended property value, from the SP connection, the policy
engine will route SSO requests intended for this SP connection to the HTML Form Adapter instance based
on the TEST policy path. The DEV policy path is never executed for this SP connection.

Configuring the HTTP Header Authentication Selector
The HTTP Header Authentication Selector enables PingFederate to choose configured authentication
sources or other selectors based on a match found in a specified HTTP header.

About this task

Use this selector in one or more authentication policies to choose from authentication sources that share a
similar level of assurance, such as among multiple HTML Form Adapters or between a Kerberos Adapter

Copyright ©2024

 | Administrator's Reference Guide | 228

and an X.509 Adapter. For example, use this selector to choose an authentication source based on the
user's browser identified by the User-Agent HTTP header.

 Important:

Do not use this selector to determine whether an authentication source with a higher level of assurance
should be bypassed because HTTP request headers could potentially be forged.

Steps

1. Go to Authentication # Policies # Selectors to open the Selectors window.

2. On the Selectors window, click Create New Instance to start the Create Authentication Selector
Instance workflow.

3. On the Type tab, configure the basics of this authentication selector instance.

4. On the Authentication Selector tab, click Add a new row to 'Results'.

5. Enter an expression for use when inspecting the HTTP header value of the target HTTP header under
Match Expression, and click Update.

 Note:

Wildcard entries are allowed, such as *value*.

6. Optional: Repeat the previous step to add more expressions. Display order does not matter.

 Note:

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

7. In the Header Name field, enter the type of HTTP header you want the selector to inspect. This field is
not case-sensitive.

8. Optional: To disable case-sensitive matching between the HTTP header values from the requests and
the Match Expression values specified on this window, clear the Case-Sensitive Matching check
box.

The Case-Sensitive Matching check box is selected by default.

9. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Result

When you place this selector instance as a checkpoint in an authentication policy, it forms two policy paths:
Yes and No. If the value of the specified HTTP header matches one of the configured values, the selector
returns true. The policy engine regains control of the request and proceeds with the policy path configured
for the result value of Yes. If the value of the specified HTTP header matches none of the configured
values, the selector returns false. The policy engine regains control of the request and proceeds with the
policy path configured for the result value of No.

Copyright ©2024

 | Administrator's Reference Guide | 229

Example

Example

To detect the most common browsers based on the User-Agent HTTP request header, configure an
HTTP Header Authentication Selector instance as follows.

1. Enter these entries under Match Expression.

Browser Expression

Chrome *Chrome*

Firefox *Firefox*

Internet Explorer *MSIE*

 Tip:

For more information, see User-agent string changes from Microsoft.

Safari *Safari*

2. In the Header Name field, enter User-Agent.

Configuring the HTTP Request Parameter Authentication Selector
The HTTP Request Parameter Authentication Selector enables PingFederate to choose configured
authentication sources or other selectors based on query parameter values.

About this task

Use this selector in one or more authentication policies to choose from authentication sources that share
a similar level of assurance, such as among multiple instances of the HTML Form Adapter or between a
Kerberos Adapter instance and an X.509 Adapter instance. For example, use an instance of this selector
to choose an authentication experience based on the reward program information indicated by a query
parameter in the single sign-on (SSO) request.

 Important:

Do not use this selector to determine whether an authentication source with a higher level of assurance
should be bypassed because query parameters could potentially be forged.

Steps

1. Go to Authentication # Policies # Selectors to open the Selectors window.

2. On the Selectors window, click Create New Instance to start the Create Authentication Selector
Instance workflow.

3. On the Type tab, configure the basics of this authentication selector instance.

4. On the Authentication Selector tab, configure the applicable selector instance settings.

a. Enter the exact, case-sensitive name of the request parameter in the HTTP Request Parameter
Name field.

 Important:

The policy engine is capable of tracking HTTP request parameters that it receives from the
initial request and making them available to selector instances throughout the policy. If you
plan on using this selector instance as the second, or subsequent, checkpoint in at least one

Copyright ©2024

https://msdn.microsoft.com/library/hh869301.aspx

 | Administrator's Reference Guide | 230

authentication policy, add the HTTP Request Parameter Name value on the Tracked HTTP
Parameters window. For more information, see Defining authentication policies on page 242.

b. Optional: To disable case-sensitive matching between the HTTP request parameter values from
the requests and the Match Expression values specified on the Selector Result Values window,
clear the Case-Sensitive Matching check box.

 Note:

The Case-Sensitive Matching check box is selected by default.

c. Optional: Enable policy paths to handle additional scenarios.

For more information, see the following table.

Field Description

Enable 'Any' Result
Value

Each configured selector result value forms a separate authentication
policy path.

Select this check box if you want to enable a single policy path for the
scenario where the HTTP request parameter value matches any one of
the configured selector result values.

This check box is not selected by default.

Enable 'No Match'
Result Value

Selector evaluation fails and the next applicable authentication policy is
executed when the HTTP request parameter value does not match any
of the configured selector result values.

Select this check box if you want to enable a policy path to handle this
scenario.

This check box is not selected by default.

Enable 'Not in
Request' Result Value

Selector evaluation fails and the next applicable authentication policy is
executed if the HTTP request parameter is not found.

Select this check box if you want to enable a policy path to handle this
scenario.

This check box is not selected by default.

5. On the Selector Result Values window, enter a request parameter value under Result value, and
then click Add.

 Note:

Wildcard entries are allowed, such as *value*.

 Important:

A more specific match is a better match and an exact match is the best match.

Copyright ©2024

 | Administrator's Reference Guide | 231

6. Optional: Repeat the previous step to add more request parameter values. Display order does not
matter.

 Note:

If you have not enabled the Any policy path in step 4c, each selector result value forms a policy path
when you place this selector instance as a checkpoint in an authentication policy.

If you have enabled the Any policy path, only one policy path is formed.

Use the Edit, Update, and Cancel workflow to make or undo a change to an existing entry. Click
Delete to remove an entry.

7. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Example

Example

Suppose you enter three selector result values, Central, Eastern, and Southern, on the Selector
Result Values window, as illustrated in the following screen capture.

If you have not enabled any additional policy paths in step 4c, as you place this selector instance as a
checkpoint in an authentication policy, three policy paths are extended from the selector instance, one for
each of the configured selector result values.

Configuring the OAuth Client Set Authentication Selector
The OAuth Client Set Authentication Selector selector allows you to override client authentication select on
an individual client basis in one or more authentication policies.

About this task

The selector enables PingFederate to choose configured authentication sources or other selectors based
on a match found between the client information in an OAuth request and the OAuth clients configured in
the PingFederate OAuth authorization server (AS).

 Note:

The OAuth Client Set Authentication Selector is only applicable to OAuth clients using the authorization
code or implicit flow.

Steps

1. Go to Authentication # Policies # Selectors to open the Selectors window.

2. On the Selectors window, click Create New Instance to start the Create Authentication Selector
Instance workflow.

3. On the Type tab, configure the basics of this authentication selector instance.

Copyright ©2024

 | Administrator's Reference Guide | 232

4. On the Authentication Selector tab, click Add a new row to 'Clients'.

 Note:

If you do not see Add a new row to 'Clients', go back to the Type tab and ensure you have selected
OAuth Client Set Authentication Selector from the Type list.

5. From the Client ID list, select an OAuth client and click Update.

6. Optional: Repeat the previous step to add more clients.

Display order does not matter.

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

7. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Result

When you place this selector instance as a checkpoint in an authentication policy, it forms two policy paths:
Yes and No. If the invoking client matches one of the clients from the set, the selector returns true. The
policy engine regains control of the request and proceeds with the policy path configured for the result
value of Yes. If the invoking client matches none of the clients from the set, the selector returns false. The
policy engine regains control of the request and proceeds with the policy path configured for the result
value of No.

Configuring the OAuth Scope Authentication Selector
The OAuth Scope Authentication Selector enables PingFederate to choose configured authentication
sources or other selectors based on a match found between the scopes of an OAuth authorization request
and scopes configured in the PingFederate OAuth authorization server (AS).

Before you begin

Go to System # OAuth Settings # Authorization Server Settings and configure one or more scopes.

About this task

This selector allows you to control the strength of authentication based on client access requirements. For
example, if a client requires write access to a resource, you can deploy an instance of the OAuth Scope
Authentication Selector in one or more authentication policies to choose an adapter that offers a stronger
form of authentication, such as the X.509 client certificate, instead of username and password.

Steps

1. Go to Authentication # Policies # Selectors to open the Selectors window.

2. On the Selectors window, click Create New Instance to start the Create Authentication Selector
Instance workflow.

3. On the Type tab, configure the basics of this authentication selector instance.

Copyright ©2024

 | Administrator's Reference Guide | 233

4. On the Authentication Selector tab, select the required scopes, scope groups, or both.

 Note:

Both common and exclusive scopes are available for selection.

 Important:

This selector matches only scopes from OAuth authorization requests to the authorization endpoint, /
as/authorization.oauth2. SAML single sign-on (SSO) requests do not match this authentication
selector's criteria and result in a returned result value of No. If you are using this selector and selectors
specific to SAML connections, list this selector first in the mapping list so that it takes precedence for
OAuth without disrupting selector logic on SAML connections.

5. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Result

When you mark this selector instance as a checkpoint in an authentication policy, it forms two policy paths:
Yes and No. If the requested scopes satisfy all the selected scopes, the selector returns true. The policy
engine regains control of the request and proceeds with the policy path configured for the result value of
Yes. If the requested scopes do not satisfy all the selected scopes, the selector returns false. The policy
engine regains control of the request and proceeds with the policy path configured for the result value of
No.

Configuring the Requested AuthN Context Authentication Selector
The Requested AuthN Context Authentication Selector enables PingFederate to choose configured
authentication sources or other selectors.

About this task

This selector chooses authentication sources or selectors based on the authentication contexts requested
by a service provider (SP) for browser single sign-on (SSO) requests, or a relying party (RP) for OAuth with
OpenID Connect use cases in authentication policies.

For browser SSO, this authentication selector works in conjunction with SP connections with SAML 2.0
only, using the SP-initiated SSO profile. Other browser SSO protocols do not support authentication
context. For OAuth, clients supporting the OpenID Connect protocol must include the optional
acr_values parameter in their authorization requests to indicate their preferred authentication context, or
contexts.

Steps

1. Go to Authentication # Policies # Selectors to open the Selectors window.

2. On the Selectors window, click Create New Instance to start the Create Authentication Selector
Instance workflow.

3. On the Type tab, configure the basics of this authentication selector instance.

Copyright ©2024

 | Administrator's Reference Guide | 234

4. On the Authentication Selector tab, configure the applicable selector instance settings.

a. Select the Add or Update AuthN Context Attribute check box if you want to update the
authentication context attribute value with the value specified in the Selector Result Values tab.

Result:

When selected, which is the default, the check box on this window provides a means to:

▪ Add the value of the authentication context determined by the selector into the SAML
assertion.

▪ When applicable, replace any value returned from the associated adapter instance with the
selector-result value.

b. Optional: Enable policy paths to handle additional scenarios.

For more information, refer to the following table.

Field Description

Enable 'No Match'
Result Value

Selector evaluation fails and the next applicable authentication policy is
executed if the requested authentication context does not match any of
the configured selector result values.

Select this check box if you want to enable a policy path to handle this
scenario. This check box is not selected by default.

Enable 'Not in
Request' Result Value

Selector evaluation fails and the next applicable authentication policy is
executed if no requested authentication context is found.

Select this check box if you want to enable a policy path to handle this
scenario. This check box is not selected by default.

5. On the Selector Result Values window, specify the authentication contexts to use as the criteria.

a. Enter the exact, case-sensitive parameter value under Result Values, and then click Add.

 Note:

The value can include URIs defined in Authentication Context for the OASIS Security Assertion
Markup Language (SAML) 2.0 or any other value agreed upon with the partner.

b. Optional: Add more values to differentiate criteria for authentication selection.

Display order does not matter.

Each selector result value forms a policy path when you place this selector instance as a
checkpoint in an authentication policy (regardless of whether you have enabled the No Match or
Not in Request policy path in step 4b).

Use the Edit, Update, and Cancel workflow to make or undo a change to an existing entry. Click
Delete to remove an entry.

6. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Configuring the Session Authentication Selector
The Session Authentication Selector enables PingFederate to choose a policy path at runtime based on
whether the user already has a PingFederate authentication session for a particular source.

Steps

1. Go to Authentication # Policies # Selectors to open the Selectors window.

Copyright ©2024

https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf

 | Administrator's Reference Guide | 235

2. On the Selectors window, click Create New Instance to start the Create Authentication Selector
Instance workflow.

3. On the Type tab, configure the basics of this authentication selector instance.

4. On the Authentication Selector window, click Add a new row to 'Authentication Sources'.

5. Select an IdP adapter instance or an IdP connection from the list, enter a value under Result Value for
the selected authentication source, then click Update.

The Result Value field controls the label shown for the policy path created by the selected
authentication source.

 Note:

You must enable authentication sessions for the selected authentication source, or globally for all
authentication sources, on theSessions window. Click Manage Sessions to review and configure
authentication sessions.

6. Optional: Repeat the previous step to add more authentication sources.

Display order might matter.

When you place this selector instance as a checkpoint in an authentication policy, each selector result
value forms a policy path. The display order of the resulting policy paths matches the display order
here, which may impact the policy outcome. When the policy engine reaches this selector instance,
the selector starts from top to bottom. It exits and returns true as soon as it finds a match.

As needed, use the up and down arrows to re-arrange the display order here, which also re-prioritizes
the resulting policy paths.

In addition, when no session exists for any of the defined sources, the result value for the first
authentication source is returned unless the Enable 'No Session' Result Value check box is selected,
in which case an additional policy path is added as the last path when this selector instance is placed
as a checkpoint in an authentication policy.

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

7. Optional: Select the Enable 'No Session' Result Value check box to create a separate policy path for
the scenario where no session exists for any of the defined sources.

This check box is not selected by default.

8. Complete the configuration.

a. On the Summary tab, click Done.
b. On the Selectors window, click Save.

Result

When you place this selector instance as a checkpoint in an authentication policy, each selector result
value forms a policy path that you can define the desired authentication experience and requirements.

Example

Example

The following screen capture illustrates a configuration where three authentication sources are defined and
the Enable 'No Session' Result Value check box is selected.

When this selector instance (named Intranet sessions) is placed in a policy, four policy paths are formed.

Copyright ©2024

 | Administrator's Reference Guide | 236

Configuring a sample use case
Use the following sample setup to configure one of the common use cases where you have two categories
of service providers (SPs).

Before you begin

For this sample use case, you must have the following components:

▪ An authentication policy contract
▪ Multiple SP connections. All connections use the same authentication policy contract as their sole

authentication source
▪ Instances of the required adapters
▪ An instance of the Connection Set Authentication Selector to isolate high-value connections from the

rest of the connections

About this task

The Session Authentication Selector enables to choose a policy path at runtime based on whether the
user already has a authentication session for a particular source..

You need to enforce authentication requirements on two categories of service provider connections:

▪ For high-value connections, users must authenticate using the X.509 Adapter followed by the PingID
Adapter.

▪ For low-value connections, users can authenticate using the HTML Form Adapter or the X.509
Adapter followed by the PingID Adapter.

To fulfill this use case, follow these configuration steps.

Steps

1. Go to Authentication # Policies # Selectors.

2. Create an instance of the Session Authentication Selector to account for authentication sessions
acceptable for low-value connections.

a. Click Create New Instance.
b. On the Type tab, enter a name (for example, Sessions for low-value connections) and an ID. Then

select Session Authentication Selector from the list.
c. On the Authentication Selector tab, leave the Enable 'No Session' Result Value check box

clear; then configure the following authentication source-to-result value entries.

Authentication source (adapter instance
name)

Result value (policy path label)

HTML SSO

Copyright ©2024

 | Administrator's Reference Guide | 237

Authentication source (adapter instance
name)

Result value (policy path label)

X.509 Mutual TLS and MFA

Example:

The following screen capture illustrates the

setup.
d. On the Summary tab, click Done.
e. On the Manage Authentication Selector Instances window, click Save to keep the newly

configured authentication selector instance.

3. Go to Authentication # Policies # Policies.

Copyright ©2024

 | Administrator's Reference Guide | 238

4. On the Policies window, define an authentication policy for high-value connections.

a. Click Add Policy.
b. In the Name field, enter a name for the policy, such as High-value connections.
c. From the Policy list, select the instance of the Connect Set Authentication Selector that isolates

high-value connections from the rest.
d. For the No policy path, select Continue.
e. For the Yes policy path, select the X.509 Adapter instance.
f. For the X.509 Adapter instance # Fail policy path, select Done.
g. For the X.509 Adapter instance # Success policy path, select the PingID Adapter instance.
h. Below the PingID Adapter instance, click Options.
i. On the Incoming User ID window, select the X.509 Adapter instance as the source and

username as the attribute.

 Tip:

This step applies only to adapters that support a user identifier to be passed in from an earlier
authentication source. The PingID Adapter requires this user identifier. For more information, see
Specifying incoming user IDs on page 245.

j. For the X.509 Adapter instance # Success # PingID Adapter instance # Fail policy path, select
Done.

k. For the X.509 Adapter instance # Success # PingID Adapter instance # Success policy path,
select the authentication policy contract.

l. Complete the contract mapping for the authentication policy contract.

Example:

The following illustrates the policy created for high-value connections.

m. Click Done.

Copyright ©2024

 | Administrator's Reference Guide | 239

5. Define an authentication policy for low-value connections.

a. Click Add Policy.
b. Enter a name for the policy, such as Low-value connections.
c. From the Policy list, select the instance of the Session Authentication Selector. For more

information, see step 2.
d. For the single sign-on (SSO) policy path, select the HTML Form Adapter instance.
e. For the HTML Form Adapter instance # Fail policy path, select Done.
f. For the HTML Form Adapter instance # Success policy path, select the authentication policy

contract.
g. Complete the contract mapping for the authentication policy contract.
h. For the Mutual TLS and MFA policy path, select the X.509 Adapter instance.
i. For the X.509 Adapter instance # Success policy path, select the PingID Adapter instance.
j. Below the PingID Adapter instance, click Options. Select the X.509 Adapter instance as the

source and username as the attribute on the Incoming User ID window.

 Tip:

This step only applies to adapters that support a user identifier to be passed in from an earlier
authentication source. The PingID Adapter requires this user identifier. For more information, see
Specifying incoming user IDs on page 245.

k. For the X.509 Adapter instance # Success # PingID Adapter instance # Fail policy path, select
Done.

l. For the X.509 Adapter instance # Success # PingID Adapter instance # Success policy path,
select the authentication policy contract.

m. Complete the contract mapping for the authentication policy contract.

Example: The following illustrates the policy created for low-value connections.

n. Click Done.
o. To activate authentication polices for identity provider (IdP) browser SSO requests, adapter-to-

adapter requests, and browser-based OAuth authorization code and implicit flows, select the IdP
Authentication Policies check box.

Example:

The following screen capture illustrates the policies created this sample use case.

6. To keep the newly configured authentication policies, click Save.

Policies
You can configure policies, fragments, selectors, policy contracts, and sessions under Authentication #
Policies.

An authentication policy is a tree of authentication sources, selector instances, or a combination of them,
that defines the decision to route a request through a series of approved authentication sources with an
optional authentication policy contract or a local identity profile at the end or to deny the request.

Administrators can enable authentication policies on identity provider (IdP) browser single sign-on (SSO)
requests, adapter-to-adapter requests, and browser-based OAuth authorization code and implicit flows.
Administrators can also enable authentication policies on service provider (SP)-initiated Browser SSO
requests received at the /sp/startSSO.ping endpoint. Individual policies can be disabled, as needed.

The order of authentication policies matters because the policy engine starts from the first policy and works
its way down. At runtime, the policy engine derives an authentication tree from the applicable policies and
either approves or denies a request.

Copyright ©2024

 | Administrator's Reference Guide | 240

Policy paths, authentication policy contracts, and local identity profiles

Policy paths

An authentication policy starts with either a selector instance or an authentication source.
Authentication sources and most selectors have two results, Success or Fail, Yes or No. Each
result forms a policy path.

A policy path is open-ended if it contains only one or more selector instances, without any
authentication sources. In this scenario, the policy engine continues to the next applicable
authentication policy, if any.

A policy path is closed-ended if it contains one or more authentication sources, with or without any
selector instances. A closed-ended path can optionally end with an authentication policy contract or
a local identity profile.

 Note:

A policy path is also closed-ended if it ends with an instance of a custom authentication selector
that returns an IdP adapter instance ID or the connection ID of an IdP connection. Because the
custom selector returns an authentication source, such a closed-ended path cannot end with an
authentication policy contract or a local identity profile. Instead, it must end with an action of Done
or Restart.

Authentication policy contracts and local identity profiles

An authentication policy contract can harness attribute values obtained from all authentication
sources along the path leading up to it. Administrators can select the same authentication policy
contract or local identity profile for different closed-ended paths, in one or more authentication
policies, and fulfill them differently to suit the requirements. To enforce the same set of
authentication policies in multiple use cases, map the authentication policy contract to the applicable
Browser SSO connections and OAuth grant-mapping configuration.

A policy becomes more complex as the number of paths grows with the number of authentication sources
and selector instances.

Multiple policies and runtime behavior

A complex policy can cover a lot of ground. However, depending on the authentication requirements,
administrators can also create multiple policies to suit their needs.

When a request arrives at PingFederate, the policy engine skips all disabled policies and any closed-ended
paths that are inapplicable to the request. A closed-ended path is considered inapplicable to a request in
any of the following conditions:

▪ The local identity profile at the end of a path is associated with an authentication policy contract that is
not mapped to the invoking use case or is blocked by the virtual server ID included in the request.

▪ The authentication policy contract at the end of a path is not mapped to the invoking use case or is
blocked by the virtual server ID included in the request.

▪ The last authentication source at the end of a path, that does not end with an authentication policy
contract or a local identity profile, is not mapped to the invoking use case or is blocked by the virtual
server ID included in the request.

 Note:

Virtual server IDs are not applicable to adapter-to-adapter mappings or OAuth use cases.

Copyright ©2024

 | Administrator's Reference Guide | 241

After pruning inapplicable policies and paths, the policy engine starts evaluating the request against the
first applicable policy. Generally speaking, the policy engine moves on to the next applicable policy when it
hits the end of an open-ended path, as indicated by an action of Continue, and stops when it hits the end
of a closed-ended path, as indicated by an authentication policy contract or an action of Done or Restart.
Depending on the policies, the policy engine might find an authentication source, a series of authentication
sources, or no authentication source at all.

Default authentication sources

In the event that a request has only passed through an open-ended path and the policy engine finds
no authentication source after evaluating the request through all the applicable policies, it picks the first
applicable default authentication source. A default authentication source is considered applicable if it is
mapped to the use case of the request.

If the policy engine cannot find a default authentication source and the Fail if policy engine finds no
authentication source check box is not selected, PingFederate chooses an authentication source based
on the following prioritized preferences:

1. If the request comes with an IdpAdapterId query parameter or a pfidpaid cookie, and if the
authentication source specified by the query parameter or the cookie is mapped to the corresponding
use case, PingFederate uses the specified authentication source. If the authentication source is not
mapped, PingFederate denies the request and returns an error message.

 Note:

If the request presents both the IdpAdapterId query parameter and the pfidpaid cookie, the
IdpAdapterId query parameter takes precedence.

2. If the request comes with neither an IdpAdapterId query parameter nor a pfidpaid cookie, and
if there is only one authentication source mapping, PingFederate uses the mapped authentication
source.

 Note:

If there are multiple authentication-source mappings, PingFederate returns the available authentication
sources and lets the user authenticate through one of them. If the user selected the Remember
selection check box and successfully authenticated, PingFederate returns a pfidpaid persistent
cookie, identifying the user's preference.

If the Fail if policy engine finds no authentication source check box is selected, PingFederate denies
the request and returns an error message.

 Note:

If a request has passed through a closed-ended path, the policy engine has already found at least one
authentication source for the user; in this scenario the policy engine ignores all default authentication
sources.

Tracked HTTP request parameters

The policy engine is capable of tracking HTTP request parameters that it receives from the initial
request and making them available to authentication sources, selector instances, and contract mappings
throughout the policy.

Copyright ©2024

 | Administrator's Reference Guide | 242

Local identity profiles and authentication policy contracts

PingFederate empowers administrators to deliver a secure and easy-to-use customer authentication,
registration, and profile management solution. A typical use case involves an HTML Form Adapter
instance, a local identity profile, an authentication policy contract, and an IdP authentication policy. The
HTML Form Adapter captures user attributes and maps them into an authentication policy contract through
a local identity profile. In terms of configuration, the latter is accomplished by placing a local identity
profile at the end of a policy path and completing the Local Identity Mapping # Contract Fulfillment
configuration.

Policy enforcement based on OAuth clients

PingFederate can enforce authentication polices based on the requesting OAuth client, among other
factors. To do that, you can include an OAuth Client Set Authentication Selector or an Extended
Property Authentication Selector in a policy. For more information, see Configuring the OAuth Client Set
Authentication Selector on page 231 and Configuring the Extended Property Authentication Selector on
page 225

Another option is to leverage the policy enforcement rule that PingFederate ignores authentication policy
contract branches that are not mapped to an access token manager (ATM) that the requesting client
can access. This rule also applies to policy branches that end on an authentication source. For more
information, see Managing access token mappings on page 576.

Keep that policy enforcement rule in mind when you configure clients and ATMs. You can configure a client
so that it can access only its default ATM. You can also configure an ATM so that only specific clients can
access it. Those settings affect the authentication policy. For more information, see Configuring OAuth
clients on page 529 and Access token management on page 564.

Defining authentication policies
You can manage authentication policies and settings on the Policies window.

About this task

 Note:

For an overview of authentication policies, see Authentication policies on page 219.

Steps

1. Go to Authentication # Policies # Policies.

2. On the Policies tab, select the IdP Authentication Policies check box if you want to enable
authentication policies for identity provider (IdP) browser single sign-on (SSO) requests, adapter-to-
adapter requests, and browser-based OAuth authorization code and implicit flows.

3. Select the SP Authentication Policies check box if you want to enable authentication policies for
service provider (SP)-initiated browser SSO requests received at the /sp/startSSO.ping endpoint.

 Note:

Selecting the SP Authentication Policies check box does not enable authentication policies for IdP
browser SSO requests, adapter-to-adapter requests, and browser-based OAuth authorization code
and implicit flows.

4. Select the Fail if policy engine finds no authentication source check box if you want to deny
the requests and to return an error message when the policy engine finds no authentication source
or authentication policy contract from the applicable policies and none of the default authentication
sources are applicable. This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 243

5. On the Policies window, click Add Policy to create an authentication policy.

 Tip:

If you want to create a new policy based on an existing policy, select the Copy action.

a. Enter a name and, optionally, a description of the policy.
b. From the Policy list, choose an authentication source, an IdP adapter instance or an IdP

connection, a selector instance, or a fragment.

 Note:

If you start this new policy by copying an existing policy, your new policy is pre-populated. Modify
the policy to suit your new use cases.

 Tip:

When implementing your authentication requirements, think of authentication sources and
selectors as checkpoints.

Options

For the PingID Adapter, IdP adapters developed using the
IdpAuthenticationAdapterV2 interface from the PingFederate SDK, including the
HTML Form Adapter, and SAML 2.0 IdP connections supporting the SP-initiated browser
SSO profile, you can specify a user ID to be passed in from an earlier-factor adapter.

Click Options and follow the on-window instructions to select the source and the attribute to
be used as the incoming user ID.

 Note:

The User ID Authenticated check box must be selected for users to register as a new
PingID user. Otherwise, the adapter automatically fails.

Rules

For any authentication source, you can optionally create one or more rules to define
additional successful results. For example, if you want to deploy multifactor authentication
using the PingID Adapter in stages by groups, you can create a rule to check for group
membership information and only apply the PingID authentication flow to users who are
members of certain groups.

Click Rules and follow the on-window instructions to manage your rules.

All results, including those based on rules, are displayed under the selected authentication source
or selector instance. Each result forms a policy path.

c. For each policy path, select a policy action from the list.

 Important:

As of PingFederate 10.2, you can select Fragments as the policy action and then select a policy
fragment that you have created. (See Policy fragments on page 273 for information about

Copyright ©2024

 | Administrator's Reference Guide | 244

creating policy fragments.) When you select a fragment, click Fragment Mapping and use the in-
product help links to access the topics that describe how to configure the mapping.

▪ If additional processing is required, repeat step 4b.
▪ If the policy path is extended from an authentication source and it is the end of the path,

select Done or Restart, which marks this policy path a closed-ended path.

 Tip:

A policy path is closed-ended if it contains one or more authentication sources, with or without
any selector instances. A closed-ended path can optionally end with an authentication policy
contract or a local identity profile.

If you need to reuse an authentication policy in multiple use cases, select an authentication
policy contract or a local identity profile as the last policy action of a path, configure its
contract fulfillment, and map the authentication policy contract to the applicable Browser
SSO connections or OAuth grant-mapping configuration. Click ... Mapping underneath your
selection and then follow the on-window instructions to complete the contract fulfillment
configuration.

 Note:

A policy path is also closed-ended if it ends with an instance of a custom authentication
selector that returns an IdP adapter instance ID or the connection ID of an IdP connection.
Because the custom selector returns an authentication source, such a closed-ended path
cannot end with an authentication policy contract or a local identity profile. Instead, it must
end with an action of Done or Restart.

The Restart policy action provides users the opportunity to do over. When triggered, the
policy engine routes the requests back to the first checkpoint of the invoked authentication
policy. It makes most sense to use the Restart policy action for a Fail policy path if the policy
engine can route the request differently based on user input prompted by an authentication
source. For a sample use case, see step 5 in Enabling third-party identity providers on page
354.

 Note:

Undesirable looping behaviors can occur if you select Restart for the Fail path at the root
of an authentication policy tree. PingFederate mitigates this risk by automatically limiting the
number of policy restarts per transaction.

▪ If the policy path is extended from a selector instance and it is the end of the path without any
prior authentication source, select Continue, which leaves this path as an open-ended path.

 Tip:

A policy path is open-ended if it contains only selector instances without any authentication
sources. In this scenario, the policy engine continues to the next applicable authentication
policy, if any.

d. Click Done to go back to the Policies window.

Result:

Your policy is enabled by default. As needed, toggle its status to disable the policy.

Copyright ©2024

 | Administrator's Reference Guide | 245

6. Optional: Repeat step 4 to create additional authentication policies.

 Important:

The order of authentication policies matters because the policy engine starts from the first policy and
works its way down. As needed, reorder your policies by using the up and down arrows.

7. If any individual policy is no longer required, select the Delete action or toggle its status to disable the
policy.

8. Optional: On the Policies # Default Authentication Sources tab, select one or more default
authentication sources from the list for the policy engine to fall back on when it finds no authentication
source from the applicable policies.

 Important:

Order matters because the policy engine starts from the first default authentication source on the list
and works its way down. As needed, reorder your authentication sources by using the up and down
arrows. There is no default selection.

9. Optional: On the Policies # Tracked HTTP Parameters tab, add one or more HTTP request
parameters to be tracked throughout a request.

 Important:

For each instance of the HTTP Request Parameter Authentication Selector that you place in a policy
as the second, or subsequent, checkpoint, add its configured HTTP Request Parameter Name
value here. By doing so, the policy engine preserves the parameter it receives from the initial request
and makes it available to the selector instance throughout the policy. For more information, see
Configuring the HTTP Request Parameter Authentication Selector on page 229.

10. Click Save.

Specifying incoming user IDs
You can configure authentication policies to use incoming user identifiers at request time.

About this task

Some authentication sources make use of a user identifier at request time. For example:

▪ The PingID Adapter requires a user ID to be passed in from an earlier-authentication step to perform
multi-factor authentication.

▪ The HTML Form Adapter and custom IdP adapters developed using the
IdpAuthenticationAdapterV2 interface from the PingFederate SDK can pre-populate username
information based on an incoming user ID.

▪ A SAML 2.0 identity provider (IdP) connection can use an incoming ID to specify the Subject value in
its authentication requests.

▪ An OpenID Connect IdP connection can leverage an incoming user ID to specify a login_hint
parameter value in its OAuth authorization requests.

To address these use cases, specify the source and the attribute of the incoming user ID in an
authentication policy.

You can select any IdP adapter instance or IdP connection that has been placed in the same policy path
ahead of the current authentication source to be the source of the incoming user ID. After you select a
source, choose an attribute from the selected IdP adapter contract or IdP connection. At runtime, the
attribute value becomes the incoming user ID.

Copyright ©2024

 | Administrator's Reference Guide | 246

Alternatively, you can use the originating SAML 2.0, WS-Federation, or OpenID Connect authentication
request as the source. In this scenario, the incoming user ID is derived from the Subject element in a
SAML 2.0 authentication request, the username parameter in a WS-Federation authentication request, or
the login_hint parameter in an OpenID Connect authentication request.

Steps

1. Go to Authentication # Policies # Policies. On the Policies window, select the applicable
authentication policy.

2. On the Policy tab, locate the authentication source that you need to provide an incoming user ID and
then click Options underneath it.

3. On the Incoming User ID dialog, select the source of the incoming user ID from the Source list.

 Note:

If you want the policy engine to derive the incoming user ID from the originating SAML 2.0 or WS-
Federation authentication request, select Context.

4. Select an attribute of the incoming user ID from the Attribute list.

 Note:
If you have selected Context in the previous step, select Requested User to derive the incoming user
ID from the Subject element, the username parameter, or the login_hint parameter in the SAML
2.0, WS-Federation, or OpenID Connect authentication request, respectively.

Result:

During runtime, if a request does not originate from a SAML 2.0, WS-Federation, or OpenID Connect
authentication request, or if the SAML 2.0, WS-Federation, or OpenID Connect authentication request
does not include the optional Subject element, username parameter, or login_hint parameter,
the policy engine advances without providing username information to the authentication source.

5. Optional: Select User ID Authenticated to add a parameter that indicates whether the mapped user
ID has been authenticated by the authentication source and therefore can be trusted by the current
adapter. The name of this Boolean parameter is IN_PARAMETER_NAME_USERID_AUTHENTICATED.

 Note:
If the login_hint is passed as the user ID, the value of
IN_PARAMETER_NAME_USERID_AUTHENTICATED will be FALSE.

6. On the Incoming User ID dialog, click Done.

7. On the Policy tab, continue with the rest of your policy configuration.

Configuring rules in authentication policies
PingFederate supports more granular control through the use of rules in authentication policies.

About this task

An authentication source in an authentication policy has two results, Fail or Success, for which you can set
one of the following actions:

▪ Append another authentication source for further processing.
▪ Append a selector for further processing.
▪ Select Done to terminate the authentication policy, making it a closed-ended path.

Copyright ©2024

 | Administrator's Reference Guide | 247

▪ Select an authentication policy contract or a local identity profile, also terminating the authentication
policy, making it a closed-ended path.

 Tip:
A policy path is closed-ended if it contains one or more authentication sources, with or without any
selector instances. A closed-ended path can optionally end with an authentication policy contract or a
local identity profile.

 Note:

A policy path is also closed-ended if it ends with an instance of a custom authentication selector that
returns an IdP adapter instance ID or the connection ID of an IdP connection. Because the custom
selector returns an authentication source, such a closed-ended path cannot end with an authentication
policy contract or a local identity profile. Instead, it must end with an action of Done or Restart.

By applying multiple rules to an authentication source, an administrator can define additional, successful,
results based on attribute values from the authentication source and set different action for each result.

For example, your OpenToken IdP Adapter instance returns an attribute, EmployeeType, that identifies
the employee profile; a value of temp indicates the user is a contractor. Your organization mandates that
all contractors must authenticate successfully against the OpenToken identity provider (IdP) adapter,
followed by another IdP adapter, such as an instance of the PingID Adapter for multifactor authentication.
To fulfill this authentication requirement, you can define a successful result by adding a rule to evaluate the
EmployeeType value, and then select the PingID Adapter instance as the action for this match.

When multiple rules exist for a given authentication source, the first match wins. If no rule returns a match,
administrators have the option to treat the authentication as successful or failure.

Steps

1. Go to Authentication # Policies # Policies. On the Policies window, select the applicable
authentication policy.

2. On the Policy tab, locate the authentication source that you want to define additional successful
results for further processing, and then click Rules underneath it.

3. On the Rules window, select an attribute from the Attribute Name list.

Copyright ©2024

 | Administrator's Reference Guide | 248

4. From the Condition list, select how PingFederate should compare the value that you are going to
specify in the next step against the attribute value from the authentication source.

The choices are:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

Use one of the first six choices only for attributes consisting of a single value. Use the multi-value
conditions when you want PingFederate to verify whether an attribute contains or does not contain the
specified value in its attribute list.

 CAUTION:

Using a single-value condition when an attribute has multiple values causes the condition to evaluate
consistently to false.

5. In the Value field, enter the desired value to be compared against the attribute value from the
authentication source.

6. In the Result field, enter a unique label.

7. Optional: To add another rule, click Add and repeat steps 3 to 6.

8. If any individual rule is no longer required, select the Delete action.

9. Select the Default to Success check box if you want the policy engine to treat the authentication
attempt as successful when no rules return a match.

 Note:

The Default to Success check box is selected by default. When you clear this check box, the policy
engine treats the attempt as a failure when no rules return a match.

10. To close the Rules window, click Done.

Result:

Your policy is now updated with a new policy path, or paths if you have added multiple rules.

For instance, if you have added two rules with labels Contractors, the first rule, and Senior
executives, the second rule, to an authentication source, you should see the following results in the
policy:

▪ Fail
▪ Contractors, a new result based on the first rule
▪ Senior executives, a new result based on the second rule
▪ Success, available only when the Default to Success check box is selected

11. On the Policy window, continue with the rest of your policy configuration.

Copyright ©2024

 | Administrator's Reference Guide | 249

Defining authentication policies based on group membership information
PingFederate lets you configure authentication policies based on group membership information through
the use of rules.

About this task

Assume you have created the following authentication policy to enforce multifactor authentication using
PingID after the users have successfully authenticated against an HTML Form Adapter instance.

While this policy satisfies the authentication requirements, you might prefer to roll out multi-factor
authentication based on group membership over a period of time. To accomplish this policy deployment
strategy, you can use rules to define the applicable groups and set different policy actions accordingly.

As an example, suppose you want to enforce PingID multi-factor authentication to two Active Directory
(AD) groups:

▪ CN=helpdesk,OU=IT,DC=example,DC=com (IT helpdesk personnel)
▪ CN=leads,OU=IT,DC=example,DC=com (Leaders in the IT department)

Steps

1. If you have not done so, create a new AD group, for example,
CN=PingIDRequired,OU=IT,DC=example,DC=com, and place those two groups as members of
the new group.

 Tip:

Generally speaking, this step streamlines the process of deploying your authentication policies to
additional groups of users later. In other words, when you are ready to roll out your authentication
policies to more users, simply add the applicable groups as members of the new group. This way, you
are not required to make any changes to the authentication policies, after they are configured.

2. If you have not done so, follow these steps to extend the HTML Form Adapter instance to return group
membership information from your AD.

a. Extend the HTML Form Adapter instance with the memberOf attribute on the Extended Contract
window.

b. Configure PingFederate to fulfill the memberOf attribute from your AD.

 Note:

Because the actual groups are nested inside the new group created in step 1, configure the IdP
adapter contract to pull the memberOf attribute values with nested groups on the LDAP Directory
Search window. For more information, see Defining the IdP adapter contract on page 399.

3. Go to Authentication # Policies # Policies. On the Policies window, select the applicable
authentication policy.

4. On the Policy window, click Rules underneath the HTML Form Adapter instance.

Copyright ©2024

 | Administrator's Reference Guide | 250

5. In the Rules dialog, add a rule to check for membership information obtained from the HTML Form
Adapter instance.

a. From the Attribute Name list, select memberOf.
b. Select how PingFederate should compare the value that you are going to specify in the next step

against the attribute value from the HTML Form Adapter instance. For example, multi-value
contains DN works well for the memberOf AD user attribute.

c. Enter the distinguished name (DN) of the new group created in step 1 in the Value field, such as
CN=PingIDRequired,OU=IT,DC=example,DC=com.

d. In the Result field, enter a label, for example, PingID users.
e. Leave the Default to Success check box as selected.

 Note:

When the Default to Success check box is selected, you can set the action for the scenario
where none of the rules returns a match.

Example:

Your Rules dialog should be similar to the following sample.

6. To close the Rules window, click Done.

7. For the new HTML Form # PingID users policy path, select your PingID Adapter instance as the
policy action from the list.

 Note:

To open the Incoming User ID dialog, click Options, underneath the PingID Adapter instance.
Configure the source of the user ID required by the PingID Adapter, and then click Done to close the
dialog. For more information, see Specifying incoming user IDs on page 245.

Result:

Your policy should be similar to the following sample.

There are four policy paths:

▪ HTML Form # Fail
▪ HTML Form # PingID users # Fail
▪ HTML Form # PingID users # Success
▪ HTML Form # Success

8. Update your policy as follows:

HTML Form # Fail

Leave Done as the policy action. At runtime, PingFederate terminates the request and returns
an error message to the user.

HTML Form # PingID users # Fail

Select Done as the policy action. At runtime, PingFederate terminates the request and returns
an error message to the user.

HTML Form # PingID users # Success

Copyright ©2024

 | Administrator's Reference Guide | 251

Select an authentication policy contract as the policy action. Click Contract Mapping to
complete its fulfillment. At runtime, PingFederate fulfills the authentication policy contract and
carries on with the request.

HTML Form # Success

Reconfigure the policy action for this policy path. Select an authentication policy contract as
the policy action. Click Contract Mapping to complete its fulfillment. At runtime, PingFederate
fulfills the authentication policy contract and carries on with the request.

Result:

Your policy should be similar to the following sample.

9. To close the Policy window, click Done.

10. On the Policies window, click Save.

 Note:

Group membership is only one of the possible factors that you can use to define additional policy
paths and their policy actions. In general, you can use any attributes available from the authentication
source when configuring rules.

Applying policy contracts or identity profiles to authentication policies
To apply an authentication policy contract to a policy, select an authentication policy contract or a local
identity profile as the last action of one or more closed-ended paths and configure fulfillment for each
contract.

About this task

An authentication policy contract can harness attribute values obtained from all authentication sources
along the path leading up to it. Administrators can select the same authentication policy contract or local
identity profile for different closed-ended paths, in one or more authentication policies, and fulfill them
differently to suit the requirements. To enforce the same set of authentication policies in multiple use
cases, map the authentication policy contract to the applicable Browser SSO connections and OAuth
grant-mapping configuration.

Steps

1. Go to Authentication # Policies # Policies. On the Policies window, select the applicable
authentication policy.

2. On the Policy window, locate all closed-ended paths in the policy.

A policy path is closed-ended if it contains one or more authentication sources, with or without any
selector instances. A closed-ended path can optionally end with an authentication policy contract or a
local identity profile.

 Note:

A policy path is also closed-ended if it ends with an instance of a custom authentication selector that
returns an IdP adapter instance ID or the connection ID of an IdP connection. Because the custom

Copyright ©2024

 | Administrator's Reference Guide | 252

selector returns an authentication source, such a closed-ended path cannot end with an authentication
policy contract or a local identity profile. Instead, it must end with an action of Done or Restart.

Consider the following sample policy.

This policy has two selector instances, Test and Retail, two identity provider (IdP) adapter instances,
and five policy paths:

▪ Test # No # HTML Form # Fail
▪ Test # No # HTML Form # Success # Retail # No
▪ Test # No # HTML Form # Success # Retail # Yes # PingID # Fail
▪ Test # No # HTML Form # Success # Retail # Yes # PingID # Success
▪ Test # Yes

The first four paths are closed-ended while the last path is open-ended.

3. Select Done as the policy action for the following paths:

▪ Test # No # HTML Form # Fail
▪ Test # No # HTML Form # Success # Retail # Yes # PingID # Fail

Result:

At runtime, PingFederate terminates the request and returns an error message to the user.

4. Select the applicable authentication policy contract or local identity profile as the policy action for the
rest of the closed-ended paths:

▪ Test # No # HTML Form # Success # Retail # No
▪ Test # No # HTML Form # Success # Retail # Yes # PingID # Success

Suppose your use case does not involve consumer authentication, registration, and profile
management. It makes sense to select an authentication policy contract for the PingID # Success
result, because the users have successfully met all your authentication requirements.

At runtime, PingFederate fulfills the authentication policy contract and carries on with the request.

Depending on your use case, you might also select an authentication policy contract for the PingID
Fail result, possibly with an attribute indicating that the users have failed a certain part of your
authentication requirements, and make other authorization decision using the Token Authorization
framework in the applicable connections later.

5. For each selected authentication policy contract, if any, click Contract Mapping and then complete
the Manage Authentication Policies # Authentication Policy Contract Mapping workflow to
complete the configuration. For more information, see Configuring contract mapping on page 253 .

6. For each selected local identity profile, if any, click Local Identity Mapping and then complete the
Manage Authentication Policies # Inbound Mapping & Contract Fulfillment workflow to complete
the configuration. For more information, see Configuring local identity mapping on page 253.

7. Select Continue as the policy action for the open-ended path Test # Yes.

Result:

At runtime, PingFederate skips to the next policy. Your policy should be similar to the following
sample.

8. To close the Policy window, click Done.

9. On the Policies window, click Save.

Copyright ©2024

 | Administrator's Reference Guide | 253

Configuring contract mapping
Configure authentication policy contract grant mappings in the PingFederate administrative console.

Steps

1. Optional: Go to Authentication # OAuth # Authentication Policy Contract Mapping.

2. Optional: From the Authentication Policy Contract list, click the desired mapping or select the
desired mapping from the Authentication Policy Contract list.

 Note:

If you do not have an authentication policy contract mapping already configured, go to Authentication
Policies # Policy Contracts and configure and save a new contract.

3. Optional: On the Attribute Sources & User Lookup window, click Add Attribute Source to configure
datastore queries.

4. On the Contract Fulfillment tab, fulfill the selected contract.

 Note:

If the selected closed-ended path contains more than one authentication source, you have access to
attributes obtained successfully from the previous authentication sources along the same path.

For example, referring to the earlier policy in Applying policy contracts or identity profiles to
authentication policies on page 251, if you select an authentication policy contract for the PingID
(Adapter) # Success result, you can map attributes from the HTML Form Adapter and the PingID
Adapter.

Besides the preceding identity provider (IdP) connection or IdP adapter instance, you can also use
dynamic text, attribute mapping expression, if enabled, and tracked HTTP request parameter, if
configured, as the source of fulfillment.

5. Optional: On the Issuance Criteria tab, configure conditions to be validated before issuing an
authentication policy contract. For more information, see Defining issuance criteria for contract or local
identity mapping on page 254.

6. On the Summary tab, review your configuration, modify as needed, and then click Done.

7. On the Policy window, continue with the rest of your policy configuration.

Configuring local identity mapping
You can configure your local identity mapping in the PingFederate administrative console.

Steps

1. On the Inbound Mapping tab, configure the attribute mappings for registration and profile
management.

 Note:

At runtime, PingFederate fulfills the value of the pf.local.identity.unique.id built-
in local identity field based on this configuration and passes the value to PingDirectory.
PingDirectory uses this value to determine whether such identity has already been created. The
pf.local.identity.unique.id field value should therefore be mapped from the subject
identifier of the preceding authentication source. You can also map other local identity fields so that

Copyright ©2024

 | Administrator's Reference Guide | 254

PingFederate can streamline the registration process by pre-populating values on the registration
page.

 Note:

This configuration overrides the default field values configured within the local identity profile. For more
information, see Configure a local identity field.

This tab does not apply and stays hidden if your use case does not involve registration and profile
management. See Enabling third-party identity providers without registration on page 365.

2. Optional: On the Attribute Sources & User Lookup tab, click Add Attribute Source to configure
datastore queries.

3. On the Contract Fulfillment tab, fulfill the authentication policy contract associated with the selected
local identity profile.

If the selected closed-ended path contains more than one authentication source, you have access to
attributes obtained successfully from the previous authentication sources along the same path.

For example, select your local identity profile under Source and the desired local identity field under
Value.

 Note:

If your use case does not involve registration or profile management, the source of fulfillment is limited
to the preceding identity provider (IdP) connection or IdP adapter instance, dynamic text, attribute
mapping expression, if enabled, and tracked HTTP request parameter, if configured.

4. Optional: On the Issuance Criteria tab, configure conditions to be validated before issuing an
authentication policy contract. For more information, see Defining issuance criteria for contract or local
identity mapping on page 254.

5. On the Summary tab, review your configuration, modify as needed, and then click Done.

6. On the Policy window, continue with the rest of your policy configuration.

Defining issuance criteria for contract or local identity mapping
You must define certain criteria for contract or local identity mapping in PingFederate to process a request.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

Copyright ©2024

 | Administrator's Reference Guide | 255

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Adapter Select to evaluate attributes from any preceding IdP adapter instance.

IdP Connection Select to evaluate attributes from any preceding IdP connection.

Local Identity Select to evaluate any local identity fields.

Not applicable for the Contract Mapping configuration.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

Tracked HTTP
Parameters

Select to evaluate tracked request parameters.

Visible and applicable only if at least one HTTP request parameter has
been configured on the Tracked HTTP Parameters tab of the Policies
window. For more information, see .

2. From the Attribute Name list, select the attribute to be evaluated.

3. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

Copyright ©2024

 | Administrator's Reference Guide | 256

4. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

5. In the Error Result field, enter a custom error message.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

6. Click Add.

7. Optional: Repeat to add more criteria.

8. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Mapping a policy contract to multiple use cases
The last step to reuse an authentication policy in multiple service provider (SP) connections is to map the
authentication policy contract into the applicable SP connections.

About this task

In general, for identity provider (IdP) browser single sign-on (SSO) use cases, if you select authentication
policy contracts in your authentication policies then you must map the authentication policy contracts to the
applicable SP connections.

Steps

1. Go to Applications # Integration # SP Connections.

2. Select the applicable SP connection from the list of connections.

3. On the Activation & Summary tab, click Authentication Source Mapping.

4. Click Map New Authentication Policy and use the in-product help on each screen as needed to map
the authentication policy contract into the SP connection.

Result

Similarly, to reuse an authentication policy for browser-based OAuth authorization code and implicit flows,
map the authentication policy contract to the applicable browser SSO connections and OAuth grant-

Copyright ©2024

 | Administrator's Reference Guide | 257

mapping configuration. For more information, see Managing authentication policy contract grant mapping
on page 554.

SP authentication policies
Service provider (SP) authentication policies provide a means for you to impose authentication
requirements on SP-initiated browser single sign-on (SSO) requests received at the /sp/
startSSO.ping endpoint.

When you enable this optional feature, you create policies that the PingFederate SP server can use to
find the applicable SP adapter instance to access target applications. For this reason, you must configure
the target applications to provide the SpSessionAuthnAdapterId parameter or the TargetResource
parameter, or both, in their SP-initiated SSO requests.

If you prefer to provide the TargetResource parameter without the SpSessionAuthnAdapterId
parameter, you must go to Applications # Integration # Target URL Mapping and configure entries to
map the TargetResource values to the applicable SP adapter instances.

 Note:

SP authentication policies only apply to SP-initiated browser SSO requests received at the /sp/
startSSO.ping on page 1173 SP application endpoint. They do not apply to unsolicited SSO requests
received at the SP protocol endpoints.

In addition, enabling SP authentication policies does not enable authentication policies for identity provider
(IdP) browser SSO requests, adapter-to-adapter requests, and browser-based OAuth authorization code
and implicit flows.

For more information and configuration steps, see the subsequent sample use cases.

Configuring an SP authentication policy for users from one IdP
You can configure a service provider (SP) authentication policy to enforce authentication requirements for
an identity provider (IdP) connection.

Before you begin
This example requires the following components:

▪ An SP adapter instance deployed, configured, and integrated with the target application.
▪ An IdP connection to the partner. For more information, seestep 1.
▪ An IdP connection to the third-party IdP that facilitates the multifactor authentication process. For more

information, seestep 2.
▪ An authentication policy contract to carry user attributes from the partner to the target application. For

more information, see step 3.
▪ An SP authentication policy. For more information, see step 4 and step 7.
▪ An adapter mapping between the authentication policy contract and the applicable SP adapter

instance. For more information, see step 5.
▪ An SP-initiated single sign-on (SSO) URL. For more information, see step 6.

About this task

In this example, you want to create an IdP connection to Alpha, which passes two attributes in its
assertions, SAML_SUBJECT and samlEmail, on your PingFederate SP server. You also want to enforce
multi-factor authentication (MFA) for users from Alpha through Bravo, a third-party IdP that returns only the
SAML_SUBJECT attribute and requires a user ID to be passed in from the original source. Both Alpha and
Bravo support SAML 2.0 and only the SP-initiated single sign-on (SSO) profile.

Create an SP adapter instance using the Applications # Integration # SP Adapters configuration wizard
and complete the last-mile integration with the target application. The SP adapter instance name and ID
are Sample and sample, respectively. On System # Server # Protocol Settings # Federation Info, the

Copyright ©2024

 | Administrator's Reference Guide | 258

base URL for your PingFederate SP server is https://sso.xray.local:9031. There are no other IdP
connections besides those required to connect with Alpha and Bravo.

Steps

1. Go to Authentication # Integration # IdP Connections. On the IdP Connections window, click
Create Connection.

a. Follow the connection workflow to create a SAML 2.0 IdP connection to Alpha.

In this example, Alpha's entity ID is sso.alpha.local.
b. On the SAML Profiles tab, make sure that the SP-Initiated SSO check box is selected.
c. On the Identity Mapping window, select No Mapping.

 Tip:

If the partner and your organization agree to support account linking, select Account Linking.
If the partner and your organization agree to support the IdP-initiated profile, select Account
Mapping or Account Linking.

Both use cases require the applicable SP adapter instance (Sample) to be mapped into the
connection. To get to the Target Session Mapping tab, go to IdP Connection # Browser SSO #
User-Session Creation. The rest of the steps remain unchanged.

This sample configuration uses neither Account Linking or Account Mapping.

d. Complete the rest of the connection configuration.

2. Repeat step 1 to create a SAML 2.0 IdP connection to Bravo.

In this example, Bravo's entity ID is sso.bravo.local.

3. Go to Authentication # Policies # Policy Contracts. On the Policy Contracts window, click Create
New Contract.

 Tip:

The purpose of an authentication policy contract is to harness user attributes obtained through one or
more authentication sources as the request flows through the applicable authentication policy. It is the
medium between the authentication policies and the target applications. In general:

▪ You map attributes to authentication policy contracts from authentication policies. For more
information, see step 4 in this example.

▪ You map attributes from authentication policy contracts to target applications through adapter
mappings. For more information, see step 5 in this example.

a. On the Contract Info tab, enter a name for this authentication policy contract.

In this example, the name of the policy contract is Authenticated.
b. On the Contract Attributes tab, enter mail under Extend the Contract and click Add.
c. Complete the rest of the connection configuration.

Result:

When finished, your policy contract has two attributes: subject and mail.

Copyright ©2024

 | Administrator's Reference Guide | 259

4. Go to Authentication # Policies # Policies. On the Policies window, click Add Policy to define a
policy to enforce the third-party authentication requirement.

a. On the Policy window, enter a name and a description for this policy, and select sso.alpha.local
(IdP Connection) as the first policy action from the list.

Result:

An IdP connection has two results, Fail and Success, as illustrated in the following screen
capture.

Each result forms its own policy path that requires further configuration.
b. For the sso.alpha.local # Fail path, click Done as the policy action.

Result:

At runtime, PingFederate terminates the request and returns an error message to the user.
c. From the sso.alpha.local # Success list, select sso.bravo.local as the policy action.
d. Below sso.bravo.local, click Options to relay the user ID (SAML_SUBJECT) from

sso.alpha.local to sso.bravo.local.
e. On the Incoming User ID dialog window, select IdP Connection (sso.alpha.local) from the

Source list and SAML_SUBJECT from the Attribute list.

To close the Incoming User ID dialog window, click Done.
f. For the sso.bravo.local # Fail path, select Done as the policy action.

Result:

At runtime, PingFederate terminates the request and returns an error message to the user.
g. For the sso.bravo.local # Success path, select the authentication policy contract created in step

3.

Result:

Your policy should be similar to the following sample.

h. Below the authentication policy contract, click Contract Mapping and follow the Manage
Authentication Policies # Authentication Policy Contract Mapping configuration workflow to
configure the fulfillment of the authentication policy contract.

i. On the Attribute Sources & User Lookup tab, click Add Attribute Source to configure datastore
queries.

j. On the Contract Fulfillment tab, from the Source list select IdP Connection (sso.alpha.local)
and the appropriate attributes from the Value list to fulfill the authentication policy contract
attributes.

 Tip:

In this configuration, you are mapping attributes to an authentication policy contract from the
authentication policy.

Optional: On the Issuance Criteria tab, configure conditions to be validated before issuing an
authentication policy contract.

On the Summary tab, click Done.

Copyright ©2024

 | Administrator's Reference Guide | 260

On the Policy window, click Done.

On the Policies window, click Save.

5. Go to Applications # Integration # Policy Contract Adapter Mappings. Map the authentication
policy contract to the SP adapter instance that you have deployed, configured, and integrated with the
target application.

a. From the Source Instancelist, select the authentication policy contract, created in step 3.
b. From the Target Instance list, select the applicable SP adapter instance (Sample).
c. Click Add Mapping.
d. Follow the Mapping Configuration workflow to create the mapping.
e. On the Attribute Sources & User Lookup tab, click Add Attribute Source to configure datastore

queries.
f. On the Adapter Contract Fulfillment window, select Authentication Policy Contract from the

Source list and the appropriate contract attributes from the Value list to fulfill the SP adapter
contract.

 Tip:

In this configuration, you are mapping attribute values from the authentication policy contract to
the target application through the applicable SP adapter instance.

Optional: On the Default Target URL tab, specify a default target URL for this mapping
configuration.

Optional: On the Issuance Criteria tab, configure conditions to be validated before issuing an SP
adapter contract.

Click Done.

6. Configure an SP-initiated SSO URL in your target application by combining the base URL of your
PingFederate SP server, https://sso.xray.local:9031, the PingFederate's application SSO
endpoint, /sp/startSSO.ping, and the SpSessionAuthnAdapterId parameter with the adapter
ID of the applicable SP adapter instance as the parameter value.

For example: https://sso.xray.local:9031/sp/startSSO.ping?SpSessionAuthnAdapterId=sample

If you have not defined a default URL for the adapter mapping, configured in step 5, the IdP
connection, or the PingFederate SP server, you must also configure your target application to include
the TargetResource parameter in its SP-initiated SSO requests.

 Important:

When using the parameters TargetResource or TARGET with their own query parameters included,
the parameter value must be URL-encoded. Any other parameters that contain restricted characters,
such as many SAML URNs, also must be URL-encoded. For information about URL encoding, see
third party resources such as HTML URL-encoding Reference. Parameters are case-sensitive.

7. When you are ready to test your new use case, go to Authentication # Policies # Policies. On the
Policies window, select the SP Authentication Policies check box to enable policies for SP-initiated
Browser SSO requests received by at the /sp/startSSO.ping endpoint, and click Save.

Copyright ©2024

 | Administrator's Reference Guide | 261

Configuring SP authentication policies for users from multiple IdPs
You can configure service provider (SP) authentication policies to handle different authentication
requirements for multiple identity provider (IdP) connections.

About this task

Assume you configure the following use cases in an earlier version of PingFederate:

▪ Two SP adapter instances onApplications # Integration # SP Adapters.

Instance Name Instance ID Extended Contract

Sample sample subject and email

Sample Delta sampleDelta subject and email

▪ Three entries on Applications # Integration # Target URL Mapping.

URL Target Session

https://sso.xray.local:9031/SpSample/MainPage?app=Alpha&* Sample

https://sso.xray.local:9031/SpSample/MainPage?app=Charlie&* Sample

https://sso.xray.local:9031/SpSample/MainPage?app=Delta&* Sample Delta

▪ Three IdP connections to your partners.

Partner

(Federation ID)

Identity Mapping Attribute Contract Target Session
Mapping

SP adapter instance
name

(SP adapter instance
ID)

Alpha

(sso.alpha.local)

Account Mapping SAML_SUBJECT and
samlEmail

Sample

(sample)

Charlie

(sso.charlie.local)

Account Mapping SAML_SUBJECT and
samlEmail

Sample

(sample)

Delta

(sso.delta.local)

Account Mapping SAML_SUBJECT and
samlEmail

Sample Delta

(sampleDelta)

In this example, all partners support SAML 2.0 and only the SP-initiated single sign-on (SSO) profile.
▪ SP-initiated SSO URLs for users from Alpha, Charlie, and Delta.

Partner SSO URL

Alpha https://sso.xray.local:9031/sp/startSSO.ping?
PartnerIdpId=sso.alpha.local&TargetResource=https%3A%2F%2Fsso.xray.local
%3A9031%2FSpSample%2FMainPage%3Fapp%3DAlph%26t%3Daa

Charlie https://sso.xray.local:9031/sp/startSSO.ping?
PartnerIdpId=sso.charlie.local&TargetResource=https%3A%2F%2Fsso.xray.local
%3A9031%2FSpSample%2FMainPage%3Fapp%3DCharlie%26t%3Dc

Delta https://sso.xray.local:9031/sp/startSSO.ping?
PartnerIdpId=sso.delta.local&TargetResource=https%3A%2F%2Fsso.xray.local
%3A9031%2FSpSample%2FMainPage%3Fapp%3DDelta%26t%3Dd

Copyright ©2024

 | Administrator's Reference Guide | 262

After upgrading to PingFederate 10.1, you have the following new requirements:

▪ Create new IdP connections to three new partners: Echo, Foxtrot and Golf.
▪ Enforce multi-factor authentication (MFA) for users from Alpha, Charlie, Echo, and Golf through Bravo.

Bravo requires a user ID to be passed in from the original source and returns only the user ID when
the users fulfill the multi-factor authentication (MFA) requirement.

The new required components are:

▪ Two additional SP adapter instances. For more information, seestep 1:

▪ Sample Echo to integrate with Echo's target application.
▪ Sample Golf to integrate with Golf's target application.

▪ Four new IdP connections. For more information, see step 2, step 3, and step 4:

Partner

(Federation ID)

Identity Mapping Attribute Contract Target Session
Mapping

SP adapter instance
name

(SP adapter instance
ID)

Bravo

(sso.bravo.local)

No Mapping SAML_SUBJECT and no
other attributes

N/A

Echo

(sso.echo.local)

No Mapping SAML_SUBJECT and
samlEmail

N/A

Foxtrot

(sso.foxtrot.local)

Account Mapping SAML_SUBJECT and
samlEmail

Sample

(sample)

Golf

(sso.golf.local)

No Mapping SAML_SUBJECT and
samlEmail

N/A

In this example, all partners support SAML 2.0 and only the SP-initiated SSO profile.
▪ Three authentication policy contracts. For more information, see step 5:

▪ An authentication policy contract, Authenticated, to carry user attributes from Alpha and Charlie
to their respective target applications.

▪ Two other authentication policy contracts, Echo authenticated and Golf authenticated, to carry
user attributes from Echo and Golf to their target applications.

▪ An instance of the HTTP Request Parameter Authentication Selector, PartnerIdpId, to determine if a
request is meant for Alpha or Charlie, because Alpha's and Charlie's target applications share an SP
adapter instance. For more information, see step 6.

▪ Three SP authentication policies to enforce the multifactor authentication requirement. For more
information, see step 7, step 8, and step 12.

▪ Three adapter mappings between the authentication policy contracts and the applicable SP adapter
instances. For more information, see step 9:

▪ Map from Authenticated to Sample.
▪ Map from Echo authenticated to Sample Echo.
▪ Map from Golf authenticated to Sample Golf

▪ Three additional target URL mappings between the applications requested by users from Echo,
Foxtrot, and Golf to their respective SP adapter instances. For more information, see step 10:

▪ SSO URLs for all partners. For more information, see step 11.

Copyright ©2024

 | Administrator's Reference Guide | 263

Follow these steps to fulfill the new requirements:

Steps

1. Go to Applications # Integration # SP Adapters. On the SP Adapters window, create two new SP
adapter instances, as shown in the following table.

Instance Name Instance ID Extended Contract

Sample Echo sampleEcho subject and email

Sample Golf sampleGolf subject and email

2. Create an IdP connection to Bravo.

a. On the IdP Connections window (Authentication # Integration # IdP Connections) create a
SAML 2.0 IdP connection.

b. On IdP Connection # Browser SSO # SAML Profiles, select the SP-Initiated SSO check box.
c. On IdP Connection # Browser SSO # User-Session Creation # Identity Mapping, select No

Mapping.
d. Complete the rest of the connection configuration.

3. Create IdP connections to Echo and Golf.

a. Go to Authentication # Integration # IdP Connections. On the IdP Connections window,
create a SAML 2.0 IdP connection to Echo, and then to Golf.

b. On IdP Connection # Browser SSO # SAML Profiles, select the SP-Initiated SSO check box.
c. On IdP Connection # Browser SSO # User-Session Creation # Identity Mapping, select No

Mapping.

 Tip:

If the partner and your organization agree to support account linking, select Account Linking.
When the Account Linking option is selected, you must map the applicable SP adapter instance,
Sample Echo for Echo or Sample Golf for Golf, to the connection on IdP Connection # Browser
SSO # User-Session Creation # Target Session Mapping. The rest of the steps remain
unchanged.

This example does not use account linking.

d. On IdP Connection # Browser SSO # User-Session Creation # Attribute Contract, enter
samlEmail under Extend the Contract.

e. Complete the rest of the connection configuration.
f. Repeat these steps to create a SAML 2.0 IdP connection to Golf.

4. Create an IdP connection to Foxtrot.

a. On the IdP Connections window, create a SAML 2.0 IdP connection.
b. On IdP Connection # Browser SSO # SAML Profiles, select the SP-Initiated SSO check box.
c. On the User-Session Creation tab, click Configure User-Session Creation.
d. On the Identity Mapping tab, select Account Mapping.
e. On the Attribute Contract tab, enter samlEmail under Extend the Contract.
f. On the Target Session Mapping tab, click Map New Adapter Instance and follow the Adapter

Mapping & User Lookup configuration workflow to map the attributes from the assertion to the
SP adapter instance Sample.

Example:

Adapter Contract Source Value

email Assertion samlEmail

Copyright ©2024

 | Administrator's Reference Guide | 264

Adapter Contract Source Value

subject Assertion SAML_SUBJECT

g. Complete the rest of the connection configuration.

5. Create three authentication policy contracts, one for Alpha and Charlie, one for Echo, and one for Golf.

 Note:

The purpose of an authentication policy contract is to harness user attributes obtained through one or
more authentication sources as the request flows through the applicable authentication policy. It is the
medium between the authentication policies and the target applications. In general:

▪ You map attributes to authentication policy contracts from authentication policies. For more
information, seestep 7 in this example.

▪ You map attributes from authentication policy contracts to target applications through adapter
mappings. For more information, see step 9 in this example.

a. Go to Authentication # Policies # Policy Contracts. On the Policy Contracts window, click
Create New Contract to create an authentication contract for users from Alpha and Charlie, for
users from Echo, and then for users from Golf.

b. On the Contract Info tab, enter a name for this authentication policy contract.

In this example, the names are Authenticated, Echo authenticated, and Golf
authenticated.

c. On the Contract Attributes tab, extend the authentication policy contract with an attribute for
user's email address, such as mail.

d. Complete the rest of the connection configuration.
e. Repeat these steps to create an authentication policy contract for users from Echo, and then for

users from Golf.

Result:

Your policy contracts should be similar to the following samples.

6.
 Note:

If multiple target applications share the same SP adapter instance, you must use a selector to evaluate
the SP-initiated requests such that the policy engine can route the requests to the policy paths that
are meant for the respective IdPs. This example uses an instance of the HTTP Request Parameter

Copyright ©2024

 | Administrator's Reference Guide | 265

Authentication Selector to categorize requests based on their respective PartnerIdpId query
parameter values at runtime. The policy diverts accordingly based on the selector results.

Create an instance of the HTTP Request Parameter Authentication Selector.

a. Go to Authentication # Policies # Selectors. On the Selectors window, click Create New
Instance.

b. On the Type tab, select HTTP Request Parameter Authentication Selector from the Type list
and provide a name and ID for the selector instance.

In this example, the name and ID are both PartnerIdpId.
c. On the Authentication Selector tab, enter PartnerIdpId in the HTTP Request Parameter

Name field.
d. On the Selector Result Values tab, enter sso.alpha.local and sso.charlie.local as the

result values.

 Note:

In general, for the IdPs that you want to enforce additional authentication requirements through
one or more SP authentication policies and whose target applications share an SP adapter
instance, you must enter their federation IDs here.

e. Complete the rest of the configuration.

Result:

Your selector instance should be similar to the following sample.

Copyright ©2024

 | Administrator's Reference Guide | 266

7. Go to Authentication # Policies # Policies. On the Policies window, click Add Policy to define a
policy to enforce the third-party authentication requirement for users from Echo, and then for users
from Golf.

 Tip:

If you need more information about each sub step, see step 4 in Configuring an SP authentication
policy for users from one IdP on page 257.

a. On the Policy window, enter a name and a description for this policy, and select sso.echo.local
(IdP Connection) as the first policy action from the list.

b. For the sso.echo.local # Fail path, select Done as the policy action.
c. For the sso.echo.local # Success path, select sso.bravo.local (IdP Connection) as the policy

action.
d. Click Options, underneath sso.bravo.local (IdP Connection), to relay the user ID

(SAML_SUBJECT) from sso.echo.local to sso.bravo.local.
e. For the sso.bravo.local # Fail path, select Done as the policy action.
f. For the sso.bravo.local # Success path, select the policy contract Echo authenticated as the

policy action, and then click Contract Mapping, underneath the policy contract, to configure the
fulfillment of the policy contract.

 Tip:

Essentially, you are mapping attributes to an authentication policy contract from the authentication
policy.

g. Repeat these steps to define a new authentication policy to enforce third-party authentication for
users from Golf.

Result:

Your policies should be similar to the following samples.

8. On the Policies tab, click Add Policy to define a new authentication policy to enforce third-party
authentication for users from Alpha and Charlie.

 Note:

If multiple target applications share the same SP adapter instance, you must use a selector to evaluate
the SP-initiated Browser SSO requests, such that the policy engine can route the requests to the

Copyright ©2024

 | Administrator's Reference Guide | 267

policy paths that are meant for the respective IdPs. This example uses an instance of the HTTP
Request Parameter Authentication Selector created in step 6.

a. On the Policy window, enter a name and a description for this policy, and select the instance of
the HTTP Request Parameter Authentication Selector as the first policy action from the list.

b. For the sso.alpha.local path, repeat step 7 to configure the authentication requirement for the
sso.alpha.local IdP connection.

c. For the sso.charlie.local path, repeat step 7 to configure the authentication requirement for the
sso.charlie.local IdP connection.

d. For the sso.foxtrot.local path, repeat step 7 to configure the authentication requirement for the
sso.foxtrot.local IdP connection.

Result:

Your policy should be similar to the following sample.

 Note:

This window capture collapses the sso.charlie.local and sso.foxtrot.local policy paths for
documentation presentation purposes.

When you go back to the Policies tab, your policies should be similar to the following samples.

e. Click Save.

Copyright ©2024

 | Administrator's Reference Guide | 268

9. Create adapter mappings.

a. Go to Applications # Integration # Policy Contract Adapter Mappings. On the Policy
Contracts window, create three adapter mappings to map from the authentication policy
contracts, created in step 5, to the applicable SP adapter instances.

▪ Map from Authenticated to Sample.
▪ Map from Echo authenticated to Sample Echo.
▪ Map from Golf authenticated to Sample Golf.

 Tip:

If you need more information about each sub step, see step 5 in Configuring an SP authentication
policy for users from one IdP on page 257.

Your mappings should be similar to the following samples.

Each adapter mapping should be similar to the following configuration.

 Tip:

You are essentially mapping attribute values from the authentication policy contracts to target
applications through the applicable SP adapter instances.

10. Create target URL mappings.

a. Go to Applications # Integration # Target URL Mapping. On the Target URL Mapping window,
add the following mappings.

URL Target Session

https://sso.xray.local:9031/SpSample/MainPage/?app=Echo&* Sample Echo

https://sso.xray.local:9031/SpSample/MainPage/?app=Foxtrot&* Sample

https://sso.xray.local:9031/SpSample/MainPage/?app=Golf&* Sample Golf

Result:

Your target URL mappings should be similar to the following samples.

Copyright ©2024

 | Administrator's Reference Guide | 269

11. Configure the following SSO URLs.

Partner SSO URL

Alpha https://sso.xray.local:9031/sp/startSSO.ping?
PartnerIdpId=sso.alpha.local&TargetResource=https%3A%2F
%2Fsso.xray.local%3A9031%2FSpSample%2FMainPage%3Fapp%3DAlpha
%26t%3Da

The SSO URL has not changed.

Based on the current configuration, because the target applications for Alpha and
Charlie share the same SP adapter instance, the PartnerIdpId query parameter
is required for the configured policy to route the request to the corresponding IdP
connection.

Charlie https://sso.xray.local:9031/sp/startSSO.ping?
PartnerIdpId=sso.charlie.local&TargetResource=https%3A%2F
%2Fsso.xray.local%3A9031%2FSpSample%2FMainPage%3Fapp%3DCharlie
%26t%3Dc

The SSO URL has not changed.

Based on the current configuration, because the target applications for Alpha and
Charlie share the same SP adapter instance, the PartnerIdpId query parameter
is required for the configured policy to route the request to the corresponding IdP
connection.

Delta https://sso.xray.local:9031/sp/startSSO.ping?
PartnerIdpId=sso.delta.local&TargetResource=https%3A%2F
%2Fsso.xray.local%3A9031%2FSpSample%2FMainPage%3Fapp%3DDelta
%26t%3Dd

The SSO URL has not changed.

Optionally, based on the current configuration, you can remove the
PartnerIdpId query parameter because it is not required. You can also
replace the TargetResource query parameter and its value with the
SpSessionAuthnAdapterId query parameter and the applicable SP adapter
instance ID, SpSessionAuthnAdapterId=sampleDelta, if you have configured
a default target URL in the IdP connection to Delta, or a default SP SSO URL for all
IdP connections.

Echo https://sso.xray.local:9031/sp/startSSO.ping?
SpSessionAuthnAdapterId=sampleEcho&TargetResource=https%3A%2F
%2Fsso.xray.local%3A9031%2FSpSample%2FMainPage%3Fapp%3DEcho
%26t%3De

This is a new SSO URL.

Optionally, based on the current configuration, you can remove the
TargetResource query parameter and its value if you have configured a default
target URL in the IdP connection to Echo, or a default SP SSO URL for all IdP
connections.

Copyright ©2024

 | Administrator's Reference Guide | 270

Partner SSO URL

Foxtrot https://sso.xray.local:9031/sp/startSSO.ping?
PartnerIdpId=sso.foxtrot.local&TargetResource=https%3A%2F
%2Fsso.xray.local%3A9031%2FSpSample%2FMainPage%3Fapp%3DFoxtrot
%26t%3Df

This is a new SSO URL.

Optionally, based on the current configuration, you can remove the
TargetResource query parameter and its value if you have configured a default
target URL in the IdP connection to Foxtrot, or a default SP SSO URL for all IdP
connections.

Golf https://sso.xray.local:9031/sp/startSSO.ping?
SpSessionAuthnAdapterId=sampleGolf&TargetResource=https%3A%2F
%2Fsso.xray.local%3A9031%2FSpSample%2FMainPage%3Fapp%3DGolf
%26t%3Dg

This is a new SSO URL.

Optionally, based on the current configuration, you can remove the
TargetResource query parameter and its value if you have configured a default
target URL in the IdP connection to Golf, or a default SP SSO URL for all IdP
connections.

 Important:

When using the parameters TargetResource or TARGET with their own query parameters included,
the parameter value must be URL-encoded. Any other parameters that contain restricted characters,
such as many SAML URNs, also must be URL-encoded. For information about URL encoding, see
third party resources such as HTML URL-encoding Reference. Parameters are case-sensitive.

12. To test your new use case, go to Authentication # Policies # Policies. On the Policies window,
select the SP Authentication Policies check box to enable policies for SP-initiated Browser SSO
requests received by at the /sp/startSSO.ping endpoint, and click Save.

Configuring SP authentication policies for internal users
The /pf/adapter2adapter.ping endpoint initiates direct IdP-to-SP adapter mapping, mostly intended
for the internal users to access resources without maintaining a service provider (SP) and an identity
provider (IdP) connection on the same server.

About this task

To prevent users from circumventing the SP authentication policies, this endpoint becomes inactive when
SP authentication policies are enabled but IdP authentication policies are disabled. Administrators can
configure SP authentication policies for the internal users to re-enable access to protected resources.

Suppose you have configured the following use cases in PingFederate 8.0.

For users from Hotel, an IdP:

▪ An SP adapter instance:

▪ Name: Sample Hotel
▪ ID: sampleHotel

Copyright ©2024

 | Administrator's Reference Guide | 271

▪ A SAML 2.0 IdP connection:

▪ Partner: Hotel
▪ Federation ID: sso.hotel.local
▪ SAML Profile: SP-initiated single sign-on (SSO) only
▪ Identity mapping method: Account mapping
▪ Default target URL: https://sso.xray.local:9031/SpSample/MainPage/?app=Hotel&t=h
▪ SSO URL: https://sso.xray.local:9031/sp/startSSO.ping?PartnerIdpId=sso.hotel.local

For internal users:

▪ An IdP HTML Form Adapter instance, HTML Form, validating credentials through a Password
Credential Validator (PCV) instance against your user directory

▪ An adapter-to-adapter mapping:

▪ Source: HTML Form
▪ Target: Sample Hotel
▪ Default target URL: https://sso.xray.local:9031/SpSample/MainPage/?app=Internal&t=i
▪ SSO URL: https://sso.xray.local:9031/pf/adapter2adapter.ping?

SpSessionAuthnAdapterId=sampleHotel

After upgrading to PingFederate 10.1, if you want to enforce multi-factor authentication for users from Hotel
through Bravo, you can create an IdP connection to Bravo and the following authentication policy.

Because the authentication policy ends with a policy contract Hotel authenticated, you must create
an adapter mapping, from the policy contract, to Sample Hotel, the SP adapter instance integrated
with the target application. You also need to update the SSO URL for users from Hotel to https://
sso.xray.local:9031/sp/startSSO.ping?SpSessionAuthnAdapterId=sampleHotel.

When you select the SP Authentication Policies check box without selecting the IdP Authentication
Policies check box, the /pf/adapter2adapter.ping endpoint is disabled to prevent malicious Hotel's
users, with specific knowledge of PingFederate endpoints, your PingFederate configuration, and functional
credentials, from trying to access the target application through the SSO URL intended for your internal
users. By doing so, you circumvent the SP authentication policy that is meant for them.

To re-enable access to the application for the internal users, you need the following new components:

▪ An additional SP adapter instance, Sample Internal to integrate with the target application. See step
1.

▪ An authentication policy contract, Internal authenticated, to carry attributes from internal users to the
target applications. See step 2.

▪ An instance of the CIDR Authentication Selector to be deployed in the authentication policy to
reject users from external networks to access protected resources using your HTML Form Adapter.
Alternatively, deploy an instance of the PingID Adapter in the authentication policy to enforce
multifactor authentication for users who authenticated successfully using the HTML Form Adapter. See
step 3.

▪ An authentication policy for the internal users. See step 4.
▪ An adapter mapping to map from the authentication policy contracts Internal authenticated to the SP

adapter instance Sample Internal. See step 5.
▪ A new SSO URL for the internal users. See step 6.

Follow these steps to fulfill the new requirements.

Steps

1. Go to Applications # Integration # SP Adapters.

Copyright ©2024

 | Administrator's Reference Guide | 272

2. Click Create New Instance to create a new SP adapter instance.

For each new instance, include the name, ID, and extended contract.

Instance Name Instance ID Extended Contract

Sample Internal sampleInternal subject and email

3. Go to Authentication # Policies # Policy Contracts .

4. Click Create New Contract to create an authentication policy contract.

 Note:

In this example, the name of the policy contract is Internal authenticated.

The purpose of an authentication policy contract is to harness user attributes obtained through one or
more authentication sources as the request flows through the applicable authentication policy. It is the
medium between the authentication policies and the target applications. Generally speaking:

▪ You map attributes to authentication policy contracts from authentication policies. step 4 in this
example.

▪ You map attributes from authentication policy contracts to target applications through adapter
mappings, step 5 in this example.

5. Go to Authentication # Policies # Selectors.

6. Click Create New Instance to create an instance of the CIDR Authentication Selector with one or
more network ranges that correspond to your internal users.

 Note:

In this example, the name and ID are both Internal users.

The purpose of the CIDR Authentication Selector is for the policy engine to reject users from external
networks to access protected resources using your HTML Form Adapter. You can also deploy the
PingID Adapter to enforce multifactor authentication for users authenticated through the HTML Form
Adapter. If users fail to fulfill the PingID multifactor authentication requirement, the policy engine
rejects their requests, thus providing another layer of protection against unauthorized access from
malicious users.

7. Go to Authentication # Policies # Policies to configure your policies as follows.

With PingID Adapter

With CIDR Authentication Selector

8. Go to Applications # Integration # Policy Contract Adapter Mappings.

9. Click Create New Instance and create a mapping from the new authentication policy contract,
Internal authenticated., to the new SP adapter instance, sampleInternal.

10. On the Default Target URL window, enter https://sso.xray.local:9031/SpSample/
MainPage/?app=Internal&t=i.

11. Update the SSO URL for your internal users to https://sso.xray.local:9031/sp/startSSO.ping?
SpSessionAuthnAdapterId=sampleInternal.

Copyright ©2024

 | Administrator's Reference Guide | 273

Policy fragments
You can manage policy fragments under Authentication # Policies # Fragments. You can create
reusable policy fragments and apply them in multiple authentication policies.

Fragments make policies easier to administer, allowing you to extract common patterns that exist among
different policies and to manage them in one place. For example, you can create a reusable policy
fragment with policy components that you frequently use and apply that fragment in multiple policies. When
the authentication requirements need adjustments, you can make those changes in the fragment without
updating the policies that reference it.

Fragments can use other fragments; you can chain five or more fragments together. You can also use
as many fragments as you want throughout a policy, provided that the way the policy is structured, there
aren't over five fragments being processed at one time.

On the Fragments window:

▪ Click Add Fragment to define a policy fragment.
▪ Click the name of an existing fragment to edit its configuration.
▪ Click Select Action to copy or delete an existing fragment.

Defining a policy fragment
You define policy fragments on the Fragment window.

Before you begin
Make sure that you have configured at least two policy contracts to function as input and output contracts.

Steps

1. In the Name field, type a name for the policy fragment.

2. Optional: Change the identifier for the fragment. This ID will be used to reference input and output
attributes in the advanced Expressions fulfillment option. It cannot be changed after the fragment has
been created.

3. Optional: Type a description for the fragment.

4. From the Inputs list, select the input authentication policy contract that calling members will need to
fulfill. The attributes contained in the contract will be available for use throughout the policy.

5. From the Outputs list, select the output authentication policy contract that this fragment will fulfill.
Calling members will be able to use the values of the attributes contained in the output policy contract.

6. From the Policy list, select an IdP adapter, an IdP connection, a selector, or a fragment. (Detailed
policy configuration instructions are provided in step 5 in Defining authentication policies on page
242.)

 Important:

As of PingFederate 10.2, you can select Fragments as the policy action and then select a policy
fragment that you have created. When you select a fragment, click Fragment Mapping and use the
in-product help links to access the topics that describe how to configure the mapping.

a. Click Options, and select the source and the attribute to be used as the incoming user ID.
b. Click Rules, and define authentication policy rules using attributes from the previous

authentication source.
c. Configure Fail and Success paths. For a fragment to succeed, you must map it into a LIP or APC

based on the output contract. You can also use a fragment in a calling policy and set both of the
fragment's exit Fail/Success nodes to Done.

7. When you have completed the fragment's configuration, click Save.

Copyright ©2024

 | Administrator's Reference Guide | 274

Policy contracts
Authentication policy contracts, formerly known as connection mapping contracts, give PingFederate
administrators a variety of capabilities.

Authentication policy contracts provide PingFederate administrators the following benefits:

▪ The capability to build an attribute contract with attribute values from multiple authentication sources or
datastore queries through an authentication policy.

▪ The flexibility to map only the policy contract to a connection. Administrators do not have to map
into the connection the authentication sources in the policy leading up to the contract. For example,
administrators can experiment with various IdP adapter instances without the burden of adding and
removing them to and from the connection.

▪ The potential to reuse authentication policies that use the same policy contract in multiple service
provider (SP) connections, identity provider (IdP) connections, and OAuth use cases, using the OAuth
Authorization Code or Implicit grant types.

Authentication policy contracts are also the media to carry user attributes from IdPs to SPs when
PingFederate is deployed as a federation hub. For more information, see Federation hub use cases on
page 99.

Managing policy contracts
You can manage authentication policy contracts in the Authentication # Policies # Policy Contracts
window.

Steps

1. Click Create New Contract to create a new authentication policy contract.

2. Edit an existing authentication policy contract by clicking its name.

3. Check the policy contract usage.

4. Optional: On the Policy Contracts window, click Delete to remove an authentication policy contract, if
the authentication policy contract is not in use, or cancel the removal request.

Editing contract information
You can create new policy contracts or edit existing ones from the Policy Contracts window.

Steps

1. Go to Authentication # Policies # Policy Contracts.

2. Click Create New Contract or select an existing contract.

3. On the Contract Info tab, enter or modify the contract name.

4. Click Next.

Defining contract attributes
To manage the user attributes in the authentication policy contract, go to Authentication # Policies #
Policy Contracts.

About this task

Every authentication policy contract comes with a subject attribute. You can extend the contract with
additional attributes as needed.

Copyright ©2024

 | Administrator's Reference Guide | 275

Steps

▪ If needed, enter an attribute under Extend the Contract, and then click Add.

 Note:

Attribute names are case-sensitive and must suit the needs of your partners. Repeat to add more
attributes as needed.

▪ Click Edit, Update, or Cancel to modify an existing attribute or undo changes.
▪ Click Delete to remove an existing attribute.

Reviewing the policy contract
On the Summary tab, you can review the policy contract.

Steps

▪ To keep your changes, click Save.
▪ To amend your configuration, click the name of the corresponding tab and then follow the configuration

wizard to complete the task.
▪ To discard your changes, click Cancel.

Adapter Mappings
Configuring adapter mappings allows administrators to map attributes from an authentication policy
contract directly to a service provider (SP) adapter instance.

This allows the administrators to chain multiple authentication sources in an SP authentication policy, to
build an authentication policy contract using attributes from authentication sources in the policy path, and
to apply the authentication policy contract to the target application.

Configuring authentication policy adapter mappings
Authentication policy adapter mappings allow administrators to map attributes from an authentication policy
contract directly to a service provider (SP) adapter instance.

Steps

1. Go to Applications # Integration # Policy Contract Adapter Mappings.

2. From the Source Instance list, select the applicable authentication policy contract from the .

3. From the Target Instance list, select the SP adapter instance integrated with your target application.

4. Click Add Mapping.

Copyright ©2024

 | Administrator's Reference Guide | 276

5. Follow the Applications # Integration # Adapter-to-Adapter Mappings wizard to create the
mapping.

a. Optional: On the Attribute Sources & User Lookup tab, click Add Attribute Source to configure
datastore queries to fulfill the SP adapter contract.

Queries are executed in the order they are displayed on the Attribute Sources & User Lookup
tab. Use the up and down arrows as needed to adjust the order.

If a required attribute cannot be fulfilled, such as the user identifier of an adapter, the request fails.
For more information, see Fulfillment by datastore queries on page 374.

b. On the Adapter Contract Fulfillment tab, select a source and an attribute to fulfill the SP adapter
contract.

 Note:

Select Authentication Policy Contract from the Source list to map directly from the policy
contract to the SP adapter contract or another choice to fulfill the SP adapter contract through
datastore queries, dynamic texts, or results from OGNL expression

c. Optional: On the Default Target URL tab, specify a default target URL for this mapping
configuration.

d. Optional: On the Issuance Criteria tab, configure conditions to be validated before issuing an SP
adapter contract. For more information, see Define issuance criteria for adapter mapping.

e. On the Adapter-to-Adapter Mapping Summary tab, review the configuration and modify as
needed. When complete, click Done.

6. On the Adapter-to-Adapter Mappings window, click Save.

Defining issuance criteria for adapter mapping
You can define issuance criteria for adapter mappings in PingFederate to conditionally approve or reject
requests based on individual attributes. Satisfy criteria in order for PingFederate to move a request to the
next phase.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Copyright ©2024

 | Administrator's Reference Guide | 277

Steps

1. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Authentication Policy
Contract

Select to evaluate attributes from the authentication policy contract.

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

The HTTP Request context value is retrieved as a Java object rather than
text. For this reason, attribute mapping expressions are more appropriate
to evaluate and return values.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

2. From the Attribute Name list, select the attribute to be evaluated.

3. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

Copyright ©2024

 | Administrator's Reference Guide | 278

4. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

5. In the Error Result field, enter a custom error message.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

6. Click Add.

7. Optional: Repeat to add more criteria.

8. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Sessions
This topic describes the differences between application and authentication sessions.

Application sessions

Application sessions apply to PingFederate applications hosted on its user-facing endpoints, such as
the profile management page and the grant management endpoints. When the inactivity threshold or
the maximum lifetime is reached, PingFederate redirects previously authenticated users back to the
authentication sources, identity provider (IdP) adapter instances or IdP connections, subject to the
configuration of authentication sessions.

Authentication sessions

Authentication sessions control when PingFederate redirects previously authenticated users back to the
authentication sources on subsequent requests for browser-based single sign-on (SSO) or PingFederate
applications.

Authentication sessions typically wrap an adapter so that PingFederate creates the session when user
authentication has succeeded. PingFederate invokes the adapter's authentication logic again only when
the session reaches its limits. However, depending on the implementation, an adapter can be aware
of an authentication session that wraps it and override this logic. In particular, PingFederate creates
authentication sessions configured for an Identifier First Adapter instance only when the complete single

Copyright ©2024

 | Administrator's Reference Guide | 279

sign-on (SSO) transaction has succeeded. This lets the adapter prompt the user for a different user
identifier when a chained adapter authentication fails because, for example, there's a typo in the user
identifier.

Session storage options

When authentication sessions are enabled, PingFederate maintains session data in memory.

PingFederate also supports maintaining session data both in memory and on an external storage.
This optional capability allows administrators to support use cases where a longer session duration
or a greater resilience against restarts of PingFederate and browsers is desired. The retrieval and
update operations are optimized to provide a fast and seamless user experience. For instance, a
retrieval from the external storage is only required when an authentication session is not found in
memory.

 Note:

Persistent authentication sessions require an external storage. For more information, see Defining a
datastore for persistent authentication sessions on page 904.

Inactivity (idle) timeout and maximum lifetime

When authentication sessions are enabled, an authenticated user is not sent back to the
authentication system as long as the user makes another request within the idle timeout window,
60 minutes by default. If the user makes another request within the idle timeout window, the
authentication session is extended by the idle timeout value, another 60 minutes by default. For
externally stored authentication sessions, this operation is optimized to only send updates to the
external storage when the remaining idle timeout window is less than 75%.

An authentication session can be repeatedly extended by multiple requests and remains valid
until the maximum timeout value is reached, in which case the user will be redirected back to the
authentication system.

 Tip:

The authentication system might or might not challenge the user to complete an authentication
process based on its own session management policy or processing logic.

Configuration options

Administrators can enable authentication sessions for all authentication sources, with or without
making the authentication sessions persistent, and with or without specifying overrides for selected
authentication sources.

Alternatively, administrators can enable authentication sessions for a few selected authentication
sources, optionally with their own sets of overrides. The override options include:

▪ Disable or enable authentication sessions
▪ Make authentication sessions persistent
▪ Override the idle timeout, the maximum timeout, or both, in minutes, hours, or days
▪ Enforce authentication requirement based on authentication context

Because sessions are tracked with their respective authentication context, administrators can
optionally configure PingFederate to compare the requested authentication context found in the
authentication request against the authentication context found in the session. If the values do
not match, PingFederate redirects the user back to the authentication system.

Copyright ©2024

 | Administrator's Reference Guide | 280

Tracking options for logout

Administrators can optionally configure additional tracking options for logout to control whether
PingFederate should leverage the single logout (SLO) application endpoints to terminate adapter sessions,
add sessions to the session revocation list as users sign out, or do both. Publish revoked sessions to
provide a secure SLO experience with PingAccess deployments.

Configuring tracking options for logout
You can configure PingFederate to track adapter sessions for logout.

About this task
An adapter session is a logout entry that, if tracked, ensures a logout request is sent to the adapter during
single logout (SLO). Then the adapter can remove any session data that it is tracking for the user.

Steps

1. Go to Authentication # Policies # Sessions.

2. Optional: Enable SLO for all adapter instances on a per-user basis by selecting the Track Adapter
Sessions for Logout check box.

When this check box is selected, an adapter session is tracked whenever an adapter is invoked
during single sign-on (SSO). When this check box is not selected, the tracking of the adapter session
depends on other factors, such as whether SLO is enabled on the partner connection involved in the
SSO. This check box is not selected by default.

3. Optional: Add the associated sessions to the revocation list on logout by selecting the Track Revoked
Sessions on Logout check box.

When selected, PingFederate always adds the associated sessions to the session revocation list
as users sign off, even if an error occurs to the logout requests. This allows other systems, such as
PingAccess, to query the validity of a given session at the Session Revocation API endpoint, /pf-ws/
rest/sessionMgmt/revokedSris. This check box is selected by default for new installations.

 Note:

If your use cases involve OAuth requests, consider enabling the Check session revocation status
option in the applicable Access Token Management instances so that the token validation process
takes into account whether a session has been added to the revocation list. For more information, see
Managing session validation settings on page 572.

4. Optional: Change the number of minutes until the revoked sessions are removed from the revocation
list for optimal performance by changing the value in the Session Revocation Lifetime field. You can
enter an integer between 1 and 43200. The default value is 490 minutes.

 Important:

The Session Revocation Lifetime value should match or exceed the idle timeout value, or the
maximum session lifetime value, of the authentication sources and the relying parties. For example,
the default value of 490 minutes exceeds the global Max Timeout value for authentication sessions by
10 minutes to allow for clock skew among servers.

5. Click Save.

Copyright ©2024

 | Administrator's Reference Guide | 281

Configuring application sessions
You can configure and override the default timeout limits for application sessions in the PingFederate
administrative console.

Steps

1. Go to Authentication # Policies # Sessions.

2. Optional: On the Sessions window, override the default timeout values under Application Sessions.

Field Description

Idle Timeout (Minute) Modify the default inactivity timeout value in the Idle Timeout (Minute)
field.

You can enter an integer between 1 and 1576800, representing a range of
one minute to 1,095 days. You can also empty the value to indicate that the
inactivity timeout value should match the maximum lifetime.

The default value is 60 minutes.

Max Timeout (Minutes) Modify the default maximum lifetime of an authentication session in the
Max Timeout (Minutes) field.

You can enter an integer between 1 and 1576800, representing a range
of one minute to 1,095 days. You can also empty the value to indicate that
the authentication sessions do not expire until they are removed from the
system.

The value of the Max Timeout (Minutes) field cannot be less than that of
the Idle Timeout (Minute) field.

The default value is 480 minutes, which is 8 hours.

3. To keep your configuration, click Save.

Configuring authentication sessions
You can configure and override the default timeout limits for authentication sessions in the PingFederate
administrative console.

Steps

1. Go to Authentication # Policies # Sessions.

2. Optional: On the Sessions window, configure the global policy and timeout settings under
Authentication Sessions.

a. Select the Enable Sessions for All Authentication Sources check box if PingFederate should
track authentication sessions for all authentication sources. Clear this check box if you prefer to
enable authentication sessions for only a few authentication sources or disable authentication
sessions altogether. This check box is not selected by default.

 Note:

For any HTML Form Adapter instance that has been configured to allow users to indicate whether
their device is shared or private, if a user signs on without selecting the This is my device check

Copyright ©2024

 | Administrator's Reference Guide | 282

box on the login form, PingFederate removes authentication session information, if found, and
does not store authentication sessions for the user.

b. If your use cases require longer sessions or greater resilience against restarts of PingFederate
and browsers, select the Make Authentication Sessions Persistent check box.

 Note:

Selecting the check box causes the PF.PERSISTENT cookie to be set in the user's browser. By
default, this cookie persists across browser restarts. To allow for very long sessions, the expiration
period for the cookie defaults to 94608000 seconds, or 3 years. You can change this period in
the cookie-max-age setting in the file persistent-session-cookie-config.xml. If you
prefer to have the PF.PERSISTENT cookie cleared on browser exit, set cookie-max-age to
-1. Regardless of the cookie's expiration period, PingFederate always enforces the configured
session timeouts. However a user might lose their session earlier if the PF.PERSISTENT cookie
expires or is removed by the browser.

Persistent authentication sessions require an external storage.

 Note:

As of version 9.3, PingFederate alleviates DoS attacks by protecting the persistent
session process. It does this by treating repeated persistent cookies that do not have a
PF cookie as a replay if repeated in a specified time. This time is set to 300 seconds by
default, and you can change it by modifying EmptySessionReplayRetentionsSecs
in the <pf-install>/server/default/data/config-store/
org.sourceid.saml20.service.session.StoredSessionServiceImpl.xml file.

For example:

▪ If a request arrives with a PF.PERSISTENT cookie and without a PF cookie, PingFederate
starts counting the time set in EmptySessionReplayRetentionsSecs.

▪ If another request arrives with the same PF.PERSISTENT cookie and without a PF cookie
within the time specified in the configuration file, PingFederate treats it as a replayed request
and does not perform a database lookup.

You can disable this behavior by setting EmptySessionReplayRetentionsSecs to 0.

c. Select the Hash Unique User Key Value check box if you want the unique user key to be hashed
using SHA-256. When this option is enabled, PingFederate associates this hashed value with the
particular user's authentication sessions.

The hashed value is used for features related to unique user keys; for example, the HTML Form
Adapter's Revoke Sessions After Password Change or Reset option (for more information, see
Configuring an HTML Form Adapter instance on page 291). The hashed value will be visible
in server and audit logs, and in session storage if Make Authentication Sessions Persistent is
enabled.

d. Optional: Override the default timeout values for all authentication sources.

Field Description

Idle Timeout Modify the default inactivity timeout value in the Idle Timeout field and
select a unit of measurement from the list.

You can enter an integer that represents a time period between 1
minute and 1,095 days. You can also empty the value to indicate that
the inactivity timeout value should match the maximum lifetime.

The default inactivity timeout value is 60 minutes.

Copyright ©2024

 | Administrator's Reference Guide | 283

Field Description

Max Timeout Modify the default maximum lifetime of an authentication session in the
Max Timeout field and select a unit of measurement from the list.

You can enter an integer that represents a time period between 1
minute and 1,095 days. You can also empty the value to indicate that
the authentication sessions do not expire until they are removed from
the system.

The value of the Max Timeout field cannot be less than that of the Idle
Timeout field.

The default inactivity timeout value is 480 minutes, or eight hours.

3. Optional: Configure policy and settings for individual authentication sources under Overrides.

a. From the Authentication Source list, select an identity provider (IdP) adapter instance or an IdP
connection.

b. Configure individual policy for the selected authentication source as follows.

Global policy (under Authentication
Sessions)

Individual policy (under Overrides)

The Enable Sessions for All Authentication
Sources check box is not selected.

Authentication-session tracking is not enabled
for all authentication sources.

Select the Enable Sessions check box to
enable authentication-session tracking for the
selected authentication source.

The Enable Sessions for All Authentication
Sources check box is selected.

Authentication-session tracking is enabled for
all authentication sources.

Clear the Enable Sessions check box to
disable authentication-session tracking for the
selected authentication source.

Select the Enable Sessions check box for
the purpose of overriding other authentication-
session settings for the selected authentication
source.

 Note:

The Enable Sessions check box is not selected by default.

For any HTML Form Adapter instance that has been configured to allow users to indicate whether
their device is shared or private, if a user signs on without selecting the This is my device check

Copyright ©2024

 | Administrator's Reference Guide | 284

box on the login form, PingFederate removes authentication session information, if found, and
does not store authentication sessions for the user.

c. Select the Persistent check box if your use cases require a longer session duration or a greater
resilience against restarts of PingFederate and browsers.

Available and applicable only if the Enable Sessions check box is selected. The Persistent
check box is not selected by default.

 Note:

Persistent authentication sessions require an external storage.

 Note:

Notes under step 2b apply here as well.

d. If authentication-session tracking is enabled for the selected authentication source and if you
want to configure specific timeout values, select the Override Timeouts check box and configure
timeout settings.

Field Description

Idle Timeout You can enter an integer that represents a time period between 1
minute and 1,095 days. You can also empty the value to indicate that
the inactivity timeout value should match the maximum lifetime.

This field has no default value.

Max Timeout You can enter an integer that represents a time period between 1
minute and 1,095 days. You can also empty the value to indicate that
the authentication sessions do not expire until they are removed from
the system.

The value of the Max Timeout field cannot be less than that of the Idle
Timeout field.

This field has no default value.

Unit Select from the list the unit of measurement for both the Idle Timeout
and Max Timeout fields.

The default selection is Minutes.

e. If authentication-session tracking is enabled for the selected authentication source and if you
want to enforce authentication requirement based on the authentication context for the selected
authentication source, select the Authentication Context Sensitive check box. This check box is
not selected by default.

f. Click Add.
g. Repeat these steps to configure individual policy and settings for additional authentication

sources.

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

4. To keep your configuration, click Save.

Copyright ©2024

 | Administrator's Reference Guide | 285

Result

When PingFederate authentication sessions are enabled, you can configure session-validation options for
your OAuth use cases. These optional settings enable you to conjoin the validity of access tokens and the
authentication sessions of the users. For more information, see Managing session validation settings on
page 572.

Bundled adapters
The PingFederate Server comes bundled with a set of adapters for integration and customizable
configuration, depending on your service needs.

PingFederate's bundled set of adapters:

▪ Composite adapter
▪ HTML Form IdP adapter
▪ HTTP Basic IdP adapter
▪ Identifier First adapter
▪ Kerberos adapter
▪ OpenToken IdP adapter
▪ PingID adapter
▪ PingOne MFA MFA adapter
▪ PingOne Protect adapter
▪ Reference ID IdP adapter
▪ X.509 Certificate IdP adapter

Composite Adapter
PingFederate's Composite Adapter allows adapter chaining for single sign-on (SSO) requests that best fit
your user or organization's needs.

For an Identity Provider (IdP), PingFederate includes a Composite Adapter that allows an administrator to
chain the selection of available adapter instances for a connection. At runtime, adapter chaining means
that SSO requests are passed sequentially through each adapter instance specified until one or more
authentication results are found for the user.

Adapter chaining can be used to choose an adapter instance based on the method by which a user
authenticated, or to integrate an organization's multi-factor authentication requirement.

 Tip:

For complex authentication requirements, consider implementing authentication policies. Go to
Authentication # Policies. From the Policies window, make changes on the Policies tab.

Configuring a Composite Adapter instance
Configuring a Composite Adapter instance allows you to enable adapter chaining for a user authentication
connection.

About this task
Configure an instance of a Composite Adapter in PingFederate using the administrative console.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. On the IdP Adapters window, click Create New Instance to start the Create Adapter Instance
configuration.

Copyright ©2024

 | Administrator's Reference Guide | 286

3. On the Type tab, configure the basics of this adapter instance.

a. Enter the instance name and ID.
b. From the Type list, select the adapter type.
c. Optional: From the Parent Instance list, select an existing type.

If you are creating an instance that is similar to an existing instance, you might consider making
it a child instance by specifying a parent. A child instance inherits the configuration of its parent
unless overridden. You can specify overrides during the rest of the setup.

4. On the IdP Adapter tab, configure your Composite Adapter instance as follows:

a. Click Add a new row to 'Adapters'.
b. From the Adapter Instance list, select an IdP adapter instance. Click Update.

For more information, see the Description column in each configuration section and the following
table.

PingFederate's column names and descriptions for creating an adapter instance

Column Description

Policy

(Required)

Required (the default) indicates authentication through this adapter
instance is needed to continue SSO processing and to invoke any
remaining instances in the chain. If you are integrating multifactor
authentication, use this policy for each instance. The Composite
Adapter instance returns an error when the authenticate attempt against
a required adapter instance fails.

Sufficient indicates that authentication through this adapter instance is
enough to satisfy requirements, along with any required instances that
have already been selected. Any subsequent configured instances in
the chain are not invoked.

 Important:

For the sufficient policy to work correctly, the adapter must return
control to PingFederate after any kind of a failure.

AuthN Context Weight

(Required)

If more than one adapter instance in the chain is capable of returning an
authentication context, this relative weight is used to determine which
value is included in the assertion, unless the value is overridden under
AuthN Context Override.

If weights are the same for two or more contexts, the first one
processed is included in the assertion.

The default value is 3.

Copyright ©2024

 | Administrator's Reference Guide | 287

Column Description

AuthN Context
Override

If provided, this value overrides the authentication context value that
might be returned from the adapter instance. The value in this field can
be sent in the assertion if the associated adapter instance is invoked.

If weights are the same for two or more contexts, the first one
processed is included in the assertion.

c. Add at least one more adapter instance and configure its Policy, AuthN Context Weight, and
AuthN Context Override settings.

Repeat this step to add more adapter instances as needed.

At runtime adapter chaining is sequential, starting at the top of the list.

 Important:

You can configure several types of adapters -- for example, the IWA IdP Adapter -- to direct end
users to an error page if authentication fails for any reason, which will halt further progress through
a composite-adapter chain. For such adapter instances, ensure the Error URL option is not used
in the instance configuration when continuation through an adapter-chaining sequence is required.

d. Optional: In the Action column, manage the selected adapter instances.
e. Configure Input User ID Mapping.

If you have configured any IdP Adapter developed using the IdpAuthenticationAdapterV2
interface from the PingFederate SDK, including the HTML Form Adapter, the Input User ID
Mapping section appears. Additionally, some IdP adapters, such as the PingID Adapter and the
separately available Symantec VIP Adapter, require a user ID to be passed in from an earlier-
authentication step to perform multifactor authentication. If so, an administrator must specify the
attribute containing the unique ID on this window. For example, to pre-populate the username

Copyright ©2024

 | Administrator's Reference Guide | 288

of an HTML Form Adapter instance with an attribute from an earlier authentication source in the
previous steps:

1. Click Add a new row to 'Input User ID Mapping'.
2. From the Target Adapter list, select the HTML Form Adapter instance.
3. From the User ID Selection list, select a source attribute.
4. Click Update.

 Note:

For OAuth use cases, entries in the Input User ID Mapping section might override the
login_hint parameter value provided by the OAuth clients when they submit their requests to
the /as/authorization.oauth2 authorization endpoint.

 Tip:

By default, the HTML Form Adapter does not allow the users to change the username if it is
configured to be pre-populated with an attribute from another authentication source. You can
override this restriction by enabling the Allow Username Edit option on a per-adapter instance.

f. Configure Attribute Name Synonyms.

If any attributes are logically equivalent across two adapter instances but have different names,
click Add a new row to 'Attribute Name Synonyms'. Select attributes from the Name and
Synonym lists to create a mapping between them.

The attribute name under Synonym and its value are used in the SAML assertion when the two
values returned from each adapter are identical. If returned values are different, both values are
sent for the synonym.

 Note:

Without this configuration to identify synonymous attribute names, both names and their values
are sent in the SAML assertion.

g. Define the order in which different values are returned for the same attribute name.

For attributes of the same name configured in different adapter instances, you can change the
order of returned values when the values are different. (Values are merged if they are the same.)

By default, the Add to Back value for an attribute name configured in the first instance is returned
first and also listed first in the resulting SAML assertion. Then any different value from the same
attribute name in a subsequently invoked instance is appended.

The order might not matter for many attributes, but in the case of the SAML-subject attribute, only
the first value in the SAML assertion can be used for an SP connection partner under normal
circumstances. Click Add to Front to reverse the default order, if needed.

5. On the Extended Contract tab, click Add to add attributes to be returned from each adapter instance
configured on the previous window.

 Note:

Attributes must correspond exactly to any or all of the attribute names listed on the Adapter Attribute
tab for each configured adapter instance.

Copyright ©2024

 | Administrator's Reference Guide | 289

6. On the Adapter Attributes tab, do the following:

a. Optional: From the Unique User Key Attribute list, select an attribute to uniquely identify users
signing on with this adapter. The attribute's value will be used to identify user sessions across all
adapters. None is selected by default.

 Note:

If you choose a custom user key attribute, uses the value of the attribute after the Adapter
Contract Mapping (if any) has been evaluated. If you choose a custom user key attribute that is
based on the username, configure the adapter's password credential validators to trim spaces.

 Important:

For the HTML Form Adapter, If you enabled the Revoke Sessions after Password Change or
Reset option in the IdP Adapter tab, you cannot select None as the unique user key attribute.
Doing so will result in an error message.

b. Select the check box under Pseudonym for the user identifier of the adapter and optionally for the
other attributes, if available.

This selection is used if any of your service provider (SP) partners use pseudonyms for account
linking.

 Note:

A selection is required whether or not you use pseudonyms for account linking. This allows
account linking to be used later without having to delete and reconfigure the adapter. Ensure that
you choose at least one attribute that is unique for each user, such as a user's email, to prevent
assigning the same pseudonym to multiple users.

c. Select the check box under Mask Log Values for any attributes whose values you want to mask
in its logs at runtime.

 Note:

Masking is not applied to the unique user key attribute in the logs even though the attribute used
for the key is marked as Mask Log Values.

d. Select the Mask all OGNL-expression generated log values check box, if OGNL expressions
might be used to map derived values into outgoing assertions and you want those values masked.

7. Optional: On the Adapter Contract Mapping tab, configure the adapter contract for this instance with
the following optional workflows:

▪ Configure one or more data sources for datastore queries.
▪ Fulfill adapter contract with values from the adapter, the default, datastore queries, if configured,

context of the request, text, or expressions, if enabled.
▪ Set up the Token Authorization framework to validate one or more criteria prior to the issuance of

the adapter contract.

8. On the Summary tab, review your configuration and modify as needed. Click Save.

9. When finished in the IdP Adapters window, click Save to confirm the adapter instance configuration.

If you want to exit without saving the configuration, click Cancel.

Copyright ©2024

 | Administrator's Reference Guide | 290

HTML Form Adapter
The HTML Form Adapter supports user authentication when it occurs outside of the PingFederate server
through an application or the authentication module of an identity access management (IAM) system that
leverages multiple user repositories and a password credential validator (PCV) instance.

Initial user authentication is normally handled outside of the PingFederate server using an application or
an IAM system authentication module. Adapters or agents from PingFederate integration kits are typically
used to integrate with these local authentication mechanisms.

PingFederate packages an HTML Form Adapter that delegates user authentication to a PCV, such as
an LDAP Username PCV. The adapter validates credentials against a user repository through a PCV
instance.

To validate against multiple user repositories, you can add multiple PCV instances to an instance of the
HTML Form Adapter. In this case, if a PCV instance fails to validate the user credentials, PingFederate
uses the next PCV instance.

When PingFederate receives an authentication request and the use case involves an HTML Form Adapter
instance, PingFederate invokes the adapter if it does not find a valid authentication session. If the HTML
Form Adapter does not find a valid adapter session, it displays a sign-on page and prompts the user for
credentials.

If you configure and enable customer IAM, users can optionally register local accounts or sign on using
third-party identity providers (IdPs). If a user chooses to sign on using local accounts, the credentials
are validated using the designated PCV instance or instances. If validated, PingFederate generates the
requested single sign-on (SSO) token or moves the request to the next checkpoint if authentication policies
are involved.

In terms of the sign-on experience, the HTML Form Adapter lets you:

▪ Use different customizable and localizable template files.
▪ Define a logout path or a logout redirect page.
▪ Notify users with password expiry information.
▪ Let users change or reset their network passwords, or redirect users to a company-hosted password

management system.
▪ Enable self-service password reset, account unlock, and username recovery.

You can configure all capabilities on a per-adapter instance basis.

PingFederate also tracks sign-on attempts per adapter instance, which adds a layer of protection against
brute force and dictionary attacks. When the Challenge Retries threshold is reached, PingFederate locks
out the user for a period of time. The default value for the Challenge Retries setting is 3. If a higher value
is preferred, consider reviewing the account lockout policy of the user repository first. For example, if the
account lockout threshold is set to 5 on the target directory server and the Challenge Retries setting is
also set to 5 or higher, the fifth sign-on attempt could lock the user accounts on the directory server. The
lockout period is controlled by the Account Locking Service.

This adapter does not provide an authentication context. For SAML connections, sets the authentication
context as follows:

▪ urn:oasis:names:tc:SAML:1.0:am:unspecified for SAML 1.x
▪ urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified for SAML 2.0

can override the authentication context with either an instance of the Requested AuthN Context
Authentication Selector or the SAML_AUTHN_CTX attribute in the SAML attribute contract. The latter takes
precedence.

 Note:

The HTML Form Adapter is authentication API-capable. The authentication API is a JSON-based API that
enables end-user interactions, such as credential prompts, to be handled by an external web application.

Copyright ©2024

 | Administrator's Reference Guide | 291

This API does so by providing access to the current state of the flow as an end user steps through a
authentication policy.

For more information, see Authentication applications and the authentication API on page 405.

Configuring an HTML Form Adapter instance
Configure an HTML Form Adapter instance to validate a user authentication session with a Password
Credential Validator (PCV) when your initial authentication needs to integrate with an external application
or an identity management system (IdM) authentication module.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. On the IdP Adapters window, click Create New Instance to start the Create Adapter Instance
configuration.

3. On the Type tab, configure the basics of this adapter instance.

a. Enter the instance name and ID.
b. From the Type list, select the adapter type.
c. Optional: From the Parent Instance list, select an existing type.

If you are creating an instance that is similar to an existing instance, you might consider making
it a child instance by specifying a parent. A child instance inherits the configuration of its parent
unless overridden. You can specify overrides during the rest of the setup.

4. On the IdP Adapter tab, configure your HTML Form Adapter instance as follows:

a. If you have not yet defined the desired Password Credential Validator instance, click Manage
Password Credential Validators to do so.

b. Click Add a new row to 'Credential Validators' to select a credential-authentication mechanism
instance for this adapter instance.

c. From the Password Credential Validator Instance list, select a Password Credential Validator
instance. Click Update.

Add as many validators as necessary. Use the up and down arrows to adjust the order in
which you want to attempt credential authentication. If the first mechanism fails to validate the
credentials, moves sequentially through the list until credential validation succeeds. If none of
the Password Credential Validator instances can authenticate the user's credentials, and the
challenge retries maximum has been reached, the process fails.

 Note:

If usernames overlap across multiple Password Credential Validator instances, this failover setup
could lock out those accounts in their source locations.

d. Enter values for the adapter configuration, as described below.

Field Description

Challenge Retries

(Required)

The account lockout threshold for this adapter instance. When the
number of login failures reaches this threshold, the user is locked out for
a period time.

The default value is 3.

Copyright ©2024

 | Administrator's Reference Guide | 292

Field Description

Session State Determines whether this HTML Form Adapter instance maintains
adapter sessions and shares adapter sessions with other HTML Form
Adapter instances.

Globally

Adapter sessions from this HTML Form Adapter instance are
shared among other HTML Form Adapter instances that use the
same Session State field value Globally.

Per Adapter

HTML Form Adapter maintains adapter sessions on a per-instance
basis. Sessions from this HTML Form Adapter instance are not
shared with other HTML Form Adapter instances.

None

This HTML Form Adapter does not maintain adapter sessions for
this HTML Form Adapter instance.

 Note:

To enable PingFederate authentication sessions globally or individually
for this adapter instance, select None. For more information about
PingFederate authentication sessions, see Sessions on page 278 and
Configuring authentication sessions on page 281.

The default selection is None.

Session Timeout The number of idle minutes before an HTML Form Adapter session
times out based on inactivity. If left blank, the lifetime falls back on the
Session Max Timeout field value. Ignored if None is selected for the
Session State field.

Applicable only when the Session State field is set to Globally or Per
Adapter.

 Tip:

When you enable PingFederate authentication sessions globally
or individually for this adapter instance, you can configure the Idle
Timeout setting for the same purpose. For more information, see
Configuring authentication sessions on page 281.

The default value is 60 minutes.

Copyright ©2024

 | Administrator's Reference Guide | 293

Field Description

Session Max Timeout The maximum lifetime, in minutes, before an HTML Form Adapter
session expires regardless of whether the Session Timeout field value
has been reached. Ignored if None is selected for the Session State
field.

Applicable only when the Session State field is set to Globally or Per
Adapter.

 Tip:

When you enable PingFederate authentication sessions globally
or individually for this adapter instance, you can configure the Max
Timeout setting for the same purpose. For more information, see
Configuring authentication sessions on page 281.

The default value is 480 minutes, which translates to 8 hours.

 Note:

This setting sets a maximum lifetime, subject to inactivity timeout.
Consider the following examples:

▪ A user initiated an single sign-on (SSO) request at 9 a.m. and has
not made another SSO request since then. At 10 a.m., the HTML
Form Adapter session times out based on inactivity based on the
default Session Timeout field value of 60 minutes.

▪ Another user initiated an SSO request at 9 a.m. and has been
making SSO requests every hour at least once. This HTML Form
Adapter session does not time out because the user has been
actively making SSO requests; however, the HTML Form Adapter
session does expire at 5 p.m. based on the default Session Max
Timeout default value of 8 hours.

▪ If you leave both the Session Max Timeout and Session Timeout
fields blank, HTML Form Adapter sessions do not expire until
PingFederate restarts or the HTML Form Adapter sessions are
cleaned up by another means.

▪ If you leave the Session Max Timeout field blank but set a value
for the Session Timeout field, HTML Form Adapter sessions do
not expire until they time out based on inactivity.

 Tip:

Session information is stored in the PF cookie. By default, the PF cookie
is a session cookie and is typically removed when the user closes the
browser.

You can optionally extend the lifetime of the PF cookie by editing the
session-cookie-config.xml file, located in the <pf_install>/
pingfederate/server/default/data/config-store directory.
For more information, see Extending the lifetime of the PingFederate
cookie on page 854 .

Alternatively, you can enable PingFederate authentication sessions,
store the authentication sessions externally, and leverage them as
users request protected resources after restarting their browsers. For
more information, see Sessions on page 278.

Copyright ©2024

 | Administrator's Reference Guide | 294

Field Description

Allow Password
Changes

Enables or disables the ability for users to change their network
password using this adapter instance as they initiate SSO requests and
are prompted to enter their username and password.

As needed, you can also provide your users the Change Password
endpoint shown on the Summary window. The Change Password
endpoint allows users to change their password without submitting SSO
requests. For more information, see the /ext/pwdchange/Identify
section.

 Note:

The LDAP Username PCV and the PingOne for Enterprise Directory
PCV are currently the only PCVs bundled with PingFederate that
support the change password feature.

 Important:

When connecting to an Active Directory (AD) server, you must secure
the datastore connection using LDAPS. AD requires this level of
security to allow password changes.

This check box is not selected by default.

Password
Management System

The URL for redirecting users to a company-specific password
management system to change their password.

This field has no default value.

Enable 'Remember My
Username'

Allows users to store their username as a cookie when authenticating
with this adapter. Once stored, the username in the login form is pre-
populated for subsequent transactions. Select the check box to enable
the cookie functionality.

 Note:

This option is hidden when users authenticate through a Composite
Adapter instance that chains this adapter behind another authentication
source with an Input User ID Mapping configuration and the Allow
Username Edits check box is not selected.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 295

Field Description

Enable 'This is My
Device'

Allows users to indicate whether their device is shared or private by
selecting the This is my device check box on the login form. In this
mode, PingFederate authentication sessions, if enabled, are not stored
unless the user indicates the device is private. For more information
about PingFederate authentication session, see Sessions on page
278.

This check box is not selected by default.

 Note:

Adapter session tracking, if enabled by setting the Session State field
to Globally or Per Adapter, is not affected by this configuration and the
user's selection.

Change Password
Policy Contract

Select an authentication policy contract to enforce strong authentication
requirements, such as multi-factor authentication through PingID, before
letting their users change their passwords. This is similar to using a
Password Reset Policy Contract.

The field is empty by default.

Change Password
Notification

When selected, a notification is generated for the user who has
successfully changed the password through the HTML Form Adapter.
The destination is the user's email address, specifically the mail attribute
value returned by the LDAP Username PCV instance.

 Note:

This option requires the selection of the Allow Password Changes
check box and a notification publisher instance. If you have not yet
configured the desired notification publisher instance, click Manage
Notification Publishers.

In addition, the LDAP Username PCV is the only PCV bundled with
PingFederate that supports this notification feature.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 296

Field Description

Show Password
Expiring Warning

When selected, the HTML Form Adapter displays a warning to an
authenticated user if the password associated with the account is about
to expire soon. The message provides the number of days until the
expiry of the current password and the options to change the password
immediately or to snooze the message. Both the threshold and the
snooze interval are configurable in the Advanced fields section; the
default values are 7 days and 24 hours, respectively.

 Note:

This option requires the selection of the Allow Password Changes
check box. (Both check boxes are not selected by default.) In addition,
the LDAP Username PCV is currently the only PCV bundled with
PingFederate that supports the password expiring warning feature.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 297

Field Description

Password Reset Type Select one of the following methods for self-service password reset
(SSPR).

Authentication Policy

Based on the policy contract selected from the Password Reset
Policy Contract list, finds the applicable authentication policy to
handle self-service password reset requests. If the users are able
to fulfill the authentication requirements as specified by the policy,
allows the users to reset their password.

Email One-Time Link

Users receive a notification with a URL to reset their password.

If you have not yet configured the desired notification publisher
instance, click Manage Notification Publishers.

Email One-Time Password

Users receive a notification with a one-time password (OTP) to
reset their password.

If you have not yet configured the desired notification publisher
instance, click Manage Notification Publishers.

PingID

Users are prompted to follow the PingID authentication flow to
reset their password.

Ensure the PingID Username Attribute field in the selected LDAP
Username PCV instance is configured; otherwise, users will not be
able to reset their password.

You must also download the settings file from the PingOne admin
portal and upload the file to the PingID Properties advanced field.

 Important:

Do not use a method that is already part of a multi-factor
authentication policy that includes a password challenge, as that
would indirectly reduce that authentication policy to a single factor.
For example, if users normally authenticate with a password
challenge and then PingID, the self-service password reset method
should not be PingID. Instead, choose the Authentication Policy
option, select a policy contract from the Password Reset Policy
Contract list, and configure an authentication policy for self-service
password reset.

Text Message

Users receive a text message notification with an OTP to reset
their password.

Ensure the SMS Attribute field in the selected LDAP Username
PCV instance is configured; otherwise, users will not receive text
message notification for password reset.

If you have not yet configured SMS provider settings in , click
Manage SMS Provider Settings.

None

Users cannot reset password through this HTML Form Adapter
instance.

The default selection is None.

When you make a selection other than None, as users initiate SSO
requests and are prompted to enter their username and password,
users have the option to reset their password.

As needed, you can also provide your users the Account Recovery
endpoint shown on the Summary tab. The Account Recovery endpoint
allows users to change their password without submitting SSO
requests. For more information, see the /ext/pwdreset/Identify
section in IdP endpoints on page 1167.

 Note:

To enable password reset, you must also select the Allow Password
Changes check box.

In addition, the LDAP Username PCV is the only PCV bundled with
PingFederate that supports SSPR.

If a notification publisher instance is configured, PingFederate
generates a notification for the user who has successfully reset the
password through the HTML Form Adapter. The destination is the user's
email address, specifically the value of the attribute defined by the Mail
Attribute setting in the LDAP Username PCV instance.

 Important:

When connecting to PingDirectory, Oracle Unified Directory, or Oracle
Directory Server, configure proxied authorization for the service account
on the directory server. For more information, see Proxied authorization
on page 897.

Copyright ©2024

 | Administrator's Reference Guide | 298

Field Description

Password Reset Policy
Contract

If you use an authentication policy to handle SSPR requests, you must
select a policy contract here.

This policy contract doesn't require any extended attributes because
uses this policy only to find the applicable authentication policies for
password resets.

 Important:

You must use a policy contract dedicated only to password reset. You
can't use this policy contract for SSO anywhere else. To define a policy
contract solely for password reset, click Manage Policy Contracts.

An authentication policy that uses this contract allows users to reset
their password. Ensure the policy uses strong authentication methods
to securely identify the user who initiated the password reset operation.
Map the incoming user ID for adapters in the policy to Requested User
and confirm that adapters will only return success when this user is the
one authenticating.

For guidelines on designing adapters for use in password reset or
password change authentication policies, see Developing IdP adapters
on page 1051.

Revoke sessions after
password change or
reset

Revokes a user's authentication sessions in other browsers after a
password change or reset is completed by this adapter. This option
relies on selecting a unique user key attribute for this adapter (see
Setting pseudonym and masking options on page 398).

To enable this option, you must also enable the Allow Password
Changes option, or set the Password Reset Type option to something
other than None.

 Note:

This revocation capability is not supported if the IdP session registry is
configured with the Directed Clustering - Subclusters state management
architecture. For more information, see IdP Session Registry Service on
page 194 and Defining subclusters on page 191.

Copyright ©2024

 | Administrator's Reference Guide | 299

Field Description

Account Unlock Enables or disables the ability for users to unlock their account using
this adapter instance as they initiate SSO requests and are prompted to
enter their username and password.

As needed, you can also provide your users the Account Recovery
endpoint shown on the Summary tab. The Account Recovery endpoint
allows users to unlock their account without submitting SSO requests.
For more information, see the /ext/pwdreset/Identify section in
IdP endpoints on page 1167.

 Note:

You must also select a Password Reset Type value other than
None and the Allow Password Changes check box as well because
the initiating user must prove ownership of the account through the
password reset flow.

Unlike self-service password reset self-service password reset (SSPR),
when users succeed in proving account ownership, they are allowed
to retain their current password or to reset their password as needed.
Furthermore, self-service account unlock is only compatible with
PingDirectory and Microsoft AD. If the underlying datastore is connected
to an Oracle Unified Directory or Oracle Directory Server, users can
only unlock their account by changing their current password through
the password reset flow.

In addition, the LDAP Username PCV is the only PCV bundled with
PingFederate that supports self-service account unlock.

This check box is not selected by default.

Local Identity Profile Select a local identity profile to offer users the options to authenticate
through third-party identity providers, self-register as part of the sign-on
experience, and manage their accounts through a self-service profile
management page.

There is no default selection.

Notification Publisher If this adapter instance is configured with self-service account
management capabilities, select a notification publisher instance from
the list.

Based on selected notification publisher instance configuration,
PingFederate generates the required notification messages. If you
have not yet configured the desired notification publisher instance, click
Manage Notification Publishers.

Copyright ©2024

 | Administrator's Reference Guide | 300

Field Description

Enable Username
Recovery

Enables or disables the ability for users to recover their username
when using this adapter instance as they initiate SSO requests and are
prompted to enter their username and password.

As needed, you can also provide your users the Username Recovery
endpoint shown on the Summary tab. The Username Recovery
endpoint allows users to recover their username without submitting SSO
requests. For more information, see the /ext/idrecovery/Recover
section in IdP endpoints on page 1167.

 Note:

This capability requires a notification publisher instance. If you have not
yet configured the desired notification publisher instance, click Manage
Notification Publishers. In addition, the LDAP Username PCV is
the only PCV bundled with PingFederate that supports self-service
username recovery.

For each username recovery request, if PingFederate can locate the
user record using the email address provided by the user and other
requirements are met, PingFederate generates a notification containing
the recovered username. The destination is the email address provided
by the user.

This check box is not selected by default.

e. Optional: Click Show Advanced Fields to review or modify default values.
f. If you have chosen Text Message as the password reset type, click Manage SMS Provider

Settings at the bottom of the page to configure the SMS provider through which PingFederate can
send text message notifications to the users.

5. On the Extended Contract tab, configure additional attributes for this adapter instance as needed.

The HTML Form Adapter contract includes two core attributes: username and policy.action. At
runtime, PingFederate fulfills the policy.action core attribute as described in the following table.

Local identity profile Runtime fulfillment

A selection is made. If the local identity profile is configured with one or more authentication
sources, and if the user chooses to register or authenticate with one of
them, PingFederate sets the value to that authentication source. This
design allows you to create rules in your authentication policies and form
different policy paths for each authentication source. For more information,
see Enabling third-party identity providers on page 354.

Whether or not the local identity profile is configured with any
authentication sources, if the user chooses to register directly by clicking
on the Register now link, sets the value to identity.registration.
This fulfillment allows you to create rules to differentiate authentication
requirements from the registration flow. For more information, see Creating
advanced registration mapping on page 362.

No selection is made. The policy.action attribute is not fulfilled.

Copyright ©2024

 | Administrator's Reference Guide | 301

6. On the Adapter Attributes tab, do the following:

a. Optional: From the Unique User Key Attribute list, select an attribute to uniquely identify users
signing on with this adapter. The attribute's value will be used to identify user sessions across all
adapters. None is selected by default.

 Note:

If you choose a custom user key attribute, uses the value of the attribute after the Adapter
Contract Mapping (if any) has been evaluated. If you choose a custom user key attribute that is
based on the username, configure the adapter's password credential validators to trim spaces.

 Important:

For the HTML Form Adapter, If you enabled the Revoke Sessions after Password Change or
Reset option in the IdP Adapter tab, you cannot select None as the unique user key attribute.
Doing so will result in an error message.

b. Select the check box under Pseudonym for the user identifier of the adapter and optionally for the
other attributes, if available.

This selection is used if any of your service provider (SP) partners use pseudonyms for account
linking.

 Note:

A selection is required whether or not you use pseudonyms for account linking. This allows
account linking to be used later without having to delete and reconfigure the adapter. Ensure that
you choose at least one attribute that is unique for each user, such as a user's email, to prevent
assigning the same pseudonym to multiple users.

c. Select the check box under Mask Log Values for any attributes whose values you want to mask
in its logs at runtime.

 Note:

Masking is not applied to the unique user key attribute in the logs even though the attribute used
for the key is marked as Mask Log Values.

d. Select the Mask all OGNL-expression generated log values check box, if OGNL expressions
might be used to map derived values into outgoing assertions and you want those values masked.

7. Optional: On the Adapter Contract Mapping tab, configure the adapter contract for this instance with
the following optional workflows:

▪ Configure one or more data sources for datastore queries.
▪ Fulfill adapter contract with values from the adapter, the default, datastore queries, if configured,

context of the request, text, or expressions, if enabled.
▪ Set up the Token Authorization framework to validate one or more criteria prior to the issuance of

the adapter contract.

8. On the Summary tab, review your configuration and modify as needed. Click Save.

9. When finished in the IdP Adapters window, click Save to confirm the adapter instance configuration.

If you want to exit without saving the configuration, click Cancel.

Copyright ©2024

 | Administrator's Reference Guide | 302

HTML Form Adapter advanced fields
When configuring an HTML Form Adapter, you can use the advanced fields at the bottom of the IdP
Adapter tab in the Create Adapter Instance window.

Advanced fields for setting password credentials and changes

Property Description

Login Template
(Required)

The HTML template to prompt the users for their credentials. PingFederate
allows each configured adapter instance to use a different login page template.

The default template file is html.form.login.template.html.

Unless otherwise stated, all template files are located in the <pf_install>/
pingfederate/server/default/conf/template directory.

Logout Path Any path in the format indicated. Setting a path invokes adapter logout
functionality that is normally invoked during SAML 2.0 single-logout (SLO)
processing. The resulting logout path is /ext/<Logout Path>. The logout
path extends from the base URL. If virtual host names are configured, the
logout path is accessible at those locations as well.

Available primarily for use cases where the partner software as a service
(SaaS) providers who do not support SAML SLO but want the users' identity
provider (IdP) single sign-on (SSO) sessions to end after logging out of the
SaaS services. For these use cases, the SaaS providers could redirect the
users to the logout URL after the users sign out of their platforms.

 Note:

If specified, the path must be unique across all HTML Form Adapter instances,
including child instances.

This field has no default value.

Logout Redirect The landing page at the service provider (SP) after successful identity provider
(IdP) logout, applicable only when the Logout Path field is configured.

This field has no default value.

Logout Template The HTML template displayed when a user has successfully logged out in
a configuration where the Logout Path field is configured, but the Logout
Redirect field is not.

The default template file is idp.logout.success.page.template.html.

Change Password
Template

The HTML template to prompt the users to change their password.
PingFederate allows each configured adapter instance to use a different
change password template.

The default template file is
html.form.change.password.template.html.

Change Password
Message Template

The HTML template to be displayed when a user has successfully changed
the password through the HTML Form Adapter.

The default template file is html.form.message.template.html.

Copyright ©2024

 | Administrator's Reference Guide | 303

Property Description

Password Management
System Message
Template

The HTML template notifies the users that they are being redirected to a
password management system to change their password.

The default template file is html.form.message.template.html.

Change Password Email
Template

The HTML email template PingFederate uses to generate the email message
to notify the user that the password has been changed or reset successfully
through the HTML Form Adapter.

The default template file is message-template-end-user-password-
change.html, located in the <pf_install>/pingfederate/server/
default/conf/template/mail-notifications directory.

Applicable only if an instance of the SMTP Notification Publisher is selected in
the Notification Publisher list.

Expiring Password
Warning Template

The HTML template to warn the users about approaching the password expiry
day.

The default template file is
html.form.password.expiring.notification.template.html.

Threshold for Expiring
Password Warning

The threshold, in days, to start warning the user about approaching the
password expiry day.

The default value is 7 days.

Snooze Interval for
Expiring Password
Warning

The amount of time, in hours, to delay the next warning after the user has
chosen to change the password later.

The default value is 24 hours.

Login Challenge
Template

The HTML template to be displayed as the second step during a strong
authentication. It is used to prompt the user to answer a challenge question
after the first-factor login. The RADIUS Username Password Credential
Validator (PCV) is an example of where it could be used.

The default template file is
html.form.login.challenge.template.html.

Require Re-
authentication for
Change Password Flow

Requires a user to sign on again with their new password after completing a
successful change password flow.

By default, this feature is enabled.

Require Re-
authentication for
Password Reset Flow

Requires a user to sign on again with their new password after completing a
successful password reset or account unlock flow.

By default, this feature is enabled.

Copyright ©2024

 | Administrator's Reference Guide | 304

Property Description

'Remember My
Username' Lifetime

The number of days the cookie remains valid. Enter the number of days you
want the username remembered in a cookie.

The cookie lifetime is reset upon each successful login in which the
Remember my username check box on the login form is selected.

 Note:

The value is ignored when users authenticate through a Composite Adapter
instance that chains this adapter behind another authentication source with an
Input User ID Mapping configuration, and the Allow Username Edits check
box is not selected.

You can enter an integer between 1 and 3650.

The default value is 30 days.

'This is My Device'
Lifetime

The number of days that a user's selection of the This is my device check
box on the login form is retained.

The lifetime is reset upon each successful login in which the This is my
device check box on the login form is selected.

You can enter an integer between 1 and 3650.

The default value is 30 days.

Allow Username Edits
During Chaining

When users authenticate through a Composite Adapter instance that chains
this adapter behind another authentication source with an Input User ID
Mapping configuration or initiate an OAuth authorization request with a
login_hint parameter, the username in the login form is pre-populated.
Users are not allowed to edit their usernames.

Select this check box if you want to allow users to edit the pre-populated
username in the login form.

 Note:

Users who authenticate through a Composite Adapter instance without an
Input User ID Mapping configuration or this adapter directly always need to
enter their usernames.

This check box is not selected by default.

Track Authentication
Time

When selected, the time of authentication for each user is tracked and can
be utilized by applicable use cases. For example, if an OAuth client sends an
authorization request with a max_age parameter, such request prompts the
user to reauthenticate when the elapsed time between the current time and the
time of the previous authentication is greater than the max_age value.

This check box is selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 305

Property Description

Post-Password Change
Re-Authentication Delay

The HTML Form Adapter reauthenticates the user using the new password
immediately after a successful password change request. As needed, enter
the amount of time, in milliseconds, that the adapter can wait prior to the
reauthentication attempt.

The default value is 0, which is the minimum value. The maximum value is
60000, or 1 minute.

Advanced fields for self-service password reset and account unlock

Property Description

Password Reset
One-Time Link Email
Template

The HTML template to send the user an email with a password reset link when
Password Reset Type is Email One-Time Link.

The default template file is message-template-forgot-password-
link.html.

Password Reset One-
Time Password Email
Template

The HTML template to send the user an email with a one-time password reset
code when Password Reset Type is Email One-Time Password.

The default template file is message-template-forgot-password-
code.html.

Password Reset
Complete Email
Template

The HTML template to send the user an email that the password reset is
complete.

The default template file is message-template-forgot-password-
complete.html.

Password Reset Failed
Email Template

The HTML template to send the user an email that the password reset attempt
failed.

The default template file is message-template-forgot-password-
failed.html.

Password Reset Code
Template

The HTML template to prompt the user to enter the one-time passcode (OTP)
for password reset.

This template applies when the password reset type is Email One-Time
Password or Text Message.

The default template file is forgot-password-resume.html.

Password Reset
Template

The HTML template to prompt the user to define a new password.

This template applies for all password reset types other than None.

The default template file is forgot-password-change.html.

Password Reset Error
Template

The HTML template to notify the user that the password reset attempt has
failed.

This template applies for all password reset types other than None.

The default template file is forgot-password-error.html.

Copyright ©2024

 | Administrator's Reference Guide | 306

Property Description

Password Reset
Success Template

The HTML template to notify the user that the password reset attempt has
succeeded.

This template applies for all password reset types other than None.

The default template file is forgot-password-success.html.

Account Unlock
Template

The HTML template to notify the user that the account unlock attempt has
succeeded and to prompt the user to retain the current password or reset it.

The default template file is account-unlock.html.

Account Unlock Email
Template

The HTML template to send the user an email that the account unlock attempt
has succeeded.

The default template file is message-template-account-unlock-
complete.html.

OTP Length The number of characters in the one-time password for password reset.

The default value is 8.

Allowed OTP Character
Set

The alphanumeric characters that PingFederate can include in an OTP.

The default value is
23456789BCDFGHJKMNPQRSTVWXZbcdfghjkmnpqrstvwxz.

 Note:

You must enter a minimum of 10 characters.

Provide unique characters to ensure a secure OTP.

Password Reset Token
Validity Time

The validity in minutes for the OTP or the one-time link.

The default value is 10 minutes.

PingID Properties To configure self-service password reset using PingID, you must obtain the
pingid.properties file and upload it to the HTML Form Adapter instance.

1. Sign on to the PingOne admin portal.
2. Go to Setup # PingID # Client Integration.
3. Download the settings file pingid.properties.
4. Close the PingOne admin portal.
5. On the Manage IdP Adapters tab in the administrative console, click

Choose File.
6. Select the pingid.properties file and click Open.

 Note:

When configuring an adapter to use a custom template name, make sure the pingfederate/server/
default/conf/language-packs/pingfederate-email-messages.properties file and any
language specific version, such as pingfederate-email-messages_fr.properties, includes that
name so that the email subject found in the properties file is used.

Copyright ©2024

 | Administrator's Reference Guide | 307

For example, to customize an adapter to use a new password reset complete email template using my-
template-forgot-password-complete.html, add the new property with the email's subject text.
The new entry should be my-template-forgot-password-complete.html=Password Reset.

Find the configurable text that applies to a specific template in the pingfederate-email-
messages.properties file, and make sure the same key-value pairs are specified for their new template
name.

Advanced fields for self-service username recovery

Property Description

Require Verified Email When selected, PingFederate requires that the user's email address is verified
before sending a password reset, account unlock, or username recovery
email.

If users are permitted to manage their accounts, they will be blocked from
accessing any connected application until they have verified their email.

For more information about enabling user account management, see
Configuring local identity profile information on page 339.

By default, the check box is not selected.

Username Recovery
Template

The HTML template to prompt the user to enter an email address to recover
the username associated with the account.

This template applies when username recovery is enabled.

The default template file is username.recovery.template.html.

Username Recovery Info
Template

The HTML template to notify the user to retrieve the email message with the
recovered username.

This template applies when username recovery is enabled.

The default template file is username.recovery.info.template.html.

Username Recovery
Email Template

The HTML email template PingFederate uses to generate the email message
containing the recovered username.

The default template file is message-template-username-
recovery.html, located in the <pf_install>/pingfederate/server/
default/conf/template/mail-notifications directory.

Applicable only if an instance of the SMTP Notification Publisher is selected in
the Notification Publisher list.

CAPTCHA options

Property Description

CAPTCHA for
Authentication

Enable CAPTCHA to protect the authentication process from automated
attacks.

CAPTCHA for Password
Change

Enable CAPTCHA to protect the password change process from automated
attacks.

Copyright ©2024

 | Administrator's Reference Guide | 308

Property Description

CAPTCHA for Password
Reset

Enable CAPTCHA to protect the account recovery process for password reset
and account unlock from automated attacks.

CAPTCHA for Username
Recovery

Enable CAPTCHA to protect the username recovery process from automated
attacks.

By default, CAPTCHA check boxes are not selected.

Variables available to HTML Form Adapter templates

The following variables are available to the HTML Form Adapter templates for password reset, change
password, and username recovery use cases:

▪ $adapterId - The IdP adapter ID used in this transaction
▪ $baseUrl - The base URL of the PingFederate instance
▪ $client_id - The ID of the OAuth client used in this transaction
▪ $connectionName - The name of the SP connection used in this SSO transaction
▪ $entityId - The entity ID (connection ID) of the SP connection used in this SSO transaction
▪ $spAdapterId - The SP adapter ID used in this transaction

 Note:

The variables are not always populated.

HTTP Basic Adapter
The HTTP Basic adapter provides user authentication through a password credential validator (PCV) to
integrate PingFederate with local authentication mechanisms.

Initial user authentication is normally handled outside of the PingFederate server using an application or an
Identity Management system authentication module. Adapters or agents from PingFederate integration kits
are typically used to integrate with these local authentication mechanisms.

PingFederate packages an HTTP Basic Adapter that delegates user authentication to a Password
Credential Validator, such as an LDAP Username PCV (see Password Credential Validators on page
926). This authentication mechanism validates credentials against a user repository through an instance
of a PCV. You can add multiple PCV instances to an instance of the HTTP Basic Adapter to validate
against multiple user repositories, in which case PingFederate falls to the subsequent PCV instance if the
previous PCV instance fails to validate the user credentials.

When PingFederate receives an authentication request and the use case is associated with an HTTP
Basic Adapter instance, PingFederate invokes the adapter if it does not find a valid authentication session
(see Sessions on page 278). If the HTTP Basic Adapter does not find a valid adapter session, it prompts
the user for credentials.

This adapter does not provide an authentication context. For SAML connections, sets the authentication
context as follows:

▪ urn:oasis:names:tc:SAML:1.0:am:unspecified for SAML 1.x
▪ urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified for SAML 2.0

can override the authentication context with either an instance of the Requested AuthN Context
Authentication Selector or the SAML_AUTHN_CTX attribute in the SAML attribute contract. The latter takes
precedence.

Copyright ©2024

 | Administrator's Reference Guide | 309

Configuring an HTTP Basic Adapter instance
Configure an HTTP Basic Adapter instance to use credentials against a user repository through an
instance of a password credential validator (PCV) to support user authentication when it occurs outside of
the PingFederate server.

About this task
Using the administrative console, configure an HTTP Basic Adapter instance.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. On the IdP Adapters window, click Create New Instance to start the Create Adapter Instance
configuration.

3. On the Type tab, configure the basics of this adapter instance.

a. Enter the instance name and ID.
b. From the Type list, select the adapter type.
c. Optional: From the Parent Instance list, select an existing type.

If you are creating an instance that is similar to an existing instance, you might consider making
it a child instance by specifying a parent. A child instance inherits the configuration of its parent
unless overridden. You can specify overrides during the rest of the setup.

4. On the IdP Adapter tab, configure your HTTP Basic Adapter instance as follows:

a. If you have not yet defined the desired Password Credential Validator instance, click Manage
Password Credential Validators to do so.

b. Click Add a new row to 'Credential Validators' to select a credential-authentication mechanism
instance for this adapter instance.

c. From the Password Credential Validator Instance list, select a Password Credential Validator
instance. Click Update.

Add as many validators as necessary. Use the up and down arrows to adjust the order in
which you want to attempt credential authentication. If the first mechanism fails to validate the
credentials, moves sequentially through the list until credential validation succeeds. If none of

Copyright ©2024

 | Administrator's Reference Guide | 310

the Password Credential Validator instances can authenticate the user's credentials, and the
challenge retries maximum has been reached, the process fails.

 Note:

If usernames overlap across multiple Password Credential Validator instances, this failover setup
could lock out those accounts in their source locations.

d. Enter values for the adapter configuration.

See the on-window field descriptions and the following table for more information.

PingFederate's fields and descriptions for creating an HTTP Basic Adapter instance

Property Description

Realm

(Required)

The name of a protected area. The value of this field is sent as a part of
the HTTP Basic authentication request. It appears in a dialog box that
prompts the user for a username and password.

 Note:

After a user authenticates against a realm, if additional HTTP Basic
Adapter instances share the same realm, the user is not prompted to re-
authenticate.

Challenge Retries

(Required)

The number of attempts allowed for password authentication. The
default value is 3.

5. On the Extended Contract window, configure additional attributes for this adapter instance as
needed.

The HTTP Basic Adapter contract includes one core attribute: username.

Copyright ©2024

 | Administrator's Reference Guide | 311

6. On the Adapter Attributes tab, do the following:

a. Optional: From the Unique User Key Attribute list, select an attribute to uniquely identify users
signing on with this adapter. The attribute's value will be used to identify user sessions across all
adapters. None is selected by default.

 Note:

If you choose a custom user key attribute, uses the value of the attribute after the Adapter
Contract Mapping (if any) has been evaluated. If you choose a custom user key attribute that is
based on the username, configure the adapter's password credential validators to trim spaces.

 Important:

For the HTML Form Adapter, If you enabled the Revoke Sessions after Password Change or
Reset option in the IdP Adapter tab, you cannot select None as the unique user key attribute.
Doing so will result in an error message.

b. Select the check box under Pseudonym for the user identifier of the adapter and optionally for the
other attributes, if available.

This selection is used if any of your service provider (SP) partners use pseudonyms for account
linking.

 Note:

A selection is required whether or not you use pseudonyms for account linking. This allows
account linking to be used later without having to delete and reconfigure the adapter. Ensure that
you choose at least one attribute that is unique for each user, such as a user's email, to prevent
assigning the same pseudonym to multiple users.

c. Select the check box under Mask Log Values for any attributes whose values you want to mask
in its logs at runtime.

 Note:

Masking is not applied to the unique user key attribute in the logs even though the attribute used
for the key is marked as Mask Log Values.

d. Select the Mask all OGNL-expression generated log values check box, if OGNL expressions
might be used to map derived values into outgoing assertions and you want those values masked.

7. Optional: On the Adapter Contract Mapping tab, configure the adapter contract for this instance with
the following optional workflows:

▪ Configure one or more data sources for datastore queries.
▪ Fulfill adapter contract with values from the adapter, the default, datastore queries, if configured,

context of the request, text, or expressions, if enabled.
▪ Set up the Token Authorization framework to validate one or more criteria prior to the issuance of

the adapter contract.

8. On the Summary tab, review your configuration and modify as needed. Click Save.

9. When finished in the IdP Adapters window, click Save to confirm the adapter instance configuration.

If you want to exit without saving the configuration, click Cancel.

Copyright ©2024

 | Administrator's Reference Guide | 312

Identifier First Adapter
The Identifier First Adapter works best for use cases when a variety of user types are authenticating with
PingFederate. The adapter analyzes the type of user and the credentials with which they have enrolled
before, including datastore queries and user attributes, to provide support for user authentication.

When PingFederate receives an authentication request and the use case is associated with an Identifier
First Adapter instance, PingFederate invokes the adapter if it does not find a valid authentication session.
The adapter prompts the user to enter their identifier and captures the identifier in the subject attribute.

 Note:

subject is one of the two core attributes in the adapter contract. domain is the other one.

If the identifier is an email address, the adapter extracts the email address suffix and exposes it
downstream through the domain attribute. Additionally, the adapter can leverage datastore queries to fulfill
the domain attribute, or other extended attributes, to support identifiers of other kinds.

Based on the identification result and the configured authentication policies, PingFederate routes the user
to the desired policy path. As the user fulfills the authentication requirements, the adapter preserves the
identifier on the client side in a persistent cookie.

When the user signs off and makes a subsequent sign-on request from the same browser, the adapter
offers the user to either select the previously authenticated identifier found in the cookie or to enter a new
one. If the user opts to enter a new identifier, the adapter adds that identifier to the cookie after the user
completes the authentication requirements.

The adapter keeps adding the most-recently-authenticated identifier until the number of identifier reaches
a configurable limit. When the threshold is reached, the adapter removes the least-recently-used identifier
from the cookie.

Lastly, the Identifier First Adapter also allow users to continue without entering or selecting an identifier,
in which case it treats the authentication attempt as a failure and returns control to PingFederate.
PingFederate can then route the request based on the configured policy path.

 Tip:

PingFederate creates authentication sessions configured for an Identifier First Adapter instance only when
the complete single sign-on (SSO) transaction has succeeded. This lets the adapter prompt the user for a
different user identifier when a chained adapter authentication fails because, for example, there's a typo in
the user identifier.

 Note:

The Identifier First Adapter is authentication API-capable. For more information, see Authentication
applications and the authentication API on page 405.

Configuring an Identifier First Adapter instance
Configure an instance of the Identifier First Adapter in PingFederate following these instructions and for
additional configuration information on fieldnames, descriptions, and optimal settings depending on your
use case.

About this task
Using the PingFederate administrative console, configure an Identifier First Adapter instance.

Copyright ©2024

 | Administrator's Reference Guide | 313

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. On the IdP Adapters window, click Create New Instance to start the Create Adapter Instance
configuration.

3. On the Type tab, configure the basics of this adapter instance.

a. Enter the instance name and ID.
b. From the Type list, select the adapter type.
c. Optional: From the Parent Instance list, select an existing type.

If you are creating an instance that is similar to an existing instance, you might consider making
it a child instance by specifying a parent. A child instance inherits the configuration of its parent
unless overridden. You can specify overrides during the rest of the setup.

4. On the IdP Adapter tab, configure your Identifier First Adapter instance.

For more information about each field, see the following table.

PingFederate's fields and descriptions for creating an Identifier First Adapter instance

Field Description

Identifier Cookie
Lifetime

Determines the number of days that previously authenticated identifiers
are preserved as a cookie on the client side. This value can range from 0
through 3650.

Set to 0 to disable the storage of any previously authenticated identifiers.

The default value is 30.

Allow Cancelling
Identifier Selection

Determines whether a user is allowed to continue without entering or
selecting an identifier.

If allowed, when a user decides to continue without providing an identifier,
the Identifier First Adapter treats the authentication attempt as a failure and
returns control to PingFederate.

This check box is not selected by default.

Click Show Advanced Fields to review the following settings. Modify as needed.

Maximum Identifiers
Count

Determines the maximum number of previously authenticated identifiers
can be preserved in the identifier cookie. This value can range from 0
through 10.

Set to 0 to disable the storage of any previously authenticated identifiers.

The default value is 5.

Identifier Selection
Template

The HTML template to prompt the user to enter or select an identifier.
PingFederate allows each configured adapter instance to use a different
template as needed.

The default template file is identifier.first.template.html.

Like other Velocity template files, it is located in the <pf_install>/
pingfederate/server/default/conf/template directory.

Copyright ©2024

 | Administrator's Reference Guide | 314

5. On the Extended Contract tab, configure additional attributes for this adapter instance as needed.

The Identifier First Adapter contract includes two core attributes: subject and domain.

If the identifier is an email address, the adapter extracts the email address suffix and exposes it
downstream through the domain attribute. As needed, the adapter can leverage datastore queries to
fulfill the domain attribute. For more information, see step 7).

6. On the Adapter Attributes tab, do the following:

a. Optional: From the Unique User Key Attribute list, select an attribute to uniquely identify users
signing on with this adapter. The attribute's value will be used to identify user sessions across all
adapters. None is selected by default.

 Note:

If you choose a custom user key attribute, uses the value of the attribute after the Adapter
Contract Mapping (if any) has been evaluated. If you choose a custom user key attribute that is
based on the username, configure the adapter's password credential validators to trim spaces.

 Important:

For the HTML Form Adapter, If you enabled the Revoke Sessions after Password Change or
Reset option in the IdP Adapter tab, you cannot select None as the unique user key attribute.
Doing so will result in an error message.

b. Select the check box under Pseudonym for the user identifier of the adapter and optionally for the
other attributes, if available.

This selection is used if any of your service provider (SP) partners use pseudonyms for account
linking.

 Note:

A selection is required whether or not you use pseudonyms for account linking. This allows
account linking to be used later without having to delete and reconfigure the adapter. Ensure that
you choose at least one attribute that is unique for each user, such as a user's email, to prevent
assigning the same pseudonym to multiple users.

c. Select the check box under Mask Log Values for any attributes whose values you want to mask
in its logs at runtime.

 Note:

Masking is not applied to the unique user key attribute in the logs even though the attribute used
for the key is marked as Mask Log Values.

d. Select the Mask all OGNL-expression generated log values check box, if OGNL expressions
might be used to map derived values into outgoing assertions and you want those values masked.

7. Optional: On the Adapter Contract Mapping tab, configure the adapter contract for this instance with
the following optional workflows:

▪ Configure one or more data sources for datastore queries.
▪ Fulfill adapter contract with values from the adapter, the default, datastore queries, if configured,

context of the request, text, or expressions, if enabled.
▪ Set up the Token Authorization framework to validate one or more criteria prior to the issuance of

the adapter contract.

8. On the Summary tab, review your configuration and modify as needed. Click Save.

Copyright ©2024

 | Administrator's Reference Guide | 315

9. When finished in the IdP Adapters window, click Save to confirm the adapter instance configuration.

If you want to exit without saving the configuration, click Cancel.

Identifier First Adapter and authentication policies
The Identifier First Adapter works best in conjunction with authentication policies and setting expected
attribute values to enforce authentication requirements.

The Identifier First Adapter is designed to identify user populations. It supports email addresses natively:
it extracts the email address suffix and exposes it downstream through the domain attribute. Additionally,
the adapter can leverage datastore queries to fulfill the domain attribute or other extended attributes to
support identifiers of other kinds.

The Identifier First Adapter is most effective when used in conjunction with authentication policies. The
policy paths are created by having rules matching expected values of the domain attribute or other
extended attribute. Each expected value forms its own policy path, to which a series of authentication
sources can be appended to enforce the desired authentication requirements.

For more information and configuration steps, see the subsequent sample use case.

Configuring a policy for multiple user populations
Configure an Identifier First Adapter instance to determine user populations based on user identifiers
usernames and an authentication policy to route sign-on requests to authentication sources tailored for
their respective user populations.

About this task
Using the administrative console, follow the instructions below for configuring an Identifier First Adapter
instance, creating an authentication policy to prompt the user for their identifier first, determining their user
population, and routing the request to the desired authentication recommendations. Consider the sample
use case here.

You need to enforce different sets of authentication requirements for two sets of users, employees, and
external consultants.

Employees are given username@example.com email addresses, such as asmith@example.com. User
records are stored in a local directory server. Employees sign on through an HTML Form Adapter instance.

Consultants have either username@example.org or username@example.info email addresses. User
records are stored in a local database. Consultants can sign on using their username or email address and
password through a local web portal. This web portal is integrated with PingFederate using the OpenToken
framework.

Your organization owns another local database that keeps track of username, domain information, and
email address for both employees and consultants. The column names are dsUid, dsDomain, and
dsMail, respectively. For simplicity, no users share the same dsUid value.

In this sample use case, you must make sure that the Identifier First Adapter instance can handle the
scenario where users might enter their email address or just their username when setting up the Identifier
First Adapter instance. Additionally, when accessing protected resources, your organization has agreed to
send the user's email address in the security token.

You have already created the following components:

▪ An LDAP datastore connecting to the local directory server. The attribute name of the user identifier is
uid.

▪ An instance of the LDAP Username Password Credential Validator (PCV) validating credentials
against the local directory server with the LDAP datastore. The LDAP Username PCV instance is
extended with an additional attribute mail. The search filter is configured to handle identifiers in the
format of an email address or a username. See the following code example.

(|(uid=${username})(mail=${username}))

Copyright ©2024

 | Administrator's Reference Guide | 316

▪ An HTML Form Adapter instance delegating credential-validation to the LDAP Username PCV
instance. The HTML Form Adapter instance is also extended with an additional attribute mail, which
takes the mail attribute value from the LDAP Username PCV instance. The ID of this HTML Form
Adapter instance is htmlForm.

▪ An OpenToken IdP Adapter instance digesting tokens from the web portal as the source of user
attributes. The adapter contract is extended with an additional attribute mail. The web portal is
designed to always include the user's email address in the token through the mail attribute. The ID of
this OpenToken IdP Adapter instance is opentTokenIdp.

This sample use case requires the following additional components:

▪ An expression-enabled PingFederate environment. See step 1.
▪ An authentication policy contract to carry the email address from your organization to your partners.

See step 2.
▪ A Java Database Connectivity (JDBC) datastore connecting to the database that hosts username,

email, and domain information. See step 3.
▪ An Identifier First Adapter instance with an attribute source lookup configuration and a contract

fulfillment via expressions for the domain adapter attribute. See step 4.
▪ An authentication policy to route user requests to different authentication sources based on user

populations. See step 5.

To fulfill the requirements:

Steps

1. Enable expressions in PingFederate.

For configuration steps, see Enabling and disabling expressions on page 213.

2. Go to Authentication # Policies # Policy Contracts.

3. On the Policy Contracts window, click Create New Contract and create an authentication policy
contract without any additional attributes.

4. Go to System # Data & Credential Stores # Data Stores.

5. From the Data Stores window, click Add New Data Store.

a. On the Data Store Type tab, enter Name.
b. From the Type list, select Database (JDBC) to create a JDBC datastore connection to the

database that hosts username and domain information.

Copyright ©2024

 | Administrator's Reference Guide | 317

6. Create an instance of the Identifier First Adapter instance.

a. Follow steps 1 through 6 in Configuring an Identifier First Adapter instance on page 312.

For the sample use case, suppose you name the adapter instance ID 1st.
b. Go to Applications # Integration # Adapter-to-Adapter Mappings.
c. On the Adapter-to-Mappings window, select a source instance and a target instance, and click

Add Mapping.
d. On the Attribute Sources & User Lookup tab, click Add Attribute Source.

 Note:

For more information about configuring the following steps, see Datastore query configuration on
page 375.

1. On the Data Store tab, enter an ID in Attribute Source ID and a name in Attribute Source
Description, such as domainInfo and Domain Info, respectively. In the Active Data
Storelist, select the JDBC datastore created previously. Click Next.

2. On the Database Table and Columns tab, select the applicable options from the Schema
and Table lists.

3. Under Columns to return from SELECT, select the dsDomain column and click Add
Attribute. Click Next.

4. On the Database Filter tab, in the Where field, specify a filter to search by identifier that can
handle identifiers in the format of an email address or a username.

See the following example of a filter entry.

dsUid='${subject}' OR dsMail='${subject}'.
5. Click Next.
6. On the Summary tab, click Done.

e. On the Adapter Contract Fulfillment tab, configure as follows.

Contract Source Value

domain Expression

#this.get("domain").toString().matches("(?
i).+") ?
#this.get("domain") :
#this.get("ds.domainInfo.dsDomain")

 Note:

Line breaks are inserted for readability only.

subject Adapter Not applicable. No selection is required.

The expression checks the domain attribute value returned by the Identifier First Adapter. If
the value contains one or more character, PingFederate uses that as the value for the domain

Copyright ©2024

 | Administrator's Reference Guide | 318

attribute. Otherwise, it uses the dsDomain column value returned from the JDBC datastore. In
other words, this expression handles identifiers in the format of an email address or a username.

This sample expression is intended to demonstrate the capability of the Identifier First Adapter.
Depending on the actual use cases, expressions may vary. For more information about
expressions, see Construct OGNL expressions on page 214.

f. On the Issuance Criteria tab, click Next.

 Note:

Depending on the actual use cases, you can add issuance criteria.

g. On the Adapter-to-Adapter Summary tab, review your configuration instance. Click Done to
save your adapter instance configuration.

7. Create an authentication policy with rules to form policy paths based on results from domain attribute
values returned by the Identifier First Adapter.

a. Go to Authentication # Policies # Policies.
b. From the Policies tab, click Add Policy.
c. On the Policy window, enter a Name, and optionally a Description, for the policy.
d. From the Policy list, select the Identifier First Adapter instance created in step 5.
e. Click Rules to open the Rules dialog.
f. Add three rules as follows.

Defining Authentication Policy Rules dialog fields and entries

Attribute Name Condition Value Result

domain equal to example.com Example COM

domain equal to example.org Example ORG

domain equal to example.info Example INFO

 Note:

Add one rule for each expected domain attribute value.

g. Clear the Default to Success check box to disable the option to specify a policy path for the
scenario where the domain attribute value from the Identifier First Adapter instance does not
match any configured value on the Rules dialog.

If you want to enable an authentication policy path for unexpected domain attribute values, leave
the Default to Success check box as selected.

For more information about rules, see Configuring rules in authentication policies on page 246.
h. Click Done to close the Rules dialog.

Result:

By adding three rules and disabling the default to success option, the Identifier First Adapter
instance now contains four policy paths: Fail, Example COM, Example ORG, and Example INFO.

i. Configure each policy path.

Fail

Select Done, which terminates the request in an error condition.

Example COM

Select the HTML Form Adapter instance, which contains two paths: Fail and Success.

Copyright ©2024

 | Administrator's Reference Guide | 319

Configure each policy path.

Fail

Select Done, which terminates the request in an error condition.

Success

Select the policy contract created in step 2.

Click Options to open the Incoming User ID dialog.

1. From the Sourcelist, select Adapter (ID 1st).
2. From the Attribute list, select subject.
3. Click Done to close the Incoming User ID dialog.

For more information, see Specifying incoming user IDs on page 245.

Example ORG (and then Example INFO)

Select the OpenToken IdP Adapter instance, which contains two paths: Fail and Success.

Configure each policy path by using the same steps documented for the Example COM
policy path

j. Configure contract fulfillment for each authentication policy contract as follows.

Contract Fulfillment fieldnames and entries

Result from rules Contract Attribute Source Value

Example COM subject Adapter (htmlForm) mail

Example ORG subject Adapter
(openTokenIdp)

mail

Example INFO subject Adapter
(openTokenIdp)

mail

For more information, see Configuring contract mapping on page 253.
k. Click Done. Click Save.

Result

You have now successfully configured an Identifier First Adapter instance and an authentication policy to
prompt the user for their identifier first, determine their user population, and route the request to the desired
authentication policy path.

Kerberos Adapter
The integrated Kerberos Adapter provides a seamless single sign-on (SSO) experience for Windows
clients by authenticating SSO requests using the Kerberos v5 protocol against Active Directory (AD)
domains.

When the PingFederate Identity Provider (IdP) server receives an authentication request for Service
Provider-initiated SSO or a user clicks a hyperlink for IdP-initiated SSO, PingFederate invokes the
Kerberos Adapter and returns to the browser an HTTP 401 Unauthorized response. When PingFederate
receives a Kerberos ticket from the browser, it validates the ticket against the domain defined in the
Kerberos Adapter configuration. If validation succeeds, PingFederate retrieves the username, the domain,
and the security identifiers (SIDs) from the ticket; generates a SAML assertion with the username and
optionally the associated domain, SIDs, or both; and passes it to the SP.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 320

The Kerberos Adapter supports authentications by Kerberos only.

Authentication mechanism assurance
The integrated Kerberos Adapter supports authentication mechanism assurance from Active Directory
domain service.

With an Identity Provider (IdP), you can use the Token Authorization framework to verify theSIDs value
before issuing a token. Alternatively, you can map theSIDs value to an attribute in the contract and let the
Service Provider (SP) determine if the user meets the requirements to access the protected resource. For
the purpose of protecting resources based on sign-on method, authentication mechanism assurance from
Active Directory (AD) domain service adds an additional group membership to the user's security identifiers
attribute SIDs when a user signs on using a certificate-based sign-on method, such as a smart-card sign-
on For example, you can restrict access to sensitive resources to users who sign on by using their smart
cards, which requires a physical reader that you place in a physically secured location.

The integrated Kerberos Adapter supports authentication mechanism assurance by including the SIDs
attribute of the authenticated user in the adapter contract.

If your use case requires authentication mechanism assurance, you can add a criterion in the Token
Authorization framework to verify that the SIDs attribute contains the security identifier (SID) value
associated with the required login method. If the SIDs attribute does not contain the specified SID value,
the request is denied.

 Note:

The SIDs attribute contains multiple values. Use the multi-value contains condition or the multi-value
contains (case insensitive) condition to verify whether the SIDs attribute contains a specific value. You
can also configure more complex evaluations using OGNL expressions.

Alternatively, you can map the SIDs attribute into the contract and let the SP determine if the user meets
the requirements to access the protected resource.

For more information about authentication mechanism assurance, see the Authentication Mechanism
Assurance for AD DS in Windows Server 2008 R2 Step-by-Step Guide from Microsoft's documentation.

Configuring a Kerberos Adapter instance for SSO authentication
An overview of creating and configuring a Kerberos Adapter instance to integrate PingFederate with
Windows clients. Create and configure an instance of the Kerberos Adapter for Windows clients to
authenticate using single sign-on.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. On the IdP Adapters window, click Create New Instance to start the Create Adapter Instance
configuration.

3. On the Type tab, configure the basics of this adapter instance.

a. Enter the instance name and ID.
b. From the Type list, select the adapter type.
c. Optional: From the Parent Instance list, select an existing type.

If you are creating an instance that is similar to an existing instance, you might consider making
it a child instance by specifying a parent. A child instance inherits the configuration of its parent
unless overridden. You can specify overrides during the rest of the setup.

Copyright ©2024

https://technet.microsoft.com/en-us/library/dd378897%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/dd378897%28v=ws.10%29.aspx

 | Administrator's Reference Guide | 321

4. On the IdP Adapter window, configure your Kerberos Adapter instance.

See the on-window field descriptions and the following table for more information.

Field Description

Domain/Realm Name

(Required)

Select your Windows domain.

If the domain or realm you want does not appear, click Manage Active
Directory Domains/Kerberos Realms to add it. For more information, see
Active Directory and Kerberos on page 936.

Error URL Redirect Enter a URL for redirecting the user if there are errors. This URL has
an errorMessage query parameter appended to it, which contains a
brief description of the error that occurred. The error page can optionally
display this message on the window to provide guidance on remedying the
problem.

 Note:

In the case of an error, if you define an Error URL Redirect and the
adapter instance is included in an instance of the Composite Adapter, the
user is redirected to the configured error URL rather than continuing on to
the next adapter in the chain. Leave this field blank to have the adapter
continue on to the next adapter.

When employing the errorMessage query parameter in a custom error
page, adhere to Web-application security best practices to guard against
common content injection vulnerabilities. If no URL is specified, the
appropriate default error landing page appears.

Click Show Advanced Fields to review the following settings. Modify as needed.

Error Template When selected, displays a template to provide standardized information to
the end user when authentication fails. The Error URL Redirect value is
ignored.

The template kerberos.error.template.html in the
<pf_install>/pingfederate/server/default/conf/template
directory uses the Velocity template engine and can be modified in a
text editor to suit your particular branding and informational needs. For
example, you can give the user the option to try again if authentication fails.
For more information on Velocity templates, see Customizable user-facing
pages on page 820 .

Authentication Context
Value

This can be any value agreed to with your SP partner to indicate the
type of credentials used to authenticate. Standard URIs are defined in
the SAML specifications. For more information on SAML specifications,
see the OASIS documents oasis-sstc-saml-core-1.1.pdf and saml-authn-
context-2.0-os.pdf.

If left blank, PingFederate sets the authentication context as follows:

▪ urn:oasis:names:tc:SAML:1.0:am:unspecified for SAML 1.x
▪ urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified for

SAML 2.0

Either an instance of the Requested AuthN Context Authentication Selector
or the SAML_AUTHN_CTX attribute can override the authentication context
in the SAML attribute contract. The latter takes precedence.

Copyright ©2024

https://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf

 | Administrator's Reference Guide | 322

5. On the Extended Contract tab, configure additional attributes for this adapter instance as needed.

The Kerberos Adapter contract includes three core attributes: Domain/Realm Name, SIDs, and
Username.

6. On the Adapter Attributes tab, do the following:

a. Optional: From the Unique User Key Attribute list, select an attribute to uniquely identify users
signing on with this adapter. The attribute's value will be used to identify user sessions across all
adapters. None is selected by default.

 Note:

If you choose a custom user key attribute, uses the value of the attribute after the Adapter
Contract Mapping (if any) has been evaluated. If you choose a custom user key attribute that is
based on the username, configure the adapter's password credential validators to trim spaces.

 Important:

For the HTML Form Adapter, If you enabled the Revoke Sessions after Password Change or
Reset option in the IdP Adapter tab, you cannot select None as the unique user key attribute.
Doing so will result in an error message.

b. Select the check box under Pseudonym for the user identifier of the adapter and optionally for the
other attributes, if available.

This selection is used if any of your service provider (SP) partners use pseudonyms for account
linking.

 Note:

A selection is required whether or not you use pseudonyms for account linking. This allows
account linking to be used later without having to delete and reconfigure the adapter. Ensure that
you choose at least one attribute that is unique for each user, such as a user's email, to prevent
assigning the same pseudonym to multiple users.

c. Select the check box under Mask Log Values for any attributes whose values you want to mask
in its logs at runtime.

 Note:

Masking is not applied to the unique user key attribute in the logs even though the attribute used
for the key is marked as Mask Log Values.

d. Select the Mask all OGNL-expression generated log values check box, if OGNL expressions
might be used to map derived values into outgoing assertions and you want those values masked.

7. Optional: On the Adapter Contract Mapping tab, configure the adapter contract for this instance with
the following optional workflows:

▪ Configure one or more data sources for datastore queries.
▪ Fulfill adapter contract with values from the adapter, the default, datastore queries, if configured,

context of the request, text, or expressions, if enabled.
▪ Set up the Token Authorization framework to validate one or more criteria prior to the issuance of

the adapter contract.

8. On the Summary tab, review your configuration and modify as needed. Click Save.

9. When finished in the IdP Adapters window, click Save to confirm the adapter instance configuration.

If you want to exit without saving the configuration, click Cancel.

Copyright ©2024

 | Administrator's Reference Guide | 323

Configuring end-user browsers
You can configure browsers at your site in order to use the Kerberos Adapter to authenticate users.

The client-side configuration requires the base URL or an applicable virtual host name of your
PingFederate environment. Base URL is defined on the System # Server # Protocol Settings #
Federation Info tab. To see a list of defined virtual host names, if configured, go to System # Server #
Virtual Host Names.

 Important:

If the browser is not properly configured, the user might be prompted to authenticate manually with their
network credentials otherwise authentication fails the single sign-on (SSO) to the service providers.

Configuring Microsoft Internet Explorer
You can configure Internet Explorer to support user authentication when using a Kerberos Adapter
instance.

About this task
To configure Internet Explorer, edit the settings in Internet Options.

Steps

1. Add the base URL to Local intranet.

 Note:

Skip this step if the base URL <pf-idp.domain.name> is internal and not fully qualified. For example,
if the base URL is pingfederate, you can skip this step. However, if <pf-idp.domain.name> is
www.example.com, then you must add the base URL to the Sites list, as described in the following
sub steps.

a. Close all Internet Explorer tabs and windows.
b. Open Control Panel # Internet Options.
c. Click the Security tab.
d. Select Local intranet, and then click Sites.
e. Click Advanced.
f. Enter the base URL. For example, www.example.com, and then click Add.
g. Click Close. Click OK to return to the Security tab.

2. Verify Automatic logon only in the Intranet zone is selected.

a. Under the Security tab, select Local intranet and then click Custom level.
b. Verify Automatic logon only in the Intranet zone is selected in the Settings pane.
c. Click OK to return to the Security tab.

3. Verify proxy settings.

 Note:

Skip the following sub steps if a proxy is not used.

a. Click the Connections tab.
b. Click LAN settings.
c. Verify the Use a proxy server for your LAN ... check box is selected. Click Advanced.
d. Enter the base URL in the Exceptions field. Click OK.
e. Click OK to return to the Connections tab.

Copyright ©2024

 | Administrator's Reference Guide | 324

4. Verify Enable Integrated Windows Authentication is selected.

a. Click the Advanced tab.
b. Verify Enable Integrated Windows Authentication is selected in the Settings pane.

5. Click OK to close Internet Options.

Configuring Mozilla Firefox
You can configure Kerberos authentication using a Firefox browser.

Steps

1. Start Firefox.

2. Open a new tab, and then enter about:config in the address bar.

3. Double-click the network.negotiate-auth.trusted-uris preference name to modify its value
to include the base URL of your PingFederate environment. For example, www.example.com.

4. Click OK and close the about:config tab.

5. Optional: Exit Firefox.

OpenToken Adapter
In order to transfer identity and other user information between the PingFederate server and an end
application, the PingFederate architecture allows for custom adapters to be deployed with the server.

PingFederate ships with a deployed OpenToken Adapter, which uses a secure token format OpenToken
to transfer user attributes between an application and the PingFederate server.

On the identity provider (IdP) side, the OpenToken Adapter allows the PingFederate server to receive a
user's identity from the IdP application.

For SAML connections, the IdP application can provide an authentication context to the service provider
(SP) by including the authnContext attribute with the desired value in the secure token. Standard URIs
are defined in the SAML specifications. For more information on assertions and protocol for SAML, see
oasis-sstc-saml-core-1.1.pdf and saml-authn-context-2.0-os.pdf in the OASIS documentation.

If the secure token does not contain the authnContext attribute, PingFederate sets the authentication
context as follows:

▪ urn:oasis:names:tc:SAML:1.0:am:unspecified for SAML 1.x
▪ urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified for SAML 2.0

As needed, the authentication context can be overridden by either an instance of the Requested AuthN
Context Authentication Selector or the SAML_AUTHN_CTX attribute in the SAML attribute contract. The
latter takes precedence.

On the SP side, the OpenToken Adapter can be used to transfer user-identity information to the target SP
application.

Specialized application integration kits are available from the Ping Identity Downloads website. Many
kits leverage the OpenToken Adapter to integrate applications with the PingFederate server. The agent
portions of the integration kits reside with the application and use the OpenToken to communicate with the
OpenToken Adapter.

 Note:

To integrate applications for use with the OpenToken Adapter, download an integration kit for
PingFederate from the Ping Identity Downloads website and follow instructions for installing and using
Agent Toolkits in the accompanying documentation. Follow the configuration instructions in Configuring an
OpenToken IdP Adapter instance to setup and to use with your applications.

Copyright ©2024

https://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf

 | Administrator's Reference Guide | 325

The following figure shows a basic IdP-initiated single sign-on (SSO) scenario using PingFederate with the
Java Integration Kit on both sides of an identity federation.

IdP-Initiated SSO: POST/POST

Processing steps

1. A user initiates an SSO transaction.
2. The IdP application inserts attributes into the Agent Toolkit for Java, which encrypts the data internally

and generates an OpenToken.
3. A request containing the OpenToken is redirected to the PingFederate IdP server.
4. The server invokes the OpenToken IdP Adapter, which retrieves the OpenToken, decrypts, parses,

and passes it to the PingFederate IdP server. The PingFederate IdP server then generates a SAML
assertion.

5. The SAML assertion is sent to the SP site.
6. The PingFederate SP server parses the SAML assertion and passes the user attributes to the

OpenToken SP Adapter. The Adapter encrypts the data internally and generates an OpenToken.
7. A request containing the OpenToken is redirected to the SP application.
8. The Agent Toolkit for Java decrypts and parses the OpenToken and makes the attributes available to

the SP Application.

Configuring an OpenToken IdP Adapter instance
Configure an instance of the OpenToken IdP Adapter in PingFederate.

About this task
Configure an OpenToken Identity Provider (IdP) Adapter instance using the administrative console to
enable a secure authentication plugin for your custom application.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. On the IdP Adapters window, click Create New Instance to start the Create Adapter Instance
configuration.

Copyright ©2024

 | Administrator's Reference Guide | 326

3. On the Type tab, configure the basics of this adapter instance.

a. Enter the instance name and ID.
b. From the Type list, select the adapter type.
c. Optional: From the Parent Instance list, select an existing type.

If you are creating an instance that is similar to an existing instance, you might consider making
it a child instance by specifying a parent. A child instance inherits the configuration of its parent
unless overridden. You can specify overrides during the rest of the setup.

4. On the IdP Adapter tab, configure your OpenToken IdP Adapter instance.

 Note:

These values depend on your developer's implementation.

For more information, see the Description field provided on-window and in the following table.

PingFederate's field names and descriptions for creating an OpenToken IdP Adapter instance

Field Description

Password

Confirm Password

(Required)

The password to use for generating the encryption key. It is also known as
the shared secret.

Authentication Service

(Required)

The URL to which the user is redirected for a single sign-on (SSO)
event. This URL is part of an external application, which performs user
authentication.

Click Show Advanced Fields in the Instance Configuration tab to review the following settings.
Modify as needed.

Transport Mode How the token is transported to and from the application, either through a
query parameter, a cookie (default), or as a form POST.

Token Name

(Required)

The name of the cookie or query parameter that contains the token. This
name must be unique for each adapter instance. Override the default value
opentoken as needed.

Cipher Suite The algorithm, cipher mode, and key size that should be used for
encrypting the token. The default selected value is AES-128/CBC.

Logout Service The URL to which the user is redirected for a single-logout event. This URL
is part of an external application, which terminates the user session.

Cookie Domain The server domain; for example, example.com. If no domain is specified,
the value is obtained from the request.

Cookie Path The path for the cookie that contains the token.

Token Lifetime

(Required)

The duration in seconds for which the token is valid. Valid range is 1 to
28800. The default value is 300 (5 minutes).

Session Lifetime

(Required)

The duration in seconds for which the token may be re-issued without
authentication. Valid range is 1 to 259200. The default value is 43200 (12
hours).

Not Before Tolerance

(Required)

The amount of time in seconds to allow for clock skew between servers.
Valid range is 0 to 3600. The default value is 0.

Copyright ©2024

 | Administrator's Reference Guide | 327

Field Description

Force SunJCE Provider If selected, the SunJCE provider is forced for encryption and decryption.

Use Verbose Error
Messages

If selected, use verbose TokenException messages.

Obfuscate Password If selected, the default, the password is obfuscated and password-strength
validation is applied. Clearing the check box allows backward compatibility
with previous OpenToken agents.

Session Cookie If selected, OpenToken is set as a session cookie, rather than a persistent
cookie. Applies only if the Transport Mode field is set as Cookie. The
check box is not selected by default.

Secure Cookie If selected, the OpenToken cookie is set only if the request is on a secure
channel (https). Applies only if the Transport Mode field is set to Cookie.
The check box is not selected by default.

Delete Cookie If selected, the token cookie is deleted immediately after consumption.
Applies only if the Transport Mode field is set to Cookie. The check box is
not selected by default.

Replay Prevention Selecting this option is recommended only if Query Parameter is the
chosen token transport mode and form POST is used by an associated
connection to send the SAML assertion. If selected, PingFederate ensures
that the token can be used only once. By default, the check box is not
selected.

 Note:

Selecting this option might affect resource utilization and performance.

Skip Malformed
Attribute Detection

If not selected, the default, it prevents insecure content from affecting the
security of your application and the agent. Update your applications with
the latest version of the agent. We recommend not to change the value of
this flag.

5. On the Actions tab, click Download under Action Invocation Link, and then click Export to save the
properties file.

The values in the resulting file, agent-config.txt, represent the console configuration and are
used by the Identity Provider (IdP) application. See the documentation of your respective integration kit
for more information.

6. On the Extended Contract tab, configure additional attributes for this adapter instance as needed.

The OpenToken IdP Adapter contract includes one core attribute: subject.

The OpenToken IdP Adapter always extends the core contract with an attribute userId as well and
fulfills it with the value of subject for backward compatibility reason.

Copyright ©2024

 | Administrator's Reference Guide | 328

7. On the Adapter Attributes tab, do the following:

a. Optional: From the Unique User Key Attribute list, select an attribute to uniquely identify users
signing on with this adapter. The attribute's value will be used to identify user sessions across all
adapters. None is selected by default.

 Note:

If you choose a custom user key attribute, uses the value of the attribute after the Adapter
Contract Mapping (if any) has been evaluated. If you choose a custom user key attribute that is
based on the username, configure the adapter's password credential validators to trim spaces.

 Important:

For the HTML Form Adapter, If you enabled the Revoke Sessions after Password Change or
Reset option in the IdP Adapter tab, you cannot select None as the unique user key attribute.
Doing so will result in an error message.

b. Select the check box under Pseudonym for the user identifier of the adapter and optionally for the
other attributes, if available.

This selection is used if any of your service provider (SP) partners use pseudonyms for account
linking.

 Note:

A selection is required whether or not you use pseudonyms for account linking. This allows
account linking to be used later without having to delete and reconfigure the adapter. Ensure that
you choose at least one attribute that is unique for each user, such as a user's email, to prevent
assigning the same pseudonym to multiple users.

c. Select the check box under Mask Log Values for any attributes whose values you want to mask
in its logs at runtime.

 Note:

Masking is not applied to the unique user key attribute in the logs even though the attribute used
for the key is marked as Mask Log Values.

d. Select the Mask all OGNL-expression generated log values check box, if OGNL expressions
might be used to map derived values into outgoing assertions and you want those values masked.

8. Optional: On the Adapter Contract Mapping tab, configure the adapter contract for this instance with
the following optional workflows:

▪ Configure one or more data sources for datastore queries.
▪ Fulfill adapter contract with values from the adapter, the default, datastore queries, if configured,

context of the request, text, or expressions, if enabled.
▪ Set up the Token Authorization framework to validate one or more criteria prior to the issuance of

the adapter contract.

9. On the Summary tab, review your configuration and modify as needed. Click Save.

10. When finished in the IdP Adapters window, click Save to confirm the adapter instance configuration.

If you want to exit without saving the configuration, click Cancel.

Copyright ©2024

 | Administrator's Reference Guide | 329

Configuring an OpenToken SP Adapter instance
Configure an instance of the deployed OpenToken Adapter, which uses a secure token format to transfer
user attributes between an application and the PingFederate server.

About this task
Configure an OpenToken Service Provider (SP) Adapter instance to enable a secure transfer of the user-
identity information to the target SP application.

Steps

1. Go to Applications # Integration # SP Adapters to access the Manage SP Adapters Instances
window.

2. Click Create New Instance to start the Create Adapter Instance configuration wizard.

3. On the Type tab, configure the basics of this adapter instance.

a. Enter the Instance Name, Instance ID, and Parent Instance information and select the adapter
type from the Type list.

b. Optional: Select a Parent Instance from the list.

This is useful when you are creating an instance that is similar to an existing instance. The child
instance inherits the configuration of its parent. In addition, you have the option to override one
or more settings during the rest of the setup. Select the Override ... check box and make the
adjustments as needed in one or more subsequent windows.

4. On the Instance Configuration tab, configure your OpenToken SP Adapter instance security context.

 Note:

These values are dependent on your developer's implementation.

For more information, see the Description field provided in-window and in the following table.

PingFederate's field names and descriptions for creating an adapter instance

Field Description

Password

Confirm Password

(Required)

The password to use for generating the encryption key. It is also known as
the shared secret.

Click Show Advanced Fields in the Instance Configurationtab to review the following settings.
Modify as needed.

Transport Mode How the token is transported to and from the application, either through a
query parameter, a cookie, or as a form POST (default).

Token Name The name of the cookie or query parameter that contains the token. This
name must be unique for each adapter instance. Override the default value
opentoken as needed.

Cipher Suite The algorithm, cipher mode, and key size that should be used for
encrypting the token. The default selected value is AES-128/CBC.

Authentication Service The URL to which the user is redirected for a single sign-on (SSO) event.
This URL overrides the Target Resource, which is sent as a parameter to
the Authentication Service.

Copyright ©2024

 | Administrator's Reference Guide | 330

Field Description

Account Link Service The URL to which the user is redirected for account linking. This URL is
part of an external SP application. This external application performs user
authentication and returns the local user ID inside the token.

Logout Service The URL to which the user is redirected for a single-logout event. This URL
is part of an external application, which terminates the user session.

Cookie Domain The server domain; for example, example.com. If no domain is specified,
the value is obtained from the request.

Cookie Path The path for the cookie that contains the token.

Token Lifetime

(Required)

The duration in seconds for which the token is valid. Valid range is 1 to
28800. The default value is 300 (5 minutes).

Session Lifetime

(Required)

The duration in seconds for which the token may be re-issued without
authentication. Valid range is 1 to 259200. The default value is 43200, 12
hours.

Not Before Tolerance

(Required)

The amount of time in seconds to allow for clock skew between servers.
Valid range is 0 to 3600. The default value is 0.

Force SunJCE Provider If selected, the SunJCE provider is forced for encryption/decryption.

Use Verbose Error
Messages

If selected, use verbose TokenException messages.

Obfuscate Password If selected, the default, the password is obfuscated and password-strength
validation is applied. Clearing the check box allows backward compatibility
with previous OpenToken agents.

Session Cookie If selected, OpenToken is set as a session cookie rather than a persistent
cookie. Applies only if the Transport Mode field is set to Cookie. The
check box is not selected by default.

Secure Cookie If selected, the OpenToken cookie is set only if the request is on a secure
channel (https). Applies only if the Transport Mode field is set to Cookie.
The check box is not selected by default.

Send Subject as Query
Parameter

Selecting this check box sends the user identifier subject as a clear-text
query parameter, if the Transport Mode field is set to Query Parameter. If
Form POST is the chosen token transport mode, the user identifier is sent
as POST data.

Subject Query
Parameter

The parameter name used for the user identifier when the Send Subject ID
as Query Parameter check box is selected.

Send Extended
Attributes

Extended Attributes are typically sent only within the token, but this option
overrides the normal behavior and allows the attributes to be included in
browser cookies or query parameters.

Skip Trimming of
Trailing Backslashes

If not selected, the default, it prevents insecure content from affecting the
security of your application and the agent. Update your applications with
the latest version of the agent. We recommend not to change the value of
this flag to avoid a negative security impact, such as someone maliciously
adding slashes to exploit the system.

URL Encode Cookie
Values

If checked, the extended attribute cookie value will be URL encoded.

Copyright ©2024

 | Administrator's Reference Guide | 331

5. In the Actions tab, click Download under Action section. Click Export to save the properties file.

The values in the resulting file, agent-config.txt, represent the console configuration and
are used by the SP application. See the documentation of your respective integration kit for more
information.

6. Optional: In the Extended Contract tab, configure additional attributes for this adapter instance.

7. In the Summary tab, review your configuration, modify as needed. Click Done.

8. On the SP Adapters window, click Save to confirm the adapter instance configuration.

If you want to exit without saving the configuration, click Cancel.

Configuring a Reference ID adapter
The Reference ID Adapter allows user attributes to be passed in and out of the PingFederate server
through direct HTTP(S) calls. Attributes are retrieved using a Reference ID.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. On the IdP Adapters window, click Create New Instance to start the Create Adapter Instance
configuration.

3. On the Type tab, configure the basics of this adapter instance.

a. Enter the instance name and ID.
b. From the Type list, select the adapter type.
c. Optional: From the Parent Instance list, select an existing type.

If you are creating an instance that is similar to an existing instance, you might consider making
it a child instance by specifying a parent. A child instance inherits the configuration of its parent
unless overridden. You can specify overrides during the rest of the setup.

4. On the IdP Adapter tab, configure the Reference ID adapter instance as follows:

a. Enter values for the adapter configuration, as described in the following table.

Field Description

Authentication Endpoint The application endpoint URL where the end user is redirected for
authentication.

User Name The ID that the application uses to authenticate to the PingFederate
server.

Pass Phrase The pass phrase that the application uses to authenticate to the
PingFederate server.

Allowed Subject DN The subject DN from the client certificate. If entered, PingFederate
restricts client-certificate authentication (when enabled) by matching
against this DN.

 Note:

This field supports the asterisk (*) wildcard character and multiple
DNs, separated by the pipe '|'.

Copyright ©2024

 | Administrator's Reference Guide | 332

Field Description

Allowed Issuer DN The issuer DN from the client certificate. If entered, PingFederate
restricts client-certificate authentication (when enabled) by matching
against this DN.

 Note:

Supports the asterisk (*) wildcard character and multiple DNs,
separated by the pipe '|'.

Logout Service
Endpoint

The application endpoint URL used for single logout. The Logout
Service Endpoint works in conjunction with Logout Mode.

Logout Mode Select the option that determines how the application logout is
handled.

Front Channel - Redirects the user to the application endpoint and
expects the application to redirect back to the provided PingFederate
resume path.

Back Channel - Sends a direct HTTP request from the server to the
application.

The default setting is None.

b. Optional: Click Show Advanced Fields to review or modify default values.

5. On the Actions tab, you can optionally click Show Pass Phrase to display the pass phrase for the
adapter.

6. On the Extended Contract tab, extend the contract as needed by entering the name of the desired
attribute and clicking Add. You can add as many attributes as needed.

Copyright ©2024

 | Administrator's Reference Guide | 333

7. On the Adapter Attributes tab, do the following:

a. Optional: From the Unique User Key Attribute list, select an attribute to uniquely identify users
signing on with this adapter. The attribute's value will be used to identify user sessions across all
adapters. None is selected by default.

 Note:

If you choose a custom user key attribute, uses the value of the attribute after the Adapter
Contract Mapping (if any) has been evaluated. If you choose a custom user key attribute that is
based on the username, configure the adapter's password credential validators to trim spaces.

 Important:

For the HTML Form Adapter, If you enabled the Revoke Sessions after Password Change or
Reset option in the IdP Adapter tab, you cannot select None as the unique user key attribute.
Doing so will result in an error message.

b. Select the check box under Pseudonym for the user identifier of the adapter and optionally for the
other attributes, if available.

This selection is used if any of your service provider (SP) partners use pseudonyms for account
linking.

 Note:

A selection is required whether or not you use pseudonyms for account linking. This allows
account linking to be used later without having to delete and reconfigure the adapter. Ensure that
you choose at least one attribute that is unique for each user, such as a user's email, to prevent
assigning the same pseudonym to multiple users.

c. Select the check box under Mask Log Values for any attributes whose values you want to mask
in its logs at runtime.

 Note:

Masking is not applied to the unique user key attribute in the logs even though the attribute used
for the key is marked as Mask Log Values.

d. Select the Mask all OGNL-expression generated log values check box, if OGNL expressions
might be used to map derived values into outgoing assertions and you want those values masked.

8. Optional: On the Adapter Contract Mapping tab, configure the adapter contract for this instance with
the following optional workflows:

▪ Configure one or more data sources for datastore queries.
▪ Fulfill adapter contract with values from the adapter, the default, datastore queries, if configured,

context of the request, text, or expressions, if enabled.
▪ Set up the Token Authorization framework to validate one or more criteria prior to the issuance of

the adapter contract.

9. On the Summary tab, review your configuration and modify as needed. Click Save.

Copyright ©2024

 | Administrator's Reference Guide | 334

Configuring an X.509 Certificate IdP adapter
The X.509 certificate IdP adapter allows a PingFederate Identity Provider (IdP) server to perform client
X.509 certificate authentication for single sign-on (SSO) to Service Provider (SP) applications.

About this task

When PingFederate is acting as an IdP, this adapter validates X.509 certificates against the certificate
authorities (CA) in the PingFederate certificate store.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. On the IdP Adapters window, click Create New Instance to start the Create Adapter Instance
configuration.

3. On the Type tab, configure the basics of this adapter instance.

a. Enter the instance name and ID.
b. From the Type list, select the adapter type.
c. Optional: From the Parent Instance list, select an existing type.

If you are creating an instance that is similar to an existing instance, you might consider making
it a child instance by specifying a parent. A child instance inherits the configuration of its parent
unless overridden. You can specify overrides during the rest of the setup.

4. Optional: On the IdP Adapter tab, in the Constrain Acceptable Root Issuers section, specify the
certificate authorities (CA) that you want to use to validate end-user X.509 certificates.

 Note:

Client certificates are always validated against all trusted CAs in PingFederate and the Java Virtual
Machine. This section only restricts which issuers are used to validate end-user certificates.

a. Click Add a new row to 'Constrain Acceptable Root Issuers'.
b. In the Issuer DN field, enter the subject distinguished name (DN) of an issuer listed on the

Trusted CAs window. For more information, see Manage trusted certificate authorities on page
615.

c. In the Action column, click Update.
d. To add more acceptable issuers, repeat steps a-c.

5. Enter values for the adapter configuration, as described in the following table.

Field Description

Client Auth Port The port that PingFederate uses to validate client certificates.

Client Auth Hostname The PingFederate hostname that is configured to use client-
certificate authentication.

Copyright ©2024

 | Administrator's Reference Guide | 335

Field Description

Parse Client Cert Subject and
Issuer DNs

When enabled, the subject and issuer distinguished names (DN) in
the client certificate are treated as separate attributes. This allows
you to do the following:

▪ Add subject or issuer DN attributes, such as CN or UID, to the
adapter's extended contract.

▪ Use the subject DN email attribute in the adapter's core
contract.

▪ Use Object-Graph Navigation Language (OGNL) expressions
to extract other information from the X.509 certificate.

This option is enabled by default.

Match Issuer DN in Client
X.509 Certificate

Determines how PingFederate validates the issuer distinguished
name (DN) for the client certificate.

When selected, the issuer DN is matched against the entries that
are defined in the Constrain Acceptable Root Issuers section.

When cleared, the issuer DN is matched against the default top
level certificate in the chain that is presented by the client.

Advanced Fields

Return Success on SLO When enabled, a "success" message is sent in response when the
adapter receives a single logout (SLO) request.

SLO is not supported by this adapter and the user session is not
terminated. This feature only prevents other sites from experiencing
an SLO failure.

This option is enabled by default.

Authentication Context The value used to populate the "Authentication Context" field in the
SAML token that PingFederate sends after validating the X.509
certificate.

Default - Sets the value to "TLSClient".

Policy OID - Sets the value to the identifier for the policy.

Custom - Sets based on the value you enter in the Custom
Authentication Context field.

Custom Authentication Context The value used to populate the "Authentication Context" field in
the SAML token. Applies when Authentication Context is set to
Custom.

Include Subject Alternative
Name (SAN)

When enabled, the adapter includes the following decoded SAN
attributes from the X.509 certificate and makes them available in
the attribute contract:

▪ userPrincipalName
▪ RFC822Name
▪ fascn_sen
▪ fascn_wo_sen
▪ fascn_hex
▪ deviceId

Copyright ©2024

 | Administrator's Reference Guide | 336

6. On the Extended Contract tab, add any attributes, that you want to include in the extended contract.
Enter attributes in uppercase. Only attributes specified in RFC 2253 are allowed: CN, L, ST, O, OU, C,
STREET, DC, and UID.

 Note:

You can include subject DN components in this list.

If you selected Parse Client Cert Subject and Issuer DNs on the IdP Adapter tab, you can also
include the subject DN email component, as well as issuer DN components.

For issuer DN components, prefix the attribute with issuer_, such as issuer_CN.

7. On the Adapter Attributes tab, do the following:

a. Optional: From the Unique User Key Attribute list, select an attribute to uniquely identify users
signing on with this adapter. The attribute's value will be used to identify user sessions across all
adapters. None is selected by default.

 Note:

If you choose a custom user key attribute, uses the value of the attribute after the Adapter
Contract Mapping (if any) has been evaluated. If you choose a custom user key attribute that is
based on the username, configure the adapter's password credential validators to trim spaces.

 Important:

For the HTML Form Adapter, If you enabled the Revoke Sessions after Password Change or
Reset option in the IdP Adapter tab, you cannot select None as the unique user key attribute.
Doing so will result in an error message.

b. Select the check box under Pseudonym for the user identifier of the adapter and optionally for the
other attributes, if available.

This selection is used if any of your service provider (SP) partners use pseudonyms for account
linking.

 Note:

A selection is required whether or not you use pseudonyms for account linking. This allows
account linking to be used later without having to delete and reconfigure the adapter. Ensure that
you choose at least one attribute that is unique for each user, such as a user's email, to prevent
assigning the same pseudonym to multiple users.

c. Select the check box under Mask Log Values for any attributes whose values you want to mask
in its logs at runtime.

 Note:

Masking is not applied to the unique user key attribute in the logs even though the attribute used
for the key is marked as Mask Log Values.

d. Select the Mask all OGNL-expression generated log values check box, if OGNL expressions
might be used to map derived values into outgoing assertions and you want those values masked.

Copyright ©2024

https://www.ietf.org/rfc/rfc2253.html#section-2.3

 | Administrator's Reference Guide | 337

8. Optional: On the Adapter Contract Mapping tab, configure the adapter contract for this instance with
the following optional workflows:

▪ Configure one or more data sources for datastore queries.
▪ Fulfill adapter contract with values from the adapter, the default, datastore queries, if configured,

context of the request, text, or expressions, if enabled.
▪ Set up the Token Authorization framework to validate one or more criteria prior to the issuance of

the adapter contract.

9. On the Summary tab, review your configuration and modify as needed. Click Save.

Customer IAM configuration
PingFederate empowers administrators to deliver a secure and easy-to-use customer authentication,
registration, and profile management solution. This solution leverages the HTML Form Adapter to offer
users the options to authenticate through third-party identity providers (IdPs), self-register as part of the
sign-on experience, and manage their accounts through a self-service profile management page.

Like other user-facing windows, administrators can customize and localize both the registration and profile
management pages to present a consistent branding experience based on the needs of the users and the
organizations.

Furthermore, administrators can allow users to leverage their existing identities from third-party identity
providers. Any IdP connection or IdP adapter, such as the LinkedIn Cloud Identity Connector, can be used
as an authentication source to a third-party identity provider. This optional capability enables a mapping
configuration between the attributes returned by the identity provider and the fields within the registration
page, streamlining the registration process.

Depending on the requirements and configuration of existing components, the configuration process might
involve changes to these configuration components: authentication policy contracts, local identity profiles,
HTML Form Adapter instances, and IdP authentication policies.

 Note:

The HTML Form Adapter is authentication API-capable. The authentication API is a JSON-based API that
enables end-user interactions, such as credential prompts, to be handled by an external web application.
This API does so by providing access to the current state of the flow as an end user steps through a
authentication policy. For more information, see Authentication applications and the authentication API on
page 405.

Setting up PingDirectory for customer identities
PingFederate can optionally store customer identities in PingDirectory. After you have installed
PingDirectory, update the LDAP schema with a new object class and a couple attributes to store customer
identities and their connections.

About this task

Update the LDAP schema with a new object class and a couple attributes using an LDIF file provided. To
optimize performance, apply updates in indexes to the directory as well. In addition, you must configure
in PingFederate an LDAP datastore connection to your PingDirectory and an LDAP Username Password
Credential Validator instance for the HTML Form Adapter to validate user credentials. If you have
previously created these components, you can reuse them.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 338

Skip this configuration if your use case does not involve registration or profile management. For more
information, see Enabling third-party identity providers without registration on page 365.

Steps

1. Update the LDAP schema.

a. Sign on to the PingDirectory administrative console.
b. Go to the LDAP Schema # Schema Utilities screen.
c. Click Import Schema Element.
d. Copy the schema changes from the <pf_install>/pingfederate/server/default/

conf/local-identity/ldif-scripts/local-identity-pingdirectory.ldif file and
paste them into the text area.

If you are creating a new organizational unit as part of the LDIF import, edit the DN information.
e. Click Import.

2. Create an equality index for the pf-connected-identity attribute.

Use PingDirectory's dsconfig utility to create this index. The dsconfig utility is interactive. You
can also provide inputs as command arguments. For example, the following samples create the pf-
connected-identity index.

$ bin/dsconfig create-local-db-index \
 --backend-name userRoot \
 --index-name pf-connected-identity \
 --set index-type:equality

After adding the index, use the rebuild-index utility to build the indexes. For instance, the following
sample builds the required index.

$ bin/rebuild-index \
 --baseDN "dc=example,dc=com" \
 --index pf-connected-identity

3. Create an LDAP datastore connection to your PingDirectory on System # Data Stores.

If you have already created an LDAP datastore connection to your PingDirectory, you can reuse it.

4. Create an instance of the LDAP Username Password Credential Validator on System # Password
Credential Validators to validate user credentials stored in PingDirectory.

If you have already created an LDAP Username Password Credential Validator instance, you can
reuse it.

 Note:

Later you will create a local identity profile as part of the customer IAM configuration. The Search
Base value here should match the Base DN value defined in the local identity profile. For more
information, see Configuring LDAP base DN and attributes on page 346.

Copyright ©2024

 | Administrator's Reference Guide | 339

Managing local identity profiles
When associated with an HTML Form Adapter instance, a local identity profile provides users the option
to authenticate through third-party identity providers, self-register as part of the sign-on experience, and
manage their accounts through a self-service profile management page.

About this task

A typical customer identity and access management (CIAM) use case only requires one local identity
profile. As needed, you can create multiple profiles to suit the needs of your organization. Using the
administrative console, Local identity profiles are defined in the Identity Policies section.

 Note:

As of PingFederate 10.1, an authentication session is automatically created for a user after registration,
preventing the user from having to log in again during the next single sign-on (SSO) transaction. This
feature is enabled by default for all new and existing local identity profiles. However, if needed, you can
disable it through the /localIdentity/identityProfiles administrative API endpoint by setting the
createAuthnSessionAfterRegistration attribute to false.

Steps

▪ To configure a new profile, go to Authentication # Policies # Local Identity Profiles. Click Create
New Profile.

▪ To modify an existing profile, select it by its name under Local Identity Profile Name.
▪ To review the usage of an existing profile, click Check Usage under Action.
▪ To remove an existing instance or to cancel the removal request, click Delete or Undelete under

Action.

Configuring local identity profile information
When configuring a new local identity profile, you must first provide profile information.

Steps

1. On the Profile Info tab, in the Local Identity Profile Name field, enter a name.

2. From the Authentication Policy Contract list, select a contract.

If you have not yet defined the desired contract, click Manage Policy Contracts.

3. Select the Enable Registration check box if you want to enable users to complete a self-service
registration as part of the sign-on experience through an instance of the HTML Form Adapter.

4. Select the Enable Profile Management check box if you want to allow users to manage their
accounts.

5. When finished, click Next.

Defining authentication sources
Authentication sources are identifiers for third-party identity providers, such as social providers used
to display these providers on the HTML form adapter user interface as alternate authentication and
registration options. They are also used in authentication policies to configure branches to identity provider
(IdP) adapters and connections.

About this task

Authentication sources are optional. They are the identifiers for third-party identity providers, such as social
network providers. When defined, the associated HTML Form Adapter instance displays them on the sign-
on page as alternative options for authentication and registration, if enabled. If profile management is
enabled, users can connect or disconnect third-party identity providers to and from their accounts.

Copyright ©2024

 | Administrator's Reference Guide | 340

You can store attributes received from third-party identity providers as part of the user records. If required,
attributes can be updated as users authenticate. By default, attributes are removed from user records as
users disconnect third-party identity providers from their accounts. It is worth noting that storing attributes
received from third-party identity providers is optional and configurable on a per-local identity profile basis.
Additionally, this option is only applicable when a local identity profile is configured with registration, profile
management, or both.

Steps

1. On the Authentication Sources tab, type a source in the Authentication Source field, and click
Add.

 Tip:

If you use the authentication source names Facebook, Google, LinkedIn, Twitter, FIDO, the
HTML Form Adapter default templates render the associated icons on the registration and profile
management pages.

 Note:

As of PingFederate 10.2, you can use Security Key as an authentication source. The Security Key
authentication source automatically adds a Security Key button to the HTML Form Adapter and Local
Identity Profile management and registration pages. It allows users to authenticate with a hardware
security key such as YubiKey. The button displays only if the user's device or browser supports the
Web Authentication (WebAuthn) protocol.

You can also use the Security Key authentication source with the PingID adapter by configuring
a policy tree with a rule that includes a policy.action attribute equal to a Value and Result of
Security Key. Then select the PingID Adapter under Security Key in the policy and configure
it as needed. For information about configuring authentication policies and rules, see Defining
authentication policies on page 242 and Configuring rules in authentication policies on page 246.

Result:

Make a note of the values defined here. In a later step, you will create a rule for each authentication
source in an identity provider (IdP) authentication policy. Each rule forms a policy path that initiates the
authentication process.

2. If needed, modify or remove existing authentication sources.

 CAUTION:

When removing an authentication source, keep in mind that accounts that were created using the
associated third-party identity provider will no longer be usable after the removal. To minimize the risk
of accidental removals, the administrative console prompts to confirm each removal request.

Copyright ©2024

 | Administrator's Reference Guide | 341

3. Configure storage settings for attributes received from third-party IdP.

 Note:

The attribute storage settings are inapplicable and not shown if neither Enable Registration nor
Enable Profile Management check box not selected on the Profile Info tab.

Choose from:

▪ If storing attributes, select the Store Attributes check box.
▪ If you want attributes retained after users disconnect third-party IdP from their accounts, select the

Keep Attributes After Users Disconnect check box.
▪ If you want attributes updated as users authenticate, select the Update Attributes When Users

Authenticate check box and enter a value in the Minimum Number of Days Between Updates
field.

4. When finished, click Next.

Configuring local identity fields
Configuring local identity fields determines which fields will be displayed as input controls on the user
registration and profile management pages.

About this task

When registration is enabled for a local identity profile, select a local identity field to be the unique identifier
for the purpose of identifying the users. To enable email ownership verification, add a field to store the
email address and another field to store the verification status. While the former can be any field that uses
the Email or Text input control, the latter must use the Hidden input control.

Steps

1. On the Fields tab, click Create New Field.

2. In the ID field, enter a unique identifier. The ID references the field throughout the user interface and is
the field name in the HTML template.

3. In the Label field, type the field name that users see on the user registration and profile management
pages.

4. From the Type list, select the type of input control for the field being configured.

5. Under Applies To, select one or both options to configure this field to appear on the user registration
page, the profile management page, or both. Both options are selected by default.

This step is applicable only if both Enable Registration and Enable Profile Management are
enabled on the Profile Info tab.

6. Optional: Select the relevant parameters under Parameters.

You can make a non-hidden field required or read-only. You can also configure PingFederate not to
record values from this field in logs.

7. Optional: Enter a value under Default Value.

Specifying a default value can streamline the registration process. This is the default value of the field
unless another value is specified in the authentication policy. For more information, see Configuring
local identity mapping on page 253.

Default Value is not shown if you have chosen an input control of Checkbox group, Email, Phone,
or Hidden, or the Read-Only parameter.

8. Add the applicable predefined values under Options.

This step is applicable and required only if you have chosen Checkbox Group or Dropdown as the
input control.

Copyright ©2024

 | Administrator's Reference Guide | 342

9. Click Done.

Result:

The administrative console returns to the Fields tab.

10. Select the Unique ID option for the applicable field. This is applicable and required only if registration
is enabled on the Profile Info tab.

 Note:

You cannot choose any field that uses the Checkbox, Checkbox Group, Date, or Dropdown input
control as a unique identifier, because values from these fields will likely collide as the population of
users grows.

11. Clear the check box beside Strip Leading/Trailing Spaces From the Value of the Unique ID Field
only if you do not want to check for leading and trailing spaces in the unique ID field.

12. Select Mask All OGNL-Expression Generated Log Values if you want to mask local identity field
values in logs when OGNL expressions might be used to map derived values into outbound single
sign-on (SSO) tokens in authentication policies.

13. Click Next.

Configuring email ownership verification options
Based on your customer IAM use cases, you can optionally offer users the opportunity to confirm the
ownership of the email address associated with their accounts. This configuration can be configured on a
per-local identity profile basis.

About this task
Using the administrative console, configure the email ownership verifications settings for a local identity
profile.

When you enable these settings, PingFederate generates a notification message for email ownership
verification as the user submits the registration request. The email-verification message is valid for a
configurable amount of time, 24 hours by default. If the user cannot find the previously sent message,
the user can request another one by accessing the email ownership verification endpoint. Moreover, if
profile management is enabled, the profile management page displays a reminder until the user verifies
the associated email address as well. Like other local identity fields, the email verification status is stored
in the directory and can be relayed to the applicable target applications through identity provider (IdP)
authentication policies.

Steps

1. Go to Authentication # Policies # Local Identity Profiles.

2. On the Email Verification tab, select the Enable Email Ownership Verification check box to offer
users the opportunity to verify the email address associated with their accounts.

The Email Verification tab appears only when you select the Enable Registration check box or the
Enable Profile Management check box on the Profile Info tab.

The Enable Email Ownership Verificationcheck box is not selected by default.

 Note:

The rest of the steps apply only if you select to enable email ownership verification.

3. In the Email Address Field list, select a field.

The field value represents the recipient of the verification message.

Only fields that use the Email or Text input control are eligible and shown.

Copyright ©2024

 | Administrator's Reference Guide | 343

4. In the Ownership Status Field list, select a field.

The field value represents the email ownership verification status. PingFederate sets the value to
false in the directory when it receives a new or an updated email address from the user. After the
user verifies the email ownership, PingFederate sets the value to true.

Only fields that use the Hidden input control are eligible and shown.

5. To modify the longevity of the link in the email-verification message, update the One-Time Link
Lifetime field.

The default value is 1440 in minutes, 24 hours.

6. Optional: To use different template files for various events, update the applicable template fields.

 Note:

These templates are only applicable when using an SMTP Notification Publisher instance to deliver
email-verification messages.

The following table shows the default template fields and their corresponding values.

Template field Default value

Email Template message-template-email-ownership-verification.html

Sent Template local.identity.email.verification.sent.html

Success Template local.identity.email.verification.success.html

Error Template local.identity.email.verification.error.html

 Note:

You can find the email template file in the <pf_install>/pingfederate/server/default/
conf/template/mail-notifications directory and the other templates in the template
directory.

7. In the Notification Publisher list, select an instance.

If you haven't yet configured the desired notification publisher instance, click Manage Notification
Publishers.

Copyright ©2024

 | Administrator's Reference Guide | 344

8. Optional: To require users to verify their email address before they can access any connected
applications, select the Require Verified Email check box and specify a template in the Require
Verified Email Template field.

When enabled, users can sign on to their local identity profile and manage their account but
PingFederate blocks them from accessing any connected applications until they have successfully
verified their email address.

 Note:

The Require Verified Email Template field appears only when you select the Require Verified Email
check box.

By default, the Require Verified Email Template value is
local.identity.email.verification.required.html and provides options to Resend the
verification email, Continue, or Cancel.

 Tip:

To add a Manage Profile option, select the Enable Profile Management check box as described in
step 4 of Configuring local identity profile information on page 339.

9. Click Next.

Configuring registration options
On the Registration tab, you can configure the user registration experience and specify the template file
for the registration page.

Steps

1. Go to Authentication # Policies # Local Identity Profiles # Registration.

2. If you want to enable invisible reCAPTCHA from Google to prevent automated registration attempts,
select the CAPTCHA check box, and then click Manage CAPTCHA Settings.

Copyright ©2024

 | Administrator's Reference Guide | 345

3. If you want to use a different template file, update the Registration Template field. The default value
is local.identity.registration.html.

4. If you want to allow users to indicate whether their device is shared or private, select the Enable 'This
is my device' check box.

5. If you want PingFederate to create an authentication session after a local account is registered, leave
the Create Session After Registration check box selected. It is selected by default.

6. If you want to override the value in the Unique ID field as the username that is sent to adapters in the
policy, select a username in the Username Field list.

7. If you have a policy fragment that needs to be executed as part of the workflow, select the fragment
in the Registration Workflow list. Click Add Policy Fragments, if needed, to create one or more
fragments.

When you select a fragment, you can then choose whether PingFederate should execute the
registration workflow before or after account creation. After Account Creation is selected by default.

 Note:

The registration fragment always executes after the user has entered their information in the
registration form. There's an implicit mapping between fields in the local identity profile (LIP), which
may have been populated in the registration form, and attributes in the registration fragment input
authentication policy contract (APC). Implicit mapping is a mapping that executes automatically if the
name of a field in the LIP matches the name of an attribute in the APC.

There's also an implicit mapping between attributes in the registration fragment output APC and fields
in the LIP. So, you can use the fragment to populate or overwrite the LIP fields. This works whether
you configure the fragment to execute before or after account creation.

8. Click Next.

Configuring profile management options
Configure the profile management experience and specify the template file for the profile management
page.

About this task

Using the administrative console, configure the user registration in the local identity profiles section.

Steps

Go to Authentication # Policies # Local Identity Profiles. In the Local Identity Profile window, using
the tabs, configure the user registration page settings.
Choose from:

▪ If you want to give users the option to delete their local accounts without administrator assistance,
select the Enable Profile Deletion check box.

This check box is not selected by default.

If enabled, when users choose to delete their accounts, their user records are removed from your
directory.

▪ If you want to use a different template file, update the Registration Template field.

The default value is local.identity.profile.html.

Managing datastore configuration
PingFederate requires datastore configuration because it stores customer identities in PingDirectory.

Configure the datastore where local identities are stored.

▪ To begin, click Configure Data Store.

Copyright ©2024

 | Administrator's Reference Guide | 346

Selecting a datastore for customer identities
PingFederate stores customer identities in PingDirectory, improving the flexibility, scale, and security of
your user data. Follow these steps to connect PingFederate to a directory to store identity and profile data
and expose the data to all applications and channels through LDAPv3.

About this task
Using the Data Store Configuration tab, connect your LDAP datastore to PingFederate.

Steps

1. Go to Authentication # Policies # Local Identity Profiles.

2. On the Data Store Configuration tab, click Configure Data Store.

Result: This will open a Data Store window.

3. On the Data Store Type tab, enter a name in the Name field, and from the Type list, select Directory
(LDAP).

4. Click Next.

If you have not yet created an LDAP datastore to connect PingFederate to your PingDirectory or if you
want to review your LDAP datastore settings, click Manage Data Store.

Configuring LDAP base DN and attributes
Configure the datastore to search for a user's authentication starting with the base distinguished name
(DN) and attributes within the LDAP directory.

About this task
On the LDAP Configuration tab, specify the branch of your directory hierarchy where you want
PingFederate to store customer identities. Then, select the object class and the attributes to be associated
with local identity fields.

 Note:

Later you will associate the local identity profile with an HTML Form Adapter instance and apply the profile
in an identity provider (IdP) authentication policy as part of the customer IAM configuration. If your use
case requires registration or profile management, the policy engine must look up the users as they access
the registration page or the profile management page. The scope of this search begins at the base DN
defined here.

For this reason, the base DN here should match the value of the Search Base field defined in the LDAP
Username Password Credential Validator instance used by the associated HTML Form Adapter instance.

For more information about each field, refer to the following table.

Field Description

Base DN The base distinguished name of the tree structure where PingFederate stores
customer identities.

Root Object Class The object class containing the desired attributes.

Attributes A list of attributes based on the selected Root Object Class value.

Steps

1. Go to Authentication # Policies # Local Identity Profiles.

2. On the Data Store Configuration tab, click Configure Data Store.

Result: This will open a Data Store window.

3. On the LDAP Configuration tab, enter the applicable fields.

Copyright ©2024

 | Administrator's Reference Guide | 347

4. In the User DN field, specify a base DN.

5. Optional: Click View Local Identity Fields to determine which attributes from the directory server
should be added to the local identity profile.

6. From the LDAP Configuration tab, click Advanced.

Result: This will open the LDAP Binary Attributes tab.

7. On the LDAP Binary Attributes tab, add attributes.

a. Enter a name in the Binary Attribute Name.
b. Click Add.
c. Select a root object class, select an applicable attribute, and then click Add Attribute.

Repeat this step to add more attributes as needed.

8. Click Done. Click Save.

Configuring LDAP relative DN and object class
When a user submits a registration request, PingFederate formulates the distinguished name (DN) of the
user by prefixing the relative distinguished name (RDN) to the base DN defined in the LDAP configuration
and then asks PingDirectory to create a new account based on the selected object class.

Steps

1. Optional: Click View List of Available LDAP Attributes to determine which LDAP attributes can be
used to construct the RDN pattern.

2. In the Relative DN Pattern field, enter a valid pattern.

The pattern is as follows.

attribute1=value1[, ..., attributeN=valueN]

If you want to use the ${entryUUID} variable to guarantee the uniqueness of the relative DNs for all
users, you must use it with the entryUUID LDAP attribute, such as in the following example.

entryUUID=${entryUUID}

3. From the Object Class list, select the primary objectClass value used when creating a new local
identity profile; for example, inetOrgPerson.

4. Optional: From the Auxiliary Object Class Name list, select an objectClass that contains additional
required attributes that are not available in the primary objectClass, and click Add. You can add
multiple object classes as needed.

For example, if you require the placeOfBirth attribute for a user's profile, you can add the
naturalPerson root object class to the Auxiliary Object Class Name list. Doing this requires that you
have done the following:

a. Added placeOfBirth as a field on the Fields tab when configuring the local identity profile.
b. Added the naturalPerson root object class and placeOfBirth attribute on the LDAP Configuration

tab when configuring the datastore.

5. Click Next.

Defining datastore mapping configuration
Configure the mapping between the local identity profile fields and the datastore attributes.

About this task

Steps

In the Data Store Configuration, on the Data Store Mapping tab, select an LDAP attribute under Data
Store Attribute for each local identity field.

Copyright ©2024

 | Administrator's Reference Guide | 348

Reviewing datastore configuration
On the Summary tab, you can review your data store configuration settings and then save them.

Steps

1. In the Data Store Configuration window, on the Summary tab, review your changes.
Choose from:

▪ ▪ To amend your configuration, click the corresponding tab title, then follow the configuration
wizard to complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative
console offers the opportunity to do so.

▪ To discard your changes, click Cancel.

2. Click Done.

Reviewing a local identity profile
Review or make changes to your local identity profile configuration.

About this task
Using the administrative console, on the Summary tab, amend, save, or discard your local identity profile
changes.

Steps

1. In the Data Store Configuration window, on the Summary tab, review your changes.

a. To amend your configuration, click the corresponding tab title, then follow the configuration wizard
to complete the task.

b. To keep your changes, click Done and continue with the rest of the configuration.
c. To discard your changes, click Cancel.

2. When finished, click Done.

Configuring the HTML Form Adapter for customer identities
After defining a local identity profile, associate it with an instance of the HTML Form Adapter for
PingFederate to leverage the HTML Form Adapter to present users the options to authenticate through
third-party identity providers, self-register as part of the sign-on experience, and manage their accounts
through a self-service profile management page.

About this task
Using the administrative console, on the IdP Adapter tab, create or add an HTML Form Adapter instance.

 Note:

For registration and profile management, ensure the HTML Form Adapter instance is configured to validate
credentials stored in PingDirectory. This validation configuration is not required if your use case does
not involve registration or profile management. For more information, see Enabling third-party identity
providers without registration on page 365.

Copyright ©2024

 | Administrator's Reference Guide | 349

Steps

1. Go to the Authentication # Integration # IdP Adapters.

2. To create a new HTML Form Adapter instance, click Create New Instance or to reuse an existing
instance, click on its name.

3. On the IdP Adapter tab, from the Password Credential Validator Instance list, select the LDAP
Username Password Credential Validator instance that has been set up to validate credentials stored
on your PingDirectory.

 Note:

Skip this step if your use case does not involve registration or profile management.

4. On the IdP Adapter tab, from the Local Identity Profile list, select a local identity profile.

5. Click Next and complete the rest of the configuration tabs.

6. On the Summary tab, click Done. This will open the Manager IdP Adapter Instances window.

7. In the Manager IdP Adapter Instances window, click Save to save all changes.

Setting up self-service registration
PingFederate leverages the HTML Form Adapter to deliver a secure and easy-to-use customer
authentication, registration, and profile management solution.

About this task

A typical self-service registration setup involves five components:

▪ A PingDirectory installation (step 1)
▪ An authentication policy contract (step 2)
▪ A local identity profile (step 3)
▪ An HTML Form Adapter instance (step 4)
▪ An IdP authentication policy (step 5)

To illustrate the configuration steps, consider the following example.

You need to support a consumer registration use case, where users complete a self-service registration
process to create their accounts and then access resources protected by multiple service providers. For
a registration to complete successfully, a user must provide an email address, a first name, a last name,
an optional mobile phone number, and a password. The email address is the user identifier. All attributes
are sent to the service providers as per the partner agreements. You have already created a specific object
class in the directory to store the user information. The object class name is aPerson, and the LDAP
attributes are mail, givenName, sn, and mobile.

Steps

1. Install PingDirectory.

2. Create an authentication policy contract.

a. Go to Authentication # Policies # Policy Contracts.
b. In the Policy Contracts window, click Create New Contract.
c. On the Contract Attributes tab, in the Extend the Contract field, extend the authentication policy

contract with three additional attributes, such as, firstName, lastName, and mobileNumber.
d. After each entry add, click Add. Click Next.
e. On the Summary tab, review your changes. Click Done.
f. In the Policy Contracts window, click Save.

For more information, see .

Copyright ©2024

 | Administrator's Reference Guide | 350

3. Create a local identity profile using the Authentication # Policies # Local Identity Profiles
configuration wizard.

a. In the Local Identity Profiles window, click Create New Profile.
b. On the Profile Info tab, enter a name in the Local Identity Profile Name field.
c. From the Authentication Policy Contract list, select the authentication policy (from step 2), and

select the Enable Registration check box. Click Next.
d. On the Authentication Sources tab, click Next.
e. On the Fields tab, click Create New Field.
f. In the Field Configuration window, on the Field Configuration tab, define four local identity

fields. Enter the information described in the following table.

Local Identity Profile fields and entries

Type ID Label Parameters

Email lipEmail Email address Select the Required check box.

Text lipFirstName First name Select the Required check box.

Text lipLastName Last name Select the Required check box.

Copyright ©2024

 | Administrator's Reference Guide | 351

Type ID Label Parameters

Phone lipMobile Mobile number No parameters are required.

g. After each field entry, click Next. On the Summary tab, review your changes. Click Done.
h. Repeat steps e through g until the fields are entered.

As needed, select the Mask Log Values check box for any of the four local identity fields and
the Mask all OGNL-expression generated log values check box. The latter applies to all local
identity fields.

i. In the Local Identity Profile window, on the Fields tab, identify an ID field to be the unique ID for
your configuration, and click the corresponding Unique ID. Click Next.

j. On the Email Verification tab, click Next.
k. On the Registration tab, click Next.
l. On the Data Store Configuration tab, click Configure Data Store.

m. In the Data Store Configuration window, on the Data Store tab, from the Data Store list, select
the LDAP datastore that has been set up to connect to your PingDirectory. Click Next.

n. In the Data Store Configuration window, on the LDAP Configuration tab, specify the branch of
your directory hierarchy where you want to store customer identities in the Base DN field and the
LDAP attributes to be associated with fields defined in this local identity profile under Attribute.

o. In the Data Store Configuration window, on the Identity Creation tab, define the RDN pattern in
the Relative DN Pattern field, and select your object, such as class aPerson for this sample use
case, from the Object Class list.

The pattern is as follows.

attribute1=value1[, ..., attributeN=valueN]

If you want to use the ${entryUUID} variable to guarantee the uniqueness of the relative DNs for
all users, you must use it with the entryUUID LDAP attribute.

entryUUID=${entryUUID}
p. In the Data Store Configuration window, on the Data Store Mapping tab, configure the mapping

between the local identity profile fields and the datastore attributes. See the following table.

Mapping entries for local identity profile fields and datastore attributes

Field Data Store Attribute

lipEmail mail

lipFirstName givenName

lipLastName sn

lipMobile mobile

q. In the Data Store Configuration window, on the Summary tab, click Done.
r. On the Summary tab of the local identity profile, click Save.

For more information, see Configuring local identity profile information on page 339.

Copyright ©2024

 | Administrator's Reference Guide | 352

4. Configure an HTML Form Adapter instance for customer identities.

a. Go to the IdP Adapters window.
b. Create a new HTML Form Adapter instance or reuse an existing one by clicking its name.
c. On the IdP Adapter tab, add the LDAP Username Password Credential Validator instance that has

been set up to validate credentials stored on your PingDirectory.
d. On the IdP Adapter tab, select the newly created local identity profile from the Local Identity Profile

list.
e. Complete the rest of the configuration and save all changes.

(For more information, see .)

5. Create an IdP authentication policy.

a. Go to Authentication # Policies # Policies.
b. Click Add Policy.
c. In the Policy window, in the Name field, enter a name.
d. Select the HTML Form Adapter instance (configured in step 4) under Action.

1. For its Fail path, select Done.
2. For its Success path, select the local identity profile (created in step 3).

e. Click Local Identity Mapping underneath the selected local identity profile, which opens the
Inbound Mapping & Contract Fulfillment configuration wizard.

f. On the Inbound Mapping & Contract Fulfillment Inbound Mapping window, configure the
pf.local.identity.unique.id built-in local identity field for the registration process.

At runtime, fulfills the value of the pf.local.identity.unique.id built-in local identity
field based on this configuration and passes the value to PingDirectory. PingDirectory
uses this value to determine whether such identity has already been created. The
pf.local.identity.unique.id field value should therefore be mapped from the subject
identifier of the preceding authentication source, namely the username attribute from the HTML
Form Adapter.

For this sample use case, configure the Inbound Mapping window as in the following table.

Inbound Mapping Fulfillment Source Value

pf.local.identity.unique.id Adapter username

g. On the Attribute Sources & User Lookup tab, click Next.
h. On the Contract Fulfillment tab, fulfill the authentication policy contract with values from this local

identity profile as follows:

Outbound Contract
Fulfillment

Source Value

subject Local Identity lipEmail

firstName Local Identity lipFirstName

lastName Local Identity lipLastName

Copyright ©2024

 | Administrator's Reference Guide | 353

Outbound Contract
Fulfillment

Source Value

mobileNumber Local Identity lipMobile

i. On the Issuance Criteria tab, click Next.
j. On the Summary tab, click Done.

k. On the Policy window, click Done.
l. On the Policies window, select the IdP Authentication Policies check box.

 Note:

Other IdP authentication policies, if any, are enabled as well.

m. Click Save to keep your changes.

For more information, see Applying policy contracts or identity profiles to authentication policies on
page 251.

6. Map the authentication policy contract to the applicable Browser SSO connections, OAuth grant-
mapping configuration, or both. See Managing authentication source mappings on page 430 and
Managing authentication policy contract grant mapping on page 554.

Result

You have now successfully set up self-service registration. When users sign on through this HTML Form
Adapter instance, they have the option to complete a self-service registration process to create their
accounts using the Register now link, as illustrated in the following screen capture.

If a user chooses to register, the HTML Form Adapter redirects the user to the registration page. Based on
the configuration of this sample use case, as illustrated in the following registration screen capture.

Copyright ©2024

 | Administrator's Reference Guide | 354

Enabling third-party identity providers
For registration, you can optionally allow users to leverage their existing identities from third-party identity
providers. Any identity provider (IdP) connection or IdP adapter, such as the LinkedIn Cloud Identity
Connector, can be used as an authentication source to a third-party identity provider.

About this task
Using the Administrative console, enable third-party IdP. This configuration involves the same five
components to set up registration, plus the IdP connections or IdP adapter instances to connect with
the third-party identity providers. This capability enables a mapping configuration between the attributes
returned by the identity provider and the fields within the registration page, streamlining the registration
process. See the following configuration steps.

▪ IdP connections or IdP adapter instances
▪ A PingDirectory installation (step 1)
▪ An authentication policy contract (step 2)
▪ A local identity profile (step 3)
▪ An HTML Form Adapter instance (step 4)
▪ An IdP authentication policy (step 5)

To illustrate the configuration steps, consider the following example.

You need to support a consumer registration use case, where users complete a self-service registration
process to create their accounts and then access resources protected by multiple service providers. For
a registration to complete successfully, a user must provide an email address, a first name, a last name,
an optional mobile phone number, and a password. The email address is the user identifier. All attributes
are sent to the service providers as per the partner agreements. You have already created a specific object
class in the directory to store the user information. The object class name is aPerson, and the LDAP
attributes are mail, givenName, sn, and mobile.

Additionally, this use case must also allow users to take advantage of their existing accounts at ACME, a
major social network, for registration and authentication. It happens that you have already established an
IdP connection to this social network, from which you received the same set of attributes: SAML_SUBJECT
for the user's email address, ssoFirstName, ssoLastName, and ssoMobile.

Configure a third-party identifier.

 Tip:

If you know how to set up PingDirectory to connect with PingFederate and an authentication policy contract
shown in Setting up self-service registration on page 349, you can skip to step 3 to create a local identity
profile.

Steps

1. Install PingDirectory.

2. Create an authentication policy contract.

a. Go to Authentication # Policies # Policy Contracts.
b. In the Policy Contracts window, click Create New Contract.
c. On the Contract Attributes tab, in the Extend the Contract field, extend the authentication policy

contract with three additional attributes, such as, firstName, lastName, and mobileNumber.
d. After each entry add, click Add. Click Next.
e. On the Summary tab, review your changes. Click Done.
f. In the Policy Contracts window, click Save.

For more information, see .

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html
https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Administrator's Reference Guide | 355

3. Create a local identity profile using the Authentication # Policies # Local Identity Profiles. Click
Create New Profileto access the Local Identity Profile window and configuration wizard.

a. On the Profile Info tab, enter a name in theLocal Identity Profile Name field, select the
authentication policy from step 2, and select the Enable Registration check box. Click Next.

b. On the Authentication Sources tab, enter ACME in the Authentication Source field. Click Add.

 Note:

To support additional third-party identity providers, enter a value for each. At runtime, the sign-on
page displays them in the order defined on this window.

 Tip:

If you know how to set up a local identity profile and an HTML Form Adapter instance for customer
identities shown in Setting up self-service registration on page 349), you can skip to step 5 to
create an IdP authentication policy.

c. On the Fields tab, define four local identity fields as shown in the following table.

Type ID Label Parameters

Email lipEmail Email address Select the Required and Unique ID
check boxes.

 Note:
The Unique IDcheck boxes are on
the Fields tab.

Text lipFirstName First name Select the Required check box.

Text lipLastName Last name Select the Required check box.

Copyright ©2024

 | Administrator's Reference Guide | 356

Type ID Label Parameters

Phone lipMobile Mobile number None required.

As needed, select the Mask Log Values check box for any of the four local identity fields, and
select the Mask all OGNL-expression generated log values check box for all fields.

d. On the Email Verification tab, click Next.
e. On the Registration tab, click Next.
f. On the Data Store Configuration tab, click Configure Data Store.
g. In the Data Store Configuration window, on the Data Store tab, from the Data Store list, select

the LDAP datastore that has been set up to connect to your PingDirectory. Click Next.
h. In the Data Store Configuration window, on the LDAP Configuration tab, specify the branch of

your directory hierarchy where you want to store customer identities in the Base DN field and the
LDAP attributes to be associated with fields defined in this local identity profile under Attribute.

i. In the Data Store Configuration window, on the Identity Creation tab, define the RDN pattern in
the Relative DN Pattern field, and select your object, such as class aPerson for this sample use
case, from the Object Class list.

The pattern is as follows.

attribute1=value1[, ..., attributeN=valueN]

If you want to use the ${entryUUID} variable to guarantee the uniqueness of the relative DNs for
all users, you must use it with the entryUUID LDAP attribute.

entryUUID=${entryUUID}
j. In the Data Store Configuration window, on the Data Store Mapping tab, configure the mapping

between the local identity profile fields and the datastore attributes. See the following table.

Mapping entries for local identity profile fields and datastore attributes

Field Data Store Attribute

lipEmail mail

lipFirstName givenName

lipLastName sn

lipMobile mobile

k. In the Data Store Configuration window, on the Summary tab, click Done.
l. On the Summary tab of the local identity profile, click Save.

For more information, see Configuring local identity profile information on page 339.

4. Configure an HTML Form Adapter instance for customer identities.

a. Go to the IdP Adapters window.
b. Create a new HTML Form Adapter instance or reuse an existing one by clicking its name.
c. On the IdP Adapter tab, add the LDAP Username Password Credential Validator instance that has

been set up to validate credentials stored on your PingDirectory.
d. On the IdP Adapter tab, select the newly created local identity profile from the Local Identity Profile

list.
e. Complete the rest of the configuration and save all changes.

(For more information, see .)

Copyright ©2024

 | Administrator's Reference Guide | 357

5. Create an IdP authentication policy.

a. Go to the Authentication # Policies # Policies.
b. Under Policy, select the HTML Form Adapter instance configured in step 4.
c. In the Policy window, under the Value section, select the drop-down arrow to show the Fail and

Success fields.

1. For the Fail path, select Done.
2. For the Success path, select the local identity profile created in step 3. Click Done.

d. Click Local Identity Mapping underneath the selected local identity profile, which opens the
Inbound Mapping & Contract Fulfillment configuration wizard.

 Note:

The next few steps configure the fulfillment of the authentication policy contract for the scenario
where users choose to register directly without going through ACME.

 Tip:

If you know how to setup the inbound mapping and contract fulfillment of an authentication policy
contract through a local identity profile shown in Setting up self-service registration on page
349, you can skip to step i to create a rule for the scenario where users choose to register and
subsequently authenticate via ACME.

e. On the Inbound Mapping & Contract Fulfillment Inbound Mapping window, configure the
pf.local.identity.unique.id built-in local identity field for the registration process.

At runtime, fulfills the value of the pf.local.identity.unique.id built-in local identity
field based on this configuration and passes the value to PingDirectory. PingDirectory
uses this value to determine whether such identity has already been created. The
pf.local.identity.unique.id field value should therefore be mapped from the subject

Copyright ©2024

 | Administrator's Reference Guide | 358

identifier of the preceding authentication source, namely the username attribute from the HTML
Form Adapter.

For this sample use case, configure the Inbound Mapping window as in the following table.

Inbound Mapping Fulfillment Source Value

pf.local.identity.unique.id Adapter username

f. On the Attribute Sources & User Lookup tab, click Next.
g. On the Attribute Sources & User Lookup tab, click Next.
h. On the Issuance Criteria tab, click Next.
i. On the Inbound Mapping & Contract Fulfillment # Summary window, click Done.

The Inbound Mapping & Contract Fulfillment configuration wizard brings back the Manage
Authentication Policies window.

 Note:

The remaining steps configure the fulfillment of the authentication policy contract for the scenario
where users choose to register and subsequently authenticate through ACME.

j. Click Rules underneath the Success path of the HTML Form Adapter instance.
k. On the Rules dialog, create a policy path for users who choose to register and authenticate via

ACME. For this sample use case, configure as in the following table.

Authentication policy rules fields and entries

Attribute
Name

Condition Value Result

policy.action equal to ACME

 Important:

The value here must match
the value defined on the
Authentication Sources
window. See step 3b.

ACME users

The Result field controls the
label shown for the policy path
of this rule. The value does
not need to match the value
defined on the Authentication
Sources window.

 Important:

If you have defined multiple third-party identity providers on the Authentication Sources window,
you must repeat these steps to add a policy.action rule to create a policy path for each.

In addition, select the Default to Success check box, the default behavior. When selected, the
Success path remains, which is important for this sample use case where users are free to
choose whether to register and subsequently authenticate via ACME.

When finished, click Done, which brings you back to the Authentication Policies window.
l. For the ACME users path, select the IdP connection to ACME under Action.

 Tip:

Generally speaking, any IdP adapter instance or IdP connection that connects to the third-party
identity provider can be used here.

Copyright ©2024

 | Administrator's Reference Guide | 359

1. For its Fail path, select Done.

 Note:

If you have defined multiple third-party identity providers and added rules to create a
policy path for each, you may select Restart. The Restart policy action provides users the
opportunity to do over. When triggered, the policy engine routes the requests back to the first
checkpoint of the invoked authentication policy.

By selecting Restart for the Fail path, you give users the opportunity to choose another third-
party identity provider when they fail to authenticate through ACME.

Undesirable looping behaviors can occur if you select Restart for the Fail path at the root
of an authentication policy tree. PingFederate mitigates this risk by automatically limiting the
number of policy restarts per transaction.

2. For its Success path, select the local identity profile created in step 3.
m. Click Local Identity Mapping underneath the selected IdP connection, which opens the Inbound

Mapping & Contract Fulfillment configuration wizard.
n. On the Inbound Mapping & Contract FulfillmentInbound Mapping window, configure the

pf.local.identity.unique.id built-in local identity field for the registration process and
optionally other fields so that PingFederate can pre-populate values for these fields on the
registration page.

At runtime, fulfills the value of the pf.local.identity.unique.id built-in local identity
field based on this configuration and passes the value to PingDirectory. PingDirectory
uses this value to determine whether such identity has already been created. The
pf.local.identity.unique.id field value should therefore be mapped from the subject
identifier of the preceding authentication source, namely the subject identifier from the IdP
connection.

For this sample use case, the Inbound Mapping window is configured as in the following table.

Inbound Mapping fields and entries

Inbound Mapping Fulfillment Source Value

pf.local.identity.unique.id IdP Connection SAML_SUBJECT

lipEmail IdP Connection SAML_SUBJECT

lipFirstName IdP Connection ssoFirstName

lipLastName IdP Connection ssoLastName

Copyright ©2024

 | Administrator's Reference Guide | 360

Inbound Mapping Fulfillment Source Value

lipMobile IdP Connection ssoMobile

o. On the Attribute Sources & User Lookup tab, click Next.
p. On the Attribute Sources & User Lookup tab, click Next.
q. On the Issuance Criteria tab, click Next.
r. On the Inbound Mapping & Contract Fulfillment Summary tab, click Done.

The Inbound Mapping & Contract Fulfillment configuration wizard brings back the Manage
Authentication Policies window.

 Important:

If you have defined multiple rules, each forming a policy path for a third-party identity provider,
ensure you complete the Inbound Mapping & Contract Fulfillment configuration for each of
them.

s. In the Policies window, on the Policies tab, select the IdP Authentication Policies check box.

 Note:

Other IdP authentication policies, if any, are enabled as well.

t. Click Save to keep your changes.

For more information, see Applying policy contracts or identity profiles to authentication policies on
page 251.

Result

You have now successfully set up self-service registration with an option for users to register and
subsequently authenticate via ACME. When users sign on through this HTML Form Adapter instance, they
have two registration options:

▪ Click the Register now link, fill in the registration page, and register.
▪ Click the social sign-on link, authenticate via ACME, review the registration page, and register.

Based on the configuration of this sample use case, the following screen capture of a sign-on page is
presented.

If you have added Facebook, Google, LinkedIn, and Twitter as the authentication sources, the following
sign-on page is presented.

Copyright ©2024

 | Administrator's Reference Guide | 361

Suppose a user chooses to register through ACME. Once authenticated and redirected back to
PingFederate, PingFederate pre-populates the registration page with values it receives from ACME, as
illustrated in this screen capture.

This registration option streamlines the self-service registration process.

Enabling profile management
In addition to registration, you can enable self-service profile management and specify which local identity
fields users can update on the profile management page.

About this task
Use the administrative console to enable profile management.

To illustrate the configuration steps, consider the sample use case in Setting up self-service registration on
page 349 or Enabling third-party identity providers on page 354 with the added requirement of allowing
users to modify their mobile number and to remove their local accounts.

Configuration steps:

 Tip:

As the required components remain the same, the step sequence matches those in Setting up self-service
registration on page 349 and Enabling third-party identity providers on page 354 as well. If you require
more information for a given step, see the same step in one of the aforementioned pages.

Steps

1. Set up PingDirectory to connect with PingFederate.

2. Create an authentication policy contract. For more information on how to create an authentication
policy contract, see Managing policy contracts.

Copyright ©2024

 | Administrator's Reference Guide | 362

3. Configure profile management when creating a new or reconfiguring an existing local identity profile.

a. Go to Authentication # Policies # Local Identity Profiles configuration wizard.
b. On the Profile Info tab, select the Enable Profile Management check box. Click Next.
c. Optional: On the Authentication Sources tab, define authentication sources. For more

information, see Defining authentication sources.
d. On the Fields tab, select the Profile Management check box under Applies To for the applicable

fields as you define local identity fields.

These selected local identity fields will be shown to authenticated users on the profile
management page.

For this sample use case, select the Profile Management check box for the lipMobile local
identity field.

e. On the Email Verification tab, click Next.
f. On the Registration tab, click Next.
g. On the Profile Management tab, select the Enable Profile Deletion check box.

In general, this is an optional feature. It is selected here because it is one of the requirements of
this sample use case.

h. Continue from step 3f as documented in Setting up self-service registration on page 349 or
Enabling third-party identity providers on page 354.

4. Configure an HTML Form Adapter instance for customer identities. For more information, see
Configuring the HTML Form Adapter for customer identities.

5. Create an IdP authentication policy. For more information, see Defining authentication policies.

6. Provide the profile management URL to users.

a. Go to Authentication # Policies # Local Identity Profiles.
b. Select the local identity profile that you have configured profile management in step 3.
c. Copy the profile management URL as shown on the Summary tab and pass it to the users.

Result

You have now successfully enabled profile management. Authenticated users can review and modify the
local identity fields that have been configured to show on the profile management page and delete their
local accounts if the option has been enabled.

The following screen capture provides a sample of the profile management page based on the sample use
case.

If you add Facebook, Google, LinkedIn, and Twitter to the local identity profile, when a user accesses the
profile management page, the user will see a page similar to the following screen capture.

If you have only one authentication source, the profile management page reminds the users that they must
set a password for their local accounts before disconnecting the third-party identity provider.

Creating advanced registration mapping
PingFederate leverages the HTML Form Adapter to deliver a secure and easy-to-use customer
authentication, registration, and profile management solution. The HTML Form Adapter contract includes
two core attributes.

About this task
Using the administrative console, create advanced registration mapping by defining authentication policies
in your adapter instances.

Copyright ©2024

 | Administrator's Reference Guide | 363

To illustrate the configuration steps, consider the following setup that you have already made with the
parameters username and policy.action. Whether or not the local identity profile is configured with
any authentication sources, if the user chooses to register directly by clicking on the Register now link,
sets the value to identity.registration. This fulfillment allows you to create rules to differentiate
authentication requirements from the registration flow.

▪ A PingDirectory installation with a set of users.
▪ An LDAP datastore, an LDAP Username Password Credential Validator instance, and an HTML Form

Adapter instance on PingFederate to validate credentials stored in PingDirectory.
▪ An IdP authentication policy that chains the HTML Form Adapter instance, an PingID Adapter

instance, and an authentication policy contract for the purpose of enforcing PingID multi-factor
authentication in multiple browser-based single sign-on (SSO) use cases through service provider
(SP) connections, OAuth authorization code flow, and OAuth implicit flow. The following window
capture illustrates your existing policy.

To illustrate the configuration steps, consider the following setup that you have. You need to add support
for a consumer registration use case similar to the one in Setting up self-service registration on page
349, and, at the same time, keep the policy that enforces the multi-factor authentication requirement.

Configuration steps.

Steps

1. Set up PingDirectory for customer identities.

2. Make a note of which authentication policy contract is currently being used in your policy.

3. Create a local identity profile.

a. G to Authentication # Policies # Local Identity Profiles configuration wizard.
b. On the Profile Info tab, in the Local Identity Profile Name field, enter a name of the local identity

profile, and from the Authentication Policy Contract list, select the authentication policy from
step 2. Select the Enable Registration check box.

If you want to enable profile management as well, select the relevant check box.

4. Configure the HTML Form Adapter instance for customer identities.

a. Go to Authentication # Integration # IdP Adapters.
b. From the Instance Name section, select the HTMLFormAdapter.
c. On the IdP Adapter tab, from the Local Identity Profile list, select a local identity profile.
d. Complete the rest of the configuration and save all changes.

Copyright ©2024

 | Administrator's Reference Guide | 364

5. Modify your existing IdP authentication policy.

a. Go to Authentication # Policies # Policies.
b. On the Policies tab, under the Policy section, click the relevant policy to open the Policy window.
c. Under the Success path of the HTML Form Adapter instance, click Rules.
d. In the Rules dialog, create a policy path for users who choose to register. For this sample use

case, configure as follows.

Defining authentication policy rules attributes field and values

Attribute
Name

Condition Value Result

policy.action equal to identity.registration Registration

Complete the rest of the
configuration to create the
local identity. The Result field
controls the label shown for the
policy path of this rule.

In addition, ensure the Default to Success check box is selected. When selected, the Success
path remains, which is important for this sample use case where users are redirected to the

Copyright ©2024

 | Administrator's Reference Guide | 365

PingID Adapter instance to fulfill the multi-factor authentication requirement after authenticating
successfully against the HTML Form Adapter.

When finished, click Done, which brings you back to the Manage Authentication Policies
window.

e. For the Registration path, select the local identity profile from step 3 under Action and then
complete its Local Identity Mappingconfiguration.

The following screen capture illustrates your new policy.

f. If you have enabled profile management in step 3, you must also replace the policy contract with
the local identity profile and then complete its Local Identity Mapping configuration.

This step is required so that PingFederate can route users through the HTML Form # PingID
policy path when they try to access the profile management page.

The following screen capture illustrates this change.

 Note:

No reconfiguration is required in your Browser SSO connections and OAuth grant-mapping
configuration for your new policy to take effect.

g. Click Save to keep your changes.

Result

You have now successfully added the requested consumer registration and profile management use case
to your current policy.

Enabling third-party identity providers without registration
If you have already configured identity provider (IdP) connections or IdP adapters to connect with third-
party identity providers, you can enhance the HTML Form Adapter sign-on page with the option to
authenticate with these providers.

About this task

You configure an IdP authentication policy to chain the HTML Form Adapter instance and an authentication
policy contract. Then the policy contract can harness attribute values returned by the HTML Form Adapter

Copyright ©2024

 | Administrator's Reference Guide | 366

instance for multiple browser-based single sign-on (SSO) use cases through service provider (SP)
connections, OAuth authorization code flow, and OAuth implicit flow.

The following procedure offers an example of how you could enhance the sign-on experience by giving
users the option to authenticate with their local accounts or their existing accounts on a major social
network to which you have already established an IdP connection. In this example, the social network is
named "ACME".

 Tip:

You can also deploy and configure Cloud Identity Connectors to support identities from Facebook, Google,
LinkedIn, or Twitter.

Steps

1. Verify that the IdP connection to ACME returns the attributes required to complete the browser-based
SSO use cases.

2. Note which authentication policy contract your policy uses.

3. Create a local identity profile:

a. Go to Authentication # Policies # Local Identity Profiles. Click Create New Profile.
b. On the Profile Info tab, in the Local Identity Profile Name field, enter a name.
c. From the Authentication Policy Contract, select the authentication policy contract from step 2.

Click Next.
d. On the Authentication Sources tab, under Authentication Source, enter ACME, and then click

Add. Click Done.

 Note:

To support additional third-party identity providers, enter a value for each. At runtime, the sign-on
page displays them in the order defined on this window.

4. Configure the HTML Form Adapter instance for customer identities:

a. Go to Integration # IdP Adapters.
b. On the IdP Adapters window, from the Instance Name list, click the HTMLFormAdapter

instance.
c. On the IdP Adapter tab, from the Local Identity Profile list, select a local identity profile.
d. Complete the rest of the configuration and save all changes.

Copyright ©2024

 | Administrator's Reference Guide | 367

5. Modify your existing IdP authentication policy:

a. Go to Authentication # Policies # Policies.
b. On the Policies tab, in the Policy section, click the existing IdP policy.
c. In the Success path of the HTML Form Adapter instance, click Rules.
d. In the Rules dialog, create a policy path for users who choose to authenticate with ACME. For this

example, configure the fields as shown in the following table.

Attribute
Name

Condition Value Result

policy.action equal to ACME

 Important:

The value here must match
the value defined on the
Authentication Sources tab.
See step 3d.

ACME users

 Note:

The Result field controls the
label shown for the policy path
of this rule. The value does
not need to match the value
defined on the Authentication
Sources window.

 Important:

If you have defined multiple third-party identity providers on the Authentication Sources tab, you
must repeat these steps to add a policy.action rule to create a policy path for each.

In addition, ensure the Default to Success check box is selected. When selected, the Success
path remains, which is important when users can also authenticate using their local accounts, like
in this example.

e. Click Done.

Result: This returns you to the Authentication Policies window.
f. For the ACME users path, under Action, select the IdP connection to ACME.

 Tip:

Generally, any IdP adapter instance or IdP connection that connects to the third-party identity
provider can be used here.

g. For the ACME Fail path, select Done.

 Note:

If you have defined multiple third-party identity providers and added rules to create a policy
path for each, you can select Restart. The Restart policy action provides users the opportunity
to do over. When triggered, the policy engine routes the requests back to the first checkpoint
of the invoked authentication policy. By selecting Restart for the Fail path, you give users the

Copyright ©2024

 | Administrator's Reference Guide | 368

opportunity to choose another third-party identity provider if they fail to authenticate through
ACME.

h. For the ACME Success path, select the local identity profile created in step 3, and then complete
the Local Identity Mapping configuration.

 Note:

Because this use case does not involve registration, the source of fulfillment is limited to
the preceding IdP connection or IdP adapter instance, dynamic text, and attribute mapping
expression, if enabled.

i. Click Save.

Result

After you give users the option to authenticate with ACME without enabling registration, when users sign
on through this HTML Form Adapter instance, the following sign-on page is presented.

If you also added Facebook, Google, LinkedIn, and Twitter as authentication sources, the following sign-on
page is presented.

Customizing assertions and authentication requests
Customize applicable messages by enabling OGNL expression and going to the URL window to access
the Show Advanced Customizations option.

About this task

Some browser single sign-on (SSO) use cases might require additional customizations in the assertions
sent from the PingFederate identity provider (IdP) server to the service provider (SP), or in the
authentication requests sent from the PingFederate SP server to the IdP. PingFederate can fulfill these use
cases on a per-connection basis using OGNL expressions.

Steps

1. Enable OGNL expression by editing the org.sourceid.common.ExpressionManager.xml file,
located in the <pf_install>/pingfederate/server/default/data/config-store directory.

2. Select the applicable SP or IdP connection.

Copyright ©2024

 | Administrator's Reference Guide | 369

3. On the Activation & Summary window, scroll to the Protocol Settings section, and click Assertion
Consumer Service URL for an SP connection, or click SSO Service URLs for an IdP connection..

4. Click Show Advanced Customizations to customize the applicable message.

The available customizable Message Types vary depending on your federation role (IdP or SP) as
well as the protocol of the connection (SAML 1.x, SAML 2.0, and WS-Federation). After you select a
message type, you have access to its list of Available Variables. You can customize the assertions or
the authentication requests as needed.

Message types and available variables
Advanced customizations depend on available message types and available variables for both service
provider (SP) connections and identity provider (IdP) connections.

The following tables describe the relationship between message type and available variable, as well as the
corresponding class or interface information in Javadoc.

 Tip:

The Javadoc for is located in the <pf_install>/pingfederate/sdk/doc directory.

SP connections (SAML 2.0)

Message Types Available Variables

Classes/Interfaces in Javadoc

AssertionType #AssertionType

org.sourceid.saml20.xmlbinding.assertion.AssertionType

#AssertionTypes

org.sourceid.saml20.xmlbinding.assertion.AssertionType[]

#Attributes

org.sourceid.util.log.AttributeMap

ResponseDocument #ResponseDocument

org.sourceid.saml20.xmlbinding.protocol.ResponseDocument

#Attributes

org.sourceid.util.log.AttributeMap

SP connections (SAML 1.x)

Message Types Available Variables

Classes/Interfaces in Javadoc

AssertionType #AssertionType

org.sourceid.protocol.saml11.xml.AssertionType

#AssertionTypes

org.sourceid.protocol.saml11.xml.AssertionType[]

#Attributes

org.sourceid.util.log.AttributeMap

Copyright ©2024

 | Administrator's Reference Guide | 370

Message Types Available Variables

Classes/Interfaces in Javadoc

ResponseDocument #ResponseDocument

org.sourceid.protocol.samlp11.xml.ResponseDocument

#Attributes

org.sourceid.util.log.AttributeMap

SP connections (WS-Federation)

Message Types Available Variables

Classes/Interfaces in Javadoc

AssertionType #AssertionType

org.sourceid.protocol.saml11.xml.AssertionType

#Attributes

org.sourceid.util.log.AttributeMap

RequestSecurityToken
ResponseDocument

#RequestSecurityTokenResponseDocument

org.xmlsoap.schemas.ws.x2005.x02.trust.RequestSecurityTokenResponseDocument

#Attributes

org.sourceid.util.log.AttributeMap

IdP connections (SAML 2.0)

Message Type Available Variables

Classes/Interfaces in Javadoc

AuthnRequestDocument#AuthnRequestDocument

org.sourceid.saml20.xmlbinding.protocol.AuthnRequestDocument

Other available variables (regardless of roles and protocols)

Available Variables Classes/Interfaces in Javadoc

#XmlHelper com.pingidentity.sdk.xml.XmlHelper

#HttpServletRequest javax.servlet.http.HttpServletRequest

#HttpServletResponse javax.servlet.http.HttpServletResponse

Variables related to Federation Hub (regardless of message type)

Copyright ©2024

 | Administrator's Reference Guide | 371

Connections Protocol Available Variables

Classes/Interfaces in Javadoc

SP and IdP
connections

SAML 2.0 #FedHubIncomingAuthnRequest

org.sourceid.saml20.xmlbinding.protocol.AuthnRequestDocument

SP connection SAML 2.0 #FedHubOutgoingAuthnRequest

org.sourceid.saml20.xmlbinding.protocol.AuthnRequestDocument

SP connection SAML 2.0

SAML 1.x

WS-Federation

#FedHubIncomingAuthnResponse

org.sourceid.saml20.xmlbinding.protocol.ResponseDocument
(SAML 20)

org.sourceid.protocol.samlp11.xml.ResponseDocument (SAML
1.x)

org.xmlsoap.schemas.ws.x2005.x02.trust.
RequestSecurityTokenResponseDocument (WS-Federation)

SP connection SAML 2.0

SAML 1.x

WS-Federation

#FedHubIdpConnPartnerId

java.lang.String

The Partner's Entity ID in the IdP connection that bridges the
identity provider.

SP connection SAML 2.0

SAML 1.x

WS-Federation

#FedHubIdpConnProtocol

java.lang.String

The protocol of the SP connection. The returned values are
SAML20, SAML11, SAML10, or WSFED.

IdP connection SAML 2.0

SAML 1.x

WS-Federation

#FedHubSpConnPartnerId

java.lang.String

The Partner's Entity ID in the SP connection that bridges the
service provider.

IdP connection SAML 2.0

SAML 1.x

WS-Federation

#FedHubSpConnProtocol

java.lang.String

The protocol of the IdP connection. The returned values are
SAML20, SAML11, SAML10, or WSFED.

Sample customizations
Use OGNL expressions to customize assertions and authentication requests in different ways.

Add SessionNotOnOrAfter to assertions

This expression adds the optional SessionNotOnOrAfter attribute to the <AuthnStatement> element
and sets the value to 60 minutes.

Message Type

AssertionType

Copyright ©2024

 | Administrator's Reference Guide | 372

Expression

#cal = new org.apache.xmlbeans.XmlCalendar(new java.util.Date()),
#cal.setTimeZone(@java.util.TimeZone@getTimeZone("UTC")),
#cal.add(@java.util.Calendar@MINUTE, 60),
#AssertionType.getAuthnStatementArray(0).setSessionNotOnOrAfter(cal)

Expected assertions

...
<saml:AuthnStatement ... AuthnInstant="2015-03-20T16:27:37.344Z"
 SessionNotOnOrAfter="2015-03-20T17:27:37.398Z">
 <saml:AuthnContext>
 <saml:AuthnContextClassRef>...</saml:AuthnContextClassRef>
 </saml:AuthnContext>
</saml:AuthnStatement>
...

Use well-formed XML as attribute value

The following expression inserts well-formed XML in the <AttributeValue> element if the Attribute
Name Format is urn:pingidentity.com:SAML:attrname-format:xml:complex.

Message Type

AssertionType

Expression

#i = 0,
#AssertionType.getAttributeStatementArray(0).getAttributeArray().{
 #this.getNameFormat().equals('urn:pingidentity.com:SAML:attrname-
format:xml:complex')?{
 #xml = #this.getAttributeValueArray(0).getStringValue(),
 #ast =
 @org.sourceid.saml20.xmlbinding.assertion.AttributeStatementType
$Factory@parse(#xml),
 #AssertionType.getAttributeStatementArray(0).setAttributeArray(#i,
 ast.getAttributeArray(0))
 }:null,
#i = #i+1
}

 Note:

Line breaks are inserted for readability only. Statements calling methods whose arguments are
enclosed in quotes must be entered on a single line.

This example uses well-formed XML as the attribute value for attributes that are configured as
urn:pingidentity.com:SAML:attrname-format:xml:complex (a custom attribute name
format added to <pf_install>/pingfederate/server/default/data/config-store/
custom-name-formats.xml) in the Attribute Contract window. You can use other application
logic here.

Sample inputs (attributes and their values)

Attribute Name ExtAttr1

Copyright ©2024

 | Administrator's Reference Guide | 373

Attribute Name Format urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified

Attribute Value 123

Attribute Name ExtAttr2

Attribute Name Format urn:pingidentity.com:SAML:attrname-format:xml:complex

Attribute Value
<saml:Attribute
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 Name="ExtAttr2"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified">
 <saml:AttributeValue
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xmlns:customNs="http://www.sample.tld/
customnamespace">
 <customNs:Line>Documentation</customNs:Line>
 <customNs:Line>Ping Identity</customNs:Line>
 </saml:AttributeValue>
</saml:Attribute>

 Note:

This is a well-formed XML document in one line.

Expected results

...
<saml:Attribute Name="ExtAttr1"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
 <saml:AttributeValue xsi:type="xs:string"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 123
 </saml:AttributeValue>
</saml:Attribute>
<saml:Attribute Name="ExtAttr2"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
 <saml:AttributeValue
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:customNs="http://www.sample.tld/customnamespace">
 <customNs:Line>Documentation</customNs:Line>
 <customNs:Line>Ping Identity</customNs:Line>
 </saml:AttributeValue>
</saml:Attribute>
...

Include extensions in authentication requests

This expression includes the optional Extensions element in the authentication requests if a certain
query parameter (oid in this example) is sent to the /sp/startSSO.ping endpoint to start an SP-
initiated SSO request.

Message Type

Copyright ©2024

 | Administrator's Reference Guide | 374

AuthnRequestDocument

Expression

#element = #XmlHelper.addToSaml2Extensions(#AuthnRequestDocument,
 '<samplens:orgId name="orgId" xmlns:samplens="urn:org.sample.wms"/>'),
#value = #HttpServletRequest.getParameter('oid') == null ?
 'someDefaultValue' : #HttpServletRequest.getParameter('oid') ,
#XmlHelper.setAttribute(#element, 'value', #value)

Expected AuthnRequest

A GET request to https://<pf_host>:<pf.https.port>/sp/startSSO.ping?
PartnerIdpId=<entityID>&oid=123 would trigger the following Extensions block.

<samlp:AuthnRequest ...>
 <saml:Issuer ...>...</saml:Issuer>
 <samlp:Extensions>
 <samplens:orgId name="orgId" value="123"
 xmlns:samplens="urn:org.sample.wms"/>
 </samlp:Extensions>
 ...
</samlp:AuthnRequest>

Fulfillment by datastore queries
You can configure PingFederate to use local datastores to fulfill various contracts or conditions to verify in
the token authorization process.

Datastores represent external systems where user attributes and other data are stored. Once defined, you
can configure to retrieve user attributes from datastores for contract fulfillment and token authorization in
various use cases.

supports a wide variety of database servers and directory servers. As needed, the SDK supports the
creation of custom drivers for connecting to other types of data repositories, such as flat files or SOAP-
connected databases. For more information, see the Javadoc for the CustomDataSourceDriver
interface, the SamplePropertiesDataStore.java file for a sample implementation, and the SDK
Developer's Guide on page 1047 for build and deployment information.

 Tip:

The Javadoc for and the sample implementation are in the <pf_install>/pingfederate/sdk
directory.

Attribute mapping with multiple data sources
PingFederate can query multiple datastores for additional attributes in most configurations.

Multiple datastores in one mapping

The IdP server supports separate datastores to look up attributes for a single mapping. For example, you
can query multiple datastores for values and map those values in one mapping, or query a datastore for a
value and use that value as input for subsequent queries of other datastores.

Copyright ©2024

 | Administrator's Reference Guide | 375

If a datastore uses results from previous queries as input, and if the previous queries return no result,
continues the process by moving on to the next datastore in the setup. If you prefer to abort and fail the
requests, see Configuring the behavior of searching multiple datastores with one mapping on page 858.

If a required attribute, such as SAML_SUBJECT in a SAML contact or subject in an authentication policy
contract, is not fulfilled, the request fails.

Multiple datastores in one mapping are available for browser single sign-on (SSO) and WS-Trust security
token service (STS) on the identity provider (IdP) side, authentication policy contract to service provider
(SP) adapter mappings, and the following OAuth workflows:

▪ Identity provider (IdP) adapter grant mappings
▪ Resource owner credential grant mappings
▪ Access token mappings
▪ OpenID Connect policies (the user-attributes mapping process)

Multiple mappings and failsafe mapping

For browser SSO and WS-Trust STS on the IdP side, PingFederate also supports separate search
parameters for each datastore and for "fall-through" searches. For example, you can add the same
datastore more than once, using different search queries for each instance, or you can search different
datastores successively. If any search fails to find a user in the specified attribute source, the next search
is executed until a match is found. You can also configure a failsafe attribute source, providing a default set
of attributes from the IdP adapter and using text values.

Datastore query configuration
You can query attributes from a datastore by choosing a datastore instance, specifying the search location
and the desired attributes, and entering the search term.

After the configuration is complete, you can fulfill a contract or verify a condition in the Token Authorization
framework using the results from the datastore queries.

Choosing a datastore
This topic describes how to select a datastore for PingFederate to use for looking up attributes.

About this task

On the Data Store window, choose a datastore for to look up attributes.

Copyright ©2024

 | Administrator's Reference Guide | 376

Steps

1. Enter a description and ID, if prompted, for the datastore.

2. Select a datastore instance from the Active Data Store list.

 Tip:

If the datastore you want is not shown in the Active Data Store list, click Manage Data Stores to
review or add a datastore instance.

3. Depending on the datastore type, the rest of the setup varies as follows.

Data store type Required tasks

JDBC ▪ Specifying database tables and columns on page 376
▪ Entering a database search filter on page 377

LDAP ▪ Specifying directory properties and attributes on page 378
▪ Defining encoding for binary attributes on page 380 (optional)
▪ Entering a directory search filter on page 380

Other ▪ Specifying data source filter and fields on page 381

Specifying database tables and columns
In the Database Table and Columns window, you can specify exactly where additional data can be found
to fulfill your use case. You can only use one table as a source of data for a database query.

About this task
For more information about each field, see the following table.

Field Description

Schema Lists the table structure that stores information within a database. Some
databases require selection of a specific schema for database queries. Other
databases do not require selection of a schema.

Table Displays the tables contained in the database. Select the table to retrieve data
from the datastore.

Columns to return from
SELECT

Displays selected columns from the selected tables. Select the columns that
are associated with the desired attributes you want to return from the database
queries.

 Important:

For MySQL users — To allow for table and column names that might contain spaces, PingFederate inserts
double quotes around the names at runtime. To avoid SQL syntax errors resulting from the quotes, add the
session variable sql_mode=ANSI_QUOTES to the Java Database Connectivity (JDBC) connection string
of your datastore instance, as in the following example.

jdbc:mysql://myhost.mydomain.com:3306/pf?sessionVariables=sql_mode=ANSI_QUOTES

Alternatively, you can configure the system variable sql_mode with the ANSI_QUOTES option. For more
information, see https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html.

Copyright ©2024

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html

 | Administrator's Reference Guide | 377

Steps

1. From the Schema list, choose a schema when applicable.

2. From the Table list, select a table.

3. Optional: To determine what attributes to examine, click View Attribute Contract.

4. Optional: To update an existing configuration where changes to the database might have occurred,
click Refresh.

5. Under Columns to return from SELECT, choose a column name and click Add Attribute.

 Note:

You do not have to add a column here to use it as part of a search filter. Add only the column that is
required by subsequent sibling configuration items, such as contract fulfillment or token authorization.
Any added columns left unused are removed when the configuration is saved.

Repeat this step to add more columns as needed.

Example

Example

Suppose you, the identity provider (IdP), have a data table named ACCESSTABLE with thee columns:
userid, department, and accesslevel. Your use case requires you to map accesslevel into a
SAML contract to an SP.

On the Database Table and Columns window, select the ACCESSTABLE table and add the
accesslevel column.

Entering a database search filter
Use a WHERE clause on the Database Filter window to set up a database search filter in PingFederate.

About this task

On the Database Filter window, enter a WHERE clause for PingFederate to query the database table you
selected to retrieve a record associated with particular values. The clause is in the form:

[WHERE] column1=value1

The left side (column1) is a column from the database table that you selected on the Database Table and
Columns window.

 Tip:

To get a list of columns, click the View List of Columns from ... link.

The right side (value1) is the match-against value, generally a variable passed in from either an
authentication source for an identity provider (IdP) or an assertion for a service provider (SP). The
variables are shown underneath the Where text field. If you are retrieving attributes from multiple data
stores using one mapping, attributes available from other sources, if previously configured, are listed near
the bottom of the window.

You can also apply additional search criteria by using other columns from the targeted table.

Copyright ©2024

 | Administrator's Reference Guide | 378

Steps

1. Enter a WHERE clause in the text field.

 Note:
The initial WHERE is optional.

2. Ensure the syntax and variable names are correct. For more information about WHERE clauses,
consult your database management system (DBMS) documentation.

3. Click Next to complete the configuration to query attributes from the database server.

Later in the workflow, you can use the attribute values returned from the database in the applicable
contract fulfillment window, the issuance criteria window, or both, to fulfill your use case.

Example

Example

Suppose you have selected a data table named ACCESSTABLE on the Database Table and Columns
window. You, the IdP, want to locate user records by matching userid column against the username from
an HTML Form Adapter. As a passed-in variable from the HTML Form Adapter, ${username} is shown
underneath the Where text field.

On the Database Filter window, enter the following filter in the Where text field:

userid='${username}'

userid

The column in the table containing the username information in this example.

'${username}'

The value of the username variable (username) from an HTML Form Adapter

 Important:

You must use the ${} syntax to retrieve the value of the enclosed variable and insert single quotation
marks around the ${} characters.

Specifying directory properties and attributes
Use these instructions to initiate ways to specify methods for PingFederate to search for particular user
data.

About this task

On the LDAP Directory Search window, specify the branch of your directory hierarchy where you want
PingFederate to look up user data. For more information about each field, refer to the following table.

Field Description

Base DN The base distinguished name (DN) of the tree structure in which the search
begins. This field is optional if records are located at the root of the directory.

Search Scope The node depth of the query. Select Subtree (the default value), One level or
Object.

Root Object Class The object class containing the desired attributes.

Attributes A list of attributes based on the selected Root Object Class value.

Copyright ©2024

 | Administrator's Reference Guide | 379

Steps

1. Optional: Specify a base DN.

2. Select a search scope.

3. Optional: Click View Attribute Contract to determine what attributes to look up.

4. Select a root object class and an attribute, and then click Add Attribute.

 Note:

You do not have to add an attribute here to use it as part of a search filter. Add only the attributes
that are required by subsequent sibling configuration items, such as contract fulfillment or token
authorization. Any added attributes that are left unused are removed when the configuration is saved.

Choose from:

▪ Microsoft Active Directory

If you choose the memberOf attribute, an optional check box, Nested Groups, appears on the
right. Select this check box if you want PingFederate to query for groups the end users belong to
directly and indirectly through nested group membership (if any) under the base DN.

For example, if you have three groups under a base DN: Canada, Washington and Seattle.
Seattle is a member of Washington. Ana Smith is an end user and a member of Seattle. If the
Nested Groups check box is selected, when PingFederate queries for Ana's memberOf attribute
values, the expected results are Seattle and Washington. When the Nested Groups check box is
not selected (the default), the expected result is Seattle.

▪ Oracle Directory Server or Oracle Unified Directory

Choose isMemberOf under Attribute for nested group membership. For information related
to Oracle Directory Server, go to docs.oracle.com/cd/E29127_01/doc.111170/e28967/
ismemberof-5dsat.htm. For information related to Oracle Unified Directory, go to Fusion
Middleware Administering Oracle Unified Directory and search for memberof user attributes.

 Tip:

If you need to include tokenGroups as one of the attributes, select Object as the search scope and
enter a base DN matching the subject DN of the authenticated user—you can use variables from the
authentication source (an adapter or an authentication policy contract) or results from the previous
lookup in the base DN to fulfill this requirement.

5. Repeat step 4 to add more attributes as needed.

Example

Example

Suppose you want to map the sn Active Directory (AD) user attribute into an OpenID Connect policy.
The users for this use case reside under a specific container on your directory server, OU=West,
DC=example, DC=com.

On the LDAP Directory Search window, enter OU=West, DC=example, DC=com as the base DN, keep
the default Search Scope value (Subtree), select <Show All Attributes> from the Root Object Class list,
select the sn AD user attribute, and click Add Attribute.

Copyright ©2024

http://docs.oracle.com/cd/E29127_01/doc.111170/e28967/ismemberof-5dsat.htm
http://docs.oracle.com/cd/E29127_01/doc.111170/e28967/ismemberof-5dsat.htm
https://docs.oracle.com/cd/E52734_01/oud/OUDAG/toc.htm
https://docs.oracle.com/cd/E52734_01/oud/OUDAG/toc.htm

 | Administrator's Reference Guide | 380

Defining encoding for binary attributes
Use the LDAP Binary Attribute Encoding Types window to specify an encoding type to apply during
fulfillment.

About this task

The LDAP Binary Attribute Encoding Types window appears when at least one attribute is configured as
such in the datastore. Because you cannot use binary attribute data in an assertion to the service provider
(SP), you must specify the encoding type that you want to apply during fulfillment. The available choices
are Base64, Hex, and SID.

 Note:

Defining encoding for binary attributes is only applicable to identity provider (IdP) and IdP-to-SP bridging
use cases.

Steps

To set an encoding type, select a value from the Attribute Encoding Type list.

Repeat this step for each binary attribute.

Example

Examples

Microsoft Office 365 relies on an immutable Active Directory binary attribute associated with user accounts
(objectGUID), and requires this binary data to be Base64-encoded to correlate provisioned federated
user data to Active Directory accounts. Select Base64 from the Attribute Encoding Type list.

Claims-based authentication with Microsoft Outlook Web App and Exchange admin center (EAC) requires
tokenGroups (another binary attribute in Active Directory) to be SID-encoded. Select SID from the
Attribute Encoding Type list.

Entering a directory search filter
You can use a filter in PingFederate to query your selected data and retrieve a record associated with it.

About this task

On the LDAP Filter window, enter a filter for PingFederate to query the data you selected. The filter is in
the form:

attribute1=value1

The left side (attribute1) is an attribute from your directory.

 Tip:

To see a list of attributes, click the View List of Available LDAP Attributes link.

The right side (value1) is the match-against value, generally a variable passed in from either an
authentication source for an identity provider (IdP) or an assertion for a service provider (SP). The
variables are shown underneath the Filter text field. If you are retrieving attributes from multiple data stores
using one mapping, attributes available from other sources, if previously configured, are listed near the
bottom of the window.

You can also apply additional search criteria by using other attributes from the target object class.

Copyright ©2024

 | Administrator's Reference Guide | 381

A filter narrows a search to locate requested data by either including or excluding specific records. A filter
includes the attributes in the search and the value or range of values that the search is attempting to
match. Searches are conducted by using three components: at least one attribute (attribute data type) on
which to search, a search filter operator that will determine what to match, and the value of the attribute
being sought.

Steps

1. On the LDAP Filter window, enter a search filter in the text field.

2. Ensure the syntax and variable names are correct. For general information about search filters, consult
your directory documentation.

3. Click Next to complete the configuration to query attributes from the directory server.

Later in the workflow, you can use the attribute values returned from your directory server in the
applicable contract fulfillment window, the issuance criteria window, or both, to fulfill your use case.

Example

Example

Suppose you want to locate user records by matching the mail Active Directory (AD) user attribute
against an extended attribute, eml, in your access token contract for the purpose of mapping attributes to
an OpenID Connect policy. As a passed-in variable from the access token, ${eml} is shown underneath
the Filter text field.

On the LDAP Filter window, enter the following filter in the Filter text field.

mail=${eml}

mail

An AD user attribute containing the email address of the user

${eml}

The value of the extended attribute (eml) in the access token contract

 Important:

You must use the ${} syntax to retrieve the value of the enclosed variable.

Specifying data source filter and fields
PingFederate allows you to specify a variety of filters, fields, and other settings to best configure your
datastore for your organization's needs.

When you choose to retrieve attribute values from other types of datastore, you follow this path through the
configuration steps. Windows and steps depend on the implementation of the specific datastore type.

▪ Specifying a resource path for a REST API datastore on page 382
▪ Specifying a dynamic authorization header for a REST API datastore on page 382
▪ Specifying filters and fields for a custom datastore on page 383

Copyright ©2024

 | Administrator's Reference Guide | 382

Specifying a resource path for a REST API datastore
On the Configure Data Source Filters window, you can specify a resource path for a REST API
datastore.

Steps

On the Configure Data Source Filters window, if the REST API datastore requires a relative path or
additional query parameters, or both, to retrieve user records, enter them in the Resource Path field.

Example

Example

You have use cases that can leverage user attributes obtained through REST APIs. The data source
returns user records in JSON. It also provides the following paths to access its data based on user
populations:

▪ https://rest.example.com/development/users
▪ https://rest.example.com/staging/users

To retrieve the record of a particular user, the request must include the uid query parameter with the
identifier of the user.

Your use cases focus on users under the /staging/users path. Your authentication policy uses the
HTML Form Adapter, which captures user identifiers using the username attribute.

To address this sample use case:

1. Create a REST API datastore with a base URL of https://rest.example.com.
2. Add the REST API datastore as an attribute source in the applicable use cases, such as a service

provider (SP) connection that uses an HTML Form Adapter instance or an OAuth identity provider
(IdP) Adapter Mapping configuration that maps from an HTML Form Adapter instance into the
persistent grants.

3. When prompted to configure the filtering option on the Configure Data Source Filters window, enter
/staging/users?uid=${username} in the Resource Path field.

Specifying a dynamic authorization header for a REST API datastore
When you configure an Open ID Connect identity provider (IdP) connection with an application, you
can use the access token from the connection as a bearer token in an authorization header to receive
additional information as needed.

Before you begin

▪ Create a Service Provider Open ID Connect IdP connection.
▪ Configure an Identity Provider authentication policy for the connection.

Steps

1. Make the Open ID Connect call to the application to obtain the access token that you plan to use as a
bearer token.

After you've made the connection, you can find the access token attribute name in <pf_install>/
pingfederate/log/server.log in debug mode.

2. On the Configure Data Source Filters window, enter the access token attribute name in the
Authorization Header field.

Copyright ©2024

 | Administrator's Reference Guide | 383

Example

Authorization Headers

Authorization Header entries are shown here for Yahoo and Google Open ID Connect IdP connections:

▪ For Yahoo: Bearer ${idp.https://api.login.yahoo.com.access_token}
▪ For Google: Bearer ${idp.https://accounts.google.com.access_token}

Specifying filters and fields for a custom datastore
PingFederate enables you to specify a filter/search query for your data source, then configure fields for
your use case.

About this task

Follow this path to set up attribute queries from a custom datastore.

Steps

1. On the Configure Data Source Filters window, specify a filter, or search query, for your data source.

This window display and the syntax of the filter depend on your developer's implementation of the
PingFederate SDK.

2. On the Configure Data Source Fields window, select the fields applicable to your use case.

These choices are supplied by the driver implementation. Select only those needed to fulfill your use
case.

Result

You can use the values returned from your data source in the applicable contract fulfillment window, the
issuance criteria window, or both.

Configuring failsafe options
From the Failsafe Attribute Source window, you can enable the failsafe mapping or stop the single sign-
on (SSO) transaction when all attribute sources fail to return values for any reason.

About this task

When a datastore is configured and the attribute mappings under Attribute Sources & User Lookup fail
to complete the attribute contract in a service provider (SP) connection, you can choose to configure a set
of failsafe Attribute Contract Fulfillment mappings. For example, you might configure a set of attributes
to identify the SSO subject as a guest user at the SP.

 Note:

The Failsafe Attribute Source window does not appear if you have selected the Retrieve additional
attributes from multiple data stores using one mapping option on the Mapping Method window.

 Important:

The attribute contract is fulfilled using either the mapping configured under Attribute Sources & User
Lookup or the failsafe mapping, not both. In other words, you cannot use the failsafe mapping to fill in
missing attributes when some are found with the datastore mapping setup but others are not.

Copyright ©2024

 | Administrator's Reference Guide | 384

The failsafe mapping is used only when all of the mappings configured in the datastore setup fail to return
values for any reason. If any mapping succeeds (an attribute mapped to text, for example), failover does
not occur.

Alternatively, you can have PingFederate stop the SSO transaction. This choice depends on your
agreement with the SP.

Steps

▪ To enable the failsafe mapping, select Send user to SP using default list of attributes, and then
map or enter the desired values on the Attribute Contract Fulfillment window.

▪ To stop the SSO transaction, select Abort the SSO transaction.

Reviewing datastore query configurations
You can review the configuration on the Summary window to determine whether to change your
configuration, save those changes, or discard them.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

IdP-to-SP bridging
The IdP-to-SP bridging links on the Server Configuration menu provide access to advanced federation
settings.

Adapter-to-adapter mappings
PingFederate can act as both identity provider (IdP) and service provider (SP) running on the same server
with this configuration.

This configuration is provided for special use cases in which PingFederate is acting as both an IdP and
an SP, and user attributes from an IdP adapter are used to create an authenticated session with an SP
adapter on the same PingFederate server. Generally, these cases involve software-as-a-service (SaaS)
providers who might not support standards-based single sign-on (SSO) but do provide proprietary SSO
with “delegated authentication”, such as Salesforce and Workday.

In effect, this configuration provides an alternative to setting up complete connections to send SAML
assertions and other messages back and forth between an IdP and an SP running on the same
PingFederate server in a loop-back configuration to enable nonstandard use cases. Instead, attributes that
would normally be sent in an assertion are mapped directly from the IdP authentication adapter to an SP
adapter, resulting in a secure SP user session.

To use this configuration, ensure that you have already configured the required IdP and SP adapter
instances. You can reuse instances that are also in use for connection configurations.

Copyright ©2024

 | Administrator's Reference Guide | 385

Managing mappings
Manage adapter-to-adapter mappings using the Adapter-to-Adapter Mappings window to control how
many you use in PingFederate.

About this task

On the Adapter-to-Adapter Mappings window you can add, modify, or delete adapter-to-adapter
mappings. The Adapter-to-Adapter Mappings window is located at Applications # Integration #
Adapter-to-Adapter Mappings.

Steps

▪ To add a mapping, select an identity provider (IdP) adapter instance from the Source Instance list, a
service provider (SP) adapter instance from the Target Instance list, and then click Add Mapping.

 Note:

You can create only one mapping of a source to the same target. However, you can map different
sources to the same target, and the reverse.

▪ To edit a mapping, select the mapping and then follow the configuration wizard to complete the task.
▪ To remove a mapping, select Delete under Action for the mapping.

Assigning a license group
Select a license group if your PingFederate license manages connections by groups.

About this task

Adapter-to-adapter mapping is considered a connection for licensing purposes.

 Note:

This window is not displayed for unrestricted or other types of licenses.

Steps

▪ Select the license group from the list.

Identifying the target application
On the Target App Info tab, you can enter the name of the target application and the URL of the
application icon.

About this task

The URL is accessible through the IdP Adapter interface, IdpAuthenticationAdapterV2, in the
PingFederate Java SDK. For more information about the SDK, see SDK Developer's Guide on page 1047.
Both fields are optional.

 Note:

If this is a child instance, select the override check box to modify the configuration.

Steps

1. Optional: Enter the application name in the Application Name field.

Copyright ©2024

 | Administrator's Reference Guide | 386

2. Optional: Enter the URL to the application icon in the Application Icon URL field.

3. Click Next.

Configuring attribute sources and user lookup for adapter-to-adapter mappings
To look up attributes and to set up search parameters, configure or modify attribute sources to configure
one or more datastores.

About this task

Attribute sources are specific datastore or directory locations containing information possibly required to
fulfill the service provider (SP) adapter contract.

Steps

▪ To configure an attribute source, click Add Attribute Source and complete the setup steps (see
Choosing a datastore on page 375).

▪ To modify an attribute source configuration, select the attribute source and follow the configuration
wizard to complete the task.

 Note:

Depending on what you change, you might need to modify dependent data in subsequent steps, as
indicated.

Configuring target application information
Optionally, you can specify the name and the icon URL of the target application in the Target App Info tab.

Steps

1. Enter the target application's name and icon URL.

2. Click Next.

Configuring contract fulfillment for adapter-to-adapter mappings
Use one of the listed sources to map each attribute to fulfill the adapter contract.

About this task

The next step in this configuration is to map values from the identity provider (IdP) adapter into the
attributes required by the service provider (SP) adapter (the adapter contract).

On the Adapter Contract Fulfillment tab, map each attribute to fulfill the adapter contract from one of
these sources:

Adapter

When you make this selection, the associated Value drop-down list is populated by the IdP adapter.

Context

Values are returned from the context of the transaction at runtime.

 Note:

The HTTP Request selection is retrieved as a Java object rather than text. For this reason, OGNL
expressions are more appropriate to evaluate and return values.

Choose Expression and then click Edit to enter an expression (see Using the OGNL edit window
on page 218). If the Expression selection is not listed, then the feature is not enabled (see

Copyright ©2024

 | Administrator's Reference Guide | 387

Enabling and disabling expressions on page 213). For syntax and examples, see sections under
Construct OGNL expressions on page 214.

LDAP/JDBC/Other (when a datastore is used)

Values are returned from your datastore, if used. When you make this selection, the Value list is
populated by the attributes from the datastore.

Expression (when enabled)

This option provides more complex mapping capabilities—for example, transforming incoming
values into different formats (see Attribute mapping expressions on page 213). All of the variables
available below for text entries are also available for expressions.

No mapping

Select this option to ignore the Value field, making the value selection unnecessary.

Text

The value is what you enter. This can be text only, or you can mix text with references to any of the
values from the IdP adapter, using the ${attribute} syntax.

The value is what you enter. This can be text only, or you can mix text with references to any of the
values from the IdP adapter, using the ${attribute} syntax.

You can also enter values from your datastore, when applicable, using the following syntax.

${ds.attr-source-id.attribute}

where attr-source-id is the Attribute Source ID value (see Choosing a datastore on page
375) and attribute is any of the datastore attributes you select.

Steps

1. Select a source of the attribute under Source for each SP adapter contract attribute.

2. Specify an attribute under Value for each attribute.

Configuring a default target URL (optional)
You can enter a URL in the Default Target URL field to override any SP Default URL SSO setting.

About this task

For more information, see Configuring default URLs on page 673.

 Note:

If specified, the adapter-to-adapter endpoint parameter tab, enter your default URL into the the
TargetResource overrides any default target URL for an adapter-to-adapter mapping. See If specified,
the adapter-to-adapter endpoint parameter System-services endpoints on page 1186.

Copyright ©2024

 | Administrator's Reference Guide | 388

Steps

1. On the Default Target URLIf specified, the adapter-to-adapter endpoint parameter tab, enter your
default URL into the the Default Target URL tab.

 Note:

This URL overrides any setting within the SP Default URL SSO field.

2. Click Next.

Defining issuance criteria for adapter-to-adapter mappings
You can define the criteria that must be satisfied for PingFederate to further process a request.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. On the Issuance Criteria tab, from the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Adapter Select to evaluate attributes from the IdP adapter instance.

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

The HTTP Request context value is retrieved as a Java object rather than
text. For this reason, attribute mapping expressions are more appropriate
to evaluate and return values.

Copyright ©2024

 | Administrator's Reference Guide | 389

Source Description

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

2. From the Attribute Name list, select the attribute to be evaluated.

3. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

4. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

5. In the Error Result field, enter a custom error message.

Error results are handled in one of the two ways.

Redirect

When an InErrorResource URL is provided, the value of the Error Result field is used by
the query parameter ErrorDetail in the redirect URL.

Template

When an InErrorResource URL is not provided, the value of the Error Result field is used
by the variable $errorDetail in the idp.sso.error.page.template.html template file.

Using an error code in the Error Result field allows the error template or an application to process the
code in a variety of ways, such as displaying an error message or e-mailing an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the

Copyright ©2024

 | Administrator's Reference Guide | 390

applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

6. Click Add.

7. Optional: Repeat to add more criteria.

8. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing the adapter-to-adapter mapping
Use the Summary tab to edit, save, and discard changes to your configuration of an adapter-to-adapter
mapping.

About this task

When you have finished configuring an adapter-to-adapter mapping, you can review the configuration on
the Summary tab.

Steps

▪ To keep your changes, click Save.
▪ To amend your configuration, click the name of the corresponding tab and then follow the configuration

wizard to complete the task.
▪ To discard your changes, click Cancel.

Token translator mappings
Use the token translator configuration to map incoming user attributes from an identity provider (IdP) token
processor directly to a service provider (SP) token generator.

This configuration is provided for use cases in which the PingFederate WS-Trust STS exchanges one
type of security token for another without needing to generate a SAML token in between. See WS-Trust
STS on page 70. Use this configuration, for example, to convert a user's Kerberos token to a third-party
proprietary web access management (WAM) session token.

In effect, this configuration provides an alternative to setting up complete STS connections to make such
an exchange using the same instance of PingFederate. Instead, incoming user attributes from an IdP token
processor are mapped directly to an SP token generator.

To use this configuration, ensure that you have enabled both the IdP and SP roles for PingFederate,
including the WS-Trust protocol. See Enabling the WS-Trust protocol on page 976. Make sure to
configure the required token-translator instances. You might reuse instances that are also in use for STS
connection configurations.

Copyright ©2024

 | Administrator's Reference Guide | 391

Managing token mappings
Use the Token Generator Mappings window to manage your token-to-token mappings.

About this task

On the Applications # Token Exchange # Token Translator Mappings window you can add, modify, or
delete token-to-token mappings.

Steps

▪ To add a mapping, select a token processor instance from the Source Instance list and a token
generator instance from the Target Instance list, and then click Add Mapping.

 Note:

You can create only one mapping of a source to the same target. However, you can map different
sources to the same target, and vice versa. When you configure multiple identity provider
(IdP) token processors, service provider (SP) token generators, or both, you must provide the
TokenProcessorId, the TokenGeneratorId query parameters, or both, in the request (see
System-services endpoints on page 1186).

▪ To edit a mapping, select the mapping and then follow the configuration wizard to complete the task.
▪ To remove a mapping, select Delete under Action for the mapping.

Configuring attribute sources and user lookup for token mapping
Configure one or more datastores using this optional adapter-to-adapter configuration to look up attributes
and to set up search parameters to find information needed to fulfill contracts.

About this task

Attribute sources are specific datastore or directory locations containing information that you might require
to fulfill the contract of the token generator.

Steps

▪ To configure an attribute source, click Add Attribute Source and complete the setup steps. For more
information, see Choosing a datastore on page 375.

▪ To modify an attribute source configuration, select the attribute source and follow the configuration
wizard to complete the task.

 Note:

Depending on what you change, you might need to modify dependent data in subsequent steps, as
indicated.

Configuring contract fulfillment for token exchange mapping
Use the listed sources to map values from the token processor into the attributes required by the token
generator, the Token Generator Contract.

About this task

Map each attribute to fulfill the Token Generator Contract from one of these sources:

Token

When you make this selection, the associated Value drop-down list is populated by the token
processor.

Copyright ©2024

 | Administrator's Reference Guide | 392

LDAP/JDBC/Other (when a datastore is used)

Values are returned from your datastore, if used. When you make this selection, the Value list is
populated by the attributes from the datastore.

Expression (when enabled)

This option provides more complex mapping capabilities—for example, transforming incoming
values into different formats (see Attribute mapping expressions on page 213). All of the following
variables available for text entries are also available for expressions.

No Mapping

Select this option to ignore the Value field, making it necessary to have no value selection.

Text

The value is what you enter. This can be text only, or you can mix text with references to any of the
values from the token processor, using the ${attribute} syntax.

You can also enter values from your datastore, when applicable, using the following syntax.

${ds.attr-source-id.attribute}

where attr-source-id is the Attribute Source ID value (see Fulfillment by datastore queries
on page 374) and attribute is any of the datastore attributes you select.

Steps

1. Under Source, select a source of the attribute for each attribute in the contract of the token generator.

2. Under Value, specify an attribute for each attribute.

Defining issuance criteria for token translator mapping
Use the PingFederate issuance criteria features in order to process requests based on individual attributes.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Copyright ©2024

 | Administrator's Reference Guide | 393

Steps

1. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

The HTTP Request and STS SSL Client Certificate Chain context values
are retrieved as a Java object rather than text. For this reason, attribute
mapping expressions are more appropriate to evaluate and return values.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

Token Select to evaluate attributes from the token processor instance.

2. Select the attribute to evaluate under Attribute Name.

 Note:

To evaluate the STS Basic Authentication Username, STS SSL Client Certificate Chain, or
STS SSL Client Certificate's Subject DN context value, ensure that the associated authentication
is enabled and configured on System # Server # Protocol Settings to open the WS-Trust STS
Settings window.

Copyright ©2024

 | Administrator's Reference Guide | 394

3. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

 Note:

To evaluate the STS SSL Client Certificate's Subject DN context value, you must select one of the
... DN conditions. These methods normalize the DN before comparison to accommodate for different
string representations that are still considered equivalent, such as case sensitivity or white space.

4. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

5. In the Error Result field, enter a custom error message.

The Error Result field is used by the faultstring element for SOAP 1.1 and the Reason/Text
element for SOAP 1.2. For more information on SOAP, see the World Wide Web Consortium's http://
www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383507.

Using an error code in the Error Result field allows an application to process the code in a variety of
ways, such as display an error message or e-mail an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

6. Click Add.

7. Optional: Repeat to add more criteria.

Copyright ©2024

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383507
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383507

 | Administrator's Reference Guide | 395

8. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing the token exchange mapping
Use the Summary window to modify a configuration and then either save, edit, or discard the changes.

About this task

When you finish configuring a token exchange mapping, you can review the configuration on the Summary
window.

Steps

▪ To keep your changes, click Save.
▪ To amend your configuration, click the name of the corresponding tab and then follow the configuration

wizard to complete the task.
▪ To discard your changes, click Cancel.

Identity provider SSO configuration
Identity providers (IdP) can use the PingFederate administrative console to configure local application-
integration information and to manage connections to service provider (SP)-partner sites.

You only need one connection per partner, even if you are targeting more than one web application at the
destination SP site.

While your entity ID is defined on the Federation Info tab of the Protocol Settings window, you
can identify your organization differently using virtual server IDs on a per-connection basis. For more
information, see Multiple virtual server IDs on page 105.

You can deploy an SP connection to bridge a service provider to one or more identity providers through
authentication policy contracts. For more information, see Federation hub use cases on page 99.

 Note:

This topic applies to configuration settings needed for browser-based single sign-on (SSO). If you are
using PingFederate exclusively as a security token service (STS), start with WS-Trust STS configuration
on page 976.

Copyright ©2024

 | Administrator's Reference Guide | 396

IdP application integration settings
PingFederate uses identity provider (IdP) adapters to look up session information and authenticate users in
integrated applications.

The integration of local applications with PingFederate is the essential "first-mile" configuration that allows
end-users to access protected resources across domains. This process is facilitated through the use of
application-integration kits and a robust SDK (see SSO integration kits and adapters on page 83).

PingFederate uses IdP adapters such as the HTML Form Adapter to authenticate users at your site
through applications or access-management systems. Go to Authentication # Integration # IdP
Adaptersto configure instances of IdP adapters.

For authentication sources and selectors that are capable of delegating end-user interactions to external
web applications, you can create authentication applications to represent them.

You can also set a default URL to which users can be directed during single logout (SLO), and you can
look up system endpoints that application developers at your site need to access PingFederate's single
sign-on (SSO) and SLO services.

 Note:

If your PingFederate configuration enables the WS-Trust security token service (STS), the selections
under Integration also include menu items for configuring plugin Token Processors and optionally STS
Request Parameters, see IdP configuration for STS.

Managing IdP adapters
An identity provider (IdP) adapter looks up session information and provides user identification to
PingFederate. You must configure at least one instance of an IdP adapter in order to set up connections to
service provider (SP) partners.

About this task

PingFederate comes bundled with the PingID integration kit and the following adapters:

▪ Composite Adapter
▪ HTML Form IdP Adapter
▪ HTTP Basic IdP Adapter
▪ Identifier First Adapter
▪ Kerberos Adapter
▪ OpenToken IdP Adapter
▪ PingID Adapter
▪ Reference ID IdP Adapter
▪ X.509 Certificate IdP Adapter

Additional integration kits are available on the PingFederate download page under the Add-ons tab.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. In the Manage IP Adapter Instances window, choose from the following options.

Option Description

Configure a new instance Click Create New Instance

Modify an existing instance Click the name of instance in the Instance Name
column

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads/pingfederate.html

 | Administrator's Reference Guide | 397

Option Description

View the usage of an existing instance Click Check Usage in the Action column on the
instance's row

Remove an existing instance Click Delete in the Action column on the
instance's row

 Note:

By default, automatically checks multi-connection errors whenever you access this window. This
verifies that configured connections are not adversely affected by changes made here.

If you experience noticeable delays in accessing this window, you can disable automatic connection
validation. Go to System # Server # General Settings.

Creating an IdP adapter instance
The first step in creating an adapter instance is choosing an adapter type.

Steps

▪ On the Type tab, configure the basics of this adapter instance.

a. Enter the instance name and ID.
b. From the Type list, select the adapter type.
c. Optional: From the Parent Instance list, select an existing type.

If you are creating an instance that is similar to an existing instance, you might consider making
it a child instance by specifying a parent. A child instance inherits the configuration of its parent
unless overridden. You can specify overrides during the rest of the setup.

Configuring an IdP adapter instance
You can configure existing instances of IdP adapters.

About this task

Depending on the selected adapter, the IdP Adapters window presents you with different configuration
parameters.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. Click the IdP adapter instance you want to configure.

3. Follow the in-product instructions to configure the adapter instance.

 Note:

If this is a child instance, select the override check box to modify the configuration.

If you are configuring one of the bundled adapters, see Bundled adapters on page 285 or Integrate
with PingID for PingFederate SSO for configuration information.

If you are configuring an adapter from an integration kit, including any software as a service (SaaS)
connector, go to SSO integration overview on page 59, locate the adapter's documentation, and
configure the adapter instance accordingly.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingid/page/kor1564020462373.html
https://docs.pingidentity.com/bundle/pingid/page/kor1564020462373.html

 | Administrator's Reference Guide | 398

Invoking IdP adapter actions

About this task

Adapters can be written to fulfill the following functions:

▪ Provide configuration assistance
▪ Perform validation actions
▪ Generate parameters that might need to be set manually in a configuration file

Steps

▪ Follow the on-screen instructions to complete the actions required.

Extending an IdP adapter contract
You can use the Extended Contract tab to extend the contract of existing IdP adapters, especially those
using the Composite Adapter.

About this task

If you are using the Composite Adapter, you must add attributes from the IdP adapter instances that
comprise the composite configuration in this tab. For more information, see Composite Adapter on page
285.

If the adapter does not return values for the extended attributes, or if you prefer to fulfill them differently
using datastore queries, dynamic text values, or results from OGNL expressions, you can define their
fulfillment on the Adapter Contract Mapping tab. For more information, see Defining the IdP adapter
contract on page 399.

 Note:

If this is a child instance, select the override check box to modify the configuration.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. Click the existing IdP adapter instance you want to modify, and then click the Extended Contract tab.

3. Enter the name of the desired attribute. Click Add.

4. Repeat as needed to add more attributes.

5. To save changes, click Done.

Setting pseudonym and masking options
You can set pseudonym and masking options to uniquely identify a user to your PingFederate SP partners.

Steps

1. Go to Authentication # Integration # IdP Adapters and click the IdP adapter instance that you want
to change.

Copyright ©2024

 | Administrator's Reference Guide | 399

2. On the Adapter Attributes tab, do the following:

a. Optional: From the Unique User Key Attribute list, select an attribute to uniquely identify users
signing on with this adapter. The attribute's value will be used to identify user sessions across all
adapters. None is selected by default.

 Note:

If you choose a custom user key attribute, uses the value of the attribute after the Adapter
Contract Mapping (if any) has been evaluated. If you choose a custom user key attribute that is
based on the username, configure the adapter's password credential validators to trim spaces.

 Important:

For the HTML Form Adapter, If you enabled the Revoke Sessions after Password Change or
Reset option in the IdP Adapter tab, you cannot select None as the unique user key attribute.
Doing so will result in an error message.

b. Select the check box under Pseudonym for the user identifier of the adapter and optionally for the
other attributes, if available.

This selection is used if any of your service provider (SP) partners use pseudonyms for account
linking.

 Note:

A selection is required whether or not you use pseudonyms for account linking. This allows
account linking to be used later without having to delete and reconfigure the adapter. Ensure that
you choose at least one attribute that is unique for each user, such as a user's email, to prevent
assigning the same pseudonym to multiple users.

c. Select the check box under Mask Log Values for any attributes whose values you want to mask
in its logs at runtime.

 Note:

Masking is not applied to the unique user key attribute in the logs even though the attribute used
for the key is marked as Mask Log Values.

d. Select the Mask all OGNL-expression generated log values check box, if OGNL expressions
might be used to map derived values into outgoing assertions and you want those values masked.

Defining the IdP adapter contract
You can change the default identity provider (IdP) adapter contract settings using the Adapter Contract
Mapping tab.

About this task

An IdP adapter contract is a contract that can be used to fulfill the attribute contract passed to your service
provider (SP) partners. By default, PingFederate fulfills the IdP adapter contract with attribute values from
the adapter. You can optionally configure PingFederate to fulfill the IdP adapter contract with attribute
values from local datastores, dynamic text values, results from OGNL expressions, or a combination of
them. In addition, you can verify requests using the Token Authorization framework.

Steps

1. Go to Authentication # Integration # IdP Adapters

Copyright ©2024

 | Administrator's Reference Guide | 400

2. Click the Instance Name of the existing IdP adapter instance you want to configure.

3. Go to the Adapter Contract Mapping tab.

 Note:

If this is a child instance, select the Override Adapter Contract check box to modify the configuration
unless you have already selected the override option in the Extended Contract tab, in which case the
Override Adapter Contract check box is automatically selected for you.

4. Click Configure Adapter Contract.

▪ For information on Attribute Sources & User Lookup, see Defining attribute sources and user
lookup on page 400.

▪ For information on Adapter Contract Fulfillment, see Configuring IdP adapter contract fulfillment
on page 401.

▪ For information on Issuance Criteria, see Defining issuance criteria for IdP adapter contract on
page 402.

5. On the Summary tab, click Done to save your adapter contract configurations, or Cancel to discard
them.

Defining attribute sources and user lookup
From the Attribute Sources & User Lookup window, you can add new attribute sources or manage
existing attribute sources to supply attributes for the identity provider (IdP) adapter contract or the token
authorization framework.

About this task

Attribute sources are specific datastore or directory locations containing information that might be needed
for the IdP adapter contract or the token authorization framework. You can use more than one attribute
source when mapping values to the IdP adapter contract.

For more information about token authorization, see Token authorization on page 95.

The IdP server supports separate datastores to look up attributes for a single mapping. For example, you
can query multiple datastores for values and map those values in one mapping, or query a datastore for a
value and use that value as input for subsequent queries of other datastores.

Queries are executed in the order they are displayed on the Attribute Sources & User Lookup tab. Use
the up and down arrows as needed to adjust the order.

If a required attribute, such as the user identifier username for the HTML Form Adapter or subject for
the OpenToken IdP Adapter, cannot be fulfilled, the request fails.

Steps

1. Go to Authentication # Integration # IdP Adapters

2. Click the name of the existing IdP adapter instance you want to configure in the Instance Name list.

3. Click the Adapter Contract Mapping tab.

 Note:

If this is a child instance, select the Override Adapter Contract check box to modify the configuration
unless you have already selected the override option in the Extended Contract tab, in which case the
Override Adapter Contract check box is automatically selected for you.

4. Click Configure Adapter Contract.

Copyright ©2024

 | Administrator's Reference Guide | 401

5. Choose from:

▪ If your use case requires only dynamic texts or results from OGNL expressions without any
attributes from local datastores, skip to Configuring IdP adapter contract fulfillment on page 401.

▪ To add an attribute source, click Add Attribute Source.
▪ To modify an existing instance, select it by name under Description.
▪ To remove an existing instance or to cancel the removal request, click Delete or Undelete under

Action.

Configuring IdP adapter contract fulfillment
You can map values into the IdP adapter contract using the Adapter Contract Fulfillment tab.

Steps

1. Go to Authentication # Integration # IdP Adapters

2. Click the Instance Name of the existing IdP adapter instance you want to configure.

3. Go to the Adapter Contract Mapping tab.

 Note:

If this is a child instance, select the Override Adapter Contract check box to modify the configuration
unless you have already selected the override option in the Extended Contract tab, in which case the
Override Adapter Contract check box is automatically selected for you.

4. Click Configure Adapter Contract.

5. Select a source from the Source list and specify a Value to associate with it.

For more information about the Source list and the possible Values, see the following table.

Source Description

Adapter Select Adapter to use the attribute value returned by the IdP adapter
without customization.

Context Select Context to return specific information from the request.

JDBC, LDAP, or other
types of datastores (if
configured)

Select an attribute source when PingFederate should retrieve attribute
value from a datastore.

When you make this selection, the Value list is populated with attributes
from your database, directory, or other datastore.

Applicable only if you have added at least one attribute source on the
Attribute Sources & User Lookup tab. For more information, see Defining
attribute sources and user lookup on page 400.

Expression (if enabled) Select Expression to support complex mapping requirements; for
example, transforming incoming values into different formats. Additionally,
the HTTP request is retrieved as a Java object rather than text. For this
reason, select Expression as the source and use OGNL expressions to
evaluate and return specific information from the HTTP request.

Applicable only if you have enabled the use of expressions in
PingFederate. For more information, see Attribute mapping expressions on
page 213.

No Mapping Select No Mapping to ignore the Value field.

Copyright ©2024

 | Administrator's Reference Guide | 402

Source Description

Text Select Text to return the value you enter under Value.

There are a variety of reasons to use a static text value. For example, if
the target web application provides a service based on the name of your
organization, you may provide the attribute value as a constant.

You can mix text with references to attributes from the IdP adapter contract
by using the ${attribute} syntax.

You can also enter references to attributes from configured attribute
sources by using the ${ds.attr-source-id.attribute} syntax,
where attr-source-id is the Attribute Source ID value you entered
on Attribute Sources & User Lookup # Data Store and attribute is
an attribute from the datastore. For more information, see Defining attribute
sources and user lookup on page 400

6. Repeat these steps until all attributes are configured.

7. Click Done.

Defining issuance criteria for IdP adapter contract
You can manage criteria that PingFederate evaluates to determine whether to issue an identity provider
(IdP) adapter contract token for a user.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. Go to Authentication # Integration # IdP Adapters.

2. Click the name of the existing instance you want to change from the Instance Name list.

3. Click Adapter Contract Mapping # Configure Adapter Contract # Issuance Criteria.

Copyright ©2024

 | Administrator's Reference Guide | 403

4. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Adapter Select to evaluate attributes from the IdP adapter instance.

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

As the HTTP Request context value is retrieved as a Java object rather
than text, attribute mapping expressions are more appropriate to evaluate
and return values.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

5. From the Attribute Name list, select the attribute to be evaluated.

6. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

7. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

Copyright ©2024

 | Administrator's Reference Guide | 404

8. In the Error Result field, enter a custom error message.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

9. Click Add.

10. Optional: Repeat to add more criteria.

11. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing an IdP adapter contract
From the Summary tab in the Adapter Contract Mapping workflow, you can review an adapter contract
and make changes as needed.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Reviewing and saving an IdP adapter configuration
Review your IdP configuration and save your changes on the Summary tab.

Steps

▪ To keep your changes, click Save.
▪ To amend your configuration, click the name of the corresponding tab and then follow the configuration

wizard to complete the task.
▪ To discard your changes, click Cancel.

Copyright ©2024

 | Administrator's Reference Guide | 405

Authentication applications and the authentication API
The PingFederate authentication API is a JSON-based API that enables end-user interactions, such as
credential prompts, to be handled by an external web application. This API does so by providing access to
the current state of the flow as an end user steps through a PingFederate authentication policy.

Authentication flows are initiated through browser-based single sign-on (SSO) application endpoints,
such as /idp/startSSO.ping, or a protocol request, such as an OpenID Connect authentication
request received at the authorization endpoint: /as/authorization.oauth2. As PingFederate runs the
configured authentication policy, if it encounters an API-capable adapter or selector, and an authentication
application is configured for the policy, PingFederate redirects to the authentication application's URL,
passing the ID of the flow in the flowId query parameter.

The authentication application can then retrieve the current state of the flow by issuing a GET request to
the /pf-ws/authn/flows/{flowId} endpoint. The _links field in the response lists the available
authentication actions that can be performed from the current state. To invoke an action, the authentication
application sends a POST request to the /pf-ws/authn/flows/{flowId} endpoint. The action ID is
specified via the Content-Type HTTP request header in the format

application/vnd.pingidentity.<actionId>+json

When the application invokes an action, PingFederate responds either with the next state for the flow or an
error.

When the user completes the authentication policy steps successfully, the authentication API returns a
RESUME status to the authentication application. This status indicates that the API client should redirect
the user's browser to the resumeUrl specified in the response. PingFederate will then be responsible for
the final step in the flow, such as passing a SAML assertion to a partner. A RESUME status will also be sent
if PingFederate encounters an identity provider (IdP) connection in the policy tree, or an IdP adapter or
selector that is not API-capable. When the API client redirects the user, PingFederate will take the steps
needed to invoke the authentication source.

If the user has interacted with an authentication application and the flow terminates with an error, the API
client will receive a FAILED status from the API.

Authentication applications must be highly trusted. See Denying authentication applications access to the
authorization endpoint on page 408 for more information on security considerations for authentication
applications.

 Note:

To avoid issues with third-party cookies in some browsers, give the authentication application the same
parent domain as the PingFederate base URL.

Key concepts

Flow

The SSO transaction invoking the authentication API.

States

The available states (if any) for a given API-enabled adapter or selector.

Current state

Indicates what the adapter or selector is ready to do next.

Actions

The available actions (if any) for a given state.

Copyright ©2024

 | Administrator's Reference Guide | 406

Default authentication application

In addition to specifying an authentication application for each policy, you can also configure a default
application. PingFederate uses the default application if it encounters an API-capable adapter outside of
a policy tree. For example, the default application activates if the user navigates to the Change Password
endpoint, /ext/pwdchange/Identify, or the Account Recovery endpoint, /ext/pwdreset/
Identify. PingFederate also uses the default application if authentication policies are disabled, or if the
flow falls through to a default authentication source.

Managing authentication applications
You can create and manage authentication applications that use the Authentication API.

About this task

Authentication applications display user interfaces to collect credentials when authentication is completed
through the PingFederate authentication API. The default authentication application is used for
authentication sources that support the authentication API functionality and are invoked directly, rather
than as part of an authentication policy.

Steps

1. To manage authentication applications, go to Authentication # Integration # Authentication API
Applications.

2. To toggle the availability of authentication API support, select or clear the Enable Authentication API
check box.

This check box is not selected by default.

3. To toggle the availability of the Authentication API Explorer, select or clear the Enable API Explorer
check box.

Applicable and shown if the Enable Authentication API check box is selected.

When shown, this check box is selected by default.

4. Under the Default Authentication Application section, perform any of the following actions.

Option Action

Default Authentication Application Select an application from the drop-down
to designate as the default authentication
application.

Check Usage Click to open a pop-up window listing the
configurations in which the authentication is
used. Only available for the default authentication
application.

Add Authentication Application Click to add a new authentication. See
Configuring authentication applications on page
407.

Delete/Undelete Click to remove an authentication application or
cancel the removal request.

5. To save your changes, click Save.

Copyright ©2024

 | Administrator's Reference Guide | 407

Configuring authentication applications
You can create or configure an authentication application that employs the Authentication API.

Steps

1. Go to Authentication # Integration # Authentication API Applications.
Choose from:

▪ To create a new application, click Add Authentication Application.
▪ To modify an existing application, click the Application Name.

2. In the Authentication Application window, provide information for each field.

For more information, see the following table.

Field Description

Name The name of the authentication application.

Description An optional description of the authentication application.

URL The URL of the authentication application.

Additional Allowed
Origins

Enter any number of trusted origins to enable cross-origin resource sharing
(CORS) support for the authentication API endpoint.

Once configured, client-side web applications from the trusted origins are
allowed to make requests to the PingFederate authentication API endpoint.
For more information about CORS, see W3C's recommendation on Cross-
Origin Resource Sharing.

Sample entry Expected behavior

https://
www.example.com

CORS requests originating from https://
www.example.com are allowed.

https://
www.example.com:8080

CORS requests originating from https://
www.example.com:8080 are allowed.

https://
www.example.com:*

CORS requests originating from https://
www.example.com:<any port> are allowed.

 Note:

Given this sample entry, a port number is required in
the Origin request header.

 Important:

While using the wildcard character provides the convenience of allowing
multiple origins with one entry, consider adding individual origins to limit
CORS requests to a list of trusted hosts.

Click Add to save an entered origin. Repeat to add multiple origins.

3. To keep your configuration, click Save to or click Cancel to discard any changes made.

Copyright ©2024

https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cors-protocol

 | Administrator's Reference Guide | 408

Denying authentication applications access to the authorization endpoint
You can deny authentication applications CORS access to the PingFederate OAuth authorization endpoint.

About this task

Authentication applications must be highly trusted because they have CORS access to the OAuth
authorization endpoint /as/authorization.oauth2. They can use an existing session with
PingFederate to get tokens for any OAuth client that does not require authentication. Browser-based
applications need this level of access to use the redirectless mode.

If your deployment does not need this redirectless mode, you can deny authentication applications CORS
access to the OAuth authorization endpoint. Applications will still have CORS access to the /pf-ws/
authn/flows endpoint but will not be able to directly retrieve OAuth tokens.

Steps

1. On the administrative console node, open the file authn-api-cors-configuration.xml in the
server/default/data/config-store directory.

2. Add the following line in the <con:config> section:

<con:item name="urlPatterns">/pf-ws/authn/flows(/*)?</con:item>

3. Restart PingFederate if it is running as a standalone instance. Otherwise, use the administrative
console to replicate the change to the cluster.

Configuring a default URL and error message
As an identity provider (IdP), you can optionally prompt end users to confirm their single logout (SLO)
requests and provide a default URL indicating a successful SLO to the end-user, if no other page is
designated.

About this task

You can also customize an error message to be displayed as part of the error page rendered in the
end-user's browser if an error occurs during IdP-initiated single sign-on (SSO). For example, you might
consider modifying the default text to include useful information regarding whom the user should contact or
what their next step should be.

Your application or your partner's application can supply the SLO URL at runtime. However, if none is
provided, PingFederate will use the default value you enter on this window. For more information, see IdP
endpoints on page 1167.

If you leave the default URL blank, PingFederate provides a built-in landing page for the user. This web
page is among the templates you can modify with your own branding or other information. For more
information, see Customizable user-facing pages on page 820).

Steps

1. Go to Authentication # Integration # IdP Default URL.

2. Select the check box to prompt the user to confirm SLO.

3. Enter a default URL to send the user to on successful SLO.

4. Enter a custom error message to display on unsuccessful SLO.

 Note:

The error message is displayed only when the application calling the start-SSO endpoint does not
explicitly provide its own error page URL. The default entry in this field is used to localize the message.
For information about how to use the PingFederate localization feature, see Localizing messages for

Copyright ©2024

 | Administrator's Reference Guide | 409

end users on page 839. If localization is not needed, you can also specify a default message in this
field.

5. Click Save to save your changes.

Viewing IdP application endpoints
Web-application developers at your site need to know the application endpoints to initiate transactions
through PingFederate.

Steps

▪ Go to System # Endpoints # IdP Application Endpoints to see a list of endpoints and descriptions
applicable to your federation role.

These endpoints are built into PingFederate and cannot be changed.

For specific parameters required or allowed for these endpoints, see IdP endpoints on page 1167 and
System-services endpoints on page 1186.

IdP protocol endpoints
PingFederate provides a list of identity provider (IdP) protocol endpoints and exportable metadata for your
configuration.

You can find a list of applicable SAML, WS-Federation, and WS-Trust STS endpoints in System #
Endpoints # IdP Endpoints. The pop-up window displays only those endpoints related to the federation
protocols enabled on System # Server # Protocol Settings # Federation Info. These endpoints are built
into PingFederate and cannot be changed.

Your federation partners or security token service (STS) clients need to know the applicable IdP services
endpoints to communicate with your PingFederate server. Configured service endpoints for SAML
connections are included in metadata export files.

PingFederate provides a favicon for all protocol endpoints. For more information, see Customizing the
favicon for application and protocol endpoints on page 858.

The following table describes each endpoint.

Service URL and Description

Single Logout Service
(SAML 2.0)

/idp/SLO.saml2

The URL that receives and processes logout requests and responses.

Single Sign-on Service
(SAML 2.0)

/idp/SSO.saml2

The SAML 2.0 implementation URL that receives authentication requests for
processing.

Artifact Resolution
Service (SAML 2.0)

/idp/ARS.ssaml2

The SOAP endpoint that processes artifacts returned from a federation partner
to retrieve the referenced XML message on the back channel. See the note at
the end of this table.

Attribute Query Service
(SAML 2.0)

/idp/attrsvc.ssaml2

The SAML implementation that receives and processes attribute requests. See
the note at the end of this table.

Single Sign-on Service
(SAML 1.x)

/idp/isx.saml1

The SAML 1.x implementation of IdP intersite transfer service (ISX) to which
clients are redirected for single sign-on (SSO) requests.

Copyright ©2024

 | Administrator's Reference Guide | 410

Service URL and Description

Artifact Resolution
Service (SAML 1.x)

/idp/soap.ssaml1

The SOAP endpoint that processes artifacts returned from a federation partner
to retrieve the referenced XML message on the back channel. See the note at
the end of this table.

Single Sign-on Service
(WS-Federation)

/idp/prp.wsf

The WS-Federation implementation URL that receives and processes security-
token requests and single log-out (SLO) messages.

WS-Trust STS (two
endpoints)

/idp/sts.wst

The SOAP endpoint that receives and processes security-token requests from
STS clients (web service clients at the IdP site) to be exchanged for a SAML
token based on the configured service provider (SP) connection.

/pf/sts.wst

Initiates direct STS token-to-token exchange and token validation from an IdP
token processor to an SP token generator, when that feature is configured. For
more information, see Token translator mappings on page 390.

 Note:

If multiple token-processor instances of the same type are configured
for the same connection or token-to-token mapping, a query parameter,
TokenProcessorId, must be added to either of these endpoints. For more
information, see Managing token processors on page 978.

See the note at the end of this table.

 Important:

If mutual SSL/TLS is used for authentication, a secondary PingFederate listening port must be configured
and used by partners or STS clients for the relevant endpoints—*.ssaml* and *.wst For more
information, see Configuring PingFederate properties on page 771.

Virtual server ID support

For SAML connections using multiple virtual server IDs, each virtual server ID has its own set of protocol
endpoints. For more information, see Multiple virtual server IDs on page 105. You can export connection
metadata for your partner from System # Protocol Metadata # Metadata Export. For more information,
see Exporting connection-specific SAML metadata on page 881.

For WS-Federation (and SAML) connections using multiple virtual server IDs, you can provide your partner
the federation metadata endpoint, /pf/federation_metadata.ping, with the PartnerSpId and
vsid parameters, as in the following example.

Partner's entity
ID

Your virtual
server ID

Federation metadata URL

SP idev1 https://www.example.com/pf/federation_metadata.ping?
PartnerSpId=SP&vsid=idev1

Copyright ©2024

 | Administrator's Reference Guide | 411

Partner's entity
ID

Your virtual
server ID

Federation metadata URL

idev2 https://www.example.com/pf/federation_metadata.ping?
PartnerSpId=SP&vsid=idev2

In this example, the base URL and the runtime port of your PingFederate server are www.example.com
and 443, respectively.

When the request includes the vsid parameter, the federation metadata endpoint returns information that
is specific for a given virtual server ID.

For WS-Trust STS, you can provide your partner the STS metadata endpoint /pf/sts_mex.ping with
the PartnerSpId and vsid parameters. When the STS metadata request includes the vsid parameter,
the STS metadata endpoint returns information that is specific for a given virtual server ID.

For more information about these metadata endpoints, see System-services endpoints on page 1186.

 Note:
The virtual server ID concept does not apply to the /pf/sts.wst endpoint because token-to-token
exchange does not involves any connections. As needed, you can pass the token-to-token endpoint to
your partners as-is.

SP connection management
As an identity provider (IdP), you manage connection settings to support the exchange of federation-
protocol messages such as SAML, WS-Federation, or WS-Trust with a service provider (SP) or security
token service (STS) client application at your site.

The settings your IdP manages include:

▪ User attributes that you expect to send in a single sign-on (SSO) token, including SAML assertions,
WS-Trust STS SAML tokens, or WS-Federation JSON Web Tokens (JWT).

▪ User attributes that are sent using the SAML Attribute Query profile, if that profile is used. For more
information, see Configuring the Attribute Query profile in an SP connection on page 451.

▪ The protocol, profiles, and bindings of the connection, including detailed security specifications
such as the use of back-channel authentication, digital signatures, signature verification, and XML
encryption

To establish a connection, you and your partner must decide this information in advance. For more
information, see Federation planning checklist on page 104.

If your agreement includes sending assertions containing attribute values from local datastores, you must
define the required datastores. For more information, see Datastores on page 886.

Administrative interface

Manage connection settings using the SP Affiliations window, accessed from System # Protocol
Metadata, which organizes the settings into a series of primary tasks.

Some primary tasks have one or more levels of sub task. Each primary or sub task has its own tab for
managing one or more settings. You can move to a sibling task using the Next or Previous button. If you
are on a sub task, you can also move to its parent task using the Done button.

When creating a new connection, you can save your progress using the Save Draft button. Not all
windows offer this option. When you reach the Activation & Summary tab, you must click Save to
complete the new connection.

When editing an existing connection, make changes and then click Save to commit your changes. You are
not required to step through all window to reach the Activation & Summary window before you can save
your changes.

Copyright ©2024

 | Administrator's Reference Guide | 412

 Note:

The Save button is available on most tabs. If a window does not show a Save button, click Next or Done
until you reach a window where you can use its Save button to commit your changes.

Accessing SP connections
The SP Connections window lists all service provider connections and displays up to 20 connections
at a time. As needed, you can use the pagination controls to navigate through your connections, narrow
connections by protocol type or status, or search for connection by name or ID.

About this task
A connection is included in the search results so long as its name or ID is a partial, case-insensitive match
to a search term.

Steps

▪ Go to Applications # Integration # SP Connections.
▪ To edit a connection, select the connection by its name. For the setting you want to make a change,

select the corresponding window title and then follow the configuration wizard to complete the task.
▪ To create a connection, click Create Connection and follow the on-screen steps.
▪ To copy a connection, click Select Action # Copy and then follow the on-screen steps.

This is most useful if the new connection and the source connection share many common setting
values.

 Note:

PingFederate doesn't include outbound provisioning configurations in connection copies. For more
information, see Configuring outbound provisioning on page 466.

▪ To export a connection, click Select Action # Export Connection and then save the XML file as
prompted.

This is useful in situations where you want to make a backup of a connection prior to changing it.
▪ To import a connection, click Import Connection. For more information, see Importing a connection

on page 414.

If the connection already exists, you have the option to overwrite the existing connection.

 Note:

Prior to the import, you can modify the XML file to suit your needs. The XML file can also be imported
to another PingFederate environment acting in the same federation role (IdP) at your site. The source
and the target must run the same version of PingFederate.

▪ To export metadata for any SAML Browser SSO connection, click Select Action # Export Metadata
and then follow the on-screen instructions.

Copyright ©2024

 | Administrator's Reference Guide | 413

▪ To update a SAML Browser SSO connection, click Select Action # Update with Metadata, then
follow the on-screen instructions. For more information, see Importing SP metadata on page 418.

You can update a connection via a metadata XML file or a metadata URL.

 Important:

The update operation might require additional configuration. Review the connection after the update
operation.

▪ Click the toggle to enable or disable a connection.
▪ To remove a connection, click Select Action # Delete.
▪ To override the verbosity of runtime transaction logging for all SP connections, click Show Advanced

Fields and the select the desired override option.

Override option Description

Off Select this option and let the per-connection Logging Mode configuration
determine the amount of information PingFederate records in the runtime
transaction log.

This is the default selection.

On Select this option, followed by one of the four logging modes, to set the
verbosity of runtime transaction logging for all SP connections. This is most
useful when troubleshooting an issue that affects multiple connections.

▪ To turn off automatic multi-connection error checking, click Show Advanced Fields # Disable
Automatic Connection Validation check box.

This check box is not selected by default.

Once selected or cleared, the state of this setting is also reflected on the Authentication #
Integration # IdP Connections window.

For more information about this advanced setting and its impact, see Configuring automatic
connection validation on page 811.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Resolving SP connection errors
You can diagnose and resolve service provider (SP) connection errors from the SP Connections menu.

About this task

PingFederate automatically validates configured connections before displaying them on the SP
Connections window. This validation ensures these connections have not been adversely affected by
any subsequent changes in the supporting components, such as an adapter instance or an authentication
policy contract.

If errors are found, the administrative console displays a visual cue next to the applicable connections.

Steps

1. Go to Applications # Integration # SP Connections.

2. To resolve the error, select the connection and follow the on-screen instructions to modify the
configuration, one connection at a time.

Copyright ©2024

 | Administrator's Reference Guide | 414

Importing a connection
You can import a connection in the Import Connection window.

About this task

 Note:

Prior to the import, you can modify the XML file to suit your needs. The XML file can also be imported to
another PingFederate environment acting in the same federation role. The source and the target must run
the same version of PingFederate.

Steps

1. Go to Applications # Integration # SP Connections.

2. Click Import Connection.

3. Click Choose File and browse to a connection XML file.

4. Select the Allow Update check box to overwrite an existing connection with the imported file.

5. Click Import and Done.

Updating a SAML connection using metadata
You can update an existing SAML connection using a metadata file or a metadata URL from your partner.

About this task

This manual update is independent from the optional and per-connection automatic update feature.

Steps

1. Go to Applications # Integration # SP Connections.

2. For the SAML connection that you want to update, click Select Action # Update with Metadata.

3. See the following steps to import or update metadata. Instructions vary depending on the medium of
the metadata.

Metadata medium Steps

Metadata XML File a. On the Import Metadata window, select the
File option.

b. Choose the metadata file, and then click
Next.

 Note:

If the metadata file is digitally signed but the
verification certificate is provided outside
of the metadata, import the metadata
verification certificate on the Import
Certificate tab, and then click Next.

c. On the Metadata Summary window, review
the signature information to evaluate the
authenticity of the metadata.

d. Click Save.

A metadata URL a. On the Import Metadata window, select the
URL option.

Copyright ©2024

 | Administrator's Reference Guide | 415

Metadata medium Steps

b. Select the metadata from the Metadata URL
list.

 Tip:

If the metadata you want is not shown in the
list, click Manage Partner Metadata URLs
and enter the URL in the text box.

c. Click Load Metadata.

 Note:

If there is a digital signature error, click
Manage Partner Metadata URLs to resolve
the issue.

d. Click Save.

4. On the Connections window, click Save.

Result

 Note:

If the endpoints in the metadata share the same base URL (protocol, hostname, and port), PingFederate
uses this information to populate the Base URL field. Consequently, individual endpoints on other windows
do not include this information. Only relative paths are shown.

Example

Example

A service provider (SP) has just changed its signing certificate and published a new metadata with the new
certificate. To minimize the impacts to your users, you as the identity provider (IdP) can update the SP
connection using the metadata immediately.

1. Access the SP Connectionswindow from Applications # Integration # SP Connections.
2. For the applicable SAML connection, click Select Action # Update with Metadata.
3. Follow the workflow to complete the task.

Choosing an SP connection template
The Connection Template tab allows you to choose a quick-connection template for new connection if
your installation includes an optional PingFederate SaaS Connector.

About this task

 Tip:

When you select a connection template, many connection settings are configured for you automatically.

Copyright ©2024

 | Administrator's Reference Guide | 416

Steps

1. Go to Applications # Integration # SP Connections.

2. Click Create Connection.

3. To use a template, select Use a template for this connection, then choose the template and enter
additional information as required.

 Important:

After you click Next, you cannot return to this window and make a different selection. If you intended to
use a different template or no template, you must create a new connection.

Choosing an SP connection type
You can manually create service provider (SP) connections in PingFederate using browser single sign-on
(SSO), WS-Trust security token service (STS), outbound provisioning, or any combination thereof.

About this task

If you are not using a connection template, which pre-configures browser-based SSO, indicate on the
Connection Type tab whether the connection to this partner is for Browser SSO, WS-Trust STS, outbound
provisioning, or any combination of them.

 Tip:

You can add STS, OAuth, and outbound provisioning support to any existing SSO connection, or vice
versa, at any time.

 Note:

If your partner's deployment supports multiple protocols and you intend to communicate using more
than one, you must set up a separate connection for each protocol. Each connection must use a unique
(partner) connection ID.

Steps

1. Go to Applications # Integration # SP Connections.

2. Click Create Connection.

3. Select Do not use a template for this connection.

Copyright ©2024

 | Administrator's Reference Guide | 417

4. To configure a connection for secure browser-based SSO, select the Browser SSO Profiles check
box.

If you are not using a connection template, you must select the applicable protocol from the list when
establishing a new connection.

For a WS-Federation connection, select the desired token type, either SAML 1.1, SAML 2.0, or JWT
(JSON Web Token).

 Note:

For information about creating a SAML application, see Configuring a SAML application in
PingFederate.

 Tip:

If you are creating a WS-Federation connection to Microsoft Windows Azure Pack, select JWT as the
token type.

 Tip:

PingFederate can encrypt the subject and attributes of SAML 2.0 assertions.

For information about configuring encryption policies on a PingFederate identity provider (IdP), see
Configuring XML encryption policy (SAML 2.0).

For information about configuring encryption policies on a PingFederate SP, see Specifying XML
encryption policy (for SAML 2.0).

5. Optional: Choose one or both of the following depending on your configuration needs.

Connection Template Step

WS-TRUST STS Select the WS-Trust STS check box.

Outbound Provisioning Select Outbound Provisioning and then select
the provisioning type from the list.

6. If your PingFederate license manages connections by groups, select a license group for this
connection.

This option is not shown for unrestricted or other types of licenses.

7. To save your settings, click Next.

Choosing SP connection options
On the Connection Options tab, you can enable browser-based single sign-on (SSO), Attribute Query, or
both for the current connection.

Before you begin
For initial steps in creating a service provider (SP) connection, see Choosing an SP connection type on
page 416.

Copyright ©2024

https://docs.pingidentity.com/bundle/solution-guides/page/ozz1597769517562_1.html
https://docs.pingidentity.com/bundle/solution-guides/page/ozz1597769517562_1.html

 | Administrator's Reference Guide | 418

Steps

1. Choose one or more of the following options.

Connection option Description

Browser SSO Select to create a connection for browser-based
SSO.

IdP Discovery Select to enable identity provider (IdP) discovery.
This option is only available if you have
configured IdP discovery. For more information,
see Configuring standard IdP Discovery on page
862.

Attribute Query Select to create a connection that facilitates
the SAML 2.0 Attribute Query profile. For more
information, see Attribute Query and XASP on
page 43.

2. To save your changes, click Next.

Importing SP metadata
When creating or modifying service provider (SP) connections, PingFederate allows you to import
metadata from an XML file or a metadata URL.

About this task

If you are using one of the SAML protocols without a connection template, you can expedite the setup by
one of the following actions:

▪ Import a metadata file
▪ Select a metadata URL

When you select a metadata URL, also enables the automatic update option and checks the metadata
periodically. If detects changes in the partner's signing certificates for digital signature verification,
encryption key, or contact information, it updates the connection automatically. For better housekeeping,
the update process removes verification certificates from the connection when the partner no longer
maintains them in its metadata. In a clustered environment, automatically replicates verification certificates
and encryption key changes to all engine nodes. Offline engine nodes will also consume these changes
as they restart and rejoin the cluster. If you prefer to update the connection manually, you can clear the
Enable Automatic Reloading check box.

You can configure reload frequency at System # Protocol Metadata # Metadata Settings # Metadata
Lifetime tab. The default reload frequency is daily.

We recommend you turn on notifications for SAML metadata update events at System # Monitoring &
Notifications # Runtime Notifications.

 Note:

The notification message provides a list of the applicable items if the metadata contains changes that
require additional configuration.

After creating the connection, you can add, remove, or change the metadata URL associated with the
connection in the Metadata URL tab. In addition, you can toggle the Enable Automatic Reloading check
box for the connection.

 Tip:

Copyright ©2024

 | Administrator's Reference Guide | 419

Using a metadata URL with automatic reloading streamlines the configuration process. For example,
you can quickly establish a browser SSO connection to an InCommon-participating partner. For more
information, see www.incommon.org/participants.

Steps

1. Select from one of the following steps to import or update metadata.

Metadata medium Steps

Metadata file a. On the Import Metadata tab, select the File
option.

b. Choose the metadata file, and then click
Next.

 Note:

If the metadata contains multiple entries,
select the desired partner from the Select
Entity ID list and click Next.

 Note:

If the metadata file is digitally signed but the
verification certificate is provided outside
of the metadata, import the metadata
verification certificate on the Import
Certificate tab, and then click Next.

c. On the Metadata Summary tab, review
the signature information to evaluate the
authenticity of the metadata.

Metadata URL a. On the Import Metadata tab, select the URL
option.

b. Select the metadata from the Metadata URL
list.

 Tip:

If the metadata you want is not shown in the
list, click Manage Partner Metadata URLs.
For more information, see Manage Partner
metadata URLs on page 646.

c. Optionally, clear the Enable Automatic
Reloading check box to disable automatic
update.

 Note:

A warning will display if you do not have
runtime notifications enabled. To enable
these notifications, go to System #
Monitoring & Notifications # Runtime

Copyright ©2024

 | Administrator's Reference Guide | 420

Metadata medium Steps

Notifications and select the Notification for
SAML Metadata Update Events box.

d. Click Load Metadata.

 Note:

If the metadata contains multiple entries,
select the desired partner from the Select
Entity ID list and click Next.

 Note:

If there is a digital signature error, click
Manage Partner Metadata URLs to resolve
the issue.

2. Click Next.

Identifying the SP
On the General Info tab, you provide your partner's unique federation identifier, the display name of the
connection, and some other optional information, such as virtual server IDs, contact information, and
logging mode for runtime transaction logging.

Steps

1. For information on initial steps for managing SP connections, see Choosing an SP connection type on
page 416.

2. Provide the basic information to identify your partner.

See the following table for more information.

Field Description

Partner's Entity ID,
Issuer, Partner's
Realm, or Connection
ID

(Required)

The published, protocol-dependent, unique identifier of your partner.

For a SAML 2.0 connection, this is your partner's SAML Entity ID.

For a SAML 1.x connection, this is the Audience your partner advertises.
This ID may have been obtained out-of-band or using a SAML metadata
file.

For a WS-Federation connection, this is your partner's Realm.

For a security token service (STS)-only connection, you can designate any
unique identifier.

Connection Name

(Required)

A plain-language identifier for the connection. For example, a company
or department name. This name is displayed in the connection list on the
administrative console.

Virtual Server IDs If you want to identify your server to this connection partner using an ID
other than the one you specified at System # Server # Protocol Settings
Federation Info, enter a virtual server ID in this field and click Add.

Enter additional virtual server IDs as needed.

Copyright ©2024

 | Administrator's Reference Guide | 421

Field Description

Base URL The fully qualified host name and port on which your partner's federation
deployment runs. For example, https://www.example.com:9031. This entry
is an optional convenience, allowing you to enter relative paths to specific
endpoints, instead of full URLs, during the configuration process.

Company The name of the partner company to which you are connecting.

Contact Name The contact person at the partner company.

Contact Number The phone number of the contact person at the partner company.

Contact Email The email address for the contact person at the partner company.

Application Name The name of the application, accessible through the IdP Adapter interface
IdpAuthenticationAdapterV2 in the PingFederate Java SDK.

This field is not applicable to an STS-only connection.

Application Icon URL The URL of the application icon, accessible through the IdP Adapter
interface IdpAuthenticationAdapterV2 in the PingFederate Java
SDK.

Note that this field is not applicable to an STS-only connection.

Logging Mode The level of transaction logging applicable for this connection.

3. After entering the relevant identification information, click Next.

Populating extended property values for SP connections
Add, modify, or delete extended properties for service provider (SP) connections on the Extended
Properties window.

About this task

Extended property values can serve as metadata. They can also help drive authentication requirements.
For more information, see Extended properties on page 877.

Steps

1. Go to System # Server # Extended Properties.

2. Enter the Name and Description for the property you want to add.

3. Optional: Check the Multivalued box to indicate that the property permits multiple values.

4. Click Add.

Configure IdP Browser SSO
Browser-based single sign-on (SSO), also known as Browser SSO, relies on a user's web browser and
HTTP requests to broker identity-federation messaging in XML or JSON web token (JWT) between an
identity provider (IdP) and a service provider (SP).

Go to Applications # Integration # SP Connections to access an existing or create a new SP
connection. For more information, see Accessing SP connections on page 412.

From the Browser SSO tab inside your SP connection instance, click Configure Browser SSO and follow
the steps below based on your federation protocol.

 Tip:

Many steps involved in setting up a federation connection are protocol-independent. They are required
steps for all connections, regardless of the associated standards. For more information, see Federation
roles on page 28.

Copyright ©2024

 | Administrator's Reference Guide | 422

Some steps are required under the applicable protocol, while others are optional. Still others are required
only based on certain selections. The administrative console determines the required and optional steps
based on the protocol and dynamically presents additional requirements or options based on selections.

The following sections provide sequential information about every step you might encounter while
configuring browser-based SSO, depending on the protocol you are using for a particular connection.

SAML 2.0 configuration steps

▪ Choosing SAML 2.0 profiles on page 423
▪ Setting an SSO token lifetime on page 424
▪ Configuring SSO token creation on page 424

▪ Choosing an identity mapping method for IdP SSO on page 424
▪ Setting up an attribute contract on page 427
▪ Managing authentication source mappings on page 430

▪ Configuring protocol settings on page 442

▪ Setting Assertion Consumer Service URLs (SAML) on page 443
▪ Specifying SLO service URLs (SAML 2.0) on page 447
▪ Choosing allowable SAML bindings (SAML 2.0) on page 448
▪ Setting an artifact lifetime (SAML) on page 448
▪ Specifying artifact resolver locations (SAML 2.0) on page 449
▪ Defining signature policy (SAML) on page 449
▪ Configuring XML encryption policy (SAML 2.0) on page 450

SAML 1.x configuration steps

▪ Setting an SSO token lifetime on page 424
▪ Configuring SSO token creation on page 424

▪ Choosing an identity mapping method for IdP SSO on page 424
▪ Setting up an attribute contract on page 427
▪ Managing authentication source mappings on page 430

▪ Configuring protocol settings on page 442

▪ Setting Assertion Consumer Service URLs (SAML) on page 443
▪ Setting a default target URL (SAML 1.x) on page 444
▪ Setting an artifact lifetime (SAML) on page 448
▪ Defining signature policy (SAML) on page 449

WS-Federation configuration steps

▪ Setting an SSO token lifetime on page 424
▪ Configuring SSO token creation on page 424

▪ Choosing an identity mapping method for IdP SSO on page 424
▪ Setting up an attribute contract on page 427
▪ Managing authentication source mappings on page 430

▪ Configuring protocol settings on page 442

▪ Defining a service URL (WS-Federation) on page 445

After configuring SSO settings, you will normally need to configure authentication credentials, the range of
which depends on your SSO selection. For more information, see Configuring credentials on page 458.
You might need to complete further configuration tasks for new or modified connections, depending on the
selected options on the Connection Options tab.

Copyright ©2024

 | Administrator's Reference Guide | 423

Choosing SAML 2.0 profiles
A SAML profile is the message-interchange scenario that you and your federation partner have agreed to
use. SAML binding, by contrast, is the transport protocol of SAML messages.

About this task

On the SAML Profiles tab, select one or more SAML 2.0 profiles for your IdP Browser SSO configuration.

 Note:

The SAML Profiles tab is not shown for SAML 1.x connections because identity provider (IdP) single
sign-on (SSO) is assumed, single logout (SLO) profiles are not supported, and the server supports the
"destination-first" (SP-initiated) profile SSO automatically. This window is also not presented for WS-
Federation connections because profile selection is not required.

 Note:

When configuring a local loopback connection, in which one PingFederate instance is both the identity
provider and the service provider, disable the IdP-Initiated SLO and SP-Initiated SLO options on the
Browser SSO window's SAML Profiles tab. These options determine whether SAML logout requests
should be sent to the partner during the SLO flow. Those requests aren't necessary and can cause
unexpected behavior when the partner connection exists locally. All local sessions for loopback
connections are terminated during the SLO flow without the need to send SAML requests.

For SAML 2.0, PingFederate supports all IdP- and SP-initiated SSO and SLO profiles. For more
information on typical SSO and SLO profile configurations, including illustrations, see SAML 2.0 profiles on
page 33.

Steps

1. Go to Applications # Integration # SP connections.

2. Click on the SP connection you want to configure. For more information, see Accessing SP
connections on page 412.

3. On the Browser SSO tab, click Configure Browser SSO.

4. Select either IdP-Initiatied SSO or SP-Initiated SSO or both, depending on your partner agreement.

You must select at least one SSO profile.

5. Select either IdP-Initiated SLO or SP-Initiated SLO or both, depending on your partner agreement.

6. Click Next to save your changes.

Copyright ©2024

 | Administrator's Reference Guide | 424

Setting an SSO token lifetime
Identity-federation standards require a window of time during which a SSO token is considered valid. Each
SSO token has an issuance time-stamp element and elements indicating the allowable lifetime of the SSO
token before and after the issuance time stamp.

Before you begin
For previous steps in configuring Browser SSO, see Choosing SAML 2.0 profiles on page 423. For more
information about managing service provider (SP) connections, see Accessing SP connections on page
412.

About this task

PingFederate gives you the option to change the valid lifetime of the single sign-on (SSO) token.

Steps

1. Optional: Override the default values for the following fields.

Field Description

Minutes Before The amount of time before the SSO token was issued during which it is to
be considered valid.

Minutes After The amount of time after the SSO token was issued during which it is to be
considered valid.

The default value is 5 minutes for both fields.

2. Click Next to save your changes.

Configuring SSO token creation
As an identity provider (IdP), you must specify how PingFederate obtains user-authentication information
and use it to create single sign-on (SSO) tokens appropriate for your service provider (SP) partner,
including additional user attributes as needed.

About this task

If you are a federation hub bridging a service provider to one or more identity providers, you can associate
one or more authentication policy contracts to the SP connection. For more information, see Federation
hub use cases on page 99.

The configuration involves choosing an identity-mapping method, if applicable; establishing an attribute
contract, as needed; and mapping one or more IdP adapter instances, authentication policy contracts, or
both.

Steps

1. Go to Applications # Integration # SP Connections.

2. Click on the SP connection that you want to configure.

3. Follow the steps to reach the Browser SSO tab for your connection. For more information, see
Configure IdP Browser SSO on page 421.

4. On the Assertion Creation tab, click Configure Assertion Creation.

Choosing an identity mapping method for IdP SSO
In the Identity Mapping window, you choose the type of name identifier your partner requires. Your
selection might affect the way that the service provider (SP) looks up and associates your users at the SP
site. You and the SP should decide in advance which option to use.

The choices of name-identifier types depend on whether you use the SAML or WS-Federation protocol.
For more information, see one of the following.

Copyright ©2024

 | Administrator's Reference Guide | 425

▪ Selecting a SAML Name ID type on page 425
▪ Selecting a WS-Federation Name ID type on page 426

 Note:

The Identity Mapping window does not apply for connections using the WS-Federation protocol in
conjunction with JSON web token (JWT)-based single sign-on (SSO) tokens. Instead, work with the SP to
define an attribute contract that it can use to map users to accounts at the SP site.

Selecting a SAML Name ID type
You can choose a name identifier for your SAML Browser single sign-on (SSO) configuration on the
identity Mapping tab. The type of name identifier you select affects how your service provider (SP)
partner makes use of account mapping or account linking.

Before you begin
For previous steps in configuring Browser SSO, see Configure IdP Browser SSO on page 421. For more
information about managing service provider (SP) connections, see Accessing SP connections on page
412.

About this task

If your SP uses account linking, establishing an attribute contract is not required. However, depending
on your agreement, you can choose to supplement the account link with an attribute contract. In this
configuration, the account link is used to determine the user's identity, while the additional attributes
might be used for authorization decisions, customized web pages, and so on, at the SP site. For more
information, see User attributes on page 92.

 Important:

If you change your configuration to use account linking without additional attributes, any existing attribute
contract will be discarded in favor of the new configuration.

Steps

1. Select the type of name identifier that you and your SP have agreed to use.

Option Description

Standard Select if you want to send a known attribute to identify a user, for example,
a username or an email address.

In this scenario, the SP often uses account mapping to identify the user
locally.

Pseudonym Select if you and the SP have agreed to use a unique, opaque persistent
name identifier, which cannot be traced back to the user's identity at the
IdP.

The SP might also use the identifier for account linking to make a persistent
association between the user and a specific local account.

Select the Include attributes in addition to the pseudonym box if you
want to set up an attribute contract to use in conjunction with an opaque
identifier. For more information, see Setting up an attribute contract on
page 427.

Copyright ©2024

 | Administrator's Reference Guide | 426

Option Description

Transient Select Transient to enhance the privacy of a user's identity. Unlike a
pseudonym, a transient identifier is different each time a user initiates SSO.

An example application for this selection might be when an SP provides
generalized group accounts based on organizational rather than individual
identity.

Select the Include attributes in addition to the transient identifier box
if you want to set up an attribute contract to use in conjunction with an
opaque identifier. For more information, see Setting up an attribute contract
on page 427.

2. Click Next to save your changes.

Next steps
If you opted to include attributes in your name identifier, your next step will be to define the attributes. For
more information, see Setting up an attribute contract on page 427. Otherwise proceed to Managing
authentication source mappings on page 430.

Selecting a WS-Federation Name ID type
You can choose a name identifier for your WS-Federation Browser single sign-on (SSO) configuration
on the Identity Mapping tab. Your selection might affect the way the service provider (SP) looks up and
associates your users to their local accounts.

Before you begin
For previous steps in configuring Browser SSO, see Configure IdP Browser SSO on page 421. For more
information about managing service provider (SP) connections, see Accessing SP connections on page
412.

About this task
The Identity Mapping window is not applicable to connections using the WS-Federation protocol in
conjunction with JSON web token (JWT)-based SSO tokens. Instead, work with the SP to define an
attribute contract that it can use to map users to accounts at the SP site.

Steps

1. Select the type of name identifier that you and your SP have agreed to use.

Option Description

Email Address This attribute is commonly used as a unique identifier for SSO and single
logout (SLO). Make this selection, for example, if a user logs in using
an email address or if the information is available for lookup in a local
datastore.

User Principal Name The username or other unique ID of the subject initiating the transaction.
Make this selection, for example, if a username will be available from the
current user session as part of a cookie or can be derived from a local
datastore.

Common Name This selection provides for anonymous SSO to your SP, generally using
a hard-coded generalized sign on. Make this selection if your partner
agreement involves a many-to-one use case, such as if the SP has a group
account set up for all users in a particular domain.

2. Click Next to save your changes.

Copyright ©2024

 | Administrator's Reference Guide | 427

Setting up an attribute contract
An attribute contract is the set of user attributes that you and your partner have agreed will be sent in the
single sign-on (SSO) tokens for this connection.

About this task

You specify the attributes for the name identifier on your WS-Federation or, optionally, for your SAML
configuration on the Attribute Contract tab. For more information, see Attribute contracts on page 92.

WS-Federation connections require you to define attribute contracts. For SAML connections, attribute
contracts are optional if you are sending either pseudonym or transient identifiers to the partners. For more
information, see Selecting a SAML Name ID type on page 425.

When establishing an attribute contract, you can change the name format when certain conditions are
met. The following table summarizes the conditions and the possible actions that you can perform on the
Attribute Contract tab.

Protocol Identity mapping Attribute contract SAML_SUBJECT Additional
attributes

SAML 2.0 or SAML
1.1

Standard Required Built-in.

Subject name
format can be
changed by
selecting a value
from a list.

Optional.

Attribute name
format can be
changed by
selecting a value
from a list.

SAML 2.0 or SAML
1.1

Pseudonym or
Transient

Required only
if the Include
attributes ... check
box is selected
on the Identity
Mapping window.
Otherwise the
Attribute Contract
window is not
shown.

Assumed and
cannot be added
as an additional
attribute.

At least one is
required.

Attribute name
format can be
changed by
selecting a value
from a list.

SAML 1.0 Standard Required Built-in.

Subject name
format can be
changed by
selecting a value
from a list.

Optional.

There is no
attribute name
format.

SAML 1.0 Pseudonym or
Transient

Required only
if the Include
attributes ... check
box is selected
on the Identity
Mapping window.
Otherwise the
Attribute Contract
window is not
shown.

Assumed and
cannot be added
as an additional
attribute.

At least one is
required.

There is no
attribute name
format.

Copyright ©2024

 | Administrator's Reference Guide | 428

Protocol Identity mapping Attribute contract SAML_SUBJECT Additional
attributes

WS-Federation in
conjunction with
SAML 1.1 as the
token type

Email address, user
principal name, or
common name

Required Built-in.

There is no subject
name format.

Optional.

Attribute name
format can be
changed by
selecting a value
from a list.

WS-Federation in
conjunction with
SAML 2.0 as the
token type

Email address, user
principal name, or
common name

Required Built-in.

There is no subject
name format.

Optional.

Attribute name
format can be
changed by
selecting a value
from the list.

WS-Federation in
conjunction with
JWT as the token
type

Not applicable Required Not applicable At least one is
required.

There is no
attribute name
format.

 Tip:

If you are creating or updating a SAML service provider (SP) connection, consider using the partner's
metadata to do so. If the metadata contains the required information, PingFederate automatically populates
the attribute contract for you. For more information, see Importing SP metadata on page 418.

Steps

1. Follow the required steps to create an SSO token depending on your federation protocol. For more
information, see Configure IdP Browser SSO on page 421.

2. If you are using a SAML protocol, on the Identity Mapping tab you must select either Pseudonym or
Transient, and also select the Include Attributes box to access the Attribute Contract tab. For more
information, see Selecting a SAML Name ID type on page 425.

3. Optional: Click the Attribute Name Format drop-down to select a different format for the built-in
subject identifier, SAML_SUBJECT.

Applicable if you and the SP have agreed to a specific format. For more information, see Attribute
contracts on page 92.

 Note:

As needed, you can customize name-format alternatives in the <pf_install>/pingfederate/
server/default/data/config-store/custom-name-formats.xml configuration file. Restart
PingFederate to activate any changes made to this file.

Copyright ©2024

 | Administrator's Reference Guide | 429

4. Extend the contract with additional attributes.

a. Enter the name of an additional attribute in the text field under Extend the Contract.

Attribute names are case-sensitive and must correspond to the attribute names expected by your
partner.

 Tip:

You can add a special attribute, SAML_AUTHN_CTX, to indicate to the SP, if required, the type of
credentials used to authenticate to the identity provider (IdP) application.

The value of this attribute can then be mapped later on the Attribute Contract Fulfillment
window. For more information, see Configuring contract fulfillment for IdP Browser SSO on
page 439. The mapped value overrides the authentication context provided by the IdP
adapter instance or the Requested AuthN Context Authentication Selector instance, through an
authentication policy. If no authentication context is provided by the SAML_AUTHN_CTX attribute,
the IdP adapter instance, or the Requested AuthN Context Authentication Selector instance,
PingFederate sets the authentication context as follows:

▪ For SAML 1.x urn:oasis:names:tc:SAML:1.0:am:unspecified
▪ For SAML 2.0 urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified

 Tip:

If you are configuring a WS-Federation connection to Microsoft Windows Azure Pack, add upn to
the JWT's attribute contract.

 Tip:

If you are configuring a SAML connection to an InCommon participant (see Incommon
federation participants), the attribute contract might contain or require attributes such as
urn:oid:0.9.2342.19200300.100.1.3 and urn:oid:2.5.4.42, which are standard
names under various specifications, such as RFC4524 andRFC4519 . The following table
describes a subset of the object IDs referenced by the most common attributes used by
InCommon participants.

Object ID value Description

0.9.2342.19200300.100.1.3 mail

1.3.6.1.4.1.5923.1.1.1.6 eduPersonPrincipalName

1.3.6.1.4.1.5923.1.1.1.7 eduPersonEntitlement

1.3.6.1.4.1.5923.1.1.1.9 eduPersonScopedAffiliation

1.3.6.1.4.1.5923.1.1.1.10 eduPersonTargetedID

2.5.4.3 cn

2.5.4.4 sn

2.5.4.10 o

2.5.4.42 givenName

Copyright ©2024

https://www.incommon.org/federation/incommon-federation-participants
https://www.incommon.org/federation/incommon-federation-participants
https://tools.ietf.org/html/rfc4524
https://tools.ietf.org/html/rfc4519

 | Administrator's Reference Guide | 430

Object ID value Description

2.16.840.1.113730.3.1.241 displayName

For other attributes, see the metadata from your partner. The FriendlyName values, if available,
should provide additional information about the attributes. Alternatively, third-party resources, such
as https://www.ldap.com/ldap-oid-reference and http://www.oid-info.com/, might help as well.

b. Select an attribute name format from the list.

Applicable if you and the SP have agreed to a specific format. For more information, see Attribute
contracts on page 92.

 Note:

As needed, you can customize name-format alternatives in the <pf_install>/
pingfederate/server/default/data/config-store/custom-name-formats.xml
configuration file. Restart PingFederate to activate any changes made to this file.

c. Click Add.
d. Repeat until all desired attributes are defined.

5. Optional: Click Edit to change the configuration of an existing attribute.

6. Optional: Click Delete to remove an existing attribute.

7. Click Next to save changes.

Managing authentication source mappings
On the Authentication Source Mapping tab, you can map identity provider (IdP) adapters and
authentication policies to authenticate users to your service provider (SP).

About this task

IdP adapters are responsible for handling user authentication as part of an single sign-on (SSO) operation.
A configured adapter in PingFederate is known as an adapter instance.

In a basic scenario, you map an IdP adapter instance to a SP connection on the Authentication Source
Mapping tab and complete its mapping configuration through a series of sub tasks. When a user starts
an SSO request, the corresponding IdP adapter is triggered to authenticate the user. Upon successful
authentication, PingFederate creates and sends an SSO token to the SP based on the connection settings.
As needed, you can map multiple IdP adapter instances to an SP connection, the same IdP adapter
instance to multiple SP connections, or a combination of them.

If you use authentication policies to route users through a series of authentication sources and end
each successful policy path with an authentication policy contract (APC), you can map the APC to your
connection. Like IdP adapter instances, you can map multiple APCs to an SP connection, the same APC to
multiple SP connections, or a combination of them.

 Tip:

For more information about authentication policies and contracts, see Authentication policies on page
219.

You can also map one or more APCs to an SP connection to bridge a service provider to one or more
identity providers. In this scenario, PingFederate is a federation hub for both sides. PingFederate uses
APCs to associate this SP connection with the applicable IdP connections to the identity providers. Each
APC has its own set of attributes which you map values to the SSO tokens.

Copyright ©2024

https://www.ldap.com/ldap-oid-reference
http://www.oid-info.com/

 | Administrator's Reference Guide | 431

 Tip:

For more information about the federation hub, see Federation hub use cases on page 99.

Regardless of how many IdP adapter instances and APCs are mapped to an SP connection, PingFederate
uses only one adapter instance or policy path to authenticate a user. You can leave the decision to the
users or create authentication policies to mandate authentication requirements. Because each adapter
instance or APC could return different user attributes, each mapping must define how the attribute contract
is fulfilled in its mapping configuration.

Steps

1. For initial steps to configure SP connections, see Accessing SP connections on page 412.

2. For initial steps to configure Browser SSO, see Configure IdP Browser SSO on page 421.

3. For initial steps to configure assertion creation. see Configuring SSO token creation on page 424.

4. On the Authentication Source Mapping tab, select one of the following.
Choose from:

▪ Click Map New Adapter Instance to map a new IdP Adapter instance. For more information, see
Mapping an adapter instance on page 431.

▪ Click Map New Authentication Policy to map a new APC. For more information, see Mapping an
authentication policy on page 432

▪ Click on an existing instance to edit its configuration.
▪ Click Delete to remove an existing adapter instance or APC. Click undelete to cancel the

removal request

When authentication sources, such as IdP adapter instances or connection mapping contracts, are
restricted to certain virtual server IDs, the allowed IDs are displayed under Virtual Server IDs.

5. When your authentication sources have been mapped, click Next save your changes.

Mapping an adapter instance
After extending your attribute contract, you can map adapter instances on the Authentication Source
Mapping tab.

Steps

1. For initial steps, see Managing authentication source mappings on page 430.

2. On the Authentication Source Mapping tab, click Map New Adapter Instance.

3. On the Adapter Instance tab, select an adapter instance from the Adapter Instance drop-down list.

Copyright ©2024

 | Administrator's Reference Guide | 432

4. Optional: If you want to customize one or more adapter settings for this connection alone, select the
Override Instance Settings check box.

 Note:
If you are editing a currently mapped adapter instance, you can toggle Override Instance Settings.
Clearing it removes all previously overridden settings for this connection. Selecting it provides you the
opportunity to customize adapter settings specifically for this connection.

 Tip:

Alternatively, you can create child adapter instances of a base adapter instance (with overrides) so
that customized settings can be applied to several connections. For more information, see Hierarchical
plugin configurations on page 90.

Result: Selecting the Override instance settings box will add the Override Instance tab to the
navigation bar. For more information, see Overriding an IdP adapter instance on page 432

5. Click Next, and refer to the following topics to complete the configuration.

Mapping an authentication policy
After extending your attribute contract, the Authentication Source Mapping tab gives you the option to
map an authentication policy.

Steps

1. Click Map New Authentication Policy.

2. On the Authentication Policy Contract tab, select a contract from the Authentication policy
contract list.

If you need to create a new contract or manage an existing contract, click Manage Policy Contracts.

3. Click Next, and refer to the following topics to complete the configuration.

Overriding an IdP adapter instance
On the Override Instance window, you can start a series of sub tasks to override adapter settings
specifically for this connection.

About this task

 Note:

Any changes to the base adapter instance are propagated to a connection as long as you don't override
those changes.

Steps

1. For initial steps to configure authentication source mapping, see Managing authentication source
mappings on page 430.

2. On the Adapter Instance tab, click Override Instance Settings.

Copyright ©2024

 | Administrator's Reference Guide | 433

3. On each of the settings tabs, select the Override check box, make your changes, and then click Next.

 Note:

If you are editing a currently mapped adapter instance, click Override Instance Settings to
reconfigure any overridden settings for this connection. You can also remove all overridden settings on
a per-window basis by clearing the Override check box near the top of the window.

The override setting windows are functionally identical to those used for creating a new adapter
instance. For more information, see Managing IdP adapters on page 396.

4. When you are finished, click Done to proceed to Selecting an attribute mapping method on page
433.

Restricting an authentication source to certain virtual server IDs
On the Virtual Server IDs tab, when you multiplex one connection for multiple environments, you can
enforce authentication requirements by restricting an authentication source to certain virtual server IDs.

About this task

Authentication sources are unrestricted by default. For more information, see Multiple virtual server IDs on
page 105

Steps

1. Select the Restrict Virtual Server IDs check box.

2. Select one or more virtual server IDs that you want to allow for this authentication source.

Result

If you are editing a currently mapped adapter instance or authentication policy contract (APC), you can
toggle the Restrict Virtual Server IDs setting. You can also change the allowed virtual server IDs.

Selecting an attribute mapping method
On the Mapping Method tab, you can select if and how PingFederate should query local datastores to
help fulfill the attribute contract in conjunction with attribute values from the authentication source.

About this task

To determine whether you need to look up additional values, compare the attribute contract against the
adapter contract or the authentication policy contract. If the attribute contract requires more information,
you must determine whether local datastores can supply it.

 Tip:

Alternatively, you can configure datastore queries as part of the fulfillment configuration for the applicable
identity provider (IdP) adapter contract or authentication policy contract. If so, you do not need to set up
datastore query on the connection level.

For more information, see Defining the IdP adapter contract on page 399 or Applying policy contracts or
identity profiles to authentication policies on page 251.

Steps

1. For initial steps to configure IdP adapter instances, see Mapping an adapter instance on page 431.

Copyright ©2024

 | Administrator's Reference Guide | 434

2. On the Mapping Method tab, select one of the following options.

Mapping method Description

Retrieve additional attributes from multiple
data stores using one mapping

Select to configure one or more datastores to
look up attributes for a single mapping.

Retrieve additional attributes from a data
store

Select to define alternate datastores to look up
attributes and a failsafe mapping configuration.

 Note:

When this option is selected, the token
authorization framework, through issuance
criteria, does not apply. For more information,
see Token authorization on page 95 and
Selecting an attribute mapping method.

Use only the adapter contract values in the
SAML assertion

Select if you do not require connection-level
datastore query.

3. Click Next to save changes and proceed to the next tab.

If you opted to require datastore queries, see Configuring attribute sources and user lookup on page
438. If not, see Configuring contract fulfillment for IdP Browser SSO on page 439.

Configuring default contract fulfillment for IdP Browser SSO
On the Attribute Contract Fulfillment tab, you can define the default attributes PingFederate will send to
the service provider (SP) in case of failure to complete the attribute contract.

Before you begin

For initial steps to configure identity provider (IdP) adapter instances or authentication policy contracts
(APC), see Managing authentication source mappings on page 430.

If you have selected the failsafe option on the Mapping Method tab and the Send user to SP using
default list of attributes option on the Failsafe Attribute Source tab, define the default values that
should be sent in the single sign-on (SSO) tokens to the SP.

About this task
On the Attribute Contract Fulfillment tab, you must complete the following steps for each adapter
instance or APC.

Steps

1. Select a source from the Source drop-down list.

Copyright ©2024

 | Administrator's Reference Guide | 435

2. Select a source from the Source list and then choose or enter a value. You must map all attributes.
See the following table for more information.

▪ Adapter or Authentication Policy Contract (the authentication source)

When selected, the Value list is populated with attributes from the authentication source. Select
the desired attribute from the list. At runtime, the attribute value from the authentication source is
mapped to the value of the attribute in the SSO token.

For example, to map the value of the HTML Form Adapter's username attribute as the value of
the SAML_SUBJECT attribute on the contract, select Adapter from the Source list and username
from the Value list.

▪ Context

When selected, the Value list populates with the available context of the transaction. Select the
desired context from the list. At runtime, the context value is mapped to the value of the attribute in
the SSO token.

 Important:

If you are configuring an SP connection to bridge one or more identity providers to a service
provider, consider mapping the original issuer of the assertions into an attribute by selecting
Context as the source and Authenticating Authority as the value. This is important when
bridging multiple identity providers to one service provider, where the service provider should take
the information about the original issuer into consideration before granting access to protected
resources.

For more information, see Bridging multiple IdPs to an SP on page 100.

 Note:

Because the HTTP Request context value is retrieved as a Java object rather than text, use
OGNL expressions to evaluate and return values (see Expression).

▪ Expression

When enabled, this option provides more complex mapping capabilities, such as transforming
incoming values into different formats. Select Expression from the Source list, click Edit under
Actions, and compose your OGNL expressions. All variables available for text entries are also
available for expressions. For more information, see Text.

Expressions are not enabled by default. For more information about enabling and editing OGNL
expressions, see Attribute mapping expressions on page 213.

▪ No Mapping

Select this option to ignore the Value field, causing no value selection to be necessary.
▪ Text

When selected, the text you enter is mapped to the value of the attribute in the single sign-on
tokens at runtime. You can mix text with references to any of the values from the authentication
source using the ${attribute} syntax.

 Tip:

Two other text variables are also available: ${SAML_SUBJECT} and ${TargetResource}.
SAML_SUBJECT is the initiating user (or other entity). TargetResource is a reference to
the protected application or other resource for which the user requested SSO access; the

Copyright ©2024

 | Administrator's Reference Guide | 436

${TargetResource} text variable is available only if specified as a query parameter for the
relevant endpoint (either as TargetResource for SAML 2.0 or TARGET for SAML 1.x).

3. After all attributes have been mapped, click Next to save changes.

Defining issuance criteria for IdP Browser SSO
Configure the criteria that PingFederate uses to determine user authorization to access service provider
(SP) resources.

About this task

On the Issuance Criteria tab, define the criteria that must be satisfied in order for to process a request
further. This token authorization feature provides the capability to conditionally approve or reject requests
based on individual attributes.

 Note:

The Issuance Criteria tab does not appear if you have chosen the failsafe option on the Mapping Method
tab. For more information, see Selecting an attribute mapping method on page 433.

Begin this optional configuration by adding a criterion. Choose the source that contains the attribute to be
verified. Some sources, such as Mapped Attributes, are common to almost all use cases. Other sources,
such as JDBC, depend on the type of configuration. Irrelevant sources are automatically hidden. After
you select a source, choose the attribute to be verified. Depending on the selected source, the available
attributes or properties vary. Finally, specify the comparison method and the desired, compared-to, value.

If you define multiple criteria, all criteria must be satisfied for to move a request to the next phase. A
criterion is satisfied when the runtime value of the selected attribute matches or does not match the
specified value depending on the chosen comparison method. The multi-value contains and multi-value
does not contain comparison methods are intended for attributes that might contain multiple values. Such
criterion is considered satisfied if one of the multiple values matches or does not match the specified value.
Values are compared verbatim. If you require complex evaluations, including conditional criteria or partial
matching, define them using attribute mapping expressions.

 Important:

When you multiplex one connection for multiple environments, consider using attribute mapping
expressions to verify the virtual server ID in conjunction with other conditions, such as group membership
information, to protect against unauthorized access. For more information, see Multiple virtual server IDs
on page 105 and Issuance criteria and multiple virtual server IDs on page 217.

 Note:

All criteria defined must be satisfied or evaluated as true for a request to move forward. As soon as one
criterion fails, rejects the request and returns an error message.

Steps

1. From the Source list, select the attribute's source.

Source Description

Adapter or Authentication Policy Contract Select to evaluate attributes from an identity
provider (IdP) adapter instance or an
authentication policy contract.

Copyright ©2024

 | Administrator's Reference Guide | 437

Source Description

Context Select to evaluate properties returned from the
context of the transaction at runtime.

 Note:

The HTTP Request context value is retrieved
as a Java object rather than text. For this
reason, attribute mapping expressions are more
appropriate to evaluate and return values.

JDBC, LDAP, or other types of datastore (if
configured)

Select to evaluate attributes returned from a data
source.

Mapped Attributes Select to evaluate the mapped attributes.

2. From the Attribute Name list, select the attribute to be evaluated.

3. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

4. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

5. In the Error Result field, enter a custom error message.

Error results are handled differently for IdP-initiated single sign-on (SSO) and SP-initiated SSO
requests.

IdP-initiated SSO

Copyright ©2024

 | Administrator's Reference Guide | 438

Redirect

When an InErrorResource URL is provided, the value of the Error Result field is used
by an ErrorDetail query parameter in the redirect URL.

Template

When an InErrorResource URL is not provided, the value of the Error Result field
is used by the variable $errorDetail in the idp.sso.error.page.template.html
template file.

SP-Intiated SSO

SAML

The Error Result field value is used by the StatusMessage element in the response to
the SP.

WS-Federation (Template)

The Error Result field value is used by the $errorDetail variable in the <pf_install>/
pingfederate/server/default/conf/template/sourceid-wsfed-idp-
exception-template.html template file.

Using an error code in the Error Result field allows the error template or an application to process the
code in a variety of ways. For example, the template or application can display an error message or e-
mail an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

6. Click Add.

7. Optional: Repeat to add more criteria.

8. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Configuring attribute sources and user lookup

Copyright ©2024

 | Administrator's Reference Guide | 439

Attribute sources are specific datastore or directory locations containing information that might be needed
for the attribute contract. You can use more than one attribute source when mapping values to the attribute
contract.

About this task

The order in which attribute sources are listed affects the queries differently based on the selection made
on the Mapping Method tab. For more information, see Selecting an attribute mapping method on page
433.

Retrieve additional attributes from multiple data stores using one mapping

If you plan on using the result of a query as an input to a subsequent query, stack your attribute
sources accordingly.

Retrieve additional attributes from a data store

As soon as a query succeeds, PingFederate moves on to the next task, contract fulfillment.
Therefore you should prioritize the attribute sources.

Steps

1. Click Add Attribute Source and then follow a series of sub tasks to complete the configuration.

2. See Choosing a datastore on page 375 for instructions on configuring and adding attribute sources.

3. Repeat as necessary to add additional sources.

Result

If you are editing a currently mapped adapter instance or authentication policy contract, you can add,
remove, or reorder attribute sources, which might require additional configuration changes in subsequent
tasks.

Configuring contract fulfillment for IdP Browser SSO
On the Attribute Contract Fulfillment tab, you can map values to the attributes defined for the contract.
These are the values that will be included in the single sign-on (SSO) tokens sent to the service provider
(SP).

Before you begin
For initial steps to configure identity provider (IdP) adapter instances or authentication policy contracts
(APC), see Managing authentication source mappings on page 430.

About this task

If you are bridging one or more identity providers to a service provider, map values to an authentication
policy contract. For more information, see Federation hub use cases on page 99.

At runtime, an SSO operation fails if PingFederate cannot fulfill the required attribute.

On the Attribute Contract Fulfillment tab, you must complete the following steps for each attribute
contract.

Steps

1. Select a Source from the drop-down.

Copyright ©2024

 | Administrator's Reference Guide | 440

2. Select a Value from the drop-down or enter a Value in the text field. See the following for more
information.

▪ Adapter or Authentication Policy Contract (the authentication source)

When selected, the Value list is populated with attributes from the authentication source. Select
the desired attribute from the list. At runtime, the attribute value from the authentication source is
mapped to the value of the attribute in the SSO token.

For example, to map the value of the HTML Form Adapter's username attribute as the value of
the SAML_SUBJECT attribute on the contract, select Adapter from the Source list and username
from the Value list.

▪ Context

When selected, the Value list populates with the available context of the transaction. Select the
desired context from the list. At runtime, the context value is mapped to the value of the attribute in
the SSO token.

 Important:

If you are configuring an SP connection to bridge one or more identity providers to a service
provider, consider mapping the original issuer of the assertions into an attribute by selecting
Context as the source and Authenticating Authority as the value. This is important when
bridging multiple identity providers to one service provider, where the service provider should take
the information about the original issuer into consideration before granting access to protected
resources.

For more information, see Bridging multiple IdPs to an SP on page 100.

 Note:

Because the HTTP Request context value is retrieved as a Java object rather than text, use
OGNL expressions to evaluate and return values (see Expression).

▪ LDAP, JDBC, or Other

When selected, the Value list populates with attributes that you have selected in the attribute
source configuration. Select the desired attribute from the list. At runtime, the attribute value from
the attribute source is mapped to the value of the attribute in the SSO token.

▪ Expression

When enabled, this option provides more complex mapping capabilities, such as transforming
incoming values into different formats. Select Expression from the Source list, click Edit under

Copyright ©2024

 | Administrator's Reference Guide | 441

Actions, and compose your OGNL expressions. All variables available for text entries are also
available for expressions. For more information, see Text.

Expressions are not enabled by default. For more information about enabling and editing OGNL
expressions, see Attribute mapping expressions on page 213.

▪ No Mapping

Select this option to ignore the Value field.
▪ Text

When selected, the text you enter is mapped to the value of the attribute in the single sign-on
tokens at runtime. You can mix text with references to any of the values from the authentication
source using the ${attribute} syntax.

You can also enter values from your datastore, when applicable, using this syntax:

${ds.attr-source-id.attribute}

where attr-source-id is the attribute source ID value and attribute is one of the
selected attributes in the attribute source configuration.

Note that when using alternate data stores with a failsafe mapping, the attribute source ID value is
not applicable. Use the following syntax instead:

${ds.attribute}

 Tip:

Two other text variables are also available: ${SAML_SUBJECT} and ${TargetResource}.
SAML_SUBJECT is the initiating user (or other entity). TargetResource is a reference to
the protected application or other resource for which the user requested SSO access; the
${TargetResource} text variable is available only if specified as a query parameter for the
relevant endpoint (either as TargetResource for SAML 2.0 or TARGET for SAML 1.x).

There are also a variety of reasons why you might hard code a text value. For example, if the SP
web application provides a service based on the name of your organization, you might provide that
attribute value as a constant.

3. After all attributes have been mapped, click Next to save changes.

 Note:

If you are editing a currently mapped adapter instance or APC, you can update the mapping
configuration, which might require additional configuration changes in subsequent tasks.

Reviewing the authentication source mapping
You can review and save your authentication source mapping in the Summary tab.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Copyright ©2024

 | Administrator's Reference Guide | 442

Reviewing the SSO token creation summary
Review and save your single sign-on (SSO) token creation configuration in the Summary tab.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring protocol settings
The Protocol Settings tab provides the launching point for configuring partner endpoints, message
customizations, and other protocol-specific settings for browser-based single sign-on (SSO) connections.

Before you begin

For initial steps to configure a service provider (SP) connection, see Accessing SP connections on page
412.

For initial steps to configure Browser SSO, see Configure IdP Browser SSO on page 421.

About this task

SAML 2.0

▪ Outbound SSO bindings (POST, artifact) and the corresponding assertion consumer service
(ACS) URLs

▪ Outbound SLO bindings (POST, redirect, artifact, SOAP) and the corresponding protocol
endpoints

▪ Inbound bindings (POST, redirect, artifact, SOAP)
▪ Artifact lifetime
▪ Signature policy
▪ Encryption policy

SAML 1.x

▪ Outbound SSO bindings (POST, artifact) and the corresponding assertion consumer service
(ACS) URLs

▪ Default target URL
▪ Artifact lifetime
▪ Signature policy

WS-Federation

▪ Protocol endpoint
▪ Default target URL

Steps

1. Before configuring Browser SSO protocol settings, you must first configure assertion configuration. For
more information, see Configuring SSO token creation on page 424

Copyright ©2024

 | Administrator's Reference Guide | 443

2. In the Protocol Settings tab, click Configure Protocol Settings to begin.

Setting Assertion Consumer Service URLs (SAML)
If your PingFederate configuration uses any version of SAML, you can configure assertion indexes,
bindings, and endpoint URLs on the Assertion Consumer Service URL tab.

Before you begin
For prerequisites and initial steps to configure Browser SSO protocol settings, see Configuring protocol
settings on page 442.

About this task

The assertion consumer service (ACS) endpoint is a location to which the single sign-on (SSO) tokens
are sent, according to partner requirements. ACS is applicable to all SAML versions and both the identity
provider (IdP)- and service provider (SP)-initiated SSO profiles.

 Note:

The SP might request that the SAML assertion be sent to one of several URLs, using different bindings.
PingFederate uses the defined URL entries on this page to validate the authentication request. However,
per SAML specifications, if the request is signed, PingFederate can verify the signature instead. The ACS
URL does not necessarily need to be listed here. This is useful for scenarios where an ACS URL might be
dynamically generated.

Some federation use cases might require additional customizations in the assertions sent from the
PingFederate IdP server to the SP, such as placing well-formed XML in the <AttributeValue> element
or including the optional SessionNotOnOrAfter attribute in the <AuthnStatement> element. You can
use OGNL expressions to fulfill these use cases.

Steps

1. In the Assertion Consumer Service URL tab, configure one or more SAML ACS endpoints.

a. Select a SAML binding from the Bindingdrop-down list.
b. Enter the ACS endpoint URL to the Endpoint URL field.

You can enter a relative path (begin with a forward slash) if you have provided a base URL on the
General Info window.

c. Optional: Select the Default box if you want this entry to be the default ACS endpoint.

The administrative console always sets the first entry as the default ACS endpoint. You can reset
the default endpoint when you add ACS endpoint.

d. Optional: Enter an integer to the Index field for this ACS endpoint.

The administrative console automatically assigns an index value for each ACS endpoint, starting
from 0. If you want to define your own index values, you must make sure the index values are
unique.

e. Click Add.
f. Optional: Repeat to add additional ACS endpoints.

Copyright ©2024

 | Administrator's Reference Guide | 444

2. Optional: Customize messages using OGNL expressions.

 Note:

OGNL expressions are not enabled by default. For more information about enabling and editing OGNL
expressions, see Attribute mapping expressions on page 213.

a. Click Show Advanced Customizations.
b. Select a message type from the list.
c. Enter an OGNL expression to fulfill your use case.

 Note:

For more information about Message Type, available variables, and sample OGNL expressions,
see Customizing assertions and authentication requests on page 368.

d. Click Add.
e. Optional: Repeat to add another message customization.

3. Click Next to proceed to the next tab. For SAML 1.x configurations, see Setting a default target URL
(SAML 1.x) on page 444. For SAML 2.0, see Specifying SLO service URLs (SAML 2.0) on page
447.

Result

If you are editing an existing connection, you can reconfigure any items, which could require additional
configuration changes in subsequent tasks. You must always configure at least one ACS endpoint.

Setting a default target URL (SAML 1.x)
SAML 1.x service provider (SP) connections require that a default target URL be specified for a scenario
where the identity provide (IdP) application does not include one in its single sign-on (SSO) request. This
default URL represents the destination on the SP where the user will be directed.

Before you begin
For prerequisites and initial steps for configuring Browser SSO protocols, see Configuring protocol settings
on page 442.

Steps

1. Enter default destination in the Default Target URL field.

2. Click Next to save your setting.

Result

If you are editing an existing connection, you update the target destination. You must always define a
default destination when configuring a SAML 1.x SP connection.

Specifying the WS-Trust version
You can specify whether to use WS-Trust version 1.2 or 1.3 for tokens. The default version is 1.2.

Before you begin
For prerequisites and initial steps for configuring Browser SSO protocols, see Configuring protocol settings
on page 442.

Copyright ©2024

 | Administrator's Reference Guide | 445

Steps

1. From the WS-Trust Version drop-down list, select version 1.2 or 1.3.

 Note:

For version 1.3, the response is always a RequestSecurityTokenResponseCollection object,
as in the following example.

<wst:RequestSecurityTokenResonseCollection xmlns:wst="http://docs.oasis-
open.org/ws-sx/ws-trust/200512/">

For more information about WS-Trust version 1.3, see OASIS WS-Trust 1.3 Standards.

2. Click Next to save your changes.

Defining a service URL (WS-Federation)
On the Service URL tab, you can enter the WS-Federation protocol endpoint of your service provider
(SP) partner where PingFederate will send single sign-on (SSO) tokens and single logout (SLO) cleanup
messages.

Before you begin
For prerequisites and initial steps for configuring Browser SSO protocols, see Configuring protocol settings
on page 442.

About this task

The SSO tokens are transmitted within a Request for Security Token Response (RSTR) message in
response to a request for authentication from the SP. SLO cleanup messages are sent to your partner
when PingFederate, as the identity provider (IdP), receives a user's SLO request. These cleanup
messages indicate that the user's local session has been terminated.

To protect against session token hijacking, you can specify additional allowed domains and paths on this
window. If the option to validate wreply for SLO is enabled, these additional domains and paths will also
be taken into consideration as well. For more information, see Managing partner redirect validation on
page 651.

Some federation use cases might require additional customizations in the RSTR message sent from the
PingFederate IdP server to the SP. You can use OGNL expressions to fulfill these use cases.

Steps

1. On the Service URL tab, enter the WS-Federation protocol endpoint at the SP site in the Endpoint
URL field.

You can enter a relative path (begin with a forward slash) if you have provided a base URL on the
General Info tab. For more information, see Identifying the SP on page 420.

Copyright ©2024

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

 | Administrator's Reference Guide | 446

2. Optional: Specify additional allowed domains and paths.

a. Indicate whether to mandate secure connections when this resource is requested under Require
HTTPS.

 Important:

This selection is recommended to ensure that the validation will always prevent message
interception for this type of potential attack, under all conceivable permutations.

This check box is selected by default.
b. Enter the expected domain name or IP address of this resource under Valid Domain Name.

Enter a value without the protocol, such as example.com or 10.10.10.10.

Prefix a domain name with a wildcard followed by a period to include subdomains using one entry.
For instance, *.example.com covers hr.example.com or email.example.com but not
example.com, the parent domain.

 Important:

While using an initial wildcard provides the convenience of allowing multiple subdomains using
one entry, consider adding individual subdomains to limit the redirection to a list of known hosts.

c. Optional: Enter the exact path of this resource under Valid Path.

Start with a forward slash, without any wildcard characters in the path. If left blank, any path
under the specified domain or IP address is allowed. This value is case-sensitive. For instance,
/inbound/Consumer.jsp allows /inbound/Consumer.jsp but rejects /inbound/
consumer.jsp.

You can allow specific query parameters with or without a fragment by appending them
to the path. For instance, /inbound/Consumer.jsp?area=West&team=IT#ref1001
matches /inbound/Consumer.jsp?area=West&team=IT#ref1001 but not /inbound/
Consumer.jsp?area=East&team=IT#ref1001.

d. Optional: Select the check box under Allow Any Query/Fragment to allow any query parameters
or fragment for this resource.

Selecting this check box also means that no query parameter and fragment are allowed in the
path defined under Valid Path.

This check box is not selected by default.
e. Click Add.

Use the Edit, Update, and Cancel workflow to make or undo a change to an existing entry. Use
the Delete and Undelete workflow to remove an existing entry or cancel the removal request.

f. Repeat these steps to define multiple expected resources.

 Note:
The display order does not matter. A more specific match is considered a better match and an
exact match is considered the best match.

Copyright ©2024

 | Administrator's Reference Guide | 447

3. Optional: Customize messages using OGNL expressions.

Expressions are not enabled by default. For more information about enabling and editing OGNL
expressions, see Attribute mapping expressions on page 213.

a. Click Show Advanced Customizations.
b. Select a message type from the list.
c. Enter an OGNL expression to fulfill your use case.

 Note:

For more information about Message Type, available variables, and sample OGNL expressions,
see Customizing assertions and authentication requests on page 368.

d. Click Add.
e. Optional: Repeat to add another message customization.

4. Click Next to save your changes.

Result

If you are editing an existing connection, you can reconfigure any items, which might require additional
configuration changes in subsequent tasks.

Specifying SLO service URLs (SAML 2.0)
On the SLO Service URLs tab, you associate bindings to the endpoints where your service provider (SP)
receives logout requests when single logout (SLO) is initiated at your site and where PingFederate sends
SLO responses when it receives SLO requests from the SP.

Before you begin
For prerequisites and initial steps for configuring Browser SSO protocols, see Configuring protocol settings
on page 442.

About this task

This step applies only to SAML 2.0 connections when either SLO profile is selected on the SAML Profiles
tab. For more information, see Choosing SAML 2.0 profiles on page 423.

Steps

1. Select a SAML binding from the list.

2. Enter the SLO endpoint URL to the Endpoint URL field.

You can enter a relative path (begin with a forward slash) if you have provided a base URL on the
General Info tab. For more information, see Identifying the SP on page 420.

3. Optional: Enter a URL in the Response URL field.

When specified, this URL is the location to which SLO logout response messages are sent based on
your partner agreement. When omitted, PingFederate sends logout responses to the SLO endpoint
URL.

You can enter a relative path (begin with a forward slash) if you have provided a base URL on the
General Info window. For more information, see Identifying the SP on page 420.

4. Click Add.

5. Optional: Repeat to add additional SLO endpoints.

6. Click Next to save your settings.

Copyright ©2024

 | Administrator's Reference Guide | 448

Result

If you are editing an existing connection, you can reconfigure the SLO endpoints, which might require
additional configuration changes in subsequent tasks.

Choosing allowable SAML bindings (SAML 2.0)
On the Allowable SAML Bindings tab, you select the one or more bindings that your service provider
(SP) partner can use to send SAML authentication requests or single logout (SLO) messages.

Before you begin
For prerequisites and initial steps for configuring Browser SSO protocols, see Configuring protocol settings
on page 442.

About this task

This step applies only to SAML 2.0 connections when the SP-initiated SSO profile or either SLO profile is
selected on the SAML Profiles tab.

Steps

1. On the Allowable SAML Bindings tab, select the applicable SAML bindings based on your partner
agreement.

 Note:

If you have specified an Assertion Consumer Service (ACS) or SLO endpoint using the artifact
(outbound) binding, you must including SOAP as one of the allowable (inbound) binding.

2. Click Next to save changes and proceed to Artifact Resolver Locations. For more information, see
Specifying artifact resolver locations (SAML 2.0) on page 449.

Result

If you are editing an existing connection, you can reconfigure the allowable bindings, which might require
additional configuration changes in subsequent tasks.

Setting an artifact lifetime (SAML)
When PingFederate sends an artifact to your service provider (SP)'s SAML ACS endpoint or SAML
2.0 SLO endpoint, an element in the message indicates how long it should be considered valid. On the
Artifact Lifetime tab, you can specify the expiry information in seconds.

Before you begin
For prerequisites and initial steps for configuring Browser SSO protocols, see Configuring protocol settings
on page 442.

About this task

You can change the default value to meet your requirements. You should also consider synchronizing your
serve clock with your partner's SAML gateway server. If clocks are not synchronized, you might need to set
the artifact lifetime to a higher value to prevent latency issues.

Steps

1. Optional: On the Artifact Lifetime tab, override the default value of the Artifact Lifetime field.

The default value is 60 (seconds).

2. Click Next to save your changes.

Copyright ©2024

 | Administrator's Reference Guide | 449

Specifying artifact resolver locations (SAML 2.0)
When the artifact binding is enabled as one of the allowable bindings on the Allowable SAML Bindings
tab, you must provide at least one artifact resolution service (ARS) endpoint on the Artifact Resolver
Locations tab.

About this task

The ARD endpoint is where PingFederate sends back-channel requests to resolve artifacts received from
the service provider (SP).

Steps

1. On the Artifact Resolver Locations tab, enter the ARS endpoint URL in the URL field.

You can enter a relative path (begin with a forward slash) if you have provided a base URL on the
General Info tab. For more information, see Identifying the SP on page 420.

2. Optional: Enter an integer to the Index field for this ACS endpoint.

The administrative console automatically assigns an index value for each ARS endpoint, beginning
with 0. If you want to define your own index values, you must make sure the index values are unique.

3. Click Add.

4. Optional: Repeat to add additional ARS endpoints.

 Note:

When specifying multiple ARS endpoints, each endpoint must share the same transport protocol. That
is, if one endpoint uses HTTPS, then all must use HTTPS.

5. After you have entered all of your ARS endpoints, click Next to save changes.

Result

If you are editing an existing connection, you can reconfigure any ARS endpoints.

Defining signature policy (SAML)
On the Signature Policy tab, you can control how digital signatures are used for SAML messages.

Before you begin
For prerequisites and initial steps for configuring Browser SSO protocols, see Configuring protocol settings
on page 442.

About this task

The choices made in this tab depend on your partner agreement and your federation protocol. For more
information, see Digital signing policy coordination on page 88.

SAML 2.0

Digital signing is required for SAML response messages sent from the identity provider (IdP) with
the POST or redirect binding. Based on the SAML specifications, PingFederate provides three
options:

▪ Select Always Sign Assertion to always sign the assertion portion inside the SAML response
message.

▪ Select Sign Response As Required to sign the SAML response message per the SAML
specifications. This is the default selection.

▪ Select both to always sign the assertion portion inside the SAML response message for all
bindings and to sign the SAML response message per the SAML specifications.

Copyright ©2024

 | Administrator's Reference Guide | 450

Authentication request messages from the service provider (SP) may also be signed to enforce
security. This scenario applies only when the SP-initiated single sign-on (SSO) profile is enabled
on the SAML Profiles tab. SelectRequire Authn Requests to be Signed to enforce this digital
signature requirement. For more information, see Choosing SAML 2.0 profiles on page 423.

SAML 1.x

For SAML 1.0 and SAML 1.1, the assertion portion inside the SAML response message can be
digitally signed.

▪ Select Always Sign Assertion to always sign the assertion portion inside the SAML response
message.

Steps

1. On the Signature Policy tab, select the options based on your partner agreement and federation
protocol.

2. Click Next to save changes.

Result

If you are editing an existing connection, you can reconfigure the digital signature policy, which might
require additional configuration changes in subsequent tasks.

Configuring XML encryption policy (SAML 2.0)
For SAML 2.0 configurations, in addition to using signed assertions to ensure authenticity, you and your
partner can also agree to encrypt all or part of an assertion to improve privacy. If so, you can configure
these settings on the Encryption Policy tab.

Before you begin
For prerequisites and initial steps for configuring Browser SSO protocols, see Configuring protocol settings
on page 442.

About this task

 Note:
For WS-Fed connections with SAML 2.0 assertions, you cannot encrypt the entire assertion.

Option Name identifier
(SAML_SUBJECT)

Other
attributes

Encrypt the
SAML_SUBJECT in
SLO messages to the
SP

Allow encryption in
SLO messages from
the SP

None No encryption. No encryption. No encryption. No encryption.

The entire
assertion

Encrypted. Encrypted. Available as an option. Available as an option.

One or more
attributes

Available as an
option.

Available as an
option.

Available as an
option only if you
select to encrypt
the name identifier
(SAML_SUBJECT).

Available as an
option only if you
select to encrypt
the name identifier
(SAML_SUBJECT).

Steps

1. Select the options based on your partner agreement.

Copyright ©2024

 | Administrator's Reference Guide | 451

2. Click Next to save changes.

Result

If you are editing an existing connection, you can reconfigure the XML encryption policy, which might
require additional configuration changes in subsequent tasks.

Reviewing protocol settings
On the Summary tab, you can review and save your protocol settings.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Reviewing browser-based SSO settings
On the Summary tab, you can review and save your browser-based single sign-on (SSO) settings.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring the Attribute Query profile in an SP connection
At the Attribute Query step, you configure your connection to respond to requests for user attributes from
your partner service provider (SP), if you have chosen this option.

Before you begin
For prerequisites and previous steps to configure identity provider (IdP) Browser single sign-on (SSO), see
Configure IdP Browser SSO on page 421.

About this task

For more information about the Attribute Query profile, see Choosing SP connection options on page
417.

Attribute queries do not depend on SSO, but can be used independently or in conjunction with Browser
SSO or provisioning to provide flexibility in how a user authenticates with SP applications. For more
information, see Attribute Query and XASP on page 43.

Copyright ©2024

 | Administrator's Reference Guide | 452

Steps

On the Attribute Query tab, click Configure Attribute Query Profile. See Defining retrievable attributes
on page 452 for next steps.

Defining retrievable attributes
On the Retrievable Attributes window, you specify the user attributes you and your partner have agreed
to allow in an attribute query transaction.

Before you begin
For prerequisites and previous steps to configure the Attribute Query profile, see Configuring the Attribute
Query profile in an SP connection on page 451.

About this task

 Note:
The service provider (SP) might not necessarily request all of these attributes in each attribute-query
request. Instead, the list simply limits the request to a subset of these attributes.

Steps

1. On the Retrievable Attributes tab, follow these steps to configure your Attribute Query attributes. To
add an attribute, enter the attribute name in the text box and then click Add.

 Note:
Attribute names are case-sensitive and must correspond to the attribute names expected by your
partner.

2. To modify an attribute name:

Action Steps

Add an attribute Enter the attribute name in the text box. Click
Add.

Modify an existing attribute Click Edit. Modify the attribute name in the text
box. Click Update.

Delete an existing attribute Click Delete.

3. Click Next to save your changes.

Configuring attribute lookup
The optional attribute lookup configuration allows you to configure one or more datastores to look up
attributes and to set up search parameters.

Before you begin
For prerequisites and previous steps to configure the Attribute Query profile, see Configuring the Attribute
Query profile in an SP connection on page 451.

About this task

Attribute sources are specific datastore or directory locations containing information that is returned to the
service provider (SP) in response to an attribute request.

Copyright ©2024

 | Administrator's Reference Guide | 453

Steps

1. On the Attribute Sources & User Lookup tab, you can do the following
Choose from:

▪ To configure an attribute source, click Add Attribute Source and complete the setup steps. For
more information, see Choosing a datastore for Attribute Query on page 453.

▪ To modify an attribute source configuration, select the attribute source and complete the setup
steps.

 Note:

Depending on what you change, you might need to modify dependent data in subsequent steps,
as indicated.

2. When your attribute sources are configured, click Next to save your changes.

Choosing a datastore for Attribute Query
On the Data Store tab, choose a datastore instance for PingFederate to look up attributes.

Before you begin
For prerequisites and previous steps to configure the Attribute Query profile, see Configuring the Attribute
Query profile in an SP connection on page 451.

About this task

The process of configuring PingFederate to look up attributes in a datastore for attribute-query responses
is similar to that used for single sign-on (SSO) Attribute Sources and User Lookup.

Steps

1. Enter a Description for the datastore in the text box.

a. If prompted, enter an ID in the text box.

2. Select a datastore instance from the Active Data Store list.

 Tip:

If the datastore you want is not shown in the Active Data Store list, click Manage Data Stores to
review or add a datastore instance. For more information, see Datastores on page 886.

3. Depending on the datastore type, the rest of the setup varies as follows.

Data store type Required tasks

JDBC ▪ Specifying database tables and columns on page 376
▪ Entering a database search filter on page 377

LDAP ▪ Specifying directory properties and attributes on page 378
▪ Defining encoding for binary attributes on page 380 (optional)
▪ Entering a directory search filter on page 380

Copyright ©2024

 | Administrator's Reference Guide | 454

Data store type Required tasks

Other ▪ Specifying data source filter and fields on page 381

 Important:

When attribute queries are sent using X.509 Attribute Sharing Profile (XASP), use the variable
${SubjectDN}—rather than ${SAML_SUBJECT}—to retrieve the subject identifier.

You can also use any of these distinguished name (DN)-parsing variables:

▪ ${CN}
▪ ${OU}
▪ ${O}
▪ ${L}
▪ ${S}
▪ ${C}
▪ ${DC}

If more than one value exists for any of the parsing variables, then they are enumerated. For example,
if the Subject DN is cn=John Smith,ou=service,ou=employee, then you could use any of these
elements in your filter qualifier:

▪ ${SubjectDN}=cn=John Smith,ou=service,ou=employee
▪ ${ou}=service
▪ ${ou1}=employee

For more information about XASP, see Attribute Query and XASP.

4. When you have finished configuring your datastore, click Next to save changes.

Configuring mapping fulfillment for Attribute Query
The last step in configuring an attribute source is to map values into the assertion to be sent in response to
an attribute query on the Attribute Mapping Fulfillment tab.

Before you begin
For prerequisites and previous steps to configure the Attribute Query profile, see Configuring the Attribute
Query profile in an SP connection on page 451.

Steps

1. For each attribute, select a source from the Source list and then choose or enter a value.

▪ Context

When selected, the Value list populates with the available context of the transaction. Select the
desired context from the list. At runtime, the context value is mapped to the value of the attribute in
the SSO token.

 Important:

If you are configuring an SP connection to bridge one or more identity providers to a service
provider, consider mapping the original issuer of the assertions into an attribute by selecting
Context as the source and Authenticating Authority as the value. This is important when
bridging multiple identity providers to one service provider, where the service provider should take

Copyright ©2024

 | Administrator's Reference Guide | 455

the information about the original issuer into consideration before granting access to protected
resources.

For more information, see Bridging multiple IdPs to an SP on page 100.

 Note:

Because the HTTP Request context value is retrieved as a Java object rather than text, use
OGNL expressions to evaluate and return values (see Expression).

▪ LDAP/JDBC/Other (when a datastore is used)

Values are returned from your datastore (if used). When you make this selection, the Value list is
populated by the attributes from the datastore.

▪ Expression (when enabled)

This option provides more complex mapping capabilities—for example, transforming incoming
values into different formats (see Attribute mapping expressions on page 213). All of the
variables available for text entries (see below) are also available for expressions.

▪ No Mapping

Select this option to ignore the Value field, causing no value selection to be necessary.
▪ Text

This can be text only, or you can mix text with references to any of the values from your user-
datastore using this syntax:

${ds.attr-source-id.attribute}

where attr-source-id is the Attribute Source ID value (see Choosing a datastore for
Attribute Query on page 453) and attribute is any of the datastore attributes you have
selected.

There are a variety of reasons why you might hard code a text value. For example, if your SP's
web application provides a service based on your company's name, you might provide that
attribute value as a constant.

2. Click Next to save changes.

Defining issuance criteria for Attribute Query
Use the Issuance Criteria tab to define issuance criteria for the service provider (SP) Attribute Query
profile.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

Copyright ©2024

 | Administrator's Reference Guide | 456

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Context Select to evaluate properties returned from the
context of the transaction at runtime.

 Note:

As the HTTP Request context value is retrieved
as a Java object rather than text, attribute
mapping expressions are more appropriate to
evaluate and return values.

JDBC, LDAP, or other types of datastore Select to evaluate attributes returned from a
datastore, if configured.

Mapped Attributes Select to evaluate the mapped attributes.

2. From the Attribute Name list, select the attribute to be evaluated.

3. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

Copyright ©2024

 | Administrator's Reference Guide | 457

4. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

5. In the Error Result field, enter a custom error message.

The Error Result field is used by the StatusMessage element in the SAML response to the SP.

Using an error code in the Error Result field allows an application to process the code in a variety of
ways; for example, display an error message or e-mail an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

6. Click Add.

7. Optional: Repeat to add more criteria.

8. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Specifying security policy
The Specify Security Policy tab allows you to specify the digital signing and encryption policy to which
you and your partner have agreed.

About this task

 Note:
The selections you make on this tab will trigger requirements for setting up Credentials. For more
information, see Configuring credentials on page 458.

Steps

1. Select or clear the check boxes.

2. Click Next or Done.

Copyright ©2024

 | Administrator's Reference Guide | 458

Reviewing the Attribute Query configuration
Review and save your Attribute Query configuration changes on the Summary tab.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring credentials
The Credentials tab provides the launching point for configuring security requirements you might need,
depending on the federation protocol you are using and the choices you make.

Steps

▪ To continue, click Configure Credentials.

See subsequent topics for configuration steps.

Configuring back-channel authentication (SAML)
Depending on your browser single sign-on (SSO) use cases, the administrative console prompts you to
configure authentication requirements for inbound messages, outbound messages, or both.

About this task

See the following table for more information about the back-channel configuration (SAML) authentication
requirements.

Use case Back-channel
authentication
requirements

Back-channel
messages

A connection is configured with a SAML ACS
endpoint that uses the artifact binding on Protocol
Settings # Assertion Consumer Service URL.

Inbound Artifact resolution
requests

A connection is configured with a SAML 2.0 SLO
endpoint that uses the artifact binding on Protocol
Settings # SLO Service URLs.

Inbound Artifact resolution
requests

SOAP messages

A connection is configured with a SAML 2.0 SLO
endpoint that uses the SOAP binding on Protocol
Settings # SLO Service URLs.

Outbound SOAP SLO messages

The SAML 2.0 Artifact binding is enabled on
Protocol Settings # Allowable SAML Bindings.

Outbound Outbound artifact
resolution requests

The SOAP binding is enabled on Protocol
Settings # Allowable SAML Bindings.

Inbound Inbound SOAP
messages

The SAML 2.0 Attribute Query profile is enabled on
the Connection Options tab.

Inbound Inbound Attribute Query
requests

Copyright ©2024

 | Administrator's Reference Guide | 459

Steps

▪ See subsequent topics for configuration steps.

Configuring authentication requirements for outbound messages
You can configure the authentication requirements used to validate outbound messages in PingFederate.

Steps

1. On the Back-Channel Authentication tab, in the Send to your partner section, click Configure.

2. On the Outbound SOAP Authentication Type tab, choose one or more authentication methods.

HTTP Basic

When selected, the administrative console prompts you to enter the credentials on the Basic
SOAP Authentication (Outbound) tab.

You must obtain these credentials from your partner.

SSL Client Certificate

Applicable only if you specify an endpoint that uses HTTPS.

When selected, the administrative console prompts you to specify your client certificate on
the SSL Authentication Certificate tab. If you have not yet created or imported the client
certificate, click Manage Certificates to do so. For more information, see .

 Important:

When exporting this client certificate for your partner, choose the Certificate Only option.

Digital Signature (Browser SSO profile only)

You select a signing certificate on the Digital Signature Settings tab.

This option leverages on the digital signature of the message.

Perform validation on partner's SSL server certificate when SSL used

By default, validates your partner's HTTPS server certificate, verifying that the certificate chain
is rooted by a trusted certificate authority (CA) and that the hostname matches the certificate's
common name (CN).

Clear the associated check box if you do not want this validation to occur.

These options can be used in any combination or independently.

3. On the Summary tab, review your configuration and perform one of the following tasks.

Amend your configuration

Click the corresponding tab title and then follow the configuration wizard to complete the task.

Keep your changes

Click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative
console offers the opportunity to do so.

Discard your changes

Click Cancel.

Copyright ©2024

 | Administrator's Reference Guide | 460

Configuring authentication requirements for inbound messages
You can configure the authentication requirements used to validate inbound messages in PingFederate.

Steps

1. On the Back-Channel Authentication tab, in the Received from your partner section, click
Configure.

2. On the Inbound Authentication Type tab, choose one or more authentication methods.

HTTP Basic

When selected, the administrative console prompts you to enter the credentials on the Basic
SOAP Authentication (Inbound) tab.

 Important:

If you are configuring more than one connection that uses the artifact or HTTP profile, you
must ensure that the username is unique for each connection. You must communicate these
credentials to your partner out-of-band.

SSL Client Certificate

When selected, the administrative console prompts you to specify the trust model and the
related certificate settings on subsequent windows. See the next step.

Digital Signature (Browser SSO profile only)

You select a signing certificate on the Signature Verification Settings tab.

This option leverages on the digital signature of the message.

Require SSL

When selected, incoming HTTP transmissions must use a secure channel. This option is
selected by default.

You can clear the check box if you do not require a secure channel and client certificate
authentication.

For SAML 2.0, use these options in any combination or independently. For SAML 1.x, you must enable
HTTP Basic authentication, client certificate authentication, or both. You can also add digital signing to
ensure message integrity.

3. If you chose SSL Client Certificate in the previous step, select a trust model on the Certificate
Verification Method tab.

Anchored

The partner certificate must be signed by a trusted certificate authority (CA). Optionally, you can
also restrict the issuer to a specific Trusted CA to mitigate potential man-in-the-middle attacks
and to provide a means to isolate certificates used by different connections. The CA's certificate
must be imported into the Trusted CA store on the Trusted CAswindow..

Unanchored

Copyright ©2024

 | Administrator's Reference Guide | 461

The partner certificate is self-signed or you want to trust a specified certificate.

 Note:

When anchored certificates are used between partners, certificates can be changed without sending
the update to your partner. If the certificate is unanchored, any changes must be promulgated.

For more information, see .

Trust model Subsequent steps

Anchored On the Subject DN tab:

a. Enter the Subject DN of the certificate.
b. Optionally, select the Restrict Issuer check box and enter the Issuer

DN of the certificate.

 Important:

Consider enabling this option to mitigate potential man-in-the-middle
attacks and to provide a means to isolate certificates used by different
connections.

Unanchored On the SSL Verification Certificate tab, select the client certification from
your partner.

If you have not yet imported the client certificate from your partner, click
Manage Certificates to do so. For more information, see .

4. On the Summary tab, review your configuration and perform one of the following tasks.

Amend your configuration

Click the corresponding tab title and then follow the configuration wizard to complete the task.

Keep your changes

Click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative
console offers the opportunity to do so.

Discard your changes

Click Cancel.

Configuring digital signature settings
Digital signing is required for browser-based single sign-on (SSO) tokens and single logout (SLO)
messages sent through POST or redirect bindings.

About this task

Digital signing is also required for WS-Trust STS service provider (SP) connections, for signing the
outbound SAML security tokens.

Copyright ©2024

 | Administrator's Reference Guide | 462

For browser-based SSO, digital signing is not always required for profiles using the artifact or SOAP
bindings unless you chose to sign the SAML assertion on Protocol Settings # Signature Policy, or the
artifact resolution messages on Back-Channel Authentication # Outbound SOAP Authentication Type.

If digital signing is not required, PingFederate does not show the Digital Signature Settings tab.

Steps

1. On the Digital Signature Settings tab, select the certificate that you will use to sign the SSO tokens
and SLO messages for the SP.

2. Select a signing certificate from the Signing Certificate list.

If you have not yet created or imported your certificate into PingFederate, click Manage Certificates.
For more information, see Manage digital signing certificates and decryption keys on page 625.

 Note:

For WS-Federation connections using JSON Web Tokens (JWTs), only EC and RSA certificates are
supported. RSA certificates must have a minimum key size of 2,048 bits. The Signing Certificate list
automatically filters out certificates that do not meet these requirements.

3. Optional: Select the Include the certificate in the signature <KeyInfo> element check box if you
have agreed to send your public key with the message.

 Note:

For WS-Trust STS, the <KeyInfo> element in the SAML token includes a reference to the certificate
rather than the full certificate by default unless this check box is checked.

 Note:

This step is not applicable to WS-Federation connections using JWTs.

Select the Include the raw key in the signature <KeyValue> element check box if your partner
agreement requires it.

4. Optional: Select the signing algorithm from the list.

The default selection is RSA SHA256 or ECDSA SHA256, depending on the Key Algorithm value of
the selected digital signing certificate. Make a different selection if you and your partner have agreed
to use a stronger algorithm.

Configuring signature verification settings (SAML 2.0)
You can configure the signature verification settings for the certificates in the PingFederate administrative
console.

About this task

Depending on your partner agreement, digital signature processing might be required.

If you choose to require digital signatures on SAML 2.0 authentication requests on Protocol Settings #
Signature Policy or inbound messages on Back-Channel Authentication # Inbound Authentication
Type, you must configure the required certificate information that PingFederate can use to verify the
signed messages.

The Signature Verification Settings tab is the launching point for this task. If digital signature verification
is not required, the Signature Verification Settings tab is not shown.

Copyright ©2024

 | Administrator's Reference Guide | 463

Steps

1. On the Signature Verification Settings tab, click Manage Signature Verification Settings.

2. On the Trust Model window, select a trust model on the Certificate Verification Method tab.

Anchored

The partner certificate must be signed by a trusted certificate authority (CA). Optionally, you can
also restrict the issuer to a specific Trusted CA to mitigate potential man-in-the-middle attacks
and provide a means to isolate certificates used by different connections. The CA's certificate
must be imported into the PingFederate Trusted CA store on Security # Certificate & Key
Management # Trusted CAs.

 Important:

If you are using the redirect binding for single logout (SLO), you cannot use anchored
certificates because SAML 2.0 does not permit certificates to be included using this transport
method.

Unanchored

The partner certificate is self-signed or you want to trust a specified certificate.

 Note:

When anchored certificates are used between partners, certificates can be changed without sending
the update to your partner. If the certificate is unanchored, any changes must be promulgated.

For more information, see Digital signing policy coordination on page 88.

Trust model Subsequent steps

Anchored On the Subject DN tab:

a. Enter the Subject DN of the certificate or extract it from your service
provider (SP) partner's certificate if the certificate is stored on an
accessible file system.

b. Optionally, select the Restrict Issuer check box and enter the Issuer
DN of the certificate. Alternatively, extract it from your partner's
certificate.

 Important:

You can enable this option to mitigate potential man-in-the-middle
attacks and to provide a means to isolate certificates used by different
connections.

Copyright ©2024

 | Administrator's Reference Guide | 464

Trust model Subsequent steps

Unanchored On the Signature Verification Certificate tab:

a. Select a certificate from the list.

If you have not yet imported the certificate from your partner, click
Manage Certificates to do so. For more information, see Managing
certificates from partners on page 639.

b. Optionally, select additional certificates.

 Note:

When configured, PingFederate considers a digital signature valid so
long as it can verify the signature using one of the certificates from this
list.

 Tip:

This is useful in situations where your partner has sent you a certificate
to replace the current certificate. Adding this second certificate allows
PingFederate to continue validating digital signatures as the partner
switches to the new signing certificate.

It also adds support for scenarios where your partner uses a pool for
certificates to sign its messages. Adding these certificates ensures
digital signatures can be validated as the partner rotates its signing
certificates.

3. On the Summary tab, review your configuration and perform one of the following tasks.

Amend your configuration

Click the corresponding tab title and then follow the configuration wizard to complete the task.

Keep your changes

Click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative
console offers the opportunity to do so.

Discard your changes

Click Cancel.

Selecting an encryption certificate
For browser-based single sign-on (SSO), if you choose to encrypt all or part of an SSO assertion on
Protocol Settings # Encryption Policy, you must identify the certificate that PingFederate can use to do
so.

About this task

You must also select a certificate if your requirements include encrypting an assertion in response to an
attribute query on Attribute Query # Security Policy.

Copyright ©2024

 | Administrator's Reference Guide | 465

For WS-Trust security token service (STS), this configuration is also required if you enabled the Generate
Key for SAML Holder of Key Subject Confirmation Method or Encrypt SAML 2.0 Assertion option, or
both, on WS-Trust # Protocol Settings.

If encryption is not required, the Select XML Encryption Certificate tab is not shown.

Steps

1. Optional: Select an option under Block Encryption Algorithm.

 Important:

Due to the import restrictions of some countries, Oracle Server Java SE Runtime Environment (JRE) 8
has built-in restrictions on available cryptographic strength (key size). To use larger key sizes, enable
the Java Cryptography Extension (JCE) unlimited strength jurisdiction policy. For more information,
see the Java 8 release notes in Oracle's documentation.

For Oracle Java SE Development Kit 11, the JCE jurisdiction policy defaults to unlimited strength. For
more information, see the Oracle JDK Migration Guide in Oracle's documentation.

The default selection is AES-128.

For more information about XML block encryption and key transport algorithms, see XML Encryption
Syntax and Processing from W3C.

2. Select an option under Key Transport Algorithm.

 Note:

Due to security risks associated with the RSA-v1.5 algorithm used for key transport, it is no longer
available for new connections. Existing connections in which this algorithm is configured continue to
support it. However, you should upgrade such connections to use the newer algorithm RSA-OAEP.

The default selection is RSA-OAEP.

3. Select a partner certificate from the list.

If you have not imported the certificate from your partner, click Manage Certificates to do so. For
more information see Managing certificates from partners on page 639.

Selecting a decryption key (SAML 2.0)
To enable inbound encryption in PingFederate, you must select a certificate on the decryption key.

About this task

When you choose to encrypt the name identifier (SAML_SUBJECT) on Protocol Settings # Encryption
Policy, you can also allow the service provider (SP) to encrypt the name identifier in its single logout (SLO)
requests, if the SP-initiated single sign-on (SSO) profile is enabled for the connection. To enable this
inbound encryption, you must specify at least one certificate on the Select Decryption Keys tab.

If decryption is not required, the Select Decryption Keys window is not shown.

Steps

1. Select the primary XML decryption key from the list.

If you have not created or imported your certificate into , click Manage Certificates. For more
information, see .

2. Optional: Select the secondary XML decryption key from the list.

Copyright ©2024

 | Administrator's Reference Guide | 466

Reviewing SP credential settings
You can review, modify, save, and discard changes to your service provider (SP) credential settings.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring outbound provisioning
PingFederate's outbound provisioning allows an identity provider (IdP) to create and maintain user
accounts at standards-based partner sites using System for Cross-domain Identity Management (SCIM) as
well as select-proprietary provisioning partner sites that are protocol-enabled.

About this task

For more information, see Outbound provisioning for IdPs on page 97.

 Note:

This configuration task is presented in the administrative console only when you enable the Outbound
Provisioning protocol. For more information, see Choosing an SP connection type on page 416.

Steps

▪ Go to Applications # Integration # SP Connection. To continue, click Configure Provisioning.

Copyright ©2024

 | Administrator's Reference Guide | 467

Defining a provisioning target
You can define a provisioning target, including the provider's web-service endpoint for provisioning users
and, if required, credentials that PingFederate uses for authentication to the provisioning API for the
service provider (SP).

About this task

 Note:

The target configuration settings vary among System for Cross-domain Identity Management (SCIM)
outbound provisioning and various software as a service (SaaS) provisioning.

For SCIM provisioning to PingOne for Enterprise, sign on to the PingOne admin portal and review the
target information on the Setup # Identity Repository tab.

For any SaaS Connector target, see documentation in the add-on distribution package.

The following steps describe the fields required for the bundled PingFederate provisioning plugin for SCIM
partners.

Steps

1. Enter the endpoint for managing users in the Users Resource URL field, such as, https://
example.com/v1/Users.

This field is always required for SCIM outbound provisioning.

2. Go to Applications # Integration # SP Connections # SP Connection # Configure Channels.

3. On the Custom SCIM Attributes tab, configure the rest of the outbound provisioning settings.

See the following table for detailed information about each field.

Field Description

Groups Resource URL The partner's group management endpoint. For example, https://
example.com/v1/Groups.

Required if the partner supports this notion and groups should be
provisioned.

Copyright ©2024

https://admin.pingone.com

 | Administrator's Reference Guide | 468

Field Description

Authentication Method The authentication scheme that the partner's endpoints support.

Available options:

▪ None
▪ Basic Authentication (Default)
▪ OAuth 2.0 Bearer Token - Uses the resource owner grant type by

submitting the client ID, client secret, username, and password to the
configured token endpoint URL in exchange for an access token that
will be sent in each SCIM request.

User, and

Password

Valid credentials to access the partner's endpoint.

Required if Basic Authentication is the selected authentication method.

Client ID, Client Secret,
and

Token Endpoint URL

Valid OAuth client credentials and token endpoint to access the partner's
endpoint.

Required if OAuth 2.0 Bearer Token is the selected authentication
method.

SCIM SP Supports
Patch Updates

Clear this check box if the partner does not support PATCH updates.

For information about PATCH, see the SCIM specification
(www.simplecloud.info/specs/draft-scim-api-01.html#edit-resource-with-
patch).

This check box is selected by default.

Provision Groups with
Distinguished Name

Select this check box to provision groups by supplying complete LDAP
distinguished names (DNs), rather than only common names (CNs), to
identify groups.

Some SCIM partners, including PingOne for Enterprise, allow
administrators to parse full DNs when necessary, such as in the case of
duplicate CNs, to determine group access mapping to specific applications
based on other DN elements. Consult the partner for its requirement.

This check box is selected by default.

Deprovision Method Deprovisioning is triggered when previously provisioned users no longer
meet the condition set in Manage Channels # Channel # Source
Location.

Available options:

▪ Disable User (Default)

This option deactivates the user accounts.
▪ Delete User

This option removes the user accounts.

 Note:

For SaaS provisioning, the provisioner does not necessarily remove
deprovisioned users from target data stores in accordance with
common practice. Rather their status is changed to indicate that the
accounts are no longer active.

Copyright ©2024

http://www.simplecloud.info/specs/draft-scim-api-01.html#edit-resource-with-patch

 | Administrator's Reference Guide | 469

Field Description

Rate Limit Error Code The expected error code returned by the partner based on its rate-limiting
threshold.

The default value is 429.

4. Click Next.

 Note:

For some provisioning plugins, including the built-in SCIM outbound provisioner, when you enter or
change credentials and click Next, PingFederate immediately tests connectivity to the target.

Specifying custom SCIM attributes
You can configure simple, multivalued, and complex custom System for Cross-domain Identity
Management (SCIM) attributes in PingFederate.

About this task

supports SCIM attributes in the core schema and custom attributes through a schema extension.

 Note:

Custom attributes are optional. If your use case does not require any additional attributes, click Next on the
Custom SCIM Attributes tab.

To support custom attributes, you must specify the schema extension and the custom attributes in the
connection. There are four attribute types:

▪ Simple attributes
▪ Simple multivalued attributes
▪ Complex attributes
▪ Complex multivalued attributes

The following fragment illustrates a SCIM message supporting schema extension
urn:scim:schemas:extension:custom:1.0 with four attributes, one of each attribute type. The table
afterward describes the details of each attribute.

{
 "userName":"CBrown",
 "active":true,
 "schemas":[
 "urn:scim:schemas:core:1.0",
 "urn:scim:schemas:extension:custom:1.0"
],
 ...
 "urn:scim:schemas:extension:custom:1.0":{
 "supervisor":"JSmith",
 "territories":[
 "Montana",
 "Idaho",
 "Wyoming"
],
 "options":{
 "quantity":"10000",
 "strike" :"5.25",
 "first" :"2017-12-01",
 "last" :"2025-03-31"

Copyright ©2024

 | Administrator's Reference Guide | 470

 },
 "tablets":[
 {
 "model" :"8086",
 "serial":"5500-2020-965",
 "type" :"office"
 },
 {
 "model" :"8088",
 "serial":"5500-2040-151",
 "type" :"remote"
 }
]
 }
}

Attribute Name Attribute Type Sub-Attributes (Complex)

supervisor Simple Not applicable

territories Simple multivalued Not applicable

options Complex quantity, strike, first, and last

tablets Complex multivalued model, serial, and type.

 Note:

type is a reserved sub-attribute for a complex
multivalued attribute.

 Tip:

For more information about SCIM and attribute types, see the website www.simplecloud.info.

Steps

1. Go to Applications # Integration # SP Connection # Configure Channels. Specify the URI of the
schema extension in the Extension Namespace field.

 Tip:

The default value is urn:scim:schemas:extension:custom:1.0. You can keep this value if your
partner identifies custom attributes by this URI in its SCIM messages.

Copyright ©2024

 | Administrator's Reference Guide | 471

2. Enter an attribute name and click Add to add a custom attribute.

Repeat this step to add more custom attributes as needed.

 Tip:

Use the Delete and Undelete workflow to remove or cancel the removal request of existing custom
attributes.

3. Click Edit next to the custom attribute to perform one of the following tasks.

Change the
attribute name

a. Replace the current value in the Name field.
b. Click Done.

Set the attribute
as a simple
multivalued
attribute

a. Select the Is Multivalued check box.
b. Click Done.

Add sub-attributes
to make the
attribute a complex
attribute

a. Enter a sub-attribute and click Add. Repeat this step to add more sub-
attributes as needed.

b. Use the Edit, Update, and Cancel workflow to make or undo a change
to the name of a sub-attribute. Use the Delete and Undelete workflow to
remove a sub-attribute or cancel the removal request.

c. Click Done.

Add sub-attributes
and set the
attribute as
a complex
multivalued
attribute

a. Enter a sub-attribute and click Add. Repeat this step to add more sub-
attributes as needed.

 Tip:

Use the Edit, Update, and Cancel workflow to make or undo a change
to the name of a sub-attribute. Use the Delete and Undelete workflow to
remove a sub-attribute or cancel the removal request.

b. Select the Is Multivalued check box.

Copyright ©2024

 | Administrator's Reference Guide | 472

Change the
attribute name

a. Replace the current value in the Name field.
b. Click Done.

c. Specify at least one value under the Types column for type, a reserved
sub-attribute for a complex multivalued attribute.

 Tip:

Use the Edit, Update, and Cancel workflow to make or undo a change
to the type value. Use the Delete and Undelete workflow to remove a
type value or cancel the removal request.

d. Click Done.

Managing channels
You can manage provisioning channels in the PingFederate administrative console to add, modify, and
delete channels.

About this task

A provisioning channel is a mapping configuration between user attributes contained in a source user store
and attributes supported or required by the targeted software-service application. You can have multiple
channels to the same target as needed, such as if your organization has separate LDAP stores, or different
nodes in the same store, for various user groups needing single sign-on (SSO) access and provisioning to
the same domain.

 Tip:

There can be only one provisioning target per connection. If your organization subscribes to multiple
domains for which you need provisioning support, you need a separate service provider (SP) connection
for each domain.

Go to Applications # Integration # SP Connection # Configure Channels. On the Manage Channels
tab, you can perform the following tasks:

Copyright ©2024

 | Administrator's Reference Guide | 473

Steps

▪ To add a new channel, click Create.

Alternatively, you can create a new channel by copying an existing channel and making other required
changes.

▪ To modify existing channel settings, select an existing channel.
▪ To remove or cancel the removal request of the existing channel, use the Delete and Undelete

workflow.

Specifying channel information
When configuring channels in PingFederate, you can specify channel information such as the channel
name, max threads, and timeout.

About this task

On the Channel Info tab, specify a unique identifier for the channel and adjust the values for the Max
Threads and Timeout fields as needed to optimize data-transfer performance, particularly if large numbers
of records need to be provisioned at the target site. The Max Threads and Timeout settings apply to the
phase of provisioning when PingFederate is pushing updates to the provisioning target.

The Max Threads setting determines how many threads PingFederate can use to send updates to the
target. Using multiple threads should let PingFederate finish this provisioning phase faster. There is no
particular order in which PingFederate processes updates. Each thread pulls the user and group update
operations from a queue. As soon as a thread finishes one operation, it pulls another operation from the
queue. Eventually there will be no more operations in the queue, so all threads will finish at close to the
same time, but not exactly.

The Timeout setting determines how long PingFederate has to update a record. If PingFederate takes too
long to update a record, it moves to the next record. During the next provisioning cycle, PingFederate will
try again to update the skipped record.

Steps

1. Go to Applications # Integration # SP Connection # Configure Channels # Channel. In the
Channel Name field, enter a channel name.

If you are copying a channel, you must enter a new value in this field.

2. Optional: Update the values for the Max Threads and Timeout fields.

The Timeout value applies only when the Max Threads value allows multiple threads.

3. Click Next.

Identifying the source datastore
You can identify the source datastore for the service provider (SP) channel configuration in the
PingFederate administrative console.

About this task

PingFederate supports PingDirectory, Microsoft Active Directory, Oracle Unified Directory, and Oracle
Directory Server as source user repositories for outbound provisioning. However, you can use other
types of LDAP servers, either identifying them as Generic or registering them with PingFederate. For
more information, see the sample.template.txt in the <pf_install>/pingfederate/server/
default/conf/template/ldap-templates directory.

Copyright ©2024

 | Administrator's Reference Guide | 474

Information from your user-datastore is used to supply mapped values for each user attribute required by
the service provider (SP).

Steps

1. Go to Applications # Integration # SP Connections # SP Connection # Configure Channels #
Channel.

2. On the Source tab, choose the LDAP store to use for this channel.

If the datastore you want is not shown in the list, PingFederate is not configured to access the store.
To create a connection to the datastore, click Manage Data Stores.

3. Click Next.

Modifying source settings
You can modify the source settings for the datastore configuration in the PingFederate administrative
console. You can add, change, and remove user information.

About this task

The Source Settings tab shows the default configuration of the datastore selected on the Source tab,
including settings used by the PingFederate provisioner to determine when user information is added,
changed, or removed.

See the following table for more information about each field.

Field Description

Entry GUID Attribute The name of the attribute in the datastore representing the user's GUID.

GUID Type Indicates whether the GUID is stored in binary or text format. Microsoft Active
Directory is always binary. Other LDAP stores most often use text.

Copyright ©2024

 | Administrator's Reference Guide | 475

Field Description

Member of Group
Attribute

A multivalued user attribute containing the distinguished names (DNs) of the
groups to which an entry belongs. This attribute does not apply to some LDAP
servers, including Oracle Unified Directory and Oracle Directory Server. The
attribute in the next row is used instead. PingDirectory and Microsoft Active
Directory use both values to provide a two-way mapping between user and
group objects.

Group Member Attribute The name of a multivalued group attribute used to track membership in the
group using either DN or GUID values.

User objectClass The LDAP object class to which user entries belong, used to restrict search
results to user entries only. The default value is:

▪ inetOrgPerson if the Data Source is PingDirectory
▪ person if the Data Source is Oracle Directory Server or Oracle Unifier

Directory
▪ objectGUID if the Data Source is Microsoft Active Directory

Group objectClass The LDAP object class to which group entries belong, used to restrict search
results to group entries only.

Changed Users/Groups
Algorithm

The method by which PingFederate determines if user records have been
updated or new records added, thus requiring provisioning updates at the
target site. The three choices are:

▪ Active Directory USN – For Microsoft Active Directory only, this algorithm
queries for update sequence numbers on user records that are larger than
the last time records were checked.

▪ Timestamp – Queries for timestamps on user records that are not older
than the last time records were checked. This check is more efficient from
the perspective of the PingFederate provisioner but can be more time
consuming on the LDAP side, particularly with Oracle Unified Directory
and Oracle Directory Server.

▪ Timestamp No Negation – Queries for timestamps on user records that
are newer than the last time records were checked. This algorithm is
recommended for Oracle Unified Directory and Oracle Directory Server.

USN Attribute The name of the attribute used to store the update sequence number.
Applicable when the Microsoft Active Directory algorithm is chosen in the row
above.

Timestamp Attribute The name of the attribute used to store the timestamp on user records.

 Note:

This attribute name is case-sensitive. Ensure the attribute name matches
the name your directory uses. For example, in PingDirectory and Oracle, the
attribute is modifyTimestamp, but in Microsoft Active Directory, the attribute
is modifyTimeStamp. They have different capitalization.

Account Status Attribute The name of the attribute in which the user's account status, active or inactive,
is stored. For example, Microsoft Active Directory = userAccountControl
and Oracle Directory Server = nsaccountlock.

Copyright ©2024

 | Administrator's Reference Guide | 476

Field Description

Account Status
Algorithm

The method by which PingFederate determines a user's account status. The
values are:

▪ Active Directory Bitmap for Microsoft Active Directory, which
uses a bitmap for each user entry. For more information about
userAccountControl flags, see Microsoft's knowledge base.

▪ Flag– For Oracle Unified Directory, Oracle Directory Server, and other
LDAP directories that use a separate attribute to store the user's status.
When this option is selected, the Flag Comparison Value and Flag
Comparison Status fields below are also used.

Default Status Indicates the user's status if the attribute is missing.

Flag Comparison Value Indicates the value for the attribute, such as nsaccountlock, that
PingFederate expects to be returned. The value is case-sensitive.

Used when the Account Status Algorithm is set to Flag.

Flag Comparison Status Indicates whether the user is enabled or disabled when the flag has the value
specified in the Flag Comparison Value field. Setting the value to true equals
enabled, while setting the value to false equals disabled.

For example, if the Account Status Attribute is set to nsaccountlock, and
the Flag Comparison Value is set to true, and the Flag Comparison Status is
set to false, then any users with nsaccountlock=true are disabled.

Used when the Account Status Algorithm is set to Flag.

If you are using PingDirectory, Microsoft Active Directory, Oracle Unified Directory, or Oracle Directory
Server, in most cases no changes are needed on this tab unless your datastore uses a customized
schema.

If you are using a different LDAP directory, you must supply the required information on this tab unless you
have defined a template for the datastore. For more information, see the sample.template.txt in the
<pf_install>/pingfederate/server/default/conf/template/ldap-templates directory.

Steps

1. Modify the settings, as needed.

2. Click Next.

Specifying a source location
You can indicate on the Source Location tab where PingFederate should look for user records in the
datastore.

About this task

The same location can be used to retrieve user-group distinguished names (DNs) for maintaining
corresponding groups at the service provider (SP).

Copyright ©2024

https://support.microsoft.com/kb/305144

 | Administrator's Reference Guide | 477

After specifying the required base DN, you can provision users, and groups when applicable, based on
group membership information or LDAP search results.

 Note:

Groups provisioning is supported for System for Cross-domain Identity Management (SCIM) and the
Google Apps Connector (version 2.0 and higher) but might not be supported for other software as a service
(SaaS) Connectors. If not, the associated fields under Groups on the Source Location tab are inactive.
Support for the feature might become available in future SaaS Connector releases. See the documentation
in your add-on distribution package.

Steps

1. Go to Applications # Integration # SP Connections # Configure Channels # Channel. In the
Base DN field, enter the base DN where user records are stored.

PingFederate looks only at this node level, or below it, for user accounts and groups (when applicable)
that need to be provisioned based on the conditions set in the next step.

2. Specify group membership information or an LDAP filter to search for users, and groups when
applicable, to be provisioned. For more information, see the following table.

Object Field description

Users Group DN

The distinguished name (DN) of a group in the user repository whose
member groups should be provisioned.

Optionally, select the Nested Search check box to include users that
are members of the specified group through nested group membership.
Nested group membership is preserved for SCIM provisioning, and SaaS
provisioning if the vendor and the SaaS Connectors support hierarchical
structure in groups.

 Note:

The Nested Search feature is available when Microsoft Active Directory,
Oracle Unified Directory, or Oracle Directory Server is selected as the
source user repository. For more information, see Identifying the source
datastore on page 473.

Filter

An LDAP search filter that returns user objects representing the users that
should be provisioned.

For information about LDAP filters, see your LDAP documentation. You
might need to escape any special characters.

 Important:

The Group DN field is ignored when a Filter field value is configured.

If you are using Active Directory, the filter must include
objectClass=user for the provisioner to retrieve users.

Copyright ©2024

 | Administrator's Reference Guide | 478

Object Field description

Groups (when
applicable)

Group DN

The DN of the group in the user repository that should be provisioned.

Optionally, select the Nested Search check box to include groups that
are members of the specified group through nested group membership.
Nested group membership is preserved for SCIM provisioning, and SaaS
provisioning if the vendor and the SaaS Connectors support hierarchical
structure in groups.

 Note:

The Nested Search feature is available when Microsoft Active Directory,
Oracle Unified Directory, or Oracle Directory Server is selected as the
source user repository. For more information, see Identifying the source
datastore on page 473.

Filter

An LDAP search filter that returns group objects representing the groups
that should be provisioned.

For information about LDAP filters, refer to your LDAP documentation. You
might need to escape any special characters.

 Important:

The Group DN field is ignored when a Filter field value is configured.

If both the Group DN field and the Filter field are blank, no groups will be
provisioned.

3. Click Next.

Mapping attributes
Mapping attributes determines how attributes from your user store are mapped to the System for Cross-
domain Identity Management (SCIM) attributes in the core schema and custom attributes through a
schema extension or to the provisioning fields supported for your organization's software as a service
(SaaS) customer account.

About this task

Edit the mapping of attributes from the local datastore into fields specified by the service provider (SP).

 Important:

If you are provisioning for SCIM, your SP can make one or more optional core attributes mandatory.
For more information, see the SCIM documentation from the SP or the SCIM Resource Schema
representation.

Copyright ©2024

 | Administrator's Reference Guide | 479

 Tip:

For non-SCIM SaaS connectors, PingFederate automatically retrieves from the vendor the Field
Names shown on this tab, but only on the first pass through the configuration flow. If you are using this
configuration to modify an existing mapping configuration, click Refresh Fields to synchronize the list with
the target if needed.

For each field, the Attribute Mapping option provides a means of adding or modifying the mapping details.

 Note:

All required attributes listed in the Field Name column, indicated with asterisks, must be mapped. Click
View Partner Field Specifications for a summary of requirements for all fields specified for the target
partner.

For some fields, PingFederate preselects LDAP attributes commonly used to store the required values.

Steps

1. Go to Applications # Integration # SP Connections to open the SP Connections configuration
window.

2. To edit an existing SP connection, open an SP connection by clicking on its name in the Connection
Name column.

3. On the Outbound Provisioning tab, click Configure Provisioning to open the Configure Channels
configuration window.

 Note:

The Outbound Provisioning tab is only visible after you go to the Connection Type tab, select the
Outbound Provisioning check box and in the Type list, select the type.

4. Go to the Manage Channels tab.

5. Select a channel.

6. Go to the Attribute Mapping tab.

7. To edit a field, click Edit in the Action column.

 Tip:

If you have specified any custom attributes, they are listed at the end of the Attribute Mapping
configuration.

8. On the Attribute Mapping tab, provide mapping details.

9. Repeat steps for each attribute shown in the Field Name column as needed.

 Tip:

For most fields, if you map more than one attribute from your datastore into a single field at the target
location, then you must use an OGNL expression to indicate how to combine the attribute values.

The only exception is the LDAP Attributes Map field, which is provided primarily to support SCIM
attributes specific to PingOne for Enterprise. This field can contain multiple attributes without using
OGNL.

Copyright ©2024

 | Administrator's Reference Guide | 480

10. Click Next.

Specifying mapping details
Define specific mapping information for each field, required or optional, for provisioning as needed.

 CAUTION:
If end-users at your site are permitted to edit some of their own attributes directly in the LDAP store,
ensure that the attributes are restricted and do not include any needed by the service provider to grant
permissions.

Defining mapping information for a standard attribute

Before you begin

▪ Go to Applications # Integration # SP Connections to open the SP Connections configuration
window.

▪ To edit an existing SP Connection, open an SP Connection by clicking on its name in the Connection
Name column.

▪ On the Outbound Provisioning tab, click Configure Provisioning to open the Configure Channels
configuration window.

 Note:
The Outbound Provisioning tab, is only visible after you select the OutBound Provisioning check
box and the type in the Type list, on the Connection Type tab.

▪ Go to the Manage Channels tab.
▪ Click the name of the channel to edit it.

 Tip:

If you have specified any custom attributes, they are listed at the end of the Attribute Mapping
configuration.

Steps

1. On the Attribute Mapping tab, click Edit in the Action column for the Field Name whose attributes
you want to map.

2. Select the class containing a user-store attribute in the Root Object Class column that you want to
map to the provisioning attribute shown in the Field Name column.

 Note:

For some fields, you might not need to map specific user attributes. If so, supply a value in the Default
Value field, skip this step, and go to step 5. For certain attributes, you can specify LDAP attributes and
a default value, as needed.

3. Select the source attribute from the class in the Attribute column. Click Add Attribute.

4. Repeat the previous steps to add additional applicable attributes to use in a mapping expression.

 Note:

You must add an attribute for it to be used in an expression.

Copyright ©2024

 | Administrator's Reference Guide | 481

5. Optional: If one or more attributes are specified: go to the Value Definition section, and in the Default
Value field, enter or select a default value.

If you have specified any custom attributes, they are listed at the end of the Attribute Mapping
configuration.

A list appears for this field if the vendor requires a choice among specified values. When an
expression is also supplied, the default value is sent during provisioning if an error occurs when
evaluating the expression.

6. If more than one attribute is used for mapping fields other than LDAP Attributes Map, in the Value
Definition section, enter an expression.

a. To create and validate the expression for the Expression field, click Edit.

7. Select one or more processing options.

Processing option Description

Create Only The field is provisioned only once and not
subsequently updated.

 Note:

For SCIM, the Password attribute should be
passed only when creating a user or updating the
password. Select Create Only to limit when the
Password attribute is passed.

Trim Removes any white space from the attribute
values.

Mask Log Values Determines whether sensitive information, such
as the Password attribute, will be masked in
PingFederate log files.

Upper Case, Lower Case, or None Transforms the attribute values to the case
indicated unless the default, None option, is
selected.

Parsing > Extract CN from DN For attributes in the form of a distinguished name
(DN), such as Group DNs in Active Directory,
maps only the common name portion of the DN.

Parsing > Extract Username from Email For attributes containing an email address, maps
only the username.

8. Click Done.

Defining mapping information for a custom attribute

Steps

1. Select a sub-attribute in the Attribute column and list.

 Note:

Applicable only to complex attributes or complex multivalued attributes, see Specifying custom SCIM
attributes on page 469.

Copyright ©2024

 | Administrator's Reference Guide | 482

2. Select the class containing a user-store attribute in the Root Object Class column that you want to
map to the provisioning attribute shown in the Field Name column.

 Note:

For some fields, you might not need to map specific user attributes. If so, supply a value in the
Default Value field, skip this step, and go to step 5. For certain attributes, you can specify both LDAP
attributes and a default value, as needed.

3. Select the source attribute from the class in the LDAP Attribute column. Click Add Attribute.

4. In the Options section, select one or more processing options.

Processing option Description

Create Only The field is provisioned only once and not
subsequently updated.

 Note:

For System for Cross-domain identity
Mangement (SCIM), the Password attribute
should be passed only when creating a user or
updating the password. Select Create Only to
limit when the Password attribute is passed.

Trim Removes any white space from the attribute
values.

Mask Log Values Determines whether sensitive information, such
as the Password attribute, will be masked in
PingFederate log files.

Upper Case, Lower Case, or None Transforms the attribute values to the case
indicated unless the None option is selected, the
default.

Parsing > Extract CN from DN For attributes in the form of a distinguished name
(DN), such as Group DNs in Active Directory,
maps only the common name portion of the DN.

Parsing > Extract Username from Email For attributes containing an email address, maps
only the username.

5. In the Default Value field, enter a default value.

6. Click Add Mapping.

 Note:

For complex attributes or complex multivalued attributes, repeat these steps to map additional sub-
attributes as needed.

7. Click Done.

Copyright ©2024

 | Administrator's Reference Guide | 483

Reviewing channel settings
When you finish setting up a channel, you can choose to activate it immediately or activate the channel as
needed.

About this task
On the Activation & Summary tab, review, activate, deactivate, or save your channel settings.

 Note:

A service provider connection must be active for any provisioning channels to be enabled. You can
deactivate a channel at any time. When a channel is inactive, provisioning is suspended but single sign-on
(SSO) and single logout (SLO) transactions can still occur if an associated connection is active.

Steps

1. Go to Applications # Integration # SP Connections # SP Connection # Configure Channels #
Channel.

2. On the Activation & Summary tab, select Active or Inactive to toggle the status. Click Save.

 CAUTION:

When a channel is activated, initial provisioning occurs as soon as the synchronization-frequency
time period expires. See Configuring outbound provisioning settings on page 861. The default is 60
seconds. Because initial provisioning can consume considerable processing time, depending on the
amount of data that needs to be transmitted, administrators should plan accordingly.

3. To modify channel settings, click the associated heading in the Summary column.

 Important:

Click Save to save the channel configuration.

Reviewing SP connection settings
When you finish creating or modifying a service provider (SP) connection, you can review the connection
settings and toggle the connection status.

About this task

On the Activation & Summary tab, you can review, amend, discard, or save your changes.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Result

 Important:

When creating a new connection, the default connection status is Enabled when you reach the Activation
& Summary tab.

Copyright ©2024

 | Administrator's Reference Guide | 484

Whether you choose to disable a new connection now or later, you must click Save on the Activation &
Summary tab if you want to keep the new connection.

The SSO Application Endpoint provides a sample URL at the /idp/startSSO.ping application
endpoint that webmasters or web application developers at your site can use to invoke single sign-on for
the connection. For a list of supported parameters, see Viewing IdP application endpoints on page 409.

SP affiliations
A service provider (SP) affiliation is a SAML 2.0 specification that permits a group of service providers to
make use of the same persistent name identifier for account linking.

SP affiliations are useful when multiple SPs share a business relationship in which users need services
from each affiliated provider. By agreement among the affiliation members, the same pseudonym can
be used to populate the SAML_SUBJECT of assertions sent to all of the SP partners contained in this
affiliation.

 Note:

Each connection in the affiliation must be configured to use the same identity provider adapter instance for
generating account links. For more information, see Managing authentication source mappings on page
430.

Managing SP affiliations
Use service provider (SP) affiliations when multiple SP's share a business relationship in which users
need services from each affiliated provider. To support these needs, edit and delete your SP affiliations in
PingFederate as needed.

About this task
In SP Affiliations window, create, edit, or delete an SP affiliation.

Steps

▪ To create a new SP affiliation, go to System # Protocol Metadata # SP Affiliations to open the SP
Affiliations window. Click Create Affiliation.

Result: This is will open the Create an Affiliation window configuration.
▪ To edit or delete an SP affiliation, choose from the following options.

Choose from:

▪ To edit an SP affiliation, on the SP Affiliations window, select the affiliation by its ID and follow
the configuration wizard to complete the task.

▪ To delete an SP affiliation, in the SP Affiliations window, click Delete under Action for the SP
affiliation.

Importing affiliation metadata
You can import a metadata file for an identity provider (IdP) to send containing information that
automatically specifies members of a service provider (SP) affiliation, describing this affiliation, to provide
authentication for account linking.

About this task
On the Import Metadata tab, import a metadata file, or click Next if you do not want to import a file.

Copyright ©2024

 | Administrator's Reference Guide | 485

Steps

▪ Go to System # Protocol Metadata # SP Affiliations to open the SP Affiliations window. Click
Create Affiliation.

Result: This is will open the Create an Affiliation window configuration.
▪ To import a metadata file or not and move onto the next step, choose from the following options.

Choose from:

▪ To import a metadata file, on the Import Metadata tab, click Choose File to upload it. Click Next.
▪ If you do not have a metadata file, on the Import Metadata tab, click Next.

Entering affiliation information
If you did not import a metadata file to describe a new service provider (SP) affiliation, enter the information
manually to identify your SP affiliation to support authentication for account linking.

About this task
On the Affiliation General Info tab, enter the affiliation ID information, as described in the following table.

Steps

▪ To create a new SP affiliation, go to System # Protocol Metadata # SP Affiliations to open the SP
Affiliations window. Click Create Affiliation.

Result: This is will open the Create an Affiliation window configuration.
▪ On the Affliation General Info tab, enter the following information.

Affiliation ID fields and descriptions

Field Description

Affiliation ID A unique identifier for this affiliation. This value serves as the Name ID
qualifier for SAML assertions sent to affiliated SP partners.

Affiliation Owner Any SAML 2.0 SP connection can serve as the Owner.

If you imported a metadata file, this information is already supplied. However, you can change the
Affiliation ID or select a different Affiliation Owner, if required.

When finished, click Next.

Managing affiliation membership
Manage the list of service provider (SP) connections that are part of this affiliation. Configure each of the
SP connections in an affiliation to generate opaque pseudonyms using the same adapter attributes.

About this task
On the Affiliation Membership tab, create and manage a list of SP connections to be included in the
affiliation.

If you imported a metadata file, this information is already supplied. However, you can add or remove
connections from the affiliation.

Steps

▪ Go to System # Protocol Metadata # SP Affiliations to open the SP Affiliations window. Click
Create Affiliation.

Result: This is will open a new Create an Affiliation configuration window.
▪ Click on the Affliation Membership tab.

Copyright ©2024

 | Administrator's Reference Guide | 486

▪ To add an SP partner connection to the affiliation, from the SP Connection Name list, select the
connection. Click Add.

 Important:

Each connection in the affiliation must be configured to use the same identity provider (IdP) adapter
instance for generating account links. For more information, see Managing authentication source
mappings on page 430.

▪ To remove a member of the affiliation, click Delete under Action for the connection.

 Note:

If you delete an affiliation member supplied by an imported metadata file and then save the affiliation,
that connection will not appear in the drop-down list for re-adding in the future.

▪ When finished, click Next.

Reviewing an SP affiliation
Review the summary information for a service provider (SP) affiliation and make changes or save as
needed.

About this task
On the Activation & Summary, review, amend, discard, or save your changes.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

OAuth configuration
OAuth is an open standard for authorization. To use PingFederate as an OAuth authorization server (AS),
configure the OAuth AS settings as described in this section.

 Tip:

Service providers can also add OAuth capabilities to the Browser SSO configuration for identity provider
(IdP) connection partners, see Configure OAuth attribute mapping.

Configuring OAuth use cases
Administrators can configure PingFederate to support the OAuth grant types that applications require.

Steps

1. To configure the authorization server settings, go to System # OAuth Settings # Authorization
Server Settings. For more information, see Configuring authorization server settings.

2. Define any number of optional common scopes and exclusive scopes, create scope groups from
optional scopes as needed, and enter an optional description for the default scope in the System #
OAuth Settings # Scope Management window.

Copyright ©2024

 | Administrator's Reference Guide | 487

3. Create one or more access token management instances in the Applications # OAuth # Access
Token Management window.

 Note:

You can also define the access token attribute contract for an access token management instance in
this window.

4. Configure one or more entries to map attributes from authentication sources to the persistent grants.

Authorization Code or Implicit

▪ Map attributes from an identity provider (IdP) adapter instance to the persistent grants in
Authentication # OAuth # IdP Adapter Grant Mapping.

▪ Map attributes from an IdP connection to the persistent grants in IdP Connection #
Browser SSO # OAuth Attribute Mapping.

▪ Create an authentication policy contract (APC) using the Policy Contracts window, define
an authentication policy to map attributes from the authentication sources (IdP adapter
instances, IdP connections, or both) to the APC, and map attributes from the APC to the
persistent grants using the Authentication Policy Contract Grant Mapping window.

 Tip:

If you are using a combination of authentication policies, APCs, and APC mappings, you
can skip the IdP Adapter Grant Mapping and OAuth Attribute Mapping configurations.

Resource Owner Password Credentials

▪ Map attributes from a password credential validator instance to the persistent grants
using the Authentication # OAuth # Resource Owner Credentials Grant Mapping
configuration wizard.

 Note:

This is the first stage of the two-stage access token mapping process through the persistent grants.

5. Configure one or more entries to map attributes from the persistent grants (or the authentication
sources directly) to the attribute contract of your access token management instances in the
Applications # OAuth # Access Token Mapping window. Additionally, you can configure a mapping
for clients using the client credential grant type.

 Note:

This is the second stage of the two-stage access token mapping process through the persistent
grants. For more information about the access token mapping process, see Mapping OAuth attributes
on page 80.

6. For the client-initiated backchannel authentication (CIBA) flow, configure one or more CIBA
authenticator instances and then one or more CIBA request policies.

Copyright ©2024

 | Administrator's Reference Guide | 488

7. For the JSON web token (JWT) Bearer or SAML 2.0 Bear assertion grants flow, configure a mapping
in IdP Connection # OAuth Assertion Grant Attribute Mapping.

 Note:

This use case exchanges a JWT or a SAML assertion for an OAuth access token.

8. Define one or more OpenID Connect policies using the Applications # OAuth # OpenID Connect
Policy Management window if you support OpenID Connect use cases.

9. Go to Applications # OAuth # Clients and create one or more OAuth clients in the Client window.

10. Optional: Configure client settings and registration policies for dynamic client registration.

11. Optional: Configure client session management settings.

Configuring authorization server settings
The Authorization Server Settings window provides controls over the usage and behavior of
PingFederate as an OAuth authorization server (AS), including the policies and settings for various grant
types, refresh-tokens, persistent grants, and ID tokens.

Steps

1. Go to System # OAuth Settings # Authorization Server Settings.

2. Configure the AS to suit your use cases.

The following table describes each field.

Field Description

Authorization Code
Timeout (Seconds)

The amount of time in seconds that an authorization code is considered
valid. The default value is 60.

Authorization Code
Entropy (Bytes)

The length in bytes of the authorization code returned to clients. The
default value is 30.

Track User Sessions
for Logout

When selected, PingFederate links the sessions for identity provider
(IdP) adapters that are used by clients to the PingFederate authentication
session of the resource owner. When a user initiates logout, PingFederate
sends logout requests to close the adapter sessions through the browser.

Selecting this check box also allows per-client logout endpoints to be
defined, which will be invoked during logout.

This check box is not selected by default.

Pushed Authorization Request (PAR) Settings

Copyright ©2024

 | Administrator's Reference Guide | 489

Field Description

PAR Status This field determines whether clients can or must use the PAR endpoint
/as/par.oauth2 on the AS to initiate authorization flows. The default
setting is Enabled.

This setting works in conjunction with each client's Require Pushed
Authorization Requests check box on the Client window. For example:

▪ If PAR is Enabled on the AS and required on the client, then the client
must use PAR

▪ If PAR is Enabled on the AS but not required on the client, then the
client can use PAR

▪ If PAR is Required on the AS but not required on the client, then the
client must use PAR

▪ If PAR is Disabled on the AS and required on the client, then the client
cannot access the AS

For more information about PAR, see Pushed authorization requests
endpoint on page 1113 and Configuring OAuth clients on page 529.

PAR Reference
Timeout (Seconds)

Specifies the lifetime of the request URI that the PAR endpoint returns to
the client. The default is 60 seconds. The allowable values are 1 to 1800.

PAR Reference
Entropy (Bytes)

Specifies the length of the request URI. Longer request URIs are more
secure. The default is 24 bytes. The allowable values are 20 to 256.

Refresh Token and Persistent Grant Settings

Persistent Grant Max
Lifetime

This field determines whether persistent grants should expire, and if so, the
default maximum lifetime for persistent grants.

▪ Select Grants Do Not Expire to let persistent grants remain valid until
they are revoked or removed.

▪ Select the time value option to set a maximum lifetime for persistent
grants. Enter an integer between 1 and 999 in the field and select
Days, Hours, or Minutes from the list.

The default selection is Grants Do Not Expire.

 Note:

You can override the expiration in individual client records or
grant-mapping configurations. Grant-mapping configurations take
precedence and require an extended persistent grant attribute,
PERSISTENT_GRANT_LIFETIME.

Copyright ©2024

 | Administrator's Reference Guide | 490

Field Description

Persistent Grant Idle
Timeout

This field determines whether persistent grants should expire due to
inactivity, regardless of whether the maximum lifetime has been reached,
and the default idle timeout period.

▪ Select Grants Do Not Timeout Due To Inactivity and let persistent
grants remain valid until they expire or are removed.

▪ Select the time value option to set the default idle timeout window.
Enter an integer between 1 and 999 in the field and select a unit of
measurement from the list.

If you configure an idle timeout value, the idle timeout window slides
when a persistent grant updates. When you have an idle timeout value
configured without a maximum lifetime, persistent grants remain valid
until they expire due to inactivity or until the grant storage revokes or
removes them. When you have an idle timeout value configured with
a maximum lifetime, persistent grants remain valid until they expire
due to inactivity or lifetime expiration or until the grant storage removes
them. For more information, see Transient grants and persistent grants
on page 79.

For new installations, the default inactivity allowance is 30 days. For
upgrades, Grants Do Not Timeout Due To Inactivity is the default
selection unless a specific value was set previously.

 Note:

You can override the expiration in individual client records.

Refresh Token Length
(Characters)

The length of the refresh tokens in numerical characters.

The default value is 42.

Roll Refresh Token
Values (Default
Policy)

When selected, PingFederate generates a new refresh token when a
new access token is issued. Otherwise, each refresh token is used until it
becomes invalid, either by manual revocation or another security setting
that renders the token invalid.

 Note:

New refresh tokens are not issued during the interval defined by the
Minimum Interval to Roll Refresh Tokens field.

This check box is not selected by default.

Minimum Interval to
Roll Refresh Tokens
(Hours)

The minimum number of hours that must pass before a new refresh token
can be issued. This setting provides a way to allow for rolling refresh
tokens without having to send a new refresh token on every request.

The default value is 0.

Copyright ©2024

 | Administrator's Reference Guide | 491

Field Description

Reuse Existing
Persistent Access
Grants for Grant
Types

If a client makes multiple requests for the same user and the same or
lesser scope, select the grant types that you want PingFederate to reuse
the existing grant for, rather than creating a new grant for each request.

Reusing an existing persistent grant imposes a limit of one grant per client,
per user. In the context of refresh tokens, only the most recently issued is
valid, and the previously issued refresh token is invalidated. If the same
client are installed on multiple devices and used regularly by the same
user, the grant type used by this client should be cleared.

The applicable grant types are:

▪ Implicit (default)
▪ Authorization Code
▪ Resource Owner Password Credentials

When the Implicit check box is selected, PingFederate requests consent
from the user only once. The user is not asked for authorization on
subsequent requests until the access grant is revoked.

When the Authorization Code check box is selected, the same is true if
the Bypass Authorization for Previously Approved Persistent Grants
check box is also selected.

Allow Unidentified
Clients to Make
Resource Owner
Password Credentials
Grants

When selected, PingFederate allows resource owners to obtain access
tokens without client ID or client authentication.

The check box is not selected by default.

Allow Unidentified
Clients to Request
Extension Grants

When selected, PingFederate allows user-initiated or client-initiated events,
such as a mobile application or a scheduled task, to obtain access tokens
without the client presenting a client_id or client_secret for the
extension grant types, namely:

▪ JWT Bearer Token grant type

urn:ietf:params:oauth:grant-type:jwt-bearer
▪ SAML 2.0 Bearer Assertion grant type

urn:ietf:params:oauth:grant-type:saml2-bearer
▪ Validation grant type

urn:pingidentity.com:oauth2:grant_type:validate_bearer

The check box is not selected by default.

Token Endpoint Base
URL

When clients authenticate with the private_key_jwt authentication method,
PingFederate validates the aud parameter value found inside the signed
JWT against its base URL or any configured virtual host names. If the
values do not match, the authentication fails.

Enter a separate base URL that PingFederate can take into consideration
as well when validating the aud parameter.

If configured, the OpenID Provider configuration endpoint /.well-known/
openid-configuration uses the Token Endpoint Base URL field
value as the base for the token endpoint.

This field has no default value.

Copyright ©2024

 | Administrator's Reference Guide | 492

Field Description

Persistent Grant Extended Attributes

Attributes Extend persistent grants to include additional attributes from your
authentication systems.

Lifetime of persistent grants

Add the attribute PERSISTENT_GRANT_LIFETIME to enable the
option to set the lifetime of persistent grants based on the outcome
of attribute mapping expressions in individual grant-mapping
configurations. For grant-mapping configurations that do not require
this fine-grain control, you can configure them to use the default value.

This capability applies to the following grant-mapping configurations:

▪ IdP Adapter Grant Mapping
▪ OAuth Attribute Mapping
▪ Authentication Policy Contract Mapping
▪ Resource Owner Credentials Grant Mapping

This field has no default entry. PingFederate allows multiple entries.

 Note:

If you have already created grant mapping configurations and then add
one or more attributes in this section, the newly added attributes are
configured as No Mapping in all existing grant mapping configurations.
You can configure fulfillment for the newly added attributes in individual
grant mapping configurations when your use cases require those attributes.

Authorization Consent

Bypass Authorization
for Previously
Approved Persistent
Grants

When selected, PingFederate requests consent from the user only once.
The user is not asked for authorization on subsequent requests until the
access grant is revoked. This applies only when using the authorization
code grant type and when the Reuse Existing Persistent Access Grants
for Grant Types check box is selected.

The check box is not selected by default.

 Note:

You can override this setting in individual client records.

Copyright ©2024

 | Administrator's Reference Guide | 493

Field Description

Consent User
Interface

Specifies whether PingFederate or a trusted web application should handle
consent approval.

Default

Select Default and let PingFederate handle consent approval by
presenting the Request for Approval page to the resource owner.

External

Select External to delegate the responsibilities of consent approval to
a trusted web application.

For example, if you have created an instance of the Reference ID
Adapter version (version 1.5 or a subsequent version), you can select
it from the list. The expectation is that the trusted web application
is integrated with PingFederate through this Reference ID Adapter
instance.

When selected, you must also configure two additional fields:
External Consent IdP Adapter and External Consent Scopes
Attribute.

External Consent IdP Adapter

The External Consent IdP Adapter field displays a list of IdP
adapter instances that are capable of facilitating the consent
approval process.

For example, if you have created an instance of the Reference
ID Adapter version (version 1.5 or a subsequent version), you
can select it from the list. The expectation is that the trusted
web application is integrated with PingFederate through this
Reference ID Adapter instance.

Your development team can also create a custom adapter
using the PingFederate SDK. For more information, see the
Javadoc for the IdpAuthenticationAdapterV2 interface,
the ExternalConsentPageAdapter.java file for a sample
implementation, and the SDK Developer's Guide on page 1047
for build and deployment information.

 Tip:

The Javadoc for and the sample implementation are in the
<pf_install>/pingfederate/sdk directory.

Once deployed, you can create an instance of the custom
adapter and select it from the list.

External Consent Scopes Attribute

The External Consent Scopes Attribute field displays a list
of attributes defined in the IdP adapter contract of the selected
adapter instance. Select the attribute whose value contains the
approved scopes returned by the trusted web application.

For example, if you have added an attribute called
approvedScopes to the adapter instance with the expectation
that approvedScopes is the attribute that the trusted web
application passes approved scopes to PingFederate, select
approvedScopes from the list.

Copyright ©2024

 | Administrator's Reference Guide | 494

Field Description

OAuth Administrative Web Services Settings

Password Credential
Validator

Selects a Password Credential Validator (PCV) instance to manage clients
using the OAuth Client Management Service or to manage persistent
grants using the OAuth Access Grant Management Service.

This setting has no default selection. When no PCV is selected, neither
service can be used.

Persistent Grant Management API

The Persistent Grant Management API allows clients to assume the responsibility of grant
management if the users authorize the clients to do so. In this scenario, a client prompts the user to
approve a specific scope for managing persistent grants on the user's behalf. If the user approves,
the client requests an access token with such scope from PingFederate. As long as the access
token remains valid, the client can retrieve and revoke persistent grants and their associated
extended attribute names and values for that user. For more information, see OAuth Persistent Grant
Management API on page 1147.

Access Token
Manager

Selects an Access Token Management instance under which one or more
clients can use the access tokens issued to manage persistent grants on
their users' behalves.

Such clients must also be configured to use this Access Token
Management instance in their client configurations.

Required Scope Selects the scope that PingFederate looks for in access tokens prior to
granting clients the permission to manage persistent grants on their users'
behalves.

Clients must obtain access tokens with this scope and include them in their
grant-management requests.

Cross-Origin Resource Sharing Settings

Copyright ©2024

 | Administrator's Reference Guide | 495

Field Description

Allowed Origin Enter any number of trusted origins to enable cross-origin resource sharing
(CORS) support for the following OAuth endpoints:

▪ /as/token.oauth2
▪ /as/revoke_token.oauth2
▪ /idp/userinfo.openid
▪ /pf-ws/rest/oauth/grants/
▪ /pf/JWKS
▪ /.well-known/openid-configuration
▪ /as/bc-auth.ciba

Once configured, client-side web applications from the trusted origins are
allowed to make requests to the authorization server for the purpose of
accessing protected resources, such as obtaining or renewing access
tokens with refresh tokens, presenting access tokens for revocation,
querying additional claims (user attributes), and retrieving OpenID Provider
configuration information and JSON Web Key Sets. For more information
about CORS, see W3C's recommendation on Cross-Origin Resource
Sharing.

Sample entry Expected behavior

https://
www.example.com

CORS requests originating from https://
www.example.com are allowed.

https://
www.example.com:8080

CORS requests originating from https://
www.example.com:8080 are allowed.

https://
www.example.com:*

CORS requests originating from https://
www.example.com:<any port> are allowed.

 Note:

Given this sample entry, a port number is required in
the Origin request header.

 Important:

While using the wildcard character provides the convenience of allowing
multiple origins with one entry, consider adding individual origins to limit
CORS requests to a list of trusted hosts.

This field has no default entry. PingFederate allows multiple entries.

Device Authorization Grant Settings

The OAuth 2.0 Device Authorization Grant specification defines the process of a user granting
authorization to a device using a browser on a second device, such as a smartphone or a computer.
For more information, see Device authorization grant on page 51.

Copyright ©2024

https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cors-protocol
https://tools.ietf.org/html/rfc8628

 | Administrator's Reference Guide | 496

Field Description

User Authorization
URL

(Optional)

This field determines whether PingFederate should use a different URL,
possibly for ease of use or branding purposes, when formulating the
verification URLs to be included in its device authorization responses. For
more information, see Device authorization endpoint on page 1104.

For example, if this field is configured with a value of https://
www.example.org/welcome, PingFederate returns https://
www.example.org/welcome and https://www.example.org/welcome?
user_code=<activationcode> as the verification URIs.

After processing the device authorization response, which includes the
verification URIs, the device presents one of them to the user. The user is
expected to browse to the presented verification URI on a second device.

 Important:

The target web server must redirect the browser to PingFederate at its
user authorization endpoint. For more information, see User authorization
endpoint on page 1106. The target web server must also preserve the
user_code parameter value, if provided.

For instance, if the base URL of your PingFederate server is https://
www.example.com and this field is configured with a value of https://
www.example.org/welcome, the target web server must redirect as
follows:

▪ https://www.example.org/welcome to https://www.example.com/as/
user_authz.oauth2

▪ https://www.example.org/welcome?user_code=<activationcode>
to https://www.example.com/as/user_authz.oauth2?
user_code=<activationcode>

This field has no default value.

 Note:

You can override this setting in individual client records.

Copyright ©2024

 | Administrator's Reference Guide | 497

Field Description

Registered
Authorization Path

(Optional)

This field controls whether PingFederate should replace the user
authorization endpoint with a different path, perhaps for ease of use
or branding purposes, when formulating the verification URLs to be
included in its device authorization responses. For more information,
see Device authorization endpoint on page 1104. The domain portion
remains to be the base URL of PingFederate. For example, if the base
URL is https://www.example.com and this field is configured with a
value of /go, PingFederate returns https://www.example.com/go and
https://www.example.com/go?user_code=<activationcode> as the user
authorization URLs.

If PingFederate receives a device authorization request at one of the
configured virtual host names, PingFederate preserves the virtual host
name in its device authorization responses.

 Note:

The registered authorization path behaves the same way as the user
authorization endpoint does. For more information, see User authorization
endpoint on page 1106.

This field is ignored when the User Authorization URL field is configured
here or in the individual client records.

The configured value must begin with a forward slash.

This field has no default value.

Pending Authorization
Timeout (seconds)

The lifetime of an activation code (the user_code parameter value) in
seconds.

The default value is 600.

 Note:

You can override this setting in individual client records.

Device Polling Interval
(seconds)

The amount of time in seconds that the device waits between polling
requests to the PingFederate token endpoint.

The default value is 5.

 Note:

You can override this setting in individual client records.

Copyright ©2024

 | Administrator's Reference Guide | 498

Field Description

Bypass Activation
Code Confirmation

When PingFederate receives a verification request that includes an
activation code (the user_code parameter value), it prompts the user to
confirm the activation code. This field determines whether PingFederate
skips this confirmation step.

Select the Bypass Activation Code Confirmation check box for
PingFederate to skip the confirmation step.

This check box is not selected by default.

 Note:

You can override this setting in individual client records.

External consent user interface
As use cases evolve and give users more control over their data, it is important to provide detailed
information about the requests. In addition to scope descriptions, PingFederate supports the use of an
external web application to prompt for authorization consent.

An external web application provides the opportunity to retrieve additional information specific to the
users. For example, if a client requests the read_bank_account scope, the web application can retrieve
the user's customer information file and give the user the ability to choose which accounts to be made
available to the client.

To use an external web application for consent approval, configure the Consent User Interface setting
in System # OAuth Settings # Authorization Server Settings. Select the External option and then
configure the External Consent IdP Adapter and External Consent Scopes Attribute settings
accordingly.

Responsibilities of the external web application

Delegating consent approval to an external web application implies that PingFederate can trust the web
application. PingFederate expects this trusted web application to fulfill the following responsibilities:

▪ Retrieve from PingFederate the list of requested scopes in a secure manner.

For example, when integrating the web application with PingFederate through an instance of the
Reference ID Adapter, such communications occur through a direct connection between the web
application and PingFederate. This back-channel connection is protected by authentication and
encryption (HTTPS).

▪ Provide to the resource owner the information associated with the list of requested scopes and the
user interface elements to approve or deny the requested scopes.

▪ Validate that the approved scopes found in the response from the resource owner do not exceed the
requested scopes.

 Important:

This validation guards against unauthorized access in the event that the response is tampered and the
original approved scopes are compromised.

▪ As needed, modify the approved scopes before returning them to PingFederate.

This allows the web application to override authorization decisions.
▪ Return the list of approved scopes to PingFederate in a secure manner.

Copyright ©2024

 | Administrator's Reference Guide | 499

Handling of approved scopes

By default, PingFederate handles consent approval by presenting the Request for Approval page to the
resource owner. Upon receipt of the response from the resource owner, PingFederate validates that the
approved scopes do not exceed the requested scopes. If the validation passes, PingFederate adds the
approved scopes to the access token. Otherwise, PingFederate returns the invalid_scope error to the
client.

When an external consent user interface is enabled, PingFederate delegates consent approval to an
external web application. As PingFederate trusts this web application, it always adds the scopes returned
by the trusted web application to the access token, regardless of whether the returned scopes have
already been defined in the system. The issuance of the access token is still subject to the criteria defined
in the grant mapping configuration, the token mapping configuration, or both. For more information, see
Grant contract mapping on page 543 and Token mapping on page 564.

Scopes and scope management
OAuth allows you to constrain the privileges associated with an access token, and scopes allow you to
define the privileges requested and granted.

Static scopes versus dynamic scopes

As an authorization server, supports the concepts of static scopes and dynamic scopes. To define a static
scope, use a text value such as read_bank_account. To define a dynamic scope, use a text value with
a variable component represented by a wildcard, such as read_bank_account_txn:*. As illustrated,
dynamic scopes allow clients to request authorization using scope values with a variable component
from one request to another. For example, when a client sends an authorization or token request with a
requested scope of read_bank_account_txn:1234, PingFederate can match the requested scope
to the dynamic scope pattern of read_bank_account_txn:* and can issue an access token with the
requested scope of read_bank_account_txn:1234.

Scope groups

For ease of management and subsequent client interactions, PingFederate has the capability to create
multiple groups of static scopes. A client can reference a scope group in applicable OAuth 2.0 protocol
interactions. When authorized, clients can subsequently request access tokens with fewer permissions by
presenting to the token endpoint a refresh token and the desired subset of scopes.

A scope group must contain at least one static scope, and multiple sub scopes are allowed. Multiple scope
groups can share the same set of sub scopes. However, no scope group can contain another scope group
or the default scope.

Scope group expansion

An authorization request can include one or more scope values. If the request is authorized, PingFederate
issues an access token to the client. When the client brings the access token to a resource server to
access protected resources, the resource server may contact PingFederate to validate the access tokens.
Scope groups are not expanded in JSON web token (JWT)-based access tokens or token introspection
responses by default. You can optionally enable scope group expansion per access token management
instance.

 Note:

Regardless of whether you choose to expand scope groups, the Request for Approval window always
presents the description of the requested scope groups, if any.

Copyright ©2024

 | Administrator's Reference Guide | 500

Common scopes and exclusive scopes

PingFederate has the flexibility to manage common and exclusive scopes and scope groups.

Common scopes and scope groups

Common scopes and scope groups are optional. If defined, they are available to all clients by
default. As needed, you can restrict individual clients to a subset of common scopes or scope
groups in their configurations.

Clients created via the Dynamic Client Registration protocol can also be restricted to a subset of
common scopes or scope groups based on the configuration on the Scope Constraints tab in
System # OAuth Settings # Client Settings. The Scope Constraints configuration is shared
across all clients registered through dynamic client registration. If a certain client requires a different
set of common scopes or scope groups, modify the client configuration by using the administrative
console, the administrative API, or the OAuth Client Management Service after the client has been
created.

Exclusive scopes and scope groups

Exclusive scopes and scope groups are optional. If defined, they are restricted from all clients by
default. As needed, you can configure individual clients to allow a subset of exclusive scopes or
scope groups in their configurations.

Clients created with the Dynamic Client Registration protocol can also be configured to allow a
subset of exclusive scopes or scope groups based on the Scope Constraints tab on the System
OAuth Settings # Client Settings window. The Scope Constraints configuration is shared
across all clients registered via dynamic client registration. If a certain client requires a different set
of exclusive scopes or scope groups, modify the client configuration by using the administrative
console, the administrative API, or the OAuth Client Management Service after the client has been
created.

 Note:

A scope or scope group is either a common scope or group, or an exclusive scope or group. Duplicate
scopes and scope groups are not allowed. Scope and scope group values are case-sensitive.

 Tip:

Create scopes that are intended for the majority of clients as common scopes. Create scopes that should
be limited to the minority of clients as exclusive scopes.

OpenID Connect

If one or more clients support the OpenID Connect standard, add the following scopes for the purpose of
requesting specific sets of claims from the OpenID Provider:

▪ openid
▪ address
▪ email
▪ phone
▪ profile

 Tip:

If most clients are allowed to use these scopes, create them as common scopes.

Copyright ©2024

 | Administrator's Reference Guide | 501

Per-client scope management

You can manage scope access on a client-to-client basis. The client settings are Restrict Common
Scopes and Exclusive Scopes.

Restrict Common Scopes

This setting determines whether all common scopes and scope groups should be made available to
the client, or only a select few.

When selected, the administrative console displays a list of existing common scopes and scope
groups. Choose the common scopes and scope groups that are intended for the client. The rest,
as well as any future common scopes and scope groups, become invalid for the client. If the client
tries to use such scope or scope group, it will receive an invalid_scope error message from
PingFederate.

When cleared, all existing and future common scopes and scope groups are available to the client.
This is the default behavior.

Exclusive Scopes

This setting determines whether any exclusive scopes and exclusive scope groups should be made
available to the client.

When selected, the administrative console displays a list of existing exclusive scopes and scope
groups. Choose the exclusive scopes and scope groups that are intended for the client. The rest,
as well as any future exclusive scopes and scope groups, become invalid for the client. If the client
tries to use such scope or scope group, it will receive an invalid_scope error message from
PingFederate.

When cleared, no exclusive scopes and scope groups are available to the client. This is the default
behavior.

 Note:

Both settings impact dynamic scope evaluation. For more information, see Dynamic scope evaluation and
per-client scope management.

Dynamic scopes

A dynamic scope is defined by using a text value with a variable component represented by an asterisk (*).
PingFederate supports three dynamic scope patterns:

▪ A prefix followed by a wildcard, for example: prefixTextValue*
▪ A wildcard followed by a suffix, for example: *suffixTextValue
▪ A wildcard placed between a prefix and a suffix, for example:
prefixTextValue*suffixTextValue

PingFederate only allows one variable component. Backslashes (\) and double quotation marks (") are
not allowed in the prefix or the suffix. Multiple dynamic scopes are supported in conjunction with any
number of static scopes and scope groups.

Dynamic scope evaluation

When a client sends an authorization or token request with a list of desired scopes, PingFederate validates
the requested scopes against its configurations.

If PingFederate finds no match for the requested scopes, it returns an invalid_scope error message to
the client.

If PingFederate matches the requested scope to an existing static scope or scope group, it checks the
client configuration to determine whether such static scope or scope group is valid for the client. If it is,

Copyright ©2024

 | Administrator's Reference Guide | 502

PingFederate proceeds further. For example, if PingFederate is configured to handle consent approval, it
presents to the user the Request for Approval window with the description associated with the matched
static scope or scope group. If PingFederate should issue an access token, the token is issued with the
requested scope. If such static scope or scope group is not valid for the client, PingFederate returns an
invalid_scope error message to the client.

If PingFederate finds no exact match but finds a partial match to one or more dynamic scopes, the partial
match with the highest number of matched characters in the prefix, suffix, or both is the matched dynamic
scope. In the event that two partial matches tie, the partial match with the highest number of characters
matched in the prefix is the matched dynamic scope. PingFederate then checks the client configuration
to determine whether such dynamic scope is valid for the client. If it is, PingFederate proceeds further.
Otherwise, PingFederate returns an invalid_scope error message to the client. If PingFederate should
issue an access token, the token is issued with the requested scope, not the matched dynamic scope
pattern.

Example

For example, you add the following dynamic scopes:

Common Scopes Exclusive Scopes

*123

*12345

a*c#123

ab*#123

xy*123

xy*

zSomeExclusiveScope

You also add a client without any common scope restrictions. This client can access all common scopes.

The following table illustrates the expected results when the client sends an authorization request with
these scopes:

▪ xy#1
▪ xy#12
▪ xy#123
▪ xy#1234
▪ xy#12345
▪ xy#123456
▪ xyz
▪ z123
▪ z12345
▪ abc#123

Requested scope Matched dynamic scope Variable component from the
requested scope

xy#1 xy* #1

xy#12 xy* #12

xy#123 xy*123 #

xy#1234 xy* #1234

xy#12345 *12345 xy#

xy#123456 xy* #123456

Copyright ©2024

 | Administrator's Reference Guide | 503

Requested scope Matched dynamic scope Variable component from the
requested scope

xyz xy* z

z123 *123 z

z12345 *12345 z

abc#123 ab*#123 b

The minimum length of the variable component is one character. If the variable component contains two
or more characters, it may also contain the asterisk character as well. Given the same common dynamic
scopes and the same client configuration, requested scopes of xyQ123, xy*Q123, xyQ*123, xy**Q*123
will be matched as in the following table.

Requested scope Matched dynamic scope Variable component from the
requested scope

xyQ123 xy*123 Q

xy*Q123 xy*123 *Q

xyQ*123 xy*123 Q*

xy**Q*123 xy*123 **Q*

If the client sends an authorization request with a requested scope of xy*123, it will receive an
invalid_scope error from PingFederate.

Dynamic scope evaluation and per-client scope management

Depending on the configured dynamic scope patterns and if they are defined as common or exclusive
dynamic scopes, per-client scope management settings can impact the results of scope evaluation.

The Restrict Common Scopes setting determines whether all common scopes and scope groups are
available to the client, or only a select few. Use this setting to restrict certain common dynamic scopes.

The Exclusive Scopes setting determines whether any exclusive scopes and scope groups are available
to the client. When this check box is not selected, PingFederate does not consider any exclusive dynamic
scopes or any exclusive static scopes and scope groups when trying to match a requested scope against
a list of configured scopes and scope groups. When the check box is selected, all exclusive scopes and
scope groups are considered. If PingFederate matches a requested scope to an exclusive dynamic scope
and such scope is not available to the client, PingFederate returns an invalid_scope error message to
the client. This remains true for a lesser partial match to an available common dynamic scope.

Example

For example, you update your previous sample scope configuration as in the following table.

Common Scopes Exclusive Scopes

*123 xy*123

*12345

a*c#123

ab*#123

xy*

zSomeExclusiveScope

The following table describes the results when the client sends an authorization request with a requested
scope of xy#123.

Copyright ©2024

 | Administrator's Reference Guide | 504

Per-client scope management settings Result Variable
component from
the requested
scope

Restrict Common Scopes

▪ Not selected.

Exclusive Scopes

▪ Not selected.

PingFederate matches the requested
scope of xy#123 to the common
dynamic scope of *123.

The exclusive dynamic scope of xy*123
is not taken into consideration because
the Exclusive Scopes check box is
not selected. PingFederate does not
consider any exclusive scopes and
scope groups as eligible candidates in
this scenario.

xy#

Restrict Common Scopes

▪ Not selected.

Exclusive Scopes

▪ Selected.

▪ zSomeExclusiveScope is
selected.

No other exclusive scope is
selected.

PingFederate returns an
invalid_scope error message,
because the exclusive dynamic scope
of xy*123 is not allowed based on the
Exclusive Scopes configuration.

Not applicable.

Restrict Common Scopes

▪ Not selected.

Exclusive Scopes

▪ Selected.

▪ xy*123 is selected.

It does not matter if any other
exclusive scope is selected.

PingFederate matches the requested
scope of xy#123 to the exclusive
dynamic scope of xy*123.

#

Restrict Common Scopes

▪ Selected.

▪ xy* is selected

No other common scope is
selected.

Exclusive Scopes

▪ Not selected.

PingFederate returns an
invalid_scope error message,
because the common dynamic
scope of *123 is not allowed based
on the Restrict Common Scopes
configuration.

The exclusive dynamic scope of xy*123
is not taken into consideration because
the Exclusive Scopes check box is
not selected. PingFederate does not
consider any exclusive scopes and
scope groups as eligible candidates in
this scenario.

Not applicable.

Copyright ©2024

 | Administrator's Reference Guide | 505

Per-client scope management settings Result Variable
component from
the requested
scope

Restrict Common Scopes

▪ Selected.

▪ *123 is selected

It does not matter if any other
common scope is selected.

Exclusive Scopes

▪ Selected.

▪ xy*123 is selected.

It does not matter if any other
exclusive scope is selected.

PingFederate matches the requested
scope of xy#123 to the exclusive
dynamic scope of xy*123, because
xy*123 is a better partial match than
*123.

#

Description for scopes and scope groups

When defining a scope or a scope group, enter a value and a description for the scope or the scope group.
This description helps you identify the purpose of the scope or scope group at a later time. If PingFederate
is configured to handle consent approval, the Scope Description, Scope Group Description, and
Default Scope Description fields determines the text that appears on the Request for Approval window.

Default scope

The default scope is the implied permissions when no scope and scope group values are indicated,
or in addition to any scope or scope group values.

If your organization requires a localized description, enter a unique alias in the Default Scope
Description field, such as oauth.approval.page.template.defaultScope. Insert the
same alias with the desired localized text in the applicable language resource files, located in
<pf_install>/pingfederate/server/default/conf/language-packs.

Static scopes and scope groups

You can enter simple descriptions or localize the descriptions by using the PingFederate localization
framework.

Dynamic scopes

You can enter simple descriptions. You can also use a mix of text and scope-description variables.
${scope} represents the requested scope, and ${scope-var} represents the variable
component found in the requested scope.

Suppose you added a dynamic scope with a pattern of dynaGet67*10 and a scope
description of ${scope} contains ${scope-var}. If a client requests a scope value of
dynaGet67eight910, the resulting scope description is dynaGet67eight910 contains
eight9. (eight9 is the variable component found in the requested scope.)

If your organization requires a localized description, enter a unique alias in the Scope Description
field (for example, oauth.approval.page.template.someDynamicScope). Then insert the
same alias with the desired localized text in the applicable language resource files, located in the
<pf_install>/pingfederate/server/default/conf/language-packs directory. You
may also use scope-description variables as part of the localized text.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 506

Both scope-description variables are intended for dynamic scopes only. When they are used as
description for static scopes or a scope groups, PingFederate shows them on the Request for
Approval window.

Dynamic scopes and consent user interface

The default consent approval process and user interface in PingFederate are capable of handling dynamic
scopes and their scope descriptions. While the scope description and the optional scope-description
variables provide the basic controls to describe a given scope, PingFederate also supports the use of
an external web application to prompt for authorization consent. This allows you to retrieve additional
information specific to the users and apply application-specific scope-processing logic.

Coordinating with developers

Regardless of whether a static scope, a scope group, or a dynamic scope is created as common or
exclusive, a scope or a scope group represents access to a resource or API on the RS. Applicable scope
or scope group values require coordination with developers that are familiar with the details of the RS
OAuth implementation. For clients supporting the OpenID Connect protocol, you can direct the developers
to your PingFederate OpenID Provider configuration endpoint to retrieve a list of common scopes and
common scope groups.

 Note:

The OpenID Provider configuration endpoint does not return exclusive static scopes, exclusive scope
groups, common dynamic scopes, and exclusive dynamic scopes by default. You can optionally customize
the response to include such scopes and scope groups as needed.

Defining scopes
PingFederate manages scopes and scope groups in common and exclusive buckets.

About this task

Common scopes and scope groups are optional. They are available to all clients by default. You can
restrict individual clients to a subset of common scopes or scope groups on a client-by-client basis in their
client configurations.

Exclusive scopes and scope groups are also optional. They are restricted from all clients by default.
However, you can grant individual clients access to one or more exclusive scopes or scope groups in their
client configurations.

You can also create static scopes, static scope groups, and dynamic scopes. Scope groups allow clients
to request a "super scope" and optionally downgrade to a subset of it later. Dynamic scopes address the
business requirement where clients want to request authorization by using scope values with a variable
component from one request to another. For detailed information about scopes, see Scopes and scope
management on page 499.

You can manage scopes, scope groups, and the default scope description from System # OAuth Settings
on the Scope Management window. Configuration steps for common and exclusive scopes and scope
groups are identical.

 Note:

A scope or scope group is either a common scope or group, or an exclusive scope or group. Duplicate
scopes and scope groups are not allowed.

Copyright ©2024

 | Administrator's Reference Guide | 507

 Tip:

Create scopes that are for the majority of clients as common scopes. Create scopes that are for a minority
of clients as exclusive scopes. You can organize common or exclusive static scopes into common or
exclusive scope groups.

Steps

1. Go to System # OAuth Settings # Scope Management.

2. On the Common Scopes or Exclusive Scopes tab, configure any number of common or exclusive
static scopes.

a. Enter a static scope value and a description in the Scope Value and Scope Description fields.

Scope values are case-sensitive. A requested scope value of email does not match a configured
static scope value of Email. Do not use backslashes (\) or double quotation marks (") in the
Scope Value field.

 Note:

If PingFederate is configured to handle consent approval and your organization requires a
localized description, enter a unique alias in the Scope Description field. For more information,
see Description for scopes and scope groups.

b. Click Add.
c. Repeat to configure additional static scopes. Display order does not matter.

3. On the Common Scopes or Exclusive Scopes tab, configure any number of common or exclusive
dynamic scopes.

a. Enter a dynamic scope pattern and a description in the Scope Value and Scope Description
fields.

You must use a case-sensitive text value with the asterisk character (*). For supported dynamic
scope patterns, see Dynamic Scopes.

You can enter a simple description, or you can use a mix of text and scope-description variables.
For more information, see Description for scopes and scope groups.

 Note:

If your organization requires additional information specific to the users or application-specific
scope-processing logic, you can configure PingFederate to use an external web application to
handle consent approval.

b. Select the check box under Dynamic.
c. Click Add.
d. Repeat to define additional dynamic scopes. Display order does not matter.

Copyright ©2024

 | Administrator's Reference Guide | 508

4. On the Common Scopes or Exclusive Scopes tab, configure any number of common or exclusive
scope groups.

a. Enter a scope group value and its description under Scope Group Value and Scope Group
Description.

If PingFederate is configured to handle consent approval and your organization requires a
localized description, enter a unique alias in the Scope Group Description field. For more
information, see Description for scopes and scope groups.

 Note:

All scope groups are defined as static scope groups. The partial-matching concept is intended for
dynamic scopes only and does not apply to scope groups. Like static scope values, scope group
values are case-sensitive. Do not use backslashes (\) or double quotation marks (") in the Scope
Group Value field.

b. Select at least one static scope under Sub Scopes.

 Note:

The administrative console filters out dynamic scopes because the scope-grouping capability is
reserved for static scopes only.

c. Click Add.
d. Repeat to define additional scope groups. Display order does not matter.

5. Optional: On the Common Scopes or Exclusive Scopes tab, use the Edit, Update, and Cancel
buttons to make or undo a change to an existing entry. Use the Delete and Undelete buttons to
remove an existing entry or cancel the removal request.

 CAUTION:

Updating or removing a scope or scope group value in production can cause runtime errors when a
client request specifies the scope or scope group using the previously defined value. Errors can also
occur when the requesting client is restricted to a scope or scope group that no longer exists unless
the affected client configuration is also updated.

6. On the Default Scope tab, enter a description for the default scope.

If PingFederate is configured to handle consent approval and your organization requires a localized
description, enter a unique alias in the Default Scope Description field. For more information, see
Description for scopes and scope groups.

 Note:

The default scope is the implied permissions when no scope and scope group values are indicated, or
in addition to any scope or scope group values.

7. Click Save.

Result

Scopes and scope groups represent access to resources or APIs on the resource server . For clients
supporting the OpenID Connect protocol, you can direct the developers to your PingFederate OpenID
Provider configuration endpoint to retrieve a list of common scopes and common scope groups.

Copyright ©2024

 | Administrator's Reference Guide | 509

 Note:

By default, the OpenID Provider configuration endpoint does not return exclusive static scopes, exclusive
scope groups, common dynamic scopes, and exclusive dynamic scopes. You can customize the response
to include such individual scopes and scope groups.

Adding virtual issuers for OpenID Connect
You can define one or more virtual issuers for OpenID Connect, with or without a relative path. When
minting an ID token, PingFederate populates the issuer claim according to the virtual issuer setting and the
authorization request.

About this task

To add a virtual issuer to PingFederate, perform the following procedure. If you have multiple virtual
issuers, ensure the combination of host and path values are unique.

 Note:
After you define virtual issuers, you can map them to sets of ID token signing keys. For more information,
see Mapping ID token signing keys to virtual issuers on page 638.

Steps

1. Go to System # OAuth Settings # Virtual Issuers.

2. Click Add Virtual Issuer.

3. Enter a unique issuer Name.

4. Enter the Host.

5. Optional: Enter the relative Path, which must start with the value of the pf.runtime.context.path
property in the run.properties file.

6. Click Save.

Configuring client settings
Use the Client Settings window to configure dynamic client registration settings.

Steps

1. On the Dynamic Client Registration tab, modify settings as needed.

2. Click Next to advance to the next tab.

3. Click Save to retain your changes.

Configuring dynamic client registration settings
Dynamic client registration allows developers to register OAuth clients through an API based on open
standards.

About this task

PingFederate supports various client metadata as described in Supported client metadata on page 511.
If specific use cases require additional metadata, add them as extended properties in System # Server #
Extended Properties.

 Important:

Copyright ©2024

 | Administrator's Reference Guide | 510

As dynamic client registration can expose your server to unwanted client registrations, we recommend
protecting by requiring an initial access token, configuring one or more client registration policies, and
protecting access to the dynamic client registration endpoint.

 Note:

Dynamic client registration requires OAuth client storage in an external datastore, such as a database
or LDAP directory. If you have not yet switched from the default on-disk client storage to an external
datastore, see OAuth client datastores on page 916. You can continue with the rest of the configuration;
however, dynamic client registration remains inactive until an external client storage is defined.

Steps

1. Go to System # OAuth Settings # Client Settings and click Dynamic Client Registration.

2. Select the check boxes for the options that you want to use.

The following table describes each option.

Option Description

Enable Dynamic Client
Registration

Select this option to enable dynamic client registration. This option is
disabled by default.

Require Initial Access Token Select this option to require an initial access token. If selected, you
must also select the required scope or scope group from the list.

 Important:

Although optional, selecting this option can prevent unwanted client
registrations.

 Note:

Developers must be set up to obtain access tokens with the required
scope or scope group from your PingFederate authorization server.
For example, you can create a new OAuth client for a group of
developers, assign this client a specific scope for the purpose
of creating other clients using the OAuth 2.0 Dynamic Client
Registration protocol, and let the developers obtain their access
tokens directly by completing one of the supported OAuth flows. You
can also write a custom web application that uses the OAuth flow to
obtain access tokens on behalf of the developers as they make their
requests.

This option is enabled by default.

Copyright ©2024

 | Administrator's Reference Guide | 511

Option Description

Enable Dynamic Client
Registration Management

Select this option to enable dynamic client registration management,
and to make the following three client management/maintenance
options visible.

▪ Rotate Client Secret - Select this option to rotate the client secret
when a client updates or retrieves its configuration. This option is
enabled by default.

▪ Rotate Registration Access Token - Select this option to rotate
the registration access token when a client updates or retrieves
its configuration. This option is enabled by default.

▪ Allow Client Delete - Select this option to allow clients to
deprovision themselves on the authorizations server. This option
is enabled by default.

Dynamic client registration management allows a client to retrieve
its configuration through GET requests, to update its configuration
through PUT requests to the provided registration client URI, and to
deprovision itself through a DELETE.

For more information, see the OAuth 2.0 Dynamic Client Registration
Management Protocol.

This option is disabled by default.

Result

When dynamic client registration is active, developers can send client registrations to the /as/
clients.oauth2 endpoint to create OAuth clients dynamically.

Other maintenance calls can be made to the registration_client_uri returned in the original
registration response. This endpoint has the format /as/clients.oauth2/<clientId>.

Supported client metadata
PingFederate supports various client metadata, as described in the following table.

Metadata field Metadata description

client_name A descriptive name for the client instance. This name appears when the user
is prompted for authorization.

token_endpoint_auth_methodThe client authentication method.

PingFederate accepts the following values:

▪ none
▪ client_secret_basic
▪ client_secret_post
▪ tls_client_auth

For more information, see Mutual TLS Profiles for OAuth clients.
▪ private_key_jwt

For more information, see Client Authentication.

tls_client_auth_subject_dnThe subject DN of the client certificate.

This field is required if tls_client_auth is the value of the
token_endpoint_auth_method parameter.

Copyright ©2024

https://tools.ietf.org/html/rfc7592
https://tools.ietf.org/html/rfc7592
https://tools.ietf.org/html/draft-ietf-oauth-mtls-01
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

 | Administrator's Reference Guide | 512

Metadata field Metadata description

token_endpoint_auth_signing_algThe signing algorithm that the client must use to sign the JSON web tokens
(JWT) for client authentication.

This field applies only when the token_endpoint_auth_method parameter
is provided with a value of private_key_jwt.

accepts the following values:

▪ RS256 - RSA using SHA-256
▪ RS384 - RSA using SHA-384
▪ RS512 - RSA using SHA-512
▪ ES256 - ECDSA using P256 Curve and SHA-256
▪ ES384 - ECDSA using P384 Curve and SHA-384
▪ ES512 - ECDSA using P521 Curve and SHA-512
▪ PS256 - RSASSA-PSS using SHA-256
▪ PS384 - RSASSA-PSS using SHA-384
▪ PS512 - RSASSA-PSS using SHA-512

 Note:

RSASSA-PSS signing algorithms require a Java 8 or Java 11 runtime
environment, or an integration with a hardware security module (HSM)
and a static-key configuration for OAuth and OpenID Connect. For more
information on HSM integration and static keys, see Supported hardware
security modules on page 168 and Keys for OAuth and OpenID Connect
on page 633, respectively.

If this parameter is not provided, the client can use any of the supported
signing algorithms.

Copyright ©2024

 | Administrator's Reference Guide | 513

Metadata field Metadata description

request_object_signing_algThe signing algorithm that the client must use to sign its request objects for
transmission of request parameters.

Applicable only when the client might send its authorization requests using
request objects.

accepts the following values:

▪ RS256 - RSA using SHA-256
▪ RS384 - RSA using SHA-384
▪ RS512 - RSA using SHA-512
▪ ES256 - ECDSA using P256 Curve and SHA-256
▪ ES384 - ECDSA using P384 Curve and SHA-384
▪ ES512 - ECDSA using P521 Curve and SHA-512
▪ PS256 - RSASSA-PSS using SHA-256
▪ PS384 - RSASSA-PSS using SHA-384
▪ PS512 - RSASSA-PSS using SHA-512

 Note:

RSASSA-PSS signing algorithms require a Java 8 or Java 11 runtime
environment, or an integration with a hardware security module (HSM)
and a static-key configuration for OAuth and OpenID Connect. For more
information on HSM integration and static keys, see Supported hardware
security modules on page 168 and Keys for OAuth and OpenID Connect
on page 633, respectively.

When this parameter is not provided, the client can use any of the supported
signing algorithms.

For more information about request objects, see JWT Secured Authorization
Request (JAR) draft specification.

jwks_uri, and

jwks

The URL of the JSON Web Key Set (JWKS) or the actual JWKS from the
client.

If the client is configured to use the private_key_jwt client authentication
method, to transmit request parameters in signed request objects, or to
transmit CIBA request parameters in signed request objects, only one of the
previous values is required for to verify the authenticity of the JWTs.

Either value can be defined even if the client is not configured to use JWTs
for authentication or transmission of request parameters. This flexibility
allows the client to transmit request parameters in signed request objects for
some requests and without the use of signed request objects for some other
transactions. For information on runtime processing, see .

If the client signs its JWTs using an RSASSA-PSS signing algorithm, must be
deployed to run in a Java 8 or Java 11 runtime environment, or integrated with
a hardware security module (HSM) and a static-key configuration for OAuth
and OpenID Connect. For more information on HSM integration and static
keys, see Supported hardware security modules on page 168 and Keys for
OAuth and OpenID Connect on page 633, respectively.

If the client is configured to encrypt ID tokens using an asymmetric encryption
algorithm, either the JWKS URL or the actual JWKS must be provided. See
the ID Token Key Management Encryption Algorithm setting.

Copyright ©2024

https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30

 | Administrator's Reference Guide | 514

Metadata field Metadata description

redirect_uris An array of one or more redirection URIs where the OAuth AS may redirect the
resource owner's user agent after authorization is obtained. The authorization
code and implicit grant types require at least one redirection URI.

logo_uri The location of the logo used on user-facing OAuth grant authorization and
revocation pages. For best results with the installed HTML templates, the
recommended size is 72 x 72 pixels.

scope A space-separated list of one or more scopes, which a client can request.

grant_types An array of one or more grant types, which a client can request.

accepts the following values:

▪ authorization_code
▪ implicit
▪ refresh_token
▪ client_credentials
▪ urn:ietf:params:oauth:grant-type:device_code
▪ urn:openid:params:grant-type:ciba
▪ password
▪ extension (JWT Bearer Token or SAML 2.0 Bearer Assertion)

For more information about each grant type, see Grant types.

Copyright ©2024

 | Administrator's Reference Guide | 515

Metadata field Metadata description

response_types An array of one or more response types, which a client can request.

accepts the following values:

▪ code
▪ code id_token
▪ code id_token token
▪ code token
▪ id_token
▪ id_token token
▪ token

For more information about these response types, see Definitions of Multiple-
Valued Response Type Combinations.

If one or more response types are specified, the resulting client is only allowed
to send one of the specified response types at runtime. Requests from this
client with other response types will be rejected.

Response type and grant type parameters must be provided in tandem
because certain response types require one or more grant types, and vice
versa. The following table provides a summary of their relationship.

response type grant types

code authorization_code

code id_token authorization_code and
implicit

code id_token token authorization_code and
implicit

code token authorization_code and
implicit

id_token implicit

id_token token implicit

token implicit

Copyright ©2024

 | Administrator's Reference Guide | 516

Metadata field Metadata description

id_token_signed_response_algThe JSON Web Signature (JWS) algorithm required for the OpenID Connect
ID tokens.

Allowed values:

▪ none - No signing algorithm
▪ HS256 - HMAC using SHA-256
▪ HS384 - HMAC using SHA-384
▪ HS512 - HMAC using SHA-512
▪ ES256 - ECDSA using P256 Curve and SHA-256
▪ ES384 - ECDSA using P384 Curve and SHA-384
▪ ES512 - ECDSA using P521 Curve and SHA-512
▪ RS256 - RSA using SHA-256
▪ RS384 - RSA using SHA-384
▪ RS512 - RSA using SHA-512
▪ PS256 - RSASSA-PSS using SHA-256
▪ PS384 - RSASSA-PSS using SHA-384
▪ PS512 - RSASSA-PSS using SHA-512

 Note:

RSASSA-PSS signing algorithms require a Java 8 or Java 11 runtime
environment, or an integration with a hardware security module (HSM)
and a static-key configuration for OAuth and OpenID Connect. For more
information on HSM integration and static keys, see Supported hardware
security modules on page 168 and Keys for OAuth and OpenID Connect
on page 633, respectively.

 Important:

If static keys for OAuth and OpenID Connect are enabled, use either an RSA
algorithm or an EC algorithm that has been configured with an active static
key.

id_token_encrypted_response_algThe algorithm used to encrypt or otherwise determine the value of the content
encryption key.

Allowed values:

▪ dir - Direct Encryption with symmetric key
▪ A128KW - AES-128 Key Wrap
▪ A192KW - AES-192 Key Wrap
▪ A256KW - AES-256 Key Wrap
▪ A128GCMKW - AES-GCM-128 key encryption
▪ A192GCMKW - AES-GCM-192 key encryption
▪ A256GCMKW - AES-GCM-256 key encryption
▪ ECDH-ES - ECDH-ES
▪ ECDH-ES+A128KW - ECDH-ES with AES-128 Key Wrap
▪ ECDH-ES+A192KW - ECDH-ES with AES-192 Key Wrap
▪ ECDH-ES+A256KW - ECDH-ES with AES-256 Key Wrap
▪ RSA-OAEP - RSAES-OAEP

Copyright ©2024

 | Administrator's Reference Guide | 517

Metadata field Metadata description

id_token_encrypted_response_encThe content encryption algorithm used to perform authenticated encryption on
the plain text payload of the token.

Required if an algorithm is provided through the
id_token_encrypted_response_alg parameter.

Allowed values:

▪ A128CBC-HS256 - Composite AES-CBC-128 HMAC-SHA-256
▪ A192CBC-HS384 - Composite AES-CBC-192 HMAC-SHA-384
▪ A256CBC-HS512 - Composite AES-CBC-256 HMAC-SHA-512
▪ AES-GCM-128 - A128GCM
▪ AES-GCM-192 - A192GCM
▪ AES-GCM-256 - A256GCM

backchannel_token_delivery_modeThe token delivery method that the client supports. supports poll and ping.

Set to poll if the client can check for the authorization results periodically at
the token endpoint.

Set to ping if the client prefers to wait for a ping callback message from as a
signal that the authorization result is ready for pickup.

If this parameter is not provided and the CIBA grant type is enabled, the poll
method is assumed.

backchannel_client_notification_endpointThe client's notification endpoint, to which sends its ping call back messages.

Required only if ping is the configured token delivery method.

backchannel_authentication_request_signing_algThe signing algorithm that the client must use to sign its request objects for
transmission of request parameters.

accepts the following values:

▪ RS256 - RSA using SHA-256
▪ RS384 - RSA using SHA-384
▪ RS512 - RSA using SHA-512
▪ ES256 - ECDSA using P256 Curve and SHA-256
▪ ES384 - ECDSA using P384 Curve and SHA-384
▪ ES512 - ECDSA using P521 Curve and SHA-512
▪ PS256 - RSASSA-PSS using SHA-256
▪ PS384 - RSASSA-PSS using SHA-384
▪ PS512 - RSASSA-PSS using SHA-512

 Note:

RSASSA-PSS signing algorithms require a Java 8 or Java 11 runtime
environment, or an integration with a hardware security module (HSM)
and a static-key configuration for OAuth and OpenID Connect. For more
information on HSM integration and static keys, see Supported hardware
security modules on page 168 and Keys for OAuth and OpenID Connect
on page 633, respectively.

If this parameter is not provided and the CIBA grant type is enabled, the client
can use any of the allowed signing algorithms.

Copyright ©2024

 | Administrator's Reference Guide | 518

Metadata field Metadata description

backchannel_user_code_parameterIndicates whether the client supports user code.

The purpose of this code is to authorize the transmission of an authentication
request to the user's authentication device.

A valid value is either true or false.

If this parameter is not provided and the CIBA grant type is enabled, user code
support is not enabled.

 Note:

When user code support is enabled, the associated CIBA request policy must
also be user code enabled.

sector_identifier_uri A URL using the HTTPS scheme that references a JSON file containing an
array of redirect_uri values. For more information, see https://openid.net/
specs/openid-connect-registration-1_0.html#SectorIdentifierValidation.

subject_type The type of subject used by the sector identifier, such as public or
pairwise.

Configuring scope constraints
On the Scope Constraints tab, you can configure which scopes or scope groups that developers can
request when registering clients using dynamic client registration.

About this task

All clients created through dynamic client registration share this configuration. If a certain client requires
a different set of common scopes, exclusive scopes, or both, modify the client configuration using the
administrative console, the administrative API, or the OAuth Client Management Service after the client
has been created. Scopes can also be overridden by client registration policies enforced during dynamic
client registration.

Steps

1. Go to System # OAuth Settings # Client Settings and click Scope Constraints.

2. To restrict clients created with the Dynamic Client Registration protocol to a subset of common
scopes, select the Restrict Common Scopes check box and one or more applicable common
scopes.

Result:

Your selections impact the developers in several ways:

▪ If you do not select the Restrict Common Scopes check box, developers can send client
registrations without including the desired scopes. If the requests are valid, the clients are
configured with all the common scopes and scope groups.

▪ If you select the Restrict Common Scopes check box without selecting at least one common
scope or scope group, clients resulting from valid client registrations are configured without any
common scopes or scope groups.

▪ If you select the Restrict Common Scopes check box with one or more applicable common
scopes or scope groups, developers must send client registrations with the desired common
scopes and scope groups. Otherwise, clients resulting from otherwise valid requests are also
configured without any common scopes or scope groups.

Copyright ©2024

https://openid.net/specs/openid-connect-registration-1_0.html#SectorIdentifierValidation
https://openid.net/specs/openid-connect-registration-1_0.html#SectorIdentifierValidation

 | Administrator's Reference Guide | 519

3. To allow clients created with the Dynamic Client Registration protocol to request for a subset of
exclusive scopes, select one or more applicable exclusive scopes in the Allowed Exclusive Scopes
field.

Result:

Your selections impact the developers in several ways:

▪ If you do not select any exclusive scope, clients resulting from valid client registrations are
configured without any exclusive scopes or scope groups.

▪ If you select one or more applicable exclusive scopes or scope groups, developers must send
client registrations with the desired exclusive scopes and scope groups. If they fail to do so, clients
resulting from otherwise valid requests are also configured without any exclusive scopes or scope
groups.

Result

Restricting common scopes and allowing exclusive scopes are not mutually exclusive. You can configure
both options based on your use cases.

If you configure both options, developers must send client registrations with the desired common and
exclusive scopes.

Depending on the configured dynamic scope patterns and whether they are defined as common or
exclusive dynamic scopes, this configuration can impact the results of scope evaluation. The default scope
is always available to all clients. For more information, see the Dynamic scope evaluation and per-
client scope management section in Scopes and scope management on page 499.

Managing client configuration defaults
On the Client Configuration Defaults tab, specify the default settings that are proprietary to PingFederate
for clients created with the OAuth 2.0 Dynamic Client Registration protocol.

About this task

Although these settings are shared among all clients created through dynamic client registration, they
can be overridden by client registration policies enforced during dynamic client registration. You can also
modify the client configuration using the administrative console, the administrative API, or the OAuth Client
Management Service after the client has been created.

Steps

1. Go to System # OAuth Settings # Client Settings and click Client Configuration Defaults.

2. Optional: Modify the default values as needed.

The following table describes each field.

Field Description

Private Key JWT -
Replay Prevention

This field determines whether mandates a unique signed JWT from the
client for each request when the client is configured to authenticate via
the private_key_jwt client authentication method, to transmit request
parameters using in signed request objects, or to do both.

This check box is not selected by default.

 Note:

The underlying Assertion Replay Prevention Service is cluster-aware. For
more information, see Assertion Replay Prevention Service on page 195.

Copyright ©2024

 | Administrator's Reference Guide | 520

Field Description

Require Signed
Request

Determines whether the client must transmit request parameters in a
single, self-contained parameter. The parameter name is request. The
value of the request parameter is a signed JWT whose claims represent
the request parameters of the authorization request. The OpenID Connect
specification calls this JWT a request object.

This check box is not selected by default.

Default Access Token
Manager

Determines the default Access Token Management (ATM) instance for this
client.

Restrict to Default
Access Token
Manager

If selected, the client can use only the Default Access Token Manager,
even if other ATMs include the client in their access control lists.

This check box is not selected by default.

Persistent Grants Max
Lifetime

Overrides the Persistent Grant Max Lifetime value set globally in System
OAuth Settings # Authorization Server Settings.

Select one of the following options:

▪ Use Global Setting (default)
▪ Grants Do Not Expire
▪ A custom value in days, hours, or minutes.

 Note:

This setting can be overridden per grant-mapping configuration
through the use of an extended persistent grant attribute
PERSISTENT_GRANT_LIFETIME. The PERSISTENT_GRANT_LIFETIME
attribute is defined in System # OAuth Settings # Authorization Server
Settings. When this attribute is active, you can set the lifetime of persistent
grants based on the outcome of attribute mapping expressions in individual
grant-mapping configurations. For grant-mapping configurations that do not
require this fine-grain control, you can configure them to use the default
value.

Persistent Grants Idle
Timeout

Overrides the Persistent Grant Idle Timeout field value set globally in
System # OAuth Settings # Authorization Server Settings.

Select one of the following options:

▪ Use Global Setting (default)
▪ Grants Do Not Timeout Due To Inactivity
▪ A custom value in days, hours, or minutes.

If you configure an idle timeout value, the idle timeout window slides
when a persistent grant updates. When you have an idle timeout value
configured without a maximum lifetime, persistent grants remain valid until
they expire due to inactivity or until the grant storage revokes or removes
them. When you have an idle timeout value configured with a maximum
lifetime, persistent grants remain valid until they expire due to inactivity
or lifetime expiration or until the grant storage removes them. For more
information, see Transient grants and persistent grants on page 79.

Copyright ©2024

 | Administrator's Reference Guide | 521

Field Description

Client Authentication
Certificate Issuer DN

Select a trusted CA from the list. You can review CA certificates imported
into PingFederate them in Security # Certificate & Key Management #
Trusted CAs. You can select Trust Any to trust all the issuers found in the
list.

The default selection is None (Client TLS Certificate Authentication
Disabled), which does not allow developers to submit client registrations
with a token_endpoint_auth_method parameter value of
tls_client_auth.

Refresh Token Rolling
Policy

Overrides the Roll Refresh Token Values setting configured globally in
System # OAuth Settings # Authorization Server Settings.

Select one of the following options:

▪ Use Global Setting (default)
▪ Roll

This value does not override the Minimum Interval to Roll Refresh
Tokens value set in the Authorization Server Settings window.

▪ Don't Roll

Refresh Token Rolling
Interval

Overrides the Minimum Interval to Roll Refresh Tokens value set in the
Authorization Server Settings window.

Select one of the following options:

▪ Use Global Setting (default)
▪ A custom value in hours. The maximum is 8760 hours (365 days).

Copyright ©2024

 | Administrator's Reference Guide | 522

Field Description

OpenID Connect ID Token Signing Algorithm

Select the signing algorithm for the ID tokens from the list. The default
algorithm is RSA using SHA-256.

If is deployed to run in a Java 8 or Java 11 runtime environment, or is
integrated with a hardware security module (HSM) and configured to
use static keys for OAuth and OpenID Connect, additional RSASSA-
PSS signing algorithms become available for selection. For more
information on HSM integration and static keys, see Supported
hardware security modules on page 168 and Keys for OAuth and
OpenID Connect on page 633.

 Note:

If static keys for OAuth and OpenID Connect are enabled, Elliptic-
curve cryptography (EC) algorithms that have not been configured
with an active static keys are hidden.

Changes made in the static-key configuration might affect runtime
transactions and require additional changes here. For more
information, see Keys for OAuth and OpenID Connect on page 633.

 Note:

While all settings on this window can be overridden by
client registration policies enforced during the registration,
ID Token Signing Algorithm is the only default setting
that can also be overridden by including a different
id_token_signed_response_alg client metadata value in the
client registration.

For a list of supported signing algorithm, see the
id_token_signing_alg_values_supported parameter values
returned by the PingFederate OpenID Provider configuration endpoint
at /.well-known/openid-configuration.

Policy

Select a specific OpenID Connect policy from the list.

Copyright ©2024

 | Administrator's Reference Guide | 523

Field Description

Device Authorization Determines whether to use global device authorization grant settings
defined in System # OAuth Settings # Authorization Server Settings.

The default selection is Use Global Settings.

You can select Override and configure any of the following settings.

User Authorization URL

This field determines whether should use a different URL when
formulating the verification URLs to be included in its device
authorization responses. For more information, see Device
authorization endpoint on page 1104.

For example, if this field is configured with a value of
https://www.example.org/welcome, returns https://
www.example.org/welcome and https://www.example.org/welcome?
user_code=<activationcode> as the verification URIs.

After processing the device authorization response, which includes
the verification URIs, the device presents one of them to the user.
The user is expected to browse to the presented verification URI on a
second device.

 Important:

The target web server must redirect the browser to at its user
authorization endpoint. For more information, see User authorization
endpoint on page 1106. It must also preserve the user_code
parameter value, if provided.

For example, if your server's base URL is https://www.example.com
and the User Authorization URL value is https://
www.example.org/welcome, the target web server must redirect as
follows:

▪ https://www.example.org/welcome to https://www.example.com/
as/user_authz.oauth2

▪ https://www.example.org/welcome?user_code=<activationcode>
to https://www.example.com/as/user_authz.oauth2?
user_code=<activationcode>

This field has no default value.

Pending Authorization Timeout (seconds)

The lifetime of an activation code (the user_code parameter value)
in seconds.

This field has no default value.

Device Polling Interval (seconds)

The amount of time in seconds that the device waits between polling
requests to the token endpoint.

This field has no default value.

Bypass Activation Code Confirmation

When receives a verification request that includes an activation code
(the user_code parameter value), it prompts the user to confirm the
activation code.

For to skip this confirmation step, select this check box.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 524

Field Description

Require Proof Key
for Code Exchange
(PKCE)

This field is only applicable when the client is configured to support the
authorization code grant type.

Determines whether the client must provide certain parameters to reduce
the risk of authorization code interception attack. For more information,
see the Proof Key for Code Exchange (PKCE) by OAuth Public Clients
specification.

When enabled, this client must include a one-time string value through
the use of the code_challenge parameter in its authorization request.
For more information, see Authorization endpoint on page 1069. It must
also submit the corresponding code verifier through the code_verifier
parameter in its token request when exchanging an authorization code for
an access token. For more information, see OAuth grant type parameters
on page 1086.

This check box is not selected by default.

Polling Interval
(seconds)

Specifies the number of seconds that the client must wait between its
attempts to check for the authorization results at the token endpoint. When
receives a token request within this time interval, it returns a slow_down
error message to the client.

A valid value ranges from 1 to 3600.

The default value is 3.

Policy Specifies the CIBA request policy associated with the client.

uses CIBA request policies to determine various aspects of CIBA
authentication request, such as the maximum lifetime of authentication
requests, the validity of unsigned login hint tokens, and the mapping
configuration of identity hints.

Select an existing CIBA policy. You may also leave the selection of
Default to indicate that should use the CIBA request policy that has been
designated as the default CIBA request policy in Applications # OAuth #
CIBA Request Policies.

Require CIBA Signed
Requests

Determines whether the client must transmit request parameters in a
single, self-contained parameter. The parameter name is request. The
value of the request parameter is a signed JWT whose claims represent
the request parameters of the authorization request. The OpenID Connect
specification calls this JWT a request object.

This check box is not selected by default.

Note that if client-initiated back channel authentication (CIBA) signed
requests are required, the dynamic client registration must include either
the JWKS URL or the actual JWKS.

Token Exchange This field determines which token exchange processor policy PingFederate
uses when the OAuth server receives an OAuth token exchange request
from the client. If you select Default, PingFederate uses the token
exchange processor policy that was set as the default on the Token
Exchange Processor Policy Management tab, under Applications #
Token Exchange # Processor Policies.

For more information, see OAuth token exchange.

Copyright ©2024

 | Administrator's Reference Guide | 525

Selecting client registration policies
Client registration policies can provide additional control over which registrations and configurations are
accepted and stored for each client created with the OAuth 2.0 Dynamic Client Registration protocol.

About this task

If multiple policies are configured, PingFederate executes all of them based on the display order. If
PingFederate completes the current policy, it moves on to the next policy. Otherwise, PingFederate returns
an error message to the developers.

 Note:

PingFederate must complete all policies successfully before a client can be created with the OAuth 2.0
Dynamic Client Registration protocol.

Steps

1. Go to System # OAuth Settings # Client Registration Policies.

2. Optional: Select a Client Registration Policy instance from the Available Policies list and click Add.

 Important:

Select this option to add a layer of protection against unwanted client registrations.

If you have not yet defined the desired Client Registration Policy instance, click Manage Client
Registration Policies.

3. Optional: Repeat the previous step to add other Client Registration Policy instances.

Add as many Client Registration Policy instances as necessary. Click the up and down arrows to
adjust the execution order. Use the Delete and Undelete buttons to remove an existing instance or
cancel the removal request.

Reviewing client settings
On the Summary tab, review your client settings.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Managing Client Registration Policy instances
The Client Registration Policy plugin allows you to write custom processing rules to provide additional
control over which registrations and configurations are accepted and stored for each client created with the
OAuth 2.0 Dynamic Client Registration protocol.

About this task

Depending on the technical requirements of your use cases, you can create Client Registration Policy
plugins using the PingFederate SDK. After deploying your plugins, you can create and configure instances
of them. Configuration requirements vary based on your custom solutions. When you are ready to
configure dynamic client registration, add your policies to its configuration.

Copyright ©2024

 | Administrator's Reference Guide | 526

Steps

1. Implement the DynamicClientRegistrationPlugin interface.

For more information, refer to the Javadoc for the DynamicClientRegistrationPlugin interface,
the SoftwareStatementValidatorPlugin.java file for a sample implementation, and the SDK
developer's guide for build and deployment information.

 Tip:

The Javadoc for and the sample implementation are in the <pf_install>/pingfederate/sdk
directory.

2. Create, modify, or remove one or more instances.
Choose from:

▪ To configure a new instance, click Create New Instance.
▪ To modify an existing instance, select it under Instance Name.
▪ To remove an existing instance or to cancel the removal request, click Delete or Undelete under

Action.

 Note:

You can remove a Client Registration Policy instance only if it is not currently in-use by dynamic
client registration.

▪ To save the plugin configuration, click Save.

Result

 Important:

A Client Registration Policy instance is not enforced, or executed as part of the dynamic client registration
process, until it is selected on the Client Registration Policies window.

Configuring a Client Registration Policy instance
For additional control over clients created with the OAuth 2.0 Dynamic Client Registration protocol, use the
Client Registration Policies window to create or modify a Client Registration Policy instance.

Steps

1. Go to System # OAuth Settings # Client Registration Policies.
Choose from:

▪ To configure a new instance, click Create New Instance.
▪ To modify an existing instance, select it under Instance Name.

2. On the Type tab, enter a name and an ID for a new instance, and then select a plugin from the list.

When modifying an existing policy plugin instance, you can only change the Instance Name field.

If the Type list does not contain the desired Client Registration Policy plugin,
create one using the PingFederate SDK. For more information, refer to the
Javadoc for the DynamicClientRegistrationPlugin interface, the

Copyright ©2024

 | Administrator's Reference Guide | 527

SoftwareStatementValidatorPlugin.java file for a sample implementation, and the SDK
developer's guide for build and deployment information.

 Tip:

The Javadoc for and the sample implementation are in the <pf_install>/pingfederate/sdk
directory.

3. In the Instance Configuration tab, follow the on-screen instructions to configure the Client
Registration Policy instance.

 Note:

This window varies depending on the selected Client Registration Policy plugin.

4. On the Summary tab, review the plugin configuration. Click Done.

5. In the Client Registration Policies window, click Save.

Result

 Important:

A Client Registration Policy instance is not enforced, or executed as part of the dynamic client registration
process, until it is selected on the Client Registration Policies window.

Configuring a Response Type Constraints instance
The Response Type Constraints policy plugin allows administrators to control which flows are allowed for
clients created through the OAuth 2.0 Dynamic Client Registration protocol.

About this task

Configure an instance of the Response Type Constraints policy to limit which of the following
response_types parameter values are allowed:

▪ code
▪ code id_token
▪ code id_token token
▪ code token
▪ id_token
▪ id_token token
▪ token

For more information about flows and response types, see the OpenID Connect specification.

Steps

1. Go to System # OAuth Settings # Client Registration Policies.
Choose from:

▪ To configure a new instance, click Create New Instance.
▪ To modify an existing instance, select it under Instance Name.

2. On the Type tab, enter a name and an ID for a new instance, and then select Response Type
Constraints from the Type list.

When modifying an existing policy plugin instance, you can only change the Instance Name field.

Copyright ©2024

https://openid.net/specs/openid-connect-core-1_0.html#Authentication

 | Administrator's Reference Guide | 528

3. On the Instance Configuration tab, clear the applicable check boxes to remove the unwanted
response types.

 Note:

All response types are allowed by default.

4. On the Summary tab, review the plugin configuration. Click Done.

5. In the Client Registration Policy Instances window, click Save.

Result

 Important:

Like other Client Registration Policy plugins, an instance of the Response Type Constraints policy plugin is
not enforced, or executed as part of the dynamic client registration process, until it is selected in System
OAuth Settings # Client Registration Policies. If it is selected in the Client Registration Policies
window, PingFederate discards all restricted response types when processing client registrations. If no
response type is allowed, PingFederate rejects the registration and returns an error message to the
originator.

Managing OAuth clients
An OAuth client application interacts with an OAuth authorization server to obtain the required access
tokens to call OAuth-protected services at the resource server.

About this task

The Clients window displays 20 clients at a time. You can sort the display order by name or ID. You can
use the pagination controls to navigate through the rest of the clients or search clients by name or ID. A
client is included in the search results if its name or ID is a partial, case-insensitive match to the search
term.

Steps

To manage OAuth clients, go to Applications # OAuth # Clients.

Action Steps

To add a client Click Add Client and complete the configuration in
the Client window.

To edit a recently modified client Select the client and update the configuration in the
Client window.

To enable or disable one or more clients Click their toggle switches and then click Save.

To remove a client or cancel the removal
request

Use the Delete and Undelete buttons for the
applicable client and then click Save.

Result

stores client records in XML files by default. On-disk storage allows you to manage clients using the
administrative console and the administrative API. Client records are part of the configuration archive.

Alternatively, you can configure PingFederate to store client records externally, which allows you to
manage client records through the OAuth Client Management Service or enable dynamic client registration
for your partner-developers. In this case, client records are not part of the configuration archive. Instead,

Copyright ©2024

 | Administrator's Reference Guide | 529

PingFederate stores them on a database server, a directory server, or another storage medium through the
use of the PingFederate SDK. For more information, see OAuth client datastores on page 916.

Configuring OAuth clients
The Clients window provides controls over the usage and behavior of the applications requesting access
to protected resources through the PingFederate OAuth authorization server (AS).

Steps

1. Go to Applications # OAuth # Clients and configure the OAuth client to suit your use cases.

The following table describes each field.

Field Description

Client ID

(Required)

A unique identifier the client provides to the resource server (RS) to identify
itself. This identifier is included with every request the client makes.

Name

(Required)

A descriptive name for the client instance. This name appears when the
user is prompted for authorization.

 Tip:

If you want to localize the displayed name, you can enter a unique alias
here, then use the same alias in language resource files.

Description A description of what the client application does. This description appears
when the user is prompted for authorization.

 Tip:

If you want to localize the displayed description, you can enter a unique
alias here, then use the same alias in language resource files.

Copyright ©2024

 | Administrator's Reference Guide | 530

Field Description

Client Authentication The authentication method that the client uses.

None

Select this option if your use case does not require client
authentication. This is the default selection.

 Note:

A selection other than None is required for any of the following use
cases:

▪ This client uses the Client Credentials grant type. See the
Allowed Grant Types check boxes.

▪ This client signs its ID tokens using an HMAC signing algorithm.
See the ID Token Signing Algorithm field.

▪ This client is allowed to access the Session Revocation API. See
the Allow Access to Session Revocation API check box.

▪ This client is allowed to access the Session Management API.
See the Allow Access to Session Management API check box.

Client Secret

Select this option for HTTP Basic authentication.

▪ To create a strong, random alphanumeric string or to manually
enter a secret, click Generate Secret.

▪ To modify an existing secret, select the Change Secret check
box. Then, click Generate Secret to create a strong random
alphanumeric string or manually enter a secret.

Client TLS Certificate

Select this option for mutual TLS certificate-based authentication;
recommended for client applications where security policies prohibit
storing passwords.

▪ Select a trusted CA from the Issuer list.

These are CA certificates imported into PingFederate. You can
review them on the Security # Certificate & Key Management #
Trusted CAs window. Alternatively, you can select Trust Any to
trust all the issuers found in the list.

▪ Enter the client-certificate subject DN in the Subject DN or extract
the subject DN from the certificate if the certificate is stored on an
accessible file system.

 Important:

If choosing this option, you must configure a secondary PingFederate
HTTPS port. See the property pf.secondary.https.port in the
table under Configuring PingFederate properties on page 771.

Private Key JWT

Select this option for the private_key_jwt client authentication
method, as defined in Client Authentication in the OpenID
Connect specification (openid.net/specs/openid-connect-
core-1_0.html#ClientAuthentication).

▪ Select the Replay Prevention check box if PingFederate should
mandate a unique signed JSON Web Token (JWT) from the client
for each request when the client is configured to authenticate via
the private_key_jwt client authentication method, to transmit
request parameters using in signed request objects, or to do both.

This check box is not selected by default.

 Note:

The underlying Assertion Replay Prevention Service is cluster-
aware. For more information, see Assertion Replay Prevention
Service on page 195.

▪ Select from the Signing Algorithm list the algorithm that the
client must use to sign the JWTs for client authentication.

If is deployed to run in a Java 8 or Java 11 runtime environment,
or is integrated with a hardware security module (HSM) and
configured to use static keys for OAuth and OpenID Connect,
additional RSASSA-PSS signing algorithms become available
for selection. For more information on HSM integration and static
keys, see Supported hardware security modules on page 168
and Keys for OAuth and OpenID Connect on page 633.

The default selection is Allow Any, which allows the client to use
any of the signing algorithms from the list.

Copyright ©2024

https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

 | Administrator's Reference Guide | 531

Field Description

Require Pushed
Authorization
Requests

When selected, the client must use the PAR endpoint /as/par.oauth2
on the AS to initiate authorization flows. When not selected, the client can
use the PAR endpoint. This check box is not selected by default.

This setting works in conjunction with the PAR Status setting on the AS.
For example:

▪ If PAR is Enabled on the AS and required on the client, then the client
must use PAR

▪ If PAR is Enabled on the AS but not required on the client, then the
client can use PAR

▪ If PAR is Required on the AS but not required on the client, then the
client must use PAR

▪ If PAR is Disabled on the AS and required on the client, then the client
cannot access the AS

Do not select this check box if PAR is disabled on the AS.

For more information about PAR, see Pushed authorization requests
endpoint on page 1113 and Configuring authorization server settings on
page 488.

Require Signed
Requests

Determines whether the client must transmit request parameters in a
single, self-contained parameter. The parameter name is request. The
value of the request parameter is a signed JWT whose claims represent
the request parameters of the authorization request. The OpenID Connect
specification calls this JWT a request object.

 Note:

If a client includes in an authorization request a request parameter other
than client_id, as a parameter outside of the signed request object and
a claim inside of the signed request object, always uses the claim value
found inside the signed request object to process the request further.

For the client_id request parameter, the values outside of the signed
request object must match the claim values inside of the signed request
object. If the values do not match, returns an error message to the client.

If a request parameter is found only outside of the signed request object,
ignores the request parameter and returns no error message.

 Tip:

Per OAuth and OpenID Connect specifications, a client must always
include in an authorization request the client_id parameter outside of
the signed request object.

For more information about request objects, see JWT Secured
Authorization Request (JAR) draft specification.

Copyright ©2024

https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30

 | Administrator's Reference Guide | 532

Field Description

Request Object
Signing Algorithm

The signing algorithm that the client must use to sign its request objects for
transmission of request parameters.

Applicable only when the client may send its authorization requests using
request objects.

If is deployed to run in a Java 8 or Java 11 runtime environment, or is
integrated with a hardware security module (HSM) and configured to use
static keys for OAuth and OpenID Connect, additional RSASSA-PSS
signing algorithms become available for selection. For more information on
HSM integration and static keys, see Supported hardware security modules
on page 168 and Keys for OAuth and OpenID Connect on page 633.

The default selection is Allow Any, which allows the client to use any of
the signing algorithms from the list.

JWKS URL and

JWKS

The URL of the JSON Web Key Set (JWKS) or the actual JWKS from the
client.

If the client is configured to use the private_key_jwt client authentication
method, to transmit request parameters in signed request objects, or to
transmit CIBA request parameters in signed request objects, only one of
the previous values is required for to verify the authenticity of the JWTs.

Either value can be defined even if the client is not configured to use JWTs
for authentication or transmission of request parameters. This flexibility
allows the client to transmit request parameters in signed request objects
for some requests and without the use of signed request objects for some
other transactions. For information on runtime processing, see .

If the client signs its JWTs using an RSASSA-PSS signing algorithm,
must be deployed to run in a Java 8 or Java 11 runtime environment,
or integrated with a hardware security module (HSM) and a static-key
configuration for OAuth and OpenID Connect. For more information on
HSM integration and static keys, see Supported hardware security modules
on page 168 and Keys for OAuth and OpenID Connect on page 633,
respectively.

If the client is configured to encrypt ID tokens using an asymmetric
encryption algorithm, either the JWKS URL or the actual JWKS must be
provided. See the ID Token Key Management Encryption Algorithm
setting.

Copyright ©2024

 | Administrator's Reference Guide | 533

Field Description

Redirection URIs URIs where the OAuth AS may redirect the resource owner's user agent
after authorization is obtained. The authorization code and implicit grant
types require at least one redirection URI.

Enter a fully qualified URL and click Add for each entry required. Wildcards
are allowed. However, for security reasons, make the URL as restrictive
as possible, for example, https://www.example.com/OAuthClientApp/
callback.jsp.

 Important:

If more than one URI is added or if a single URI uses wildcards, then the
authorization code grant and the token requests must contain a specific
matching redirect_uriparameter when contacting the authorization
endpoint (/as/authorization.oauth2) and token endpoint (/as/
token.oauth2).

Logo URL The location of the logo used on user-facing OAuth grant authorization and
revocation pages. For best results with the installed HTML templates, the
recommended size is 72 x 72 pixels.

Allow Authentication
API OAuth Initiation

When selected, the client can initiate an authentication API OAuth flow
through the authorization endpoint without needing to handle HTTP
redirections.

When enabling this feature, consider the following:

▪ Redirection URLs are optional, but without a redirection URL, browser-
based OAuth flows will not work.

▪ This flow does not support the user-facing scope consent page,
Request for Approval. So, enabling this feature automatically enables
the Bypass Authorization Approval feature and Restrict Common
Scopes feature.

▪ The client must manage the PF cookie and, if persistent authentication
sessions are configured, the PF.PERSISTENT cookie.

For more information, see Mobile application authentication through REST
APIs on page 1194.

Bypass Authorization
Approval

When selected, resource-owner approval for client access is assumed, and
PingFederate no longer presents to the user an authorization consent page
or redirects to a trusted web application that is responsible to prompt the
user for authorization for this client.

For instance, use this setting when you want to deploy a trusted application
and authenticate end users with an identity provider (IdP) adapter or IdP
connection.

Copyright ©2024

 | Administrator's Reference Guide | 534

Field Description

Restrict Common
Scopes

Controls whether all existing and future common scopes and scope groups
should be made available to the client, or only the select few.

When selected, the administrative console displays a list of existing
common scopes and scope groups. Choose the common scope and scope
groups that are intended for the client. The rest and any common scopes
and scope groups created in the future become invalid for the client. In
other words, if the client tries to use such scope or scope group, it will
receive an invalid_scope error message from PingFederate.

When cleared, all existing common scopes and scope groups and those
created in the future are available to the client. This is the default behavior.

 Note:

Depending on the configured dynamic scope patterns and whether they are
defined as common or exclusive dynamic scopes, this setting can impact
the results of scope evaluation. The default scope, however, is always
allowed for and available to all clients. For detailed information, see the
Dynamic scope evaluation and per-client scope management section in
Scopes and scope management on page 499.

Exclusive Scopes Controls whether any exclusive scopes and scope groups should be made
available to the client.

When selected, the administrative console displays a list of existing
exclusive scopes and scope groups. Choose the exclusive scopes and
scope groups that are intended for the client. The rest and any exclusive
scopes and scope groups created in the future become invalid for the
client. In other words, if the client tries to use such scope or scope group, it
will receive an invalid_scope error message from PingFederate.

When cleared, no exclusive scopes and scope groups are available to the
client. This is the default behavior.

 Note:

Depending on the configured dynamic scope patterns and whether they are
defined as common or exclusive dynamic scopes, this setting can impact
the results of scope evaluation. The default scope, however, is always
allowed for and available to all clients. For detailed information, see the
Dynamic scope evaluation and per-client scope management section in
Scopes and scope management on page 499.

Copyright ©2024

 | Administrator's Reference Guide | 535

Field Description

Allowed Grant Types The grant types that this client can use.

Select at least one of the following:

▪ Authorization Code
▪ Implicit
▪ Refresh Token
▪ Client Credentials
▪ Device Authorization Grant
▪ CIBA
▪ Token Exchange
▪ Resource Owner Password Credentials
▪ Assertion Grants
▪ Access Token Validation (Client is a Resource Server)

There is no default selection.

For more information about each grant type, see Grant types on page
75.

Copyright ©2024

 | Administrator's Reference Guide | 536

Field Description

Restrict Response
Types

Select this check box to limit the response_type parameter values that
this client can use.

Available response types are:

▪ code
▪ code id_token
▪ code id_token token
▪ code token
▪ id_token
▪ id_token token
▪ token

For more information about these response types, see Definitions of
Multiple-Valued Response Type Combinations.

The Restrict Response Type check box is not selected by default.
If selected, you must select at least one allowable response_type
parameter value.

Additionally, the Restricted Response Types and Allowed Grant Types
settings must be configured in tandem because certain response types
require one or more grant types, and vice versa. The following table
describes their relationship.

Response type Grant types

code Authorization Code

code id_token Authorization Code and Implicit

code id_token token Authorization Code and Implicit

code token Authorization Code and Implicit

id_token Implicit

id_token token Implicit

token Implicit

Default Access Token
Manager

Determines the default Access Token Management (ATM) instance for this
client.

Restrict to Default
Access Token
Manager

If selected, this client can use only the Default Access Token Manager,
even if other ATMs include this client in their access control lists. When this
check box is selected, the Validate Against All Eligible Access Token
Managers check box is hidden.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 537

Field Description

Validate Against All
Eligible Access Token
Managers

Applicable only to resource server clients.

If selected, this resource server client is not required to specify the
additional access_token_manager_id or aud parameters to
disambiguate the ATM instance in its token validation requests. When
the resource server client does not specify the desired ATM instance,
validates the access tokens against all eligible ATM instances. This
simplifies interactions with PingAccess by avoiding the need to align
resource URIs between PingAccess and .

This check box is not selected by default.

Require Proof Key
for Code Exchange
(PKCE)

Displayed only when the client is configured to support the authorization
code grant type.

Determines whether the client must provide certain parameters to reduce
the risk of authorization code interception attack. For more information,
see the Proof Key for Code Exchange (PKCE) by OAuth Public Clients
specification.

When enabled, this client must include a one-time string value through
the use of the code_challenge parameter in its authorization request.
For more information, see Authorization endpoint on page 1069. It must
also submit the corresponding code verifier through the code_verifier
parameter in its token request when exchanging an authorization code for
an access token. For more information, see OAuth grant type parameters
on page 1086.

This check box is not selected by default.

Persistent Grants Max
Lifetime

Overrides the Persistent Grant Max Lifetime value set globally in System
OAuth Settings # Authorization Server Settings.

Select one of the following options:

▪ Use Global Setting (default)
▪ Grants Do Not Expire
▪ A custom value in days, hours, or minutes.

 Note:

This setting can be overridden per grant-mapping configuration
through the use of an extended persistent grant attribute
PERSISTENT_GRANT_LIFETIME. The PERSISTENT_GRANT_LIFETIME
attribute is defined in System # OAuth Settings # Authorization Server
Settings. When this attribute is active, you can set the lifetime of persistent
grants based on the outcome of attribute mapping expressions in individual
grant-mapping configurations. For grant-mapping configurations that do not
require this fine-grain control, you can configure them to use the default
value.

Copyright ©2024

 | Administrator's Reference Guide | 538

Field Description

Persistent Grants Idle
Timeout

Overrides the Persistent Grant Idle Timeout field value set globally in
System # OAuth Settings # Authorization Server Settings.

Select one of the following options:

▪ Use Global Setting (default)
▪ Grants Do Not Timeout Due To Inactivity
▪ A custom value in days, hours, or minutes.

If you configure an idle timeout value, the idle timeout window slides
when a persistent grant updates. When you have an idle timeout value
configured without a maximum lifetime, persistent grants remain valid until
they expire due to inactivity or until the grant storage revokes or removes
them. When you have an idle timeout value configured with a maximum
lifetime, persistent grants remain valid until they expire due to inactivity
or lifetime expiration or until the grant storage removes them. For more
information, see Transient grants and persistent grants on page 79.

Refresh Token Rolling
Policy

Overrides the Roll Refresh Token Values setting configured globally in
System # OAuth Settings # Authorization Server Settings.

Select one of the following options:

▪ Use Global Setting (default)
▪ Roll

This value does not override the Minimum Interval to Roll Refresh
Tokens value set in the Authorization Server Settings window.

▪ Don't Roll

Refresh Token Rolling
Interval

Overrides the Minimum Interval to Roll Refresh Tokens value set in the
Authorization Server Settings window.

Select one of the following options:

▪ Use Global Setting (default)
▪ A custom value in hours. The maximum is 8760 hours (365 days).

Copyright ©2024

 | Administrator's Reference Guide | 539

Field Description

OpenID Connect ID Token Signing Algorithm

Select the signing algorithm for the ID tokens from the list. The default
algorithm is RSA using SHA-256.

If is deployed to run in a Java 8 or Java 11 runtime environment, or is
integrated with a hardware security module (HSM) and configured to
use static keys for OAuth and OpenID Connect, additional RSASSA-
PSS signing algorithms become available for selection. For more
information on HSM integration and static keys, see Supported
hardware security modules on page 168 and Keys for OAuth and
OpenID Connect on page 633.

 Note:

If static keys for OAuth and OpenID Connect are enabled, Elliptic-
curve cryptography (EC) algorithms that have not been configured
with an active static keys are hidden.

Changes made in the static-key configuration might affect runtime
transactions and require additional changes here. For more
information, see Keys for OAuth and OpenID Connect on page 633.

ID Token Key Management Encryption Algorithm

The algorithm used to encrypt or otherwise determine the value of the
content encryption key.

PingFederate supports symmetric algorithms, such as Direct
Encryption with symmetric key, AES ... Key Wrap, and AES-
GCM ... key encryption, and asymmetric algorithms, such as ECDH-
ES, ECDH-ES ... Key Wrap, and RSAES OAEP.

 Tip:

If you select a symmetric algorithm, you should provide a Client
Secret. The client secret will be used as the symmetric key even if
your client doesn't use the client secret for authentication.

If you select an asymmetric algorithm, you should provide a JWKS or
JWKS URL so PingFederate can find the right client key.

ID Token Content Encryption Algorithm

The content encryption algorithm used to perform authenticated
encryption on the plain text payload of the token.

Required if an algorithm is selected from the ID Token Key
Management Encryption Algorithm list.

Policy

Select a specific OpenID Connect policy from the list.

 Note:

If the Track User Sessions for Logout check box is selected in the
Authorization Server Settings window, PingFederate also displays the
PingAccess Logout Capable and Logout URIs fields.

PingAccess Logout Capable

When selected, sends logout requests through the browser to
an OpenID Connect endpoint in PingAccess as part of the logout
process. For more information, see OpenID Connect endpoints. This
check box is not selected by default.

Logout URIs

Enter additional endpoints at the relying parties as needed. sends
requests to these URIs through the browser as part of the logout
process. The relying parties must return an image in their logout
responses, otherwise returns an error message or redirects to the
InErrorResource parameter value, if specified.

Use pairwise identifier

When selected, the use of pairwise pseudonymous identifiers (PPIDs)
is enabled for Open Banking. This check box is not selected by
default.

Sector Identifier URI

Displayed only when Use pairwise identifier is selected. Optionally,
enter one HTTPS URI.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingaccess-60/page/whl1564006726549.html

 | Administrator's Reference Guide | 540

Field Description

Session API
Endpoints

Allow Access to Session Revocation API

Select this check box to allow this client application to add sessions
to or query the revocation status via the Back-Channel Session
Revocation API endpoint at /pf-ws/rest/sessionMgmt/
revokedSris. Authentication is required. This check box is not
selected by default.

 Note:

If clients are allowed to add sessions to the revocation list, you can
enable the Check session revocation status option in the applicable
Access Token Management instances for the token validation process
to consider whether a session has been added to the revocation list.
For more information, see Managing session validation settings on
page 572.

Allow Access to Session Management API

The session management API lets client applications get information
about user sessions, extend sessions, and revoke sessions. For more
information, see Session Management API by session identifiers on
page 1150.

Copyright ©2024

 | Administrator's Reference Guide | 541

Field Description

Device Authorization
Grant

Determines whether to use global device authorization grant settings
defined in System # OAuth Settings # Authorization Server Settings.

Displayed only if the Device Authorization Grant grant type is enabled for
the client.

The default selection is Use Global Settings.

You can select Override and configure any of the following settings.

User Authorization URL

This field determines whether should use a different URL when
formulating the verification URLs to be included in its device
authorization responses. For more information, see Device
authorization endpoint on page 1104.

For example, if this field is configured with a value of
https://www.example.org/welcome, returns https://
www.example.org/welcome and https://www.example.org/welcome?
user_code=<activationcode> as the verification URIs.

After processing the device authorization response, which includes
the verification URIs, the device presents one of them to the user.
The user is expected to browse to the presented verification URI on a
second device.

 Important:

The target web server must redirect the browser to at its user
authorization endpoint. For more information, see User authorization
endpoint on page 1106. It must also preserve the user_code
parameter value, if provided.

For example, if your server's base URL is https://www.example.com
and the User Authorization URL value is https://
www.example.org/welcome, the target web server must redirect as
follows:

▪ https://www.example.org/welcome to https://www.example.com/
as/user_authz.oauth2

▪ https://www.example.org/welcome?user_code=<activationcode>
to https://www.example.com/as/user_authz.oauth2?
user_code=<activationcode>

This field has no default value.

Pending Authorization Timeout (seconds)

The lifetime of an activation code (the user_code parameter value)
in seconds.

This field has no default value.

Device Polling Interval (seconds)

The amount of time in seconds that the device waits between polling
requests to the token endpoint.

This field has no default value.

Bypass Activation Code Confirmation

When receives a verification request that includes an activation code
(the user_code parameter value), it prompts the user to confirm the
activation code.

For to skip this confirmation step, select this check box.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 542

Field Description

CIBA Displayed only if the CIBA grant type is enabled for the client.

Token Delivery Method

The token delivery method that the client supports. supports poll and
ping.

Select Poll if the client can check for the authorization results at the
token endpoint periodically. Select Ping if the client prefers to wait
for a ping callback message from PingFederate as a signal that the
authorization result is ready for pickup.

The default selection is Poll.

Notification Endpoint

The client's notification endpoint, to which sends its ping call back
messages.

Required and displayed only if ping is the configured token delivery
method.

Polling Interval (seconds)

Specifies the number of seconds that the client must wait between its
attempts to check for the authorization results at the token endpoint.
When receives a token request within this time interval, it returns a
slow_down error message to the client.

A valid value ranges from 1 to 3600.

The default value is 3.

Policy

Specifies the CIBA request policy associated with the client.

uses CIBA request policies to determine various aspects of
CIBA authentication request, such as the maximum lifetime of
authentication requests, the validity of unsigned login hint tokens, and
the mapping configuration of identity hints.

Select an existing CIBA policy. You may also leave the selection of
Default to indicate that should use the CIBA request policy that has
been designated as the default CIBA request policy in Applications #
OAuth # CIBA Request Policies.

User Code Support

Indicates whether the client supports user code.

The purpose of this code is to authorize the transmission of an
authentication request to the user's authentication device.

This check box is not selected by default.

When user code support is enabled, the associated CIBA request
policy must also be user code enabled.

Require CIBA Signed Requests

Determines whether the client must transmit request parameters in a
single, self-contained parameter. The parameter name is request.
The value of the request parameter is a signed JWT whose claims
represent the request parameters of the authorization request. The
OpenID Connect specification calls this JWT a request object.

This check box is not selected by default.

If CIBA signed requests are required, the client must also be
configured with either the JWKS URL or the actual JWKS from the
client.

CIBA Request Object Signing Algorithm

The signing algorithm that the client must use to sign its request
objects for transmission of request parameters.

If is deployed to run in a Java 8 or Java 11 runtime environment, or is
integrated with a hardware security module (HSM) and configured to
use static keys for OAuth and OpenID Connect, additional RSASSA-
PSS signing algorithms become available for selection. For more
information on HSM integration and static keys, see Supported
hardware security modules on page 168 and Keys for OAuth and
OpenID Connect on page 633.

The default selection, Allow Any allows the client to use any of the
signing algorithms from the list.

Copyright ©2024

 | Administrator's Reference Guide | 543

Field Description

Token Exchange Displayed only if the Token Exchange grant type is enabled.

Select the token exchange processor policy that PingFederate uses when
the AS receives an OAuth token exchange request from the client. If you
select Default, PingFederate uses the default token exchange processor
policy.

For more information, see OAuth token exchange.

2. To enable or disable the client, click the toggle switch.

3. Optional: On the System tab, add, remove, or update one or more values for any extended properties
defined in System # Server # Extended Properties.

Extended property values can serve as metadata. They can also help drive authentication
requirements. For more information, see Extended properties on page 877.

4. Click Save.

Grant contract mapping
In the first stage of the OAuth attribute mapping process, PingFederate maps attributes to persistent grant
contracts.

You configure PingFederate to use attributes from the following sources:

▪ authentication policy contracts
▪ authentication sources, such as IdP adapter instances and IdP connections
▪ password credential validator instances for resource owner credentials

Depending on the attribute source, use one of the following PingFederate windows to configure the grant
contract mapping:

▪ Authentication # OAuth # Policy Contract Grant Mapping
▪ Authentication # OAuth # IdP Adapter Grant Mapping
▪ Authentication # OAuth # Resource Owner Credentials Grant Mapping

These windows also let you configure issuance criteria to control whether PingFederate fulfills the contract.

Persistent grants, and any associated attributes and their values, remain valid until the grants expire or
until PingFederate explicitly revokes them or cleans them up.

For more information about the OAuth attribute mapping process, see Mapping OAuth attributes on page
80

Managing IdP adapter grant mapping
Use the IdP Adapter Grant Mapping to map authentication source values into persistent grants.
Persistent grants and any associated attributes and their values remain valid until the grants expire or until
PingFederate explicitly revokes or cleans them up.

About this task

The USER_KEY attribute is the identifier of the persistent grants. The USER_NAME attribute presents the
name shown to the resource owner on OAuth user-facing pages. If extended attributes are defined in
System # OAuth Settings # Authorization Server Settings, configure a mapping for each attribute.
You can optionally set up datastore queries to supplement values returned from the source. This mapping
configuration is suitable for the Authorization Code and Implicit grant types.

Steps

Go to Authentication # OAuth # IdP Adapter Grant Mapping and perform one of the following actions.

Copyright ©2024

 | Administrator's Reference Guide | 544

Action Steps

Create a mapping Select the source of the attributes from the list and
click Add Mapping.

Modify an existing mapping Select your mapping under Mappings.

Remove an existing mapping or cancel the
removal request

Click Delete or Undelete under Action.

 Note:

Before removing a mapping from your
configuration, ensure that it is not used by your
OAuth use cases. Any corresponding entries
defined in Applications # OAuth # Access Token
Mapping will also be removed.

Configuring IdP adapter attribute sources and user lookup
You can optionally set up datastore queries to supplement values returned from the identity provider (IdP)
adapter attribute source. After the configuration is complete, you can fulfill a contract or verify a condition in
the Token Authorization framework using the results from the queries.

Steps

▪ To set up datastore queries, click Add Attribute Source.

Follow the Attribute Sources & User Lookup window to complete the setup. For configuration steps,
see Datastore query configuration on page 375.

▪ To skip this option, click Next.

Fulfilling IdP adapter grant mapping
On the Contract Fulfillment tab, map authentication source values into persistent grants. Persistent
grants and any associated attributes and their values remain valid until the grants expire or until
PingFederate explicitly revokes or cleans them up.

About this task

The USER_KEY attribute is the identifier of the persistent grants. The USER_NAME attribute presents the
name shown to the resource owner on OAuth user-facing pages. If extended attributes are defined in
System # OAuth Settings # Authorization Server Settings, configure a mapping for each attribute.

 Important:

The USER_KEY attribute values must be unique across all end users, because the USER_KEY attribute is
the user identifier to store and to retrieve persistent grants. For example, the sAMAccountName attribute
value of an end user in one domain might match that of another end user in another domain. In this case,
you can map the Subject DN attribute to the USER_KEY attribute.

Steps

1. Go to Authentication # OAuth # IdP Adapter Grant Mapping and select your mapping, or click Add
Mapping.

Copyright ©2024

 | Administrator's Reference Guide | 545

2. On the Contract Fulfillment tab, select a source from the Source list and then select or enter a value
for each attribute in the contract.

You can map each attribute from one of the following sources:

▪ Adapter

When selected, the associated Value drop-down list contains attributes configured in the IdP
adapter instance.

▪ Context

Values are returned from the context of the transaction at runtime.

 Note:

If PERSISTENT_GRANT_LIFETIME is an extended attribute in System # OAuth Settings
Authorization Server Settings, you can set the lifetime of persistent grants based on the
outcome of attribute mapping expressions, or the per-client Persistent Grants Max Lifetime
setting.

▪ To set lifetime based on the per-client Persistent Grants Max Lifetime setting, select
Context from the Source list and Default Persistent Grant Lifetime from the Value list.

▪ To set lifetime based on the outcome of attribute mapping expressions, select Expression as
the source and enter an OGNL expression in the Value field.

If the expression returns a positive integer, the value represents the lifetime of the persistent
grant in minutes.

If the expression returns the integer 0, does not store the grant and does not issue a refresh
token.

If the expression returns any other value, sets the lifetime of the persistent grant based on
the per-client Persistent Grants Max Lifetime setting.

▪ To set a static lifetime, select Text from the Source list and enter a static value in the Value
field.

This is suitable for testing purposes, or cases where the persistent grant lifetime must always
be set to a specific value.

As the HTTP Request context value is retrieved as a Java object rather than text, OGNL
expressions are ideal to evaluate and return values.

▪ Extended Client Metadata

Values are returned from the client record.
▪ LDAP/JDBC/Other

Values are returned from your datastore, if used.
▪ Expression

If enabled, this option provides more complex mapping capabilities, such as transforming
incoming values into different formats. All of the variables available for text entries are available for
expressions.

▪ No Mapping

This option ignores the Value field.
▪ Text

You can enter text only, or mix text with references to the attributes returned from the adapter
instance, using the ${attribute} syntax.

You can also enter values from your datastore using the ${ds.attribute} syntax, where
attribute is any of the datastore attributes you have selected.

Copyright ©2024

 | Administrator's Reference Guide | 546

3. Click Next.

Defining issuance criteria for OAuth IdP adapter mapping
Individual attributes within policy contracts can further determine whether PingFederate approves or rejects
requests. You can define those criteria to satisfy or you can choose to skip this configuration.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. Go to Authentication # OAuth # IdP Adapter Grant Mapping. Select an adapter instance, and then
click Issuance Criteria.

2. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Adapter Select to evaluate attributes from the IdP adapter instance.

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

As the HTTP Request context value is retrieved as a Java object rather
than text, attribute mapping expressions are more appropriate to evaluate
and return values.

Extended Client
Metadata

Select to evaluate OAuth client metadata.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Copyright ©2024

 | Administrator's Reference Guide | 547

Source Description

Mapped Attributes Select to evaluate the mapped attributes.

3. From the Attribute Name list, select the attribute to be evaluated.

4. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

5. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

6. In the Error Result field, enter a custom error message.

This value is used by the error_description protocol field. Using an error code in the Error
Result field allows an application to process the code in several ways, such as displaying an error
message or e-mailing an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

7. Click Add.

8. Optional: Repeat to add more criteria.

Copyright ©2024

 | Administrator's Reference Guide | 548

9. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing the IdP adapter mapping
On the Summary tab, review your identity provider (IdP) adapter mapping.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Configuring IdP connection grant mapping
Use this configuration to map values obtained from the single sign-on (SSO) tokens into the persistent
grants. Persistent grants remain valid until the grant expires or is explicitly revoked.

About this task

The USER_KEY attribute is the identifier of the persistent grants. The USER_NAME attribute presents the
name shown to the resource owner on OAuth user-facing pages. If extended attributes are defined in
System # OAuth Settings # Authorization Server Settings, configure a mapping for each attribute.
You can optionally set up datastore queries to supplement values returned from the source. This mapping
configuration is suitable for the Authorization Code and Implicit grant types.

Steps

1. Go to Authentication # Integration # IdP Connections and select an existing identity provider (IdP)
connection or click Create Connection.

2. On the Connection Type tab, select the Browser SSO Profiles check box and the applicable
protocol.

3. On the Connection Options window, select the Browser SSO check box and then select the OAuth
Attribute Mapping check box.

 Tip:

You can also select other options on the Connection Type and Connection Options tabs. If you do,
you will be prompted to complete the required configuration. For simplicity, this topic only focuses on
the OAuth Attribute Mapping configuration.

4. On the General Info tab, enter the required information.

Copyright ©2024

 | Administrator's Reference Guide | 549

5. On the Browser SSO tab, click Configure Browser SSO and follow the steps to complete the User-
Session Creation tab.

6. On the OAuth Attribute Mapping tab, select the Map directly into Persistent Grant option, and then
click Configure OAuth Attribute Mapping to continue.

Alternatively, if you have mapped an authentication policy contract (APC) in User-Session Creation
Target Session Mapping, you can select the Map to OAuth via Authentication Policy Contract
option, and then select the applicable APC from the list.

Choosing an OAuth datastore
You can optionally set up OAuth datastore queries to supplement values returned from the source.

Steps

On the Data Store tab, perform one of the following actions.
Choose from:

▪ To set up datastore queries, select a datastore from the Active Data Store list and then click Next.
For configuration steps, see Datastore query configuration on page 375.

▪ To skip this optional configuration, select No Data Store, and then click Next.

Fulfilling OAuth attribute mapping
On the Contract Fulfillment tab, map authentication source values into persistent grants.

About this task

The USER_KEY attribute is the identifier of the persistent grants. The USER_NAME attribute presents the
name shown to the resource owner on OAuth user-facing pages. If extended attributes are defined in
System # OAuth Settings # Authorization Server Settings, configure a mapping for each attribute.

 Important:

The USER_KEY attribute values must be unique across all end users because the USER_KEY attribute is
the user identifier to store and to retrieve persistent grants. For example, if you are configuring an OAuth
Attribute Mapping configuration on a SAML 2.0 IdP connection and the SAML_SUBJECT attribute uniquely
identifies all end users, you can map the SAML_SUBJECT attribute to the USER_KEY attribute.

Steps

1. For each attribute, select a source from the list and then choose or enter a value.

▪ AccountLink

When selected, the Value list is populated with Local User ID. You can map Local User ID to an
attribute that represents the user identifier, such as the USER_KEY attribute. This source appears

Copyright ©2024

 | Administrator's Reference Guide | 550

only if you have elected to use account linking for a target session on the Identity Mapping
window.

▪ Assertion or Provider Claims

When selected, the Value list is populated with attributes from the SSO token. Select the desired
attribute from the list.

For example, to map the value of SAML_SUBJECT from a SAML assertion as the value of
the USER_KEY user identifier on the contract, select Assertion from the Source list and
SAML_SUBJECT from the Value list.

▪ Context

When selected, the Value list populates with the available context of the transaction. Select the
desired context from the list.

 Note:

As the HTTP Request context value is retrieved as a Java object rather than text, use OGNL
expressions to evaluate and return values.

 Note:

If you are configuring an OAuth Attribute Mapping configuration and have added
PERSISTENT_GRANT_LIFETIME as an extended attribute in the Authorization Server Settings
window, you can set the lifetime of persistent grants based on the outcome of attribute mapping
expressions or the per-client Persistent Grants Max Lifetime setting.

▪ To set lifetime based on the per-client Persistent Grants Max Lifetime setting, select
Context from the Source list and Default Persistent Grant Lifetime from the Value list.

▪ To set lifetime based on the outcome of attribute mapping expressions, select Expression as
the source and enter an OGNL expression in the Value field.

If the expression returns a positive integer, the value represents the lifetime of the persistent
grant in minutes.

If the expression returns the integer 0, does not store the grant and does not issue a refresh
token.

If the expression returns any other value, sets the lifetime of the persistent grant based on
the per-client Persistent Grants Max Lifetime setting.

▪ To set a static lifetime, select Text from the Source list and enter a static value in the Value
field.

This is suitable for testing purposes, or cases where the persistent grant lifetime must always
be set to a specific value.

▪ Extended Client Metadata

Values are returned from the client record.
▪ LDAP, JDBC, or Other

When selected, the Value list is populated with attributes selected from the datastore. Select the
desired attribute from the list.

▪ Expression

When enabled, this option provides more complex mapping capabilities, such as transforming
incoming values into different formats. Select Expression from the Source list, click Edit under

Copyright ©2024

 | Administrator's Reference Guide | 551

Actions, and compose your OGNL expressions. All variables available for text entries are also
available for expressions. For more information, see Text.

Expressions are not enabled by default. For more information about enabling and editing OGNL
expressions, see Attribute mapping expressions on page 213.

▪ No Mapping

When selected, no value selection is necessary.
▪ Text

When selected, the text you enter is used at runtime. You can mix text with references to any of
the values from the SSO token, using the ${attribute} syntax.

When applicable, you can also enter values from your datastore using the ${ds.attribute}
syntax, where attribute is any attribute that you have selected from the datastore.

2. Click Next.

Defining issuance criteria for OAuth attribute mapping
Individual attributes within policy contracts can further determine whether PingFederate approves or rejects
requests. You can define those criteria to satisfy or you can choose to skip this configuration.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. Go to Authentication # OAuth # IdP Adapter Grant Mapping and select your mapping. Click the
Issuance Criteria tab.

Copyright ©2024

 | Administrator's Reference Guide | 552

2. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

AccountLink Select to evaluate the Local User ID value of the user.

Displayed only if Account Linking is the selected identity mapping
method. For more information, see Choosing an identity mapping method
for SP SSO on page 690.

Assertion Select to evaluate attributes from the IdP connection.

Assertion or Provider
Claims

Select to evaluate attributes from the IdP connection.

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

As the HTTP Request context value is retrieved as a Java object rather
than text, attribute mapping expressions are more appropriate to evaluate
and return values.

Extended Client
Metadata

Select to evaluate OAuth client metadata.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

3. From the Attribute Name list, select the attribute to be evaluated.

Copyright ©2024

 | Administrator's Reference Guide | 553

4. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

5. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

6. In the Error Result field, enter a custom error message.

The value of this field is used by the error_description protocol field. Using an error code in the
Error Result field allows an application to process the code several ways, such as displaying an error
message or e-mailing an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

7. Click Add.

8. Optional: Repeat to add more criteria.

Copyright ©2024

 | Administrator's Reference Guide | 554

9. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing the OAuth attribute mapping summary
On the Summary tab, review your configuration.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Managing authentication policy contract grant mapping
Use the Authentication Policy Contract Grant Mapping window to map values obtained from the
authentication policy contract into the persistent grants. Persistent grants and any associated attributes
and their values remain valid until the grants expire or until PingFederate explicitly revokes or cleans them
up.

About this task

The USER_KEY attribute is the identifier of the persistent grants. The USER_NAME attribute presents the
name shown to the resource owner on OAuth user-facing pages. If extended attributes are defined in
System # OAuth Settings # Authorization Server Settings, configure a mapping for each attribute.
You can optionally set up datastore queries to supplement values returned from the source. This mapping
configuration is suitable for the Authorization Code and Implicit grant types.

Steps

Go to Authentication # OAuth # Authentication Policy Contract Grant Mapping and perform one of the
following actions.

Action Steps

Create a mapping Select the source of the attributes from the list and
click Add Mapping.

Modify an existing mapping Select your mapping under Mappings.

Remove an existing mapping or cancel the
removal request

Click Delete or Undelete under Action.

 Note:

Before removing a mapping from your
configuration, ensure that it is not used by your

Copyright ©2024

 | Administrator's Reference Guide | 555

Action Steps

OAuth use cases. Any corresponding entries
defined in Applications # OAuth # Access Token
Mapping will also be removed.

Configuring policy contract attribute sources and user lookup
You can optionally set up datastore queries to supplement values returned from the policy contract
attribute source.

Steps

1. Go to Authentication # OAuth # Authentication Policy Grant Mapping and select your mapping, or
click Add Mapping.

2. On the Attribute Sources & User Lookup tab, perform one of the following actions.
Choose from:

▪ To set up datastore queries, click Add Attribute Source and follow the steps to complete the
setup. For configuration steps, see Datastore query configuration on page 375.

▪ To skip this configuration, click Next.

Fulfilling policy contract grant mapping
On the Contract Fulfillment tab, map authentication source values into persistent grants.

About this task

The USER_KEY attribute is the identifier of the persistent grants. The USER_NAME attribute presents the
name shown to the resource owner on OAuth user-facing pages. If extended attributes are defined in
System # OAuth Settings # Authorization Server Settings, configure a mapping for each attribute.

 Important:

The USER_KEY attribute values must be unique across all end users, because the USER_KEY attribute is
the user identifier to store and to retrieve persistent grants. For example, if you are configuring an OAuth
attribute mapping on a SAML 2.0 identity provider (IdP) connection and the SAML_SUBJECT attribute
uniquely identifies all end users, you can map the SAML_SUBJECT attribute to the USER_KEY attribute.

Steps

1. On the Contract Fulfillment tab, select a source from the Source list, and then select or enter a value
for each attribute in the contract.

Map each attribute from one of the following sources:

▪ Authentication Policy Contract

Populates the associated Value list with attributes associated with the APC.
▪ Context

Values are returned from the context of the transaction at runtime.

 Note:

If PERSISTENT_GRANT_LIFETIME is an extended attribute in System # OAuth Settings
Authorization Server Settings, you can set the lifetime of persistent grants based on the

Copyright ©2024

 | Administrator's Reference Guide | 556

outcome of attribute mapping expressions, or the per-client Persistent Grants Max Lifetime
setting.

▪ To set lifetime based on the per-client Persistent Grants Max Lifetime setting, select
Context from the Source list and Default Persistent Grant Lifetime from the Value list.

▪ To set lifetime based on the outcome of attribute mapping expressions, select Expression as
the source and enter an OGNL expression in the Value field.

If the expression returns a positive integer, the value represents the lifetime of the persistent
grant in minutes.

If the expression returns the integer 0, does not store the grant and does not issue a refresh
token.

If the expression returns any other value, sets the lifetime of the persistent grant based on
the per-client Persistent Grants Max Lifetime setting.

▪ To set a static lifetime, select Text from the Source list and enter a static value in the Value
field.

This is suitable for testing purposes, or cases where the persistent grant lifetime must always
be set to a specific value.

As the HTTP Request context value is retrieved as a Java object rather than text, OGNL
expressions are ideal to evaluate and return values.

▪ Extended Client Metadata

Values are returned from the client record.
▪ LDAP/JDBC/Other (when a datastore is used)

Values are returned from your datastore. When you make this selection, the Value list populates
with attributes from the datastore.

▪ Expression (when enabled)

Provides more complex mapping capabilities, such as transforming incoming values into different
formats. All of the variables available for text entries are also available for expressions.

▪ No Mapping

Ignores the Value field.
▪ Text

You can enter a text value only, or you can mix text with references to the unique user ID returned
from the credentials validator, using the ${attribute} syntax. You can also enter values from
your datastore, when applicable, using the ${ds.attribute} syntax, where attribute is any
of the datastore attributes you have selected.

2. Click Next.

Defining issuance criteria for policy contract mapping
Individual attributes within policy contracts can further determine whether PingFederate approves or rejects
requests. You can define those criteria to satisfy or you can choose to skip this configuration.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

Copyright ©2024

 | Administrator's Reference Guide | 557

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Authentication Policy
Contract

Select to evaluate attributes from the authentication policy contract.

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

As the HTTP Request context value is retrieved as a Java object rather
than text, attribute mapping expressions are more appropriate to evaluate
and return values.

Extended Client
Metadata

Select to evaluate OAuth client metadata.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

2. From the Attribute Name list, select the attribute to be evaluated.

Copyright ©2024

 | Administrator's Reference Guide | 558

3. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

4. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

5. In the Error Result field, enter a custom error message.

The value of this field is used by the error_description protocol field. Using an error code in the
Error Result field allows an application to process the code in several ways, such as displaying an
error message or e-mailing an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

6. Click Add.

7. Optional: Repeat to add more criteria.

Copyright ©2024

 | Administrator's Reference Guide | 559

8. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing authentication policy contract mapping
On the Summary tab, review your configuration.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Managing resource owner credentials grant mapping
Use theResource Owner Credentials Grant Mapping to map values obtained from the password
credential validator instance into the persistent grants. Persistent grants and any associated attributes and
their values remain valid until the grants expire or until PingFederate explicitly revokes or cleans them up.

About this task

The USER_KEY attribute is the identifier of the persistent grants. If extended attributes are defined in
System # OAuth Settings # Authorization Server Settings, configure a mapping for each attribute. You
can optionally set up datastore queries to supplement values returned from the source. This mapping is
intended for the Resource Owner Password Credential grant type.

Steps

Go to Authentication # OAuth # Resource Owner Credentials Grant Mapping and perform one of the
following actions.

Action Steps

Create a mapping Select the source of the attributes from the list and
click Add Mapping.

Modify an existing mapping Select your mapping under Mappings.

Remove an existing mapping or cancel the
removal request

Click Delete or Undelete under Action.

 Note:

Before removing a mapping from your
configuration, ensure that it is not used by your
OAuth use cases. Any corresponding entries

Copyright ©2024

 | Administrator's Reference Guide | 560

Action Steps

defined in Applications # OAuth # Access Token
Mapping will also be removed.

Configuring resource owner attribute sources and user lookup
You can optionally set up datastore queries to supplement values returned from the resource owner
attribute source.

Steps

Go to Authentication # OAuth # Resource Owner Credentials Grant Mapping and select your
mapping, or click Add Mapping.
Choose from:

▪ To set up datastore queries, click Add Attribute Source on the Attribute Sources and User Lookup
tab. For configuration steps, see Datastore query configuration on page 375.

▪ To skip this optional configuration, click Next.

Fulfilling resource owner credentials grant mapping
On the Contract Fulfillment tab, map authentication source values into persistent grants.

About this task

The USER_KEY attribute is the identifier of the persistent grants. If extended attributes are defined in
System # OAuth Settings # Authorization Server Settings, configure a mapping for each attribute.

 Important:

The USER_KEY attribute values must be unique across all end users, because the USER_KEY attribute is
the user identifier to store and to retrieve persistent grants. For example, the sAMAccountName attribute
value of an end user in one domain might match that of another end user in another domain. In this case,
you can map the Subject DN attribute to the USER_KEY attribute.

Steps

1. On the Contract Fulfillment tab, select a source from the Source list, and then select or enter a value
for each attribute in the contract.

Map each attribute from one of the following sources:

▪ Password Credential Validator

When selected, the associated Value list populates with attributes associated with the credential-
validation instance.

▪ Context

Values are returned from the context of the transaction at runtime.

 Note:

If PERSISTENT_GRANT_LIFETIME is an extended attribute in System # OAuth Settings
Authorization Server Settings, you can set the lifetime of persistent grants based on the

Copyright ©2024

 | Administrator's Reference Guide | 561

outcome of attribute mapping expressions, or the per-client Persistent Grants Max Lifetime
setting.

▪ To set lifetime based on the per-client Persistent Grants Max Lifetime setting, select
Context from the Source list and Default Persistent Grant Lifetime from the Value list.

▪ To set lifetime based on the outcome of attribute mapping expressions, select Expression as
the source and enter an OGNL expression in the Value field.

If the expression returns a positive integer, the value represents the lifetime of the persistent
grant in minutes.

If the expression returns the integer 0, does not store the grant and does not issue a refresh
token.

If the expression returns any other value, sets the lifetime of the persistent grant based on
the per-client Persistent Grants Max Lifetime setting.

▪ To set a static lifetime, select Text from the Source list and enter a static value in the Value
field.

This is suitable for testing purposes, or cases where the persistent grant lifetime must always
be set to a specific value.

As the HTTP Request context value is retrieved as a Java object rather than text, OGNL
expressions are ideal to evaluate and return values.

▪ Extended Client Metadata

Values are returned from the client record.
▪ LDAP/JDBC/Other (when a datastore is used)

Values are returned from your datastore. When selected, the Value list is populates with attributes
from the datastore.

▪ Expression (when enabled)

Provides more complex mapping capabilities, such as transforming incoming values into different
formats. All of the variables available for text entries are also available for expressions.

▪ No Mapping

Ignores the Value field.
▪ Text

You can enter a text value only, or you can mix text with references to the unique user ID returned
from the credentials validator, using the ${attribute} syntax. You can also enter values from
your datastore, when applicable, using the ${ds.attribute} syntax, where attribute is any
of the datastore attributes you have selected.

2. Click Next.

Defining issuance criteria for resource-owner credentials mapping
Individual attributes within policy contracts can further determine whether PingFederate approves or rejects
requests. You can define those criteria to satisfy or you can choose to skip this configuration.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

Copyright ©2024

 | Administrator's Reference Guide | 562

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. Go to Authentication # OAuth # Resource Owner Credentials Grant Mapping and select your
mapping, or click Add Mapping.

2. On the Issuance Criteria tab, select the attribute's source from the Source list.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

As the HTTP Request context value is retrieved as a Java object rather
than text, attribute mapping expressions are more appropriate to evaluate
and return values.

Extended Client
Metadata

Select to evaluate OAuth client metadata.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

Password Credential
Validator

Select to evaluate attributes from the Password Credential Validator
instance.

3. From the Attribute Name list, select the attribute to be evaluated.

Copyright ©2024

 | Administrator's Reference Guide | 563

4. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

5. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

6. In the Error Result field, enter a custom error message.

The value of this field is used by the error_description protocol field. Using an error code in the
Error Result field allows an application to process the code in several ways, such as displaying an
error message or e-mailing an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

7. Click Add.

8. Optional: Repeat to add more criteria.

Copyright ©2024

 | Administrator's Reference Guide | 564

9. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing the resource owner credentials mapping
On the Summary tab, review your configuration.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Token mapping
You can configure how PingFederate maps attributes to OAuth access tokens and OpenID Connect ID
tokens.

To configure how PingFederate maps attributes to OAuth access tokens, go to Applications # OAuth
Access Token Mappings. You can map attributes to access tokens from various context sources,
depending on how users or clients authenticate. This is the second stage of mapping OAuth attributes
to access tokens. The first stage is mapping OAuth attributes to persistent grant contracts. For more
information, see Mapping OAuth attributes on page 80 and Managing access token mappings on page
576.

OpenID Connect policies include a map of attributes to ID tokens. To configure an OpenID Connect
policy, go to Applications # OAuth # OpenID Connect Policy Management. For more information, see
Configuring OpenID Connect policies on page 587.

Access token management
PingFederate supports multiple access token management (ATM) instances. You can configure different
access token policies and attribute contracts for different OAuth clients. You can also control validation of
access tokens to one or more resource servers.

When defining an ATM instance, you can customize various settings, including token format, lifetime,
session validation settings, and attribute contract for this instance. You can also limit the ATM instance to a
list of resource URIs, a set of clients in an access control list (ACL), or both.

For example, you can use the ACL to limit which clients can obtain access tokens from a particular ATM
instance. You can also add a resource server client to the ACL of multiple ATMs instances, so that only
the resource server client can submit token validation requests for access tokens issued by those ATM
instances.

When there are multiple ATM instances, OAuth clients can specify the desired ATM instance by
providing the access_token_manager_id ATM ID or an aud resource URI in their requests to the
PingFederate OAuth authorization server at the /as/authorization.oauth2 authorization endpoint, the /as/

Copyright ©2024

 | Administrator's Reference Guide | 565

token.oauth2 token endpoint, and the /as/introspect.oauth2 introspection endpoint. For resource
server clients, you can configure on a per-client basis whether a resource server client must specify the
desired ATM instance in its token validation requests at runtime. For more information, see Configuring
OAuth clients on page 529.

At runtime, the OAuth authorization server uses the following rules to determine which ATM instances to
use:

1. limits the eligible ATM instances to those that are available in the context of the request. For most
requests, these are instances that have an attribute mapping defined in the Access Token Mapping
window. For OAuth Assertion Grant requests, it is the set of instances for which a mapping is defined
in the IdP connection. If configured, the ACL can also limit which ATM instances are eligible.

2. If the request comes with an access_token_manager_id or aud parameter, uses the information
to determine the applicable ATM instance.

3. If the request does not come with either parameter, for OAuth clients supporting the OpenID Connect
protocol by including the openid scope value, uses the ATM instance specified by the OpenID
Connect policy associated with the client. For resource server clients, you can optionally configure to
use any eligible ATM instances for the purpose of token validation.

4. If the request comes with neither of the two parameters nor the openid scope, uses the default
ATM instance of the client if configured, or the default ATM instance defined for the installation
if eligible. For token validation requests, if resource server clients do not provide either the
access_token_manager_id or aud parameter in their requests and the resource server clients
have not been configured to validate against any eligible ATM instances, the same logic applies.

If no match can be found in the eligible list of ATMs, PingFederate aborts the request.

Managing access token management instances
Use the Access Token Management window to specify how the PingFederate OAuth AS manages
access tokens.

Steps

1. Go to Applications # OAuth # Access Token Management.

2. In the Access Token Management window, choose from the following options.

Option Description

Configure a new instance Click Create New Instance

Modify an existing instance Click the name of instance in the Instance Name
column

View the usage of an existing instance Click Check Usage in the Action column on the
instance's row

Remove an existing instance Click Delete in the Action column on the
instance's row

Defining an access token management instance
Define your access token management instance in the Type tab. This capability allows you to configure
different access token policies and attribute contracts for different OAuth clients. It also provides a means
to control validation of access tokens to one or more resource servers.

Steps

1. Go to Applications # OAuth # Access Token Management and click Create New Instance.

2. On the Type tab, enter a name in the Instance Name field and an ID in the Instance ID field.

3. From the Type list, select the plugin type of the access token management instance.

The Type list varies depending on the plugins deployed on your server. For information about adding a
customized plugin, contact the Ping Identity Support Center.

Copyright ©2024

https://support.pingidentity.com

 | Administrator's Reference Guide | 566

4. Optional: Select a Parent Instance from the list.

Use this option when creating an instance that is similar to an existing one. The child instance inherits
the configuration of its parent. You can also override one or more settings during the setup. Select the
Override ... check box and make the adjustments as needed in one or more subsequent windows.

Configuring an access token management instance
This configuration varies depending on the type of the access token manager.

Steps

▪ See subsequent topics for configuration steps.

Configuring reference token management
Access tokens that use the reference token data model provide a reference to a set of attributes.
The resource server must de-reference the access tokens for the corresponding identity and security
information at the OAuth authorization server that issued them. PingFederate is the authorization server.

About this task

The reference token data model supports both adaptive clustering and directed clustering. For adaptive
clustering, PingFederate shares token information across a replica set. If region identifiers are defined,
PingFederate shares token information across replica sets in multiple regions. You can optionally override
this default behavior in the configuration file for adaptive clustering. For directed clustering, PingFederate
shares token information among all engine nodes, despite any state server or subcluster setup.

Steps

1. Go to Applications # OAuth # Access Token Management and click Create New Instance.

2. On the Instance Configuration window, modify the default values as needed.

The following table describes each field.

Field Description

Token Length

(Required)

The number of characters that PingFederate uses to define the token
reference. Increasing the length enhances token security.

The default value is 28 characters. The minimum and maximum values are
22 and 256, respectively.

Token Lifetime

(Required)

The amount of time in minutes that an access token is considered valid.

The default value is 120 minutes.

Lifetime Extension
Policy

Indicates whether PingFederate should reset the lifetime of an access
token each time the token is validated, subject to the values defined
in the Maximum Token Lifetime and Lifetime Extension Threshold
Percentage fields.

The options are:

▪ No Extension
▪ Tokens Not Backed by Persistent Access Grants (Transient

Grants)
▪ All Tokens

The default selection is No Extension.

Copyright ©2024

 | Administrator's Reference Guide | 567

Field Description

Maximum Token
Lifetime

Defines an absolute maximum token lifetime for use with the Lifetime
Extension Policy setting, in minutes. When configured, the lifetime of
access tokens can be extended but not beyond the configured value. Any
value, if specified, must be greater than or equal to the value specified in
the Token Lifetime field.

This optional field has no default value.

Lifetime Extension
Threshold Percentage

(Required)

When PingFederate is deployed in a cluster and token-lifetime extension
is enabled, there must be a cluster-group remote procedure call (RPC) to
extend the life of a token.

To limit RPC overhead, this setting suspends the calls until the remaining
time is less than the chosen value, as a percentage of token lifetime. For
example, if the token lifetime is 60 minutes and the Lifetime Extension
Threshold Percentage value is 30 percent, the lifetime will not be
extended until the remaining time is less than 18 minutes. This option
can drastically reduce RPC traffic between nodes, while still supporting a
lifetime extension policy.

The default value is 30 percent.

Advanced Fields

Mode for
Synchronous RPC

Synchronous RPC calls occur when a node receives a verification request
for a token it does not recognize, and for token issuance.

When Majority of Nodes is selected, the server waits for the majority
of recipients to respond. It also eliminates the need for a complete state
synchronization at startup.

When All Nodes is selected, the server waits for all recipients to respond.

The default selection is Majority of Nodes.

RPC Timeout

(Required)

The timeout value between cluster nodes during synchronous
communication, in milliseconds. The recommended value ranges from 100
milliseconds to 1000, or 1 second.

The default value is 500 milliseconds.

Expand Scope
Groups

Determines whether to expand scope groups into their corresponding
scopes in the access token contents and introspection response.

This check box is not selected by default.

Configuring JSON token management
JSON web token (JWT) bearer access tokens are secure and self-contained tokens. This allows the target
resource server to validate the access tokens locally or to send the access tokens to PingFederate for
validation.

About this task

This configuration uses either symmetric keys or asymmetric signing-certificate keys for token security. To
facilitate rollover of keys when they expire, multiple entries are allowed for either signing mechanism. This
token data model is suitable for both standalone and clustered environments.

Steps

1. Go to Applications # OAuth # Access Token Management and click Create New Instance.

Copyright ©2024

 | Administrator's Reference Guide | 568

2. On the Instance Configuration tab, add one or more symmetric keys, signing certificates, or both.

a. Click Add a new row to..., or click Update to modify an existing entry.

 Important:

The Key ID field values must be unique across all JSON token management instances, including
child instances.

b. If you have not yet created or imported your certificate into PingFederate, click Manage Signing
Certificates and complete the task.

 Note:

To use an RSA-based algorithm for JSON web signature (JWS), the key size of the signing
certificate must be at least 2,048 bits. For an EC-based JWS algorithm, the key size depends on
the chosen algorithm.

3. Change or select entries as needed.

For more information about JSON web algorithms (JWAs), see the JSON Web Algorithms
specification.

Field Description

Token Lifetime

(Required)

The amount of time that an access token is considered valid, in minutes.

The default value is 120 minutes.

Additionally, you can extend the contract of the access tokens with an
attribute named exp on the Access Token Attribute Contract tab. When
mapping attribute values from authentication sources to the access tokens
issued by this Access Token Management instance, the value you specify
on the Contract Fulfillment tab sets the expiry as this many minutes from
the current time. PingFederate internally calculates the actual epoch time
for the JWT "exp" claim value.

Use Centralized
Signing Key

Select this option to use a centralized key when signing JWTs using an
RSA-based or EC-based algorithm.

When this option is selected and static keys are not enabled, PingFederate
manages and rotates a set of keys, and uses the current key corresponding
to the selected signing algorithm to sign the JWT.

When this option is selected and static keys are enabled, PingFederate
uses the current key corresponding to the selected signing algorithm to
sign the JWT.

When this option is selected, an OAuth client that has been configured to
use JWT access tokens through this ATM instance can retrieve the key it
needs to validate the digital signature by contacting PingFederate at the /
pf/JWKS endpoint.

JSON Web Signature (JWS) configuration

Copyright ©2024

https://tools.ietf.org/html/rfc7518

 | Administrator's Reference Guide | 569

Field Description

JWS Algorithm The hash-based message authentication code (HMAC) or the signing
algorithm (EC or RSA) used to protect the integrity of the token.
If PingFederate is deployed to run in a Java 8 or Java 11 runtime
environment, or integrated with a hardware security module (HSM),
additional RSASSA-PSS signing algorithms become available for selection.
For more information on HSM integration, see Supported hardware security
modules on page 168.

Required if an asymmetric algorithm is selected in the JWE Algorithm list.

Active Symmetric Key
ID

The ID of the symmetric key to use when producing JWTs using an HMAC-
based algorithm.

Required if an HMAC-based JWS algorithm is selected in the JWS
Algorithm list.

Active Signing
Certificate Key ID

The ID of the key pair and certificate to use when producing JWTs using an
EC-based or RSA-based algorithm.

Required if an EC-based or RSA-based JWS algorithm is selected in the
JWS Algorithm list.

JSON Web Encryption (JWE) configuration

JWE Algorithm The algorithm used to encrypt or otherwise determine the value of the
content encryption key.

PingFederate supports symmetric algorithms, such as Direct Encryption
with symmetric key, AES ... Key Wrap, and AES-GCM ... key
encryption, and asymmetric algorithms, such as ECDH-ES, ECDH-ES ...
Key Wrap, and RSAES OAEP.

JWE Content
Encryption Algorithm

The content encryption algorithm used to perform authenticated encryption
on the plain text payload of the token.

Required if an algorithm is selected in the JWE Algorithm list.

Active Symmetric
Encryption Key ID

The ID of the key to use when using a symmetric encryption algorithm.

Required if a symmetric algorithm is selected in the JWE Algorithm list.

Asymmetric
Encryption Key

An asymmetric encryption public key from your partner, which can be in
either JSON web key (JWK) format or a certificate.

Applicable only if an asymmetric algorithm is selected from the JWE
Algorithm list.

 Note:

You can only specify an asymmetric encryption key here or the partner's
JSON web key set (JWKS) endpoint in the Asymmetric Encryption
JWKS URL field.

Copyright ©2024

 | Administrator's Reference Guide | 570

Field Description

Asymmetric
Encryption JWKS
URL

The HTTPS URL of a JWKS endpoint that provides a list of one or more
public keys for encryption.

Applicable only if an asymmetric algorithm is selected from the JWE
Algorithm list.

 Note:

You can only specify an asymmetric encryption JWK URL here or the
asymmetric encryption public key from your partner in the Asymmetric
Encryption Key field.

Advanced fields

Include Key ID Header
Parameter

When selected, the key ID is used in the kid header parameter for the
token.

This check box is selected by default.

Include X.509
Thumbprint Header
Parameter

When selected, the X.509 certificate thumbprint is used in the x5t header
parameter for the token.

This check box is not selected by default.

Default JWKS URL
Cache Duration

When an asymmetric encryption JWKS URL is specified, if the remote
server does not contain any cache directives in its response, PingFederate
only caches the content for 720 minutes (12 hours).

 Note:

When this threshold is reached or if the cache directives indicate that the
content has expired at runtime, PingFederate contacts the remote server to
refresh the list of encryption keys from the partner.

Include JWE Key ID
header parameter

When selected, indicates whether the key ID (kid) header parameter will
be included in the encryption header of the token, which can help identify
the appropriate key during decryption.

This check box is selected by default.

Include JWE X.509
Thumbprint Header
Parameter

When selected, the X.509 certificate thumbprint is used as the x5t header
parameter value in the encryption header of the token. This can help
identify the appropriate key during decryption.

This check box is not selected by default.

Client ID Claim Name The name of a JWT claim used to represent the OAuth client ID.

The default value is client_id.

If the field value is empty, will not include the client ID of the requesting
client in the self-contained tokens. If clients may use the UserInfo endpoint
to retrieve additional claims about the users, see UserInfo endpoint on
page 1112 for more information.

Copyright ©2024

 | Administrator's Reference Guide | 571

Field Description

Scope Claim Name The name of a JWT claim used to represent the scope of the grant.

The default value is scope.

If the field value is empty, PingFederate will not include any scope
information in the self-contained token. If clients may use the UserInfo
endpoint to retrieve additional claims about the users, see UserInfo
endpoint on page 1112 for more information.

Space Delimit Scope
Values

When selected, indicates scope strings will be delimited by spaces rather
than represented as a JSON array.

This check box is not selected by default.

Issuer Claim Value The value of the Issuer claim (iss) in the JWT. If left blank, this field is
omitted.

Additionally, you may extend the contract of the access tokens with an
attribute named iss on the Access Token Attribute Contract tab.
When mapping attribute values from authentication sources to the access
tokens issued by this ATM instance, the value you specify on the Contract
Fulfillment tab overrides the value here.

Audience Claim Value The value of the Audience claim (aud) in the JWT. If left blank, this field is
omitted.

When no value is specified, PingFederate does not validate the aud value,
if any is included in the access token.

You can also extend the contract of the access tokens with an attribute
named aud in the Access Token Attribute Contract tab. When mapping
attribute values from authentication sources to the access tokens issued by
this ATM instance, the value specified in the Contract Fulfillment window
overrides this value.

JWT ID Claim Length Indicates the number of characters of the JWT ID (jti) claim in the JWT.

The default value is 0, meaning no claim is included.

Access Grant GUID
Claim Name

The name of the JWT claim used to carry the persistent access grant
GUID. If left blank, this field is omitted.

If the claim is present during validation, PingFederate checks the grant
database to ensure the grant is still valid.

 Note:

This use case requires that the RS must send the JWT bearer access
tokens to PingFederate for validation.

Copyright ©2024

 | Administrator's Reference Guide | 572

Field Description

JWKS Endpoint Path The path on the PingFederate server to publish a JWKS with the keys and
certificates that the partners can use for signature verification. Optional
when an algorithm is selected in the JWS Algorithm list. If specified, the
path must begin with a forward slash, such as /oauth/jwks.

The resulting URL is https://<pf_host>:<pf.https.port>/ext/<JWKS Endpoint
Path>.

The path must be unique across all plugin instances, including any child
instances.

JWKS Endpoint
Cache Duration

Informs the clients of the duration that they could cache the content from
the JWKS endpoint path. Applicable only if the JWKS Endpoint Path field
is configured.

The default is 720 minutes, or 12 hours.

Publish Key ID X.509
URL

Indicates whether certificates will be made accessible by the key ID at
https://<pf_host>:<pf.https.port>/ext/oauth/x509/kid?v=<id>.

This check box is not selected by default.

Publish Thumbprint
X.509 URL

Indicates whether certificates will be made accessible by thumbprint at
https://<pf_host>:<pf.https.port>/ext/oauth/x509/x5t?v=<base64url encoded
SHA-1 thumbprint>.

This check box is not selected by default.

Expand Scope
Groups

Determines whether to expand scope groups into their corresponding
scopes in the access token contents and introspection response.

This check box is not selected by default.

Type Header Value Indicates the value of the Type (typ) header in the JWT. If you do not
specify a header, it is omitted.

Managing session validation settings
When an OAuth client presents an access token for validation, PingFederate acts as an OAuth
authorization server and checks the expiration and the other aspects of the access token. If the validation
fails, PingFederate returns an invalid_grant error to the client.

Before you begin
The session validation features require authentication sessions. You must enable authentication sessions
for either all authentication sources or the authentication source associated with the OAuth use cases.

About this task

When PingFederate authentication sessions are enabled, you can optionally configure the access
token validation process to evaluate the authentication sessions of the users, or resource owners,
before returning the validation results to the clients. Depending on the features selected on the Session
Validation tab, PingFederate might return an invalid_grant error if the associated authentication
session has timed out, expired, is not found, or has been revoked. You can also configure PingFederate to
extend the authentication sessions upon successful validations.

When any session validation features are enabled, the associated session identifier (pi.sri) becomes
available through the access tokens. For reference-style access tokens, PingFederate returns the
associated session identifier in the response if the access token is valid. For JSON web token (JWT)-
based access tokens, the session identifier is part of the access token. Through the session identifier, an

Copyright ©2024

 | Administrator's Reference Guide | 573

OAuth client can contact the Session Management API and Session Revocation API endpoints to query
the status of an authentication session, or to extend or revoke an authentication session.

The session validation features let you combine the status of access tokens and user authentication
sessions. Because you can independently enable each feature per access token management (ATM)
instance, you can customize unique API and web single sign-on (SSO) behaviors for your OAuth clients
and users.

 Important:

The session validation features are most suitable for clients using the implicit grant type, which does
not use refresh tokens. Clients using the authorization code grant type can still use session validation.
However, they can only refresh their access tokens through ATM instances that have the session
validation features disabled, other than the Include session identifier in access token feature.

When a client using the authorization grant type has an access token and sends a refresh token to an ATM
instance, the following rules apply:

▪ If the ATM instance has Include session identifier in access token enabled and the other session
validation features disabled, then the ATM instance can issue a new access token. If the original
access token contains a session identifier, the new token will contain the same session identifier.

▪ If the ATM instance has any session validation feature enabled other than the Include session
identifier in access token feature, then PingFederate returns an unsupported_grant_type error.

▪ If the ATM instance has Include session identifier in access token disabled and the other session
validation features disabled, then the ATM instance can issue a new access token, but with no session
identifier.

Steps

1. Go to Applications # OAuth # Access Token Management.

2. Select the applicable ATM instance or click Create New Instance.

If you are creating a new ATM instance, complete the required fields in the Type and Instance
Configuration tabs.

3. On the Session Validation tab, select the check box for each relevant feature.

 Important:

If authentication sessions are not enabled, you can still select features on this tab, but access token
validation might fail.

If this is a child ATM instance, select the Override Session Validation Settings check box and edit
as needed.

Each feature is independent of each other. The following table describes each feature.

Feature Description

Include session
identifier in access
token

When selected, the ATM instance includes the value of the pi.sri session
identifier in the access tokens it issues. An OAuth client that is allowed
to access the session management API can get information about
sessions associated with the session identifier. The client can also request
PingFederate to extend or revoke the sessions. For more information, see
Session Management API by session identifiers on page 1150.

Copyright ©2024

 | Administrator's Reference Guide | 574

Feature Description

Check for valid
authentication session

When selected, an access token is considered invalid unless the user has
a valid authentication session. If the user does not have a valid session,
PingFederate returns an invalid_grant error.

An authentication session is invalid when one of the following conditions
applies:

▪ The authentication session has timed out based on the Idle Timeout
field value in Authentication # Policies # Sessions.

▪ The authentication session has expired based on the Max Timeout
field value in Authentication # Policies # Sessions.

▪ The authentication session is not found, such as if the user has logged
out.

You can also optimize the access token lifetime.

 Note:

If this ATM instance issues internally managed reference tokens, match
the Token Lifetime value in the Instance Configuration tab to the Idle
Timeout value. If you specify a Maximum Token Lifetime value on the
Instance Configuration tab, ensure that the value matches that of the
Max Timeout field.

If this ATM instance issues JWT-based access tokens, match value of the
Token Lifetime field to that of the Max Timeout field.

Check session
revocation status

When selected, PingFederate verifies whether the session identifier
has been added to the revocation list. If the session has been revoked,
PingFederate returns an invalid_grant error.

An authentication session can be revoked through the front-channel or the
back-channel.

Update authentication
session activity

When selected, if the access token is valid, PingFederate also extends
the lifetime of the authentication session by the Idle Timeout field value in
Authentication # Policies # Sessions.

For externally stored authentication sessions, this operation only sends
updates to the external storage when the remaining idle timeout window is
less than 75%.

Defining the access token attribute contract
On the Access Token Attribute Contract tab, define the attribute contract for the access tokens issued
by this access token management (ATM) instance.

About this task

You must enter at least one attribute. For auditing purposes, an attribute can be chosen as the subject.

Steps

1. Go to Applications # OAuth # Access Token Management and select your instance, or click Create
New Instance.

Copyright ©2024

 | Administrator's Reference Guide | 575

2. On the Access Token Attribute Contract tab, use the Extend the Contract field and the Add button
to add one or more attributes.

For JSON web token (JWT) bearer access tokens, you can extend the attribute contract with the
following attributes.

Attribute Description

iss Adds the Issuer claim (iss) to the access token.

When mapping attribute values from authentication sources
to the access tokens issued by this ATM instance, the value
specified on the Access Token Attribute Contract tab
overrides any Issuer Claim Value defined on the Instance
Configuration tab.

aud Adds the Audience claim (aud) to the access token.

When mapping attribute values from authentication sources
to the access tokens issued by this ATM instance, the value
you specify on the Access Token Attribute Contract
tab overrides any Audience Claim Value defined on the
Instance Configuration tab.

exp Extends the value of the Expire claim (exp) by the specified
value in seconds.

 Note:

Define the Expire claim with the Token Lifetime setting in
the Instance Configuration tab.

The Client ID Claim Name field
value, the Scope Claim Name field
value, or the Access Grant GUID
Claim Name field value defined on the
Instance Configuration tab of this
ATM instance.

When mapping attribute values from authentication sources
to the access tokens issued by this ATM instance, the
values defined in the Access Token Attribute Contract
tab override the value of the client ID, the scope, or the
persistent access grant GUID.

3. Select an attribute from the Subject Attribute Name list.

Result:

When recording OAuth transactions in the audit log, PingFederate populates the subject field
with values from this attribute specifically for token introspection and token validation using the
validate_bearer grant type.

Managing resource URIs
When sending its request to the authorization endpoint on the PingFederate OAuth authorization server, an
OAuth client can optionally include the requested resource in the aud query parameter.

About this task

If the client is sending a token exchange request, it can specify an access token manager in the resource
query parameter.

You can specify a list of resource URIs that PingFederate OAuth authorization server can use to select this
access token management instance when the aud or resource query parameter is provided.

 Important:

Copyright ©2024

 | Administrator's Reference Guide | 576

The resource URIs must correspond to the resource that the resource server expects.

Steps

1. Go to Applications # OAuth # Access Token Management and select your instance, or click Create
New Instance.

2. On the Resource URI tab, perform one of the following actions.

Action Steps

Add a new entry Enter the desired value in the Resource URIs
field, and then click Add.

Modify an existing entry Use the Edit, Update, and Cancel buttons.

Remove an existing entry Use the Delete and Undelete buttons.

Defining access control
On the Access Control tab, you can restrict which OAuth clients are allowed to use this access token
management instance.

Steps

1. Go to Applications # OAuth # Access Token Management and select your ATM instance or click
Create New Instance.

2. On the Access Control tab, select the Restrict Allowed Clients check box.

3. Select a client from the Allowed Clients list, and then click Add.

Repeat this step to select additional clients as needed.

Result

To remove a client from the Allowed Clients list or to cancel the removal request, click Delete or
Undelete under Action.

To disable access control by clients altogether, clear the Restrict Allowed Clients check box.

Reviewing the access token management configuration
On the Summary tab, review your access token management configuration.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Managing access token mappings
In this required configuration, map attributes to be requested from the OAuth resource server into the
access token and the token attribute contract.

About this task

When mapping a default context, define how PingFederate maps values into the attributes based on
the persistent-grant USER_KEY, and any extended attributes defined in System # OAuth Settings #
Authorization Server Settings. PingFederate acts as an OAuth authorization server.

When a specific context is selected, you can map attributes from the selected context, specifically the
chosen IdP adapter instance, Password Credential Validator instance, or authentication policy contract,
into the access tokens. You can also map attributes from an IdP connection with an OAuth attribute

Copyright ©2024

 | Administrator's Reference Guide | 577

mapping configuration or an authentication policy contract mapping configuration. You can configure a
mapping for clients using the client credential grant type.

The mapping used at runtime depends on the authentication context of the original grant. If the
authentication context results in a match, PingFederate uses that specific mapping. Otherwise, it uses the
default mapping for the applicable access token manager instance.

 Note:

The Access Token Mapping window becomes available after at least one access token manager (ATM)
instance has been configured in Applications # OAuth # Access Token Management.

Steps

Go to Applications # OAuth # Access Token Management.

Action Steps

Create a mapping Select the source of the attributes from the Context
list and the target ATM instance from the Access
Token Manager list, and then click Add Mapping.

Modify an existing mapping Select it by its name under Mappings.

Remove an existing mapping or to cancel the
removal request

Click Delete or Undelete under Action.

 Note:

Before removing an existing mapping from your
configuration, ensure that it is not used by your
OAuth use cases.

Configuring access token attribute sources and user lookup
You can optionally set up datastore queries to supplement values returned from the access token attribute
source.

Steps

Go to Applications # OAuth # Access Token Mapping and select your mapping, or click Add Mapping.
Choose from:

▪ To set up datastore queries, click Add Attribute Source and complete the task in the Attribute
Sources & User Lookup tab. For configuration steps, see Datastore query configuration on page
375.

▪ To skip this optional configuration, click Next.

Copyright ©2024

 | Administrator's Reference Guide | 578

Configuring access token fulfillment
On the Contract Fulfillment tab, map values into the token attribute contract to be included or referenced
in the access token.

Steps

1. Choose a source from the Source list, and then select a value from the Value list for each attribute in
the contract, or enter your own.

Map each attribute from one of the following sources:

▪ Client Credentials, IdP Adapter, IdP Connection, Password Credential Validator, or Token
Exchange Processor Policy

Depending on the selections under Context in the Access Token Attribute Mapping tab, you
can map attributes from that specific authentication system. Select the corresponding context
under Source and the desired attribute under Value.

▪ Persistent Grant

When selected, the associated Value list is populated with the USER_KEY and extended attributes
from the persistent access-token grant.

▪ Context

Values are returned from the context of the transaction at runtime.

 Note:

The HTTP Request context value is retrieved as a Java object rather than text. For this reason,
OGNL expressions are preferred to evaluate and return values.

Select Expression under Source, and then click Edit to enter an expression.

The HTTP RequestJava object retrieves the authentication method that a client uses, or the
private key JWT for client authentication if the client uses the private_key_jwt authentication
method.. For sample expressions, see Expressions for OAuth and OpenID Connect uses cases
on page 218.

If the Expression selection is not available, you can enable it by editing the
org.sourceid.common.ExpressionManager.xml file in the <pf_install>/
pingfederate/server/default/data/config-store directory.

▪ Extended Client Metadata

Values are returned from the client record.
▪ LDAP/JDBC/Other

Values are returned from your datastore, if used. When you make this selection, the Value list
populates with attributes from the datastore.

▪ Expression

When enabled, this option provides more complex mapping capabilities, such as transforming
incoming values into different formats. All of the variables available for text entries are also
available for expressions.

▪ No Mapping

This option ignores the Value field, causing no value selection to be necessary.
▪ Text

The value is what you enter. This can be text only, or you can mix text with references to the
USER_KEY using the ${USER_KEY} syntax.

When applicable, you can also enter values from your datastore using the ${ds.attribute}
syntax, where attribute is any of the datastore attributes you have selected.

Copyright ©2024

 | Administrator's Reference Guide | 579

2. Click Next.

Defining issuance criteria for access token mapping
Individual attributes within policy contracts can further determine whether PingFederate approves or rejects
requests. You can define those criteria to satisfy or you can choose to skip this configuration.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. Go to Applications # OAuth # Access Token Mapping and select your mapping, or click Add
Mapping.

2. On the Issuance Criteria tab, select the attribute's source from the Source list.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

As the HTTP Request context value is retrieved as a Java object rather
than text, attribute mapping expressions are more appropriate to evaluate
and return values.

Extended Client
Metadata

Select to evaluate OAuth client metadata.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

Copyright ©2024

 | Administrator's Reference Guide | 580

Source Description

Mapped from
Context (Adapter,
Authentication
Policy Contract, IdP
Connection, Password
Credential Validator,
token exchange
Processor Policy)

Select to evaluate attributes from the authentication source.

Visible and applicable only when configuring an access token mapping
where the source of the attribute is something other than Client
Credentials and Default. See .

Persistent Grant Select to evaluate the default attribute USER_KEY and other extended
attributes (if defined) from the persistent grant.

Visible and applicable only when configuring an access token mapping
where the source of the attribute is not Client Credentials.

3. From the Attribute Name list, select the attribute to be evaluated.

4. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

5. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

6. In the Error Result field, enter a custom error message.

The value of this field is used by the error_description protocol field. Using an error code in the
Error Result field allows an application to process the code in a variety of ways; for example, display
an error message or e-mail an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the

Copyright ©2024

 | Administrator's Reference Guide | 581

applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

7. Click Add.

8. Optional: Repeat to add more criteria.

9. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing the access token mapping
On the Summary tab, review your access token mapping configuration.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Configuring an OAuth assertion grant IdP connection
An OAuth assertion grant connection exchanges a SAML assertion or a JSON web token (JWT) for an
OAuth access token with the PingFederate OAuth authorization server.

About this task

You can configure an OAuth assertion grant connection with an identity provider (IdP) partner either in
conjunction with browser-based single sign-on (SSO), WS-Trust, or independently.

For more information, see Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client
Authentication and Authorization Grants and JSON Web Token (JWT) Profile for OAuth 2.0 Client
Authentication and Authorization Grants.

Steps

1. Go to Authentication # Integration # IdP Connections and then click Create Connection.

2. On the Connection Type tab, select the OAuth Assertion Grant check box.

 Tip:

You can also select other options, such as the Browser SSO Profiles check box. If you do, you will
be prompted to complete the required configuration. This topic only focuses on the OAuth Assertion
Grant configuration.

Copyright ©2024

https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7523

 | Administrator's Reference Guide | 582

3. On the General Info tab, enter the required information.

4. On the OAuth Assertion Grant Attribute Mapping tab, click Configure OAuth Assertion Grant
Attribute Mapping.

Defining an attribute contract for the OAuth assertion grant

About this task

An attribute contract is a set of user attributes the IdP sends in the SAML assertions or JWTs for this
connection. You identity these attributes on the OAuth Assertion Grant Attribute Mapping # Attribute
Contract window.

TOKEN_SUBJECT represents the name identifier of the user for whom the access token is being requested,
the SAML_SUBJECT attribute in SAML assertions and the sub claim in JWTs.

Optionally, you can mask the values of attributes (other than TOKEN_SUBJECT) in the log files that
PingFederate writes when it receives security tokens.

Steps

▪ To add an attribute, follow these steps:

a. Enter the attribute name in the text box.

Attribute names are case-sensitive and must correspond to the attribute names expected by your
partner.

b. Select the check box under Mask Values in Log.
c. Click Add.

▪ To modify an attribute name or masking selection, follow these steps:

a. Click Edit under Action for the attribute.
b. Make the change and click Update.

 Note:

If you change your mind, ensure that you click Cancel under Action.

▪ To delete an attribute, click Delete under Action for the attribute.

Configuring access token manager mappings
To define how access tokens are created, use the Access Token Manager Mapping tab to associate one
or more access token manager instances with this connection .

Steps

1. Within your IdP connection configuration, go to the Access Token Manager Mapping tab within the
OAuth Assertion Grant Attribute Mapping tab.

2. Perform one of the following actions.

Action Steps

Create a new Access Token Manager mapping
configuration

Click Create New Access Token Manager
Mapping.

Edit an existing Access Token Manager
mapping configuration

Click the mapping configuration's name.

Delete an Access Token Manager mapping Click Delete under Action for the applicable
mapping configuration.

Copyright ©2024

 | Administrator's Reference Guide | 583

Selecting an access token manager instance
This configuration maps attribute values from the (identity provider) IdP connection into the access token to
define the resulting content of the access token.

Steps

1. Within your IdP connection configuration, go to the Access Token Manager tab.

a. Click the OAuth Assertion Grant Attribute Mapping tab, and then click Configure OAuth
Assertion Grant Attribute Mapping.

b. Click the Access Token Manager Mapping tab, and then click Create New Access Token
Manager Mapping.

2. From the Access Token Manager list, select an access token manager instance.

 Tip:

If the access token manager instance you need is not available, click Manage Access Token
Management Instances to define one or more instances for this connection.

Configuring a datastore for OAuth assertion grant attribute mapping
You can optionally set up datastore queries to supplement values returned from the OAuth assertion grant
attribute mapping source.

Steps

1. Within your identity provider (IdP) connection configuration, go to the Data Store tab.

a. Click the OAuth Assertion Grant Attribute Mapping tab, and then click Configure OAuth
Assertion Grant Attribute Mapping.

b. Click the Access Token Manager Mapping tab, and then click Create New Access Token
Manager Mapping.

c. Click the Data Store tab.

2. Perform one of the following actions.
Choose from:

▪ To set up datastore queries, select a datastore from the Active Data Store list, and then click
Next. Follow the wizard to complete the setup. For configuration steps, see Datastore query
configuration on page 375.

▪ To skip this optional configuration, select No Data Store and then click Next.

Configuring OAuth assertion grant contract fulfillment
Map values from the SAML assertions or JSON web tokens (JWTs) to the attributes defined for the
attribute contract. The access token manager instance requires these values to create an OAuth access
token.

About this task

At runtime, a single sign-on (SSO) operation fails if PingFederate cannot fulfill the required attribute.

Copyright ©2024

 | Administrator's Reference Guide | 584

Steps

1. On OAuth Assertion Grant Attribute Mapping # OAuth Assertion Grant Attribute Mapping
Configuration # Contract Fulfillment , select a source from the Source list and then choose or enter
a value for each attribute.

▪ Assertion

When selected, the Value list populates with attributes from the SAML assertion or the JWT.

For example, to map the value of SAML_SUBJECT from a SAML assertion, or sub from a JWT, as
the value of an attribute on the access-token contract, select Assertion from the Source list and
TOKEN_SUBJECT from the Value list.

▪ Context

When selected, the Value list populates with the available context of the transaction.

 Note:

Because the HTTP Request context value is retrieved as a Java object rather than text, use
OGNL expressions to evaluate and return values. For more information, see Expression.

▪ Extended Client Metadata

Values are returned from the client record.
▪ LDAP, JDBC, or Other

When selected, the Value list is populated with attributes that you have selected from the
datastore. Select the desired attribute from the list.

▪ Expression

When enabled, this option provides more complex mapping capabilities, such as transforming
incoming values into different formats. Select Expression from the Source list, click Edit under
Actions, and compose your OGNL expressions. All variables available for text entries are also
available for expressions. For more information, see Text.

Expressions are not enabled by default. For more information about enabling and editing OGNL
expressions, see Attribute mapping expressions on page 213.

▪ No Mapping

Select this option to ignore the Value field.
▪ Text

When selected, the text you enter is used at runtime. You can mix text with references to any of
the values from the SSO token, using the ${attribute} syntax.

When applicable, you can enter values from your datastore using the ${ds.<attribute>}
syntax, where <attribute> is any attribute that you have selected from the datastore.

2. Click Next.

Defining issuance criteria for OAuth assertion grants
Individual attributes within policy contracts can further determine whether PingFederate approves or rejects
requests. You can define those criteria to satisfy or you can choose to skip this configuration.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,

Copyright ©2024

 | Administrator's Reference Guide | 585

choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. Within your identity provider (IdP) connection configuration, go to OAuth Assertion Grant Attribute
Mapping # OAuth Assertion Grant Attribute Mapping Configuration # Issuance Criteria.

2. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Assertion Select to evaluate attributes from the IdP connection.

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

As the HTTP Request context value is retrieved as a Java object rather
than text, attribute mapping expressions are more appropriate to evaluate
and return values.

Extended Client
Metadata

Select to evaluate OAuth client metadata.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

3. From the Attribute Name list, select the attribute to be evaluated.

Copyright ©2024

 | Administrator's Reference Guide | 586

4. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

5. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

6. In the Error Result field, enter a custom error message.

The value of this field is used by the error_description protocol field. Using an error code in the
Error Result field allows an application to process the code in a variety of ways, such as displaying an
error message or emailing an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

7. Click Add.

8. Optional: Repeat to add more criteria.

Copyright ©2024

 | Administrator's Reference Guide | 587

9. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing OAuth assertion grant attribute mapping configuration
On the Summary tab, review your OAuth assertion grant attribute mapping configuration.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Reviewing OAuth assertion grant configuration
On the Summary tab, review your OAuth assertion grant configuration.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring OpenID Connect policies
This configuration allows you to define OpenID Connect policies for client access to attributes mapped
according to OpenID specifications.

About this task

You can include a session identifier in the ID Tokens, which might be useful for the relying parties, such as
PingAccess, for client session management.

Copyright ©2024

 | Administrator's Reference Guide | 588

Steps

Go to Applications # OAuth # OpenId Connect Policy Management and perform one of the following
actions.

Action Steps

Configure a new OpenID Connect policy Click Add Policy.

Modify an existing OpenID Connect policy Select its name under Policy ID.

Review the usage of an existing OpenID
Connect policy

Click Check Usage under Action.

Remove an existing OpenID Connect policy or
to cancel the removal request

Click Delete or Undelete under Action.

Elect an existing OpenID Connect policy to be
the default OpenID Connect policy

Click Set as Default under Action.

Configuring policy and ID token settings
On the Manage Policy tab, enter the required information and configure optional settings for ID tokens
issued under this policy.

Steps

1. Go to Applications # OAuth # OpenID Connect Policy Management and click Add Policy.

2. In the Policy ID field, enter the policy identifier.

3. In the Name field, enter the policy name.

4. From the Access Token Manager list, select an access token management instance.

5. Optional: In minutes, define the expiry information for ID tokens issued based on this policy in the ID
Token Lifetime field.

The default value is 5 minutes.

6. Optional: Select the Include Session Identifier in ID Token check box to add a session identifier
(pi.sri) in the ID tokens.

7. Optional: Select the Include User Info in ID Token check box to include additional attributes in the ID
tokens.

 Tip:

OAuth clients can also obtain additional attributes from the UserInfo endpoint at /idp/
userinfo.openid. For more information, see UserInfo endpoint on page 1112.

8. Optional: Select the Include State Hash in ID Token check box to include the s_hash claim in ID
tokens.

 Note:

A state hash protects the state parameter by binding it to the ID token. For more information, see
Financial Services – Financial API - Part 2: Read and Write API Security Profile.

9. Optional: Select the Return ID Token On Refresh Grant checkbox to return an ID token for OpenID
Connect to Salesforce and Kubernetes when the OAuth access token is refreshed.

Copyright ©2024

https://openid.net/specs/openid-financial-api-part-2.html

 | Administrator's Reference Guide | 589

Configuring the policy attribute contract
In the Attribute Contract tab, you can define the list of attributes that PingFederate can return to the
OAuth clients.

About this task

Every new OpenID Connect policy contract begins with a list of standard attributes. These attributes or
claims are defined in the OpenID Connect specification. You can optionally remove standard attributes,
turn them into non-standard attributes, or add new non-standard attributes.

 Note:

In OpenID Connect, scopes affect the list of attributes that PingFederate can return to the OAuth clients.
The attributes that PingFederate returns to OAuth clients vary, depending on the scopes originally
approved by the resource owner.

By default, all attributes defined on this window are deliverable through the UserInfo endpoint. If an implicit
client makes a token request by providing id_token as the only response_type parameter value,
the client will only receive an ID token without an access token. As the client will not be able to retrieve
additional attributes from the UserInfo endpoint without a valid access token, PingFederate includes the
applicable attributes in the ID token instead.

If you have not selected the Include User Info in ID Token option in the Manage Policy tab for this
policy, you can choose how attributes are delivered to clients. Similar to the default delivery behavior,
in the scenario where an implicit client makes a token request by providing id_token as the sole
response_type parameter value, PingFederate includes the applicable attributes in the ID token
regardless of any configured overrides.

Steps

▪ To add a new attribute:

a. Enter the name of the attribute under Extend the Contract.
b. Optional: Select the Override Default Delivery check box to choose how the attribute is

delivered.

▪ Select the check box under ID Token if this attribute can be included in ID tokens.
▪ Select the check box under UserInfo if this attribute can be included in UserInfo responses.

c. Click Add.
▪ To modify an existing entry, use the Edit, Update, and Cancel buttons. Choose how the attribute is

delivered, as needed.
▪ To remove an existing entry, click Delete.

Configuring attribute scopes
With OpenID Connect, scopes affect the list of attributes that PingFederate can return to the OAuth clients.
In the Attribute Scopes tab, you can optionally add associations between scopes and attributes beyond
what is defined in the specification.

Steps

1. Go to Applications # OAuth # OpenID Connect Policy Management and select your policy, or click
Add Policy.

Copyright ©2024

 | Administrator's Reference Guide | 590

2. In the Attribute Scopes tab, add any number of scope-to-attributes associations.

a. Select a scope from the Scope list.

Common and exclusive scopes are both available.
b. Select the relevant check boxes under Attributes.

 Note:

If you have selected a standard scope, its associated standard attributes are automatically
selected and cannot be modified. You can select additional attributes to be associated with the
selected scope.

If you have selected the profile scope, any non-standard attributes that are not associated
with the profile scope become inaccessible to your OAuth clients. The administrative console
displays a warning message with a list of inaccessible attributes. Select the relevant check boxes
to make the non-standard attributes accessible, or ignore the message to leave them inaccessible
for now.

c. Click Add.
d. Optional: Repeat these steps to define additional scope-to-attributes associations.

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

3. Click Next.

Configuring policy attribute sources and user lookup
You can optionally set up datastore queries to supplement values returned from the policy attribute source.

Steps

1. Go to Applications # OAuth # OpenID Connect Policy Management and select your policy, or click
Add New Policy.

2. On the Attribute Sources & User Lookup tab, perform one of the following actions.
Choose from:

▪ To set up datastore queries, click Add Attribute Source. Complete the setup on the Attribute
Sources & User Lookup tab. For configuration steps, see Datastore query configuration on page
375.

▪ To skip this optional configuration, click Next.

Configuring ID token fulfillment
On the Contract Fulfillment tab, map attributes from the access token or other sources to fulfill the
attribute contract.

Steps

1. Go toApplications # OAuth # OpenID Connect Policy Management and select your policy, or click
Add Policy.

Copyright ©2024

 | Administrator's Reference Guide | 591

2. On the Contract Fulfillment tab, select a source from the Source list and then select or enter a value
for each attribute in the contract.

Map the subject attribute and all extended attributes from one of the following sources:

▪ Context

Values are returned from the context of the transaction at runtime.

 Note:

As the HTTP Request context value is retrieved as a Java object rather than text, OGNL
expressions are preferred to evaluate and return values.

To enter an expression, select Expression under Source, and then click Edit.

If Expression is not available, you can enable it by editing the
org.sourceid.common.ExpressionManager.xml file in the <pf_install>/
pingfederate/server/default/data/config-store directory.

▪ Extended Client Metadata

Values are returned from the client record.
▪ LDAP/JDBC/Other

Values are returned from your datastore, if used. When selected, the Value list populates with
attributes from the datastore.

▪ Expression

When enabled, this option provides more complex mapping capabilities, such as transforming
incoming values into different formats. All of the variables available for text entries are also
available for expressions.

▪ No Mapping

This option ignores the Value field.
▪ Text

The value is what you enter. This can be text only, or you can mix text with references to the
unique user ID returned from the credentials validator, using the ${attribute} syntax.

You can also enter values from your datastore, when applicable, using the ${ds.attribute}
syntax, where attribute is any of the datastore attributes you have selected.

▪ Access Token

The value is provided from the access token.
▪ Persistent Grant

Enables direct mapping from the grant to the ID Token and to user information attributes.

3. Click Next.

Defining issuance criteria for policy mapping
Individual attributes within policy contracts can further determine whether PingFederate approves or rejects
requests. You can define those criteria to satisfy or you can choose to skip this configuration.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,

Copyright ©2024

 | Administrator's Reference Guide | 592

choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Steps

1. Go to Applications # OAuth # OpenID Connect Policy Management and select your policy, or click
Add Policy.

2. On the Issuance Criteria tab, select the attribute's source from the Source list.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Access Token Select to evaluate attributes from the access token.

Context Select to evaluate properties returned from the context of the
transaction at runtime.

 Note:

The HTTP Request context value is retrieved as a Java object rather
than text. For this reason, attribute mapping expressions are more
appropriate to evaluate and return values.

Extended Client Metadata Select to evaluate OAuth client metadata.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

Persistent Grant Select to evaluate attributes from the persistent grant.

3. From the Attribute Name list, select the attribute to be evaluated.

Copyright ©2024

 | Administrator's Reference Guide | 593

4. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

5. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

6. In the Error Result field, enter a custom error message.

The value of this field is used by the error_description protocol field. Using an error code in the
Error Result field allows an application to process the code in a variety of ways, such as displaying an
error message or e-mailing an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

7. Click Add.

8. Optional: Repeat to add more criteria.

Copyright ©2024

 | Administrator's Reference Guide | 594

9. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing your OpenID Connect policy
On the Summary tab, review your OpenID Connect policy.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Result

 Note:

If this is the first policy you are creating, you must click Done and designate this policy as the default
before saving on the OpenID Connect Policy Management window. You can change the default when
you create additional policies.

Client Initiated Backchannel Authentication (CIBA)
Client Initiated Backchannel Authentication is an extension to OpenID Connect that improves the end-user
experience during authentication and authorization in a federated environment.

The CIBA extension defines a new OAuth grant type where user consent can be requested through an
out-of-band flow. CIBA improves the user experience, such as when making an online purchase from a
merchant, because it does not require a browser redirect to a financial institution to authorize the purchase.
Instead, the user can receive a push notification sent to the financial institution’s native mobile app running
on the user’s phone to complete the authorization. For more information, see openid.net/specs/openid-
client-initiated-backchannel-authentication-core-1_0.html.

 Note:

The PingOne MFA Integration Kit includes the PingOne MFA CIBA Authenticator, which works with
PingFederate's CIBA feature. For instructions on configuring the PingOne MFA CIBA Authenticator, see
Configuring a CIBA authenticator instance.

A CIBA configuration consists of two components: a CIBA authenticator and a CIBA request policy.

CIBA authenticator

Copyright ©2024

https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://docs.pingidentity.com/bundle/pingfederate-pingone-mfa-ik/page/ghe1604962007286.html

 | Administrator's Reference Guide | 595

A CIBA authenticator is responsible for authenticating users through an out-of-band method.

You can use the SDK to implement a custom solution. For more information, see the Javadoc
for the OOBAuthPlugin interface, the SampleEmailAuthPlugin.java file for a sample
implementation, and the SDK developer's guide for build and deployment information.

Once deployed, you can create one or more instance configurations of the authenticator.

For more information, see Configuring a CIBA authenticator instance on page 596.

CIBA request policy

CIBA request policies process identity hints and authenticate users to receive consent. Each
request policy is associated with an instance of a CIBA authenticator. The CIBA grant flow is
initiated by a direct request from the client and involves an out-of-band interaction with the user to
complete authentication and authorization. OAuth clients that support the CIBA grant type can be
configured to use a specific CIBA request policy or a default.

For more information, see Defining a request policy on page 597.

 Note:

Because the CIBA extension is an OAuth grant type, to enable CIBA for the client, you must select CIBA in
the Allowed Grant Types setting. Once selected, you can configure more client CIBA-related settings.

For more information, see Configuring OAuth clients on page 529.

Managing CIBA authenticators
Manage the Client Initiated Backchannel Authentication (CIBA) authenticators in PingFederate.

About this task

A CIBA authenticator is responsible for authenticating users through an out-of-band method.

You can use the SDK to implement a custom solution. For more information, see the Javadoc for the
OOBAuthPlugin interface, the SampleEmailAuthPlugin.java file for a sample implementation, and
the SDK developer's guide for build and deployment information.

 Tip:

The Javadoc for and the sample implementation are in the <pf_install>/pingfederate/sdk
directory.

Once deployed, you can create one or more instance configurations of the authenticator.

Steps

▪ Go to Authentication # OAuth # CIBA Authenticators and create or select the instance you want
to manage.

▪ To manage the CIBA authenticator, choose from the following options.

Option Description

Configure a new instance Click Create New Instance

Modify an existing instance Click the name of instance in the Instance Name
column

Copyright ©2024

 | Administrator's Reference Guide | 596

Option Description

View the usage of an existing instance Click Check Usage in the Action column on the
instance's row

Remove an existing instance Click Delete in the Action column on the
instance's row

Configuring a CIBA authenticator instance
The PingOne MFA Integration Kit includes the PingOne SDK client initiated backchannel authentication
(CIBA) Authenticator, which works with PingFederate's CIBA feature.

About this task

 Note:

For instructions on configuring the CIBA Authenticator for PingOne SDK, see Configuring a CIBA
authenticator instance.

Steps

1. Go to Authentication # OAuth # CIBA Authenticators to open the CIBA Authenticators window.

2. On the CIBA Authenticators window, click Create New Instance to start the Create CIBA
Authenticator Instance configuration workflow.

3. On the Type tab, configure the basics of this authenticator instance.

a. Enter a name and an ID in the Instance Name and Instance ID fields.
b. Select a CIBA authenticator from the Type list.

Selections vary depending on the deployed CIBA authenticators.

You can use the PingFederate SDK to implement a custom solution. For more information, see
the Javadoc for the OOBAuthPlugin interface, the SampleEmailAuthPlugin.java file for a
sample implementation and the SDK developer's guide for build and deployment information.

 Tip:

The Javadoc for and the sample implementation are in the <pf_install>/pingfederate/
sdk directory.

4. On the Instance Configuration tab, follow the on-screen instructions to configure the authenticator
instance.

Configuration requirements vary depending on the authenticator implementation.

5. On the Actions tab, follow the on-screen instructions to test the validity of the authenticator instance
configuration or to perform secondary configuration tasks.

Availability of this tab and actions vary depending on the authenticator implementation.

6. On the Extended Contracts tab, follow the on-screen instructions to define additional attributes.

The authenticator contract is the list of input parameters used to challenge the user for authentication.
Some authenticators support extending the contract for additional functionality, such as formatting the
data presented to the user during the authentication challenge.

Availability of this window and supported attribute names vary depending on the authenticator
implementation.

7. On the Summary tab, review your configuration, modify as needed, and click Done to exit the Create
CIBA Authenticator Instance workflow.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingfederate-pingone-mfa-ik/page/ghe1604962007286.html
https://docs.pingidentity.com/bundle/pingfederate-pingone-mfa-ik/page/ghe1604962007286.html

 | Administrator's Reference Guide | 597

8. On the CIBA Authenticators window, click Save to retain the configuration of the authenticator
instance.

If you want to exit without saving the configuration, click Cancel.

Managing CIBA request policies
You can configure, modify, review, remove, and elect existing client initiated backchannel authentication
(CIBA) request policies in the administrative console.

About this task

CIBA request policies process identity hints and authenticate users to receive consent. Each request
policy is associated with an instance of a CIBA authenticator. The CIBA grant flow is initiated by a direct
request from the client and involves an out-of-band interaction with the user to complete authentication
and authorization. OAuth clients that support the CIBA grant type can be configured to use a specific CIBA
request policy or a default.

Steps

1. Go to Applications # OAuth # CIBA Request Policies. To configure a new CIBA request policy,
click Add Policy.

2. Select an action from the following options:
Choose from:

▪ To modify an existing CIBA request policy, select it by its name under Policy ID.
▪ To review the usage of an existing CIBA request policy, click Check Usage under Action.
▪ To remove an existing CIBA request policy or to cancel the removal request, click Delete or

Undelete under Action.
▪ To elect an existing CIBA request policy to be the default CIBA request policy, click Set as

Default under Action.

Defining a request policy
You can define the basics of your client-initiated backchannel authentication (CIBA) request policy in the
PingFederate administrative console.

Steps

1. Go to Applications # OAuth # CIBA Request Policies.

2. On the Manage Policy tab, define the basics of your CIBA request policy.

For more information about each field, refer to the following table.

Field Description

Policy ID

(Required)

The unique identifier of this request policy.

Name

(Required)

The name of this request policy.

Authenticator

(Required)

The CIBA authenticator instance associated with this request policy.

Copyright ©2024

 | Administrator's Reference Guide | 598

Field Description

User Code PCV The Password Credential Validator (PCV) instance that PingFederate
uses to validate the user_code parameter values it receives from clients
associated with this request policy.

 Important:

If a client is associated with a request policy that has been configured with
a PCV instance, it can support user code in its configuration.

A client supporting user code must not be associated with a request policy
that is not configured with a PCV instance. For more information on CIBA
client configuration, see Configuring OAuth clients on page 529.

Transaction Lifetime
(Seconds)

The validity, in seconds, of authentication requests PingFederate receives
from clients associated with this request policy since the generation of their
authentication request acknowledgments.

The default value is 120.

Clients can request a shorter lifetime by including the requested_expiry
request parameter in their authentication requests.

Allow Unsigned Login
Hint Token

Controls whether clients associated with this request policy can use
unsigned JSON web tokens (JWT) as values of the login_hint_token
request parameter in their authentication requests.

This check box is not selected by default.

Require Token for
Identity Hint

Controls whether clients associated with this request policy must use either
the id_token_hint or login_hint_token as the identity hint in their
authentication requests.

This check box is not selected by default.

When selected, clients associated with this request policy cannot use
login_hint as the identity hint in their authentication requests.

Alternative Login Hint
Token Issuers

Alternative issuers that clients associated with this request policy can
use in their signed login hint tokens. Furthermore, each additional issuer
requires either the JWKS url or the actual JWKS so that PingFederate can
verify the authenticity of the signed login hint tokens.

3. Click Next.

Configuring identity hint contract
You can configure the identity hint contract, which contains the set of attributes received in the client
initiated backchannel authentication (CIBA) request that identifies the user.

About this task

IDENTITY_HINT_SUBJECT is a core attribute and is automatically populated by the sub attribute of an
identity hint token, if found, or the attribute value of the login_hint request attribute.

A client can send an ID token, id_token_hint, or a login hint token, login_hint_token, as the
identity hint token. If you extend the identity hint contract with attribute names from the identity token,
PingFederate fulfills them with values found in the identity token.

 Tip:

Copyright ©2024

 | Administrator's Reference Guide | 599

As needed, all attributes can optionally be fulfilled differently on the Identity Hint Contract Fulfillment tab.

Steps

1. Optional: Go to Applications # OAuth # CIBA Request Policies. On the Identity Hint Contract
Fulfillment tab, enter an attribute name under Extend the Contract, and then click Add.

2. Repeat the previous step to define additional attributes. Click Next.

Use the Edit, Update, and Cancel workflow to make or undo a change to an existing entry. Click
Delete to remove an entry.

Example

Example

Suppose the following JSON web token (JWT) matches the expected structure of the login hint tokens.

{
 "sub": "asmith",
 "attrs": {
 "mail": "asmith@example.com",
 "phone": "555-555-5555"
 }
}

To add both the mail and phone attributes, extend the contract with login_hint_token.attrs.mail
and login_hint_token.attrs.phone, respectively.

Configuring identity hint contract fulfillment
You can process the identity hint to further augment the identity data prior to contract fulfillment in the
PingFederate administrative console.

Steps

1. Go to Applications # OAuth # CIBA Request Policies # Identity Hint Contract Fulfillment.

2. Click Manage Fulfillment to begin the mapping configuration.

3. When the administrative console returns you to the Identity Hint Contract Fulfillment tab, click Next.

Configuring attribute sources and user lookup
You can configure the attribute sources and user lookup values in the PingFederate administrative
console.

About this task

You can set up datastore queries to supplement values returned from the source. This configuration to
fulfill the identity hint's attribute contract is optional.

Steps

1. Go to Applications # OAuth # CIBA Request Policies.

Copyright ©2024

 | Administrator's Reference Guide | 600

2. Choose one of the following actions:
Choose from:

▪ On the Attribute Sources & User Lookup tab, to set up datastore queries, click Add Attribute
Source.

▪ To skip this optional configuration, click Next.

Follow the configuration workflow to complete the setup. For configuration steps, see Datastore query
configuration on page 375.

When the administrative console returns you to the Attribute Sources & User Lookup tab, click
Next.

Fulfilling identity hint contract
You can fulfill identity hint contracts in PingFederate.

About this task

On the Identity Hint Contract Fulfillment tab, fulfill the identity hint contract with values from the original
identity hint, datastores, dynamic text values, or attribute mapping expressions, if enabled.

Steps

1. From the Source list, select a source.

For more information about the Source list, see the following table.

Source Description

Context Select Context to return specific information from the request.

JDBC, LDAP, or other
types of datastore (if
configured)

Select an attribute source when PingFederate should retrieve attribute
value from a datastore.

When you make this selection, the list under Value populates with
attributes from your database, directory, or other datastore.

Applicable only if you have added at least one attribute source on the
Attribute Sources & User Lookup tab. For more information, see
Configuring attribute sources and user lookup on page 599.

Request Select Request to use the attribute value PingFederate found in the CIBA
request without customization.

Expression (if enabled) Select Expression to support complex mapping requirements, such as
transforming incoming values into different formats. Additionally, HTTP
request is retrieved as a Java object rather than text. For this reason, select
Expression as the source and use OGNL expressions to evaluate and
return specific information from the HTTP request.

Applicable only if you have enabled the use of expressions in
PingFederate. For more information, see Attribute mapping expressions on
page 213.

No Mapping Select No Mapping to ignore the Value field, making value selection
unnecessary.

Copyright ©2024

 | Administrator's Reference Guide | 601

Source Description

Text Select Text to return the value you enter under Value.

You might use a static text value if the target web application provides a
service based on the name of your organization.

You can mix text with references to attributes from the identity provider
(IdP) adapter contract by using the ${<attribute>} syntax.

${ds.<attr-source-id>.<attribute>}You can also enter
references to syntax, where <attr-source-id> is the Attribute
Source ID value you entered on the Data Store tab and <attribute> is
an attribute from the datastore.

2. Specify a value associated with the selected source.

Not applicable if you selected Request. You can also enter references to attributes from configured
attribute sources by using the Source list.

3. Repeat these steps until all attributes are configured.

4. Click Next.

Defining issuance criteria for identity hint contract
You must define issuance criteria for an identity hint contract to further process a request in PingFederate.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Copyright ©2024

 | Administrator's Reference Guide | 602

Steps

1. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

As the HTTP Request context value is retrieved as a Java object rather
than text, attribute mapping expressions are more appropriate to evaluate
and return values.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

Request Select to evaluate attributes from the CIBA request.

2. From the Attribute Name list, select the attribute to be evaluated.

3. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

4. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

Copyright ©2024

 | Administrator's Reference Guide | 603

5. In the Error Result field, enter a custom error message.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

6. Click Add.

7. Optional: Repeat to add more criteria.

8. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

9. Click Next.

Reviewing identity hint contract fulfillment
You can review, modify, or discard identity hint contract fulfillment configurations in PingFederate.

About this task

On the Summary tab, review your configuration.

Steps

Perform the following actions as needed.

Action How to accomplish it

Amend your configuration Click the corresponding tab and follow the
configuration workflow

Keep your changes Click Done and continue with the configuration

Discard your changes Click Cancel

Configuring attribute sources and user lookup for request policy contract
You can configure the attribute sources and user lookup for Client-Initiated Backchannel Authentication
(CIBA) request policy contracts in the PingFederate administrative console.

About this task

You can optionally set up datastore queries to supplement values returned from the source. This
configuration to fulfill the request policy's attribute contract is optional.

Steps

1. Go to Applications # OAuth # CIBA Request Policies.

Copyright ©2024

 | Administrator's Reference Guide | 604

2. Choose one of the following actions:
Choose from:

▪ On the Attribute Sources & User Lookup tab, to set up datastore queries, click Add Attribute
Source.

▪ To skip this optional configuration, click Next.

Follow the configuration workflow to complete the setup. For configuration steps, see Datastore query
configuration on page 375.

When the administrative console returns you to the Attribute Sources & User Lookup tab, click
Next.

Configuring request policy contract fulfillment
You can fulfill the request policy contract in PingFederate.

About this task

On the Contract Fulfillment tab, fulfill the request policy contract with values from the original identity hint,
datastores, dynamic text values, or attribute mapping expressions (if enabled).

This contract is used to map into the OAuth grant (the USER_KEY attribute), the Client Initiated Back
channel Authentication (CIBA) authenticator (attributes vary depending on the authenticator), and
the user code Password Credential Validator (PCV) (the USER_CODE_USER_NAME attribute). The
USER_CODE_USER_NAME attribute is shown only if a PCV instance is selected on the Manage Policy
window.

Steps

1. Select a source from the Source list.

For more information about the Source list, see the following table.

Source Description

Context Select Context to return specific information from the request.

JDBC, LDAP, or other
types of datastores (if
configured)

Select an attribute source when PingFederate should retrieve attribute
value from a datastore.

When you make this selection, the list under Value is populated with
attributes from your database, directory, or other datastore.

Applicable only if you have added at least one attribute source on the
Attribute Sources & User Lookup window. For more information, see
Configuring attribute sources and user lookup for request policy contract on
page 603.

Request Select Request to use the attribute value PingFederate found in the CIBA
request without customization.

Expression (if enabled) Supports complex mapping requirements, such as transforming incoming
values into different formats. Additionally, the HTTP request is retrieved as
a Java object rather than text. Therefore, select Expression as the source
and use OGNL expressions to evaluate and return specific information from
the HTTP request.

Applicable only if you have enabled the use of expressions in
PingFederate. For more information, see Attribute mapping expressions on
page 213.

No Mapping Select No Mapping to ignore the Value field, making value selection
unnecessary.

Copyright ©2024

 | Administrator's Reference Guide | 605

Source Description

Text Select Text to return the value you entered under Value.

You might use a static text value if the target web application provides
a service based on the name of your organization. You can provide the
attribute value as a constant.

You can mix text with references to attributes from the identity provider
(IdP) adapter contract by using the ${<attribute>} syntax.

You can also enter references to attributes from configured attribute
sources by using the ${ds.<attr-source-id>.<attribute>}
syntax, where <attr-source-id> is the Attribute Source ID value you
entered on the Attribute Sources & User Lookup # Data Store tab and
<attribute> is an attribute from datastore.

2. Specify a value associated with the selected source.

3. Repeat these steps until all attributes are configured.

4. Click Next.

Defining issuance criteria for CIBA request policy
You must define the issuance criteria for PingFederate to further process a client-initiated backchannel
authentication (CIBA) request policy.

About this task

On the Issuance Criteria tab, define the criteria to satisfy in order for to further process a request. Use
this token authorization feature to conditionally approve or reject requests based on individual attributes.

Begin this optional configuration by choosing the source that contains the attribute to verify. Some sources
are common to almost all use cases, such as Mapped Attributes. Other sources depend on the type
of configuration, such as JDBC. Irrelevant sources are automatically hidden. After you select a source,
choose the attribute to verify. Depending on the selected source, the available attributes or properties vary.
Specify the comparison condition and the desired value to compare to.

You can define multiple criteria, which must all be satisfied in order for to move a request to the next
phase. A criterion is satisfied when the runtime value of the selected attribute matches or does not match
the specified value, depending on the chosen comparison method. The multi-value contains ... or multi-
value does not contain ... comparison methods are intended for attributes that can contain multiple
values. Such a criterion is considered satisfied if one of the multiple values match or does not match the
specified value. Values are compared verbatim. If you require complex evaluations, including conditional
criteria or partial matching, define them using attribute mapping expressions.

 Note:

All criteria defined must be satisfied, or evaluated as true, for a request to move forward, regardless of how
the criteria were defined. As soon as one criterion fails, rejects the request and returns an error message.

Copyright ©2024

 | Administrator's Reference Guide | 606

Steps

1. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

The HTTP Request context value is retrieved as a Java object rather than
text. For this reason, attribute mapping expressions are more appropriate
to evaluate and return values.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

Request Select to evaluate attributes from the CIBA request.

2. From the Attribute Name list, select the attribute to be evaluated.

3. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

4. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

Copyright ©2024

 | Administrator's Reference Guide | 607

5. In the Error Result field, enter a custom error message.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

6. Click Add.

7. Optional: Repeat to add more criteria.

8. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

9. Click Next.

Reviewing your CIBA request policy
Client Initiated Backchannel Authentication (CIBA) is an extension to OpenID Connect that can improve the
end-user experience during authentication and authorization in a federated environment. You can review
the request policy in PingFederate.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Result

 Note:

If this is the first policy you are creating, you must click Done and designate the first policy as the default
before saving on the CIBA Request Policies window. You can change the default as needed when you
create additional policies.

OAuth attribute mapping using a datastore
Although an optional configuration, you can map OAuth attributes using a datastore in the PingFederate
administrative console.

About this task

This optional configuration is the same for all OAuth grant mapping and token mapping configurations.

Copyright ©2024

 | Administrator's Reference Guide | 608

Steps

1. For grant mapping, go to Authentication # OAuth # IdP Adapter Grant Mapping. For more
information, seeGrant contract mapping on page 543.

2. For token mapping, go to Applications # OAuth # Access Token Mapping. For more information,
see Token mapping on page 564.

OAuth client session management
When an organization opens web-based protected resources to their remote employees, business
partners, and customers, it has limited control over the end-user devices. To minimize security risk, both
the IT administrators and end users desire session management with tight controls.

PingFederate provides an Asynchronous Front-Channel Logout endpoint and a Back-Channel Session
Revocation Web Service to help OAuth clients, such as PingAccess, to terminate sessions when end users
log out and to prevent unauthorized access until the end users log in again.

PingAccess works out-of-the-box with PingFederate, taking full advantages of these two features.

Asynchronous Front-Channel Logout
Asynchronous Front-Channel Logout provides OAuth clients the capability to initiate single logout (SLO)
requests to sign off associated SLO-enabled SAML 2.0 or WS-Federation sessions.

The Asynchronous Front-Channel Logout endpoint is /idp/startSLO.ping. Optionally, clients can add
end-user sessions to a revocation list on logout and query the revocation list through the Back-Channel
Session Revocation endpoint.

 Tip:

The Asynchronous Front-Channel Logout endpoint is also published in the OpenID Connect metadata at
the /.well-known/openid-configuration endpoint. Look for ping_end_session_endpoint in
the metadata.

On a per-client basis, you can configure PingFederate to send logout requests, using the browser, to
PingAccess and additional requests to other relying parties.

When you select the PingAccess option, PingFederate sends logout requests, using the browser, to the
OpenID Connect logout endpoint on PingAccess (/pa/oidc/logout.png) to sign off other domains
previously called by the session. For more information, see OpenID Connect endpoints in the PingAccess
documentation.

In addition, when signing off an SLO-enabled SAML 2.0 or WS-Federation session, as the service provider
(SP)-initiated logout request reaches the PingFederate identity provider (IdP) server, the same logout
process applies as well. Depending on the enterprise architecture, this could further improve single sign-on
(SSO) and logout use cases.

Back-Channel Session Revocation
Back-Channel Session Revocation allows OAuth clients, such as PingAccess, to query the revocation
status of their sessions by sending HTTP GET requests to the session revocation endpoint on
PingFederate at /pf-ws/rest/sessionMgmt/revokedSris.

To access the session revocation endpoint, a client must be granted access to the Session Revocation
API. It must also authenticate with its client secret or client certificate and include in the request the session
identifier, which can be obtained from the access token or the ID token.

Back-Channel Session Revocation also allows the clients to revoke sessions by sending HTTP POST
requests to the same session revocation endpoint. This gives application developers the flexibility to
revoke sessions based on the logic of their applications.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingaccess-60/page/whl1564006726549.html

 | Administrator's Reference Guide | 609

For each session added to the revocation list, PingFederate retains its revocation status for a configurable
lifetime. Access control and authentication requirements to revoke sessions are identical to those to query
for the revocation status.

OAuth token exchange
By configuring the OAuth authorization server to support OAuth token exchange, the authorization server
can exchange a client's security token for another type of token.

The OAuth token exchange allows resource servers to exchange access tokens for other security
tokens that are required to call additional APIs, much like what the microservices architecture requires.
PingFederate’s native support of subject tokens and actor tokens opens new use cases around delegation
and impersonation that enrich the end-user experience as resources flow through seamlessly among the
back-end services used by the user-facing applications.

An OAuth token exchange transaction begins when an OAuth client sends the authorization server a
request with the token exchange grant type. Then the authorization server gets the token exchange
processor policy specified in the client's configuration.

The token exchange processor policy specifies which parameters from the token exchange request, and
optionally which attributes from other sources, will be used. The policy always uses the subject token,
but it can use an actor token too. The policy also specifies which token processor instance to use based
on the request's subject token type and actor token type when present. During the transaction, the token
processor instance transforms the subject token and optionally the actor token, parameters, and attributes
into a token exchange processor policy attribute contract.

Depending on the type of token requested and what will consume it, the authorization server sends
the attribute contract to a token generator instance or access token manager instance to generate the
requested token.

This feature uses the protocol defined in the specification for OAuth 2.0 Token Exchange.

Copyright ©2024

https://tools.ietf.org/html/rfc8693

 | Administrator's Reference Guide | 610

Configuring OAuth token exchange
Configuring the OAuth authorization server to support OAuth token exchange involves configuring token
exchange processor policies, token generator instances and token exchange generator groups, access
token manager instances, and OAuth clients.

About this task

To configure OAuth token exchange, see the included topic links to perform the necessary steps.

Steps

1. Define token exchange processor policies to handle incoming token exchange requests. See Defining
token exchange processor policies on page 611.

Copyright ©2024

 | Administrator's Reference Guide | 611

2. If you need token generator instances to generate the requested tokens, complete the following tasks.

a. Configure the token generator instances. See Managing token generators on page 1001.
b. Create token exchange generator groups. See Creating token exchange generator groups on

page 612.
c. Map the attributes from the token exchange processor policies to the attributes from the token

generator instances. See Mapping token exchange attributes to token generator attributes on
page 613.

3. Access token managers to generate the requested tokens.

a. Configure the access token manager instances. See Managing access token management
instances on page 565.

b. Map the attributes from the token exchange processor policies to the attributes from the access
token manager instances. See Mapping token exchange attributes to access token manager
attributes on page 613.

4. Enable token exchange in the OAuth clients that will send the token exchange requests to the
authorization server. See Enabling token exchange in OAuth clients on page 614.

Defining token exchange processor policies
To exchange security tokens, the OAuth authorization server needs at least one token exchange processor
policy.

Before you begin
Before you define a token exchange processor policy, create the necessary token processor instances.
See Managing token processors on page 978.

About this task
In the Token Exchange Processor Policy Management window, configure and define a token exchange
processor policy.

Steps

1. Go to Applications # Token Exchange # Processor Polices to open theToken Exchange
Processor Policy Management window.

2. Click Add Processor Policy.

Result: The Token Exchange Processor Policy window opens.

3. On the Manage Processor Policy tab, enter the policy ID and Name. Click Next.

Select the Actor Token Required check box if you want to specify whether the policy requires an
actor token as well as a subject token in the token exchange requests from the clients.

4. On the Attribute Contract tab, add attributes to the attribute contract as needed. Click Next.

Copyright ©2024

 | Administrator's Reference Guide | 612

5. On the Token Processor Mapping tab, map a token processor to each subject token type or each
combination of subject token type and actor token type:

a. Click the Map New Token Processor button.

Result: The Token Processor Mapping window opens.
b. On the Token Types tab, from the Subject Token Processor list, select the instance.
c. In the Subject Token Type field, enter the identifier.
d. If an actor token processor is required, from the Actor Token Processorlist, select the instance.
e. In the Actor Token Type field, enter the identifier. Click Next.
f. On the Attribute Sources & User Lookup tab, add additional attribute sources for contract

fulfillment as needed. Click Next.
g. On the Contract Fulfillment tab, select the Source and Value for each attribute. Click Next.
h. On the Issuance Criteria tab, specify conditions that attributes must satisfy for PingFederate to

exchange the token. Click Next.
i. On the Summary tab, review the token processor mapping. Click Done.

Result: PingFederate returns you to the Token Exchange Processor Policy window.

6. On Summary tab, review the policy. Click Done.

Result: The Token Exchange Processor Policy Management window opens.

7. If you want to make the new token exchange processor policy the default policy, click Set as Default
on the corresponding row in the table.

8. Click Save.

Creating token exchange generator groups
A token exchange generator group maps requested token types to your token generator instances. You
can create multiple token exchange generator groups. If you assign resource URIs to the groups, clients
can use the URI in the resource parameter of its requests to specify a group.

Before you begin
Before you create a token exchange generator group, configure the token generator instances. See
Managing token generators on page 1001.

About this task
In the Generator Groups window, create a generator group for a token exchange instance.

Steps

1. Go to the Applications # Token Exchange # Generator Groups window.

2. Click the Add Generator Group button.

The Token Exchange Generator Group window opens.

3. On the Manage Generator Group tab, enter the group ID, Name, and enter absolute Resource URIs.

4. On the Requested Token Type Mapping tab, from the Token Generator list, select an instance and
enter the Token Type. Click Add.

5. Repeat step 4 for each type of token that you want the token exchange generator group to handle.

 Important:

If this is the default token exchange generator group and clients will use the
requested_token_type parameter to request specific types of tokens, then map all token types
that clients can request.

6. On the Summary tab, review the token exchange generator group. Click Done.

The Generator Groups window opens.

Copyright ©2024

 | Administrator's Reference Guide | 613

7. If you want to make the new token exchange generator group the default group, click Set as Default in
the Action column.

8. Click Save.

Mapping token exchange attributes to token generator attributes
When configuring the OAuth authorization server to exchange security tokens, if it uses token generator
instances to create the requested tokens, then map the attributes in the attribute contract produced by the
token exchange processor policy to the attributes created by the token generator instances.

Before you begin
Before you perform the following procedure:

▪ Define the token exchange processor policies. See Defining token exchange processor policies on
page 611.

▪ Configure the token generator instances. See Managing token generators on page 1001.

About this task
In the Token Generator Mappings window, map the attributes from a token exchange processor policy to
the attributes from a token generator instance.

Steps

1. Go to Applications # Token Exchange # Token Generator Mappings to open the Token Generator
Mappings window.

2. From the Source Instance list, select a token exchange processor policy.

3. From the Target Instance list, select a token generator from a token exchange generator group. Click
Add Mapping button.

Result: The Mapping Configuration window opens.

4. On the Attribute Sources & User Lookup tab, add token generators additional attribute sources for
contract fulfillment as needed. Click Next.

5. On the Token Contract Fulfillment tab, select a Source and Value for each attribute. Click Next.

6. On the Issuance Criteria tab, add and specify conditions that attributes must satisfy for PingFederate
to exchange the token as needed. Click Next.

7. On the Summary tab, review the mapping configuration. Click Done.

Result: The Token Generator Mappings window opens.

8. Click Save.

Mapping token exchange attributes to access token manager attributes
When configuring the OAuth authorization server to exchange security tokens, if it uses an access
token manager instances to generate requested tokens, then map the attributes in the attribute contract
produced by the token exchange processor policy to the attributes in the tokens created by the access
token manager instances.

Before you begin
Before you perform the following procedure:

▪ Define the token exchange processor policies. See Defining token exchange processor policies on
page 611.

▪ Configure the access token managers instances. See Managing access token management instances
on page 565.

About this task

In the Access Token Mapping window, map the attributes from a token exchange processor policy to the
attributes from an access token manager instance.

Copyright ©2024

 | Administrator's Reference Guide | 614

Steps

1. Go to Applications # OAuth # Access Token Mapping.

2. In the Context section, from the Context list, select a token exchange processor policy.

3. From the Access Token Manager list, select an access token manager. Click Add Mapping.

Result: The Access Token Mapping configuration window wizard opens.

4. On the Attribute Sources & User Lookuptab, add access token manager attribute sources for
contract fulfillment as needed. Click Next.

5. On the Contract Fulfillment tab, select a Source and Value for each attribute. Click Next.

6. On the Issuance Criteria tab, add and specify conditions that attributes must satisfy for PingFederate
to exchange the token as needed. Click Next.

7. On the Summary tab, review the access token mapping. Click Done.

Result: The Access Token Mapping window opens.

8. Click Save.

Enabling token exchange in OAuth clients
After configuring the OAuth authorization server to exchange tokens, enable token exchange on each
OAuth client that will send the authorization server token exchange requests.

Before you begin
Before you perform the following procedure, define the token exchange processor policy that the OAuth
server uses when it receives a token exchange request from the client. See Defining token exchange
processor policies on page 611.

About this task
In the Client window, enable OAuth token exchange in an OAuth client.

Steps

1. Go to Applications # OAuth # Clients to open the Clients window. Click the link of the client in the
Client ID column.

Result: The Client window opens.

2. In the Allowed Grant Types section, select the Token Exchange check box.

3. In the Token Exchange section, from the Processor Policy list, select the token exchange processor
policy.

4. Click Save.

Result: This will take you back to the Clients window.

5. Click Save.

Security management
The Security menu provides access to security and infrastructure-related settings. Depending on the setup
of PingFederate, menu items vary.

Security management consists of the following sections:

▪ Certificate and key management on page 615
▪ System integration on page 648
▪ Account lockout protection on page 654
▪ Password spraying prevention on page 655
▪ Implementing a MasterKeyEncryptor using AWS KMS on page 656

Copyright ©2024

 | Administrator's Reference Guide | 615

Certificate and key management
The PingFederate administrative console provides a suite of configuration wizards for administrators to
manage keys and certificates.

Tasks include:

▪ Managing trusted certificate authorities (CAs)
▪ Managing server certificates for the administrative port and runtime ports
▪ Managing client certificates for mutual TLS authentication
▪ Managing signing and decryption keys and certificates
▪ Managing OAuth and OpenID Connect keys
▪ Managing certificates from partners
▪ Configuring certificate revocation settings
▪ Managing partner metadata URLs
▪ Rotating system keys

 Note:

For certificates that you own, you have two export options: certificate only or certificate and private key.

▪ Certificate only - PingFederate exports in PEM format with the file extension .pem.
▪ Certificate and private key - PingFederate exports in PEM or PKCS12 format with the file extension
.pem or .p12 respectively.

 Note:

If you are running in BCFIPS mode, you can only export in PEM format.

For features that use a certificate that you own, you can either create a new certificate or import an existing
PEM or PKCS12 certificate file.

 Note:

If you are running in BCFIPS mode, you can only import a certificate in PEM format.

For partner certificates, you can only export the certificate. PingFederate exports the partner certificate in
PEM format. You can also import a partner certificate in PEM format.

You can configure to use a hardware security module (HSM) for cryptographic material storage and
operations. When configured, private keys and their corresponding certificate are stored on the HSM.
Related signing and decryption operations are processed there for enhanced security.

 Note:

Management of keys and certificates is restricted to administrative users with the Crypto Admin
administrative role (see Administrative accounts on page 864).

See subsequent topics for configuration steps.

Manage trusted certificate authorities
On the Trusted CAs window, you can import, export, review, and remove certificate authorities (CAs).

You can import your federation partner's CA certificate or self-signed certificates into PingFederate's global
trust list on Security # Certificate & Key Management # Trusted CAs. If the CA is not one of the major
authorities, you might also need to import the certificate from the CA that signed the partner certificate.

Copyright ©2024

 | Administrator's Reference Guide | 616

 Note:

If a required CA certificate is already available from the Java runtime, you do not need to import the same
certificate into the PingFederate store.

Importing trusted certificate authorities
Import your federation partner's certificate authority (CA) certificate or self-signed certificates into
PingFederate's global trust list.

Steps

1. On the Trusted CAs window, click Import.

2. On the Import Certificate window, choose the applicable certificate file.

 Note:
If PingFederate is integrated with a hardware security module (HSM) from Thales in hybrid mode,
select the storage facility of the certificate from the Cryptographic Provider list.

▪ Select HSM to store the certificate in the HSM.
▪ Select Local Trust Store to store the certificate in the local trust store managed by PingFederate.

3. On the Summary window, review your configuration, amend as needed, and click Save.

Exporting trusted certificate authorities
Export your federation partner's certificate authority (CA) certificate or self-signed certificates as desired.

Steps

1. On the Trusted CAs window, select Action # Export for the certificate.

2. On the Export Certificate window, click Next.

3. On the Export & Summary window, click Export to save the certificate file and then click Done.

Reviewing trusted certificate authorities
Review certificates to ensure you've selected the correct ones.

Steps

1. On the Trusted CAs window, select the certificate by its serial number.

2. Review the selected certificate in the pop-up window.

3. When finished, close the pop-up window.

Removing trusted certificate authorities
Remove certificates from the Trusted CAs window when necessary.

Steps

1. On the Trusted CAs window, select Action # Delete for the certificate.

 Note:
To cancel the removal request, select Action # Undelete for the certificate.

2. Click Save to confirm your action.

Copyright ©2024

 | Administrator's Reference Guide | 617

Manage SSL server certificates
On the Security # Certificate & Key Management # SSL Server Certificates window, you can establish
and maintain the certificates presented for access to the PingFederate administrative console (or the
administrative API) and for incoming HTTPS connections at runtime.

The first system-generated certificate is the default certificate for both the administrative console and
the runtime server. As multiple certificates are created, you can activate or deactivate them for the
administrative console, the runtime server, or both. Additionally, you can select any of them as the new
default certificate for the administrative console, the runtime server, or both at a later time.

When creating a certificate, you can add additional domain names through the use of the Subject
Alternative Names field. Furthermore, if a user agent includes the host name that it intends to reach as
part of the TLS handshake, PingFederate selects the applicable certificate based on the provided Server
Name Indication (SNI) information. The selection looks at the common name and subject alternative
names of each activated certificate. If PingFederate finds no match, it serves the default certificate. If
PingFederate finds multiple matches, it serves the certificate with the better match.

 Note:

If PingFederate finds multiple certificates of the same matching quality, it returns one of them in the TLS
handshake. This response should not impact the user agent because either the common name or one of
the subject alternative names matches the host name of the request. If PingFederate should always serve
a particular certificate for any given host name, ensure that the common name and any configured subject
alternative names do not overlap among multiple certificates.

SSL Server Certificates configuration

Certificate Common name Subject alternative names Activation status

#1 www.example.com (None) Administrative console and
runtime server

#2 www.example.org *.example.org and
test.example.local

Administrative console and
runtime server

#3 www.example.info *.example.info and
*.example.com

Administrative console and
runtime server

#4 admin.example.local (None) Administrative console
(Default) and runtime server

#5 runtime.example.local (None) Administrative console and
runtime server (Default)

Runtime behavior

Request type Host name from SNI Certificate served

Administrative or
runtime

www.example.com The host name from the SNI is an exact match to the
common name of certificate #1 and a partial match to the
second subject alternative name (*.example.org) of
certificate #3.

An exact match is a better match, so PingFederate
serves certificate #1.

Copyright ©2024

 | Administrator's Reference Guide | 618

Request type Host name from SNI Certificate served

Administrative or
runtime

www.example.org The host name from the SNI is an exact match to the
common name of certificate #2.

PingFederate serves certificate #2.

Administrative or
runtime

sso.example.org The host name from the SNI is a partial match to the first
subject alternative name (*.example.org) of certificate
#2. There is no other exact or partial match.

PingFederate serves certificate #2.

Administrative or
runtime

sso.example.info The host name from the SNI is a partial match to the
first subject alternative name (*.example.info) of
certificate #3. There is no other exact or partial match.

PingFederate serves certificate #3.

Administrative or
runtime

sso.example.com The host name from the SNI is a partial match to the
second subject alternative names (*.example.com) of
certificate #3. There is no other exact or partial match.

PingFederate serves certificate #3.

Administrative www.example.local The host name from the SNI does not match any
configured certificate.

PingFederate serves certificate #4, the default certificate
for the administrative console.

Runtime localhost The host name from the SNI does not match any
configured certificate.

PingFederate serves certificate #5, the default certificate
for the runtime server.

Creating a new certificate
On the SSL Server Certificates window, you can generate customized certificates.

Steps

1. On the SSL Server Certificates window, click Create new.

2. On the Create Certificate window, enter the required information.

For information about each field, refer to the following table.

Field Description

Common Name The common name (CN) identifying the certificate.

Subject Alternative
Names

The additional DNS names or IP addresses that can be associated with
the certificate.

Organization The organization (O) or company name creating the certificate.

Organizational Unit The specific unit within the organization (OU).

City The city or other primary location (L) where the company operates.

State The state (ST) or other political unit encompassing the location.

Country The country (C) where the company is based.

Copyright ©2024

 | Administrator's Reference Guide | 619

Field Description

Validity (days) The time during which the certificate is valid.

Cryptographic Provider The storage facility of the certificate.

Applicable and visible only when PingFederate is integrated with an HSM
in hybrid mode.

▪ Select HSM to store the certificate in the HSM.
▪ Select Local Trust Store to store the certificate in the local trust

store managed by PingFederate.

Key Algorithm A cryptographic formula used to generate a key. PingFederate uses
either of two algorithms, RSA or EC.

Key Size (bits) The number of bits used in the key. (RSA-1024, 2048 and 4096; and
EC-256, 384 and 521.)

Signature Algorithm The signing algorithm of the certificate. (RSA-SHA256, SHA384, and
SHA512; and ECDSA-SHA256, SHA384, and SHA512.)

3. When finished, click Next.

4. On the Summary window, review your configuration, amend as needed, and click Save.

Importing a certificate and its private key
You can import certificates and their private keys in the SSL Server Certificates window.

About this task
This task describes how to import certificates and their private keys. Supported certificate and private key
formats differ depending on whether you are running with BCFIPS enabled or disabled.

▪ Certificate and private key format:

▪ In non-BCFIPS mode, we support PKCS12 and PEM formatted certificates and private keys, and
automatically detect the format between PKCS12 and PEM.

▪ In BCFIPS mode, we only support PEM formatted certificate and private keys. Only PBES2 and
AES or Triple DES encryption is accepted and 128-bit salt is required. In practice, this may mean
that only PEM files generated by can be imported.

▪ For PEM, the private key must precede the certificates.
▪ Password requirement:

▪ In BCFIPS mode, the password must contain at least 14 characters.

Steps

1. On the SSL Server Certificates window, click Import.

2. On the Import Certificate window, choose the applicable certificate file and enter its password.

 Note:

If PingFederate is integrated with a hardware security module (HSM) from Thales, you cannot use an
elliptic curve (EC) certificate as an SSL server certificate. You must select a certificate that uses the
RSA key algorithm.

3. If PingFederate is integrated with an HSM in hybrid mode, select the storage facility of the certificate
from the Cryptographic Provider list.

a. Select HSM to store the certificate in the HSM.
b. Select Local Trust Store to store the certificate in the local trust store managed by PingFederate.

Copyright ©2024

 | Administrator's Reference Guide | 620

4. On the Summary window, review your configuration, amend as needed, and click Save.

Creating a certificate-authority signing request (CSR)
On the SSL Server Certificates window, you can generate a CSR file for a certificate.

Steps

1. On the SSL Server Certificates window, select Action # Certificate Signing for the certificate.

 Note:

This selection is inactive if you have not yet saved a newly created or imported certificate. Click Save
and then return to this window to initiate the process.

The selection is also inactive if a previously signed certificate has been revoked. Because the
revocation may indicate that the private key has been compromised, the best practice is to import or
create a replacement certificate for certificate signing.

2. On the Certificate Signing window, select the Generate CSR option.

3. On the Generate CSR window, click Export to save the CSR file, and then click Done.

 Note:

Once saved, you can submit this CSR file to a certificate authority (CA) for a CA-signed certificate.

Importing a certificate-authority response (CSR response)
On the SSL Server Certificates window, you can import CSR response files for certificates.

Steps

1. On the SSL Server Certificates window, select Action # Certificate Signing for the certificate.

2. On the Certificate Signing tab, select the Import CSR Response option. Click Next.

3. On the Import CSR Response tab, click Choose File, and select the applicable CSR response file.
Click Next.

4. On the Summary tab, review your configuration, and click Save.

Exporting a certificate
On the SSL Server Certificates window, you can export a certificate with or without its private key.

About this task
This task describes how to export certificates and their private keys. Supported certificate and private key
formats differ depending on whether you are running with BCFIPS enabled or disabled.

▪ Certificate and private key format:

▪ In non-BCFIPS mode, when the Certificate and Private Key option is selected, a Format field
displays allowing you to choose between exporting a PKCS12 or a PEM formatted certificate and
private key.

▪ In BCFIPS mode, you can only export PEM-formatted certificates and private keys.

If you need to convert from PEM to PKCS12 format, use the following command:

openssl pkcs12 -export -inkey keypair.pem -in keypair.pem -out
keypair.p12

▪ Password requirement:

▪ In BCFIPS mode, the password must contain at least 14 characters.

Copyright ©2024

 | Administrator's Reference Guide | 621

Steps

1. On the SSL Server Certificates window, select Action # Export for the certificate.

2. On the Export Certificate window, select the export type.

▪ Select Certificate Only to export the selected certificate without its private key. This is the default
choice.

▪ Select Certificate and Private Key to export the selected certificate with its private key. If you are
not running in BCFIPS mode, the Format section appears, and you must select either PKCS12 or
PEM.

You must also enter and confirm an Encryption Password, since this export contains the private
key of the certificate.

If the selected certificate is stored in a hardware security module (HSM), the Certificate and
Private Key option does not apply.

3. On the Export & Summary window, click Export to save the certificate file, and then click Done.

Reviewing a certificate
On the SSL Server Certificates window, you can review a particular certificate.

Steps

1. On the SSL Server Certificates window, select the certificate by its serial number.

2. Review the selected certificate in the pop-up window.

3. When finished, close the pop-up window.

Activating or deactivating a certificate
On the SSL Server Certificates, you can configure whether to activate or deactivate a certificate.

Steps

1. On the SSL Server Certificates window, select the relevant option under Action for the certificate.

Any certificate can be activated for the administrative console, the runtime server, or both. When
multiple certificates are activated for the administrative console (or the runtime server), you can
deactivate any of them as long as one certificate remains active. Additionally, you may select any of
them as the default certificate.

2. Click Save to keep your configuration.

Removing a certificate
On the SSL Server Certificates window, you can delete unwanted certificates.

Steps

1. On the SSL Server Certificates window, select Action # Delete for the certificate.

 Note:

If the selected certificate is activated for the administrative port, the runtime port, or both, the Delete
option does not apply.

To cancel the removal request, select Action # Undelete for the certificate.

2. Click Save to confirm your action.

Copyright ©2024

 | Administrator's Reference Guide | 622

Manage SSL client keys and certificates
On Security # Certificate & Key Management # SSL Client Keys & Certificates, you can create and
manage your authentication private keys and the certificates your server presents as clients in an outbound
SSL/TLS transaction.

The SSL Client Keys & Certificates window enables you to manage certificates and CSRs in multiple
ways. The window's functionality allows you to create, import, export, review, and delete certificates, as
well as create CSRs and import CSR responses.

Creating new certificates
Use the functionality found in the SSL Client Keys & Certificates window to create new, customized
certificates.

Steps

1. On the SSL Client Keys & Certificates window, click Create new.

2. On the Create Certificate tab, enter the required information.

For information about each field, refer to the following table.

Field Description

Common Name The common name (CN) identifying the certificate.

Subject Alternative
Names

The additional DNS names or IP addresses possibly associated with the
certificate.

Organization The organization (O) or company name creating the certificate.

Organizational Unit The specific unit within the organization (OU).

City The city or other primary location (L) where the company operates.

State The state (ST) or other political unit encompassing the location.

Country The country (C) where the company is based.

Validity (days) The time during which the certificate is valid.

Key Algorithm A cryptographic formula used to generate a key. PingFederate uses
either of two algorithms, RSA or EC.

Key Size (bits) The number of bits used in the key. (RSA-1024, 2048 and 4096; and
EC-256, 384 and 521.)

Signature Algorithm The signing algorithm of the certificate. (RSA and ECDSA-SHA256,
SHA384, and SHA512.)

3. When finished, click Next.

4. On the Summary tab, review your configuration, amend as needed, and click Done.

Importing certificates and their private keys
You can import certificates and their private keys in the SSL Client Keys & Certificates window.

About this task
This task describes how to import certificates and their private keys. Supported certificate and private key
formats differ depending on whether you are running with BCFIPS enabled or disabled.

Copyright ©2024

 | Administrator's Reference Guide | 623

▪ Certificate and private key format:

▪ In non-BCFIPS mode, we support PKCS12 and PEM formatted certificates and private keys, and
automatically detect the format between PKCS12 and PEM.

▪ In BCFIPS mode, we only support PEM formatted certificate and private keys. Only PBES2 and
AES or Triple DES encryption is accepted and 128-bit salt is required. In practice, this may mean
that only PEM files generated by can be imported.

▪ For PEM, the private key must precede the certificates.
▪ Password requirement:

▪ In BCFIPS mode, the password must contain at least 14 characters.

Steps

1. On the SSL Client Keys & Certificates window, click Import.

2. On the Import Certificate tab, choose the applicable certificate file and enter its password.

 Note:

If PingFederate is integrated with an HSM in hybrid mode, select the storage facility of the certificate
from the Cryptographic Provider list.

▪ Select HSM to store the certificate in the HSM.
▪ Select Local Trust Store to store the certificate in the local trust store managed by PingFederate.

3. On the Summary window, review your configuration, amend as needed, and click Done.

Creating a certificate signing request (CSR)
Use the Certificate Signing functionality to generate and save a CSR file in order to submit it to a
certificate authority (CA) for a signed certificate.

Steps

1. On the SSL Client Keys & Certificates window, select Certificate Signing for the certificate.

 Note:

This selection is inactive if you have not yet saved a newly created or imported certificate. Click Save
and then return to this window to initiate the process.

The selection is also inactive if a previously signed certificate is revoked. Because the revocation could
indicate that the private key is compromised, the best practice is to import or create a replacement
certificate for certificate signing.

2. On the Certificate Signing tab, select the Generate CSR option.

3. On the Generate CSR tab, click Export to save the CSR file, and then click Done.

 Note:

Once saved, you can submit this CSR file to a certificate authority for a CA-signed certificate.

Importing a certificate-authority response (CSR response)
Use the Certificate Signing functionality to import your own CSR response file into PingFederate.

Steps

1. On the SSL Client Keys & Certificates window, select Certificate Signing for the certificate.

Copyright ©2024

 | Administrator's Reference Guide | 624

2. On the Certificate Signing tab, select the Import CSR Response option.

3. On the Import CSR Response tab, choose the applicable CSR response file.

4. On the Summary tab, review your configuration, and click Save.

Exporting certificates
On the SSL Client Keys & Certificates window, you can export a certificate with or without its private key.

About this task
This task describes how to export certificates and their private keys. Supported certificate and private key
formats differ depending on whether you are running with BCFIPS enabled or disabled.

▪ Certificate and private key format:

▪ In non-BCFIPS mode, when the Certificate and Private Key option is selected, a Format field
displays allowing you to choose between exporting a PKCS12 or a PEM formatted certificate and
private key.

▪ In BCFIPS mode, you can only export PEM-formatted certificates and private keys.

If you need to convert from PEM to PKCS12 format, use the following command:

openssl pkcs12 -export -inkey keypair.pem -in keypair.pem -out
keypair.p12

▪ Password requirement:

▪ In BCFIPS mode, the password must contain at least 14 characters.

Steps

1. On the SSL Client Keys & Certificates window, select Export for the certificate.

2. On the Export Certificate tab, select the export type.

▪ Select Certificate Only to export the selected certificate without its private key. This is the default
choice.

▪ Select Certificate and Private Key to export the selected certificate with its private key. If you are
not running in BCFIPS mode, the Format section appears, and you must select either PKCS12 or
PEM.

You must also enter and confirm an Encryption Password, since this export contains the private
key of the certificate.

If the selected certificate is stored in a hardware security module (HSM), the Certificate and
Private Key option does not apply.

3. On the Export & Summary window, click Export to save the certificate file, and then click Done.

Reviewing certificates
Take a closer look at individual certificates to ensure their properties match your needs.

Steps

1. On the SSL Client Keys & Certificates window, select the certificate by its serial number.

2. Review the selected certificate in the pop-up window.

3. When finished, close the pop-up window.

Copyright ©2024

 | Administrator's Reference Guide | 625

Removing certificates
Delete certificates you no longer need.

Steps

1. On the SSL Client Keys & Certificates window, select Delete for the certificate.

 Note:

To cancel the removal request, select Undelete for the certificate.

2. Click Save to confirm your action.

Manage digital signing certificates and decryption keys
On Security # Certificate & Key Management # Signing & Decryption Keys & Certificates, you can
create and maintain certificates and their respective key pairs for the purpose of signing outgoing requests,
responses, assertions, and access tokens, and for the purpose of decryption.

Use separate certificates for signing and decryption.

After creating your certificates, if they remain as self-signed certificates, you can enable automatic
certificate rotation. See Certificate rotation on page 625.

Certificate rotation
The optional automatic certificate rotation feature of PingFederate greatly reduces the cost of managing
self-signed certificates.

PingFederate supports automatic certificate rotation for self-signed certificates created for signing SAML
requests, responses, and assertions, or XML decryption for browser SSO and WS-Trust STS transactions
on a per-certificate basis.

 Note:

Certificate rotation is only available to self-signed certificates.

Certificate rotation happens over two stages, identified by the Creation Buffer and Activation Buffer
settings.

▪ The Creation Buffer is the number of days ahead of expiry that PingFederate creates a new key pair
and a new certificate.

▪ The Activation Buffer is the number of days ahead of expiry that PingFederate activates the
certificate.

When you enable certificate rotation on a certificate, you can customize the values of the Creation Buffer
and Activation Buffer settings. Alternatively, you can keep their default values, which are 25% and 10%
of the original lifetime of the current certificate, respectively. The following examples illustrate the default
values for both buffers based on a 100-day certificate and a 365-day certificate.

Current certificate The default value
for the Creation
Buffer field

The default value
for the Activation
Buffer field

The rotation
window

Self-signed certificate #1, valid for 100
days from January 1, 2017 to April 9,
2017

25 days ahead of
expiry, which is
March 16

10 days ahead of
expiry, which is
March 31

15 days from
March 16 through
March 30

Self-signed certificate #2, valid for 365
days from January 1, 2017 to December
31, 2017

91 days ahead of
expiry, which is
October 2

36 days ahead of
expiry, which is
November 26

55 days from
October 2 through
November 25

Copyright ©2024

 | Administrator's Reference Guide | 626

If the PingFederate server is shut down when the Creation Buffer threshold is reached for a given
certificate, a new key pair and a new certificate are created if PingFederate is restarted during the rotation
window.

In a clustered PingFederate environment, when the new signing certificate is ready, the administrative
console displays a message to remind the administrators to replicate the new certificate to the engine
nodes in System # Server # Cluster Management.

Although optional, you can turn on notifications for certificate events in System # Monitoring &
Notifications # Runtime Notifications. When configured, notifies the configured recipient when a new
certificate is available and when it is activated. Depending on the role of the certificate, you can update
your partner accordingly.

Connection and federation metadata
Certificate rotation uses a number of inherent capabilities which enable it to deploy new certificates to
replace current certificates in enabled connections.

Certification rotation is a per-certificate configuration. When certificate rotation is enabled for a certificate
and a new certificate using new key pairs becomes available, PingFederate deploys the new certificate to
all enabled connections that use the original certificate. The actions taken by PingFederate vary depending
on the role of the certificate.

Notifications

Although optional, you can turn on notifications for certificate events in System # Monitoring &
Notifications # Runtime Notifications. When configured, notifies the configured recipient when a new
certificate is available and when it is activated. Depending on the role of the certificate, you can update
your partner accordingly.

Signing certificate

When the Creation Buffer threshold is reached, a new certificate is created. For all web browser single
sign-on (SSO) (SAML and WS-Federtion) connections using the same signing certificate, PingFederate
starts including the new certificate (along with the current certificate) in their metadata. PingFederate
keeps using the current certificate for signing until the remaining lifetime of the current certificate reaches
the Activation Buffer threshold, at which point PingFederate starts signing with the new certificate and
removes the previous certificate from the metadata.

 Important:

To prevent SSO outages, partners must update their connections to use the new certificate to verify digital
signatures before the Activation Buffer threshold is reached.

XML decryption

When a new certificate is made available, PingFederate performs the following tasks for all SAML 2.0
connections using the same decryption key:

▪ Pushes the current decryption key from primary to secondary
▪ Places the new certificate as the primary decryption key
▪ Updates the decryption key with the new certificate in the metadata
▪ Starts using the new decryption key to decrypt inbound messages. If the primary decryption key fails,

PingFederate fails over to the secondary decryption key

When the remaining lifetime of the current certificate reaches the Activation Buffer threshold, the
secondary decryption key is removed from the SAML 2.0 connections.

When PingFederate is configured to generate notifications for certificate events, PingFederate also notifies
the configured recipient when the existing RSA decryption key is about to expire.

Copyright ©2024

 | Administrator's Reference Guide | 627

 Important:

For XML decryption keys, only supports the RSA key algorithm. When EC (elliptic curve) is selected as
the Key Algorithm value on the Certificate Rotation tab, does not update the SAML 2.0 connections and
their metadata.

 Important:

To prevent SSO outages, partners must update their connections to use the new certificate to encrypt
messages before the Activation Buffer threshold is reached.

Federation metadata for Browser SSO connections

PingFederate updates the metadata for the applicable web browser SSO connections as soon as a new
certificate is available.

To ensure that your partners are aware of the new certificate, you can provide their respective federation
metadata by URLs or exports.

Metadata by URL

PingFederate runtime engine provides an endpoint (/pf/federation_metadata.ping) to return
metadata for web browser SSO connections. A service provider (SP) or an identity provider (IdP) is
identified by its entity IDs using the PartnerSpId query parameter or the PartnerIdpId query
parameter, respectively, as illustrated in the following examples.

Partner Federation metadata URL to be given to the partner

An SP partner
with an entity ID
of SP1.

https://www.example.com:9031/pf/
federation_metadata.ping?PartnerSpId=SP1

An IdP partner
with an entity ID
of IdP1.

https://www.example.com:9031/pf/
federation_metadata.ping?PartnerIdpId=IdP1

 Note:

The base URL for the PingFederate runtime engine is https://www.example.com:9031

 Important:

In a clustered environment, because the console node is responsible for creating and applying the
new certificates to all applicable connections, you must replicate the new certificate to the engine
nodes in System # Server # Cluster Management when the new certificate is available, so that the
federation metadata for these connections is updated accordingly.

The administrative console reminds you to replicate configuration when it detects configuration
changes.

Metadata by manual export

Alternatively, you can export a metadata file for a connection from the Connections Management
window or System # Protocol Metadata # Metadata Export.

Copyright ©2024

 | Administrator's Reference Guide | 628

 Note:

PingFederate does not deploy new certificates or update metadata for inactive connections.

WS-Trust STS connections

For connections with only the WS-Trust security token service (STS) profile, you must export the new
pending certificate and pass it to your partners out-of-band before the Activation Buffer threshold is
reached.

If a connection contains both the Browser SSO and the WS-Trust STS profiles, the new certificate
is included in the federation metadata for the Web Browser SSO profile. Your partner can reuse the
certificate from the metadata by URL or manual export and apply it to its STS configuration.

Managing certificate rotation settings
Use the Signing & Decryption Keys & Certificates window to customize certificate rotation settings for
your certificates.

About this task

Manage certificate rotation settings for self-signed certificates on Security # Certificate & Key
Management # Signing & Decryption Keys & Certificates.

Steps

1. On the Signing & Decryption Keys & Certificates window, select Certificate Rotation for the
applicable certificate.

 Note:

Certificate rotation is only available to self-signed certificates.

2. Select the check box to turn on certificate rotation for the selected certificate, then click Next.

If you want to turn off certificate rotation for the selected certificate, clear the check box and then click
Save.

3. Optional: On the Certificate Rotation tab, modify the default values.

Field Description

Creation buffer The number of days ahead of expiry that PingFederate creates a new key
pair and a new certificate.

The default value is 25% of the original lifetime of the current certificate.

Activation buffer The number of days ahead of expiry that PingFederate activates the
certificate.

The default value is 10% of the original lifetime of the current certificate.

Validity The time during which the certificate is valid.

The default value matches that of the current certificate.

Copyright ©2024

 | Administrator's Reference Guide | 629

Field Description

Key Algorithm A cryptographic formula used to generate a key. PingFederate uses either
of two algorithms, RSA or EC.

The default value matches that of the current certificate.

 Important:

For XML decryption keys, only supports the RSA key algorithm. When EC
(elliptic curve) is selected as the Key Algorithm value on the Certificate
Rotation tab, does not update the SAML 2.0 connections and their
metadata.

Key Size The number of bits used in the key. (RSA-1024, 2048 and 4096; and
EC-256, 384 and 521.)

The default value matches that of the current certificate.

Signature Algorithm The signing algorithm of the certificate. (RSA and ECDSA-SHA256,
SHA384 and SHA512.)

The default value matches that of the current certificate.

4. On the Certificate Rotation Summary tab, review the rotation settings. Adjust as needed, and then
click Save to turn on automatic certificate rotation for this certificate.

Managed SP connection to PingOne for Enterprise and signing certificate
Use managed service provider (SP) connections to PingOne for Enterprise to automatically rotate signing
certificates being used by it.

PingFederate automatically rotates the signing certificate used by the managed SP connection to PingOne
for Enterprise.

 Note:

A managed SP connection to PingOne for Enterprise is a connection created either as part of the initial
setup or the System # External Systems # Connect to PingOne for Enterprise configuration wizard in
8.0 or later.

The certificate rotation settings are as follows.

Field Values

Creation Buffer (days) 90

Activation Buffer (days) 30

Validity (days) 1095

Key Algorithm RSA

Key Size 2048

Signature Algorithm RSA SHA256

If the signing certificate should be manually rotated instead, disable automatic certificate rotation. See
Managing certificate rotation settings on page 628.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 630

After making changes, the administrative console prompts for confirmation whether to update PingOne for
Enterprise or to disconnect from PingOne for Enterprise in a banner message. See Managing PingOne for
Enterprise settings on page 945.

Creating new certificates
Use the functionality found in the Signing & Decryption Keys & Certificates window to create new,
customized certificates.

Steps

1. On the Signing & Decryption Keys & Certificates window, click Create new.

2. On the Create Certificate tab, enter the required information.

For information about each field, refer to the following table.

Field Description

Common Name The common name (CN) identifying the certificate.

Subject Alternative
Names

The additional DNS names or IP addresses possibly associated with the
certificate.

Organization The organization (O) or company name creating the certificate.

Organizational Unit The specific unit within the organization (OU).

City The city or other primary location (L) where the company operates.

State The state (ST) or other political unit encompassing the location.

Country The country (C) where the company is based.

Validity (days) The time during which the certificate is valid.

Key Algorithm A cryptographic formula used to generate a key. PingFederate uses
either of two algorithms, RSA or EC.

Key Size (bits) The number of bits used in the key. (RSA-1024, 2048 and 4096; and
EC-256, 384 and 521.)

Signature Algorithm The signing algorithm of the certificate. (RSA and ECDSA-SHA256,
SHA384, and SHA512.)

3. When finished, click Next.

4. On the Summary window, review your configuration, amend as needed, and click Done.

Importing certificates and their private keys
You can import certificates and their private keys in the Signing & Decryption Keys & Certificates
window.

About this task
This task describes how to import certificates and their private keys. Supported certificate and private key
formats differ depending on whether you are running with BCFIPS enabled or disabled.

▪ Certificate and private key format:

▪ In non-BCFIPS mode, we support PKCS12 and PEM formatted certificates and private keys, and
automatically detect the format between PKCS12 and PEM.

▪ In BCFIPS mode, we only support PEM formatted certificate and private keys. Only PBES2 and
AES or Triple DES encryption is accepted and 128-bit salt is required. In practice, this may mean
that only PEM files generated by can be imported.

▪ For PEM, the private key must precede the certificates.

Copyright ©2024

 | Administrator's Reference Guide | 631

▪ Password requirement:

▪ In BCFIPS mode, the password must contain at least 14 characters.

Steps

1. On the Signing & Decryption Keys & Certificates window, click Import.

2. On the Import Certificate tab, choose the applicable certificate file and enter its password.

 Note:

If PingFederate is integrated with an HSM in hybrid mode, select the storage facility of the certificate
from the Cryptographic Provider list.

▪ Select HSM to store the certificate in the HSM.
▪ Select Local Trust Store to store the certificate in the local trust store managed by PingFederate.

3. On the Summary window, review your configuration, amend as needed, and click Done.

Creating a certificate signing request (CSR)
Use the Certificate Signing functionality to generate and save a CSR file in order to submit it to a
certificate authority (CA) for a signed certificate.

Steps

1. On the Signing & Decryption Keys & Certificates window, select Certificate Signing for the
certificate.

 Note:

This selection is inactive if you have not yet saved a newly created or imported certificate. Click Save
and then return to this window to initiate the process.

The selection is also inactive if a previously signed certificate is revoked. Because the revocation could
indicate that the private key is compromised, the best practice is to import or create a replacement
certificate for certificate signing.

2. On the Certificate Signing tab, select the Generate CSR option.

3. On the Generate CSR tab, click Export to save the CSR file, and then click Done.

 Note:

Once saved, you can submit this CSR file to a certificate authority for a CA-signed certificate.

Importing a certificate-authority response (CSR response)
Use the Certificate Signing functionality to import your own CSR response file into PingFederate.

Steps

1. On theSigning & Decryption Keys & Certificates window, select Certificate Signing for the
certificate.

2. On the Certificate Signing tab, select the Import CSR Response option.

3. On the Import CSR Response tab, choose the applicable CSR response file.

4. On the Summary tab, review your configuration, and click Save.

Copyright ©2024

 | Administrator's Reference Guide | 632

Exporting certificates
On the Signing & Decryption Keys & Certificates window, you can export a certificate with or without its
private key.

About this task
This task describes how to export certificates and their private keys. Supported certificate and private key
formats differ depending on whether you are running with BCFIPS enabled or disabled.

▪ Certificate and private key format:

▪ In non-BCFIPS mode, when the Certificate and Private Key option is selected, a Format field
displays allowing you to choose between exporting a PKCS12 or a PEM formatted certificate and
private key.

▪ In BCFIPS mode, you can only export PEM-formatted certificates and private keys.

If you need to convert from PEM to PKCS12 format, use the following command:

openssl pkcs12 -export -inkey keypair.pem -in keypair.pem -out
keypair.p12

▪ Password requirement:

▪ In BCFIPS mode, the password must contain at least 14 characters.

Steps

1. On the Signing & Decryption Keys & Certificates window, select Export for the certificate.

2. On the Export Certificate tab, select the export type.

▪ Select Certificate Only to export the selected certificate without its private key. This is the default
choice.

▪ Select Certificate and Private Key to export the selected certificate with its private key. If you are
not running in BCFIPS mode, the Format section appears, and you must select either PKCS12 or
PEM.

You must also enter and confirm an Encryption Password, since this export contains the private
key of the certificate.

If the selected certificate is stored in a hardware security module (HSM), the Certificate and
Private Key option does not apply.

3. On the Export & Summary window, click Export to save the certificate file, and then click Done.

Reviewing certificates
Take a closer look at individual certificates to ensure their properties match your needs.

Steps

1. On the Signing & Decryption Keys & Certificates window, select the certificate by its serial number.

2. Review the selected certificate in the pop-up window.

3. When finished, close the pop-up window.

Reviewing a certificate's usage
Take a look at a certificate's usage data to get a sense of how often it's used.

Steps

1. On the Signing & Decryption Keys & Certificates window, select Check Usage for the certificate.

 Note:
If the certificate is not used by any configuration, the Check Usage option does not apply.

Copyright ©2024

 | Administrator's Reference Guide | 633

2. Review the information in the pop-up window.

3. When finished, close the pop-up window.

Removing certificates
Delete certificates you no longer need.

Steps

1. On the Signing & Decryption Keys & Certificates window, select Delete for the certificate.

 Note:

To cancel the removal request, select Undelete for the certificate.

2. Click Save to confirm your action.

Keys for OAuth and OpenID Connect
You can use keys to manage a number of security roles in PingFederate.

On Security # Certificate & Key Management # OAuth & OpenID Connect Keys, you can specify
whether PingFederate should use static or dynamically rotating keys for OAuth and OpenID Connect.

 Note:

When using dynamically rotating keys, the number of key sets in memory is set to three for both signing
and encryption keys. This number is not configurable. The key sets include pending, active, and retired. At
each rotation cycle, a new set of pending keys is generated. The original pending set becomes the active
set, the active set becomes the retired set, and the old retired set goes away. All three sets are published
for signing keys. For encryption keys, only the active key set is published. The rotation period and RSA key
size are configurable in the file <pf_install>/pingfederate/server/default/data/config-
store/jwks-endpoint-configuration.xml.

The keys are used in the following manner.

PingFederate role Key usages

Authorization Server
(AS)

Sign self-contained access tokens for relying parties (RPs).

OpenID Provider (OP) Sign ID tokens for RPs.

Relying Party (RP) Sign JSON web tokens (JWTs) for authentication, sign OpenID Connect
request objects, decrypt ID tokens, or any combination.

Configuring static signing keys
Determine when to use static and dynamically rotating keys in order to sign tokens as needed.

About this task

Specify whether PingFederate should use static or dynamically rotating keys to sign self-contained access
tokens, ID tokens, JSON web tokens (JWTs) for client authentication, and JWTs for OpenID Connect
request objects.

Steps

1. Go to Security # Certificate & Key Management # OAuth & OpenID Connect Keys.

Copyright ©2024

 | Administrator's Reference Guide | 634

2. Select the Enable Static Keys check box to use static keys for OAuth and OpenID Connect.

 Note:

Clear this check box to let PingFederate generate and rotate keys automatically for OAuth and OpenID
Connect.

The Enable Static Keys check box is not selected by default.

Result:

Once selected, the administrative console displays the following fields under the Signing Keys
heading.

Key Type Active Previous Publish Certificate

EC with P-256 curve Optional Optional Optional

EC with P-384 curve Optional Optional Optional

EC with P-521 curve Optional Optional Optional

RSA Required Optional Optional

3. Follow these steps to complete the configuration under Signing Keys.

a. For the RSA key type, select an active signing key and optionally a previous signing key.

 Note:

If you don't find the desired signing key, click Manage Certificates to create it.

There is no default selection.

Result:

The active signing key and the previous signing key (if configured) are published at the
PingFederate JSON Web Key (JWK) Set endpoint /pf/JWKS.

b. For each applicable EC (elliptic curve) key type, select an active signing key and optionally a
previous signing key.

 Note:

If you don't find the desired signing key, click Manage Certificates to create it. Alternatively,
complete the configuration, create the desired signing keys later, and then update the
configuration afterward.

There is no default selection.

Result:

The active signing key and the previous signing key (if configured) are published at the
PingFederate JWKS endpoint /pf/JWKS.

c. Optional: For any key type for which you have selected an active signing key (with or without
a previous signing key), select the Publish Certificate check box to publish the certificates

Copyright ©2024

 | Administrator's Reference Guide | 635

associated with the active signing key and the previous signing key (if configured) at the
PingFederate JWKS endpoint /pf/JWKS.

 Tip:

For each applicable signing key, its associated chain of certificates is published as the x5c
parameter value.

The Publish Certificate check boxes are not selected by default.

4. Click Save.

Result

 Important:

When static keys are enabled, PingFederate uses only static signing keys to sign ID tokens for OAuth
clients or to sign JWTs for authentication or request objects (or both) for authorization servers; dynamic
keys are not used and are not returned by the PingFederate JWKS endpoint /pf/JWKS. Signing
algorithms associated with EC key types not configured with an active static signing key are hidden.

For existing clients and identity provider (IdP) connections, if you have previously selected a certain signing
algorithm associated with an EC key type (for example, ECDSA using P256 Curve and SHA-256) without
enabling static keys and then subsequently decide to enable static keys without selecting an active signing
key for such EC key type (EC with P-256 curve in this example), transactions that involve that signing
algorithm will fail. When you revisit the configuration, the administrative console displays an error message.
Your options are as follows:

OAuth clients

▪ Click Save to update the value of the ID Token Signing Algorithm setting to Default, which is
the equivalent of selecting RSA using SHA-256 from the list.

▪ Select a different value from the ID Token Signing Algorithm list and save the configuration.
▪ Ignore the error and click Cancel without updating the configuration. Note that runtime errors

persist until the configuration issue is resolved.

These options are applicable to individual clients on the Client window and the default setting
configured for all clients created via the Dynamic Client Registration protocol on the Client
Configuration Defaults window.

OpenID Connect IdP connections

▪ Select a different value from the Authentication Signing Algorithm list or the Request
Signing Algorithm list (or both) and save the configuration.

▪ Ignore the error and click Cancel without updating the configuration. Runtime errors persist until
the configuration issue is resolved.

These options are applicable to individual OpenID Connect IdP connections on the OpenID
Provider Info window.

Configuring static decryption keys
You can specify whether PingFederate should use static or dynamically rotating keys to decrypt
asymmetrically-encrypted ID tokens.

Steps

1. Go to Security # Certificate & Key Management # OAuth & OpenID Connect Keys.

Copyright ©2024

 | Administrator's Reference Guide | 636

2. Select the Enable Static Keys check box to use static keys for OAuth and OpenID Connect.

 Note:

Clear this check box to let PingFederate generate and rotate keys automatically for OAuth and OpenID
Connect. The Enable Static Keys check box is not selected by default.

Result:

Once selected, the administrative console displays the following fields under "Decryption Keys".

Key Type Active Previous Publish Certificate

EC with P-256 curve Optional Optional Optional

EC with P-384 curve Optional Optional Optional

EC with P-521 curve Optional Optional Optional

RSA Optional Optional Optional

3. Follow these steps to configure "Decryption Keys".

a. For each applicable key type, select an active decryption key and optionally a previous decryption
key.

 Note:

If the desired decryption key is not found, click Manage Certificates to create it. Alternatively,
complete the configuration, create the desired decryption keys later, and then update the
configuration afterward. There is no default selection.

Result:

The active decryption key is published at the PingFederate JSON Web Key Set (JWKS) endpoint
/pf/JWKS.

b. Optional: For any key type for which you have selected an active decryption key (with or without
a previous decryption key), select the Publish Certificate check box to publish the certificates
associated with the active decryption key at the PingFederate JWKS endpoint /pf/JWKS.

 Tip:

Each applicable decryption key's associated chain of certificates is published as the x5c
parameter value.

The Publish Certificate check boxes are not selected by default.

 Note:

When static keys are enabled, you must also select an active signing key for the RSA key type.

Copyright ©2024

 | Administrator's Reference Guide | 637

4. Under "Signing Keys", select an active key for the RSA key type.

 Note:

If the desired key is not found, click Manage Certificates to create it. There is no default selection.

Result:

The active signing key is published at the PingFederate JWKS endpoint /pf/JWKS.

5. Click Save.

Result

 Important:

When static keys are enabled, PingFederate uses only static decryption keys to decrypt asymmetrically-
encrypted ID tokens it receives from OpenID providers. Dynamic keys are not used and are not returned by
the PingFederate JWKS endpoint /pf/JWKS.

The following snippet illustrates a sample response returned by the PingFederate JWKS endpoint when
dynamic keys are used.

$ curl -s https://localhost:8031/pf/JWKS |python -m json.tool
{
 "keys": [
 ...
 {
 "kty": "EC",
 "kid": "I-ZbqeLPG2O5qxSf3n8yKmcGbWI",
 "use": "enc",
 "x": "AUSx-2vdfCjU90KohVs1peISnNUeDmGo3m0_x42PucBr-Gd-
mHKXQ8EjTeYgLhFB5SYMV5tntKiezayWkUt9Dodc",
 "y": "AIE6vQYcKdOfyQYzENYQ86MIAwSUo4GR_-
dn7m2MvRReXkotWOsFT1WKXi_KjamqJIV2AwAUZL-IQj5mew45lSTM",
 "crv": "P-521"
 },
 {
 "kty": "EC",
 "kid": "S2BbNNK9PtG0nA-EhU5BGpZ-OG8",
 "use": "enc",
 "x": "IKXASh9aDPJ1YaeXUww1YZnZ3kum_WLKvZe8xiNW6W8",
 "y": "7_zp2AuY8MY4WEuneHEzV0cqW0buqcmMGVzRANQ0r2I",
 "crv": "P-256"
 },
 {
 "kty": "EC",
 "kid": "t4-jKfmhEHn3mRc-08Oh3WKA2zE",
 "use": "enc",
 "x": "RiQkv_ArGS7Zc8XsXp0VQpEWz9ZUlbLUWA0VbTcUjWIbOByceGhg-
tAj6dlFiorq",
 "y": "aHPQlrJPscdcuHtHokyr-70yBo4nUK-
BjWrJgisDxnKJQFLP6YK_dfuOpuVYhFJ5",
 "crv": "P-384"
 },
 {
 "kty": "RSA",
 "kid": "tVP7otNKgIWYep8LPBR3wD3tPNE",
 "use": "enc",
 "n":
 "hvHfiamhV4wGC9JHppJZjdKG5K3MvhWwo6PBsSQowGOTeILAbzO8Jfmp7nRxuujTE6k83RXNeWUvTwamGqShXvHzGYJlE2gsc0Az_w5xm-

Copyright ©2024

 | Administrator's Reference Guide | 638

vjoNZD8Cv0Y9C3R4Ckj6dBL70Osk_NfBR7MYmRA6dV0PJ5k4Lt_vQveXMkylD9XuLFP-
gqooMXkB6FCCLqZZAi0voi3WQ7ECzSta3ke9F5VFl7-4zVjRtJHjM9gGEhd5OkaZioqs9xBHeOrwhPbiPTsIA7ve3No5AlGCgZw654s17zr2Ly4q8QZE7LmM30kRJnu-
dpl_dKixFTdQYIBMmIWGUyuB43XYq106z9CWoOcw",
 "e": "AQAB"
 },
 ...
]
}

When static keys are used, the PingFederate JWKS endpoint /pf/JWKS returns only the configured active
keys. The following snippet illustrates a sample response returned by the PingFederate JWKS endpoint
when an active key was selected for the EC with P-384 curve and EC with P-521 curve key types.

$ curl -s https://localhost:8031/pf/JWKS |python -m json.tool
{
 "keys": [
 ...
 {
 "kty": "EC",
 "kid": "7xKkiMb-YpcK2PcrTUoTrYF8EOI",
 "use": "enc",
 "x": "4p_fZluiHS9qLXQi-
cqol1LP5nBrFPcXRKQN5yR3Tz51E0xfY9tmOzLqMQwKfDIh",
 "y": "kWh3up-U2mMYOuhzx4Ba7UX0P03EPLr82PdCUG6E3V53Pgnd2QU6ShWu9lH4-
ugw",
 "crv": "P-384"
 },
 {
 "kty": "EC",
 "kid": "pE1XwX8Z6QYhAC7mjZ0OCn4DXAk",
 "use": "enc",
 "x": "ATCOsxg6ce437qMVlrqCyHPDE76hC0wP7Wwb7V8heai60LIDDvIJt-
evxTOGn7Iolo9PYET8-Bjhu5Zg5MNxOkF-",
 "y":
 "AdvUA2YD2kn7COLkFIG2vL2k34CMv7VPxsvbgOJBL2exSziMGPw6YJp2eafuHlBom7bkjv3iFy5dTuGB7B28Zc7A",
 "crv": "P-521"
 },
 ...
]
}

Mapping ID token signing keys to virtual issuers
You can create sets of ID token signing keys in PingFederate, and map each set to one or more virtual
issuers for OpenID Connect.

Before you begin
Before you map token signing keys to virtual issuers, configure the necessary static signing keys and
virtual issuers. For more information, see Configuring static signing keys on page 633 and Adding virtual
issuers for OpenID Connect on page 509.

About this task

When minting an ID token, PingFederate signs the ID token with a key from the right key set based on the
authorization request, virtual issuers configuration, and token signing keys configuration. Because of these
features, you do not need multiple PingFederate environments to support multiple brands, which especially
helps if you participate in Open Banking in the UK or have similar requirements.

Steps

1. Go to Security # Certificate & Key Management # Token Signing Keys.

Copyright ©2024

 | Administrator's Reference Guide | 639

2. Click Add Key Set.

3. Enter the key set's Name and optional Description. Click Next.

4. Select at least one Issuer.

5. Select at an RSA signing key in the Active column.

6. Optional: Select one or more EC (elliptic curve) signing keys in the Active column.

7. Optional: Select Previous signing keys next to any of the Active keys.

8. Optional: Select the Publish Certificate check box next to the Active signing keys.

PingFederate publishes the certificates associated with these active signing keys and previous signing
keys (if selected) at the /pf/JWKS endpoint.

9. Click Save.

Managing certificates from partners
Manage certificates for various connections involving signature verification, encryption, and back-channel
authentication to effectively process messages to and from partners.

About this task

You receive certificates from partners for signature verification, encryption, and back-channel
authentication. They are managed within connections.

 Note:

Depending on the use cases, your connection to the partner might not require signature verification,
encryption, inbound (SOAP) back-channel authentication by client certificate, or any such combinations. If
so, the Activation & Summary window does not display the related administrative window.

Signature verification
Specify one or more certificates that PingFederate can use to validate the digital signatures found in
inbound messages from your partners.

Steps

1. Select the connection to reach its Activation & Summary window.

2. Select Signature Verification Certificate.

3. Click Manage Certificates.

 Note:
You can import, export, review, activate, deactivate, and remove certificates for signature verification
on the Certificate Management window.

Encryption
Specify a certificate that PingFederate uses to encrypt outbound messages before delivering them to your
partners.

Steps

1. Select the connection to reach its Activation & Summary window.

2. Select Select XML Encryption Certificate.

Copyright ©2024

 | Administrator's Reference Guide | 640

3. Click Manage Certificates.

 Note:
You can import, export, review, activate, and remove certificates for encryption on the Certificate
Management window.

Back-channel authentication
Specify a certificate that PingFederate uses to authenticate inbound (SOAP) messages from your partners
by their client certificates.

Steps

1. Select the connection to reach its Activation & Summary window.

2. Select SSL Verification Certificate.

3. Click Manage Certificates.

 Note:
You can import, export, review, activate, and remove certificates for back-channel authentication on
the Certificate Management window.

Configuring certificate revocation
You can choose whether to use certificate revocation list (CRL) checking or Online Certificate Status
Protocol (OCSP) checking as your preferred verification method.

About this task

By default at runtime, whenever a certificate revocation list (CRL) distribution-point URL is included
within the certificate, PingFederate attempts to retrieve a CRL to verify that a signing certificate is not
revoked. Optionally, on Security # Certificate & Key Management # Certificate Revocation Checking,
you can enable and configure OCSP checking as the preferred verification method, depending on your
requirements. For more information, see Certificate validation on page 87.

You can use OCSP in place of CRL checking, or retain CRLs as a backup method for failover.

 Note:

When OCSP is enabled, CRL checking is not done independently, but only as a failover option for one or
more OCSP failure conditions.

Steps

1. Optional: Configure OCSP.

For more information about each field, see the following table.

Field Description

Enable OCSP Turns on OCSP certificate-revocation checking.

OCSP checking is not enabled by default.

Default OCSP
Responder URL

The location of a URL to use for certificate-revocation checking, a backup
used only if the OCSP Responder URL is not contained in the certificate.

Copyright ©2024

 | Administrator's Reference Guide | 641

Field Description

Default OCSP
Responder Signature
Verification Certificate

Certificate used to verify that the returned certificate status was sent from
the Default OCSP Responder—required if the certificate is not included in
the response.

Click Manage Certificates to import the verification certificate.

Do NOT allow
Responder to use
cached responses

When not selected, the OCSP Responder uses cached responses when
available for the subject certificate for an indicated period of time—see the
description for Next Update Grace Period.

If checked, PingFederate sends a nonce in the request to the Responder,
effectively requiring that the status of the certificate be determined in real
time. This option is intended to enhance the prevention of Internet replay
attacks (in addition to timestamping), where required.

 Important:

Making this selection might slow down OCSP response time for a request
and will increase general processing overhead at the Responder site.

This check box is not selected by default.

This Update Grace
Period (min)

To consider the response valid, the PingFederate server-clock time must
correspond to the <thisUpdate> timestamp in the OCSP response, plus
or minus the number of minutes set for this field to compensate for clock
variances.

The default value is 5 minutes.

Next Update Grace
Period (min)

If the response includes a <nextUpdate> timestamp indicating when
updated certificate statuses are available, then PingFederate checks to
ensure that the timestamp is not earlier than the current server time, adding
this grace period to compensate for clock variances.

The default value is 5 minutes.

Responder Timeout
(sec)

The allowable response time before the OCSP Responder URL is
considered unavailable and processing continues. See the OCSP
Responder is Unavailable setting.

The default value is 5 seconds.

Response Caching
Interval (hrs)

The number of hours that PingFederate caches the OCSP response.

The default value is 48 hours.

Certificate is Unknown The certificate does not fall under the purview of the certificate authority
(CA) associated with the OCSP Responder. The choices indicate whether
an unknown certificate is considered valid, or whether to try CRL checking.

The default selection is Treat as Revoked.

OCSP Responder is
Unavailable

Indicates what action to take if you cannot reach the Responder. The
choices indicate whether an unknown certificate is considered valid, or
whether to try CRL checking.

The default selection is Treat as Valid.

Copyright ©2024

 | Administrator's Reference Guide | 642

Field Description

OCSP Responder
Returns Error

Indicates what action to take if the Responder returns an error. The choices
indicate whether an unknown certificate is considered valid, or whether to
try CRL checking.

The default selection is Treat as Revoked.

2. Optional: Configure CRL checking.

For more information about each field, see the following table.

Field/Selection Description

Enable CRL Checking Enables CRL revocation checking.

 Note:

CRL checking must remain enabled if any selections for OCSP Error
Handling include failover. If OCSP is enabled and no CRL failover is
specified, then this selection has no effect.

CRL revocation checking is enabled by default.

Treat Unretrievable
CRLs as Revoked

If selected, PingFederate immediately aborts the processing associated
with the certificate.

If not selected, the server treats the certificate as valid but continues trying
to retrieve the CRL.

This check box is not selected by default.

Next Retry on
Resolution Failure (min)

Specifies the number of minutes the server waits before trying to retrieve
a CRL when the previous attempt failed—applies only when Treat
Unretrievable CRLs as Revoked is unchecked.

The default value is 1440 minutes, which is 24 hours.

Next Retry on Next
Update Expiration (min)

How long the server waits before requesting a new CRL when the most
recently retrieved CRL (in cache) has a next-update time in the past.

 Note:

Certain actions in the administrative console, such as saving changes to
an identity provider (IdP) adapter instance, reset the CRL cache. When this
happens, PingFederate requests new CRLs for subsequent transactions as
needed.

The default value is 60 minutes.

Verify CRL Signature When selected (recommended), PingFederate verifies the CRL signature
using the public key of the issuer, which must be in the certificate chain or
in the list of Trusted CAs.

This check box is selected by default.

Proxy Settings If CRL checking is routed through a proxy server, specify the server's host
DNS name or IP address and the port number. The same proxy information
applies to OCSP checking, when enabled.

Copyright ©2024

 | Administrator's Reference Guide | 643

Transitioning to an HSM
Use the PingFederate administrator functionality to determine whether to store keys and certificates on a
hardware security module (HSM) or a local trust store.

About this task

Administrators can enable the HSM hybrid mode, which provides the choice to store each relevant key and
certificate on an HSM or the PingFederate-managed local trust store. This capability allows organizations
to transition the storage of keys and certificates to a supported HSM to meet security requirements without
the need to deploy a new PingFederate environment and mirror the setup.

The following images illustrate some general interactions between PingFederate and an HSM. Those
interactions depend on whether you configure the HSM in hybrid mode.

Copyright ©2024

 | Administrator's Reference Guide | 644

 Note:

For a list of supported HSMs, see the "Hardware security modules" section under "Third-party
cryptographic solutions" in System requirements on page 109.

When all relevant keys and certificates are stored on the HSM, administrators can turn off the HSM hybrid
mode. When the HSM hybrid mode is disabled, PingFederate delegates the management of the relevant
keys and certificates to the HSM.

 Important:

After the HSM hybrid mode is disabled, for keys and certificates that should be stored on an HSM,
PingFederate will only access those keys and certificates from the HSM, regardless of whether such keys
and certificates exist on the local trust store.

Steps

1. Install and configure the HSM client and the existing PingFederate environment. See Supported
hardware security modules on page 168.

 Important:

When editing the <pf_install>/pingfederate/bin/run.properties file, set the
pf.hsm.hybrid property to true to enable the HSM hybrid mode.

Result:

After PingFederate is integrated with your HSM, you can create (and store) new certificates on
your HSM. Because the HSM hybrid mode is enabled, you can reconfigure connections or other

Copyright ©2024

 | Administrator's Reference Guide | 645

configuration items to use the new certificates over a period of time. As long as the HSM hybrid mode
is enabled, PingFederate can use certificates stored on your HSM and the local trust store.

 Important:

When making changes to keys and certificates, you might need to coordinate with your partners. For
more information, see Digital signing policy coordination on page 88.

2. Create a new SSL server certificate on your HSM and activate it for the administrative console and the
runtime server on Security # Certificate & Key Management # SSL Server Certificates.

 Note:

You can also create separate certificates on your HSM and activate one certificate for the
administrative console and the other certificate for the runtime server. For configuration steps, see
Manage SSL server certificates on page 617.

3. Create new digital signing certificates and decryption keys on Security # Certificate & Key
Management # Signing & Decryption Keys & Certificates and reconfigure connections or
configuration items to use the new certificates and keys from your HSM.

 Tip:

Use Check Usage to locate the applicable connections or configuration items.

For configuration steps, see Manage digital signing certificates and decryption keys on page 625.

4. If your connections support outbound (SOAP) back-channel authentication by client certificates, create
new SSL client certificates on Security # Certificate & Key Management # SSL Client Keys &
Certificates and reconfigure connections to use the new certificates from your HSM.

 Tip:

Use Check Usage to locate the applicable connections or configuration items.

For configuration steps, see Manage SSL client keys and certificates on page 622.

5. If you are transitioning to an Entrust HSM, export the trusted certificate authority (CA) certificates from
the local trust store and import them to your HSM on Security # Certificate & Key Management #
Trusted CAs and reconfigure configuration items to use the new certificates and keys from your HSM.

 Tip:

Use Check Usage to locate the applicable configuration items.

For configuration steps, see Manage trusted certificate authorities on page 615.

6. If you are transitioning to an Entrust HSM, for connections using the unanchored trust model, export
the partner certificate for back-channel authentication from the local trust store, import them to your
HSM, and reconfigure the connections to use the new certificates from your HSM. For information
about the unanchored trust model, see "Trust models" under Digital signing policy coordination on
page 88.

For configuration steps, see Managing certificates from partners on page 639+.

Copyright ©2024

 | Administrator's Reference Guide | 646

Manage Partner metadata URLs
On the Security # Certificate & Key Management # Partner Metadata URLs window, you can add,
update, review, or remove SAML metadata URLs provided by your partners.

SAML metadata URLs streamline the process of establishing and maintaining SAML connections. If your
partner provides SAML metadata by URL, you can use the metadata URL for the following scenarios:

▪ Creating a new SAML connection using the metadata URL and associating the metadata URL with the
new connection

▪ Enabling or disabling automatic updates from the associated metadata URL
▪ Adding or updating the metadata URL associated with an existing SAML connection
▪ Updating an existing SAML connection using the metadata URL instantly

 Tip:

You can quickly create connections with InCommon participants, update the connections automatically or
manually as the InCommon participants update their metadata, and do so securely knowing PingFederate
only commits changes to your connections after validating the digital signatures of the signed metadata.

When PingFederate accesses a digitally signed metadata URL for the first time, it validates the digital
signature and stores the metadata URL and its verification certificate if the signature is correct. When
an existing metadata URL is accessed, PingFederate validates the digital signature using the stored
certificate. If there is a digital signature error, PingFederate aborts the process and provides an error with a
recommended course of action. You can bypass the signature verification process.

Adding a new metadata URL
Use the Partner Metadata URLs window's functionality to add a custom-configured metadata URL.

Steps

1. On the Partner Metadata URLs window, click Add New URL.

2. On the URL tab, define the metadata URL.

a. Configure each field.

Field Description

Name A name of the metadata URL.

URL The metadata URL.

Validate Metadata
Signature

Determines whether PingFederate should validate the digital signature
of signed metadata.

Select the check box to verify digital signatures.

Clear the check box to skip the signature verification process.

This check box is selected by default.

b. Click Load Metadata.

Copyright ©2024

 | Administrator's Reference Guide | 647

3. On the Certificate Summary tab, review the certificate information.

 Note:

This is shown and applicable only when the Validate Metadata Signature check box on the URL tab
is selected.

▪ If the metadata is not digitally signed (unsigned), click Verify to confirm that the unsigned
metadata is reachable at the time of the configuration.

▪ If the metadata is signed but the certificate is provided outside of the metadata, click Import to
upload the verification certificate.

4. On the Summary tab, review the configuration. Click Done and Save.

Updating an existing metadata URL
Use the Partner Metadata URLs window's functionality to update and correct the configuration of existing
metadata.

Steps

1. On the Partner Metadata URLs window, select the applicable metadata by its name.

2. On the URL tab, update the name, URL, or digital signature verification option. Click Next.

3. On the Certificate Summary tab, click Verify to confirm that the unsigned metadata is reachable at
the time of the configuration or update the verification certificate of a signed metadata.

 Note:

This is shown and applicable only when the Validate Metadata Signature check box on the URL tab
is selected.

4. If the metadata is signed but the certificate is provided outside of the metadata, click Import to upload
the verification certificate. Click Next.

5. On the Summary tab, review the configuration, then click Done and Save.

Reviewing a metadata URL usage
Use the Partner Metadata URLs window's functionality to look over a piece of metadata's information.

Steps

1. On the Partner Metadata URLs window, select Check Usage for the applicable metadata.

 Note:

The Check Usage option is shown and applicable only when the metadata is used by at least one
connection.

2. Review the information in the pop-up window.

3. When finished, close the pop-up window.

Copyright ©2024

 | Administrator's Reference Guide | 648

Removing a metadata URL
Use the Partner Metadata URLs window's functionality to delete an unwanted piece of metadata.

Steps

1. On the Partner Metadata URLs window, select Delete for the applicable metadata.

 Note:

The Delete option is shown and applicable only when the metadata is not used by any connections.

To cancel the removal request, select Undelete for the certificate.

2. Click Save to confirm your action.

Rotating system keys
On the System Keys window, you can manually rotate your PingFederate system keys to optimize your
environment's security.

About this task

System keys are used in cryptographic operations to generate and consume internal tokens. These tokens
are leveraged in multiple use cases such as one-time links for self-service password reset and email
ownership verification. Periodic rotation ensures optimal security of your environment.

Steps

1. Go to Security # Certificate & Key Management # System Keys.

2. To rotate the system keys, click Rotate.

3. Click Save.

Result
PingFederate generates a new Pending key. The key that was Pending becomes the Current key. The
key that was Current becomes the Previous key.

System integration
You can configure PingFederate to act in accordance with your circumstances.

If PingFederate acts in a service provider (SP) role, you can configure redirect validation rules to ensure
valuable information, such as user attribute values, is sent only to a list of designated target resources. If
PingFederate is deployed behind a reverse proxy or a load balancer, you can configure whether and how
PingFederate should extract contextual information from the requests. You can manage the availability and
authentication requirements for the supporting services that PingFederate offers. You can find these menu
items in the Security tab under the System Integration section.

Configuring redirect validation
Ensure that a designated target exists by validating single sign-on (SSO), single logout (SLO) and self-
service user account management transactions.

About this task

You can configure several service provider (SP) adapters to pass security tokens or other user credentials
from the PingFederate SP server to the target resource via HTTP query parameters, cookies, or POST
transmittal. In all cases, these transport methods carry the risk that a third party (with specific knowledge of
the identity provider (IdP), the SP, or both, PingFederate endpoints, and PingFederate configuration) could
obtain and use valid security tokens to gain improper access to the target resource.

Copyright ©2024

 | Administrator's Reference Guide | 649

This potential security threat involves using a well-formed SSO or SLO link to start an SSO or SLO request
for a resource at the SP site. However, the target resource designated in the link intercepts the security
token by a redirection to a malicious website. This same threat also applies to self-service user account
management endpoints when such requests include the TargetResource parameter.

To prevent such an attack, PingFederate provides a means of validating SSO, SLO, and self-service user
account management transactions to ensure that the designated target resource exists through a list of
configurable URLs. At minimum, an expected resource requires a domain name (or an IP address) and the
selection of one or more applicable request types.

 Note:

The following default target URLs are always allowed, and you don't need to enter them into the list
manually:

▪ The default target URL for any IdP connections (see Configuring default target URLs on page 712)
▪ The default target URL for any adapter-to-adapter mappings (see Configuring a default target URL

(optional) on page 387)
▪ The SP default URL for successful SSO (see Configuring default URLs on page 673)
▪ The IdP default URL for successful SLO (see Configuring a default URL and error message on page

408)

PingFederate can also validate the error resource parameter. For more information about the
InErrorResource parameter, see IdP endpoints on page 1167, SP endpoints on page 1173 and
System-services endpoints on page 1186.

 Important:

PingFederate enables both target resource validation and error resource validation by default in new
installations.

For backward compatibility, PingFederate upgrade tools do not enable these options if they aren't selected
in the previous PingFederate installation. Although optional, we strongly recommend enabling validation
for both target and error resources and entering all expected resources (including the HTTPS option) to
prevent unauthorized access.

Steps

1. Go to Security # System Integration # Redirect Validation.

2. Configure target resource validation options.

Option Description

SSO When selected, PingFederate validates the requested target resource
for IdP connections, adapter-to-adapter mappings, and SAML 2.0 IdP
Discovery against a list of configurable resources.

This check box is selected by default in new installations.

Clear the check box to disable the feature.

SLO and Other When selected, PingFederate validates the requested target resource for
SLO and self-service user account management requests against a list of
configurable resources.

This check box is selected by default in new installations.

Clear the check box to disable the feature.

Copyright ©2024

 | Administrator's Reference Guide | 650

3. Configure error resource validation.

 Note:

Select the Enable InErrorResource Validation check box to validate the requested
InErrorResource parameter value against a list of configurable resources.

This check box is selected by default in new installations.

Clear the check box to disable the feature.

4. Define a list of expected resources.

a. Indicate whether to mandate secure connections when this resource is requested under Require
HTTPS.

 Important:

This selection is recommended to ensure that the validation will always prevent message
interception for this type of potential attack, under all conceivable permutations.

This check box is selected by default.
b. Enter the expected domain name or IP address of this resource under Valid Domain Name.

Enter a value without the protocol, such as example.com or 10.10.10.10.

Prefix a domain name with a wildcard followed by a period to include subdomains using one entry.
For instance, *.example.com covers hr.example.com or email.example.com but not
example.com, the parent domain.

 Important:

While using an initial wildcard provides the convenience of allowing multiple subdomains using
one entry, consider adding individual subdomains to limit the redirection to a list of known hosts.

c. Optional: Enter the exact path of this resource under Valid Path.

Start with a forward slash, without any wildcard characters in the path. If left blank, any path
under the specified domain or IP address is allowed. This value is case-sensitive. For instance,
/inbound/Consumer.jsp allows /inbound/Consumer.jsp but rejects /inbound/
consumer.jsp.

You can allow specific query parameters with or without a fragment by appending them
to the path. For instance, /inbound/Consumer.jsp?area=West&team=IT#ref1001

Copyright ©2024

 | Administrator's Reference Guide | 651

matches /inbound/Consumer.jsp?area=West&team=IT#ref1001 but not /inbound/
Consumer.jsp?area=East&team=IT#ref1001.

d. Optional: Select the check box under Allow Any Query/Fragment to allow any query parameters
or fragment for this resource.

Selecting this check box also means that no query parameter and fragment are allowed in the
path defined under Valid Path.

This check box is not selected by default.
e. Select one or more request types for this resource.

▪ Select the check box under TargetResource for SSO if this is an expected SSO target
resource for one or more IdP connections, adapter-to-adapter mappings, or SAML 2.0 IdP
Discovery.

▪ Select the check box under TargetResource for SLO and Other if this is an expected target
resource for SLO and self-service user account management requests.

▪ Select the check box under InErrorResource if this is an expected InErrorResource
parameter value.

These check boxes are not selected by default.
f. Click Add.

Use the Edit, Update, and Cancel workflow to make or undo a change to an existing entry. Use
the Delete and Undelete workflow to remove an existing entry or cancel the removal request.

g. Repeat these steps to define multiple expected resources.

 Note:
The display order does not matter. A more specific match is considered a better match and an
exact match is considered the best match.

5. Click Save.

Managing partner redirect validation
PingFederate enables you to validate a parameter for single logout (SLO) in order to prevent unauthorized
access.

About this task

Some of the parameters used to perform redirection represent locations at a partner site—for example,
the wreply parameter in WS-Federation. To protect against session token hijacking through open
redirections, PingFederate provides an option to validate wreply for single logout (SLO). Once enabled,
the parameter value is managed within the connection on a per-partner basis. PingFederate amalgamates
the entries from all active WS-Federation connections and validates wreply against the consolidated list.

 Important:

PingFederate enables wreply validation for SLO by default in new installations.

For backward compatibility, PingFederate upgrade tools do not enable this option if it was not selected
in the previous PingFederate installation. Although optional, enabling wreply validation for SLO and
specifying the allowed domains and paths for each WS-Federation connection can prevent unauthorized
access.

Steps

1. Go to Security # Redirect Validation # Partner Redirect Validation.

Copyright ©2024

 | Administrator's Reference Guide | 652

2. Select the Enable wreply Validation For SLO check box to enable this feature.

 Note:

This check box is selected by default in new installations. Clear the check box to disable the feature.

3. Click Save.

Configure incoming proxy settings
Use the options in the Incoming Proxy Settings window to enable PingFederate to access information to
construct correct responses to incoming requests.

When PingFederate is deployed behind a reverse proxy (or a similar network traffic management solution,
such as a load-balancer), the following options enable PingFederate to use information in HTTP headers
added by the reverse proxy to construct correct responses. These options, configurable on Security #
System Integration # Incoming Proxy Settings, apply globally to all incoming requests.

HTTP header for client IP addresses

The HTTP Header for Client IP Addresses field allows you to globally specify the header name (for
example, X-Forwarded-For) where PingFederate should attempt to retrieve the client IP address in all
HTTP requests sent to PingFederate. Defining this field helps PingFederate identify the correct client IP
address when PingFederate is operating behind a reverse proxy or load balancer.

 Note:

By design, the X-Forwarded-For header exposes privacy-sensitive information, such as the IP address
of the client. This header is untrustworthy when no trusted reverse proxy exists between the client and
server. PingFederate assumes that a trusted proxy verifies any headers configured in the Incoming
Proxy Settings rather than coming directly from the client. Therefore, we recommend that customers only
configure headers in Incoming Proxy Settings that are proxied through a trusted source.

Proxies commonly append the IP address from an incoming request to the X-Forwarded-For (or similar)
header. If you enter X-Forwarded-For as the value of the HTTP Header for Client IP Addresses
field, PingFederate combines multiple comma-separated header values in the same order that they are
received. Define which IP address you want to use in the list box:

▪ Leave the default of Use Last Value to use the last value in the combined list.
▪ Select Use First Value to use the first value in the combined list.

HTTP header for hostname

The HTTP Header for Hostname field allows you to globally specify the header name (for example, X-
Forwarded-Host) where PingFederate should attempt to retrieve the hostname and port in all HTTP
requests sent to PingFederate. Proxies commonly append the hostname and port from an incoming
request to the X-Forwarded-Host (or similar) header. If you enter X-Forwarded-Host as the value of
the HTTP Header for Hostname field, PingFederate combines multiple comma-separated header values
into the same order that they are received. Define which hostname you want to use in the list box:

▪ Leave the default of Use Last Value to use the last value in the combined list.
▪ Select Use First Value to use the first value in the combined list.

Client certificate header name and chain header name

If you use mutual client certificate authentication and want to use the Apache HTTP Server with mod_ssl
as the incoming proxy, configure the Apache HTTP Server to pass client certificates as HTTP request
headers and enter the header names on the Incoming Proxy Settings window.

Copyright ©2024

 | Administrator's Reference Guide | 653

The following examples shows the Apache HTTP Server configured to pass the client leaf certificate and
up to four intermediate certificates as headers.

...
SSLOptions +ExportCertData
RequestHeader set LEAF_CERT "%{SSL_CLIENT_CERT}s"
RequestHeader set CHAIN0 "%{SSL_CLIENT_CERT_CHAIN_0}s"
RequestHeader set CHAIN1 "%{SSL_CLIENT_CERT_CHAIN_1}s"
RequestHeader set CHAIN2 "%{SSL_CLIENT_CERT_CHAIN_2}s"
RequestHeader set CHAIN3 "%{SSL_CLIENT_CERT_CHAIN_3}s"
...

 Note:

This configuration snippet is for demonstration purposes only.

To configure PingFederate to consume these HTTP request headers for the purpose of mutual client
certificate authentication:

▪ Enter LEAF_CERT as the Client Certificate Header Name.
▪ Enter CHAIN as the Client Certificate Chain Header Name.

 Note:

Do not enter the trailing number from the chain header names.

 CAUTION:

Since HTTP request headers could potentially be forged, you should only specify a Client Certificate
Header Name and a Client Certificate Chain Header Name if the Apache HTTP Server is immediately in
front of your PingFederate environment. The specified values must match the header names used in the
Apache HTTP Server configuration, omitting the trailing number from the chain header names.

Incoming proxy terminates HTTPS connections

The Incoming proxy terminates HTTPS connections option allows you to globally specify that
connections to the reverse proxy are made over HTTPS even when HTTP is used between the reverse
proxy and PingFederate.

Configuring service authentication
Administrators with the Admin role can activate and configure authentication for Attribute Query, Java
Management Extensions (JMX), and SSO Directory Service.

About this task

If you are using the SAML 2.0 Attribute Query profile as a service provider (SP), then the requesting
applications at your site must authenticate to the PingFederate server. For more information, see Attribute
Query and XASP on page 43 and the /sp/startAttributeQuery.ping on page 1176 SP application
endpoint.

Authentication is required to access PingFederate runtime data via JMX (see Runtime monitoring using
JMX on page 885) or to make SOAP calls to the Connection Management Service. Authentication is
optional for the SSO Directory Service. For more information, see Web service interfaces and APIs on
page 1115 and SSO Directory Service on page 1119.

Copyright ©2024

 | Administrator's Reference Guide | 654

 Note:

To help ensure network security, access to all of these services is deactivated when PingFederate is first
installed.

To activate and configure authentication for the Connection Management Service, grant the administrators
all three administrative roles: Admin, Crypto, and User Admin. For more information, see Connection
Management Service on page 1116.

Steps

▪ To enable a service:

a. On Security # System Integration # Service Authentication, select Action # Activate for your
desired service.

b. Enter or modify) the service account ID and define or reset the Shared Secret.

You and the application developer must agree to these values.

 Tip:

Authentication is optional for the SSO Directory Service.

▪ To disable a service, on Security # Service Authentication, select Deactivate under Action for your
desired service.

 Note:

Although not accessible when deactivated, the Connection Management Service and the SSO
Directory Service are deployed by default with PingFederate. If your organization does not plan to use
one or both of these services, you can remove the following WAR file or files:

▪ <pf_install>/pingfederate/server/deploy2/pf-mgmt-ws.war for the Connection
Management Service

▪ <pf_install>/pingfederate/server/deploy/pf-ws.war for the SSO Directory Service

Account lockout protection
Account lockout protection provides a level of security to the user and can operate in multiple ways based
on the PingFederate environment.

Account lockout protection prevents user accounts from locking at the underlying user repository based
on too many failed authentication attempts. It also adds a layer of protection against brute force and
dictionary attacks because the user is locked out for a time period when the number of failed attempts
exceeds the threshold. This protection is enabled in many areas of , including the HTML Form Adapter, the
Username Token Processor, the OAuth resource owner password credentials grant type, and the native
authentication scheme for the administrative console and API.

 Note:

The HTML Form Adapter and the Username Token Processor provide a per-instance setting for the
maximum number of failed attempts such that administrators can use unique values for different instances
of the adapter or the token processor.

In a PingFederate clustered environment, depending on the chosen runtime state-management
architecture, the account locking-state information is shared across a replica set, multiple replica sets, or all
nodes in the cluster.

Copyright ©2024

 | Administrator's Reference Guide | 655

Settings for account lockout protection are stored in the
com.pingidentity.common.security.AccountLockingService.xml configuration file, located in
the <pf_install>/pingfederate/server/default/data/config-store directory.

Configuring account lockout protection
Use PingFederate's functionality to customize your account lockout protection settings.

Steps

1. Edit the com.pingidentity.common.security.AccountLockingService.xml file, located in
the <pf_install>/pingfederate/server/default/data/config-store directory.

For more information, see the inline comments and the following table.

Property Description

MaxConsecutiveFailures The maximum number of failed attempts before a user is locked out for a
time period.

The default value is 3.

 Note:

The per-instance setting in the HTML Form Adapter and the Username
Token Processor overrides this property.

LockoutPeriod The amount of time in minutes that a user is locked out when the
MaxConsecutiveFailures threshold is reached.

The default value is 1 minute.

If you have a PingFederate clustered environment, edit this file on the console node.

2. Save the change.

3. Restart PingFederate.

4. If you have a PingFederate clustered environment, click Replicate Configuration in System # Server
Cluster Management.

Password spraying prevention
Use password spraying prevention to mitigate against attacks which exploit weak or compromised
passwords.

Password spraying prevention adds a layer of defense against the attack pattern where bad actors try to
gain access to protected resources by using the same password, typically weak or compromised, against
multiple accounts from multiple locations. When enabled, tracks the number of failed login attempts per
password. When the number of failures for a particular password reaches a threshold, that password is
temporarily locked out. Password spraying prevention applies to the HTML Form Adapter, the Username
Token Processor, and the OAuth 2.0 resource owner password credentials grant type.

While password spraying prevention can help mitigate the risk of unauthorized access, we recommend
that you also enforce a good password policy and a multifactor authentication solution, such as PingID, to
protect your organization from password spraying attacks.

In a PingFederate clustered environment, depending on the chosen runtime state-management
architecture, state information is shared across a replica set, multiple replica sets, or all nodes in the
cluster.

Copyright ©2024

 | Administrator's Reference Guide | 656

Settings for password spraying prevention are stored in the
com.pingidentity.common.security.AccountLockingService.xml configuration file, located in
the <pf_install>/pingfederate/server/default/data/config-store directory.

Configuring password spraying prevention
Configure how password spraying prevention functions within your PingFederate environment to customize
your login security experience.

Steps

1. Edit the com.pingidentity.common.security.AccountLockingService.xml file, located in
the <pf_install>/pingfederate/server/default/data/config-store directory.

For more information, see the inline comments and the following table.

Property Description

DoPasswordLocking Enable (true) or disable (false) password spraying prevention.

The default value is false.

MaxPasswordAttempts The maximum number of failed attempts before a password is locked out
for a time period.

Applicable only if password spraying prevention is enabled.

The default value is 5.

PasswordLockoutPeriod The amount of time in minutes that a password is locked out when the
MaxPasswordAttempts threshold is reached.

Applicable only if password spraying prevention is enabled.

The default value is 5 minutes.

If you have a PingFederate clustered environment, edit this file on the console node.

2. Save the change.

3. Restart PingFederate.

4. If you have a PingFederate clustered environment, click Replicate Configuration on System #
Server # Cluster Management.

Implementing a MasterKeyEncryptor using AWS KMS
During initial startup, PingFederate automatically generates a randomized master key, which by default is
not encrypted. If you are running in Amazon Web Services (AWS), you can configure PingFederate to use
Amazon Key Management Services (KMS) to encrypt the master key.

Before you begin

▪ Make sure that you have an active connection to AWS.
▪ Use AWS KMS to generate a key to use for the PingFederate master key encryption.
▪ See https://docs.aws.amazon.com/kms/latest/developerguide/overview.html for general information

about how you can manage access rights to your keys using key policies or AWS Identity and Access
Management (IAM).

About this task

To configure the encryption of the PingFederate master key, modify two files: hivemodule.xml and
com.pingidentity.crypto.jwk.MasterKeySet.xml.

Copyright ©2024

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

 | Administrator's Reference Guide | 657

Steps

1. Stop PingFederate.

2. Open <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml in
a text editor.

3. Locate the following lines near the bottom of the file.

<service-point id="MasterKeyEncryptor"
 interface="com.pingidentity.sdk.key.MasterKeyEncryptor">
 <create-instance
 class="com.pingidentity.crypto.jwk.NoOpMasterKeyEncryptor"/>
</service-point>

4. To enable master key encryption using AWS KMS, replace the lines shown in step 3 with the following
lines.

<service-point id="MasterKeyEncryptor"
 interface="com.pingidentity.sdk.key.MasterKeyEncryptor">
 <create-instance
 class="com.pingidentity.pingcommons.aws.key.AwsKmsMasterKeyEncryptor"/>
</service-point>

5. Save and close the file.

6. Open <pf_install>/pingfederate/server/default/data/config-store/
com.pingidentity.crypto.jwk.MasterKeySet.xml in a text editor.

The contents of the file are shown here.

<?xml version="1.0" encoding="UTF-8"?>
<con:config xmlns:con="http://www.sourceid.org/2004/05/config">
 <!--
 Uncomment the below attribute to use an external key for
 encryption of PF Master Key.

 <con:item name="keyId"> put the key Id here </con:item>
 -->
 <con:item name="jwkEncrypted">false</con:item>
</con:config>

7. Uncomment the <con:item name="keyId"> attribute and specify the key that you generated using
AWS KMS. For example, after you've made the change, the file might look like the following.

<?xml version="1.0" encoding="UTF-8"?>
<con:config xmlns:con="http://www.sourceid.org/2004/05/config">
 <con:item name="keyId">b3867a2c-4d15-8e0c-6f7b-0b1e61f7ad36</
con:item>
 <con:item name="jwkEncrypted">false</con:item>
</con:config>

8. Save and close the file.

9. Start PingFederate.

Result
After configuring and starting PingFederate, the PingFederate master key file, pf.jwk, is encrypted.

Copyright ©2024

 | Administrator's Reference Guide | 658

Self-service user account management
As an administrator, you can enable certain self-service applications to let end users better manage their
accounts and, by extension, lower identity management costs.

PingFederate provides various self-service applications for end users to manage their accounts. These
optional capabilities lower the costs of identity management by freeing administrators from round-the-
clock service requests to change passwords, reset passwords, unlock accounts, and recover usernames.
Designed for ease of deployment, these capabilities are integrated into the HTML Form Adapter.
Administrators can easily enable some or all capabilities with a few configuration changes on a per-adapter
basis. Like other user-facing windows, you can customize and localize the user-facing templates to provide
the desired user experience.

PingFederate also allows users to unlock their accounts without submitting a ticket to the IT department.
When enabled with SSPR, if an account is locked, a user can initiate an account unlock request at
the Sign On window or the per-adapter Password Reset endpoint. Through the HTML Form Adapter,
PingFederate prompts the user to prove ownership of the account using the password reset flow.

When users succeed in proving account ownership, they are allowed to retain their current passwords
or to reset their passwords as needed. Furthermore, self-service account unlock is only compatible with
PingDirectory and Microsoft Active Directory. If the underlying datastore is connected to Oracle Unified
Directory or Oracle Directory Server, users can only unlock their account by changing their current
password through the password reset flow.

 Tip:

Similarly, when configuring customer identity and access management use cases, administrators can
enable end users to manage their local accounts, connect or disconnect one or more social connections,
and change or set the password for their local accounts. For more information, see Customer IAM
configuration on page 337 and Enabling profile management on page 361.

Configuring self-service password management
Create or modify an instance of the HTML Form Adapter to enable a customized self-service password
management capability.

About this task

PingFederate offers self-service username password management for users to change their network
password. This optional capability is integrated into the HTML Form Adapter and the LDAP Username
Password Credential Validator (PCV). You can configure PingFederate to generate notification messages
when users successfully change the password associated with their accounts through the HTML Form
Adapter or when their passwords are about to expire.

If you are validating credentials through the PingOne for Enterprise Directory PCV, you can also enable the
change password capability. Notifications for change password and password expiry are not supported at
this point.

Copyright ©2024

 | Administrator's Reference Guide | 659

Steps

1. On Authentication # Integration # IdP Adapters, create a new HTML Form Adapter instance.

You can also reuse an existing HTML Form Adapter instance. If you do, skip to step 1c to configure
your adapter instance to enable self-service password management.

a. Select the PCV instance as the credential validator.
b. Optional: Update any default values or options.
c. Select the Allow Password Changes check box.
d. Configure your adapter instance options. For more information, see the following table.

Option Effects

Change Password Notification Select if you want PingFederate to generate a notification
message for the user who has successfully changed their
password through the HTML Form Adapter.

 Note:

The message is sent to the user's email address,
specifically the mail attribute value returned by the LDAP
Username PCV instance.

Show Password Expiring
Warning

Select if you want the Sign On window to warn the user
about an approaching password expiration.

Change Password Notification Select to choose a notification publisher instance.

 Note:

If you have not yet configured the desired notification
publisher instance, click Manage Notification Publishers.

Show Advanced Fields Click to review or modify default values related to the
change password capability. For example, update the
Change Password Template field if you want to use a
custom template to render the Change Password window.

2. Optional: Customize and localize the on-window messages and notification messages.

Result

You have created a new instance or modified an existing instance of the HTML Form Adapter with the self-
service password management capability.

When a user signs on through this adapter instance, the user has the option to change the password
associated with the account using the Change Password link.

You can also provide your users the per-adapter Change Password endpoint /ext/pwdchange/
Identify, which allows them to change their password through this HTML Form Adapter instance without
submitting single sign-on (SSO) requests.

Copyright ©2024

 | Administrator's Reference Guide | 660

Configuring self-service account recovery
PingFederate offers self-service password reset for users to recover their accounts if they forgot their
passwords.

About this task

Integrated into the HTML Form Adapter and Password Credential Validator (PCV) framework, users reset
their passwords through one of the following mechanisms:

▪ Authentication policy
▪ One-time link through email
▪ One-time password through email
▪ One-time password through text message
▪ PingID - The PingID account recovery option requires users to already have a PingID account.

The self-service password reset capability relies on the HTML Form Adapter and the LDAP Username
PCV to query the required attributes for the chosen reset mechanism. PingFederate supports
PingDirectory, Microsoft Active Directory, Oracle Unified Directory, and Oracle Directory Server
out-of-the-box. Custom PCV implementations can also be developed to offer the self-service
password reset features for users stored in non-LDAP data sources. For more information, see the
ResettablePasswordCredential interface in Javadoc.

 Tip:

The Javadoc for is located in the <pf_install>/pingfederate/sdk/doc directory.

Steps

1. Create a new LDAP datastore. For instructions, see Configuring an LDAP connection on page 891.

You can also reuse an existing LDAP datastore connection.

 Important:

▪ When connecting to an Active Directory (AD) LDAP server, you must secure the datastore
connection using LDAPS. AD requires this level of security to allow password changes.

▪ When connecting to PingDirectory, Oracle Unified Directory, or Oracle Directory Server, configure
proxied authorization for the service account on the directory server. See Proxied authorization on
page 897.

2. Create an LDAP username password credential validator. For instructions, see Configuring the LDAP
Username Password Credential Validator on page 927.

The advanced fields on the Instance Configuration tab allow you to configure self-service password
reset, account unlock, and user name recovery through the HTML Form Adapter

Copyright ©2024

 | Administrator's Reference Guide | 661

3. Create a new HTML Form Adapter instance. For complete field descriptions, see Configuring an HTML
Form Adapter instance on page 291 and HTML Form Adapter advanced fields on page 302.

a. Go to Authentication # Integration # IdP Adapters.
b. In the IdP Adapters window, click Create New Instance.
c. On the Type tab, enter an instance name and ID.
d. From the Type list, select HTML Form IdP Adapter, and click Next.
e. On the IdP Adapter tab, click Add a new row to 'Credential Validators' and select the LDAP

Username PCF instance defined in step 2.
f. Select the Allow Password Changes check box.
g. Select the Change Password Notification check box if you want PingFederate to generate a

notification message for a user who has successfully changed their password through the HTML
Form Adapter.

The message is sent to the user's email address, specifically the mail attribute value returned by
the LDAP Username PCV instance.

h. Select a Password Reset Type. See the following table for more information.

Copyright ©2024

 | Administrator's Reference Guide | 662

Field Description

Password Reset Type Select one of the following methods for self-service password reset.

Authentication Policy

Based on the policy contract selected from the Password
Reset Policy Contract list, PingFederate finds the applicable
authentication policy to handle self-service password reset
requests. If the users are able to fulfill the authentication
requirements as specified by the policy, PingFederate allows the
users to reset their password.

Email One-Time Link

Users receive a notification with a URL to reset their password.

If you have not yet configured the desired notification publisher
instance, click Manage Notification Publishers.

Email One-Time Password

Users receive a notification with a one-time password (OTP) to
reset their password.

If you have not yet configured the desired notification publisher
instance, click Manage Notification Publishers.

PingID

Users are prompted to follow the PingID authentication flow to
reset their password.

Ensure the PingID Username Attribute field in the selected LDAP
Username PCV instance is configured; otherwise, users will not be
able to reset their password.

You must also download the settings file from the PingOne admin
portal and upload the file to the PingID Properties advanced field.

 Important:

Do not use a method that is already part of a multi-factor
authentication policy that includes a password challenge, as that
would indirectly reduce that authentication policy to a single factor.
For example, if users normally authenticate with a password
challenge and then PingID, the self-service password reset method
should not be PingID. Instead, choose the Authentication Policy
option, select a policy contract from the Password Reset Policy
Contract list, and configure an authentication policy for self-service
password reset.

Text Message

Users receive a text message notification with an OTP to reset
their password.

Ensure the SMS Attribute field in the selected LDAP Username
PCV instance is configured; otherwise, users will not receive text
message notification for password reset.

If you have not yet configured SMS provider settings in
PingFederate, click Manage SMS Provider Settings.

None

Users cannot reset password through this HTML Form Adapter
instance.

The default selection is None.

If a notification publisher instance is configured, PingFederate
generates a notification for the user who has successfully reset the
password through the HTML Form Adapter. The destination is the user's
email address, specifically the value of the attribute defined by the Mail
Attribute setting in the LDAP Username PCV instance.

Copyright ©2024

 | Administrator's Reference Guide | 663

Field Description

Password Reset Policy
Contract

If you use an authentication policy to handle SSPR requests, you must
select a policy contract here.

This policy contract doesn't require any extended attributes because
uses this policy only to find the applicable authentication policies for
password resets.

 Important:

You must use a policy contract dedicated only to password reset. You
can't use this policy contract for SSO anywhere else. To define a policy
contract solely for password reset, click Manage Policy Contracts.

An authentication policy that uses this contract allows users to reset
their password. Ensure the policy uses strong authentication methods
to securely identify the user who initiated the password reset operation.
Map the incoming user ID for adapters in the policy to Requested User
and confirm that adapters will only return success when this user is the
one authenticating.

For guidelines on designing adapters for use in password reset or
password change authentication policies, see Developing IdP adapters
on page 1051.

i. Select the Account Unlock check box if you want to enable self-service account unlock as well.
j. Select a notification publisher instance from the list.

If you have not yet configured the desired notification publisher instance, click Manage
Notification Publishers.

k. Click Show Advanced Fields to review or modify the rest of the default values related to
self-service password reset. For descriptions of all advanced fields, see HTML Form Adapter
advanced fields on page 302

4. If you selected Authentication Policy as the password reset type, create a new authentication policy
to handle self-service password reset requests.

Generally a password reset policy must authenticate users through means other than prompting for
the forgotten passwords. It should also enforce multi-factor authentication for added security. Consider
the following sample use case.

You have already created an authentication policy to protect single sign-on (SSO) requests. This
policy uses an HTML Form Adapter instance to validate user credentials and an instance of the PingID
Adapter for multi-factor authentication. If users satisfy both authentication requirements, the policy
uses a policy contract to relay user attributes to partners. To learn more about this policy configuration,
see Defining authentication policies based on group membership information on page 249.

Like SSO, you also want to protect self-service password reset with multi-factor authentication.

Knowing your company actively manages client certificates on company devices, you have decided
to use an instance of the X.509 IdP Adapter (named X.509) as the first-factor authentication source
in your password reset policy. You have extended the adapter contract with a CN attribute, through
which the adapter exposes the username found in the client certificate. For added security, you intend
to leverage PingID as the second-factor authentication source. Per step 3e, you have also created a

Copyright ©2024

 | Administrator's Reference Guide | 664

new policy contract (named SSPR APC) for the sole purpose of SSPR. At this point, you are ready to
create your password reset policy.

a. On Authentication # Policies # Policies, click Add Policy.
b. On the Policy window, enter a name (and optionally a description) for the policy.
c. Select the X.509 IdP Adapter instance.
d. Configure each policy path out of the X.509 Adapter instance.

Fail

Select Done, which terminates the self-service password reset request.

For instance, if a user submits an self-service password reset request from a personal
device, the request will fail because the browser on the personal device is not equipped with
the company-managed client certificate issued to that user (that is only available on that
user's company device).

Success

Select the same PingID Adapter instance that you have created and used in the SSO policy.

e. Configure the incoming user ID for the PingID Adapter instance.

1. Click Options to open the Incoming User ID dialog.
2. Select Adapter (X.509) under Source.
3. Select CN under Attribute.
4. Click Done to close the Incoming User ID dialog.

For more information, see Specifying incoming user IDs on page 245.
f. Configure each policy path out of the PingID Adapter instance.

Fail

Select Done, which terminates the self-service password reset request.

Success

Select SSPR APC, which is the policy contract created solely for password reset per step
3e.

 Important:

You must not reuse this policy contract for SSO elsewhere.

g. Configure the contract fulfillment for the selected policy contract.

Because the sole purpose of the selected policy contract is to route the SSPR requests through
this password reset policy, the fulfillment of this contract does not matter. It is not used elsewhere.
For instance, you can configure its mapping as follows.

Contract Attribute Source Value

subject Text Benign

h. Click Done and then Save.

This sample use case demonstrates the capability and flexibility that a password reset policy
offers. Depending on actual use cases, you can use a different series of authentication sources to
authenticate users in a secure manner. For example, if your organization manages devices using
AirWatch, you can add an instance of the AirWatch Adapter as one of the authentication sources in the
password reset policy. Other similar solutions include MobileIron and Microsoft Intune.

5. Optional: Customize and localize the on-screen messages and notification messages.

Copyright ©2024

 | Administrator's Reference Guide | 665

Result

You successfully created a new instance or modified an existing instance of the HTML Form Adapter with
the SSPR and account unlock capabilities.

When a user signs on through this adapter instance, the user has the option to reset the password or
unlock the account using the Trouble Signing On link.

Additionally, you can also provide your users the per-adapter Account Recovery endpoint /ext/
pwdreset/Identify, which allows them to reset their password or unlock their account through this
HTML Form Adapter instance without submitting SSO requests.

Configuring self-service user name recovery
Use PingFederate's self-service user name recovery feature to enable users to recover their lost user
names through their email addresses.

About this task

PingFederate offers self-service user name recovery for users to recover their accounts through email if
they forget their user names.

This optional capability is integrated into the HTML Form Adapter and the LDAP Username Password
Credential Validator (PCV). PingFederate supports PingDirectory, Microsoft Active Directory, Oracle
Unified Directory, and Oracle Directory Server out-of-the-box. Custom PCV implementations can
also be developed to offer the same capability for users stored in non-LDAP data sources. For more
information,see the RecoverableUsername interface in Javadoc.

 Tip:

The Javadoc for is located in the <pf_install>/pingfederate/sdk/doc directory.

Steps

1. Go to Authentication # Integration.On the IdP Adapters window, create a new HTML Form Adapter
instance.

You can also reuse an existing HTML Form Adapter instance. If you do, skip to step 1c to configure
your adapter instance to enable the self-service user name recovery capability.

a. Select the HTML Form Adapter instance as the credential validator.
b. Optional: Update any default values or options.
c. Select the Enable Username Recovery check box.
d. Select a notification publisher instance from the list.

 Note:

If you have not yet configured the desired notification publisher instance, click Manage
Notification Publishers.

e. Click Show Advanced Fields to review or modify default values related to self-service user name
recovery.

Example:

Select the Require Verified Email check box if you want PingFederate to only send user name
recovery email messages to users who have proven ownership of their email addresses.

2. Optional: Customize and localize the on-window messages and notification messages.

Copyright ©2024

 | Administrator's Reference Guide | 666

Result

You successfully created a new instance or modified an existing instance of the HTML Form Adapter with
the self-service user name recovery capability.

When a user signs on through this adapter instance, the user has the option to recover the user name
using the Trouble Signing On link.

You can also provide your users the per-adapter username recovery endpoint /ext/idrecovery/
Recover, which allows them to recover their user name through this HTML Form Adapter instance without
submitting single sign-on (SSO) requests.

Service provider SSO configuration
You can use the PingFederate administrative console as a service provider (SP) to configure local
application-integration information and to manage connections to your identity provider (IdP)-partner sites.

Only one connection is needed per partner, even if integrating more than one web application.

While you define your entity ID on the Federation Info tab of the Protocol Settings window, you can
identify your organization differently through the use of virtual server IDs on a per-connection basis. For
more information, see Multiple virtual server IDs on page 105.

Additionally, you can deploy an SP connection to bridge a service provider to one or more identity
providers through one or more authentication policy contracts. For more information, see Federation hub
use cases on page 99 and Federation hub and authentication policy contracts on page 103.

 Note:

This topic applies to configuration settings needed for browser-based single sign-on (SSO). Although
this information also applies to WS-Trust security token service (STS), if you are using PingFederate
exclusively as an STS, start with WS-Trust STS configuration on page 976.

SP application integration settings
The integration of local applications with PingFederate is the essential "last-mile" configuration that allows
end-users at your identity provider (IdP) partner's website to access your protected resources.

The use of application-integration kits and a robust SDK facilitates the integration of local applications with
PingFederate. For more information, see SSO integration kits and adapters on page 83.

You can configure the service provider (SP) adapters that PingFederate uses to create user sessions that
allow single sign-on (SSO) access to your protected resources. You can also set Default URLs to which
users can be directed during SSO or single logout (SLO) and look up system endpoints that application
developers at your site need to access PingFederate's SSO/SLO services.

 Note:

If your PingFederate configuration enables the WS-Trust security token service (STS), you can configure
plugin token generators on the Applications tab in the Token Exchange # Token Generators window.
For more information, see Service provider STS configuration on page 1001.

Copyright ©2024

 | Administrator's Reference Guide | 667

Managing SP adapters
A service provider (SP) adapter creates a local-application session for a user to provide single sign-on
(SSO) access to your applications or other protected resources. You must configure at least one instance
of an SP adapter to set up connections to identity provider (IdP) partners.

About this task

You can configure multiple instances of adapters, based on one or more adapters, to accommodate the
varying needs of your IdP partners.

PingFederate comes bundled with OpenToken Adapter. You can deploy additional integration kits from the
Ping Identity Downloads website.

Steps

1. Go to Applications # Integration # SP Adapters.

2. In the SP Adapters window, choose from the following options.

Option Description

Configure a new instance Click Create New Instance

Modify an existing instance Click the name of instance in the Instance Name
column

View the usage of an existing instance Click Check Usage in the Action column on the
instance's row

Remove an existing instance Click Delete in the Action column on the
instance's row

 Important:

After installing new adapter program files, you might be required to make additional configuration
changes in areas such as adapter instances and connections as prompted by the administrative
console.

 Note:

By default, automatically checks multi-connection errors whenever you access this window. This
verifies that configured connections are not adversely affected by changes made here.

If you experience noticeable delays in accessing this window, you can disable automatic connection
validation. Go to System # Server # General Settings.

Creating an SP adapter instance
The first step in creating an adapter instance is choosing an adapter type.

Steps

1. Go to Applications # Integration # SP Adapters.

2. On the SP Adapters window, click Create New Instance.

Copyright ©2024

 | Administrator's Reference Guide | 668

3. On the Type tab, configure the basics of this adapter instance.

a. Enter the instance name and ID.
b. From the Type list, select the adapter type.
c. Optional: From the Parent Instance list, select an existing type.

If you are creating an instance that is similar to an existing instance, you might consider making
it a child instance by specifying a parent. A child instance inherits the configuration of its parent
unless overridden. You can specify overrides during the rest of the setup.

4. Click Next.

Configuring an SP adapter instance
You are presented with different configuration parameters depending on the type of adapter that you
selected.

About this task

Steps

▪ If this is a child instance, select the override check box to modify the configuration.
▪ If you are configuring an instance of the OpenToken SP Adapter, see Configuring an OpenToken SP

Adapter instance on page 329 for configuration information.
▪ If you are configuring an adapter from an integration kit (including any SaaS connector), use the

information in SSO integration overview on page 59 to configure the adapter instance.

Invoking SP adapter actions
Adapters can perform configuration assistance or validation actions; for example, testing a connection to
an LDAP server. Actions may also include generation of parameters that might need to be set manually in
a configuration file.

Steps

▪ On the Actions tab, complete any actions required, and click Next.

Extending an SP adapter contract
You can configure adapters with an option allowing administrators to add to the attributes required for
creating usable sessions.

About this task

This feature might be needed by a legacy application that requires different authentication than other
applications under the same enterprise identity-management system.

 Note:

If this is a child instance, select the override check box to modify the configuration.

Steps

1. On the Extended Contract tab, enter the name of an attribute and click Add.

Repeat this step as needed to add another attribute.

2. Click Next.

Copyright ©2024

 | Administrator's Reference Guide | 669

Identifying the target application
On the Target App Info tab, you can enter the name of the target application and the URL of the
application icon.

About this task

The URL is accessible through the IdP Adapter interface, IdpAuthenticationAdapterV2, in the
PingFederate Java SDK. For more information about the SDK, see SDK Developer's Guide on page 1047.
Both fields are optional.

 Note:

If this is a child instance, select the override check box to modify the configuration.

Steps

1. Optional: Enter the application name in the Application Name field.

2. Optional: Enter the URL to the application icon in the Application Icon URL field.

3. Click Next.

Reviewing an SP adapter configuration
You can review your SP adapter settings before completing the configuration.

Steps

▪ To keep your changes, click Save.
▪ To amend your configuration, click the name of the corresponding tab and then follow the configuration

wizard to complete the task.
▪ To discard your changes, click Cancel.

Configuring target URL mapping
When you have more than one target session defined in an identity provider (IdP) connection, you must
map the target URL to its target session.

About this task

When PingFederate receives a single sign-on (SSO) or single logout (SLO) request, it compares the target
URL against the configured URLs until a match is found. If a match is not found, the SSO request fails.

 Important:

For target URL mapping to work correctly, you must configure a target resource entry in the Security #
System Integration # Redirect Validation settings. If you have not done this, follow the instructions in
Configuring redirect validation on page 648.

For example, this mapping configuration might be necessary in an IdP-initiated SSO scenario that
connects to multiple applications at your site. For transactions initiated at your site, this mapping is required
for default situations where the target resource and the adapter instance are not specified in the SSO or
SLO request. When this information is provided with the service provider (SP) request, the mapping table
is ignored. For more information, see SP services on page 1173.

When bridging an identity provider to multiple service providers, for each service provider supporting the
SAML IdP-initiated SSO profile, map the target URLs to the corresponding SP connection.

 Tip:

Copyright ©2024

 | Administrator's Reference Guide | 670

In this scenario, PingFederate is a federation hub for the identity provider and the service providers. For
more information, see Federation hub use cases on page 99.

Finally, if an IdP connection is associated with one or more SP adapters, authentication policy contracts, or
both, you also need to map the target URLs to their respective target session.

You manage target URL mappings on the Applications # Integration # Target URL Mapping window.
The configuration process involves entering a URL and select a target session for it. See the following
table for more information.

The order of mapping is significant in that the first matching mapping, from top to bottom, determines which
target session receives the request. For example, if two URLs are mapped in the following order.

URL Session Target

http://
www.example.com/
acct101/

OpenToken SP Adapter to an local training app

http://
www.example.com/*

SP connection to SP SaaS

A target URL of http://www.example.com/acct101/ will be mapped to OpenToken SP Adapter to an local
training app because the target matches the first mapping in the configuration.

If the order of the mappings is reversed, the same target will be mapped to SP connection to ACME SaaS
because the first mapping in the new configuration, http://www.example.com/*, matches the target
URL.

Steps

1. Enter a URL.

The target URLs that align with your configured target sessions. The URLs instruct the PingFederate
SP server to route session-creation processing through an SP adapter instance or an SP connection.

You can use a wildcard (*) to match multiple URLs to the same target session but you can use only
one wildcard (*) per URL.

If the target URL in the incoming request is not matched by the first entry in this table, subsequent
entries are tried until a match is found.

 Note:

PingFederate tries the next entry if a target session is not allowed based on restrictions imposed. For
more information, see Restricting a target session to certain virtual server IDs on page 695.

2. Select a target type from the list.

You can only select a target type from the list when the IdP role is activated with at least one protocol
for browser-based SSO.

If the IdP role is not activated or is activated without any protocol for browser-based SSO, such as
SAML or WS-Federation, the Target Type value defaults to SP Adapter.

3. Select a target session from the list.

The available values depends on the chosen the Target Type list.

4. Click Add Mapping.

5. Repeat these steps to add multiple mappings.

Copyright ©2024

 | Administrator's Reference Guide | 671

Next steps

Use the up and down arrows to re-arrange the order of the mappings. Click Edit, UpdateCancel to make
or undo a change to a mapping. Click Delete and Undelete to remove a mapping or cancel the removal
request.

Configuring Identity Store Provisioners
PingFederate allows you to create custom identity store provisioners to bridge the inbound system for
cross-domain identity management (SCIM) processing of PingFederate to your own user store. For
example, you might need to create a custom identity store provisioner that works with an application-
specific user database schema.

Using the SDK for PingFederate, you can create and test these custom identity store provisioners. For
more information, see the PingFederate SDK Developer's Guide on page 1047.

To support custom attributes, you must add the schema extension and the custom attributes to the identity
provider (IdP) connection. Furthermore, you need to take the expected data structure of the custom
attributes into consideration when implementing the IdentityStoreProvisioner interface and its
methods. In other words, your methods must be able to create, read, update, and delete/deactivate the
custom attributes and their sub-attributes if the custom attributes are complex attributes to and from your
user store. For more information about custom attributes, complex attributes, and other attribute types, see
Defining custom SCIM attributes on page 730 and SCIM 1.1 Core Schema.

 Note:

The identity store provisioner option is active only after you enable Inbound Provisioning.

 Note:

By default, automatically checks multi-connection errors whenever you access this window. This verifies
that configured connections are not adversely affected by changes made here.

If you experience noticeable delays in accessing this window, you can disable automatic connection
validation. Go to System # Server # General Settings.

Creating an Identity Store Provisioner instance
On the Type tab, you begin creating an instance of an identity store that PingFederate uses to bridge the
inbound System for Cross-domain Identity Management (SCIM) processing to an external user store using
a custom implementation.

Steps

1. Go to System # Data & Credential Stores # Identity Store Provisioners.

2. Click Create New Instance.

3. On the Type tab, enter the a name and an ID in the Instance Name and Instance ID fields.

4. From the Type list, select a provisioner type.

Available provisioner types are limited to those that are currently installed on your server.

5. Optional: Select a parent instance from the Parent Instance list.

If you are creating an instance that is similar to an existing instance, you might consider making it a
child instance by specifying a parent. A child instance inherits the configuration of its parent unless
overridden. You can specify overrides during the rest of the setup.

6. Click Next.

Copyright ©2024

http://www.simplecloud.info/specs/draft-scim-core-schema-01.html

 | Administrator's Reference Guide | 672

Defining the Identity Store Provisioner behavior
Different configuration parameters are available on the Identity Store Provisioner tab. These options
are controlled by the provisioner plugin software (for more information, see topics about the Identity Store
Provisioner interfaces in the SDK Developer's Guide on page 1047).

Steps

1. Configure the options as needed.

2. Click Next.

Extending the Identity Store Provisioner contract
Identity Store Provisioners can be written with an option allowing administrators to add to the core
attributes the plugin instance requires.

About this task

Both the core and extended contract attributes you define must be mapped when you configure Write
Users within an inbound provisioning connection.

 Tip:

To keep your plugin flexible across multiple connections, assuming a one-to-one connection-to-identity
store provider setup, you might want to hard code a set of core attributes for all connections to fulfill, and
then extend attributes on as needed when a partner connection depends on additional attributes.

 Note:

If this is a child instance, select the override check box to modify the configuration.

Steps

1. On the Extended Contract tab, create and modify attributes as needed.

Option Action

Add an attribute Enter the attribute name in the text box and click
Add.

Modify an attribute name a. Click Edit under Action for the attribute.
b. Make the change and click Update.

 Note:

If you change your mind, click Cancel under
Action.

Delete an attribute Click Delete under Action for the attribute.

2. Click Next.

Copyright ©2024

 | Administrator's Reference Guide | 673

Extending the Identity Store Provisioner contract for groups
Identity Store Provisioners can be written with an option allowing administrators to add to the core group
attributes the plugin instance requires.

About this task

Both the core and extended group attributes that you define must be mapped when you configure Write
Groups within an inbound provisioning connection.

 Tip:

To keep your plugin flexible across multiple connections, assuming a one-to-one connection-to-identity
store provider setup, you might want to hard code a set of core attributes for all connections to fulfill, and
then extend attributes on as needed when a partner connection depends on additional attributes.

 Note:

If this is a child instance, select the override check box to modify the configuration.

Steps

1. On the Extended Group Contract tab, create and modify attributes as needed.

Option Action

Add an attribute Enter the attribute name in the text box and click
Add.

Modify an attribute name a. Click Edit under Action for the attribute.
b. Make the change and click Update

 Note:

If you change your mind,click Cancel under
Action.

Delete an attribute Click Delete under Action for the attribute.

2. Click Next.

Reviewing the Identity Store Provisioner configuration
On the Summary tab, review your Identity Store Provisioner configuration.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Configuring default URLs
As a service provider (SP), you can supply a default URL that the end-user might see when a single
sign-on (SSO) request succeeds, that is, a session is created at your site, but the target resource is not
available or not specified.

To configure default URLs, go to Applications # Integration # SP Default URLs.

Copyright ©2024

 | Administrator's Reference Guide | 674

 Note:

You can also specify default target SSO URLs for individual identity provider (IdP) connections, which take
precedence over this global setting. For more information, see Configuring default target URLs on page
712.

Similarly, you can specify to prompt a default URL indicating a successful single logout (SLO) to the end-
user if no other page is designated.

 Note:

The error message is displayed only when the application calling the start-SSO endpoint does not
explicitly provide its own error page URL. The default entry in this field is used to localize the message.
For information about how to find and change the default English message and how use the PingFederate
localization feature, see Localizing messages for end users on page 839. If localization is not needed,
you can also specify a message directly in this field to change the default.

Your application or your partner's application can supply these URLs at runtime (see SP services on page
1173). However, if none are provided, PingFederate uses the default values you enter on this window
unless, in the case of SSO, a default is also defined for the connection.

 Tip:

If no default targets are specified here or at the connection level (for SSO), PingFederate provides built-
in landing pages for the user. These web pages are is among the templates you can modify with your own
branding or other information. For more information, Customizable user-facing pages on page 820.

Viewing SP application endpoints
Web-application developers at your site need to know the application endpoints to initiate transactions
through PingFederate.

Go to Help # SP Application Endpoints to see a list of endpoints and descriptions applicable to your
federation role.

 Note:

These endpoints are built into PingFederate and cannot be changed.

For specific parameters required or allowed for these endpoints, see SP services on page 1173 and
System-services endpoints on page 1186.

Federation settings
If your identity federation uses the SAML 2.0 X.509 attribute sharing profile (XASP), you might need to
identify the identity provider (IdP) connection to which an attribute request applies.

If so, use the System # Protocol Metadata # Attribute Requester Mapping window to complete the
configuration. For more information, see Attribute Query and XASP and Managing attribute requester
mappings on page 675.

View endpoints that your federation partners need to know to access your services from the Help menu.

Copyright ©2024

 | Administrator's Reference Guide | 675

Managing attribute requester mappings
If you are using the SAML 2.0 X.509 attribute sharing profile (XASP), applications at your site must supply
the subject distinguished name (DN) to identify a user's X.509 authentication certificate.

About this task

Optionally, an application can also supply an issuer DN, which can be used to determine the correct
identity provider (IdP) attribute authority to use for a set of users associated with an IdP. For more
information, see Attribute Query and XASP on page 43.

 Note:

You must set the Format query parameter to a specified value for XASP. For more information, see SP
services on page 1173.

You can map X.509 identifying information to connections and specify a default connection on the System
Protocol Metadata # Attribute Requester Mapping window.

At runtime, the issuer DN, if supplied, is evaluated against the entries under Issuer DN Pattern in
hierarchical order until a match is found. If a match is found, the corresponding IdP connection is selected
to issue a response to the attribute query request. If the issuer DN matches no entry or if it is not provided,
the subject DN from the request is compared against the entries under Subject DN Pattern in a similar
manner. If the subject DN matches no entry, then the default IdP connection is used.

You can use a regular expression to match different DNs to the same connection. Only one expression can
be used in any single entry. DN values must be entered in all lower-case characters.

Steps

1. Map one or more issuer DNs to SAML 2.0 IdP connections, as needed.

a. Enter an issuer DN under Issuer DN Pattern.
b. Select an IdP connection under IdP Connection Name.
c. Click Add.
d. Repeat these steps to add more entries.

2. Map one or more subject DNs to SAML 2.0 IdP connections, as needed.

a. Enter a subject DN under Subject DN Pattern.
b. Select an IdP connection under IdP Connection Name.
c. Click Add.
d. Repeat these steps to add more entries.

3. Select a default IdP connection from the list.

Next steps
You can click Edit, Update, and Cancel to make or undo a change to an entry. Click Delete and Undelete
to remove an entry or cancel the removal request.

Viewing SP protocol endpoints
Your federation partners or security token service (STS) clients need to know the applicable service
provider (SP) services endpoints to communicate with your PingFederate server. Configured service
endpoints for SAML connections are included in metadata export files.

Go to Help # SP Endpoints to see a list of applicable OpenID Connect, SAML, WS-Federation, and WS-
Trust STS endpoints. A pop-up window displays only those endpoints related to the federation protocols
enabled on the System # Server # Protocol Settings # Federation Info tab. These endpoints are built
into PingFederate and cannot be changed.

Copyright ©2024

 | Administrator's Reference Guide | 676

PingFederate provides a favorite icon for all protocol endpoints. For more information, see Customizing the
favicon for application and protocol endpoints on page 858.

The table below describes each endpoint.

Service URL and Description

Third Party Initiated
Login (OpenID Connect
1.0)

/sp/init_login.ping

The URL that receives and processes login requests initiated by an OpenID
Provider (OP) or another party. This protocol endpoint supports HTTP GET
and POST methods and the following parameters:

▪ iss: the Issuer Identifier of the OP, to which sends the authentication
requests.

This parameter is always required.
▪ target_link_url: the destination of the request after authentication.

This parameter is required if no default target URL is specified in the SP
configuration or the IdP connection. If specified, the parameter value
always overrides the default target URL.

▪ login_hint: a hint to the OP about the end user.

This parameter is optional.

If your use case supports a generic login, you can add the login_hint
parameter with a default value to the IdP connection on the OpenID
Provider Info window. Furthermore, you may select the check box under
Application Endpoint Override so that the application can optionally
override the login hint value by including the login_hint parameter in
the URL.

Other parameters if any are not sent to the OP unless they are defined with a
default value (or default values) in the IdP connection. For more information,
see .

For more information about Third Party Initiated Login flow, see the OpenID
Connect specification.

Single Logout Service
(SAML 2.0)

/sp/SLO.saml2

The URL that receives and processes logout requests and responses.

Assertion Consumer
Service (SAML 2.0)

/sp/ACS.saml2

A SAML 2.0 implementation that receives and processes assertions from an
IdP. The numbers reflect the index value uses to handle each binding.

Artifact Resolution
Service (SAML 2.0)

/sp/ARS.ssaml2

The SOAP endpoint that processes artifacts returned from a federation partner
to retrieve the referenced XML message on the back channel. See the note at
the end of this table.

Assertion Consumer
Service (SAML 1.x)

/sp/acs.saml1

A SAML 1.x implementation URL that receives and processes assertions from
an IdP.

Single Sign-on Service
(WS-Federation)

/sp/prp.wsf

The WS-Federation implementation URL that receives and processes security
tokens and SLO messages.

Copyright ©2024

 | Administrator's Reference Guide | 677

Service URL and Description

WS-Trust STS (two
endpoints)

/sp/sts.wst

The SOAP endpoint that receives and processes SAML security-token
requests from STS clients (web service providers at the SP site), validating
SAML tokens or validating and exchanging SAML tokens based on the
configured IdP connection.

/pf/sts.wst

Initiates direct STS token-to-token exchange and token validation, from an IdP
token processor to an SP token generator, when that feature is configured. For
more information, see .

 Note:

If you configure multiple token-generator instances of the same type
for the connection or token-to-token mapping, a query parameter,
TokenGeneratorId, must be added to either of these endpoints. For more
information, see .

See the note at the end of this table.

 Important:

If mutual SSL/TLS is used for authentication, you must configure a secondary listening partner for use by
partners or STS clients for the relevant endpoints such as *.ssaml* and *.wst. For more information,
see .

Virtual server ID support

For SAML connections using multiple virtual server IDs, each virtual server ID has its own set of protocol
endpoints. For more information, see Multiple virtual server IDs on page 105. You can export a
connection metadata for your partner on the System # Protocol Metadata # Metadata Export window.
For more information, see Exporting connection-specific SAML metadata on page 881.

For WS-Federation and SAML connections using multiple virtual server IDs, you can provide your partner
the federation metadata endpoint (/pf/federation_metadata.ping) with the PartnerIdpId and
vsid parameters. See the table below for an example.

Partner's entity
ID

Your virtual
server ID

Federation metadata URL

idev1 https://www.example.com/pf/sts_mex.ping?
PartnerIdpId=IdP&vsid=idev1

SP

idev2 https://www.example.com/pf/sts_mex.ping?
PartnerIdpId=IdP&vsid=idev2

In this example, the base URL and the runtime port of your PingFederate server are www.example.com
and 443, respectively.

The federation metadata endpoint returns information that is specific for a given virtual server ID when the
request includes the vsid parameter.

Copyright ©2024

 | Administrator's Reference Guide | 678

For WS-Trust STS, you can provide your partner the STS metadata endpoint (/pf/sts_mex.ping) with
the PartnerIdpId and vsid parameters. The STS metadata endpoint returns information that is specific
for a given virtual server ID when the STS metadata request includes the vsid parameter.

For more information about these metadata endpoints, see System-services endpoints on page 1186.

The virtual server ID concept does not apply to the /pf/sts.wst endpoint because token-to-token
exchange does not involves any connections. As needed, you can pass the token-to-token endpoint to
your partners as-is.

Managing IdP connections
As a service provider (SP) site, you can manage connection settings to support the exchange of
federation-protocol messages, such as OpenID Connect, SAML, WS-Federation, or WS-Trust, with
an identity provider (IdP), OAuth client, OpenID Provider (OP), or security token service (STS) client
application at your site.

These settings include:

▪ User attributes that you expect to receive in an SSO token such as a SAML assertion or WS-Trust
STS SAML token.

▪ User attributes the you expect the OP to return in an ID token or through its user information, UserInfo,
endpoint on-demand.

▪ User attributes that may be requested using the SAML Attribute Query profile if that profile is used.
▪ The protocol, profiles, and bindings of the connection, including detailed security specifications

such as the use of back-channel authentication, digital signatures, signature verification, and XML
encryption.

To establish a connection, you and your partner must have decided this information in advance. For more
information, see .

As an SP site, you respond to user requests for single sign-on (SSO) and single logout (SLO) by
creating or closing user sessions, respectively, in local applications. You integrate these applications with
PingFederate by configuring them with SP adapter instances. Furthermore, in preparation for configuring
a new SSO connection, you need to know which adapter instance or authentication policy contract to use.
For more information, see Managing target session mappings on page 692.

No adapter instance or authentication policy contract is required for a connection that uses only the
Attribute Query profile. For more information, see Manage the Attribute Query profile in an IdP connection
on page 716.

If you intend to pass attribute values to an adapter instance from a local datastore, you must define the
datastore during this configuration. If you have not done so already, see Datastores on page 886.

Administrative interface

You manage connection settings in the Authentication # Integration # IdP Connections window, which
organizes the settings into a series of primary tasks. Some primary tasks have one or more levels of sub
tasks. Each primary or sub task has its own tab, where you manage one or more settings. You can move
to a sibling task using the Next or Previous button. If you are on a sub task, you can also move to its
parent task using the Done button.

When creating a new connection, you can save your progress using the Save Draft button. Note that not
all tabs offer this option. When you reach the Activation & Summary tab, you must click Save to complete
the new connection.

When editing an existing connection, you can make changes and then click Save to commit your changes.
In order words, you are not required to step through all tabs to reach the Activation & Summary tab
before you can save your changes.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 679

The Save button is available on most tabs. If a tab does not show a Save button, click Next or Done until
you reach to a tab where you can use the Save button to commit your changes.

Accessing IdP connections
In the IdP Connections window, you can create or import a connection, or edit a recently modified
connection by clicking on its connection name.

About this task

The IdP Connections window displays 20 connections at a time. As needed, use the pagination controls
to navigate through the rest of your connections. You can also search connections by their names or
connection IDs.

 Tip:

A connection is included in the search results so long as its name or ID is a partial, case-insensitive match
to a search term.

You can sort by connection name, partner connection ID, and default virtual server ID; narrow by protocol
and status; and perform various connection-related tasks.

Steps

Go to the Authentication # Integration # IdP Connections.

Choice Action

Edit a connection Select the connection by its name. For the setting
you want to change, select the corresponding tab
and follow the configuration wizard to complete the
task.

Create a connection Click Create Connection, then follow the
configuration wizard to create a new connection to
your identity provider (IdP) partner.

Copy a connection Click Select action # Copy, then follow the
configuration wizard to create a new connection
based on an existing (source) connection.

This is most useful if the new connection and the
source connection share many common setting
values.

Export a connection Click Select Action # Export Connection, then
save the XML file as prompted.

This is useful in situations where you want to make
a backup of a connection prior to making changes
to it.

Import a connection Click Import Connection, then follow the on-
screen instructions to complete the task.

If the connection already exists, you have the
option to overwrite the existing connection.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 680

Choice Action

Prior to the import, you can modify the XML file to
suit your needs. The XML file can also be imported
to another PingFederate environment acting in
the same federation role (SP) at your site. The
source and the target must run the same version of
PingFederate.

Export metadata for any SAML browser single
sign-on (SSO) connection

Click Select Action # Export Metadata, then
follow the on-window instructions to complete the
task.

Update a SAML browser SSO connection Click Select Action # Update with Metadata, then
follow the on-screen instructions to complete the
task.

You can update a connection via a metadata XML
file or a metadata URL.

 Important:

The update operation might require additional
configuration. Review the connection after the
update operation.

toggle the status of a connection Slide the toggle switch to enable or disable a
connection.

remove a connection Click Select Action # Delete.

Override the verbosity of runtime transaction
logging for all IdP connections

Click Show Advanced Fields and the select the
desired override option.

Override
option

Description

Off Select this option and let the
per-connection Logging Mode
configuration determine the amount
of information PingFederate records
in the runtime transaction log.

This is the default selection.

On Select this option, followed by one
of the four logging modes, to set
the verbosity of runtime transaction
logging for all IdP connections. This
is most useful when troubleshooting
an issue that affects multiple
connections.

Turn off automatic multi-connection error
checking

Click Show Advanced Fields and the select the
Disable Automatic Connection Validation check
box.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 681

Choice Action

Once selected or cleared, the state of this setting
is reflected on Applications # Integration # SP
Connections as well.

For more information about this advanced
setting and its impact, see Configuring automatic
connection validation on page 811.

Keep your changes Click Save.

Discard your changes Click Cancel.

Resolving IdP connection errors

About this task

automatically validates configured connections before displaying them on the IdP Connections window.
This validation ensures these connections have not been adversely affected by any subsequent changes in
the supporting components, such as an adapter instance or an authentication policy contract.

If errors are found, the administrative console displays a visual cue next to the applicable connections.

Steps

▪ To resolve the error, select the connection and follow the on-window instructions to modify the
configuration, one connection at a time.

Choosing an IdP connection type
You can use the administrative console to choose an identity provider (IdP) connection type.

About this task

You can indicate on the Connection Type tab whether the connection to this partner is for browser
single sign-on (SSO), WS-Trust security token service (STS), OAuth, SAML, inbound provisioning, or a
combination of them.

 Note:

You can add STS, OAuth, and outbound provisioning support to any existing SSO connection, or vice
versa, at any time. However, when OpenID Connect is the chosen protocol for browser SSO, the other
types become unavailable.

Select the applicable protocol on the Connection Type tab when establishing a new connection.

 Note:

If your partner's deployment also supports multiple protocols and you intend to communicate using more
than one, you must set up a separate connection for each protocol. Each connection must use a unique
partner connection ID.

Copyright ©2024

 | Administrator's Reference Guide | 682

Steps

▪ On the Connection Type tab, indicate the desired type of connection to your partner.

Choice Action

Configure a connection for secure browser-
based SSO

PingFederate[pingfed]

Select the Browser SSO Profiles check box and
a protocol from the list, if necessary.

Configure an STS connection Select the WS-Trust STS check box and the
default token type from the list.

Configure a connection that exchanges SAML
assertions or JSON web tokens (JWTs) for
access tokens

Select the OAuth Assertion Grant check box.

 Note:

The OAuth Assertion Grant option is
available only if at least one Access Token
Manager instance has been configured on
the Applications # OAuth # Access Token
Management window

For more information about these standards, see
Security Assertion Markup Language (SAML)
2.0 Profile for OAuth 2.0 Client Authentication
and Authorization Grants and JSON Web Token
(JWT) Profile for OAuth 2.0 Client Authentication
and Authorization Grants.

Configure an inbound provisioning
connection

Select the Inbound Provisioning check box
and choose to support provisioning of users
only (User Support) or users and groups (User
and Group Support). For groups, nested group
membership, if any, is preserved.

▪ Optional: If your PingFederate license manages connections by groups, you can select a group for this
connection.

This option is not displayed for unrestricted or other types of licenses.

Choosing IdP connection options
On the Connection Optionstab, shown only for browser-based single sign-on (SSO) connections, you can
enable browser-based SSO in conjunction with Just-in-Time (JIT) provisioning. Additionally, you can also
choose to map user attributes for persistent grants used by the optional PingFederate OAuth authorization
server.

About this task

For SAML 2.0, you can configure the Attribute Query profile with or without the browser-based SSO.

Steps

▪ On the Connection Options tab, make the appropriate selections for your configuration.

Choice Action

Create a connection for browser-based SSO. Select the Browser SSO check box.

Enable JIT provisioning, OAuth attribute
mapping, or both.

Select the appropriate check box after selecting
the Browser SSO check box.

Copyright ©2024

https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7523

 | Administrator's Reference Guide | 683

Choice Action

Create a connection to facilitate the SAML 2.0
Attribute Query profile.

Select the Attribute Query check box. For more
information, see Attribute Query and XASP on
page 43

Importing IdP metadata
You can use the PingFederate administrative console to import and update identity provider (IdP)
metadata.

About this task

If you are using one of the SAML protocols without a connection template, you can expedite the setup by
one of the following actions:

▪ Import a metadata file
▪ Select a metadata URL

When you select a metadata URL, also enables the automatic update option and checks the metadata
periodically. If detects changes in the partner's signing certificates for digital signature verification,
encryption key, or contact information, it updates the connection automatically. For better housekeeping,
the update process removes verification certificates from the connection when the partner no longer
maintains them in its metadata. In a clustered environment, automatically replicates verification certificates
and encryption key changes to all engine nodes. Offline engine nodes will also consume these changes
as they restart and rejoin the cluster. If you prefer to update the connection manually, you can clear the
Enable Automatic Reloading check box.

You can configure reload frequency at System # Protocol Metadata # Metadata Settings # Metadata
Lifetime tab. The default reload frequency is daily.

We recommend you turn on notifications for SAML metadata update events at System # Monitoring &
Notifications # Runtime Notifications.

 Note:

The notification message provides a list of the applicable items if the metadata contains changes that
require additional configuration.

After creating the connection, you can add, remove, or change the metadata URL associated with the
connection in the Metadata URL tab. In addition, you can toggle the Enable Automatic Reloading check
box for the connection.

 Tip:

Using a metadata URL with automatic reloading streamlines the configuration process. For example,
you can quickly establish a browser SSO connection to an InCommon-participating partner. For more
information, see www.incommon.org/participants.

Steps

1. Select from one of the following steps to import or update metadata.

Metadata medium Steps

Metadata file a. On the Import Metadata tab, select the File
option.

Copyright ©2024

 | Administrator's Reference Guide | 684

Metadata medium Steps

b. Choose the metadata file, and then click
Next.

 Note:

If the metadata contains multiple entries,
select the desired partner from the Select
Entity ID list and click Next.

 Note:

If the metadata file is digitally signed but the
verification certificate is provided outside
of the metadata, import the metadata
verification certificate on the Import
Certificate tab, and then click Next.

c. On the Metadata Summary tab, review
the signature information to evaluate the
authenticity of the metadata.

Metadata URL a. On the Import Metadata tab, select the URL
option.

b. Select the metadata from the Metadata URL
list.

 Tip:

If the metadata you want is not shown in the
list, click Manage Partner Metadata URLs.
For more information, see Manage Partner
metadata URLs on page 646.

c. Optionally, clear the Enable Automatic
Reloading check box to disable automatic
update.

 Note:

A warning will display if you do not have
runtime notifications enabled. To enable
these notifications, go to System #
Monitoring & Notifications # Runtime
Notifications and select the Notification for
SAML Metadata Update Events box.

Copyright ©2024

 | Administrator's Reference Guide | 685

Metadata medium Steps

d. Click Load Metadata.

 Note:

If the metadata contains multiple entries,
select the desired partner from the Select
Entity ID list and click Next.

 Note:

If there is a digital signature error, click
Manage Partner Metadata URLs to resolve
the issue.

2. Click Next.

Identifying the partner
When creating an identity provider (IdP) connection, you must identify your partner and provide basic
information about them.

About this task

On the General Info tab, you provide your partner's unique federation identifier, the display name of the
connection, and some other optional information, such as virtual server IDs, contact information, and
logging mode for runtime transaction logging.

In addition, on this tab you can define a default error message that end users see in the event that single
sign-on (SSO) fails.

Steps

1. Provide the basic information to identify your partner.

See the following table for more information.

Field Description

Partner's Entity ID,
Issuer, Partner's
Realm, or Connection
ID

(Required)

The published, protocol-dependent, unique identifier of your partner.

For a SAML 2.0 connection, this is your partner's SAML Entity ID. For a
SAML 1.x connection, this is the audience your partner advertises. This ID
might have been obtained out-of-band or through a SAML metadata file.

For a WS-Federation connection, this is your partner's Realm.

For an OpenID Connect connection, this is the Issuer Identifier of the
OpenID Provider (OP).

For a security token service (STS)-only connection, this ID can be any
unique identifier.

Copyright ©2024

 | Administrator's Reference Guide | 686

Field Description

Enable Additional
Issuers

(Applicable only to
OpenID Connect
connection)

When selected, PingFederate takes into consideration additional issuers
when validating ID tokens obtained through this connection.

 Tip:

Enable this option if you want to support multi-tenant OpenID providers,
such as Microsoft Azure AD.

This check box is not selected by default.

Issuer information is defined on the Additional Issuers tab.

Connection Name

(Required)

A plain-language identifier for the connection: for example, a company
or department name. This name is displayed in the connection list on the
administrative console.

Virtual Server IDs

(Not applicable to
OpenID Connect
connections)

If you want to identify your server to this connection partner using an ID
other than the one you specified on the Federation Info tab, enter a virtual
server ID in this field and click Add.

Enter additional virtual server IDs as needed.

Client ID and Client
Secret

(Applicable to and
required for OpenID
Connect connections)

The client ID and the client secret to communicate with the OP.

This client represents and is created and managed at the OP. For more
information, see the documentation provided by the OP.

Base URL The fully qualified hostname and port on which your partner's federation
deployment runs (for example, https://www.example.com:9031). This
entry is an optional convenience, allowing you to enter relative paths to
specific endpoints, instead of full URLs, during the configuration process.

Company The name of the partner company to which you are connecting.

Contact Name The contact person at the partner company.

Contact Number The phone number of the contact person at the partner company.

Contact Email The email address for the contact person at the partner company.

Error Message

(Applicable only to
SAML or OpenID
Connect connections)

If an error occurs on this server, the end user's browser might be redirected
in a default situation to an error page hosted within PingFederate.

The default entry errorDetail.spSsoFailure is a variable from the
<pf_install>/pingfederate/server/default/conf/language-
packs/pingfederate-messages.properties file, which is part of the
PingFederate localization framework. If localization is not needed, you can
also specify a message directly in this field to change the default.

Logging Mode The level of transaction logging applicable for this connection.

The default selection is Standard.

If the OP supports the OpenID Connect Discovery specification, the connection setup is expedited
by loading the metadata from the OP. Based on the discovery specification, makes a direct HTTP
GET request to the /.well-known/openid-configuration endpoint at the OP and populates the

Copyright ©2024

 | Administrator's Reference Guide | 687

attribute contract and the protocol settings of the connection automatically. Manual adjustments can be
made during the connection setup or at a later time.

Additionally, you can refresh the protocol settings by reloading the metadata from the OP at any time.
If additional claims are supported, adds them to the attribute contract, so that they can be mapped
to the target applications later. In the event that the previously supported claims have been dropped
by the OP from the metadata, they remain in the attribute contract. While the existing mapping
configuration might not be adversely affected, runtime errors might occur if certain attributes are no
longer available to the target applications. If runtime errors occur, review the server log and modify the
mapping configuration accordingly.

2. Optional: Click Load Metadata.

This step is not applicable to an STS-only connection.

Populating extended property values for IdP connections
You can add, remove, or update extended property values.

Steps

Optional: On the System tab, add, remove, or update one or more values for any extended properties
defined in System # Server # Extended Properties.

Extended property values can serve as metadata. They can also help drive authentication requirements.
For more information, see Extended properties on page 877.

Defining additional issuers
You can define additional issuers when creating an identity provider (IdP) connection.

About this task

On the Additional Issuers tab, define additional issuers that PingFederate can accept when validating
ID tokens obtained through this connection. This tab appears only when the Enable Additional Issuers
check box on the General Info tab is selected.

Steps

1. Go to the Additional Issuers tab.

2. Optional: Select the Accept All Issuers (Not Recommended) check box if you want PingFederate to
accept any issuers when validating ID tokens obtained through this connection.

 CAUTION:

As suggested by the property name, we do not recommend accepting any issuers.

This check box is not selected by default.

3. Optional: Define additional issuers.

Applicable only when the Accept All Issuers (Not Recommended) check box is not selected.

a. Enter the issuer under Additional Issuer.
b. Optional: Enter information about the issuer under Description.

The Primary Issuer field represents the issuer defined on the General Info tab and is always
accepted.

Copyright ©2024

 | Administrator's Reference Guide | 688

Configure SP Browser SSO
PingFederate supports multiple configurations for browser single sign-on (SSO) with different federation
standards. You can configure these options from the Browser SSO tab.

Browser single sign-on (SSO) relies on a user's web browser and HTTP requests to broker identity-
federation messaging in XML or JSON web tokens (JWT) between an identity provider (IdP) and a service
provider (SP). In contrast, WS-Trust security token service (STS) messaging is typically application-driven
across the back channel and does not require browser mediation.

 Tip:

Many steps involved in setting up a federation connection are protocol-independent; that is, they are
required steps for all connections, regardless of the associated standards. For more information, see
Federation roles on page 28. Also, for any given connection, some configuration steps are required
under the applicable protocol, while others are optional. Still others are required only based on certain
selections. The administrative console determines the required and optional steps based on the protocol
and dynamically presents additional requirements or options based on selections.

The following sections provide sequential information about every step you might encounter while
configuring browser-based SSO, regardless of the protocol you are using for a particular connection.

SAML 2.0 configuration steps

▪ Selecting SAML profiles on page 689
▪ Configuring user-session creation on page 690

▪ Choosing an identity mapping method for SP SSO on page 690
▪ Defining an attribute contract on page 691
▪ Managing target session mappings on page 692

▪ Managing protocol settings on page 701

▪ Specifying SSO service URLs (SAML) on page 702
▪ Defining SLO service URLs (SAML 2.0) on page 704
▪ Selecting allowable SAML bindings (SAML) on page 705
▪ Specifying an artifact lifetime (SAML 2.0) on page 705
▪ Defining artifact resolver locations (SAML) on page 706
▪ Configuring default target URLs on page 712
▪ Overriding authentication context in an IdP connection on page 713
▪ Configuring signature policy on page 714
▪ Specifying XML encryption policy (for SAML 2.0) on page 714

SAML 1.x configuration steps

▪ Selecting SAML profiles on page 689
▪ Configuring user-session creation on page 690

▪ Choosing an identity mapping method for SP SSO on page 690
▪ Defining an attribute contract on page 691
▪ Managing target session mappings on page 692

▪ Managing protocol settings on page 701

▪ Specifying SSO service URLs (SAML) on page 702
▪ Selecting allowable SAML bindings (SAML) on page 705
▪ Defining artifact resolver locations (SAML) on page 706
▪ Configuring default target URLs on page 712
▪ Configuring signature policy on page 714

Copyright ©2024

 | Administrator's Reference Guide | 689

WS-Federation configuration steps

▪ Configuring user-session creation on page 690

▪ Choosing an identity mapping method for SP SSO on page 690
▪ Defining an attribute contract on page 691
▪ Managing target session mappings on page 692

▪ Managing protocol settings on page 701

▪ Specifying a service URL (WS-Federation) on page 703
▪ Configuring default target URLs on page 712
▪ Configuring signature policy on page 714

OpenID Connect configuration steps

▪ Configuring user-session creation on page 690

▪ Choosing an identity mapping method for SP SSO on page 690
▪ Defining an attribute contract on page 691
▪ Managing target session mappings on page 692

▪ Managing protocol settings on page 701

▪ Configuring OpenID Provider information on page 708
▪ Configuring default target URLs on page 712
▪ Overriding authentication context in an IdP connection on page 713

After configuring SSO settings, you will need to configure authentication credentials, the range of which
depends on your SSO selections. For more information, see Configuring security credentials on page
749. Also, other configuration tasks might remain to be configured for new or modified connections,
depending on the selected options on the Connection Options tab.

Selecting SAML profiles
A SAML profile is the message-interchange scenario that you and your federation partner agree to use. It
defines the settings that support SAML usage for applications.

About this task

For SAML 2.0, PingFederate supports all identity provider (IdP) and service provider (SP)-initiated single
sign-on (SSO) and single logout (SLO) profiles. For SAML 1.x, PingFederate supports both the standard
IdP-initiated SSO profile and a proprietary "destination-first" SP-initiated SSO profile.

 Note:

When configuring a local loopback connection, in which one PingFederate instance is both the identity
provider and the service provider, disable the IdP-Initiated SLO and SP-Initiated SLO options on the
Browser SSO window's SAML Profiles tab. These options determine whether SAML logout requests
should be sent to the partner during the SLO flow. Those requests aren't necessary and can cause
unexpected behavior when the partner connection exists locally. All local sessions for loopback
connections are terminated during the SLO flow without the need to send SAML requests.

For information on typical SAML SSO and SAML 2.0 SLO profile configurations, including illustrations, see
SAML 1.x profiles on page 30 and SAML 2.0 profiles on page 33.

 Note:

The SAML Profiles tab does not apply to OpenID Connect and WS-Federation IdP connections.

Copyright ©2024

 | Administrator's Reference Guide | 690

Steps

▪ Select the applicable profiles based on your partner agreement.

For SAML 2.0, you must select at least one SSO profile.

For SAML 1.x, IdP-initiated SSO is assumed and the specifications do not support SLO; the only
choice on this tab is SP-initiated SSO.

Configuring user-session creation
You must create and configure user sessions when configuring service provider (SP) browser single sign-
on (SSO).

About this task

As an SP, you must specify how uses information sent from the IdP in SSO tokens to create user sessions
for enabling access to protected resources at your site.

If you are a federation hub, bridging an identity provider to one or more service providers, you can
associate one or more authentication policy contracts to the IdP connection. For more information, see .

The configuration involves choosing an identity-mapping method, establishing an attribute contract as
needed, and optionally mapping one or more SP adapter instances, authentication policy contracts, or
both.

Steps

▪ On the User-Session Creation tab, click Configure User-Session Creation.

Choosing an identity mapping method for SP SSO
When configuring service provider (SP) single sign-on (SSO), PingFederate offers two methods of identity
mapping you can choose from: account mapping or account linking.

About this task

allows an SP to use either account linking or account mapping to associate remote users with local
accounts for SSO between business partners. For more information, see . On the Identity Mapping tab,
you choose which method to use in this IdP connection. You and your partner should decide in advance
which option to use. For more information, see .

If your site is using account linking, then establishing an attribute contract is not required. Depending on
your partner agreement, you can choose to supplement the account link with an attribute contract. In
this configuration the account link is used to determine the user's identity, while the additional attributes
might be used for authorization decisions, customized web pages, and so on, at the your site. For more
information, see .

 Important:

If you have previously set up a configuration to use an attribute contract and want to change the
configuration to use account linking without additional attributes, then the existing attribute contract will be
discarded.

Account linking can be used with either a clear, standard name identifier or an opaque pseudonym.

Copyright ©2024

 | Administrator's Reference Guide | 691

Steps

1. Choose which identity mapping method to use in this IdP connection.
Choose from:

▪ If you want to dynamically associate remote users with local accounts using a known attribute to
identify a user, such as a username or email address, select Account Mapping

Account mapping uses the user identifier, SAML_SUBJECT in a SAML assertion or sub in an ID
token, and associated user attributes to create an association between a remote user and a local
account.

 Tip:

If you are using PingFederate's JIT provisioning, choose Account Mapping. For more
information, see Configuring just-in-time provisioning on page 717.

▪ If you want to create a long-term association between a remote user and a local account, select
Account Linking

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production
environments, always use a secured external storage solution for proper functioning in a clustered
environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

To set up an attribute contract to use in conjunction with account linking, select the ... includes
attributes in addition to the unique name identifier check box.

2. If you have selected only the SP-initiated SSO profile and you intend to enforce additional
authentication requirements by placing this IdP connection in an SP authentication policy, select No
Mapping.

3. Additionally, select No Mapping if you are deploying an IdP connection solely for OAuth attribute
mapping without the use of an authentication policy contract. For more information, see Configuring
IdP connection grant mapping on page 548.

Defining an attribute contract
An attribute contract is the set of user attributes that you and your partner have agreed will be sent in
single sign-on (SSO) tokens for this connection.

About this task

You can extend the attribute contract with additional attributes. Optionally, you can configure PingFederate
to mask individual extended attributes in its logs. For more information, see Attribute contracts on page
92 and Attribute masking on page 95.

 Tip:

If you are creating or updating a SAML or an OpenID Connect identity provider (IdP) connection, consider
using the partner's metadata to do so. If the metadata contains the required information, PingFederate
automatically populates the attribute contract for you.

Copyright ©2024

 | Administrator's Reference Guide | 692

Steps

1. On the Attribute Contract tab, enter the attribute name in the text box.

Attribute names are case-sensitive and must correspond to the attribute names expected by your
partner.

 Tip:

If you are configuring a SAML connection to an InCommon participant, the assertion might contain
attributes such as urn:oid:0.9.2342.19200300.100.1.3 and urn:oid:2.5.4.42, which are
standard names under various specifications, such as RFC4524 and RFC4519. For more information,
see www.incommon.org/participants. The following table describes a subset of the object IDs (OIDs)
referenced by the most common attributes used by InCommon participants.

OID value Description

0.9.2342.19200300.100.1.3 mail

1.3.6.1.4.1.5923.1.1.1.1 eduPersonAffiliation

1.3.6.1.4.1.5923.1.1.1.6 eduPersonPrincipalName

1.3.6.1.4.1.5923.1.1.1.7 eduPersonEntitlement

1.3.6.1.4.1.5923.1.1.1.9 eduPersonScopedAffiliation

1.3.6.1.4.1.5923.1.1.1.10 eduPersonTargetedID

2.5.4.3 cn

2.5.4.4 sn

2.5.4.10 o

2.5.4.42 givenName

2.16.840.1.113730.3.1.241 displayName

For other attributes, see the metadata from your partner. The FriendlyName values, if available,
should provide additional information about the attributes. Alternatively, third-party resources, such as
www.ldap.com/ldap-oid-reference and www.oid-info.com, might help as well.

2. Optional: Select the check box under Mask Values in Log.

3. Click Add.

4. Repeat until all desired attributes are defined.

Next steps

Click Edit, Update, and Cancel to make or undo a change to an item. Click Delete and Undelete to
remove an item or cancel the removal request.

Managing target session mappings
You can map a service provider (SP) adapter instance to an identity provider (IdP) connection and
complete its mapping configuration through a series of sub tasks.

About this task

When PingFederate receives an SSO token, the corresponding SP adapter is triggered to fulfill its adapter
contract based on the connection settings for the purpose of completing the "last-mile" integration with your
application. As needed, you can map multiple SP adapter instances to an IdP connection, the same SP
adapter instance to multiple IdP connections, or a combination of them.

Copyright ©2024

https://tools.ietf.org/html/rfc4524
https://tools.ietf.org/html/rfc4519
https://www.incommon.org/federation/incommon-federation-participants
https://www.ldap.com/ldap-oid-reference
http://www.oid-info.com/

 | Administrator's Reference Guide | 693

Alternatively, if you use authentication policies to route users through a series of authentication sources
and end each successful policy path with an authentication policy contract (APC), you can skip the
mapping of an APC to an IdP connection and configure an APC-to-SP adapter instance mapping
configuration.

 Tip:

To learn more about authentication policies, see Authentication policies on page 219.

Furthermore, you can map one or more APCs to an IdP connection to bridge an identity provider to one
or more service providers. In this scenario, PingFederate is a federation hub for both sides. PingFederate
uses APCs to associate this IdP connection with the applicable SP connections to the service providers;
each APC has its own set of attributes to which you can map values from the SSO tokens.

 Tip:

To learn more about federation hub, see Federation hub use cases on page 99.

On the Target Session Mapping tab, if presented, you must associate at least one target session, an
SP adapter instance or an authentication policy contract, with an IdP connection. If you have multiple
integration requirements, for example, if you are using more than one IdM system or an application not
covered by a centralized system, multiple SP adapter instances. If you are bridging an identity provider to
multiple service providers, map multiple authentication policy contracts.

The Target Session Mapping configuration does not apply when the No Mapping option is selected on
the Identity Mapping tab.

Steps

▪ On the Target Session Mapping tab:

Choice Action

Map an SP adapter instance Click Map New Adapter Instance.

Map an APC Click Map New Authentication Policy.

Edit the mapping configuration of an SP
adapter instance or APC

Open it by clicking on its name, select the setting
that you want to reconfigure, and complete the
change.

Remove an SP adapter or APC or cancel the
removal request

Click Delete followed by Save or Undelete.

If you are creating a new connection and you
are finished with mapping the required target
sessions

Click Done.

If you are editing an existing configuration
and want to keep your changes

Click Save.

Result

When target sessions are restricted to certain virtual server IDs, the allowed IDs are displayed under
Virtual Server IDs.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 694

If you configure multiple target sessions for a connection, PingFederate selects the applicable adapter
instance or authentication policy contract at runtime based on the target resource information in the
requests and your configuration For more information, see Configuring target URL mapping on page 669.

Selecting a target session
The first step of the mapping configuration is to map an adapter instance or an authentication policy
contract to your connection.

Steps

1. Select an adapter instance from the Adpater Instance list.

If you do not see the desired adapter instance, click Manage Adapter Instances to create a new
instance of any deployed adapter.

2. If you want to customize adapter settings for this connection alone, select the Override Instance
Settings check box.

Result:

When selected, the administrative console adds a new set of sub tasks: the Override Instance tab
and its sub tasks.

 Tip:

Alternatively, you can create child adapter instances of a base adapter instance with overrides so
that such customized settings can be applied to several connections. For more information, see
Hierarchical plugin configurations on page 90.

3. Optional: To map an authentication policy contract (APC), select an adapter instance from the list.

4. Optional: If you do not see the desired APC, click Manage Authentication Policy Contracts to create
a new policy contract.

Result

If you are editing a currently mapped adapter instance, you can select the Override Instance Settings
check box. Clearing it removes all previously overridden settings for this connection. Selecting it provides
you the opportunity to customize adapter settings specifically for this connection.

If you are editing a currently mapped APC, no changes can be made on this tab.

Overriding an SP adapter instance
When configuring service provider (SP) browser single sign-on (SSO), you can override the adapter
instance settings.

About this task

On the Override Instance tab, you start a series of sub tasks to override adapter settings specifically for
this connection.

 Note:

Any changes to the base adapter instance are propagated to a connection provided the same changes are
not overridden for the connection.

Copyright ©2024

 | Administrator's Reference Guide | 695

Steps

▪ Click Override Instance Settings.

On each of the setting tabs, select the Override check box, make your changes, then click Next.
When you are finished, click Done to continue with the rest of the mapping configuration.

 Note:

The override setting tabs are functionally identical to those used for creating a new adapter instance.
For more information, see Managing SP adapters on page 667.

Next steps

If you are editing a currently mapped adapter instance, click Override Instance Settings to reconfigure
any overridden settings for this connection. You can also remove all overridden settings on a per-tab basis
by clearing the Override check box near the top of the tab.

Restricting a target session to certain virtual server IDs
You can enforce integration requirements by restricting a target session to certain virtual server IDs when
you multiplex one connection for multiple environments.

About this task

For more information, see Multiple virtual server IDs on page 105. On the Virtual Server IDs tab, follow
these steps to restrict a target session to a certain virtual server ID. By default, no restriction is imposed.

Steps

1. Select the Restrict Virtual Server IDs check box.

2. Select thevirtual server IDs that you want to allow for this target session.

Result

If you are editing a currently mapped adapter instance or authentication policy contract (APC), you can
toggle the Restrict Virtual Server IDs setting. You can also change the allowed virtual server IDs.

Choosing an attribute mapping method
You can select if and how PingFederate should query a local datastore to help fulfill the attribute contract in
conjunction with attribute values from the single sign-on (SSO) token.

Before you begin

To determine whether you need to look up additional values, compare the attribute contract against the
adapter contract or the authentication policy contract. If the attribute contract does not contain the required
information, determine whether a local datastore can supply it.

Alternatively, you can configure datastore queries as part of the fulfillment configuration for the applicable
APC if you use authentication policies to route users through a series of authentication sources and end
each successful policy path with an APC.

About this task

You make selections on the Adapter Data Store tab for service provider (SP) adapter mapping or the
Attribute Retrieval tab for authentication policy contract (APC) mapping.

 Tip:

Copyright ©2024

 | Administrator's Reference Guide | 696

To learn more about authentication policies, see Authentication policies on page 219.

Steps

▪ If the attribute contract contains all the attributes that your application requires, click Use only the
attributes available in the SSO assertion.

▪ To set up a datastore query, click Use the SSO assertion to look up additional information, and
then follow a series of sub tasks to complete the configuration. See Choosing a datastore on page
375 for step-by-step instructions.

Result

If you are editing a currently mapped adapter instance or APC, you can change the mapping method,
which might require additional configuration changes in subsequent tasks.

Configuring target session fulfillment
Map values to the attributes defined for the contract. These are the values that the target application
requires to create a local session for the user.

Before you begin

If you are bridging an identity provider (IdP) to one or more service providers, the values mapped to the
authentication policy contracts are used by the associated service provider (SP) connections to create
assertions for the service providers. For more information, see Federation hub use cases on page 99.

At runtime, a single sign-on (SSO) operation fails if PingFederate cannot fulfill the required attribute.

Steps

1. On the Adapter Contract Fulfillment tab, for each attribute, select a source from the Source list and
then choose or enter a value. You must map all attributes.

▪ AccountLink

When selected, the Value list populates with Local User ID. Normally, you would map Local
User ID to an adapter attribute that represents the user identifier at the target. This source is not

Copyright ©2024

 | Administrator's Reference Guide | 697

applicable to authentication policy contracts. This source appears only if you have elected to use
account linking for a target session on the Identity Mapping tab.

▪ Assertion or Provider Claims

When selected, the Value list populates with attributes from the SSO token. Select the desired
attribute from the list.

For example, to map the value of SAML_SUBJECT from a SAML assertion as the value
of the subject user identifier on the contract, select Assertion from the Source list and
SAML_SUBJECT from the Value list.

▪ Context

When selected, the Value list populates with the available context of the transaction. Select the
desired context from the list.

 Note:

As the HTTP Request context value is retrieved as a Java object rather than text, use OGNL
expressions to evaluate and return values.

 Note:

If you are configuring an OAuth Attribute Mapping configuration and have added
PERSISTENT_GRANT_LIFETIME as an extended attribute in the Authorization Server Settings
window, you can set the lifetime of persistent grants based on the outcome of attribute mapping
expressions or the per-client Persistent Grants Max Lifetime setting.

▪ To set lifetime based on the per-client Persistent Grants Max Lifetime setting, select
Context from the Source list and Default Persistent Grant Lifetime from the Value list.

▪ To set lifetime based on the outcome of attribute mapping expressions, select Expression as
the source and enter an OGNL expression in the Value field.

If the expression returns a positive integer, the value represents the lifetime of the persistent
grant in minutes.

If the expression returns the integer 0, does not store the grant and does not issue a refresh
token.

If the expression returns any other value, sets the lifetime of the persistent grant based on
the per-client Persistent Grants Max Lifetime setting.

▪ To set a static lifetime, select Text from the Source list and enter a static value in the Value
field.

This is suitable for testing purposes, or cases where the persistent grant lifetime must always
be set to a specific value.

▪ LDAP, JDBC, or Other

When selected, the Value list populates with attributes that you have selected from the datastore.
Select the desired attribute from the list.

▪ Expression

When enabled, this option provides more complex mapping capabilities, such as transforming
incoming values into different formats. Select Expression from the Source list, click Edit under

Copyright ©2024

 | Administrator's Reference Guide | 698

Actions, and compose your OGNL expressions. All variables available for text entries are also
available for expressions. For more information, see Text.

Expressions are not enabled by default. For more information about enabling and editing OGNL
expressions, see Attribute mapping expressions on page 213.

▪ No Mapping

Select this option to ignore the Value field.
▪ Text

When selected, the text you enter is used at runtime. You can mix text with references to any of
the values from the SSO token, using the ${attribute} syntax.

You can also enter values from your datastore, when applicable, using this syntax:

${ds.attribute}

where attribute is any attribute that you have selected from the datastore.

 Tip:

Two other text variables are available. SAML_SUBJECT is the initiating user or other entity.
TargetResource is a reference to the protected application or other resource for which the user
requested SSO access. The ${TargetResource} text variable is available only if specified as a
query parameter for the relevant endpoint, either as TargetResource for SAML 2.0 or TARGET
for SAML 1.x.

You might hard-code a text value for a variety of reasons.For example, if your web application
provides a consumer service, you might want to supply a particular promotion code for the partner.

 Note:

If you are editing a currently mapped adapter instance or authentication policy contract (APC), you can
update the mapping configuration, which might require additional configuration changes in subsequent
tasks.

2. Click Next to continue configuration.

Defining issuance criteria for SP Browser SSO
You can define issuance criteria when configuring service provider (SP) browser single sign-on (SSO) for
PingFederate.

Before you begin

Begin this optional configuration by adding a criterion. Choose the source that contains the attribute to be
verified. Some sources, such as Mapped Attributes, are common to almost all use cases. Other sources,
such as JDBC, depend on the type of configuration. Irrelevant sources are automatically hidden. After
you select a source, choose the attribute to be verified. Depending on the selected source, the available
attributes or properties vary. Finally, specify the comparison method and the desired, compared-to, value.

About this task

On the Issuance Criteria tab, define the criteria that must be satisfied in order for to process a request
further. This token authorization feature provides the capability to conditionally approve or reject requests
based on individual attributes.

If you define multiple criteria, all criteria must be satisfied for to move a request to the next phase. A
criterion is satisfied when the runtime value of the selected attribute matches or does not match the
specified value depending on the chosen comparison method. The multi-value contains and multi-value
does not contain comparison methods are intended for attributes that might contain multiple values. Such

Copyright ©2024

 | Administrator's Reference Guide | 699

criterion is considered satisfied if one of the multiple values matches or does not match the specified value.
Values are compared verbatim. If you require complex evaluations, including conditional criteria or partial
matching, define them using attribute mapping expressions.

 Important:

When you multiplex one connection for multiple environments, consider using attribute mapping
expressions to verify the virtual server ID in conjunction with other conditions, such as group membership
information, to protect against unauthorized access. For more information, see Multiple virtual server IDs
on page 105 and Issuance criteria and multiple virtual server IDs on page 217.

 Note:

All criteria defined must be satisfied or evaluated as true for a request to move forward. As soon as one
criterion fails, rejects the request and returns an error message.

Steps

1. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source Description

AccountLink Select to evaluate the Local User ID value of the user.

Displayed only if Account Linking is the selected identity mapping
method. For more information, see Choosing an identity mapping method
for SP SSO on page 690.

Assertion or Provider
Claims

Select to evaluate attributes from the IdP connection.

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

The HTTP Request context value is retrieved as a Java object rather than
text. For this reason, attribute mapping expressions are more appropriate
to evaluate and return values.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

2. From the Attribute Name list, select the attribute to be evaluated.

Copyright ©2024

 | Administrator's Reference Guide | 700

3. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

4. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

5. In the Error Result field, enter a custom error message.

Error results are handled in one of the two ways:

Redirect

When an InErrorResource URL is provided, the value of the Error Result field is used by
the query parameter ErrorDetail in the redirect URL.

Template

When an InErrorResource URL is not provided, the value of the Error Result field is used
by the variable $errorDetail in the sp.sso.error.page.template.html template file.

Using an error code in the Error Result field allows the error template or an application to process the
code in a variety of ways, for example, display an error message or e-mail an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

6. Click Add.

7. Optional: Repeat to add more criteria.

Copyright ©2024

 | Administrator's Reference Guide | 701

8. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing the target session mapping
You can review your target session mapping configuration and settings before completing.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Reviewing the session creation summary
You can review your session creation settings before completing configuration.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Managing protocol settings
The Protocol Settings tab provides the launching point for configuring partner endpoints, message
customizations, and other protocol-specific settings for browser-based single sign-on (SSO) connections.

About this task

SAML 2.0

▪ Outbound SSO bindings (POST, redirect, artifact) and the corresponding SSO service URLs

Copyright ©2024

 | Administrator's Reference Guide | 702

▪ Outbound single logout (SLO) bindings (POST, redirect, artifact, SOAP) and the corresponding
protocol endpoints

▪ Inbound bindings (POST, redirect, artifact, SOAP)
▪ Artifact lifetime
▪ Artifact resolution location
▪ Default target URL
▪ Authentication context mappings
▪ Signature policy
▪ Encryption policy

SAML 1.x

▪ Outbound SSO service URL, also known as the Intersite Transfer Service, if the service
provider (SP)-Initiated SSO profile is enabled

▪ Inbound bindings (POST, artifact)
▪ Artifact resolution location
▪ Default target URL
▪ Signature policy

WS-Federation

▪ Protocol endpoint
▪ Default target URL
▪ Signature policy

OpenID Connect

▪ The scopes PingFederate sends to the OpenID provider (OP) in its authorization and token
requests

▪ The OpenID Connect login type and authentication scheme used by PingFederate when
communicating with the OP

▪ The authorization endpoint, the token endpoint, the user information, UserInfo, endpoint, and
the JWKS URL

▪ Default target URL
▪ Authentication context mappings

Steps

▪ To continue, click Configure Protocol Settings.

Specifying SSO service URLs (SAML)
The single sign-on (SSO) service endpoint is where PingFederate sends requests when SSO is initiated at
your site according to partner requirements. It applies to all SAML versions when the service provider (SP)-
initiated SSO profile is enabled.

About this task

For SAML 2.0 connections, associate bindings to the endpoints where your identity provider (IdP) partner
wants PingFederate to send authentication requests when SSO is initiated at your site.

For SAML 1.x, only one endpoint is allowed, and the binding selection is not required.

Some federation use cases might require additional customizations in the authentication requests sent
from the PingFederate SP server to the IdP, such as including the optional Extensions element in the
authentication requests. You can use OGNL expressions to fulfill these use cases.

Copyright ©2024

 | Administrator's Reference Guide | 703

Steps

1. Enter an SSO service endpoint.

a. Enter the SSO service endpoint in the Endpoint URL field.

You can enter a relative path, starting with a forward slash, if you have provided a base URL on
the General Info tab.

For SAML 1.x connections, this is the only configurable item on the SSO Service URL tab.

The remaining steps on the SSO Service URLs tab only apply to SAML 2.0 connections.
b. Select a SAML binding from the list; for example, POST.
c. Click Add.
d. Optional: Repeat to add additional SSO service endpoints.

2. Optional: Customize messages using OGNL expressions.

Expressions are not enabled by default. For more information about enabling and editing OGNL
expressions, see Attribute mapping expressions on page 213. Additionally, message customization
does not apply to SAML 1.x connection.

a. Click Show Advanced Customizations.
b. Select a message type from the list.
c. Enter an OGNL expression to fulfill your use case.

 Note:

For more information about Message Type, available variables, and sample OGNL expressions,
see Customizing assertions and authentication requests on page 368.

d. Click Add.
e. Optional: Repeat to add another message customization.

Specifying a service URL (WS-Federation)
The service endpoint URL is where PingFederate sends request for security token (RST) and single log-
out (SLO) messages.

About this task

To protect against session token hijacking, PingFederate provides an option to validate wreply for
SLO. When this option is enabled, you can specify additional allowed domains and paths on this tab.
PingFederate validates the locations against a consolidated list of allowed domains and paths from all
active WS-Federation connections before redirecting the end users to their destinations.

 Note:

The settings to enter additional allowed domains and paths appear only if the option to validate wreply for
SLO is enabled. For more information, see Managing partner redirect validation on page 651.

Steps

1. Enter the WS-Federation protocol endpoint at the identity provider (IdP) site in the Endpoint URL
field.

You can enter a relative path, starting with a forward slash, if you have provided a base URL on the
General Info tab.

Copyright ©2024

 | Administrator's Reference Guide | 704

2. Optional: Specify additional allowed domains and paths.

a. Indicate whether to mandate secure connections when this resource is requested under Require
HTTPS.

 Important:

This selection is recommended to ensure that the validation will always prevent message
interception for this type of potential attack, under all conceivable permutations.

This check box is selected by default.
b. Enter the expected domain name or IP address of this resource under Valid Domain Name.

Enter a value without the protocol, such as example.com or 10.10.10.10.

Prefix a domain name with a wildcard followed by a period to include subdomains using one entry.
For instance, *.example.com covers hr.example.com or email.example.com but not
example.com, the parent domain.

 Important:

While using an initial wildcard provides the convenience of allowing multiple subdomains using
one entry, consider adding individual subdomains to limit the redirection to a list of known hosts.

c. Optional: Enter the exact path of this resource under Valid Path.

Start with a forward slash, without any wildcard characters in the path. If left blank, any path
under the specified domain or IP address is allowed. This value is case-sensitive. For instance,
/inbound/Consumer.jsp allows /inbound/Consumer.jsp but rejects /inbound/
consumer.jsp.

You can allow specific query parameters with or without a fragment by appending them
to the path. For instance, /inbound/Consumer.jsp?area=West&team=IT#ref1001
matches /inbound/Consumer.jsp?area=West&team=IT#ref1001 but not /inbound/
Consumer.jsp?area=East&team=IT#ref1001.

d. Optional: Select the check box under Allow Any Query/Fragment to allow any query parameters
or fragment for this resource.

Selecting this check box also means that no query parameter and fragment are allowed in the
path defined under Valid Path.

This check box is not selected by default.

Defining SLO service URLs (SAML 2.0)
On the SLO Service URLs tab, associate bindings to the endpoints where your identity provider (IdP)
receives logout requests when single logout (SLO) is initiated at your site and where PingFederate sends
SLO responses when it receives SLO requests from the IdP.

About this task

This process only applies to SAML 2.0 connections when either SLO profile is selected on the SAML
Profiles tab.

Steps

1. Go to Applications # Integrations # SP Connections.

2. Click on any SAML 2.0 connection, and then click the Browser SSO tab.

3. Click Configure Browser SSO, and then click the SAML Profiles tab.

4. Select a SAML binding from the list; for example, POST.

Copyright ©2024

 | Administrator's Reference Guide | 705

5. Enter the SLO endpoint URL in the Endpoint URL field.

You can enter a relative path, starting with a forward slash, if you have provided a base URL on the
General Info tab.

6. Optional: Enter a URL in the Response URL field.

When specified, it is the location where SLO logout response messages are sent based on your
partner agreement. When omitted, PingFederate sends logout responses to the SLO endpoint URL.

You can enter a relative path, starting with a forward slash, if you have provided a base URL on the
General Info tab.

7. Click Add.

8. Optional: Repeat to add additional SLO endpoints.

Result

If you are editing an existing connection, you can reconfigure the SLO endpoints, which might require
additional configuration changes in subsequent tasks.

Selecting allowable SAML bindings (SAML)
On the Allowable SAML Bindings tab, select the one or more bindings that your identity provider (IdP)
partner can use to send SAML assertions or SAML 2.0 single logout (SLO) messages.

About this task

This configuration applies to all SAML connections.

Steps

Select the check boxes for only the applicable SAML bindings based on your partner agreement.
Choose from:

▪ Artifact
▪ Post
▪ Redirect
▪ SOAP

 Note:

If you have specified a single sign-on (SSO) or SLO endpoint using the artifact outbound binding, you must
include SOAP as one of the allowable inbound binding.

Result

If you are editing an existing connection, you can reconfigure the allowable bindings, which might require
additional configuration changes in subsequent tasks.

Specifying an artifact lifetime (SAML 2.0)
When PingFederate sends an artifact to your identity provider's (IdP's) single sign-on (SSO) or single
logout (SLO) service endpoint, an element in the message indicates how long it should be considered
valid.

About this task

On the Artifact Lifetime tab, specify the expiry information in seconds.

You can change the default value to meet your requirements. You should also consider synchronizing your
serve clock with your partner's SAML gateway server. If clocks are not synchronized, you might need to set
the artifact lifetime to a higher value to prevent latency issues.

Copyright ©2024

 | Administrator's Reference Guide | 706

This step applies only to SAML 2.0 connections.

Steps

▪ Optional: Override the default value of the Artifact Lifetime field.

The default value is 60 seconds.

Result

You can update the artifact lifetime if you are editing an existing connection.

Defining artifact resolver locations (SAML)
When you enable the artifact binding as one of the allowable bindings on the Allowable SAML Bindings
tab, you must provide an artifact resolution service (ARS) endpoint.

About this task

The ARS endpoint is the location where PingFederate sends back-channel requests to resolve artifacts
received from the identity provider (IdP).

SAML 2.0 connections allow multiple ARS endpoints. For SAML 1.x connections, you can only enter one
ARS endpoint.

Steps

1. Enter an ARS endpoint.

a. Enter the ARS endpoint URL.

You can enter a relative path, starting with a forward slash, if you provide a base URL on the
General Info tab.

Result:

If you are configuring a SAML 1.x connection, you can only enter one ARS endpoint on the
Artifact Resolver Location tab.

b. Optional: Enter an integer in the Index field for this ARS endpoint.

This is applicable only to SAML 2.0 connections.

The administrative console automatically assigns an index value for each ARS endpoint, starting
from 0. If you want to define your own index values, you must make sure the index values are
unique.

c. Click Add.
d. Optional: Repeat to add additional ARS endpoints.

This is applicable only to SAML 2.0 connections.

 Note:

When specifying multiple ARS endpoints, each endpoint must share the same transport protocol.
That is, if one endpoint uses HTTPS, then all must use HTTPS. Similarly, if one endpoint uses
HTTP, then all must use HTTP.

2. Optional: Enter your partner's source ID.

The source ID is usually a generated value based on a federation partner's connection ID; the
PingFederate service provider (SP) server will correctly generate the source ID. If that is the case for
this partner, then leave this field blank. If your partner uses a Source ID that is not based on the Issuer
ID, then enter the Source ID supplied by your IdP partner.

Copyright ©2024

 | Administrator's Reference Guide | 707

Result

You can reconfigure any ARS endpoint or the source ID value for SAML 1.x if you are editing an existing
connection.

Copyright ©2024

 | Administrator's Reference Guide | 708

Configuring OpenID Provider information
You must configure OpenID Provider (OP) settings and information when configuring service provider (SP)
browser single sign-on (SSO).

Steps

1. On the OpenID Provider Info tab, provide the scopes, the endpoints, and the authentication scheme.

 Note:

If you clicked Load Metadata from the OpenID Provider (OP) on the General Info tab, the Scopes
field and all endpoints are pre-populated, provided that the metadata contains the information.

Copyright ©2024

 | Administrator's Reference Guide | 709

Field Description

Scopes The scopes to be included in the OpenID Connect authentication and
OAuth token requests to the OP. Multiple space-separated values are
allowed.

The default value, without loading metadata from the OP, is openid.

 Tip:

For a list of OpenID Connect defined scopes, see the section
about requesting claims using scope values in the OpenID
Connection specification at openid.net/specs/openid-connect-
core-1_0.html#ScopeClaims.

Authorization
Endpoint

The authorization endpoint at the OP.

You can enter a relative path, starting with a forward slash, if you provide
base URL on the General Info tab.

There is no default value without loading metadata from the OP.

OpenID Connect
Login Type

The OpenID Connect client profile of the client. This client represents and
is created and managed at the OP.

▪ If the client is configured to support the Basic Client profile, select
Code.

The resulting value of the response_type parameter is code.
▪ If the client is configured to support the Implicit Client profile, select

Form POST.

The resulting value of the response_type parameter is id_token.
▪ If the client is configured to support the Implicit Client profile and the

target application requires the associated access token, select Form
POST with access token.

The resulting values of the response_type parameter are id_token
token.

The default selection, without loading metadata from the OP, is Code.

Authentication
Scheme

The client authentication method that uses. Applicable and visible only to
clients supporting the Basic Client profile.

▪ Select Basic to submit credentials with HTTP Basic authentication.
▪ Select POST to submit credentials with POST.
▪ Select Private Key JWT to authenticate with the private_key_jwt Client

Authentication method. For more information, see Client Authentication
in the OpenID Connect specification.

The default selection, without loading metadata from the OP, is Basic.

Copyright ©2024

 | Administrator's Reference Guide | 710

Field Description

Authentication
Signing Algorithm

Select the algorithm that uses to sign the JSON web token (JWT).

Private Key JWT is the chosen authentication scheme.

If is deployed to run in a Java 8 or Java 11 runtime environment, or is
integrated with a hardware security module (HSM) and configured to use
static keys for OAuth and OpenID Connect, additional RSASSA-PSS
signing algorithms become available for selection. For more information on
HSM integration and static keys, see Supported hardware security modules
on page 168 and Keys for OAuth and OpenID Connect on page 633.

 Note:

If static keys for OAuth and OpenID Connect are enabled, Elliptic-curve
cryptography (EC) algorithms that have not been configured with an active
static keys are hidden.

Changes made in the static-key configuration might affect runtime
transactions and require additional changes here. For more information,
see Keys for OAuth and OpenID Connect on page 633.

 Note:

Based on the chosen signing algorithm, selects the signing JSON Web
Key (JWK) from its JWK Set (JWKS) at runtime.

For the OP to validate the signed JWT, ensure that the OP can access the
JWKS endpoint, which returns the current JWKS. The JWKS endpoint
is located at <Base URL>/pf/JWKS, where Base URL is defined on
System # Server # Protocol Settings # Federation Info.

For example, if the Base URL field value is https://www.example.com,
the JWKS endpoint is https://www.example.com/pf/JWKS. You can pass
the JWKS endpoint directly to the OP or have the OP contact the OP
configuration endpoint to obtain the information.

For more information, see .

Enable Proof Key
for Code Exchange
(PKCE)

Select this check box to enable to send a SHA256 code challenge and
corresponding code verifier as a Proof Key for Code Exchange (PKCE) to
the OP during the Code authentication flow.

This check box is applicable and visible only when the OpenID Connect
Login Type is Code.

 Note:

When Load Metadata on the General Info tab is clicked, displays the
Enable PKCE check box if S256 is listed as a supported method in the
code_challenge_methods_supported by the OP.

Copyright ©2024

 | Administrator's Reference Guide | 711

Field Description

Token Endpoint,
UserInfo Endpoint,
and JWKS URL

OAuth 2.0 and OpenID Connect 1.0 endpoints at the OP. For more
information, see openid.net/connect.

Token Endpoint

The Token Endpoint field is only visible and required for clients
supporting the Basic Client profile. In other words, the OpenID
Connect Login Type field is set to Code.

UserInfo Endpoint

The UserInfo Endpoint field is optional. If omitted, only has access
to the end-user claims from the ID tokens.

JWKS URL

The JWKS URL is required for to validate the inbound ID tokens
from the OP. If the OP signs its JWTs using an RSASSA-PSS signing
algorithm, must be deployed to run in a Java 8 or Java 11 runtime
environment, or integrated with a hardware security module (HSM)
and a static-key configuration for OAuth and OpenID Connect. For
more information on HSM integration and static keys, see Supported
hardware security modules on page 168 and Keys for OAuth and
OpenID Connect on page 633, respectively. .

There are no default values without loading metadata from the OP.

Sign Request Select this check box to send request parameters as claims in a request
object, a self-contained, signed JWT as one request query parameter to
the OP.

When this optional configuration is enabled, the OP can validate the
integrity of the request parameters based on the digital signature found in
the signed JWT. For more information, see the section explaining passing a
request object by value in the OpenID Connect specification at openid.net/
specs/openid-connect-core-1_0.html#RequestObject.

This check box is not selected by default, in which case sends request
parameters with multiple query parameters, unsigned.

Copyright ©2024

 | Administrator's Reference Guide | 712

Field Description

Request Signing
Algorithm

Select the algorithm that uses to sign the request object.

Applicable and visible only when the Sign Request check box is selected.

If is deployed to run in a Java 8 or Java 11 runtime environment, or is
integrated with a hardware security module (HSM) and configured to use
static keys for OAuth and OpenID Connect, additional RSASSA-PSS
signing algorithms become available for selection. For more information on
HSM integration and static keys, see Supported hardware security modules
on page 168 and Keys for OAuth and OpenID Connect on page 633.

 Note:

If static keys for OAuth and OpenID Connect are enabled, Elliptic-curve
cryptography (EC) algorithms that have not been configured with an active
static keys are hidden.

Changes made in the static-key configuration might affect runtime
transactions and require additional changes here. For more information,
see Keys for OAuth and OpenID Connect on page 633.

 Note:

automatically selects the signing JSON web key (JWK) based on the
selected signing algorithm from its JWK Set (JWKS).

In order for the OP to validate the signed request object, ensure that
the OP can access your 's JWKS URL, which returns the current set of
JSON web keys. The JWKS URL is located at <Base URL>/pf/JWKS,
where Base URL is defined on System # Server # Protocol Settings #
Federation Info.

For example, if the Base URL field value is https://www.example.com,
the JWKS URL is https://www.example.com/pf/JWKS. You can pass the
JWKS URL directly to the OP or have the OP contact the OpenID Provider
configuration endpoint for it. For more information, see .

2. Optional: Remain on the OpenID Provider Info tab and specify the request parameters that are
allowed to be included in the authentication requests to the OP under Request Parameters. For more
information, see .

Configuring default target URLs
You can define default target URLs for identity provider (IdP) connections.

About this task

Use the Protocol Settings # Overrides tab to assign a default target URL for this IdP connection.

Steps

Optional: Enter a URL in the Default Target URL field.

If specified, the value overrides the default target setting defined in the Applications # Integration # SP
Default URLs window.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 713

The SAML 1.x specifications for IdP-initiated single sign-on (SSO) require a target URL to be specified. If
the target application is specified in the URL parameter to the /sp/startSSO.ping application endpoint,
any URL specified in the Default Target URL field in this window will not be used for those transactions.

Overriding authentication context in an IdP connection
You can map authentication context values between the local and remote values in an OpenID Connect or
a SAML 2.0 identity provider (IdP) connection.

About this task

This optional configuration overrides how authentication context values are communicated with partners in
both the authentication or authorization requests and their responses. Any values that are not defined in
this configuration are passed through as-is.

As needed, you can use an asterisk, *, to match any values, a blank value for a scenario where the partner
or the local request does not specify an authentication value, or both.

Steps

1. Go to Authentication # Integration # IdP Connections.

2. Click the name of the connection to open it in the IdP Connection window.

3. On the Activation & Summary tab, scroll down to the Protocol Settings section, then click
Overrides.

4. On the Overrides tab, specify the Local and Remote entry, then click Add.

5. Repeat the previous step to define additional mappings.

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

6. Click Save to complete the configuration.

Alternatively, click Next to carry on with the rest of the connection settings.

Example

Example

Suppose you are the service provider (SP) and your target application requires
either the urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos or
urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified authentication context. While the IdP
is capable of authenticating its users using a Kerberos-based authentication system, a proprietary identity
management system, and a few internal web portals, the authentication context values are different than
what your application supports. The authentication context values from the IdP are as follows.

Authentication method AuthnContext values

Kerberos-based authentication system KerberosAuth

Internal web portals password, portal, or web

Proprietary identity management system No authentication context information is provided

To override the AuthnContext values from the IdP, you can configure the IdP connection with the
following authentication context mappings.

Local Remote

urn:oasis:names:tc:SAML:2.0:ac:classes:KerberosKerberosAuth

urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified*

Copyright ©2024

 | Administrator's Reference Guide | 714

Local Remote

urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified

The first entry maps KerberosAuth to urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos.
The second entry maps any authentication context values including password and portal to
urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified. The last entry overrides the
authentication value to urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified in the event
that the assertion does not contain any authentication context information.

Configuring signature policy
The Signature Policy tab provides options controlling how digital signatures are used for SAML and WS-
Federation single sign-on (SSO) messages.

About this task

The choices made on this tab depend on your partner agreement. For more information, see Digital signing
policy coordination on page 88.

Digital signing is required for SAML response messages sent from the identity provider (IdP) through
POST or redirect for SAML 2.0. The SAML specifications allow the signing of the entire SAML response
message or the assertion portion inside the SAML response message. If you and your partner agree on
the latter, select the Specify additional signature requirements and Require signed SAML Assertions
options on this tab. When the latter is selected, only the assertion portion of the SAML response message
is signed, not the entire SAML response message. This is the only option that appears for SAML 1.x and
WS-Federation connections.

SAML 2.0 authentication requests from the service provider (SP) can also be signed to enforce security.
This option appears only for SAML 2.0 connections and when the SP-initiated SSO profile is enabled on
the SAML Profiles tab.

Select Always Sign Artifact Response if you want the SAML ArtifactResponse to be signed regardless of
the protocol being used to transport it.

Steps

▪ To continue, select the options based on your partner agreement.

Result

If you are editing an existing connection, you can reconfigure the digital signature policy, which might
require additional configuration changes in subsequent tasks.

Specifying XML encryption policy (for SAML 2.0)
For SAML 2.0 configurations, in addition to using signed assertions to ensure authenticity, you and your
partner can also agree to encrypt all or part of an assertion to improve privacy.

About this task

You can configure these settings on the Encryption Policy tab.

 Note:

For WS-Fed connections with SAML 2.0 assertions, you cannot encrypt the entire assertion.

Copyright ©2024

 | Administrator's Reference Guide | 715

Option Name identifier
(SAML_SUBJECT)

Other
attributes

Encrypt the
SAML_SUBJECT in
SLO messages to the
IdP

Allow encrypted
SAML_SUBJECT in
SLO messages from
the IdP

None No encryption. No encryption. No encryption. No encryption.

The entire
assertion

Encryption
allowed.

Encryption
allowed.

Encryption allowed as an
available option.

Encryption allowed as an
available option.

SAML_SUBJECT
(Name
Identifier)

Encryption
allowed.

Encryption
allowed as an
available option.

Encryption allowed as an
available option.

Encryption allowed as an
available option.

One or more
attributes

Encryption
allowed.

Encryption
allowed as an
available option.

Encryption allowed as
an available option only
if you select to allow the
entire assertion or the
SAML_SUBJECT to be
encrypted.

Encryption allowed as
an available option only
if you select to allow the
entire assertion or the
SAML_SUBJECT to be
encrypted.

To enable encryption:

Steps

1. Click the Allow encrypted SAML Assertions and SLO messages option.

2. Choose whether this identity provider (IdP) partner will encrypt the entire assertion, the
SAML_SUBJECT name identifier, one or more other attributes, or some combination.

3. If your partner is encrypting the name identifier, indicate whether you will encrypt this attribute in
outbound SAML 2.0 single logout (SLO) messages, allow its encryption for inbound messages, or
both.

Result

If you are editing an existing connection, you can reconfigure the XML encryption policy, which might
require additional configuration changes in subsequent tasks.

Reviewing protocol settings for SP browser SSO
You should confirm your protocol settings for browser-based single sign-on (SSO) before completing
configuration.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Copyright ©2024

 | Administrator's Reference Guide | 716

Reviewing Browser SSO settings
You can review your browser single sign-on (SSO) settings before completing configuration.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Manage the Attribute Query profile in an IdP connection
At the attribute query step, you configure your connection to request user attributes from your partner
identity provider (IdP), if you chose this option.

For more information on IdP connection options, see Choosing IdP connection options on page 682.
Attribute queries do not depend on single sign-on (SSO), but can be used independently or in conjunction
with browser SSO or provisioning to provide flexibility in how a user authenticates with service provider
(SP) applications. For more information, see Attribute Query and XASP on page 43 and the /sp/
startAttributeQuery.ping on page 1176 SP application endpoint.

Setting the Attribute Authority Service URL
The attribute authority service URL corresponds to the endpoint location where your identity provider (IdP)
provider receives attribute query requests.

About this task

Attribute authority is the term used to refer to an IdP that provides user attributes to an attribute requester
or your service provider (SP) site. For more information, see Attribute Query and XASP on page 43.

Steps

▪ Enter the fully qualified URL or a relative path if you have defined a base URL on the General Info
tab. For more information, see Identifying the partner on page 685.

Mapping attribute names for Attribute Query
If the application at your site uses different names for user attributes than the names defined by the
attribute authority, you must map them on the Attribute Name Mapping tab.

About this task

When the service provider (SP) receives a request from a local application to send an attribute query to
this attribute authority partner, the requested user attributes are replaced with the names mapped here.

You must predetermine this information in your agreement with this connection partner.

Steps

To map an attribute, configure the Local Name and Remote Name fields for the attribute, then click Add.

Choice Action

Modify an attribute name Click Edit under Action for the attribute, make the
change, then click Update.

Copyright ©2024

 | Administrator's Reference Guide | 717

Choice Action

 Note:

If you change your mind, ensure that you click
Cancel under Actions and not the Cancel button,
which discards any other changes you might have
made in the configuration steps.

Delete an attribute Click Delete under Action for the attribute.

Configuring security policy for Attribute Query
The Security Policy tab allows you to specify the digital signing and encryption policy to which you and
your partner have agreed.

About this task

These selections will trigger requirements for setting up credentials. For more information, see Configuring
security credentials on page 749.

This tab also allows you to mask incoming attribute values in log files. For more information, see Attribute
masking on page 95. When you enable this selection, all user attributes returned from this identity
provider (IdP) are masked.

Steps

▪ Select or clear the check boxes the relevant check boxes.

Reviewing the Attribute Query settings
You can review your attribute query settings before completing configuration.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring just-in-time provisioning
PingFederate's just-in-time (JIT) provisioning allows service providers (SPs) to create user accounts on the
fly during single sign-on (SSO) events, based on attributes received in SSO tokens from identity providers
(IdPs).

About this task

An SP can also use JIT provisioning to update existing user records.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 718

This configuration task is presented in the administrative console only when the JIT Provisioning check
box is selected on the Connection Options tab.

Steps

1. Go to Authentication # Integration # IdP Connections.

2. Create a new IdP connection or select an existing IdP connection .

3. On the Connection Type tab, select the Browser SSO Profiles check box and a protocol from the
list.

4. On the Connection Options tab, select the Browser SSO check box and then the JIT Provisioning
check box.

5. Complete the Browser SSO configuration.

6. On the JIT Provisioning tab, click Configure User Provisioning to begin the configuration of JIT
provisioning.

Selecting attribute sources (SAML 2.0)
For SAML 2.0 connections, the server can be configured to use only assertion attributes for user
provisioning, or to retrieve more attributes from the identity provider (IdP) in a follow-on attribute query
transaction.

About this task

The User Attributes tab displays the attributes expected in the assertion from this IdP.

 Note:

The attribute query is a SAML 2.0 profile. For OpenID Connect, SAML 1.x, and WS-Federation
connections, this tab is not presented. PingFederate uses only attributes from the assertion for user
provisioning.

Steps

▪ If you and your IdP partner have agreed to use the Attribute Query profile for provisioning, select that
option before leaving this tab.

You configure the attribute query profile later in the task flow.

Copyright ©2024

 | Administrator's Reference Guide | 719

Identifying the user repository
PingFederate's just-in-time (JIT) provisioning supports several directory servers and Microsoft SQL Server.

About this task

For more information on versions and requirements supported by PingFederate, see System requirements
on page 109.

 Note:

was tested with vendor-specific JDBC drivers. For more information, see Database driver information on
page 114.

Steps

▪ On the User Repository tab, select a datastore from the Active Data Store list.

 Tip:

If the desired datastore is not shown in the list, PingFederate has not been configured to access it.
Click Manage Data Stores to configure your datastore.

▪ If you are using an LDAP store, see the sections immediately following:

▪ Specifying an LDAP user-record location on page 719
▪ Entering an LDAP filter on page 720
▪ Identifying provisioning attributes for LDAP on page 720

▪ If you are using a Microsoft SQL Server, skip to this section:

▪ Choose a SQL method

Specifying an LDAP user-record location
After choosing a datastore, indicate where in the store PingFederate should write new user records or
update existing ones.

About this task

 Note:

The Location tab appears only when an LDAP datastore is chosen on the User Repository tab.

Steps

Enter the base distinguished name (DN) in the Base DN field.

Copyright ©2024

 | Administrator's Reference Guide | 720

A base DN is the DN of the tree structure in which the search begins. Leave this field blank if records are
located at the LDAP root.

Entering an LDAP filter
On the Unique User ID tab, create an LDAP filter to identify user accounts to be provisioned or updated
during single sign-on (SSO) events.

About this task

PingFederate uses this expression in conjunction with the Base DN value defined on the Location tab to
locate existing account records and to add new ones.

 Note:

This tab appears only when an LDAP datastore is chosen on the User Repository tab.

Steps

▪ Enter the statement in the Filter field.

The filter is in the form: attribute=${value}.

 Note:

Unlike filters used to retrieve LDAP attributes for adapter mapping, do not enclose the statement in
parentheses.

The left-side variable is an attribute in your user-datastore. Click the link near the lower-left corner of
the tab to see a list of available attributes.

The right side of the filter uses one or more attribute values passed in from the SSO token. Variables
for these attributes, including the correct syntax, are listed under JIT Attributes.

 Tip:

If you are unfamiliar with writing LDAP queries, see the documentation accompanying your LDAP
installation.

Identifying provisioning attributes for LDAP
On the Attributes tab, you can select the datastore attributes to be provisioned.

About this task

Copyright ©2024

 | Administrator's Reference Guide | 721

 Note:

This tab appears only when an LDAP datastore is chosen on the User Repository tab.

Steps

1. Select a root object class and an attribute from the lists, and then click Add Attribute.

2. Repeat for each attribute requiring provisioning.

Choosing a SQL method
PingFederate allows you to map attributes directly to a single database table, the default, or to SQL stored-
procedure parameters for Java Database Connectivity (JDBC) datastores,

About this task
Choose and configure the preferred method on the SQL Method tab.

 Note:

This tab appears only when you specify Microsoft SQL Server datastore on the User Repository tab.

Steps

▪ Make a selection as needed and click Next.

Depending on the selection, different steps appear under the JIT Provisioning task. See the sections
indicated for more information.

▪ If mapping attributes directly to a table, see the topics sections immediately following:

▪ Specifying a database user-record location on page 721
▪ Specifying a unique ID database column on page 722

▪ If using a stored procedure, skip to Specifying a stored procedure location on page 723

Specifying a database user-record location
For database provisioning to a table, you must indicate where PingFederate should write new user records
or update existing ones.

About this task
Configure the location settings on the Location tab.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 722

This tab appears only when you choose a Microsoft SQL Server datastore on the User Repository tab
and select the Table option on the SQL Method tab.

Steps

▪ On the Location tab, select the database schema and the table.

Field Description

Schema Select the table structures that store information within the database.

Table Select the name of the database table that contains user records.

Columns to fulfill For the selected table, all attributes and their data types are displayed.

If the list of columns is not current due to any recent changes, click
Refresh.

On the Attribute Fulfillment tab, all attributes must be mapped for the
database insertion to succeed, although a null entry can be used for
optional attributes.

 Tip:

Click the link near the lower-left corner of the tab to see a list of available attributes from the single
sign-on (SSO) token.

Specifying a unique ID database column
PingFederate uses the database column you specify on the Unique ID tab to check whether a user record
already exists for the incoming single sign-on (SSO) token.

About this task

 Note:

This tab only appears if you have chosen a Microsoft SQL Server datastore on the User Repository tab
and you selected the Table option on the SQL Method tab.

Steps

▪ Select a column that represents a unique characteristic about the database entry for a particular user.

Copyright ©2024

 | Administrator's Reference Guide | 723

Specifying a stored procedure location
If you are using a stored procedure for provisioning the user database, specify its location on the Stored
Procedure Location tab.

About this task

 Note:

This window appears only when you have chosen a Microsoft SQL Server datastore on the User
Repository tab and the you have selected the Stored Procedure option on the SQL Method tab.

Steps

1. From the Schema menu, select the table structure that contains stored procedure within the database.

2. From the Stored Procedure menu, select the stored procedure needed to provision the user
database.

 Important:

The database account used by PingFederate must have access to the schema in which the stored
procedure is located and execute permission for the procedure.

Result: For the selected procedure, all parameters and their data types display in the Procedure
parameters to fulfill section.

 Note:

To see a list of available attributes from the single sign-on (SSO) token, click View Attribute
Contract.

You map attribute values from the SSO token to the parameters on the Attribute Fulfillment tab.

Troubleshooting:
If the list of parameters is not current due to any recent procedure revisions, click Refresh.

Mapping attributes to a user account
Map incoming attributes to the account attributes on an LDAP server, the columns in a database table on a
Microsoft SQL Server, or the parameters of a Microsoft SQL Server stored procedure.

About this task

In addition to values obtained from the single sign-on (SSO) token, you can map attributes from the context
of the SSO token text, with or without reference values from the SSO token, and expression if enabled.

If you select a Microsoft SQL Server datastore on the User Repository tab, then on the Attribute
Fulfillment tab you can test the insertion of attribute values into the database table or the stored
procedure. When mapping to a database column of the datetime or smalldatetime data type, if you
are not using a stored procedure to convert the incoming string value, you can use a PingFederate Java
conversion method through OGNL expressions.

Copyright ©2024

 | Administrator's Reference Guide | 724

Steps

1. On the Attribute Fulfillment tab, select a source from the list for each target attribute or parameter.
Choose from:

▪ Assertion or Provider Claims

Values are contained in the SSO token from this identity provider (IdP). When you select this, the
associated Value list is populated by the attribute contract.

▪ Context

Values are returned from the context of the transaction at runtime.

 Note:

As the HTTP Request is retrieved as a Java object rather than text, OGNL expressions are more
appropriate to evaluate and return values. Choose Expression from the list and then click Edit to
enter an expression.

▪ Attribute Query

This choice appears only if you choose the Attribute Query profile for provisioning.

To map an attribute-query value, use the syntax ${query_attribute}. You can combine
attribute-query values with references to attributes in the attribute contract; for example,
${query_attribute}+${attribute.

References to attributes not contained in the attribute contract result in an attribute query back to
the IdP partner.

▪ Expression

 Tip:

Enable OGNL expression by editing the <pf_install>/pingfederate/server/default/
data/config-store/org.sourceid.common.ExpressionManager.xml file. Restart after
saving the change.

For a clustered environment, edit the org.sourceid.common.ExpressionManager.xml file
on the console node, sign on to the administrative console to replicate this change to all engine
nodes in the System # Server # Cluster Management window, and restart all nodes.

This option provides more complex mapping capabilities, such as transforming incoming
values into different formats. All of the variables available for text entries are also available for
expressions.

 Tip:

If you need to map multiple attribute values from one or multiple sources to one attribute value,
use an OGNL expression to create it.

For database mapping, if the data type of a target parameter is datetime or smalldatetime,
you can use an expression to convert date-time strings from the SSO token. After selecting
Expression, click Datetime OGNL Examples for syntax information and examples.

▪ System Managed

This mapping option appears only when any automatically assigned attributes are among columns
to be provisioned, such as an identity or a timestamp column on the Microsoft SQL Server.

▪ Text

Copyright ©2024

 | Administrator's Reference Guide | 725

The value is what you enter. This can be text only, or you can mix text with references to any of
the values from the SSO token, using the ${attribute} syntax.

 Note:

For LDAP mapping, choose Text as the Source for the objectClass attribute.

For mapping into a database, if no entry is required for a column, you can leave the field blank.
A blank entry results in an empty string in the database for string data types and null for all other
data types. Alternatively, for string types, you can enter null in the field to explicitly set null in
the column.

2. Select or enter an attribute value.

All values must be mapped. For optional table columns, you can leave the field blank or, for string data
types, enter null to avoid empty strings.

No value is required for System Managed attributes.

 Note:

For Active Directory, enter user in the objectClass field. For Oracle Directory Server or Oracle
Unified Directory, enter inetOrgPerson.

3. Optional: When mapping to a Microsoft SQL Server datastore, test the insertion.
Choose from:

▪ If testing from a table:

a. Click Test insert into <table>.
b. Enter values for each applicable target parameter.
c. Click Test Insert.

If the test succeeds, a confirmation displays along with the values inserted.

 CAUTION:

Unless you want to keep the test values in the database, click Roll Back All Test Inserts.

▪ If testing from a stored procedure:

a. Click Test call to <procedure>.
b. Enter values for each applicable target parameter.
c. Click Test Stored Procedure Call.

For stored procedures, only a confirmation displays if the test is successful, indicating that the
procedure was populated with parameter values.

 CAUTION:

No roll back feature is provided because PingFederate does not know the result of the
procedure. Database rollback must be handled manually.

When finished, click Return to Attribute Fulfillment.

Copyright ©2024

 | Administrator's Reference Guide | 726

Choosing an event trigger
Choose whether PingFederate initiates user provisioning only when the user identifier is new, or every time
your site receives a single sign-on (SSO) token.

About this task

If you choose to have PingFederate initiate user provisioning every time your site receives an SSO token,
for all SSO tokens, an existing user account is always updated with incoming attributes.

 Note:

This tab does not appear for a Microsoft SQL Server datastore if provisioning is accomplished using a
stored procedure, because the procedure is always called for all SSO tokens. The procedure should
handle both provisioning new users and updating existing ones.

Steps

▪ On the Event Trigger tab, in the Specify the trigger that initiates a user-provisioning event
section, select one of the following:
Choose from:

▪ Only SAML Assertations Containing a New User ID
▪ All SAML Assertations

Configuring an error handling method
If user provisioning fails for any reason during single sign-on (SSO) events, you can choose to continue the
process by passing the user's attributes to your target application or to abort the SSO transaction.

About this task

When SSO is aborted, the user is redirected to an error page and the failure is written to the server log.

Steps

▪ On the Error Handling tab, in the How should the server handle a failure in a user provisioning
request? section, select one of the following:
Choose from:

▪ Send the User's Attributes to the Target Application
▪ Abort the SSO Transaction

Copyright ©2024

 | Administrator's Reference Guide | 727

Reviewing the JIT provisioning configuration
You can review your just-in-time (JIT) provisioning settings before completing configuration.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring SCIM inbound provisioning
The System for Cross-domain Identity Management (SCIM) inbound provisioning configuration provides for
a two-way mapping of attributes.

About this task

The first way facilitates SCIM operations used to create and update records in the datastore. The second
way allows the same SCIM client to retrieve those records and have the attribute values mapped back to
their corresponding designation in the client store. The dual mapping provides greater flexibility, especially
for OGNL-expression transformations (for example, converting two attributes into one multivalued attribute
and then back again). For more information, see Writing user information to the datastore on page 733
and Configuring a SCIM response on page 737.

 Note:

SCIM-client requests must include authentication credentials, which you configure on the Credentials #
Back-Channel Authentication tab. The same credentials needed for single sign-on (SSO), are also used
for SCIM transactions.

Steps

1. On the Authentication # Integration # IdP Connections window, create a new IdP connection or
select an existing IdP connection.

2. On the Connection Type tab, select the Inbound Provisioning check box and one of the following
options:
Choose from:

▪ User Support
▪ User and Group Support

3. On the Inbound Provisioning tab, click Configure Inbound Provisioning to begin the configuration
of SCIM inbound provisioning.

Copyright ©2024

 | Administrator's Reference Guide | 728

Specifying the user repository
PingFederate supports Active Directory (AD) user stores and custom identity store provisioners for inbound
provisioning.

About this task

Manage the datastore serving as the local repository on the Repository tab.

 Note:

Active Directory user stores require an LDAPS connection to the datastore.

Steps

▪ Choose one of the following options, and then specify the datastore from the list.
Choose from:

▪ Active Directory Data Store
▪ Identity Store Provisioner

 Tip:

If the correct datastore is not shown in the list, then PingFederate is not configured to access the store.
Click Manage Data Stores to set up the desired datastore.

Identifying an LDAP user-record location
After choosing a datastore, you can indicate where in the datastore user and group records exist so
PingFederate can create, read, update, or delete or disable them.

About this task

These settings can be configured on the Location tab.

 Note:

This tab appears only if you are configuring an LDAP user store for provisioning.

Copyright ©2024

 | Administrator's Reference Guide | 729

Steps

▪ Enter the base distinguished name (DN) of the tree structure where user records are stored in the
Base DN field.

 Note:

PingFederate looks only at this node level or below it for user accounts that need provisioning

Defining a unique user ID
On the Unique user ID tab, you can create an LDAP filter to resolve user accounts for System for Cross-
domain Identity Management (SCIM) operations.

About this task

PingFederate uses LDAP filter in conjunction with the Base DN value, defined on the Location tab, to add
new account records.

 Note:

This tab only appears if you are configuring an LDAP user store for provisioning.

Steps

▪ Enter the statement in the Filter text field.

The filter is in the form: attribute=${value} where attribute is an attribute in your user-
datastore and value is the attribute value or values passed in from the SCIM request. To see a list of
available attributes in your user-datastore, click View List of Available LDAP Attributes. Variables
for these attributes, including the correct syntax, are listed under SCIM Attributes.

 Note:

Unlike filters used to retrieve LDAP attributes for adapter mapping, do not enclose the statement in
parentheses.

 Tip:

If you are unfamiliar with writing LDAP queries, see the documentation accompanying your LDAP
installation.

Defining a unique group ID
On the Unique Group ID tab, you can create an LDAP filter to resolve groups for System for Cross-
domain Identity Management (SCIM) operations.

About this task

PingFederate uses this LDAP filter in conjunction with the Base DN value, defined on the Location tab, to
add new groups.

Copyright ©2024

 | Administrator's Reference Guide | 730

 Note:

This tab appears only if you are configuring an LDAP user store for provisioning and you have selected the
User and Group Support option on the Connection Type tab.

Steps

▪ Enter the statement in the Filter text field.

The filter is in the form: attribute=${value} where attribute is an attribute in your user-
datastore and value is the attribute value or values passed in from the SCIM request. To see a list of
available attributes in your user-datastore, click View List of Available LDAP Attributes. Variables
for these attributes, including the correct syntax, are listed under SCIM Attributes.

 Note:

Unlike filters used to retrieve LDAP attributes for adapter mapping, do not enclose the statement in
parentheses.

 Tip:

If you are unfamiliar with writing LDAP queries, see the documentation accompanying your LDAP
installation.

Defining custom SCIM attributes
When configuring System for Cross-domain Identity Management (SCIM) inbound provisioning, you can
define custom attributes.

About this task

supports SCIM attributes in the core schema and custom attributes through a schema extension.

 Note:

Custom attributes are optional. If your use case does not require any additional attributes, click Next on the
Custom SCIM Attributes tab.

To support custom attributes, you must specify the schema extension and the custom attributes in the
connection. There are four attribute types:

▪ Simple attributes
▪ Simple multivalued attributes
▪ Complex attributes
▪ Complex multivalued attributes

Copyright ©2024

 | Administrator's Reference Guide | 731

The following fragment illustrates a SCIM message supporting schema extension
urn:scim:schemas:extension:custom:1.0 with four attributes, one of each attribute type. The table
afterward describes the details of each attribute.

{
 "userName":"CBrown",
 "active":true,
 "schemas":[
 "urn:scim:schemas:core:1.0",
 "urn:scim:schemas:extension:custom:1.0"
],
 ...
 "urn:scim:schemas:extension:custom:1.0":{
 "supervisor":"JSmith",
 "territories":[
 "Montana",
 "Idaho",
 "Wyoming"
],
 "options":{
 "quantity":"10000",
 "strike" :"5.25",
 "first" :"2017-12-01",
 "last" :"2025-03-31"
 },
 "tablets":[
 {
 "model" :"8086",
 "serial":"5500-2020-965",
 "type" :"office"
 },
 {
 "model" :"8088",
 "serial":"5500-2040-151",
 "type" :"remote"
 }
]
 }
}

Attribute Name Attribute Type Sub-Attributes (Complex)

supervisor Simple Not applicable

territories Simple multivalued Not applicable

options Complex quantity, strike, first, and last

tablets Complex multivalued model, serial, and type.

 Note:

type is a reserved sub-attribute for a complex
multivalued attribute.

 Tip:

For more information about SCIM and attribute types, see the website www.simplecloud.info.

Copyright ©2024

 | Administrator's Reference Guide | 732

Steps

Go to the Custom SCIM Attributes tab.

Choose from:

▪ To specify a schema extension, enter the URI of the schema extension in the Extension Namespace
field

 Tip:

The default value is urn:scim:schemas:extension:custom:1.0. You can keep this value if your
partner identifies custom attributes by this URI in its SCIM messages.

▪ To add a custom attribute, enter an attribute name and click Add. Repeat this step to add more
custom attributes as needed.

▪ To delete a custom attribute, click Delete next to the custom attribute.
▪ To undo the deletion, click Undelete.
▪ To edit a custom attribute, click Edit next to the custom attribute.

Result:

The administrative console displays the Custom SCIM Attribute Options tab, where you can:

▪ Change the attribute name.
▪ Set the attribute as a simple multivalued attribute.
▪ Add sub-attributes to make it a complex attribute.
▪ Add sub-attributes and set the attribute as a complex multivalued attribute.

For more information, see Configuring custom SCIM attribute options on page 732.

Configuring custom SCIM attribute options
After choosing a custom System for Cross-domain Identity Management (SCIM) attribute on the Custom
SCIM Attribute tab, you can use the Custom SCIM Attribute Options tab to configure the attribute.

About this task

On this tab you can change the attribute name, set the attribute as a simple multivalued attribute, add
sub-attributes to make it a complex attribute, and add sub-attributes and set the attribute as a complex
multivalued attribute.

Steps

Go to the Custom SCIM Attribute Options tab.
Choose from:

▪ To change the name of the custom attribute, replace the current value in the Name field, and then click

Done.

Copyright ©2024

 | Administrator's Reference Guide | 733

▪ To define the custom attribute as a simple multivalued attribute, select the Is Multi-valued check box,

and then click Done.
▪ To define the custom attribute as a complex attribute, enter a sub-attribute, and then click Add.

Repeat this step to add more sub-attributes as needed, and then click Done.

 Tip:

Click Edit, Update, or Cancel to make or undo a change to the name of a sub-attribute. Click Delete
or Undelete to remove a sub-attribute or cancel the deletion.

▪ To define the custom attribute as a complex multivalued attribute, follow these steps.

a. Enter a sub-attribute, and then click Add. Repeat this step to add more sub-attributes as needed.

 Tip:

Click Edit, Update, or Cancel to make or undo a change to the name of a sub-attribute. Click
Delete or Undelete to remove a sub-attribute or cancel the deletion.

b. Select the Is Multi-valued check box.
c. If you have chosen Active Directory as your user store, you must specify at least one value in the

Types section for type, a reserved sub-attribute for a complex multivalued attribute. For more
information, see Specifying the user repository on page 728

d.

Click Done.

Writing user information to the datastore
To configure how PingFederate completes create and update operations for user accounts from a System
for Cross-domain Identity Management (SCIM) request, identify incoming attributes and map them to
datastore attributes.

Steps

On the Write Users tab, click Configure Write Users to continue.

Copyright ©2024

 | Administrator's Reference Guide | 734

Identifying inbound provisioning attributes for LDAP
When configuring System for Cross-domain Identity Management (SCIM) inbound provisioning, you must
identity the attributes you want to provision.

About this task

You can select the datastore attributes you want to provision on the Attributes tab.

 Note:

This tab appears only if you are configuring an LDAP user store for provisioning.

The following attributes are managed internally by PingFederate and do not require mapping:

▪ objectClass
▪ unicodePwd
▪ objectGUID
▪ userAccountControl

You can override the internal management of objectClass and unicodePwd by selecting these
attributes and mapping them to SCIM attributes on the Attribute Fulfillment tab. In this case, the values
you supply are used. The objectGUID and userAccountControl attributes cannot be overridden and
are ignored if selected.

Steps

1. Select a root object class and an attribute from the lists, then click Add Attribute.

 Important:

Do not add cn as one of the attributes.

2. Repeat the previous step for each attribute requiring provisioning.

Copyright ©2024

 | Administrator's Reference Guide | 735

Mapping attributes to user accounts
Map attribute values in the System for Cross-domain Identity Management (SCIM) request to user-account
attributes.

About this task

Steps

1. On the Attribute Fulfillment tab, for each attribute, select a source from the Source list and then
choose or enter a value. You must map all attributes.

▪ Context

When selected, the Value list populates with the available context of the transaction. Select the
desired context from the list.

 Note:

As the HTTP Request context value is retrieved as a Java object rather than text, use OGNL
expressions to evaluate and return values.

 Note:

If you are configuring an OAuth Attribute Mapping configuration and have added
PERSISTENT_GRANT_LIFETIME as an extended attribute in the Authorization Server Settings

Copyright ©2024

 | Administrator's Reference Guide | 736

window, you can set the lifetime of persistent grants based on the outcome of attribute mapping
expressions or the per-client Persistent Grants Max Lifetime setting.

▪ To set lifetime based on the per-client Persistent Grants Max Lifetime setting, select
Context from the Source list and Default Persistent Grant Lifetime from the Value list.

▪ To set lifetime based on the outcome of attribute mapping expressions, select Expression as
the source and enter an OGNL expression in the Value field.

If the expression returns a positive integer, the value represents the lifetime of the persistent
grant in minutes.

If the expression returns the integer 0, does not store the grant and does not issue a refresh
token.

If the expression returns any other value, sets the lifetime of the persistent grant based on
the per-client Persistent Grants Max Lifetime setting.

▪ To set a static lifetime, select Text from the Source list and enter a static value in the Value
field.

This is suitable for testing purposes, or cases where the persistent grant lifetime must always
be set to a specific value.

▪ Expression

 Tip:

Enable OGNL expression by editing the <pf_install>/pingfederate/server/default/
data/config-store/org.sourceid.common.ExpressionManager.xml file. Restart after
saving the change.

For a clustered environment, edit the org.sourceid.common.ExpressionManager.xml file
on the console node, sign on to the administrative console to replicate this change to all engine
nodes in the System # Server # Cluster Management window, and restart all nodes.

This option provides more complex mapping capabilities, such as transforming incoming
values into different formats. All of the variables available for text entries are also available for
expressions.

 Tip:

If two attribute values from a SCIM request need to be mapped to one LDAP attribute value, use
an OGNL expression to create it.

▪ SCIM User

When you make this selection, the associated Value list populates with defined components of the
SCIM request.

▪ No Mapping

Select this option to ignore the Value field.
▪ Text

The value is what you enter. This can be text only, or you can mix text with references to any of
the values from the SCIM request using the ${attribute}syntax.

2. Click Done.

Copyright ©2024

 | Administrator's Reference Guide | 737

Reviewing user mapping (Write Users) configuration
You can review your user mapping settings before completing configuration.

About this task

The Summary tab provides an overview of the inbound provisioning configuration for request mapping.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring a SCIM response
To configure a System for Cross-domain Identity Management (SCIM) response to a request to read and
return provisioned SCIM attributes, identify and map the user account attributes you want to include.

About this task

Begin this process on the Read Users tab.

Steps

On the Read Users tab, click Configure Read Users to continue.

Identifying expected user attributes for the SCIM response
An attribute contract is a set of user attributes that you and your partner agree will be sent in a System for
Cross-domain Identity Management (SCIM) response for this connection.

About this task

On the Attribute Contract tab, the attributes you mapped to user account attributes on the Write Users
tab appear under Attribute Contract.

Optionally, you can mask the values of attributes in the log files that PingFederate writes when it sends the
SCIM response.

There are multiple SCIM attributes that are managed internally by PingFederate and are unavailable for
inclusion in the attribute contract:

Copyright ©2024

 | Administrator's Reference Guide | 738

▪ id
▪ active

Steps

Click Available SCIM Attributes near the lower-left corner of the tab to include additional attributes you
want to map in the SCIM response.

Option Action

Add an attribute Enter the attribute name in the text box, select the
check box under Mask Values in Log as needed,
then click Add.

Attribute names are case-sensitive and must
correspond to the attribute names expected by your
partner. To see a list of available attributes, click
Available SCIM attributes.

Modify an attribute name or masking selection Click Edit under Action for the attribute, make the
change, then click Update.

 Note:

If you change your mind, make sure you click
Cancel under Actions, not the Cancel button,
which discards any other changes you might have
made in the configuration steps.

Delete an attribute Click Delete under Action for the attribute.

Identifying LDAP attributes for the SCIM response
On the Attributes tab, you can select the LDAP attributes you want to map to attributes in the System for
Cross-domain Identity Management (SCIM) response.

About this task

 Note:

This tab appears only if you are configuring an LDAP user store for provisioning.

Steps

1. Select a root object class and an attribute from the lists, then click Add Attribute.

2. Repeat for each attribute requiring provisioning.

Copyright ©2024

 | Administrator's Reference Guide | 739

Mapping attributes into the SCIM response
Map outgoing user-account attributes to System for Cross-domain Identity Management (SCIM) responses
to READ requests.

Steps

1. On the Attribute Fulfillment tab, for each target attribute, select a source from the Source list, then
choose or enter a value. All target attributes must be mapped.
Choose from:

▪ Context

When selected, the Value list populates with the available context of the transaction. Select the
desired context from the list.

 Note:

Because the HTTP Request context value is retrieved as a Java object rather than text, use
OGNL expressions to evaluate and return values.

 Note:

If you are configuring an OAuth Attribute Mapping configuration and have added
PERSISTENT_GRANT_LIFETIME as an extended attribute in the Authorization Server

Copyright ©2024

 | Administrator's Reference Guide | 740

Settingswindow, you can set the lifetime of persistent grants based on the outcome of attribute
mapping expressions or the per-client Persistent Grants Max Lifetime setting.

▪ To set lifetime based on the per-client Persistent Grants Max Lifetime setting, select
Context from the Source list and Default Persistent Grant Lifetime from the Value list.

▪ To set lifetime based on the outcome of attribute mapping expressions, select Expression as
the source and enter an OGNL expression in the Value field.

If the expression returns a positive integer, the value represents the lifetime of the persistent
grant in minutes.

If the expression returns the integer 0, does not store the grant and does not issue a refresh
token.

If the expression returns any other value, sets the lifetime of the persistent grant based on
the per-client Persistent Grants Max Lifetime setting.

▪ To set a static lifetime, select Text from the Source list and enter a static value in the Value
field.

This is suitable for testing purposes, or cases where the persistent grant lifetime must always
be set to a specific value.

▪ Expression

This option provides more complex mapping capabilities, such as transforming outgoing
values into different formats. All of the variables available for text entries are also available for
expressions.

 Tip:

If you need to map an LDAP attribute to two attributes in a SCIM response, use an OGNL
expression to create them.

 Tip:

Enable OGNL expression by editing the <pf_install>/pingfederate/server/default/
data/config-store/org.sourceid.common.ExpressionManager.xml file. Restart after
saving the change.

For a clustered environment, edit the org.sourceid.common.ExpressionManager.xml file
on the console node, sign on to the administrative console to replicate this change to all engine
nodes in the System # Server # Cluster Management window, and restart all nodes.

▪ LDAP

Values are returned from your query. When you make this selection, the Value list populates with
the LDAP attributes you identified for this datastore.

▪ Identity Store

Values are returned from your query. When you make this selection, the Value list populates with
the Identity Store attributes you identified for this datastore.

▪ No Mapping

Select this option to ignore the Value field.
▪ Text

The value is what you enter. This can be text only, or you can mix text with references to any of
the values from the SCIM request, using the ${attribute} syntax.

2. Click Done.

Copyright ©2024

 | Administrator's Reference Guide | 741

Reviewing SCIM response (Read Users) configuration
You can review your System for Cross-domain Identity Management (SCIM) response mapping before
completing configuration.

About this task

The Summary tab provides an overview of the inbound provisioning configuration for SCIM response
mapping.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring the handling of SCIM delete requests
You can use the Delete/Disable Users tab to define how System for Cross-domain Identity Management
(SCIM) delete requests are handled within your user datastore.

About this task

 Important:

If the group support option is enabled, when PingFederate receives a SCIM delete request for a group, it
always removes the specified group from the datastore.

 Note:

This tab appears only if you are configuring an LDAP user store for provisioning.

Steps

Click one of the two available options for SCIM DELETE message behavior.
Choose from:

Copyright ©2024

 | Administrator's Reference Guide | 742

▪ Click Disable User to make the user inactive within the datastore. This approach is preferred in
situations where accounts must be retained for auditing reasons.

In order to be SCIM compliant when deleting users, PingFederate returns an HTTP 404 response
code for all subsequent operations related to the user-effectively treating the user as if they have been
deleted from the LDAP user store. For more information, see SCIM specifications.

 CAUTION:

If the user is disabled through another method, PingFederate still treats that user as if they have been
deleted and returns HTTP 404 response codes for all subsequent requests.

▪ Click Permanently Delete User to remove the user from the datastore.

Writing group information to the datastore
To configure how PingFederate completes create and update operations for groups from a System
for Cross-domain Identity Management (SCIM) request, identify incoming attributes and map them to
datastore attributes.

About this task

You can identify and map these attributes on the Write Groups tab.

Steps

Click Configure Write Groups to continue.

Identifying inbound provisioning group attributes for LDAP
You must identify the datastore attributes you want to provision when writing group information to the
datastore.

About this task

You can identify these attributes on the Attributes tab.

 Note:

This tab only appears if you are configuring an LDAP user store for provisioning and the User and Group
Support option is selected on the Connection Type tab.

PingFederate internally manages several attributes that do not require mapping:

▪ objectClass
▪ objectGUID
▪ member

You can override the internal management of objectClass by selecting and mapping it to a System
for Cross-domain Identity Management (SCIM) attribute on the Attribute Fulfillment tab. In this case,

Copyright ©2024

http://www.simplecloud.info/specs/draft-scim-api-01.html#delete-resource

 | Administrator's Reference Guide | 743

the values you supply are used. The objectGUID and member attributes cannot be overridden and are
ignored if selected.

Steps

1. Select a root object class and an attribute from the lists, and then click Add Attribute.

2. Repeat the previous step for each attribute requiring provisioning.

Mapping attributes to groups
Map attribute values in the System for Cross-domain Identity Management (SCIM) request to group
attributes.

About this task

Steps

1. On the Attribute Fulfillment tab, for each attribute, select a source from the list and then choose or
enter a value. You must map all target attributes.

▪ Context

When selected, the Value list populates with the available context of the transaction. Select the
desired context from the list.

 Note:

As the HTTP Request context value is retrieved as a Java object rather than text, use OGNL
expressions to evaluate and return values.

 Note:

If you are configuring an OAuth Attribute Mapping configuration and have added
PERSISTENT_GRANT_LIFETIME as an extended attribute in the Authorization Server Settings

Copyright ©2024

 | Administrator's Reference Guide | 744

window, you can set the lifetime of persistent grants based on the outcome of attribute mapping
expressions or the per-client Persistent Grants Max Lifetime setting.

▪ To set lifetime based on the per-client Persistent Grants Max Lifetime setting, select
Context from the Source list and Default Persistent Grant Lifetime from the Value list.

▪ To set lifetime based on the outcome of attribute mapping expressions, select Expression as
the source and enter an OGNL expression in the Value field.

If the expression returns a positive integer, the value represents the lifetime of the persistent
grant in minutes.

If the expression returns the integer 0, does not store the grant and does not issue a refresh
token.

If the expression returns any other value, sets the lifetime of the persistent grant based on
the per-client Persistent Grants Max Lifetime setting.

▪ To set a static lifetime, select Text from the Source list and enter a static value in the Value
field.

This is suitable for testing purposes, or cases where the persistent grant lifetime must always
be set to a specific value.

▪ Expression

This option provides more complex mapping capabilities ,such as transforming incoming
values into different formats. All of the variables available for text entries are also available for
expressions.

 Tip:

If you need to map two attribute values from a SCIM request to one LDAP attribute value, use an
OGNL expression to create the LDAP attribute.

 Tip:

Enable OGNL expression by editing the <pf_install>/pingfederate/server/default/
data/config-store/org.sourceid.common.ExpressionManager.xml file. Restart after
saving the change.

For a clustered environment, edit the org.sourceid.common.ExpressionManager.xml file
on the console node, sign on to the administrative console to replicate this change to all engine
nodes in the System # Server # Cluster Management window, and restart all nodes.

▪ SCIM Group

When you make this selection, the associated Value list populates with the defined components of
the SCIM request.

▪ No Mapping

Select this option to ignore the Value field.
▪ Text

The value is what you enter. This can be text only, or you can mix text with references to any of
the values from the SCIM request, using the ${attribute} syntax.

2. Click Done.

Copyright ©2024

 | Administrator's Reference Guide | 745

Reviewing group mapping (Write Groups) configuration
You can review your group mapping settings before completing configuration.

About this task

The Summary tab provides an overview of the inbound provisioning configuration for request mapping.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring a SCIM response for groups
To configure a System for Cross-domain Identity Management (SCIM) response to a request to read and
return provisioned SCIM attributes, identify and map the group attributes you want to include.

About this task

You can begin to identify and map these attributes on the Read Groups tab.

Steps

▪ Click Configure Read Groups to continue.

Identifying expected group attributes for the SCIM response
On the Attribute Contract tab, you can identify the group attributes for you and your partner.

About this task

An attribute contract is a set of group attributes that you and your partner have agreed will be sent in a
System for Cross-domain Identity Management (SCIM) response for this connection. The attributes you
mapped to group attributes on the Write Groups tab appear at the top of the tab.

Click Available SCIM Attributes near the lower-left corner of the tab to include additional attributes you
want to map in the SCIM response.

Optionally, you can mask the values of attributes in the log files that PingFederate writes when it sends the
SCIM response.

Copyright ©2024

 | Administrator's Reference Guide | 746

There are several SCIM attributes that are managed internally by PingFederate and are unavailable for
inclusion in the attribute contract:

▪ id
▪ members

Steps

To add an attribute, enter the attribute name in the text box, select the check box under Mask Values in
Log as needed, and click Add.

 Note:

Attribute names are case-sensitive and must correspond to the attribute names expected by your partner.
To see a list of available attributes, click Available SCIM attributes.

Choice Action

Modify an attribute name or masking selection Click Edit under Action for the attribute, make the
change, then click Update.

 Note:

If you change your mind, ensure that you click
Cancel under Actions and not the Cancel button,
which discards any other changes you might have
made in the configuration steps.

Delete an attribute Click Delete under Action for the attribute.

Identifying LDAP group attributes for the SCIM response
On the Attributes tab, select the LDAP attributes you want to map to attributes in the System for Cross-
domain Identity Management (SCIM) response.

About this task

 Note:

This tab only appears if you are configuring an LDAP user store for provisioning and the User and Group
Support option is selected on the Connection Type tab.

Steps

1. Select a root object class and an attribute from the lists, and then click Add Attribute.

2. Repeat the previous step for each attribute requiring provisioning.

Copyright ©2024

 | Administrator's Reference Guide | 747

Mapping group attributes into SCIM response
Map outgoing group attributes to System for Cross-domain Identity Management (SCIM) responses to
READ requests.

About this task

Steps

1. On the Attribute Fulfillment tab, for each attribute, select a source from the Source list and then
choose or enter a value. You must map all attributes.

▪ Context

When selected, the Value list populates with the available context of the transaction. Select the
desired context from the list.

 Note:

As the HTTP Request context value is retrieved as a Java object rather than text, use OGNL
expressions to evaluate and return values.

 Note:

If you are configuring an OAuth Attribute Mapping configuration and have added
PERSISTENT_GRANT_LIFETIME as an extended attribute in the Authorization Server Settings

Copyright ©2024

 | Administrator's Reference Guide | 748

window, you can set the lifetime of persistent grants based on the outcome of attribute mapping
expressions or the per-client Persistent Grants Max Lifetime setting.

▪ To set lifetime based on the per-client Persistent Grants Max Lifetime setting, select
Context from the Source list and Default Persistent Grant Lifetime from the Value list.

▪ To set lifetime based on the outcome of attribute mapping expressions, select Expression as
the source and enter an OGNL expression in the Value field.

If the expression returns a positive integer, the value represents the lifetime of the persistent
grant in minutes.

If the expression returns the integer 0, does not store the grant and does not issue a refresh
token.

If the expression returns any other value, sets the lifetime of the persistent grant based on
the per-client Persistent Grants Max Lifetime setting.

▪ To set a static lifetime, select Text from the Source list and enter a static value in the Value
field.

This is suitable for testing purposes, or cases where the persistent grant lifetime must always
be set to a specific value.

▪ Expression

 Tip:

Enable OGNL expression by editing the <pf_install>/pingfederate/server/default/
data/config-store/org.sourceid.common.ExpressionManager.xml file. Restart after
saving the change.

For a clustered environment, edit the org.sourceid.common.ExpressionManager.xml file
on the console node, sign on to the administrative console to replicate this change to all engine
nodes in the System # Server # Cluster Management window, and restart all nodes.

This option provides more complex mapping capabilities, transforming outgoing values into
different formats. All of the variables available for text entries are also available for expressions.

 Tip:

If an LDAP attribute needs to be mapped to two attributes in a SCIM response, use an OGNL
expression to create them.

▪ LDAP

Values are returned from your query. When you make this selection, the Value list populates with
the LDAP attributes you identified for this datastore.

▪ Identity Store

Values are returned from your query. When you make this selection, the Value list populates with
the Identity Store attributes you identified for this datastore.

▪ No Mapping

Select this option to ignore the Value field.
▪ Text

The value is what you enter. This can be text only, or you can mix text with references to any of
the values from the SCIM request, using the ${attribute} syntax.

2. Click Done.

Copyright ©2024

 | Administrator's Reference Guide | 749

Reviewing SCIM response for groups (Read Groups) configuration
You can review your System for Cross-domain Identity Management (SCIM) settings before completing
configuration.

About this task

The Summary tab provides an overview of the inbound provisioning configuration for SCIM response
mapping.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Reviewing the inbound provisioning configuration
You can review your inbound provisioning settings before completing the configuration.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Configuring security credentials
You can configure security credentials and requirements as needed.

About this task

The Credentials tab provides the launching point for configuring security requirements you might need
depending on the federation protocol you are using and the choices you have made.

Copyright ©2024

 | Administrator's Reference Guide | 750

Steps

▪ To continue, click Configure Credentials.

For more information and configuration steps see:

▪ Configuring back-channel authentication for outbound messages on page 750
▪ Configuring back-channel authentication for inbound messages on page 751
▪ Managing digital signature settings on page 753
▪ Managing signature verification settings on page 753
▪ Choosing an encryption certificate (SAML 2.0) on page 755
▪ Choosing a decryption key (SAML 2.0) on page 756
▪ Reviewing IdP credential settings on page 756
▪ Reviewing an IdP connection on page 757

IdP connection management
When configuring a profile for the inbound artifact binding, outbound SOAP binding, or provisioning, you
must specify back-channel authentication information for sending SOAP messages, artifact resolution
requests, and provisioning requests to your partner identity provider (IdP).

Similarly, if you send artifacts, SOAP messages, or provisioning messages to your partner IdP, then you
must configure SOAP authentication requirements for receiving SOAP responses, artifact resolution
requests, or provisioning requests from your partner.

Back-channel authentication also applies to attribute-request configurations, because this profile always
uses the SOAP back channel.

See Configuring back-channel authentication for outbound messages on page 750 and Configuring back-
channel authentication for inbound messages on page 751 for configuration steps.

Configuring back-channel authentication for outbound messages
You can add and edit configuration settings for back-channel authentication for outbound messages.

Steps

1. On the Back-Channel Authentication tab, in the Send to your partner section, click Configure.

2. On the Outbound SOAP Authentication Type tab, choose one or more authentication methods.

HTTP Basic

When selected, the administrative console prompts you to enter the credentials on the Basic
SOAP Authentication (Outbound) tab.

You must obtain these credentials from your partner.

SSL Client Certificate

Applicable only if you specify an endpoint that uses HTTPS.

When selected, the administrative console prompts you to specify your client certificate on
the SSL Authentication Certificate tab. If you have not yet created or imported the client
certificate, click Manage Certificates to do so. For more information, see .

 Important:

When exporting this client certificate for your partner, choose the Certificate Only option.

Digital Signature (Browser SSO profile only)

You select a signing certificate on the Digital Signature Settings tab.

This option leverages on the digital signature of the message.

Perform validation on partner's SSL server certificate when SSL used

Copyright ©2024

 | Administrator's Reference Guide | 751

By default, validates your partner's HTTPS server certificate, verifying that the certificate chain
is rooted by a trusted certificate authority (CA) and that the hostname matches the certificate's
common name (CN).

Clear the associated check box if you do not want this validation to occur.

These options can be used in any combination or independently.

3. On the Summary tab, review your configuration and perform one of the following tasks:
Choose from:

▪ Amend your configuration by clicking the corresponding tab title, then follow the configuration
wizard to complete the task.

▪ Keep your changes by clicking Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative
console offers the opportunity to do so.

▪ Discard your changes by clicking Cancel.

Configuring back-channel authentication for inbound messages
You can add and edit configuration settings for back-channel authentication for inbound messages.

Steps

1. On the Back-Channel Authentication tab, in the Received from your partner section, click
Configure.

2. On the Inbound Authentication Type tab, choose one or more authentication methods.

HTTP Basic

When selected, the administrative console prompts you to enter the credentials on the Basic
SOAP Authentication (Inbound) tab.

 Important:

If you are configuring more than one connection that uses the artifact or HTTP profile, you
must ensure that the username is unique for each connection. You must communicate these
credentials to your partner out-of-band.

SSL Client Certificate

When selected, the administrative console prompts you to specify the trust model and the
related certificate settings on subsequent windows. See the next step.

Digital Signature (Browser SSO profile only)

You select a signing certificate on the Signature Verification Settings tab.

This option leverages on the digital signature of the message.

Require SSL

When selected, incoming HTTP transmissions must use a secure channel. This option is
selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 752

You can clear the check box if you do not require a secure channel and client certificate
authentication.

For SAML 2.0, use these options in any combination or independently. For SAML 1.x, you must enable
HTTP Basic authentication, client certificate authentication, or both. You can also add digital signing to
ensure message integrity.

3. If you chose SSL Client Certificate in the previous step, select a trust model on the Certificate
Verification Method tab.

Anchored

The partner certificate must be signed by a trusted certificate authority (CA). Optionally, you can
also restrict the issuer to a specific Trusted CA to mitigate potential man-in-the-middle attacks
and to provide a means to isolate certificates used by different connections. The CA's certificate
must be imported into the Trusted CA store on the Trusted CAswindow..

Unanchored

The partner certificate is self-signed or you want to trust a specified certificate.

 Note:

When anchored certificates are used between partners, certificates can be changed without sending
the update to your partner. If the certificate is unanchored, any changes must be promulgated.

For more information, see .

Trust model Subsequent steps

Anchored On the Subject DN tab:

a. Enter the Subject DN of the certificate.
b. Optionally, select the Restrict Issuer check box and enter the Issuer

DN of the certificate.

 Important:

Consider enabling this option to mitigate potential man-in-the-middle
attacks and to provide a means to isolate certificates used by different
connections.

Unanchored On the SSL Verification Certificate tab, select the client certification from
your partner.

If you have not yet imported the client certificate from your partner, click
Manage Certificates to do so. For more information, see .

Copyright ©2024

 | Administrator's Reference Guide | 753

4. On the Summary tab, review your configuration and perform one of the following tasks:
Choose from:

▪ Amend your configuration by clicking the corresponding tab title, then follow the configuration
wizard to complete the task.

▪ Keep your changes by clicking Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative
console offers the opportunity to do so.

▪ Discard your changes by clicking Cancel.

Managing digital signature settings
Managing digital signature settings defines the private key you will use to sign single sign-on (SSO)
authentication or attribute requests (optionally) or SAML 2.0 single logout (SLO) messages for this identity
provider (IdP).

About this task

This process allows you to include Key Info with the XML message if you and your partner have agreed to
this option.

Digital signing applies to service provider (SP)-initiated SSO under SAML 2.0, when specified by your
partner agreement, and to either SLO profile using the POST or redirect bindings. Digital signing also
applies if you are configuring an Attribute Query profile and have specified that you will sign attribute
requests.

The step is not required for SAML 1.x IdP connections.

Steps

1. On the Digital Signature Settings tab, select a signing certificate from the Signing Certificatelist.

If you have not yet created or imported your certificate into PingFederate, click Manage Certificates.
For more information, see Manage digital signing certificates and decryption keys on page 625.

2. Optional: Select the Include the certificate in the signature <KeyInfo> element check box if you
have agreed to send your public key with the message.

Select the Include the raw key in the signature <KeyValue> element check box if your partner
agreement requires it.

3. Optional: Select the signing algorithm from the list.

The default selection is RSA SHA256 or ECDSA SHA256, depending on the Key Algorithm value of
the selected digital signing certificate. Make a different selection if you and your partner have agreed
to use a stronger algorithm.

Managing signature verification settings
Under SAML 2.0 specifications, when your site receives any SAML 2.0 messages with the POST or
Redirect bindings, the messages must be digitally signed.

About this task

Signing is also always required for the SAML 1.x POST binding and for WS-Federation assertions, as well
as incoming SAML 1.1 or 2.0 tokens for WS-Trust STS processing.

Depending on your agreement with this idenity provider (IdP), single sign-on (SSO) assertions, SAML 2.0
artifacts, or SOAP messages might also require signatures.

Copyright ©2024

 | Administrator's Reference Guide | 754

Steps

1. On the Signature Verification Settings tab, click Manage Signature Verification Settings.

2. On the Trust Model tab, select a trust model on the Certificate Verification Method tab.

Anchored

The partner certificate must be signed by a trusted certificate authority (CA). Optionally, you can
also restrict the issuer to a specific Trusted CA to mitigate potential man-in-the-middle attacks
and to provide a means to isolate certificates used by different connections. The CA's certificate
must be imported into the PingFederate Trusted CA store in the Security # Certificate & Key
Management # Trusted CAs window.

 Important:

If you are using the redirect binding for single logout (SLO) or establishing an OAuth assertion
grant connection to exchange JSON web tokens (JWTs) for access tokens. you cannot use
anchored certificates because SAML 2.0 does not permit certificates to be included using this
transport method and the signature verification process for JWTs requires the public keys to
validate the digital signatures.

Unanchored

The partner certificate is self-signed or you want to trust a specified certificate.

 Note:

When anchored certificates are used between partners, certificates can be changed without sending
the update to your partner. If the certificate is unanchored, any changes must be promulgated.

For more information, see Digital signing policy coordination on page 88.

Trust model Subsequent steps

Anchored On the Subject DN window:

a. Enter the Subject DN of the certificate or extract it from your service
provider (SP) partner's certificate if the certificate is stored on an
accessible file system.

b. (Optional) Select the Restrict Issuer check box and enter the Issuer
DN of the certificate. Alternatively, extract it from your partner's
certificate.

 Important:

Consider enabling this option to mitigate potential man-in-the-middle
attacks and to provide a means to isolate certificates used by different
connections.

Copyright ©2024

 | Administrator's Reference Guide | 755

Trust model Subsequent steps

Unanchored On the Signature Verification Certificate window:

a. Select a certificate from the list.

If you have not yet imported the certificate from your partner, click
Manage Certificates to do so. See Managing certificates from
partners on page 639.

b. (Optional) Select additional certificates.

 Note:

When configured, PingFederate considers a digital signature valid so
long as it can verify the signature using one of the certificates from this
list.

 Tip:

This is useful in situations where your partner has sent you a certificate
to replace the current certificate. Adding this second certificate allows
PingFederate to continue validating digital signatures as the partner
switches to the new signing certificate.

It also adds support for the scenario where your partner uses a pool
for certificates to sign its messages. Adding these certificates ensures
digital signatures can be validated as the partner rotates its signing
certificates.

3. On the Summary tab, review your configuration and perform one of the following tasks.

Amend your configuration

Click the corresponding tab title and then follow the configuration wizard to complete the task.

Keep your changes

Click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative
console offers the opportunity to do so.

Discard your changes

Click Cancel.

Choosing an encryption certificate (SAML 2.0)
If SAML_SUBJECT is encrypted, either by itself or as part of a whole assertion, then all references to this
name identifier in SAML 2.0 single logout (SLO) requests from your site might also be encrypted if the
connection uses service provider (SP)-initiated SLO.

About this task

You must also choose a certificate if encryption of the name identifier is required for an Attribute Request
profile. For more information, see Specifying XML encryption policy (for SAML 2.0) on page 714.

Copyright ©2024

 | Administrator's Reference Guide | 756

Steps

1. Optional: Select an option under Block Encryption Algorithm.

 Important:

Due to the import restrictions of some countries, Oracle Server Java SE Runtime Environment (JRE) 8
has built-in restrictions on available cryptographic strength (key size). To use larger key sizes, enable
the Java Cryptography Extension (JCE) unlimited strength jurisdiction policy. For more information,
see the Java 8 release notes in Oracle's documentation.

For Oracle Java SE Development Kit 11, the JCE jurisdiction policy defaults to unlimited strength. For
more information, see the Oracle JDK Migration Guide in Oracle's documentation.

The default selection is AES-128.

For more information about XML block encryption and key transport algorithms, see XML Encryption
Syntax and Processing from W3C.

2. Select an option under Key Transport Algorithm.

 Note:

Due to security risks associated with the RSA-v1.5 algorithm used for key transport, it is no longer
available for new connections. Existing connections in which this algorithm is configured continue to
support it. However, you should upgrade such connections to use the newer algorithm RSA-OAEP.

The default selection is RSA-OAEP.

3. Select a partner certificate from the list.

If you have not imported the certificate from your partner, click Manage Certificates to do so. For
more information see Managing certificates from partners on page 639.

Choosing a decryption key (SAML 2.0)
As part of XML encryption, you must identify a certificate and key for PingFederate to use to decrypt
incoming assertions or assertion elements.

About this task

For more information on XML encryption, see Specifying XML encryption policy (for SAML 2.0) on page
714.

Steps

1. Select the primary XML decryption key from the list.

If you have not created or imported your certificate into , click Manage Certificates. For more
information, see .

2. Optional: Select the secondary XML decryption key from the list.

Reviewing IdP credential settings
You can review chosen credential settings before completing configuration.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

Copyright ©2024

 | Administrator's Reference Guide | 757

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Reviewing an IdP connection
When you finish creating or modifying a connection, you can review the connection settings and toggle the
connection status on the Activation & Summary tab.

About this task

 Important:

When creating a new connection, the default connection status is Enabled when you reach the Activation
& Summary tab.

Regardless of whether you choose to disable a new connection now or later, you must click Save on the
Activation & Summary tab if you want to keep the new connection.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Result

The SSO Application Endpoint provides a sample URL at the /sp/startSSO.ping application
endpoint that webmasters or web application developers at your site might use to invoke single sign-on
(SSO) for the connection. For a list of supported parameters, see Viewing SP application endpoints on
page 674.

If you have selected the No Mapping option on the Identity Mapping tab, the Summary & Activation tab
does not show the SSO Application Endpoint sample URL.

OpenID Connect Relying Party support
PingFederate can leverage identities from OpenID Providers (OPs) to complete browser single sign-on
(SSO) requests.

In this use case, PingFederate is an OAuth client, specifically a relying party (RP) to the OP. PingFederate
supports both the Basic Client and the Implicit Client profiles.

The setup involves establishing an IdP connection to the OP. retrieves identity information from the
OP and passes the end-user claims, which are user attributes in an ID token, to one or more target
applications. This configuration allows administrators to take advantage of their existing last-mile
integration and expand the horizon of their applications to additional partners using the OpenID Connect
protocol.

If the OP supports the OpenID Connect Discovery specification, the connection setup is expedited by
loading the metadata from the OP. Based on the discovery specification, makes a direct HTTP GET
request to the /.well-known/openid-configuration endpoint at the OP and populates the attribute

Copyright ©2024

 | Administrator's Reference Guide | 758

contract and the protocol settings of the connection automatically. Manual adjustments can be made during
the connection setup or at a later time.

Additionally, you can refresh the protocol settings by reloading the metadata from the OP at any time. If
additional claims are supported, adds them to the attribute contract, so that they can be mapped to the
target applications later. In the event that the previously supported claims have been dropped by the OP
from the metadata, they remain in the attribute contract. While the existing mapping configuration might
not be adversely affected, runtime errors might occur if certain attributes are no longer available to the
target applications. If runtime errors occur, review the server log and modify the mapping configuration
accordingly.

If applicable, administrators can define additional request parameters, which can be included in the
authentication requests to support OP-specific use cases. Administrators can restrict the values to those
defined in the configuration. Alternatively, administrators can allow the target applications to optionally
override the values at runtime. As an added security measure, administrators can protect the requested
authentication context, acr_values, and authentication requirement, prompt, so that these parameters
in the authentication requests cannot be overridden by the target applications. By default, PingFederate
sends these request parameters through multiple query parameters unsigned. Optionally, administrators
can configure PingFederate to send request parameters through a request object by value, in which
case request parameters are represented by individual claims in a signed JSON Web Token (JWT).
When the OP receives the authentication request, it can validate the integrity of the request parameters
based on the digital signature in the JWT. For more information, see the section explaining passing
a request object by value in the OpenID Connect specification at openid.net/specs/openid-connect-
core-1_0.html#RequestObject.

Processing steps

1. A user starts a browser SSO request at the /sp/startSSO.ping service provider (SP) application
endpoint or the /sp/init_login.ping SP protocol endpoint.

2. The relying party, PingFederate, sends to the OP an authentication request though the browser
containing the desired request parameters, such as response_type, scope and redirect_uri,
with or without any custom query parameters.

3. The OP prompts the user to authenticate and authorize, as needed.
4. The OP sends the user back to PingFederate, at the redirect_uri parameter value, through the

browser with an authorization code for the Basic Client profile, or an ID token and an access token if
specified in the configuration for the Implicit Client profile.

5. Applicable only to the Basic Client profile, PingFederate sends a token request with the authorization
code to the OP at its token endpoint, directly through a back-channel HTTP POST request. The OP
returns to PingFederate an access token and an ID token.

6. PingFederate validates the ID token.
7. PingFederate passes the end-user claims to the target application through an SP adapter instance or

an authentication policy contract through the browser.

The access token, if any, can also be passed to the target application, so that API security use cases
can be layered on top of the browser-based SSO request.

 Note:

If the UserInfo endpoint is included as part of the connection settings and an access token is provided by
the OP, PingFederate also retrieves claims from the OP before the last step.

For more information about OpenID Connect, see openid.net/connect.

Copyright ©2024

https://openid.net/specs/openid-connect-core-1_0.html#RequestObject
https://openid.net/specs/openid-connect-core-1_0.html#RequestObject
https://openid.net/connect/

 | Administrator's Reference Guide | 759

Creating an OpenID Connect IdP connection
You can create an OpenID Connect identity provider (IdP) connection to take advantage of your existing
last-mile integration and expand the horizon of your applications to additional partners using the OpenID
Connect protocol.

Steps

1. Go to Authentication # Integration # IdP Connections, and then create a new IdP connection.

2. On the Connection Type tab, select the Browser SSO Profiles check box, and in the Protocol list,
select OpenID Connect. Click Next.

 Note:

When OpenID Connect is the chosen protocol, the other types become unavailable.

3. On the Connection Options tab, you can enable just-in-time (JIT) provisioning, OAuth attribute
mapping, which requires the OAuth 2.0 authorization server role, or both. Click Next.

 Note:

For simplicity, this topic focuses on managing OpenID Connect IdP connection settings.

4. On the General Info tab:

a. Provide the required information, including:

Issuer

The Issuer Identifier of the OpenID Provider (OP).

Connection Name

A plain-language identifier for the connection; for example, a company or department name.
This name is displayed in the connection list on the administrative console.

Client ID

The client ID to communicate with the OP.

This client represents and is created and managed at the OP. For more information, see
the documentation provided by the OP.

Client Secret

The client secret to communicate with the OP.

Applicable only when the client representing PingFederate supports the Basic Client profile.
For more information, see step 12.

b. Optional: Click Load Metadata.

 Tip:

Loading metadata from the OpenID Provider (OP) expedites the connection setup. You can also
update an existing connection by reloading metadata.

5. On the Browser SSO tab, click Configure Browser SSO.

6. On the User-Session Creation tab, click Configure User-Session Creation.

Copyright ©2024

 | Administrator's Reference Guide | 760

7. On the Identity Mapping tab, you have three choices:
Choose from:

▪ Select the No Mapping check box if you plan on passing end-user claims to the target application
through an authentication policy contract in an SP authentication policy.

▪ Select the Account Mapping check box if you plan on passing end-user claims to the
target application through an SP adapter instance or an authentication policy contract if your
PingFederate server is a federation hub that bridges an OP to an SP.

▪ Select the Account Linking check box if your target application requires account linking.

 Tip:

End-user claims are basically user attributes found in ID tokens or obtained from the UserInfo endpoint
at the OP.

For illustration, this topic uses the Account Mapping configuration.

8. On the Attribute Contract tab, extend the attribute contract.

To mask the attribute values in the log, select the relevant check box for each applicable end-user
claim.

 Note:

If you have chosen to load the metadata from the OP on the General Info tab, the attribute contract is
populated automatically.

9. On the Target Session Mapping tab, click Map New Adapter Instance to map end-user claims to
the target application through an SP adapter instance or an authentication policy contract.

Follow the administrative console to fulfill the SP adapter contract or the authentication policy contract.
Like other IdP connections, you can query additional attributes from a datastore, specify issuance
criteria, or both. When mapping an attribute, select Provider Claims from the Source list to map
the attribute to an end-user claim.

If your target application requires the associated access token, select Context as the source and
Access Token as the value.

 Note:

If the client representing PingFederate supports the Basic Client profile, PingFederate always receives
an access token from the OP to retrieve an ID token.

If the client supports the Implicit Client profile, you must select the Form POST with access token
option in step 12, such that the OP will return an access token and an ID token as part of the
authentication and authorization flow.

The Target Session Mapping configuration does not apply when the No Mapping option is selected
on the Identity Mapping tab.

10. On the Protocol Settings tab, click Configure Protocol Settings.

Copyright ©2024

 | Administrator's Reference Guide | 761

11. On the OpenID Provider Info tab, provide the scopes, the endpoints, and the authentication scheme.

 Note:

If you clicked Load Metadata from the OpenID Provider (OP) on the General Info tab, the Scopes
field and all endpoints are pre-populated, provided that the metadata contains the information.

Field Description

Scopes The scopes to be included in the OpenID Connect authentication and
OAuth token requests to the OP. Multiple space-separated values are
allowed.

The default value, without loading metadata from the OP, is openid.

 Tip:

For a list of OpenID Connect defined scopes, see the section
about requesting claims using scope values in the OpenID
Connection specification at openid.net/specs/openid-connect-
core-1_0.html#ScopeClaims.

Copyright ©2024

 | Administrator's Reference Guide | 762

Field Description

Authorization
Endpoint

The authorization endpoint at the OP.

You can enter a relative path, starting with a forward slash, if you provide
base URL on the General Info tab.

There is no default value without loading metadata from the OP.

OpenID Connect
Login Type

The OpenID Connect client profile of the client. This client represents and
is created and managed at the OP.

▪ If the client is configured to support the Basic Client profile, select
Code.

The resulting value of the response_type parameter is code.
▪ If the client is configured to support the Implicit Client profile, select

Form POST.

The resulting value of the response_type parameter is id_token.
▪ If the client is configured to support the Implicit Client profile and the

target application requires the associated access token, select Form
POST with access token.

The resulting values of the response_type parameter are id_token
token.

The default selection, without loading metadata from the OP, is Code.

Authentication
Scheme

The client authentication method that uses. Applicable and visible only to
clients supporting the Basic Client profile.

▪ Select Basic to submit credentials with HTTP Basic authentication.
▪ Select POST to submit credentials with POST.
▪ Select Private Key JWT to authenticate with the private_key_jwt Client

Authentication method. For more information, see Client Authentication
in the OpenID Connect specification.

The default selection, without loading metadata from the OP, is Basic.

Copyright ©2024

 | Administrator's Reference Guide | 763

Field Description

Authentication
Signing Algorithm

Select the algorithm that uses to sign the JSON web token (JWT).

Private Key JWT is the chosen authentication scheme.

If is deployed to run in a Java 8 or Java 11 runtime environment, or is
integrated with a hardware security module (HSM) and configured to use
static keys for OAuth and OpenID Connect, additional RSASSA-PSS
signing algorithms become available for selection. For more information on
HSM integration and static keys, see Supported hardware security modules
on page 168 and Keys for OAuth and OpenID Connect on page 633.

 Note:

If static keys for OAuth and OpenID Connect are enabled, Elliptic-curve
cryptography (EC) algorithms that have not been configured with an active
static keys are hidden.

Changes made in the static-key configuration might affect runtime
transactions and require additional changes here. For more information,
see Keys for OAuth and OpenID Connect on page 633.

 Note:

Based on the chosen signing algorithm, selects the signing JSON Web
Key (JWK) from its JWK Set (JWKS) at runtime.

For the OP to validate the signed JWT, ensure that the OP can access the
JWKS endpoint, which returns the current JWKS. The JWKS endpoint
is located at <Base URL>/pf/JWKS, where Base URL is defined on
System # Server # Protocol Settings # Federation Info.

For example, if the Base URL field value is https://www.example.com,
the JWKS endpoint is https://www.example.com/pf/JWKS. You can pass
the JWKS endpoint directly to the OP or have the OP contact the OP
configuration endpoint to obtain the information.

For more information, see .

Enable Proof Key
for Code Exchange
(PKCE)

Select this check box to enable to send a SHA256 code challenge and
corresponding code verifier as a Proof Key for Code Exchange (PKCE) to
the OP during the Code authentication flow.

This check box is applicable and visible only when the OpenID Connect
Login Type is Code.

 Note:

When Load Metadata on the General Info tab is clicked, displays the
Enable PKCE check box if S256 is listed as a supported method in the
code_challenge_methods_supported by the OP.

Copyright ©2024

 | Administrator's Reference Guide | 764

Field Description

Token Endpoint,
UserInfo Endpoint,
and JWKS URL

OAuth 2.0 and OpenID Connect 1.0 endpoints at the OP. For more
information, see openid.net/connect.

Token Endpoint

The Token Endpoint field is only visible and required for clients
supporting the Basic Client profile. In other words, the OpenID
Connect Login Type field is set to Code.

UserInfo Endpoint

The UserInfo Endpoint field is optional. If omitted, only has access
to the end-user claims from the ID tokens.

JWKS URL

The JWKS URL is required for to validate the inbound ID tokens
from the OP. If the OP signs its JWTs using an RSASSA-PSS signing
algorithm, must be deployed to run in a Java 8 or Java 11 runtime
environment, or integrated with a hardware security module (HSM)
and a static-key configuration for OAuth and OpenID Connect. For
more information on HSM integration and static keys, see Supported
hardware security modules on page 168 and Keys for OAuth and
OpenID Connect on page 633, respectively. .

There are no default values without loading metadata from the OP.

Sign Request Select this check box to send request parameters as claims in a request
object, a self-contained, signed JWT as one request query parameter to
the OP.

When this optional configuration is enabled, the OP can validate the
integrity of the request parameters based on the digital signature found in
the signed JWT. For more information, see the section explaining passing a
request object by value in the OpenID Connect specification at openid.net/
specs/openid-connect-core-1_0.html#RequestObject.

This check box is not selected by default, in which case sends request
parameters with multiple query parameters, unsigned.

Copyright ©2024

 | Administrator's Reference Guide | 765

Field Description

Request Signing
Algorithm

Select the algorithm that uses to sign the request object.

Applicable and visible only when the Sign Request check box is selected.

If is deployed to run in a Java 8 or Java 11 runtime environment, or is
integrated with a hardware security module (HSM) and configured to use
static keys for OAuth and OpenID Connect, additional RSASSA-PSS
signing algorithms become available for selection. For more information on
HSM integration and static keys, see Supported hardware security modules
on page 168 and Keys for OAuth and OpenID Connect on page 633.

 Note:

If static keys for OAuth and OpenID Connect are enabled, Elliptic-curve
cryptography (EC) algorithms that have not been configured with an active
static keys are hidden.

Changes made in the static-key configuration might affect runtime
transactions and require additional changes here. For more information,
see Keys for OAuth and OpenID Connect on page 633.

 Note:

automatically selects the signing JSON web key (JWK) based on the
selected signing algorithm from its JWK Set (JWKS).

In order for the OP to validate the signed request object, ensure that
the OP can access your 's JWKS URL, which returns the current set of
JSON web keys. The JWKS URL is located at <Base URL>/pf/JWKS,
where Base URL is defined on System # Server # Protocol Settings #
Federation Info.

For example, if the Base URL field value is https://www.example.com,
the JWKS URL is https://www.example.com/pf/JWKS. You can pass the
JWKS URL directly to the OP or have the OP contact the OpenID Provider
configuration endpoint for it. For more information, see .

12. Optional: Remain on the OpenID Provider Info tab and specify the request parameters that are
allowed to be included in the authentication requests to the OP under Request Parameters. For more
information, see .

13. Optional: On the Overrides tab, specify a default target URL and authentication context overrides.

14. On the Activation & Summary tab, review your connection settings.

When you finish setting up a connection, you can choose to activate it immediately.

 Important:

Regardless of whether you choose to activate a new connection now or later, you must click Save on
the Summary & Activation tab for a new connection if you want to keep the configuration.

You can deactivate a connection at any time. When a connection is inactive, all transactions to or from
this partner are disabled.

In this use case, because PingFederate is an OAuth client, you are likely required by the authorization
server at the OP to register the Redirect URI as shown on the Summary & Activation tab. This

Copyright ©2024

 | Administrator's Reference Guide | 766

registration should be associated with the client that represents PingFederate, the client that you have
provided on the General Info tab. For more information, see the documentation provided by the OP.

The SSO Application Endpoint provides a sample URL at the /sp/startSSO.ping application
endpoint that webmasters or web application developers at your site can use to invoke SSO for the
connection. For a list of supported parameters, see Viewing SP application endpoints on page 674.

If you have selected the No Mapping option on the Identity Mapping tab, the Summary & Activation
tab does not show the SSO Application Endpoint sample URL.

The target application can also invoke SSO requests by contacting the /sp/init_login.ping SP
protocol endpoint. For more information, see Configuring request parameters and SSO URLs on page
766.

Configuring request parameters and SSO URLs
On the OpenID Provider Info tab, administrators can define request parameters under Request
Parameters.

About this task

You can define request parameters for the following purposes:

▪ Allow custom request parameters to be include in the authentication requests to support OpenID
provider (OP)-specific use cases.

▪ Define the default values for the request parameters.
▪ Specify whether the default values, if any, can be overridden at runtime.
▪ Allow the target application to request different scopes at runtime. The OP can reject the requested

scopes based on its client configuration.
▪ Protect the requested authentication request, acr_values, the authentication requirement, prompt,

or both so that none of them can be overridden at runtime by the application endpoint parameters -
RequestedAuthnCtx, IsPassive, and ForceAuthn.

Steps

1. Add a request parameter under Name.

2. Define a default parameter value under Value.

This is optional if the target application is allowed to override the parameter value at runtime. When
no default value is specified, any value provided by the target application is accepted by the /sp/
startSSO.ping service provider (SP) application endpoint. If the target application does not provide
the parameter in its single sign-on (SSO) URL and no default value is specified, the parameter is not
included in the authentication requests.

This is required if the target application is not allowed to override the parameter value at runtime.

When specified, the request parameter is always included in the authentication requests. If the target
application is not allowed to override the parameter value at runtime, the default value is sent.

Copyright ©2024

 | Administrator's Reference Guide | 767

3. Select the check box under Application Endpoint Override if the target application is allowed to
override the parameter value at runtime.

Result:

If the target application does not provide the parameter in its single sign-on (SSO) URL and the
configuration does not include a default value, the parameter is not included in the authentication
requests.

If the target application does not provide the parameter in its SSO URL, the default value , if any, is
used.

If the target application provides the parameter in its SSO URL to the /sp/startSSO.ping SP
application endpoint, the value in the SSO URL is used.

 Note:

The /sp/init_login.ping service provider (SP) protocol endpoint does not accept overridden
values. The login_hint parameter is the only exception. The default value, if any, is used. See the
note at the end of this topic for more information.

4. Click Add.

ClickEdit, Update, and Cancel to make or undo a change. Click Delete and Undelete to remove an
entry or cancel the removal request.

5. Repeat these steps to define another request parameters.

Example

Consider the following sample configuration:

▪ The hd parameter is defined with a default value that cannot be overridden at runtime. The parameter
is always included in the authentication requests and the value is always example.org.

▪ The customMultiValued parameter is defined with two default values that cannot be overridden at
runtime. This multivalued parameter is always included in the authentication requests. The values are
always as defined.

▪ The customOverridableOne parameter is defined with a default value that can be overridden at
runtime. This parameter is always included in the authentication requests. If the target application

Copyright ©2024

 | Administrator's Reference Guide | 768

provides the parameter in its SSO URL, the value in the SSO URL is used. If the target application
does not provide the parameter in its SSO URL, the default value is used.

▪ To override the value, configure the target application to append the request parameter and the
desired value to the SSO Application Endpoint, as shown on the Summary & Activation tab, as
in the following example.

https://sso.example.com/sp/startSSO.ping?PartnerIdpId=https%3A%2F%2Fsso.alpha.local
%3A9031 and customOverridableOne=foo

▪ To construct a multivalued request parameter, append the request parameter multiple times with
different values, as in the following example.

https://sso.example.com/sp/startSSO.ping?PartnerIdpId=https%3A%2F%2Fsso.alpha.local
%3A9031 and customOverridableOne=foo and customOverridableOne=bar

https%3A%2F%2Fsso.alpha.local%3A9031 is the URL-encoded value of https://
sso.alpha.local:9031, the issuer value of the OP.

▪ The customOverridableTwo parameter is defined without a default value. Any value provided by
the target application in the SSO URL is accepted. To include this parameter in the authentication
requests to the OP, configure the target application to append the request parameter and the desired
value to the SSO Application Endpoint.

▪ To construct a multivalued request parameter, append the parameter multiple times with different
values.

If the target application does not provide the parameter in its SSO URL, the parameter is not
included in the authentication requests.

▪ The scope (standard) parameter is defined with a value matching that of the Scopes field, on the
same tab, and with the option to allow the target application to override the value at runtime. In
essence, the target application is allowed to dynamically change the scope it requires at runtime by
appending the scope parameter and the desired scopes to the SSO Application Endpoint.

 Note:

While the target application can request different scopes, the OP can reject the requested scopes
based on its client configuration. Work with the OP to understand which scopes are applicable to your
use case to prevent runtime errors.

▪ The acr_values (standard) parameter is defined with a default value that cannot be overridden at
runtime. As a result, the RequestedAuthnCtx parameter, if supplied in the SSO URL by the target
application, is ignored. In the authentication requests, the value of the acr_values parameter is
always set to the default value specified in the configuration. Define the acr_values parameter if you
want to protect the requested authentication context from the target application.

▪ The prompt (standard) parameter is defined with a default value of login that cannot be overridden
at runtime. As a result, the target application will not be able to suppress the reauthentication
requirement by including IsPassive=true in the SSO URL. In the authentication requests, the value
of the prompt parameter is always set to login.

Similarly, if the prompt parameter is defined with a default value of none that cannot be overridden at
runtime, the target application will not be able to request the end users to reauthenticate by including
ForceAuthn=true in the SSO URL. In the authentication requests, the value of the prompt
parameter is always set to none.

 Note:

These examples use the /sp/startSSO.ping SP application endpoint. As needed, you can also use
the /sp/init_login.ping SP protocol endpoint to invoke the Third Party Initiated Login flow. For more
information, see View SP protocol endpoints.

Copyright ©2024

 | Administrator's Reference Guide | 769

 Important:

For information about URL encoding, see third party resources such as HTML URL-encoding Reference.

Query parameters versus request object
By default, PingFederate sends all request parameters through multiple query parameters, unsigned.

If the Sign Request check box is selected, PingFederate creates a signed JSON web token (JWT)
that contains claims representing the request parameters and passes the signed JWT as one query
parameter, request, to the OpenID provider (OP). The client_id, response_type, and scope
request parameters are always passed to the OP as individual query parameter as well.

Consider the following authentication requests based on the previous sample configuration. The client
authenticates through the HTTP Basic authentication scheme and initiates single sign-on (SSO) request
without providing overrides for any request parameters.

Request parameters via query parameters

https://sso.alpha.local:9031/as/authorization.oauth2
?acr_values=PasswordProtectedTransport
&customMultiValued=value+one
&customMultiValued=value+two
&customOverridableOne=value+can+be+overridden
&hd=example.org
&prompt=login
&nonce=ykulMjpwAFk79R1rBOBWm5
&redirect_uri=https://www.example.com/sp/
eyJpc3MiOiJodHRwczpcL1wvc3NvLmFscGhhLmxvY2FsOjkwMzEifQ/cb.openid
&state=e75nIlVU6Wa5TMmOwegDPSEI2iO9zd
&client_id=RP
&response_type=code
&scope=address+phone+edit+openid+profile+admin+email

Request parameters via a request object by value

https://sso.alpha.local:9031/as/authorization.oauth2
?request=eyJhbG...ZTMifQ.eyJhdW...lJQIn0.IAOpuf...IqCftg
&client_id=RP
&response_type=code
&scope=address+phone+edit+openid+profile+admin+email

 Note:

The client_id, response_type, and scope request parameters are always passed to the OP
as individual query parameters as defined in the OpenID Connect specification.

The value of the request query parameter, truncated for readability, is the request object, a signed
JWT that contains the request parameters as individual claims, illustrated in the following decoded
payload.

{
 "aud": "https://sso.alpha.local:9031",
 "exp": 1495645410,
 "acr_values": "PasswordProtectedTransport",
 "customMultiValued": [
 "value one",
 "value two"
],

Copyright ©2024

https://www.w3schools.com/tags/ref_urlencode.asp

 | Administrator's Reference Guide | 770

 "customOverridableOne": "value can be overridden",
 "hd": "example.org",
 "prompt": "login",
 "nonce": "vhW2VJc7eZ6r6vfpiAwepd",
 "redirect_uri": "https://sso.rp.local:9021/sp/
eyJpc3MiOiJodHRwczpcL1wvc3NvLmFscGhhLmxvY2FsOjkwMzEifQ/cb.openid",
 "state": "nFVzgFirZtg3kBXMFpWt5RNhO4oDuA",
 "client_id": "RP",
 "response_type": "code",
 "scope": "address phone edit openid profile admin email"
}

For more information, see the section explaining passing a request object by value in the OpenID Connect
specification at openid.net/specs/openid-connect-core-1_0.html#RequestObject.

Configuring IdP discovery using a persistent cookie
PingFederate's proprietary identity provider (IdP)-discovery method makes use of an IdP persistent
reference cookie (IPRC) to track the identity provider with whom a user last authenticated.

About this task

There are three significant differences between standard IdP discovery and the IPRC method:

▪ Standard IdP discovery can be used only with SAML 2.0, but the IPRC can be used with any
federation protocol.

▪ The common domain cookie (CDC) can be configured as a temporary, session-based cookie. The
IPRC always persists for a configurable period of time.

▪ The CDC is set by the IdP and is readable by both federation partners. The IPRC is set by the service
provider (SP), using information in the SAML assertion, and cannot be accessed by the IdP.

The deployed connection configuration between SP and IdP partners must include SP-initiated single sign-
on (SSO).

Steps

1. Edit the org.sourceid.websso.profiles.sp.IdpIdCookieSupport.xml file located in the
<pf_install>/pingfederate/server/default/data/config-store directory.

2. Set the value of EnableIdpIdCookie to true.

3. Optional: Modify the remaining elements in the configuration, as described in the following table.

Field Description

IdpIdCookieName The name of the IPRC set by the SP installation. The default is IdPId. The
cookie name cannot contain any of the following characters: &, >, <, ; , a
comma, or a space.

IdpIdCookieLifeTimeInDaysThe lifetime for the cookie. The default is 365 days and a maximum of
24855 days. The browser will delete the cookie when the period is expired.

ShowIdpSelectionList If set to true, the default, the SP displays a list of IdPs that can be used
to initiate the SSO event if the cookie is not set. If set to false, the SP
installation generates an error page.

Copyright ©2024

https://openid.net/specs/openid-connect-core-1_0.html#RequestObject

 | Administrator's Reference Guide | 771

4. Start or restart PingFederate.

 Note:

After an IPRC cookie is set, the only way to change the IdP to whom the SP will send Authentication
Requests for the user is to do one of the following: wait for the cookie to expire, delete the cookie, or
perform IdP-initiated SSO using the new IdP.

System administration
This section describes general administrative functions for PingFederate.

Configuring PingFederate properties
The default administrative console and runtime behavior of PingFederate is controlled in part
by configuration properties set in the run.properties file, located in the <pf_install>/
pingfederate/bin directory.

About this task

The most common properties are documented in the following table. For the rest of the properties,
including various cookie-encoding options, see the run.properties file.

 Tip:

The clustering configuration options are also maintained in the run.properties file. For more
information, see Deploying cluster servers on page 199.

Property Description

pf.admin.https.port Defines the port on which the PingFederate administrative
console runs. The default value is 9999.

pf.admin.baseurl Defines the URL that PingFederate's administrative node
uses to populate resource references in Administrative
API responses. The administrative node also uses it
for the redirect URL it sends to an OpenID Provider for
administrator OIDC login (for example, https://pingfederate-
admin.example.com or, if the load balancer uses a custom
port, https://pingfederate-admin.example.com:8443). The
default value is blank.

Use pf.admin.baseurl instead of pf.admin.hostname,
which has been deprecated. If run.properties defines
both, PingFederate ignores pf.admin.hostname. But if
run.properties defines only pf.admin.hostname,
PingFederate constructs the URL the same way it does in
versions of PingFederate before 10.3.

pf.console.bind.address Defines the IP address over which the PingFederate
administrative console communicates. Use for deployments
where multiple network interfaces are installed on the machine
running PingFederate.

pf.console.title Defines the browser window or tab title for the administrative
console. It makes separate instances easily identifiable.

Copyright ©2024

 | Administrator's Reference Guide | 772

Property Description

pf.console.environment Defines the name of the PingFederate environment that will
be displayed in the administrative console. It makes separate
environments easily identifiable.

pf.console.show.background.images Enables or disables the background images on the dashboard
of the administrative console. The images are enabled by
default.

pf.console.session.timeout Defines the length of time in minutes until an inactive
administrative console times out. The minimum setting is 1
minute, and maximum is 8 hours (480 minutes). Default is 30
minutes.

pf.log.eventdetail Enables or disables (the default) detailed event logging for
actions performed by administrative console users.

pf.console.login.mode Indicates whether more than one administrative user may
access the administrative console at one time. Supported
values: Single | Multiple. The default value is Multiple.

pf.console.authentication Indicates whether administrators sign on to PingFederate
using credentials managed internally by PingFederate or
externally by other systems.

pf.admin.api.authentication Defines the authentication method of the PingFederate
administrative API.

ldap.properties.file When LDAP administrative console authentication is enabled,
indicates the name of the file containing configuration
properties.

cert.properties.file When certificate-based console authentication is enabled,
indicates the name of the file containing configuration
properties.

radius.properties.file When RADIUS-based console authentication is enabled,
indicates the name of the file containing configuration
properties.

oidc.properties.file When OIDC administrative-console authentication is enabled,
indicates the name of the file containing configuration
properties.

pf.http.port Defines the port on which PingFederate listens for
unencrypted HTTP traffic at runtime. For security reasons, this
port is turned off by default.

 CAUTION:

This port should remain disabled in production if your
deployment configuration directly exposes the PingFederate
server to the Internet.

pf.https.port Defines the port on which PingFederate listens for encrypted
HTTPS (SSL/TLS) traffic. The default value is 9031.

Copyright ©2024

 | Administrator's Reference Guide | 773

Property Description

pf.secondary.https.port Defines a secondary HTTPS port that can be used for mutual
SSL/TLS (client X.509 certificate) authentication for both end
users and protocol requests (SAML, WS-Trust, and OAuth).
Set its value to the desired inbound listening TCP port. A value
of -1 disables this feature.

 Important:

If you are using client X.509 certificates for either WS-Trust
STS authentication or for SAML back-channel authentication,
you must use this port, or a similarly configured new listener,
with either the WantClientAuth or NeedClientAuth
parameter set to true in the jetty-runtime.xml file.

For more information, see the note at the end of this table.

pf.engine.bind.address Defines the IP address over which the PingFederate server
communicates with partner federation gateways. Use for
deployments where multiple network interfaces are installed
on the machine running PingFederate.

pf.monitor.bind.address Defines the IP address over which Java Management
Extensions (JMX) communicate with PingFederate. Use for
deployments where multiple network interfaces are installed
on the machine running PingFederate.

pf.engine.prefer_ipv4 Defines the protocol to be used by PingFederate. True, the
default, enables use of IPv4 only. False enables use of both
IPv4 and IPv6.

http.proxyHost and http.proxyPort Specifies the hostname, or the IP address, and the port
number of the forward proxy server that HTTP traffic
originating from PingFederate must go through.

https.proxyHost and https.proxyPort Specifies the hostname, or the IP address, and the port
number of the forward proxy server that HTTPS traffic
originating from PingFederate must go through.

http.nonProxyHosts Specifies one or more destinations where PingFederate is
not required to proxy its HTTP and HTTPS traffic through the
forward proxy server configured by the http[s].proxyHost
and http[s].proxyPort properties. This property supports
multiple values separated by the pipe character (|) and the
wildcard character (*) for pattern matching. See the example
below.

*.example.com|localhost

Copyright ©2024

 | Administrator's Reference Guide | 774

Property Description

pf.runtime.context.path Allows customization of the server path for PingFederate
endpoints.

 Note:

If this property is changed, the path must also be added to
the base URL for your PingFederate environment. Base
URL is defined on System # Server # Protocol Settings #
Federation Info .

The pf.runtime.context.path property is also
compatible with virtual host names. Unlike the base URL
configuration, the virtual host names configuration does not
require any context path. Virtual host names are defined on
System # Server # Virtual Host Names.

For example, suppose the base URL is https://
www.example.com:9031 and the virtual host names are
www.example.org and www.example.info. To configure the
pf.runtime.context.path property value as /sso, you
must update the base URL to https://www.example.com:9031/
sso but leave the virtual host names as they are. Once
configured, you can access the runtime server at the following
endpoints:

Base URL

▪ https://www.example.com:9031/sso

Virtual host names

▪ https://www.example.org:9031/sso
▪ https://www.example.info:9031/sso

pf.log.dir Network path to the output location of log files. The default is

<pf_install>>/pingfederate/log

pf.hsm.mode Enables or disables (the default) a FIPS-compliance Hardware
Security Module (HSM).

pf.hsm.hybrid Enables or disables the HSM hybrid mode. Applicable only
when the pf.hsm.mode property is configured to use an
HSM.

When set to true, keys and certificates can be stored on
either the HSM or the local trust store. When set to false, the
default setting, keys and certificates are stored on the HSM
when applicable.

The HSM hybrid mode allows an organization to move the
storage of keys and certificates from the local trust store to
an HSM over time without deploying a new PingFederate
installation and mirroring the setup. For more information, see
Transitioning to an HSM on page 643.

Copyright ©2024

 | Administrator's Reference Guide | 775

Property Description

org.bouncycastle.fips.approved_only When the pf.hsm.hybrid property is set to true, this
property can be set to true or false. In this case, the
recommended setting is false.

If pf.hsm.hybrid is set to false, this property must be set
to true.

In FIPS-approved mode only, the module will provide
approved algorithms only. For more information, see https://
www.bouncycastle.org/fips-java/.

The default setting is true.

pf.provisioner.mode Enables or disables (the default) outbound provisioning. Also
used to enable provisioning failover.

pf.heartbeat.system.monitoring Enables or disables (the default) the heartbeat endpoint, /
pf/heartbeat.ping, to return detailed system monitoring
information through a customizable Velocity template file . For
more information, see Customizing the heartbeat message on
page 857 .

When set to false, the /pf/heartbeat.ping endpoint
returns OK.

When set to true, the /pf/heartbeat.ping endpoint
returns all available stats.

org.apache.xml.security.ignoreLineBreaks Determines whether PingFederate omits line breaks in XML
digital signatures. If omitted, this setting defaults to false.
Set this property to true for improved interoperability with
Microsoft products.

sun.net.client.defaultConnectTimeout Determines the default connect timeout for outbound
java.net.URL connections in milliseconds.

The default setting is 10000.

sun.net.client.defaultReadTimeout Determines the default read timeout for outbound
java.net.URL connections in milliseconds.

The default setting is 10000.

 Note:

Additional configuration of the listener ports, including adding new listeners, is available through the
<pf_install>/pingfederate/etc/jetty-runtime.xml file. For example, options include
the WantClientAuth and NeedClientAuth flags, which indicate that a client certificate is either
requested or required, respectively, for mutual SSL/TLS. For the pre-configured SSL secondary port, the
WantClientAuth parameter is set to true and the NeedClientAuth parameter is set to false by
default.

Steps

1. Edit the <pf_install>/pingfederate/bin/run.properties file.

You should consider creating a backup copy of the file.

Copyright ©2024

https://www.bouncycastle.org/fips-java/
https://www.bouncycastle.org/fips-java/

 | Administrator's Reference Guide | 776

2. Modify the applicable properties.

3. Restart PingFederate.

Result

 Important:

You must manually configure the runtime server-related properties on each engine node. The
run.properties file is not copied from the console node to the engine nodes automatically. Also, it is
not part of the Replicate Configuration process. If running, restart PingFederate.

Configuring size limits
You can configure size limits, which include values in the IdP Session Registry, the SP Session Registry,
the Inter-Request State management service, and others.

Steps

1. To configure a size limit, edit the <pf_install>/pingfederate/server/default/conf/size-
limits.conf file.

2. Modify the applicable settings. The setting are described in the following table.

Setting Description

The IdP Session Registry stores SLO-related session information for IdP adapters, as well as for
IdP and SP connections that a user has interacted with. It also stores sessions for PingFederate's
Authentication Sessions feature.

IdpSessionRegistryMapImpl.max.sessions This setting controls the maximum number
of user sessions (for SLO or Authentication
Sessions) kept in memory. When this limit is
reached, sessions are removed on a least-
recently-used basis.

The default setting is 10000.

IdpSessionRegistryMapImpl.max.individual.sessionsThis setting controls the maximum number of
IdP adapter or IdP connection sessions per user
session. When this limit is reached, sessions are
removed on a first-in first-out basis.

The default setting is 500.

IdpSessionRegistryMapImpl.max.partner.sessions This setting controls the maximum number of
SP connection sessions per IdP adapter or IdP
connection session. When this limit is reached,
sessions are removed on a first-in first-out basis.

The default setting is 500.

IdpSessionRegistryMapImpl.max.user.keys This setting defines the maximum number of
unique user keys that can be tracked. When this
limit is reached, user keys are removed on a
least-recently-used basis.

The default setting is 50000.

Copyright ©2024

 | Administrator's Reference Guide | 777

Setting Description

IdpSessionRegistryMapImpl.max.user.key.sris This setting defines the maximum number of
SRIs (browser sessions) that can be tracked
for a given unique user key. When this limit is
reached, SRIs are removed and revoked on a
least-recently-used basis.

The default setting is 100.

IdpSessionRegistryMapImpl.expiry.mins This setting defines the expiry period for user
sessions in minutes. If no activity has been seen
for a given user session for this period, it will be
removed.

The default setting is 1440

The SP Session Registry stores SLO-related session information for SP adapters and IdP
connections that a user has interacted with.

SpSessionRegistryMapImpl.max.sessions This setting controls the maximum number of
user sessions kept in memory. When this limit
is reached, sessions are removed on a least-
recently-used basis.

The default setting is 10000.

SpSessionRegistryMapImpl.max.individual.sessionsThis setting controls the maximum number of SP
adapter sessions per user session. When this
limit is reached, sessions are removed on a first-
in first-out basis.

The default setting is 500.

SpSessionRegistryMapImpl.expiry.mins This setting defines the expiry period for user
sessions in minutes. If no activity has been seen
for a given user session for this period, it will be
removed.

The default setting is 1440.

The Inter-Request State Management service has two maps. The 'state' map is used to store short-
lived state information between requests within an SSO or SLO transaction. The 'attr' map is used by
adapters (such as the HTML form adapter) to store user session attributes.

InterReqStateMgmtMapImpl.max.size.state.map This setting controls the maximum number of
user sessions in the state map. When this limit
is reached, sessions are removed on a least-
recently-used basis.

The default setting is 10000.

InterReqStateMgmtMapImpl.expiry.mins.state.map This setting controls the expiry period for user
sessions in the state map. If no activity has been
seen for a given user session for this period, it
will be removed.

The default setting is 30.

Copyright ©2024

 | Administrator's Reference Guide | 778

Setting Description

InterReqStateMgmtMapImpl.max.size.attr.map This setting controls the maximum number of
user sessions in the attribute map. When this
limit is reached, sessions are removed on a least-
recently-used basis.

The default setting is 10000.

InterReqStateMgmtMapImpl.expiry.mins.attr.map This setting controls the expiry period for user
sessions in the attribute map. If no activity has
been seen for a given user session for this
period, it will be removed.

The default setting is 1440.

InterReqStateMgmtMapImpl.max.session.attrs This setting controls the maximum number of
attributes stored in the attribute map for a given
user session.

The default setting is 500.

SessionRevocationServiceMapImpl.max.revoked.srisThis setting controls the maximum number of
revoked session identifiers kept in memory.
When this limit is reached, revoked identifiers are
removed on a first-in first-out basis.

The default setting is 50000.

MetadataDirectory.max.size.idp.conn.map This setting controls the maximum number of IdP
connections kept in memory. When this limit is
reached, connections are removed on a least-
recently-used basis.

The default setting is 10000.

MetadataDirectory.max.size.sp.conn.map This setting controls the maximum number of SP
connections kept in memory. When this limit is
reached, connections are removed on a least-
recently-used basis.

The default setting is 10000.

ClientManagerXmlFileImpl.max.size.clients.map This setting controls the maximum number of
OAuth clients kept in memory. When this limit is
reached, clients are removed on a least-recently-
used basis.

The default setting is 10000.

3. Restart PingFederate.

PingFederate log files
PingFederate records document server events depending on your configuration preferences.

PingFederate generates these logs that document server events:

admin.log

Records actions performed by administrative console users.

admin-event-detail.log

Copyright ©2024

 | Administrator's Reference Guide | 779

Records detailed information about each applicable administrative console event performed by
administrative console users if detailed event logging is enabled.

admin-api.log

Records actions performed by administrative-API users.

runtime-api.log

Records actions performed by API users using the OAuth Client Management Service, the OAuth
Access Grant Management Service, and the Session Revocation API.

transaction.log

Records individual identity-federation runtime transactions at specified levels of detail.

audit.log

Records a selected, configurable subset of transaction log information plus additional details,
intended for security-audit and regulatory compliance purposes.

provisioner-audit.log

Records outbound provisioning events, intended for security-audit purposes.

provisioner.log

Records only provisioning activity.

server.log

Records PingFederate runtime and administrative server activities.

init.log

Records only Jetty messages generated prior to PingFederate start up.

These log files are written to the PingFederate log directory. The default location is the <pf_install>/
pingfederate/log directory. As needed, administrators can change the log directory by modifying the
pf.log.dir property in the <pf_install>/pingfederate/bin/run.properties file.

Log4j 2 logging service and configuration
PingFederate uses the Log4j 2 logging service to generate its log files.

Configurations are maintained in the log4j2.xml file, located in the <pf_install>/pingfederate/
server/default/conf directory.

 Note:

The log4j2.xml configuration file is individually managed per PingFederate server. This flexibility allows
multiple PingFederate nodes to write different level of messages to different destinations.

If you want all PingFederate servers to use the same logging configuration, manually synchronize the
log4j2.xml file across multiple PingFederate servers.

Log levels and verbosity

Log messages are categorized into six log levels:

1. FATAL
2. ERROR
3. WARN
4. INFO
5. DEBUG
6. TRACE

Copyright ©2024

 | Administrator's Reference Guide | 780

only records messages tagged with log level INFO, WARN, ERROR, and FATAL to the server log
and the provisioner log. Messages with DEBUG, or TRACE tags, are not recorded to optimize
performance. Console logging is also disabled for the same reason.

For troubleshooting purposes, you can adjust the log level to DEBUG in the log4j2.xml file and re-
enable console logging.

 Important:

When you no longer require debug messages and console logging, turn them off. On Windows,
never highlight the console output because it might slow or stop from processing requests.

For the audit log, the provisioner audit log, and the transaction log, any setting lower than INFO
(WARN, ERROR, or FATAL) turns logging off.

For more information, see Enabling debug messages and console logging.

Changes, such as adding a Logger or adjusting log levels, are activated within half a minute. You
do not need to restart .

Fields (and attributes)

You can customize some logs, such as the audit log and the administrative API log, to log additional
or less information by modifying their pattern elements. The log4j2.xml file documents
available fields inline.

 Tip:

You can configure PingFederate to log user attributes, if they are present, in the audit log,
transaction log, and server log. When you require privacy for sensitive user attributes, select the
corresponding check boxes under Mask Log Values to mask their values in these logs.

In addition, messages in the audit log and the server log are recorded with a tracking ID, which
can be used to identify subsequent, related transactions. The tracking ID can be used for
troubleshooting and support purposes, to aggregate and analyze log entries tied to the same
original request. The tracking ID, %X{trackingid}, can also be added to the configuration for the
transaction log, or removed from the audit log and the server log by modifying the pattern element
for the logs in the log4j2.xml configuration file.

Log formats

The audit log and the provisioner audit log can be written in Common Event Format (CEF).
Furthermore, the audit log can also be written in a format used in conjunction with Splunk and the
Splunk App for PingFederate. The log4j2.xml file comes preset with configuration samples to
ease the setup.

Log destinations

The audit log, the provisioner audit log, the provisioner log, and the server log can be written
to databases. PingFederate installation includes setup scripts for various tables, located in the
<pf_install>/pingfederate/server/default/conf/log4j/sql-scripts directory, and
configuration samples in the log4j2.xml file.

Log rotation

Most PingFederate-generated log files roll over at midnight each day. The system keeps all of
the resulting historical log files. Some log files, such as the audit.log file, the audit-event-
detail.log file (if enabled), the provisioner-audit.log file (when applicable), and the
transaction.log, can become quite large, depending on your production load and settings. You
might want to back up or remove older files on a routine basis.

Copyright ©2024

 | Administrator's Reference Guide | 781

The server.log file is rolled over when it reaches 10 MB. Five old log files are kept before the
oldest file is removed. Administrators can adjust the file size and the number of files to be retained in
the log4j2.xml configuration file, as needed.

For more information about Log4j 2, see the Log4j 2 open-source project.

HTTP request logging
HTTP requests to the runtime engine and the administrative console are logged to the
<date>.request.log file and <date>.request2.log, respectively, by the Pingfederate web
container.

Like other PingFederate-generated log files, the HTTP request logs are written to the default PingFederate
log directory. Properties controlling request logging are contained in the web-container configuration files:

▪ jetty-runtime.xml for the runtime engine (the <date>.request.log files)
▪ jetty-admin.xml for the administrative console (the <date>.request2.log files)

You can find these files in the <pf_install>/pingfederate/etc directory, and you can independently
manage them on a per-server basis.

Administrator audit logging
PingFederate records actions performed by server administrators.

This information is recorded in the <pf_install>/pingfederate/log/admin.log file. The events
themselves are not configurable, but you can adjust Log4j 2 configuration settings to deliver the desired
level of detail surrounding each event in the <pf_install>/pingfederate/server/default/conf/
log4j2.xml file.

Events logged by PingFederate include but are not limited to:

▪ Login attempt
▪ Explicit user logout (no time-outs)
▪ Account activation or deactivation
▪ Password change or reset
▪ Role change
▪ System settings management
▪ Certificate management
▪ OAuth settings management
▪ Metadata export
▪ XML file signatures applied
▪ Configuration archive export and import
▪ Identity provider (IdP)/service provider (SP) adapter, IdP token processor, or SP token generator

created, modified, or deleted
▪ IdP/SP default URLs modified
▪ IdP/SP connection created, modified, or deleted
▪ Adapter-to-Adapter mapping or token exchange mapping created, modified, or deleted
▪ Authentication policy contract created, modified, or deleted
▪ IdP Discovery management
▪ SP Affiliation created, modified, or deleted
▪ PingOne for Enterprise account connected, modified, or disconnected

Each entry in the admin.log file is on a separate line and represents a single administrator action. The
general format of each entry is the same, though specific events are recorded with information relevant
to each type. Events are recorded when you click the corresponding Save button in the administrative
console. Each log entry contains information relating to the event, including:

▪ The time the event occurred on the PingFederate server
▪ The username of the administrator performing the action

Copyright ©2024

https://logging.apache.org/log4j/2.x/manual/index.html

 | Administrator's Reference Guide | 782

▪ The roles assigned to the administrator at the time the event occurred
▪ The type of event that occurred
▪ Basic information about the event

Each of these fields is separated by a vertical pipe (|) for easier parsing.

Detailed event logging

You can also configure PingFederate to log additional event information to a separate log file. When you
enable detailed event logging, besides writing basic information to <pf_install>/pingfederate/
log/adming.log, PingFederate logs detailed information about each event to admin-event-
detail.log in the same log directory.

 Important:

Events recorded in the log are limited to changes stored in XML files. For example, the log does not
record changes to OAuth clients stored in external datastores, such as LDAP directories or Java Database
Connectivity (JDBC) databases. Additionally, not all events have detailed information. For instance, sign on
attempts are only logged to the admin.log file.

PingFederate links events between admin.log and admin-event-detail.log by a unique event ID.
Each entry in the admin-event-detail.log file contains:

▪ The ID of the event
▪ The name of the file involved
▪ The type of event that occurred
▪ The line number where the change occurred
▪ The changes made

To enable detail event logging, set the pf.log.eventdetail property to true in the <pf_install>/
pingfederate/bin/run.properties file.

API audit logging
PingFederate provides API endpoints and management services on the administrative port (9999) and the
runtime port (9031) that are logged for auditing purposes.

Actions performed through these endpoints are logged for auditing purposes, as described in the following
table.

API Port Log File

Administrative API Administrative Port admin-api.log

OAuth Client Management
Service

Runtime Port runtime-api.log

OAuth Access Grant
Management Service

Runtime Port runtime-api.log

Session Revocation API Runtime Port runtime-api.log

Administrative API audit log
PingFederate records actions performed through the administrative API in the <pf_install>/
pingfederate/log/admin-api.log file.

While the events are not configurable, Log4j 2 configuration settings in the <pf_install>/
pingfederate/server/default/conf/log4j2.xml file can be adjusted to deliver the desired level
of detail surrounding each event.

Each log entry contains information relating to the event, including:

Copyright ©2024

 | Administrator's Reference Guide | 783

▪ Time the event occurred on the PingFederate server
▪ Administrator username performing the action
▪ Authentication method
▪ Client IP
▪ HTTP method
▪ REST endpoint
▪ HTTP status code

Each of these fields is separated by a vertical pipe (|) for ease of parsing.

Runtime APIs audit log
PingFederate records actions performed through the OAuth Client Management Service, the OAuth
Access Grant Management Service, and the Session Revocation API in the <pf_install>/
pingfederate/log/runtime-api.log file.

While the events are not configurable, Log4j 2 configuration settings in the <pf_install>/
pingfederate/server/default/conf/log4j2.xml file can be adjusted to deliver the desired level
of detail surrounding each event.

Each log entry contains information relating to the event, including:

▪ Time the event occurred on the PingFederate server
▪ Administrator username performing the action
▪ Authentication method
▪ Client IP
▪ HTTP method
▪ REST endpoint
▪ HTTP status code

Each of these fields is separated by a vertical pipe (|) for ease of parsing.

Runtime transaction logging
PingFederate provides for flexible, scalable logging of all federated-identity transactions, for both inbound
and outbound messages.

About this task

Administrators can configure transaction logging to any of the four modes on a per-connection basis or
override the logging mode for all service provider (SP) connections, identity provider (IdP) connections,
or both for troubleshooting or as a one-step means of raising or lowering all connection logging modes to
the same level. The log file is transaction.log, located in the <pf_install>>/pingfederate/log
directory.

The following table describes the four transaction logging modes.

Mode Description

None No transaction logging.

Copyright ©2024

 | Administrator's Reference Guide | 784

Mode Description

Standard (Default) Summary information for each transaction message, including:

▪ Time stamp
▪ Hostname and port
▪ Log mode
▪ Connection ID
▪ SAML status code, for SAML responses only
▪ Context
▪ Message type
▪ SAML ID, for SAML messages only
▪ Endpoint, for outbound messages only
▪ Target URL, if single sign-on (SSO) transaction

Enhanced Includes everything logged at the Standard level including:

▪ SAML_SUBJECT*
▪ Binding
▪ Relay state, if available
▪ Signature policy
▪ Signature status
▪ HTTP request parameters, for outbound messages only

* Only when available in a SAML assertion, a single logout (SLO) request, an
STS Request Security Token Response (RSTR), or an authentication request
(AuthnRequest)

Full Includes everything logged at the Enhanced level plus the complete XML
message for every transaction.

Each field is separated by a vertical pipe (|) for parsing.

Steps

▪ To configure transaction logging mode on a per connection basis:

a. Select the applicable connection on the IdP Connections window (Authentication # Integration
IdP Connections) or the SP Connections window (Applications # Integration # SP
Connections).

b. On the General Info tab, select one of the logging modes.
▪ To override transaction logging mode for all SP or IdP connections:

a. On the IdP Connections window or SP Connections window, click Show Advanced Fields.
b. On the Logging Mode Override setting, click On.
c. Select a logging mode for the IdP or SP connections.

Security audit logging
PingFederate records a subset of transaction log information with additional details at runtime, intended to
facilitate security auditing and regulatory compliance.

The system records activities from single sign-on (SSO), single logout (SLO), OAuth, WS-Trust STS, and
System for Cross-domain Identity Management (SCIM) inbound provisioning transactions in the security
audit log, the audit.log file, located in the <pf_install>/pingfederate/log directory. You can
output security audit log information to different formats, including databases, CEF, and Splunk.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 785

Outbound provisioning transactions are not included in the security audit log. Instead, they are recorded in
the outbound provisioning audit log, the provisioner-audit.log file, located in the <pf_install>/
pingfederate/log directory.

The following tables describe the default and available fields. PingFederate separates each field by a
vertical pipe (|). As needed, fields are configurable by editing the <pf_install>/pingfederate/
server/default/conf/log4j2.xml file.

Default fields, in the order that PingFederate records them in the security audit log

Field Description

%d The transaction time.

trackingid The tracking ID values uniquely identify user sessions, useful for correlating
log messages in the audit and server logs.

event The type of transaction. For example, SSO, OAuth, AUTHN_ATTEMPT,
AUTHN_REQUEST, AUTHN_SESSION_CREATED, AUTHN_SESSION_USED,
AUTHN_SESSION_DELETED, and SRI_REVOKED.

AUTHN_ATTEMPT and AUTHN_REQUEST indicate an authentication attempt
against an identity provider (IdP) adapter instance and an authentication
request sent to another IdP partner, through an IdP connection, respectively.

AUTHN_SESSION_CREATED and AUTHN_SESSION_USED indicate the creation
and employing of a PingFederate session, respectively.

AUTHN_SESSION_DELETED indicates that a PingFederate session has been
removed as a result of a front-channel browser-based logout request via the
SAML 2.0 or WS-Federation protocol.

SRI_REVOKED indicates that a PingFederate session has been added to the
session revocation list.

USER_KEY_AND_SRI_ASSOCIATED indicates a unique user key is associated
with a PingFederate session.

subject The subject of the transaction or authentication attempt.

ip The incoming IP address.

app The target service provider (SP) application, the email verification endpoint, or
the profile management page, when applicable and available.

connectionid The partner identifier associated with the transaction. The OAuth client ID
value for OAuth transactions. The ID of the authentication policy contract
referenced by the local identity profile that has been invoked for the purpose of
accessing the email verification endpoint or the profile management page.

protocol The associated identity protocol; for example, SAML20 or OAuth20.

host The host name or IP address of the PingFederate server.

role The role PingFederate played for the transaction.

status The status of the transactions.

adapterid The ID of an adapter instance.

Consider adding the authenticationsourceid and targetsessionid
fields to record additional information about the request.

Copyright ©2024

 | Administrator's Reference Guide | 786

Field Description

description The description of an authentication failure, when such information is available
from the authentication source, or an authorization failure from an erroneous
OAuth authorization request.

responsetime The time elapsed in milliseconds from when the system receives a final
request for a transaction, to when the system writes the audit message. This
value serves as an approximation of total transaction processing time and can
be useful for monitoring trends.

Other available fields, in alphabetical order

Field Description

accessgrantguid The GUID of the OAuth access grant, for OAuth transactions.

assertionid The unique ID for the SAML assertion.

attrackingid The tracking ID for OAuth access token. You can use this ID to analyze the
flow of OAuth access tokens in the audit log and between PingFederate and
PingAccess.

attributes The user attributes received (for an SP log), sent (for an IdP log), or provided
by the user through the self-service registration or profile management page.

authenticationsourceid An array of one or more IdP adapters, one or more IdP connections, and
identity profile, if any, invoked in an authentication or logout flow. For
example, [adapter.HTMLFormSimplePCV, idpConnection.IdP,
localIdentity.A8me9rySDn1aIM48]

authnsessionexpiry The expiry of an authentication session that has just been created or used.

connectionname The partner name associated with the transaction. The OAuth client name for
OAuth transactions. The name of the authentication policy contract referenced
by the local identity profile that has been invoked for the purpose of accessing
the email verification endpoint or the profile management page.

granttype The OAuth grant type.

Copyright ©2024

 | Administrator's Reference Guide | 787

Field Description

header{anHttpRequestHeader}The HTTP request header value identified by the header name. The header
name is case-insensitive. For example, header{user-agent} and
header{User-Agent} are equivalent.

To record multiple headers, repeat the header field, as illustrated in the
following sample pattern.

<pattern>...| %header{accept-language}| %header{dnt} %n</
pattern>

Given this partial sample, PingFederate includes both the accept-language
and dnt HTTP request header values when recording entries in the audit log.

 Note:

To record values from all HTTP request headers, look for the
org.sourceid.servlet.filter.HttpRequestHeaderFilter Logger
in the log4j2.xml file.

This capability is turned off by default and is likely suitable only for testing and
troubleshooting purposes.

httprequestid The ID of the HTTP request. This can be used for correlation across external
systems (like PingDirectory) and for debugging purposes in the server log.
This field is optional.

initiator The federation role that initiated the SSO or SLO: SP or IDP.

Applicable only to SAML 2.0 transactions.

inmessagetype The incoming message type.

Possible values are Request or Response.

inresponseto The value of the InResponseTo attribute of an SSO or SLO response.

inxmlmsg The incoming message. For example, a SAML AuthnRequest or the
information pertaining to an OAuth request.

localuserid The local ID used for the transaction, when account linking is enabled at the
SP.

outurl The URL where the protocol response was sent. For security reason,
parameters and fragments are excluded.

outxmlmsg The outgoing message. For example, a SAML Response or the information
pertaining to a response for an OAuth request.

Copyright ©2024

 | Administrator's Reference Guide | 788

Field Description

parameter{anHttpRequestParameter}The value of the HTTP request parameter identified by the parameter name.
The parameter name is case-sensitive.

To record multiple parameters, repeat the parameter field, as illustrated in
the following sample pattern.

<pattern>...| %parameter{foo1}| %parameter{Foo3} %n</pattern>

Given this partial sample, PingFederate includes both the foo1 and Foo3
HTTP request parameter values when recording entries in the audit log.

 Note:

To record values from all HTTP request parameter, look for the
org.sourceid.servlet.filter.HttpRequestParameterFilter
Logger in the log4j2.xml file.

This capability is turned off by default and is likely suitable only for testing and
troubleshooting purposes.

pfversion The PingFederate version.

requestid The ID of a SAML request.

requeststarttime The start time of the request in milliseconds since midnight, January 1, 1970
UTC.

responseid The ID of a SAML response.

sessiongroupid The internal ID for a group of persistent authentication sessions associated
with a single browser instance through the PF.PERSISTENT cookie. It is only
set if the request has triggered a session lookup.

sri The session reference identifier (SRI) for the user, which can be passed to
the session revocation API to revoke the user's sessions. It is only set if the
request has triggered a session lookup.

stspluginid The ID for the token processor or token generator instance.

Applicable only to WS-Trust STS transactions.

targetsessionid An array of one or more SP adapters or SP connections invoked in an
authentication or logout flow.

Copyright ©2024

 | Administrator's Reference Guide | 789

Field Description

trackedparameter{anHttpRequestParameter}The value of the tracked HTTP request parameter identified by the parameter
name. The parameter name is case-sensitive.

 Tip:

The PingFederate policy engine is capable of tracking HTTP request
parameters that it receives from the initial request and making them available
to authentication sources, selector instances, and contract mappings
throughout the policy. As needed, parameters can be configured as such on
the Tracked HTTP Parameterswindow. For more information about tracked
parameters, see Policies on page 239.

To record multiple parameters, repeat the trackedparameter field, as
illustrated in the following sample pattern.

<pattern>...| %trackedparameter{foo2}| %trackedparameter{Foo4}
 %n</pattern>

Given this partial sample, PingFederate includes both the foo2 and Foo4
HTTP request parameter values when recording entries in the audit log.

If the parameter, as indicated by <anHttpRequestParameter>, has not been
configured as a parameter to be tracked by the policy engine, PingFederate
does not record the parameter value in the audit log.

uniqueuserkey The unique user key tied to the user's authentication sessions. It is only set if
the user authenticated using an IdP adapter that has configured a unique user
key attribute.

validatorid The ID of the Password Credential Validator (PCV) instance, for the successful
attempts.

virtualserverid The virtual server ID of a request, if applicable.

Outbound provisioning audit logging
The PingFederate provisioner-audit.log file records outbound provisioning transactions, intended to
facilitate security auditing.

The provisioner-audit.log log file is located in the <pf_install>/pingfederate/log directory.
Outbound provisioning audit log information can be output to different formats, including database and
Splunk.

The following table describes all recorded elements. Optionally, you can configure elements by editing the
<pf_install>/pingfederate/server/default/conf/log4j2.xml file.

Item Description

%d Transaction time.

cycle_id The unique ID for each provisioning cycle.

channel_id The unique ID of the provisioning channel between source and target.

event_type The type of provisioning events, such as CREATE and UPDATE.

source_id The provisioning Source ID.

target_id The provisioning Target ID.

Copyright ©2024

 | Administrator's Reference Guide | 790

Item Description

is_success A flag to show whether the event was successful or not. If the attempt
succeeded, the value is true; otherwise, the value is false.

non_success_ cause Description of failure cause.

Server logging
When PingFederate is configured to log DEBUG messages for troubleshooting purposes, it records
all runtime and administrative events that can be used for troubleshooting in the <pf_install>/
pingfederate/log/server.log file, including status and error messages.

Server log information can be output to a database server.

 Note:

DEBUG messages are turned off by default. For troubleshooting purpose, you can re-enable it by editing the
<pf_install>/pingfederate/server/default/conf/log4j2.xml file.

The following table describes the recorded elements. Optionally, you can configure elements by editing the
log4j2.xml file as well.

Item Description

%d Event date and time.

%X{trackingid} The tracking ID values uniquely identify user sessions, useful for correlating
log messages in the audit and server logs.

%p Logging level.

%c The Java class issuing the status or error message, when applicable.

%m Status or error message.

To facilitate troubleshooting, administrators can use a filter utility to aggregate related events using the log
filter tool.

Server log filter
PingFederate provides a utility, logfilter, that administrators can use to filter server logs.

The logfilter utility is located in the <pf_install>/pingfederate/bin directory, logfilter.bat
for Windows, and logfilter.sh for Linux.

The utility sorts through all the server logs in the log directory. Administrators can move or copy one or
more server log files to a different directory that can be specified as an input parameter.

The log filter returns lists of log entries based on either:

▪ Entity ID and subject
▪ Tracking ID
▪ Session cross-reference ID

The following table describes the utility's command options. The table afterward describes optional
parameters available for all of the commands.

Copyright ©2024

 | Administrator's Reference Guide | 791

Server log filter command parameters

Command parameter Description

-entityid entity ID

-subject subject

These two commands must be used together and return a list of transactions
for the specified federation partner's entity ID and transaction subject.

-trackingid tracking
ID

This command returns a list of transactions with the same tracking ID.

-sessionxrefid session
cross-reference ID

This command returns a list of transactions for an ID assigned by
PingFederate to associate different transactions according to the user session
under which they occurred. The value of session cross-reference ID
can be the value of any of the following transaction tags in the target server
logs:

▪ Artifact
▪ Session Index
▪ Assertion ID

Server log filter parameters (optional)

Parameter Description

-logsdir log files
directory

Full or relative path to source directory for the logs.

Default: all server.log files are written to the <pf_install>/
pingfederate/log directory, a setting that can be adjusted by the
pf.log.dir property in the <pf_install>/pingfederate/bin/
run.properties file.

-outputfile output
file

Output path and file for the returned list.

Default: $<pf.log.dir>/logfilter_output.log.

-outputtoconsole Returns list to the command console rather than to a file.

The log filter creates its own log file, logfilter.log, located in the log directory. Optionally,
administrators can control settings for this log in the <pf_install>/pingfederate/bin/
logfilter.log4j2.xml file.

Logging in other formats
PingFederate provides the option of writing the audit log, the provisioner audit log, the provisioner log, and
the server log to commonly used databases with failover to file logging.

For the audit log and the provisioner audit log, administrators can choose instead to write the information to
the Common Event Format (CEF), a differently formatted log file that can be used by Splunk, or both.

Writing logs to databases
Database logging replaces file logging. For each qualified database server, PingFederate provides scripts
to create database tables for the audit log, the provisioner audit log, the provisioner log, and the server log.

About this task

You can find these scripts in the <pf_install>/pingfederate/server/default/conf/log4j/
sql-scripts directory.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 792

was tested with vendor-specific JDBC drivers. For more information, see Database driver information on
page 114. To obtain the database driver JAR file, contact your database vendor. Install the database
driver file to the <pf_install>/pingfederate/server/default/lib directory then restart the
server.

Failover file logging is provided in the event that database logging fails for any reasons. By default,
PingFederate retries database logging every minute. Messages written to log files during failover periods
are not copied over to the database server.

You enable database logging for the audit log, the provisioner audit log, the provisioner log, and the server
log in the log4j2.xml file.

Steps

1. Edit <pf_install>/pingfederate/server/default/conf/log4j2.xml.

2. After the Preserve messages in a local file section, for each log that you want to enable
database logging, uncomment the preset Java Database Connectivity (JDBC) appender configuration
based on the choice of your database server.

Audit log

▪ Oracle MySQL - SecurityAuditToMySQLDB
▪ Oracle Database - SecurityAuditToOracleDB
▪ PostgreSQL - SecurityAuditToPostgreSQLDB
▪ Microsoft SQL Server - SecurityAuditToSQLServerDB

Provisioner audit log

▪ Oracle MySQL - OutboundProvisionerEventToMySQLDB
▪ Oracle Database - OutboundProvisionerEventToOracleDB
▪ PostgreSQL - OutboundProvisionerEventToPostgreSQLDB
▪ Microsoft SQL Server - OutboundProvisionerEventToSQLServerDB

Provisioner log

▪ Oracle MySQL - ProvisionerLogToMySQLDB
▪ Oracle Database - ProvisionerLogToOracleDB
▪ PostgreSQL - ProvisionerLogToPostgreSQLDB
▪ Microsoft SQL Server - ProvisionerLogToSQLServerDB

Server log

▪ Oracle MySQL - ServerLogToMySQLDB
▪ Oracle Database - ServerLogToOracleDB
▪ PostgreSQL - ServerLogToPostgreSQLDB

Copyright ©2024

 | Administrator's Reference Guide | 793

▪ Microsoft SQL Server - ServerLogToSQLServerDB

 Note:

Each JDBC appender is followed by two related appenders, PingFailover and RollingFile.
Together, they create a running *-failover.log file in the log directory in the event that database
logging fails for any reason. Both appenders must also be enabled (uncommented).

 Tip:

For more information about each appender, review inline comments and notes in the log4j2.xml
file.

3. Replace placeholder parameter values in log4j2.db.properties in the same conf directory for
the applicable Java Database Connectivity (JDBC) servers.

The parameter values provide access to the database. Test and validate access prior to production
deployment. Like log4j2.xml, log4j2.db.properties is also individually managed per
PingFederate server. This flexibility allows multiple PingFederate nodes in a clustered environment to
write messages to different destinations, as needed.

 Tip:

You can obfuscate the password used to access the database by running the obfuscate utility,
located in the <pf_install>/pingfederate/bin directory: obfuscate.bat for Windows or
obfuscate.sh for Linux. Use the actual password as an argument and copy the entire result into the
value for the password parameter in log4j2.db.properties.

4. Uncomment the appender reference, <AppenderRef/>, in the associated logger elements, as
described inline in the log4j2.xml file.

Audit log

Uncomment the corresponding PingFailover appender references from the following
Logger elements located under the Loggers section:

▪ Browser SSO SP and adapter-to-adapter -
org.sourceid.websso.profiles.sp.SpAuditLogger

▪ Browser SSO IdP and adapter-to-adapter -
org.sourceid.websso.profiles.idp.IdpAuditLogger

▪ OAuth authorization server - org.sourceid.websso.profiles.idp.AsAuditLogger
▪ Dynamic Client Registration -
org.sourceid.websso.profiles.idp.ClientRegistrationAuditLogger

▪ WS-Trust STS, IdP, and SP - org.sourceid.wstrust.log.STSAuditLogger

Provisioner audit log

Uncomment the corresponding PingFailover appender reference from the
ProvisionerAuditLogger Logger element located under the Set up the Outbound
provisioner audit logger section.

Provisioner log

Uncomment the corresponding PingFailover appender reference from the
com.pingidentity.provisioner AsyncLogger element located under the Loggers
section.

Copyright ©2024

 | Administrator's Reference Guide | 794

Server log

Uncomment the corresponding PingFailover appender reference from the root element
located under the Set up the Root Logger section, near the end of the file.

 Important:

As indicated in the IMPORTANT comments for the loggers, you must also remove some of the existing
appender references.

5. Optional: For the audit log and the provisioner audit log, you can configure elements for database
logging in the ConversionPattern appender parameter, as needed.

Logging in Common Event Format
You can use PingFederate to write from logs using the Common Event Format (CEF) open standard.

CEF is an open logging standard. PingFederate provides an option of writing elements from the audit log,
the provisioner audit log, or both at runtime to a syslog receiver for parsing and analysis using ArcSight
from Micro Focus. Alternatively, administrators can write the information to a flat file in CEF. However, you
should use syslog when available.

 Note:

PingFederate is tested with ArcSight for interoperability using the default elements defined in
log4j2.xml. Any additions to these elements might render your CEF logging incompatible with ArcSight.

Writing audit log in CEF
You can write the audit log in Common Event Format (CEF) in PingFederate.

Steps

1. Edit <pf_install>/pingfederate/server/default/conf/log4j2.xml.

2. Under the Security Audit log : CEF Formatted syslog appender section, uncomment
one of the preset appender configurations:

▪ SecurityAuditToCEFSyslog - a Socket appender
▪ SecurityAuditToCEFFile - a RollingFile appender

 Note:

The SecurityAuditToCEFSyslog Socket appender is followed by two related appenders,
PingFailover and RollingFile. Together, they create a running audit-cef-syslog-
failover.log file in the log directory in the event that CEF logging fails for any reason. Both
appenders must also be enabled and uncommented.

 Tip:

Review inline comments and notes in the log4j2.xml file for more information about each appender.

3. If you are configuring the SecurityAuditToCEFSyslog Socket appender, replace the placeholder
parameter values for the syslog host.

Copyright ©2024

 | Administrator's Reference Guide | 795

4. If you are configuring the SecurityAuditToCEFSyslog Socket appender. uncomment the
PingFailover appender reference (<appender-ref ref="SecurityAuditToCEFSyslog-
FAILOVER"/>) from the following Logger elements located under the Loggers section:

▪ Browser SSO SP and adapter-to-adapter -
org.sourceid.websso.profiles.sp.SpAuditLogger

▪ Browser SSO IdP and adapter-to-adapter -
org.sourceid.websso.profiles.idp.IdpAuditLogger

▪ OAuth authorization server - org.sourceid.websso.profiles.idp.AsAuditLogger
▪ Dynamic Client Registration -
org.sourceid.websso.profiles.idp.ClientRegistrationAuditLogger

▪ WS-Trust STS, identity provider (IdP), and service provider (SP) -
org.sourceid.wstrust.log.STSAuditLogger

 Important:

As indicated in the IMPORTANT comments for the loggers, you must also remove some of the existing
appender references.

Writing provisioner audit log in CEF
You can write provisioner audit logs in Common Event Format (CEF) for PingFederate. PingFederate
provides an option of writing elements from the audit log and the provisioner audit log at runtime to a
syslog receiver for parsing and analysis using ArcSight from Micro Focus.

Steps

1. Edit <pf_install>/pingfederate/server/default/conf/log4j2.xml.

2. Uncomment one of the preset appender configurations:

▪ OutboundProvisionerEventToCEFSyslog (a Socket appender under the Outbound
provisioner audit log : CEF Formatted syslog appender section)

 Note:

This Socket appender is followed by two related appenders, PingFailover and
RollingFile. Together, they create a running provisioner-audit-cef-syslog-
failover.log file in the log directory in the event that CEF logging fails for any reason. Both
appenders must also be enabled (uncommented).

▪ OutboundProvisionerEventToCEFFile (a RollingFile appender under the Outbound
provisioner audit log for CEFFile section)

 Tip:

Review inline comments and notes in the log4j2.xml file for more information about each appender.

3. If you are configuring the OutboundProvisionerEventToCEFSyslog Socket appender, replace
the placeholder parameter values for the syslog host.

4. If you are configuring the OutboundProvisionerEventToCEFSyslog Socket
appender, uncomment the PingFailover appender reference (<appender-ref
ref="OutboundProvisionerEventToCEFSyslog-FAILOVER"/>) from the

Copyright ©2024

 | Administrator's Reference Guide | 796

ProvisionerAuditLogger Logger elements located under the Set up the Outbound
provisioner audit logger section.

 Important:

As indicated in the IMPORTANT comments for the loggers, you must also remove some of the existing
appender references.

Writing audit logs for Splunk
Ping Identity provides a custom Splunk App for PingFederate to process audit logs generated by a
PingFederate deployment. Splunk is an enterprise software that allows for monitoring, reporting, and
analysis of consolidated log files.

Before you begin

▪ Download and install Splunk

About this task

Splunk captures and indexes real-time data into a single searchable repository where reports, graphs, and
other data visualization can be generated.

The PingFederate Splunk App provides rich system monitoring and reporting, including:

▪ Current transaction and system reports
▪ Service reports, such as a daily usage report, and identity provider (IdP) and service provider (SP)

reports per connection
▪ Trend reports, such as weekly and monthly usage reports, and trend analysis

Splunk uses a specially formatted version of the audit log splunk-audit.log, which you can write to the
PingFederate log directory when you complete the setup steps.

 Note:

The Splunk App for PingFederate is available separately. It requires enterprise-licensed, or trial installation
of the Splunk software and the Splunk Universal Forwarder, which is needed to collect data from the
PingFederate audit log for Splunk. The application includes additional documentation on installation
and available features. To download the free application, go to splunkbase.splunk.com and search for
PingFederate.

Steps

1. Set up your Splunk server.

a. Enable a receiver to listen for data from the PingFedrate server.

For more information, see the Splunk documentation.
b. Install Splunk App for PingFederate.

Copyright ©2024

https://splunkbase.splunk.com/
https://docs.splunk.com/Documentation

 | Administrator's Reference Guide | 797

2. Configure PingFederate to write audit log messages to the <pf_install>/pingfederate/log/
splunk-audit.log file.

a. Edit <pf_install>/pingfederate/server/default/conf/log4j2.xml.
b. Locate the following Logger elements located under the Loggers section:

▪ Browser single sign-on (SSO) SP and adapter-to-adapter -
org.sourceid.websso.profiles.sp.SpAuditLogger

▪ Browser SSO IdP and adapter-to-adapter -
org.sourceid.websso.profiles.idp.IdpAuditLogger

▪ OAuth authorization server - org.sourceid.websso.profiles.idp.AsAuditLogger
▪ Dynamic Client Registration -
org.sourceid.websso.profiles.idp.ClientRegistrationAuditLogger

▪ WS-Trust STS, IdP, and SP - org.sourceid.wstrust.log.STSAuditLogger
▪ Provisioner Audit Logger - ProvisionerAuditLogger

c. Uncomment the SecurityAudit2Splunk RollingFile appender reference, <appender-
ref ref="SecurityAudit2Splunk"/>, from one or more of the Logger elements.

Example:

For example, the default logger for an IdP audit log reads as follows.

<Logger name="org.sourceid.websso.profiles.idp.IdpAuditLogger"
 level="INFO" additivity="false" includeLocation="false">
 <appender-ref ref="SecurityAudit2File" />
 <!--
 <appender-ref ref="SecurityAuditToCEFSyslog-FAILOVER"/>
 <appender-ref ref="SecurityAuditToCEFFile"/>
 <appender-ref ref="SecurityAuditToMySQLDB-FAILOVER"/>
 <appender-ref ref="SecurityAuditToPostgreSQLDB-FAILOVER" />
 <appender-ref ref="SecurityAuditToSQLServerDB-FAILOVER"/>
 <appender-ref ref="SecurityAuditToOracleDB-FAILOVER"/>
 <appender-ref ref="SecurityAudit2Splunk"/>
 -->
</Logger>

To log Browser SSO IdP audit log messages to splunk-audit.log, update the Logger
element as follows.

<Logger name="org.sourceid.websso.profiles.idp.IdpAuditLogger"
 level="INFO" additivity="false" includeLocation="false">
 <appender-ref ref="SecurityAudit2Splunk"/>
 <!--
 <appender-ref ref="SecurityAuditToCEFSyslog-FAILOVER"/>
 <appender-ref ref="SecurityAuditToCEFFile"/>
 <appender-ref ref="SecurityAuditToMySQLDB-FAILOVER"/>
 <appender-ref ref="SecurityAuditToPostgreSQLDB-FAILOVER" />
 <appender-ref ref="SecurityAuditToSQLServerDB-FAILOVER"/>
 <appender-ref ref="SecurityAuditToOracleDB-FAILOVER"/>
 <appender-ref ref="SecurityAudit2Splunk"/>
 <appender-ref ref="SecurityAudit2File" />
 -->

Copyright ©2024

 | Administrator's Reference Guide | 798

</Logger>

 Note:

For auditing of adapter-to-adapter events, you must enable both the IdP and SP loggers.

d. Uncomment the following section:

<RollingFile name="SecurityAudit2Splunk" fileName="${sys:pf.log.dir}/
splunk-audit.log"
filePattern="${sys:pf.log.dir}/splunk-audit.%d

{yyyy-MM-dd}
.log"
ignoreExceptions="false">
<PatternLayout>
<pattern>%d trackingid="%X

{trackingid}
" event=%X

{event}
subject="%X

{subject}
" ip=%X

{ip}
app=%X

{app}
connectionid=%X

{connectionid}
protocol="%X

{protocol}
" pfhost=%X

{host}
role=%X

{role}
status=%X

{status}
adapterid=%X

{adapterid}
description="%X

{description}
" responsetime=%X

{responsetime}
inmessagetype="%X

{inmessagetype}
" %n</pattern>
</PatternLayout>
<Policies>
<TimeBasedTriggeringPolicy />

Copyright ©2024

 | Administrator's Reference Guide | 799

</Policies>
</RollingFile>

3. Set up Splunk Universal Forwarder.

a. Download the Splunk Universal Forwarder from Splunk and install it on the PingFederate server.
b. Configure the Splunk Universal Forwarder to monitor the splunk-audit.log file and forward

the data to the receiver configured in step 1b.

For detailed installation and configuration instructions, see the Splunk Universal Forwarder
documentation.

Alternative console authentication
As an alternative to using PingFederate's own internal datastore for authentication to the administrative
console, you can configure PingFederate to use your network's LDAP user-datastore, the RADIUS
protocol, client certificates, or OIDC-based authentication.

You can configure any of these alternative console authentication methods at any time. Most user-
management functions are handled outside the scope of the PingFederate administrative console when
alternative authentication is enabled.

Unlike native authentication, for which you configure local accounts and their privileges in System #
Server # Administrative Accounts , you must define roles in configuration files when using an alternative
authentication scheme. Similar to native authentication, PingFederate provides two account types and
three administrative roles for role-based access control, as shown in the following table.

User Access Control

Account type Administrative
role

Access privileges

Admin User Admin Create users, deactivate users, change or reset passwords, and
install replacement license keys.

Admin Admin Configure partner connections and most system settings, except the
management of local accounts and the handling of local keys and
certificates.

Admin Expression
Admin

Map user attributes by using the expression language, Object-Graph
Navigation Language (OGNL).

 Important:

Only Administrative users who have both the Admin role and the
Expression Admin role:

▪ Can be granted the User Admin role. This restriction prevents
non-Expression Admin users from granting themselves the
Expression Admin Role.

▪ Can be granted write access to the file system or directory where
is installed. This restriction prevents a non-Expression Admin
user from placing a data.zip file containing expressions into
the <pf_install>/pingfederate/server/default/
deploy directory, which would introduce expressions into .

Admin Crypto Admin Manage local keys and certificates.

Auditor Not applicable View-only permissions for all administrative functions. When the
Auditor role is assigned, no other administrative roles can be set.

Copyright ©2024

https://www.splunk.com/en_us/download/universal-forwarder.html
https://docs.splunk.com/Documentation/Forwarder/latest/Forwarder/Abouttheuniversalforwarder
https://docs.splunk.com/Documentation/Forwarder/latest/Forwarder/Abouttheuniversalforwarder

 | Administrator's Reference Guide | 800

 Note:

All four administrative roles are required to access and make changes through the following services:

▪ The /bulk, /configArchive, and /configStore administrative API endpoints
▪ The Configuration Archive window, accessed from System # Server, in the administrative console
▪ The Connection Management configuration item on the Service Authentication window, accessed

from Security # System Integration

Enabling OIDC-based authentication
You can enable OIDC-based authentication to the administrative console by setting a property in the
run.properties file, and by configuring other properties in the oidc.properties file.

About this task

 Important:

All endpoints must be HTTPS.

Steps

1. On your OIDC provider, configure an OAuth client to represent the PingFederate administrative
console. Specify the following redirect URI for the client:

https://<pf_admin_hostname>:<pf_admin_port>/pingfederate/app?service=finishsso

or, if using pf.admin.baseurl:

https://<pf.admin.baseurl>/pingfederate/app?service=finishsso

You need the client's credentials in the following steps.

2. Edit the <pf_install>/pingfederate/bin/run.properties file, and set the
pf.console.authentication property to OIDC.

 Note:

You might need to configure the pf.admin.baseurl property as well. This property defines the URL
that PingFederate's administrative node uses to populate resource references in Administrative API
responses. The administrative node also uses it for the redirect URL it sends to an OpenID Provider
for administrator OIDC login (for example, https://pingfederate-admin.example.com or, if the load
balancer uses a custom port, https://pingfederate-admin.example.com:8443). The default value is
blank.

Use pf.admin.baseurl instead of pf.admin.hostname. If run.properties defines
both, PingFederate ignores pf.admin.hostname. But if run.properties defines only
pf.admin.hostname, PingFederate constructs the URL the same way it does in versions of
PingFederate before 10.3.

3. Edit the <pf_install>/pingfederate/bin/oidc.properties file, and modify the applicable
properties as described in the following table.

Property Description

client.id The client ID to communicate with the OpenID Provider (OP).

This property is required.

Copyright ©2024

 | Administrator's Reference Guide | 801

Property Description

client.secret The client secret used to communicate with the OpenID Provider.

The client secret should be in obfuscated format. We recommend that
the secret be obfuscated using one of the following utilities in the ../
bin directory:

▪ On Windows: obfuscate.bat
▪ On Linux: ./obfuscate.sh

For example: obfuscate.bat secret

This property is required when the client authentication is either
client_secret_basic or client_secret_post.

client.authn.method The type of client authentication that is expected by the token
endpoint in the OpenID Provider. Supported values include:

▪ client_secret_basic – Client credentials using the HTTP Basic
authentication scheme.

▪ client_secret_post – Client Credentials included in the request
body.

▪ private_key_jwt – Client authenticates in accordance with JSON
Web Token (JWT).

This property is required.

authorization.endpoint The authorization endpoint at the OpenID Provider.

This property is required.

token.endpoint The token endpoint at the OpenID Provider. PingFederate OIDC login
only supports the authorization code flow.

This property is required.

user.info.endpoint The endpoint that is accessed when the required claims are not
present in the ID tokens.

This property is optional.

end.session.endpoint The end session endpoint at the OpenID Provider. When no value
is provided, the administrator will be redirected to the default
PingFederate logout page.

This property is optional.

issuer The issuer identifier of the OpenID Provider. The value provided is
matched with the iss claims in the obtained ID token.

This property is required.

acr.values The authentication context class reference values that will be used by
the OpenID Provider.

This property is optional.

scopes The authorization endpoint at the OpenID Provider. The default
setting is openid.

This property is required.

Copyright ©2024

 | Administrator's Reference Guide | 802

Property Description

username.attribute.name The name of the claim that represents the username of the
administrator. The default setting is sub.

This property is required.

role.attribute.name The name of the claim that is used to determine the role for
administrators.

This property is required.

role.map.admin.n Used when multiple values need to be mapped to a single
PingFederate role. In this case, multiple properties must be created
using a numeric, incremental suffice, starting with 1. For example:

role.map.admin.1=
role.map.admin.2=
role.map.admin.3=

role.admin=

role.cryptoManager=

role.userAdmin=

role.expressionAdmin=

The administrator role claim value mapping. For example, assume
that admin_role is a claim and the possible values for it are:

role.admin=admin
role.cryptoManager=crypto
role.userAdmin=uadmin
role.expressionAdmin=eadmin

When the claim admin_role has more than one value, for example,
admin_role :["admin","crypto","uadmin"], the user will be
granted admin, crypto, and user administrator roles.

When the claim admin_role has a single value, for example,
admin_role: "admin", the user will be granted admin role.

This property is required.

role.auditor The auditor role claim value mapping.

This property is optional.

4. Restart PingFederate.

Enabling LDAP authentication
You can enable LDAP authentication by using the configuration files located in the <pf_install>/
pingfederate/bin directory.

About this task

When LDAP authentication is configured, PingFederate does not lock out administrative users based upon
the number of failed sign-on attempts. Instead, responsibility for preventing access is delegated to the
LDAP server and enforced according to its password lockout settings.

Steps

1. In the <pf_install>/pingfederate/bin/run.properties file, change the value of the
pf.console.authentication property as shown.

pf.console.authentication=LDAP

Copyright ©2024

 | Administrator's Reference Guide | 803

2. In the <pf_install>/pingfederate/bin/ldap.properties file, change property values as
needed for your network configuration.

For more information, see the comments in the file.

The roles configured in the properties file apply to both the administrative console and the
administrative API.

 Important:

Remember to assign LDAP users or designated LDAP groups to at least one of the PingFederate
administrative roles as indicated in the properties file.

 Tip:

You can also use this configuration file in conjunction with RADIUS authentication to determine
permissions dynamically through an LDAP connection.

3. Start or restart PingFederate.

Enabling RADIUS authentication
You can enable RADIUS authentication using the configuration files located in the <pf_install>/
pingfederate/bin directory. The RADIUS protocol provides a common approach for implementing
strong authentication in a client-server configuration.

About this task

PingFederate supports the protocol scenarios for one-step authentication, such as appending a one-time
passcode obtained from an authenticator to the password, and two-step authentication, such as through a
challenge-response process.

 Note:

When RADIUS authentication is configured, PingFederate does not lock out administrative users based
on the number of failed sign-on attempts. Instead, responsibility for preventing access is delegated to the
RADIUS server and enforced according to its password lockout settings.

 Note:

The NAS-IP-Address attribute is added to all Access-Request packets sent to the RADIUS server.
The value is copied from the pf.engine.bind.address property in run.properties. Only IPv4
addresses are supported.

Steps

1. In the <pf_install>/pingfederate/bin/run.properties file, change the value of the
pf.console.authentication property as shown.

pf.console.authentication=RADIUS

Copyright ©2024

 | Administrator's Reference Guide | 804

2. In the <pf_install>/pingfederate/bin/radius.properties file, change property values as
needed for your network configuration.

For more information, see the comments in the file.

The roles configured in the properties file apply to both the administrative console and the
administrative API.

 Important:

Be sure to assign RADIUS users or designated RADIUS groups to at least one of the PingFederate
administrative roles as indicated in the properties file. Alternatively, you can set the use.ldap.roles
property to true and use the LDAP properties file, also in the bin directory, to map LDAP group-
based permissions to PingFederate roles.

3. Start or restart PingFederate.

Multi-factor console authentication using PingID
PingID is a cloud service that enables multi-factor authentication (MFA) using a mobile application.

The PingFederate administrative console supports authentication through the RADIUS protocol, which
provides a common approach for implementing strong authentication in a client-server configuration.

By combining these two capabilities, you can configure PingID to provide MFA to protect access to
the PingFederate administrative console, which meets the requirement of stronger authentication for
administrators accessing security-related software products.

 Note:

PingID requires a separate license. Please contact sales@pingidentity.com or request a trial license at
pingidentity.com.

Requirements

The following components are required to enable MFA to the administrative console using PingID:

▪ PingFederate with external access to the PingID cloud service
▪ A PingID license
▪ A directory server where the administrative credentials and group membership are stored

Solution overview
You can enable multi-factor console authentication using PingID.

When PingID is the second authentication factor for the PingFederate administrative console, the
administrators must authenticate successfully against the first factor, such as a directory server, and
subsequently respond to the request for authentication from the PingID app on their mobile devices.

Copyright ©2024

https://www.pingidentity.com/en/trials/mfa-free-trial.html

 | Administrator's Reference Guide | 805

Multi-factor Console Authentication using PingID

Processing steps

1. An administrator opens a browser and accesses the PingFederate administration console.

a. The administrative console displays the Sign On page.
b. The administrator enters the correct username and password.

2. PingFederate invokes the PingID Password Credential Validator (PCV) to validate the username and
password against your directory server.

The PingID PCV comes with a built-in RADIUS server, which can be used as the point of
authentication for the PingFederate administration console using RADIUS authentication.

3. Upon successful validation of the user credentials, the PingID PCV invokes the PingID service with the
username.

The PingID service looks for the username in its datastore.

If the administrator has not registered a device for use with PingID, the PingID service returns a
“username unknown” message. The administrative console displays a device registration window. The
administrator must register the mobile device.

4. If the administrator has a registered device, the PingID service notifies the PingID app on the device or
sends a text message (SMS) or voice callback message, depending on the configuration for that user
account.

a. The administrator responds to the request for authentication from PingID.
b. If the administrator has successfully authenticated to the PingID notification, the PingID service

returns a “success” message to the PingID PCV.
5. The administrative console menu opens.

Copyright ©2024

 | Administrator's Reference Guide | 806

Configuring your PingID account
To use PingID as the second factor to authenticate into the PingFederate administrative console, you
need a PingID or PingOne account. You must also configure the account to allow the PingID Password
Credential Validator (PCV) to use the PingID service.

Steps

1. Register a PingID account.

a. Contact sales@pingidentity.com for a registration key.
b. Register at PingOne admin portal .
c. Select PingOne for Enterprise and then click Next.

Let the PingOne admin portal guide you through the registration process. At the end, a
confirmation email is sent to your email address.

d. Open the confirmation email and follow the instructions to activate your PingOne for Enterprise
account.

2. Enable PingID client integration.

a. Sign on to the PingOne admin portal .
b. Go to Setup # PingID # Client Integration.
c. Under Integrate with PingFederate and other Clients, click Download and save the

pingid.properties file for a subsequent task.
d. Sign off of the PingOne admin portal.

Creating an LDAP Username Password Credential Validator instance
You can create an LDAP username password credential validator (PCV) in the PingFederate
administrative console to create a second factor for multi-factor authentication (MFA).

About this task

Administrators must authenticate successfully against the first factor, such as a directory server where
the administrator accounts, credentials and group memberships are stored. To fulfill this requirement,
you need an LDAP connection from PingFederate to your directory server, and an instance of the LDAP
Username Password Credential Validator.

Steps

1. Go to System # Data & Credential Stores # Password Credential Validators. On the Password
Credential Validators window, click Create New Instance.

2. On the Type tab, from the Type list, select the LDAP Username Password Credential Validator and
complete the Instance Name and Instance ID fields.

3. On the Instance Configuration tab, from the LDAP datastore list, select the datastore and complete
the Search Base and Search Filter fields.

For more information about each field, see the following table.

Field Description

LDAP Datastore

(Required)

The LDAP datastore configured in PingFederate.

If you have not configured the server to communicate with the LDAP
directory server you need, click Manage Data Stores.

There is no default selection.

Search Base

(Required)

The location in the directory server where the search begins.

This field has no default value.

Copyright ©2024

https://admin.pingone.com/web-portal/register
https://admin.pingone.com/

 | Administrator's Reference Guide | 807

Field Description

Search Filter

(Required)

The LDAP query to locate a user record.

If your use case requires the flexibility of allowing users to identify
themselves using different attributes, you can include these attributes in
your query. For instance, the following search filter allows users to sign on
using either the sAMAccountName or employeeNumber attribute value
through the HTML Form Adapter:

(|(sAMAccountName=${username})(employeeNumber=
${username}))

This field has no default value.

Scope of Search The level of search to be performed in the search base.

One Level indicates a search of objects immediately subordinate to the
base object, not including the base object itself. Subtree indicates a
search of the base object and the entire subtree within the base object
distinguished name.

The default selection is Subtree.

Case-Sensitive
Matching

The option to enable case-sensitive matching between the LDAP error
messages returned from the directory server and the Match Expression
values specified on this window.

This check box is selected by default.

4. On the Extended Contract tab, click Next to skip to the Summary tab.

5. On the Summary tab, review the configuration, modify as needed, and then save the configuration.

Configuring a PingID Password Credential Validator instance
You can create and configure an instance of the PingID Password Credential Validator in the PingFederate
administrative console.

Before you begin

Open the previously downloaded pingid.properties file in a text editor, copy its content, and then
close the file.

Steps

1. Go to System # Data & Credential Stores # Password Credential Validators, and then click Create
New Instance.

2. On the Type tab, from the Type list, select PingID PCV (with integrated RADIUS server) and
complete the Instance Name and Instance ID fields.

Copyright ©2024

 | Administrator's Reference Guide | 808

3. On the Instance Configuration tab, configure the required fields as follows.

a. Click Add a new row to 'RADIUS Clients', enter 127.0.0.1 as the RADIUS IP address and a
value in the Client Shared Secret field. Click Update.

 Tip:

127.0.0.1 represents the local RADIUS client, the PingFederate administrative console, which
calls the RADIUS server bundled in the PingID PCV for authentication.

The Client Shared Secret value is required for the next task.
b. Click Add a new row to 'Delegate PCV's', select the previously created LDAP Username

Credential Validator instance, and then click Update.
c. Paste the content from the pingid.properties file into the PingID Properties File field.
d. Review the rest of the default settings. Modify as needed to meet your requirements, and click

Next.

4. On the Extended Contract tab, click Next to skip to the Summary tab.

5. On the Summary tab, review, modify if needed, and save the configuration.

Configuring PingFederate to use RADIUS authentication
You can enable RADIUS authentication in the PingFederate administrative console.

About this task

In this multi-factor console authentication use case, the PingFederate administrative console is a RADIUS
client that calls the local RADIUS server bundled in the PingID Password Credential Validator (PCV) for the
second factor authentication.

 Note:

For a clustered PingFederate environment, perform these steps on the console node.

Steps

1. Open the <pf_install>/pingfederate/bin/run.properties file in a text editor and set the
pf.console.authentication property to RADIUS.

pf.console.authentication=RADIUS

2. Obfuscate the Client Shared Secret value using a PingFederate command-line tool.

Example:

Windows: <pf_install>\pingfederate\bin\obfuscate.bat clientSharedSecret

Linux: <pf_install>/pingfederate/bin/obfuscate.sh clientSharedSecret

Result:

The output should be a long line of text.

3. Copy the output for the next step.

4. Open the <pf_install>/pingfederate/bin/radius.properties file in a text editor and
modify as follows.

host=<host>
shared.secret=obfuscatedClientSharedSecret

Copyright ©2024

 | Administrator's Reference Guide | 809

timeout=10000

 Tip:

For a clustered PingFederate environment, the host value must be a runtime engine IP address or a
hostname.

The timeout value is the number of milliseconds to wait for the second authentication factor to
complete before timing out the login attempt. In this use case, ten seconds, or 10000 ms, should be
sufficient for PingID.

In addition, assign one or more RADIUS users or designated RADIUS groups to at least one of the
PingFederate administrative roles as indicated in the radius.properties file. Alternatively, you can
set the use.ldap.roles property to true and use the LDAP properties file, ldap.properties in
the same bin directory, to map LDAP group-based permissions to PingFederate roles.

5. Save your changes, and restart PingFederate.

Verifying your setup
Verify your setup after you have completed the required configuration.

Steps

1. Start PingFederate.

In a clustered PingFederate environment, start PingFederate on the console node.

2. Start a web browser.

3. Browse to the URL.

https://<pf_host>:9999/pingfederate/app where <pf_host> is the network address of your PingFederate
server. It can be an IP address, a host name, or a fully qualified domain name. It must be accessible
from your computer.

4. Authenticate using your directory user credentials.

Upon successful validation, the PingFederate administrative console prompts you to authenticate
using PingID if you have a registered device. If you do not have a registered device, follow the steps
shown on-screen to register a device.

5. Respond to the authentication request from PingID, and the PingFederate administrative console
menu will display.

Result

 Important:

Access to the PingFederate administrative console can now only be performed by using directory user
credentials, followed by a PingID authentication.

Enabling certificate-based authentication
You can enable certificate-based authentication in the PingFederate administrative console.

Before you begin

▪ Have a PingFederate username and password.
▪ Import the necessary client key and certificate into the web browser you use to access PingFederate.

Copyright ©2024

 | Administrator's Reference Guide | 810

About this task

To enable client-certificate authentication, PingFederate administrative users must import an X.509 key
and a suitable certificate for user authentication into their web browsers. In addition, the corresponding
root certificate authority (CA) certificates must be contained in the Java runtime or the PingFederate
trusted store. Other setup steps, including designating user permissions, must be completed by using
configuration files located in the <pf_install>/pingfederate/bin directory.

The roles configured in the properties file apply to both the administrative console and the administrative
API.

Steps

1. Sign on to the PingFederate console as a user with permissions that include the Crypto Admin role.

2. Ensure the client-certificate's root CA and any intermediate CA certificates are contained in the trusted
store, either for the Java runtime or PingFederate.

 Note:

You can import a certificate to PingFederate in Security # Certificate & Key Management # Trusted
CAs.

 Tip:

You might want to click the Serial Number and copy the Issuer distinguished name (DN) to use in later
steps.

3. In the <pf_install>/pingfederate/bin/run.properties file, change the value of the
pf.console.authentication property as shown.

pf.console.authentication=cert

4. In the <pf_install>/pingfederate/bin/cert_auth.properties file, enter the Issuer DN for
the client certificate as a value for the property rootca.issuer.x, where x is a sequential number
starting at 1.

 Note:

If you copied the Issuer DN after step 2, paste this value. For more information, see the comments in
the file.

The roles configured in the properties file apply to both the administrative console and the
administrative API.

5. Repeat the previous step for any additional CAs as needed.

6. Enter the certificate user's Subject DN for the applicable PingFederate permission roles, as described
in the properties file.

 Important:

The configuration values are case-sensitive.

Copyright ©2024

 | Administrator's Reference Guide | 811

7. Repeat the previous step for all users as needed.

 Note:

Other settings in the properties file are used to display the user's ID (Subject DN) in abbreviated form
in the administrative console.

8. Start or restart PingFederate.

Configuring automatic connection validation
The intent of automatic multi-connection error checking is to verify that all configured connections have not
been adversely affected by subsequent changes in supporting components.

About this task

Automatic multi-connection error checking occurs when you access certain supporting components, such
as the SP Adapters and IdP Adapters windows, the Token Processors window, the Token Generators
window, the Password Credential Validators window, and the Identity Store Provisioners window.

As the number of connections and supporting components increases, so does the validation time. If you
experience noticeable delays in accessing adapters, token translators, password credential validators, or
identity store provisioner, you can turn off automatic connection validation.

 Note:

When automatic connection validation is turned off, error checking is deferred until you access the
connection lists on the administrative console. You can make configuration changes without being
prompted to fix all dependency errors immediately, but remember that the configuration changes can
potentially cause service disruption.

For example, if you remove a configured source-attribute in an attribute fulfillment configuration in a
connection, users will be unable to complete single sign-on (SSO) requests until you reconfigure such
connections.

When you access the Connections window, if the administrative console detects one or more dependency
error conditions, it displays a visual cue to indicate the errors. To resolve each error, select the applicable
connection and follow the on-screen instructions to modify the configuration.

This setting does not affect the validation of a connection being configured or modified. Also, individual
connections are always validated automatically when you access them on the Connections window,
regardless of the configuration of this setting.

To manage this setting for SP, go to Applications # Integration # SP Connections on the SP
Connections window.

To manage this setting for IdP, go to Authentication # Integration # IdP Connections on the IdP
Connections window.

Steps

▪ To turn off automatic multi-connection error checking, click Show Advanced Fields and select the
Disable Automatic Connection Validation check box.

This check box is not selected by default.

Result:

After you select or clear the check box, the state of this setting is reflected on both the SP
Connections window and the IdP Connections window.

Copyright ©2024

 | Administrator's Reference Guide | 812

Automating configuration migration
PingFederate provides a configuration-migration tool for scripting the transfer of administrative-console
configurations and configuration property files from one PingFederate server to another.

The configcopy tool can migrate your configurations, such as from a test environment to production. It
can also manage certificates for the target server.

 Note:

As of PingFederate 10.2, the configcopy tool has been deprecated and will be removed in a future
release.

The command-line utility, configcopy, in the <pf_install>/pingfederate/bin directory, uses
PingFederate's built-in Connection Management Service in conjunction with an internal Web Service to
export and import connections and other configurations, and to obtain lists. For more information, see
Connection Management Services.

 Important:

The Connection Management Service must be activated for both the source and target servers before
you can use the configcopy tool. For more information, see Configuring service authentication on page
653.

 CAUTION:

For security reasons, you should disable the Connection Management Service whenever it is not in use.

Copying the key from the source to the target server
You must copy the key from the source server to the target server before you migrate data using the
configcopy tool.

About this task

 Note:

As of PingFederate 10.2, the configcopy tool has been deprecated and will be removed in a future
release.

To copy the key from the source to the target server, you copy the needed keys from the pf.jwk file on
the source server and append it to the last key in the pf.jwk file on the target server, and then restart that
target server. This step only needs to be completed before the first migration.

Steps

1. In your PingFederate installation on the source server, open the pf.jwk file in the <pf_install>/
pingfederate/server/default/data directory.

2. Copy the key in the file.

Make sure you copy the entire key JSON message, as in the following example.

{"keys":[{"kty":"oct","kid":"j0PUEdAb95","k":"AGi8Lg_ewdl-
_30Cx83kDMQE9oNlhgJSa_Pc4I8JTU8"}]}

3. In your PingFederate installation on the target sever, open the pf.jwk file.

Copyright ©2024

 | Administrator's Reference Guide | 813

4. Insert a comma at the end of the last key in the file and append the source key.

For example, if the pf.jwk on the target server reads as follows.

{"keys":
[{"kty":"oct","kid":"wER9zEpaPe","k":"i0HQr9JmsqjAX4o_BQU1qGJzoLQI-
nmwp8u3GyHzTB8"}]}

Insert the comma and the source key as shown.

{"keys":
[{"kty":"oct","kid":"wER9zEpaPe","k":"i0HQr9JmsqjAX4o_BQU1qGJzoLQI-
nmwp8u3GyHzTB8"},
{"kty":"oct","kid":"j0PUEdAb95","k":"AGi8Lg_ewdl-
_30Cx83kDMQE9oNlhgJSa_Pc4I8JTU8"}]}

 Note:

This is a well-formed JSON document in one line.

5. Save the pf.jwk file and restart the target server.

6. If applicable, repeat the steps above for each target PingFederate server.

Administrative console migration
Use the configcopy tool to migrate data in the administrative console.

 Note:

As of PingFederate 10.2, the configcopy tool has been deprecated and will be removed in a future
release.

For migrating data configured with the source server's administrative console, the configcopy tool
performs these overall processing steps:

1. Retrieves specified connection and other configuration data (XML) from a source PingFederate server
2. Modifies the configuration with any changes required for the target environment, according to settings

in one or more properties files, command-line arguments, or both
3. Imports the updated configuration into the PingFederate target server

The configcopy tool can perform these functions in real time, from server to server, or by using an
intermediate file. The latter option is useful when both the source and target PingFederate servers are
either not running at the same time or not accessible from the same operating system command window.

 Important:

For one-time configuration transfers from one version of PingFederate to a newer version, use a complete
configuration archive, either with configcopy archive export/import commands, or manually through the
administrative console, or the administrative API. Other configcopy commands are not supported for this
purpose.

Operational capabilities include:

▪ Listing of source partner connections, adapter or STS token-translator instances, outbound-
provisioning channels, or datastore connections.

List commands include optional filter settings, when applicable.

Copyright ©2024

 | Administrator's Reference Guide | 814

▪ Copying one or more partner connections, outbound-provisioning channels, or instances of adapters
or token translators.

▪ Copying one or more datastore connections.
▪ Copying server settings.
▪ Exporting and importing full configuration archives.

Copying configuration files

The configcopy tool supports copying configuration files containing runtime properties, including those
needed for server clustering, that might have been manually customized for the source configuration and
need to be migrated. The file-copy command can also copy the PingFederate internal, HSQLDB database
when needed.

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

Managing Certificates

Administrators can use the configcopy tool to perform the following certificate-management tasks on the
target PingFederate server:

▪ List source trusted certificate authorities (CAs) and target key aliases
▪ Copy one or all trusted CAs from the source server
▪ Create certificates
▪ Create Certificate Signing Requests (CSRs)
▪ Import CA-signed and PKCS-12 certificates

Using the migration tool
The migration tool, configcopy, can be used in conjunction with one or more property files to define the
operational command and other parameters, including the source and target PingFederate servers, and to
modify configuration settings as needed for the target environment.

About this task

 Note:

As of PingFederate 10.2, the configcopy tool has been deprecated and will be removed in a future
release.

Property-file templates are available for each command option in the <pf_install>/pingfederate/
bin/configcopy_templates directory.

 Note:

See the README.txt file in the configcopy_templates directory for a list of all commands and
summary information. See the template files for parameters associated with each command or with use
cases, as well as lists of Override Properties, which are configuration settings that can be modified in
transit, where applicable.

Copyright ©2024

 | Administrator's Reference Guide | 815

Copies of the templates can be configured as needed and then used together, or combined into one file.
Use the applicable file names as an argument when running configcopy.bat or configcopy.sh,
depending on your operating system, for particular configurations, using the following command syntax.

(On Windows)

configcopy.bat -Dconfigcopy.conf.file=<properties_file1>;
 <properties_file2>;...

 Note:

When paths are included with the file names, you cannot use backslashes (\). Use forward slashes (/) or
escape the backslash (\\).

(On Linux)

configcopy.sh -
Dconfigcopy.conf.file=<properties_file1>:<properties_file2>:...

 Note:

The file separators are platform specific, corresponding to the syntax used for system-level path
separators.

Also, you can specify any property values through command-execution arguments, using the following
syntax

configcopy[.sh] -D<property>=<value> ...

where <property> is any property named in the properties file and <value> is the value. Command-line
property designations take precedence over any values set in the properties file.

 Note:

Access to the Connection Management Service is password-protected. The usernames and passwords
might be set in the properties file for both the source and target web services, and passwords can be
obfuscated. If passwords are set in the properties file, they cannot be overridden using the command line.
If a password is not set, the configcopy tool prompts for it. Usernames must always be supplied where
applicable, either in the command line or in the properties file.

The configcopy utility generates its own log file, configcopy.log, located in the <pf_install>/
pingfederate/log directory. You can control settings for this log, as needed, in the file
configcopy.log4j2.xml, located in the bin directory.

 CAUTION:

Importing connections or other discrete configurations at the target server is not subject to the same
rigorous data validation performed by the administrative console during manual configuration. Although
some checks are made, it is possible to create invalid connections using the connection-migration process.
Therefore, you should not use the configcopy tool to create settings at the target that do not exist at the
source. For connections and other configurations copied separately, the tool is designed only for modifying
the values of existing source settings to make them applicable to the target environment.

Copyright ©2024

 | Administrator's Reference Guide | 816

To avoid errors and prevent unstable target configurations due to missing components or faulty cross-
component references, such as invalid ID references from connection configurations to datastore
configurations, adhere closely to the instructions provided in the following procedure.

Steps

1. Enable access to the Connection Management Service for both the source and target PingFederate
servers. For more information, see Configuring service authentication on page 653.

2. Determine which component configurations need to be copied, including plugins.

For example, connection configurations always reference either adapter or token-translator
configurations, or both, and may reference datastore configurations. These are all separate
configurations, and must be copied separately in conjunction with copying connection configurations,
unless they already exist at the target.

Server Settings, unless pre-configured at the target, also need to be copied over separately.

Provisioning settings can be copied separately to update target connections, as needed.

3. Determine whether any configuration property files or other supporting files need to be copied.

4. Ensure necessary plugin JAR files are installed on the target server.

The configcopy tool does not copy over these files, which include libraries for adapters, token
translators, and JDBC or any custom database drivers.

The JAR files are located in either <pf_install>/pingfederate/server/default/deploy or
<pf_install>/pingfederate/server/default/lib.

5. On the target server, ensure that signing certificates, or certificates used for XML decryption, are
already in place. For more information, see Certificate and key management on page 615.

Private keys are not copied from server to server, public certificates can be copied. However, you can
use configcopy to upload keys and certificates to the target server.

Look for identifying information about the target keys so you can reference the certificates in
connection-copy properties.

6. If you have not yet installed your organization's CA-issued SSL server certificate on both the target
and source servers, you can do so with a configcopy command. Otherwise, use one of the following
methods to ensure that configcopy can contact both servers:

▪ (Recommended) Install the Issuer certificate for the PingFederate SSL certificate in a separately
managed trust store. Then the location of the file can be specified when running configcopy
using the property configcopy.connection.trust.keystore.

▪ Install the Issuer certificate for the PingFederate SSL certificate into the trust store for the Java
runtime where configcopy runs.

 Note:

If different SSL certificates are installed on the two servers, the configcopy tool must be able to
trust both. In this case, both certificates must be installed in the trust store used by configcopy,
or in the trust store for the Java runtime where configcopy runs.

Copyright ©2024

 | Administrator's Reference Guide | 817

7. Create properties files for the necessary commands, and for associated command-parameter values
needed to copy the required configurations and any additional files.

See the README.txt file and to the properties-file templates in the <pf_install>/
pingfederate/bin/configcopy_templates directory.

 Note:

This step and those following assume the use of properties files based on the templates provided. You
can also use command-line parameters. For more information, see previous steps in this section.

8. If you are copying connections, override ID properties referencing adapter, datastores or other plugin
configurations, as needed see step 2.

 Important:

Ensure that the plugin configurations are either previously defined at the target or are part of the same
configcopy process used to copy the connections that depend on them.

9. Create a script or run a command, or command series, that executes configcopy for each of the
prepared properties files.

See the previous discussion for syntax requirements, or the README.txt file.

Outbound provisioning CLI
PingFederate provides a command-line interface (CLI) to help manage automated outbound provisioning
at identity provider (IdP) sites.

Administrators can use the CLI to view the status of user provisioning, either globally or one provisioning
channel at a time, and to rectify unusual situations where provisioning at the service provider (SP) might be
out of sync with the enterprise user store.

The CLI tool, provmgr.bat or provmgr.sh, is located in the directory <pf_install>/
pingfederate/bin. The tool interacts with the PingFederate internal datastore to maintain provisioning
synchronization between the LDAP user store and the target service.

The tool creates its own log file, located at <pf_install>/pingfederate/log/provmgr.log.
You can control settings for this log, as needed, in the <pf_install>/pingfederate/bin/
provmgr.log4j2.xml file.

The following table describes the available global and channel-specific command arguments.

Command argument Description

Global options

--help Describes the available options. The help also displays if you run the
command with no arguments.

Copyright ©2024

 | Administrator's Reference Guide | 818

Command argument Description

--show-channels Lists all channels in a table format, showing for each:

▪ ID: A numeric channel ID (channel-specific commands need this ID)
▪ Name: The channel name
▪ Connection ID
▪ Status: active | inactive (both the connection and the channel status are

shown)
▪ User count/dirty-user-record count, such as 5000/12, which means 5000

users and 12 dirty records
▪ Source, as LDAP URL
▪ Target code

--show-nodes Shows all the provisioning-server nodes with their status and the last
timestamp. Applicable only when failover provisioning is configured in the
<pf_install>/pingfederate/bin/run.properties file.

--force-node-backup

Use with node number: -
n <node ID>

Sets the provisioner mode to FAILOVER for the associated PingFederate
server node.

Channel-specific options

 Note:

With each command, specify the channel with the -c <channel-id-number> argument. For example:

provmgr -c 1 --show-source

You can determine channel ID numbers by using the global command provmgr --show-channels.

--reset-group-timestamp Deletes the user-group timestamp, which forces the provisioner to process the
provisioning group on the next cycle, even if the timestamp on that group did
not actually change.

Depending on your LDAP server and administrative practices, you might want
to schedule this command to run periodically to catch up with any users that
may have been deleted, rather than deactivated, in the directory server. Some
directory servers do not update the group timestamp for deleted users.

 Important:

You should rarely need this option if users are deactivated rather than deleted.
If you do need it, you might want to schedule it when other network activity is
low.

Copyright ©2024

 | Administrator's Reference Guide | 819

Command argument Description

--reset-attribute-sync Sets the attribute sync timestamp to 1, which forces the provisioner to look
at all users for changes, not only those that have a newer timestamp on their
LDAP entry.

 Important:

This is rarely needed and might consume considerable network resources,
depending on the number of users. If it is needed, you might want to schedule
it when other network activity is low.

--reset-values-hash Removes the values hash for all users. The database stores a hash of
attribute values for users to determine whether any values have been
changed.

This argument forces users that have a newer timestamp on their LDAP entry
to be updated at the service provider, regardless of the actual field values.
However, users whose recorded timestamp is unchanged are not updated.

--reset-all Equivalent to using all three of the previous arguments.

--show-dirty-records Lists all users or groups that have not been provisioned or updated at the SP
site. This option is rarely needed and might consume considerable network
resources, depending on the number of users. If it is needed, you might want
to schedule it when other network activity is low.

--show-dirty-group-
records

List groups that have not been provisioned or updated at the SP site.

--show-dirty-user-records List all users that have not been provisioned or updated at the SP site.

--show-group

--show-user

Use with:

-u <provider name>

Or:

-g <LDAP GUID>

Shows all internal database fields related to the specified user or group,
including transitory mapping fields, which are fields waiting to be pushed to the
SP. For a user, shows all LDAP attributes retrieved from the directory server.

 Note:

You can obtain user or group names and GUIDs for dirty records, as needed,
using any of the --show-dirty-* options, described above.

The LDAP GUID, if used and if it is binary, should be entered in hexadecimal
format, as shown in log files.

provmgr.sh --show-user -u user@example.com
provmgr.sh --show-user -g ffd448643f812b43a0bee2504173f0

--clear-dirty-records Clears the dirty flag on all records.

--clear-dirty-group-
records

Clears the dirty flag on all group records.

--clear-dirty-user-records Clears the dirty flag on all user records.

--delete-dirty-records Removes all dirty records from the internal store.

--delete-dirty-group-
records

Removes all dirty group records from the internal store.

Copyright ©2024

 | Administrator's Reference Guide | 820

Command argument Description

--delete-dirty-user-
records

Removes all dirty user records from the internal store.

--delete-all

--delete-all-users

The delete-all parameter removes all users and groups from the internal
store and deletes the provisioning group timestamp and the last attribute-sync
timestamp.

The delete-all-users parameter deletes users and timestamps but
retains groups.

The effect of either command is to reset the channel to its initial state for user
provisioning. All user metadata is lost and provisioning for the channel will start
from the beginning, picking up all users, and groups if deleted, and pushing
them to the SP when the synchronization frequency interval has expired. The
synchronization frequency interval is defined on System # Server # Protocol
Settings # Outbound Provisioning.

 Important:

You should rarely need these options. If needed, you might want to schedule
the operation when other network activity is low.

--show-target Displays the target configuration.

--show-source Displays all source LDAP configuration parameters, including settings and
location.

Customizable user-facing pages
PingFederate supplies HTML templates, located in the <pf_install>/pingfederate/server/
default/conf/template directory, to provide information to the end-users or to request user input
when processing their requests.

The PingFederate HTML templates utilize the Velocity template engine, an open-source Apache project.
For more information about Velocity, please refer to the Velocity project documentation on the Apache
website at https://velocity.apache.org.

You can modify most of these pages in a text editor to suit the particular branding and informational
needs of your PingFederate installation. CSS and images for these pages are included in the template/
assets subdirectory. Each page contains both Velocity constructs and standard HTML. The Velocity
engine interprets the commands embedded in the template page before the HTML is rendered in the user's
browser. At runtime, PingFederate supplies values for the Velocity variables used in the template.

Each template contains specific variables that can be used for rendering the associated web page.
You can see the variables and usage examples in the comments of each template. The following table
describes variables that are available across all templates.

Copyright ©2024

https://velocity.apache.org

 | Administrator's Reference Guide | 821

Variable Description

$escape A utility class that can be used to escape String variables inserted
into the template, such as $escape.escape($client.name)
where $client.name is one of the variables available in the
oauth.approval.page.template.html template file.

Use $escape.forJavaScript($variable) when passing String variables
into a JavaScript code block or an event handler within a template, such as
window.location.replace("$escape.forJavaScript($wreply)")
as seen in the sourceid-wsfed-idp-signout-cleanup-
template.html template file.

 Important:

Use the $escape variable to escape external data, such as request
parameters, to mitigate the risk of potential cross-site scripting (XSS) attacks.

$HttpServletRequest A Java object instance of javax.servlet.http.HttpServletRequest.
Used to add additional knowledge about the request that is otherwise
unavailable in the template, such as the User-Agent HTTP header.

$HttpServletResponse A Java object instance of javax.servlet.http.HttpServletResponse.
Used to modify the response in the template, such as setting additional
browser cookies.

$locale A Java object instance of java.util.Locale that represents a user's
country and language. Used to customize the end-user experience. For
example, the locale is used to display content in the user's preferred language.

$CurrentPingFedBaseURLThe host name found in the request, provided that it matches either the
PingFederate's base URL or one of the configured virtual host names.

$PingFedBaseURL The PingFederate base URL.

For most deployments, use the $CurrentPingFedBaseURL variable instead of
the $PingFedBaseURL variable.

$templateMessages Used to localize messages in the template, based on user's Locale, an
instance of com.pingidentity.sdk.locale.LanguagePackMessages.
For more information, see the Javadoc for the LanguagePackMessages
class in the directory <pf_install>/pingfederate/sdk/doc.

$TrackingId The user's session tracking ID.

 Important:

Changing Velocity or JavaScript code is not recommended.

At runtime, the user's browser is directed to the appropriate page, depending on the operation being
performed and where the related condition occurs. For example, if a single sign-on (SSO) error occurs
during identity provider (IdP)-initiated SSO, the user's browser is directed to the IdP's SSO error-handling
page.

Applications can override the PingFederate server-hosted pages provided specifically for SSO and single
logout (SLO) errors by specifying a URL value in the relevant application endpoint's InErrorResource
parameter. Administrators can override SSO and SLO success pages by specifying default URLs on the
SP Default URLs window (Applications # Integration # SP Default URLs) or the IdP Default URL
window (Authentication # Integration # IdP Default URL).

Copyright ©2024

 | Administrator's Reference Guide | 822

The Velocity templates retrieve titles and other text from a message-property file, pingfederate-
messages.properties, located in the <pf_install>/pingfederate/server/default/conf/
language-packs directory. You can also localize these messages using the PingFederate localization
framework.

 Note:

If you have a clustered PingFederate environment, copy the customized, and localized, templates to each
node.

IdP user-facing pages
PingFederate has a variety of customizable user-facing page templates that apply to identity provider (IdP)
pages. The templates are organized by HTML Form Adapter, Kerberos Adapter, single sign-on (SSO),
single logout (SLO), WS-Federation, and OpenID Connect (OIDC).

HTML Form Adapter

Page title and template file name Purpose Type Action

Sign On or Choose an Account

identifier.first.template.html

Prompts a user to provide their
username when an Identifier
First Adapter instance is
invoked to handle a sign on
request.

Normal User input
required

Sign On

html.form.login.template.html

Displays a customizable user
sign-on form when an HTML
Form Adapter instance is
invoked to handle a sign on
request.

If the invoked HTML Form
Adapter instance is associated
with a local identity profile
that is configured to support
authentication using third-
party identity providers, those
identity providers are displayed
on the sign-on page as well.

Normal User input
required

Change Password

html.form.change.password.template.html

Displayed when a user
attempts to change their
password through the HTML
Form Adapter.

Normal User input
required

Change Password

html.form.message.template.html

Displayed when a user
successfully changes their
password.

Normal User input
required

Password Expiring

html.form.password.expiring.notification.template.html

Displayed to warn an
authenticated user that the
password associated with the
account is about to expire.

Normal User input
required

Password Management System
Message

html.form.message.template.html

Displayed when a user is
being redirected to a password
management system to change
their password.

Normal User input
required

Copyright ©2024

 | Administrator's Reference Guide | 823

Page title and template file name Purpose Type Action

Account Recovery

forgot-password.html

Displayed when a user
attempts to reset their
password through the HTML
Form Adapter.

If the user enters a username
in the sign-on form, the
username carries over to this
form. Otherwise, the user must
enter their username to begin
the self-service password reset
process.

Normal User input
required

Account Recovery

forgot-password-resume.html

Displayed to prompt a user to
enter the one-time password
sent through a notification or
to notify a user to refer to the
notification for password reset
instructions.

This template is applicable
when the password reset type
is Email One-Time Link,
Email One-Time Password,
or Text Message for the
invoked HTML Form Adapter
instance.

Normal User input
required

Reset Your Password

forgot-password-change.html

Displayed to prompt a user to
define a new password.

Normal User input
required

Account Recovery

forgot-password-success.html

Displayed when a user
successfully resets their
password.

Normal User input
required

Account Recovery

forgot-password-error.html

Displayed when a password
reset attempt fails.

Error None

Unlock Your Account

account-unlock.html

Displayed when a user
successfully unlocks their
account through the HTML
Form Adapter.

This page also prompts the
user to retain the current
password, or reset it.

Normal User input
required

Security Question

html.form.login.challenge.template.html

Displays a configurable
challenge form for two-
step authentication. For
example, this template can
be used to create a RADIUS
challenge form when using the
RADIUS Username/Password
Credential Validator.

Normal User input
required

Copyright ©2024

 | Administrator's Reference Guide | 824

Page title and template file name Purpose Type Action

User Consent

consent-form-template.html

Displayed when a request
requires a user’s consent for
an SSO to an SP.

Normal User input
required

Logout Confirmation

idp.slo.confirm.page.template.html

Displayed when a user initiates
a logout request.

Applicable only if such
confirmation is required,
as configured on the
Authentication # Integration
IdP Default URL window.

Normal User input
required

Sign Off

idp.logout.success.page.template.html

Displayed when a user
successfully signs off in
a configuration where the
Logout Path field is configured
but the Logout Redirect field
is not.

Normal None

Create Your Account

local.identity.registration.html

Displays a configurable
challenge form for two-step
authentication.Displayed when
a user requests to register for a
local account.

Applicable only if the
invoked HTML Form Adapter
instance is associated with
a local identity profile that is
configured to support self-
service registration.

Normal User input
required

Manage Your Profile

local.identity.profile.html

Displayed when an
authenticated user accesses
the profile management
endpoint.

Applicable only if the
invoked HTML Form Adapter
instance is associated with
a local identity profile that is
configured to support self-
service profile management.

Normal User input
required

Copyright ©2024

 | Administrator's Reference Guide | 825

Page title and template file name Purpose Type Action

Email Verification

local.identity.email.verification.sent.html

Displays a notification that an
email ownership verification
message has been sent
when an authenticated user
accesses the email ownership
verification endpoint.

Applicable only if the
invoked HTML Form Adapter
instance is associated with
a local identity profile that
is configured to offer users
the opportunity to verify the
ownership of the email address
associated with the accounts.

Normal None

Email Verified

local.identity.email.verification.success.html

Displays a confirmation that the
user has successfully verified
the ownership of the email
address associated with the
account.

Applicable only if the
invoked HTML Form Adapter
instance is associated with
a local identity profile that
is configured to offer users
the opportunity to verify the
ownership of the email address
associated with the accounts.

Normal None

Email Verification Error

local.identity.email.verification.error.html

Displays that the user failed
to verify the ownership of the
email address associated with
the account.

Applicable only if the
invoked HTML Form Adapter
instance is associated with
a local identity profile that
is configured to offer users
the opportunity to verify the
ownership of the email address
associated with the accounts.

Error User can
request
another
verification
email by
accessing
the email
ownership
verification
endpoint or
the profile
management
page (if
enabled).
Authentication
is required.

Alternatively,
the user can
contact their IT
administrators
for further
assistance.

Copyright ©2024

 | Administrator's Reference Guide | 826

Page title and template file name Purpose Type Action

Username Recovery

username.recovery.template.html

Displays to prompt the user
to enter an email address
to recover the username
associated with the account.

Applicable only if the invoked
HTML Form Adapter instance
is configured to support self-
service username recovery.

Normal User input
required

Username Recovery

username.recovery.info.template.html

Displays to notify the user
to retrieve the notification
message with the recovered
username.

Applicable only if the invoked
HTML Form Adapter instance
is configured to support self-
service username recovery.

Normal User should
retrieve the
notification
message with
the recovered
username.

Kerberos Adapter

Page title and template file name Purpose Type Action

Error

kerberos.error.template.html

Displays an error page
to provide standardized
information to the end user
when the authentication
attempt fails.

Error Consult log

(No title)

meta.refresh.template.html

Facilitates the failover
mechanism from a Kerberos
Adapter instance to the
next phase when it is part
of a Composite Adapter
instance configuration or an
authentication policy.

Normal None

Single sign-on and logout

Page title and template file name Purpose Type Action

Select Authentication System

sourceid-choose-idp-adapter-form-
template.html

Displayed when multiple
authentication sources are
applicable and no preference
is submitted as part of the
request.

Normal User input
required

Sign On Error

idp.sso.error.page.template.html

Displayed when IdP-initiated or
adapter-to-adapter SSO fails
and no other SSO error landing
page is specified.

Error Consult log
and web
developer

Sign Off Successful

idp.slo.success.page.template.html

Displayed when an SLO
request succeeds and no other
SLO success landing page is
specified.

Normal None

Copyright ©2024

 | Administrator's Reference Guide | 827

Page title and template file name Purpose Type Action

Sign Off Error

idp.slo.error.page.template.html

Displayed when an SLO
request fails and no other SLO
error landing page is specified.

Error User should
close the
browser

WS-Federation and OpenID Connect

Page title and template file name Purpose Type Action

Working . . .

sourceid-wsfed-http-post-template.html

Used to auto-submit a WS-
Federation assertion to the
SP. If JavaScript is disabled,
the user is prompted to click a
button to POST the assertion
directly.

This page is normally not
displayed if JavaScript
executes properly.

Normal None

Signing off. . .

sourceid-wsfed-idp-signout-cleanup-
invisible-template.html

WS-Federation and OIDC
client IdP sign-out processing
page.

No HTML is rendered in the
browser.

Normal None

Sign Off Successful

sourceid-wsfed-idp-signout-cleanup-
template.html

Indicates user signed out
of the IdP under the WS-
Federation protocol and lists
each successful SP logout,
when applicable.

Also displays when an OIDC
client sends a logout request
to the /idp/startSLO.ping
endpoint to initiate an
Asynchronous Front-Channel
Logout process.

Normal None

SP user-facing pages
PingFederate has a variety of customizable user-facing page templates that apply to service provider (SP)
pages. Each template contains specific variables that can be used for rendering the associated web page.

Account linking

Page title and template file name Purpose Type Action

Link Your Account

LocalIdPasswordLookup.form.template.html

Used to authenticate a user at
the SP when an account link
needs to be established.

Normal None

Account Unlinked

TerminateAccountLinks.page.template.html

Communicates a user's
successful defederation
operation.

Normal None

Copyright ©2024

 | Administrator's Reference Guide | 828

Single sign-on and logout

Page title and template file name Purpose Type Action

Select Identity Provider

sourceid-saml2-idp-selection-
template.html

The user requested SP-
initiated single sign-on (SSO),
but the identity provider (IdP)
partner was not specified in the
appropriate query parameter
or cookie. This page allows
the user to select the IdP
manually. Based on the user's
selection, the server redirects
the browser to the appropriate
IdP partner's SSO service.

Normal User must
make
selection

Please Specify Target

sp.sso.success.page.template.html

Displayed when an SSO
request succeeds but no
target-resource parameter is
specified by the incoming URL,
and no default URL is set on
the Applications # Integration
SP Default URLs window.

Error Consult web
developer or
specify default
URL

Sign On Error

sp.sso.error.page.template.html

Displayed when SP-initiated
SSO fails, or IdP-initiated SSO
fails on the SP side, and no
other SSO error landing page
is specified.

Error Consult log
and web
developer

Sign Off Successful

sp.slo.success.page.template.html

Displayed when a single logout
(SLO) request succeeds and
no other SLO success landing
page is specified.

Normal None

Sign Off Error

sp.slo.error.page.template.html

Displayed when an SLO
request fails and no other SLO
error landing page is specified.

Error User should
close the
browser

WS-Federation

Page title and template file name Purpose Type Action

Signed Off

sourceid-wsfed-sp-signout-cleanup-
template.html

Displays the user's sign-out
status.

Normal None

Unable to Authenticate

sourceid-wsfed-idp-exception-
template.html

Displayed when an
authentication challenge
fails during WS-Federation
processing.

Error Consult log
and web
developer

Copyright ©2024

 | Administrator's Reference Guide | 829

Either IdP or SP user-facing pages
PingFederate allows customizable user-facing windows that can be applied to both the identity provider
(IdP) and service provider (SP) pages.

Page title and template file name Purpose Type Action

Sign On

AbstractPasswordIdpAuthnAdapter.form.template.html

Challenges user for credentials
when authentication can
take place via HTTP Basic
authentication or an HTML
form, depending on the
operational mode.

Normal User must
sign on

Submit Form

form.autopost.template.html

Whenever the server posts
a form, this template is used
to auto-submit the form. If
JavaScript is disabled, the user
is prompted to click a button to
post the form manually.

This page is normally not
displayed if JavaScript
executes properly.

Normal None

Multiple Sign-On Delay

speed.bump.template.html

Displayed to indicate that
simultaneous single sign-on
requests from multiple browser
tabs are in progress.

Normal User can
switch to the
browser tab
that is actively
waiting for
the user to
complete the
authentication
requirement or
resubmit the
request.

Error

general.error.page.template.html

Indicates that an unknown
error has occurred and
provides a error reference
number and, optionally, an
error message.

Error Consult log

Contact
Ping Identity
Support if
unresolved

Error

generic.error.msg.page.template.html

General error, with error code. Error Consult log
and check
configuration

Contact
Ping Identity
Support if
unresolved

Error

http.error.page.template.html

Indicates that an HTTP error
has occurred and provides the
HTTP status code.

Error Consult log

Contact
Ping Identity
Support if
unresolved

Copyright ©2024

https://support.pingidentity.com
https://support.pingidentity.com
https://support.pingidentity.com

 | Administrator's Reference Guide | 830

Page title and template file name Purpose Type Action

Page Expired

state.not.found.error.page.template.html

Displayed when simultaneous
single sign-on (SSO) requests
from multiple tabs using the
same PingFederate cookie
cause a user session to be
overwritten or deleted and
remaining requests attempt to
retrieve the state fail.

Error None

OAuth user-facing pages
The PingFederate OAuth authorization server provides five windows that are presented to end-users, or
resource owners, during certain OAuth transactions. You can customize and brand these windows as
needed..

Page title and template file name Purpose Message type Action

Client Access

oauth.access.grants.page.template.html

Provides a means for the end
users, or resource owners,
to revoke persistent access
grants.

Normal User input
required

Copyright ©2024

 | Administrator's Reference Guide | 831

Page title and template file name Purpose Message type Action

Request for Approval

oauth.approval.page.template.html

Advises resource owners
that their information is being
requested by the identified
OAuth client when the default,
internal, consent user interface
is used. Resource owners can
approve or deny individual
scopes.

Consent approval is applicable
to the Device Authorization,
Implicit, and Authorization
Code grant types. For the
latter two, PingFederate
might prompt once at first
or repeatedly depending
on the Reuse Existing
Persistent Access Grants
for Grant Types setting in
System # OAuth Settings
Authorization Server
Settings..

In addition, the OAuth client
configuration provides an
option to bypass this approval
page entirely, as needed
for trusted clients. When
applicable, select the Bypass
Authorization Approval check
box in the client configuration
window.

When an external consent user
interface is used, PingFederate
does not make use of this
template file.

Normal User input
required

Connect a device (user code prompt)

oauth.device.user-
code.page.template.html

This page appears for the
OAuth device authorization
grant type. It allows resource
owners to identify an
authorization session that was
initiated by the device client.

This page appears after the
resource owner goes to the
OAuth verification URL and
logs in. The user types the
user code that they received
from the device client, and then
clicks Submit.

Normal User input and
confirmation
required

Copyright ©2024

 | Administrator's Reference Guide | 832

Page title and template file name Purpose Message type Action

Connect a device (pre-populated user
code prompt)

oauth.device.user-code-
confirm.page.template.html

This page appears for the
OAuth device authorization
grant type. It allows resource
owners to identify an
authorization session that was
initiated by the device client.

This page appears after the
resource owner goes to the
OAuth verification URL and
logs in. The user confirms the
pre-populated user code by
clicking Confirm.

Normal User
confirmation
required

Connect a device (result)

oauth.device.messages.page.template.html

This page appears for the
OAuth device authorization
grant type. It advises resource
owners whether the OAuth
device authorization was
successful and provides any
relevant error messages.

By default, this page does not
link to any other pages.

Normal No action

Customizable email notifications
PingFederate delivers messages to administrators and end-users based on customizable notification
publisher settings.

Each component that is capable of triggering or handling events can use a different notification publisher
instance to deliver its messages. For example, you can select an SMTP Notification Publisher instance to
deliver messages to your end users in an HTML Form Adapter instance and another SMTP Notification
Publisher instance to deliver licensing messages to your fellow administrators.

When a component is configured to deliver its messages based on an SMTP Notification Publisher
instance configuration, PingFederate creates notification messages based on template files located in
the <pf_install>/pingfederate/server/default/conf/template/mail-notifications
directory. Each template file is a combination of variables and HTML codes. You can modify these
template files in a text editor to suit the particular branding requirements, as needed.

 Note:

If you have a clustered PingFederate environment, copy the customized templates to each node.

 Tip:

You can also configure a component to use an Amazon SNS Notification Publisher instance to deliver
notification messages. If so, refer to Configuring an Amazon SNS Notification Publisher instance on page
951 and Event types and variables on page 951 for more information about this messaging model and
the handling of notification messages.

Copyright ©2024

 | Administrator's Reference Guide | 833

Local administrative account management events
PingFederate generates a variety of email notifications for local administrative account management
events.

Notification for account management events is configurable from System # Serverin the Administrative
Accountswindow.

 Note:

Account management events are only applicable when native authentication is enabled for the
administrative console, the administrative API, or both in the <pf_install>/pingfederate/bin/
run.properties file. If you are using an alternative console authentication, notifications, if any, such as
password changes, are handled by the third-party system.

Email subject and template file name Event Action

PingFederate Notification Settings
Change Notification

message-template-notifications.html

An administrator has turned
off the Notify Administrator
of Account Changes option.

PingFederate generates a
notification message to all
administrators.

The message includes the
username of the administrator
who made the change.

Ensure this change is
approved and legitimate.

PingFederate Email Change Notification

message-template-email.html

An administrator's email
address has been updated by
another administrator.

PingFederate generates a
notification message to the
previous email address and
another notification to the new
email address.

The message includes the
username of the administrator
who made the change.

Ensure this change is
approved and legitimate.

PingFederate Password Change
Notification

message-template-password.html

An administrator's password
has been changed.

PingFederate generates
a notification to the
administrator whose password
has been changed.

The message includes the
username of the administrator
who made the change.

Ensure this change is
approved and legitimate.

Certificate events
PingFederate sends email notifications for the creation, update, and expiration of certificates.

PingFederate also sends email notifications for the creation and activation of new pending certificates
when automatic rotation for self-signed certificates is enabled in the Security # Certificate & Key

Copyright ©2024

 | Administrator's Reference Guide | 834

Management # Signing & Decryption Keys & Certificates window. It sends notifications to the email
address that has been configured for certificate events on the Runtime Notifications window.

Email subject and template file name Event Action

A PingFederate Certificate Is About to
Expire

message-template-cert-warning.html

A certificate is about to expire.

PingFederate generates a
notification based on settings
defined on the Runtime
Notifications window.

The message includes the
details of the certificate and
the connections associated
with it.

Create a new certificate and
work with the applicable
partners to update the
expiring certificate.

If a self-signed certificate is
used for signing or decryption,
consider enabling certificate
rotation while creating the new
certificate.

For a clustered PingFederate
environment, replicate the
configuration using the
administrative console.

A PingFederate Certificate Has Expired

message-template-cert-expire.html

A certificate expired.

PingFederate generates a
notification upon the expiration
of a certificate.

The message includes the
details and the connections
associated with the certificate.

Create a new certificate and
work with the applicable
partners to update the
expiring certificate.

If a self-signed certificate is
used for signing or decryption,
consider enabling certificate
rotation while creating the new
certificate.

For a clustered PingFederate
environment, replicate the
configuration using the
administrative console.

A New PingFederate Certificate Has
Been Created

message-template-cert-rotation.html

A new pending certificate has
been created for signing or
decryption.

PingFederate generates
a notification when a new
pending certificate is created.

The message includes
the details of the current
certificate, the details of the
new certificate, the activation
date, and the connections that
will be affected when the new
certificate is activated.

Work with the applicable
partners to update the
expiring certificate.

PingFederate supports
providing metadata for
Browser SSO connections.

For a clustered PingFederate
environment, replicate the
configuration using the
administrative console.

Copyright ©2024

 | Administrator's Reference Guide | 835

Email subject and template file name Event Action

A PingFederate Certificate Has Been
Updated

message-template-cert-deactivation.html

A new certificate for signing or
decryption is activated.

PingFederate generates a
notification when the new
certificate is activated.

The message includes the
details of the new certificate
and the affected connections.

None, unless the applicable
partners have not been
notified or configuration
has not been replicated in
a clustered PingFederate
environment.

SAML metadata update events
When notification for SAML metadata update events is enabled in the Runtime Notifications window,
PingFederate sends the notifications to the email address that has been configured for the event.

PingFederate supports automatic reloading of SAML metadata, which streamlines the maintenance of
SAML connections.

Email subject and template file name Event Action

Your ${CONNECTION_NAME}
${SP_IDP} Connection in PingFederate
Has Been Updated

message-template-metadata-
updated.html

PingFederate has updated
a connection based on the
partner's SAML metadata.

For a clustered PingFederate
environment, replicate the
configuration using the
administrative console.

Please Review Your Updated
${CONNECTION_NAME} ${SP_IDP}
Connection in PingFederate

message-template-metadata-updated-
out-of-sync.html

PingFederate has updated
a connection based on the
partner's SAML metadata.
However, some settings are
out of sync.

Review the settings that
are out of sync and make
changes as needed.

For a clustered PingFederate
environment, replicate the
configuration using the
administrative console.

Your ${CONNECTION_NAME}
${SP_IDP} Connection in PingFederate
Is Out of Sync

message-template-metadata-out-of-
sync.html

A connection is out of sync
with the changes found in the
partner's SAML metadata.

Review the settings that
are out of sync and make
changes as needed.

For a clustered PingFederate
environment, replicate the
configuration using the
administrative console.

Your Metadata Couldn't Be Downloaded
from ${METADATA_URL_NAME}

message-template-metadata-url-
notification.html

PingFederate failed to
download the SAML metadata
from the partner or could not
validate the digital signature of
the metadata.

Consult log. Verify and update
the metadata URL and its
corresponding verification
certificate.

Your Metadata for PingFederate
${SP_IDP} Connection
${CONNECTION_NAME} Wasn't Found

message-template-metadata-url-entity-
id-missing.html

The partner's metadata
URL did not return the
expected metadata for a given
connection.

Consult log. Verify and update
the metadata URL.

Copyright ©2024

 | Administrator's Reference Guide | 836

Licensing events
There is a list of different licensing events and different actions you can take to resolve each event.

When you enable notifications for licensing events, PingFederate sends license expiry information to the
recipient configured for the event on the Runtime Notifications window.

 Tip:

To check the details of your license, sign on to the administrative console, navigate to the user icon in the
upper-right corner of the administrative console, and click About the list. The license summary displays in
a pop-up browser window.

 Important:

If the license specifies an expiration date, the license expires at the beginning of that day.

Email subject and template file name Event Action

Your PingFederate License Is About to
Expire

message-template-warn.html

The current license is about to
expire.

The email notification is
sent 60 days ahead of the
expiration.

Applicable to licenses without
connection groups.

Contact
sales@pingidentity.com to
renew the license before the
expiration.

Your PingFederate License Is About to
Expire

message-template-group-warn.html

One of the connection groups
in the current license is about
to expire.

The email notification is
sent 60 days ahead of the
expiration.

Applicable to licenses with
connection groups.

Contact
sales@pingidentity.com to
renew the license before the
expiration.

PingFederate License Expiration
Notification

message-template-grace.html

The current license expired.

The email notification is sent
upon the expiration.

Applicable to licenses without
connection groups.

Contact
sales@pingidentity.com to
renew the license.

Your PingFederate License Has Expired

message-template-group-grace.html

One of the connection groups
in the current license expired.

The email notification is sent
upon the expiration.

Applicable to licenses with
connection groups.

Contact
sales@pingidentity.com to
renew the license.

Copyright ©2024

 | Administrator's Reference Guide | 837

Email subject and template file name Event Action

PingFederate Has Stopped Processing
Requests

message-template-shutdown.html

The current license and the
grace period, if any, had
lapsed.

Applicable to licenses without
connection groups.

Contact
sales@pingidentity.com to
renew the license.

HTML Form Adapter events
The HTML Form Adapter offers self-service account management tools for password management,
account recovery, username recovery, and email ownership verification.

When you configure an HTML Form Adapter instance to deliver its messages based on an SMTP
Notification Publisher instance configuration, administrators can optionally customize and localize the
following template files with branding controls to provide a consistent brand experience to end users across
multiple user populations.

Email subject and template file name Event Action

Password Change Notification

message-template-end-user-password-
change.html

A user's password has been
changed successfully through
an instance of the HTML Form
Adapter.

Users should contact their IT
administrators if they have not
made any attempts to change
their password.

Password Reset

message-template-forgot-password-
link.html

A user has initiated a self-
service password reset
request.

Applicable when the password
reset type for the invoked
HTML Form Adapter instance
is set to Email One-Time
Link.

Users should contact their IT
administrators if they have not
made any attempts to reset
their password.

Password Reset

message-template-forgot-password-
code.html

A user has initiated a self-
service password reset
request.

Applicable when the password
reset type for the invoked
HTML Form Adapter instance
is set to Email One-Time
Password or Text Message.

Users should contact their IT
administrators if they have not
made any attempts to reset
their password.

Password Reset Completed

message-template-forgot-password-
complete.html

A user's password has been
reset successfully through an
instance of the HTML Form
Adapter.

Applicable when the password
reset type for the invoked
HTML Form Adapter instance
is set to any method except
None.

Users should contact their IT
administrators if they have not
made any attempts to reset
their password.

Copyright ©2024

 | Administrator's Reference Guide | 838

Email subject and template file name Event Action

Account Unlocked

message-template-account-unlock-
complete.html

A user account has been
unlocked successfully through
an instance of the HTML Form
Adapter.

Applicable when the Account
Unlock option is enabled
for the invoked HTML Form
Adapter instance.

Users should contact their IT
administrators if they have not
made any attempts to unlock
their account.

Account Unlock Email Template

Password Reset Failed

message-template-forgot-password-
failed.html

An attempt to reset the end-
user's password has failed.

Users should contact their IT
administrators if they have
not made any attempts to
reset their password, or to
seek help in resetting their
password.

Email Verification

message-template-email-ownership-
verification.html

A user has provided an email
address on the registration
page, updated an existing
email address with a new one
on the profile management
page, requested a resend of
the verification email on the
profile management page, or
accessed the email ownership
verification endpoint.

Applicable only if the invoked
HTML Form Adapter instance
is associated with a local
identity profile that has been
configured to offer users
the opportunity to verify
the ownership of the email
address associated with the
accounts.

Users should contact their IT
administrators if they have not
made any attempts to update
the email address associated
with their accounts.

Copyright ©2024

 | Administrator's Reference Guide | 839

Email subject and template file name Event Action

Username Recovery

message-template-username-
recovery.html

A user has initiated a self-
service username recovery
request and provided an
email address through an
instance of the HTML Form
Adapter. If PingFederate
can locate the user record
using such email address
and other requirements are
met, PingFederate uses
this template to generate an
email message containing
the recovered username and
sends it to the user at the
email address provided by the
user.

Applicable only if the invoked
HTML Form Adapter instance
is configured to support self-
service username recovery.

Users should contact their IT
administrators if they have not
made any attempts to recover
the username associated with
their accounts.

Customizable text message
You can customize text messages in PingFederate for a unique experience.

If you have configured your self-service password reset and, optionally, your self-service account unlock
to use the text message option, you can customize and localize the text message for a unique experience.
The default message is stored as a property in the <pf_install>/pingfederate/server/default/
conf/language-packs/pingfederate-sms-messages.properties file.

 Note:

If you have a clustered PingFederate environment, copy the customized, and localized, templates to each
node.

Localizing messages for end users
PingFederate supports localization for several types of messages for end users.

About this task

Administrators can localize the following message types:

▪ on-screen messages
▪ email messages
▪ text messages (SMS)
▪ authentication API error messages

The English contents for each message type are in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

Message type Default message file

On-screen messages pingfederate-messages.properties

Email messages pingfederate-email-messages.properties

Copyright ©2024

 | Administrator's Reference Guide | 840

Message type Default message file

Text messages (SMS) pingfederate-sms-messages.properties

Authentication API error
messages

authn-api-messages.properties

Steps

1. Create a copy of the associated default message file in the language-packs directory.

2. Provide translated text in place of English and then append the standard language tag to the base file
name, as indicated in the browser settings.

For example, to localize the user-facing window messages in French, rename the translated copy of
the localization file to pingfederate-messages_fr.properties.

If the system language of the PingFederate server is not English, copy the default (English) message
file and append _en at the end of the file name for any English users, such as from pingfederate-
messages.properties to pingfederate-messages_en.properties, translate the default
message file for the local users, and provide additional translations as needed.

3. If you want to include a region, append the capitalized abbreviation to the standard language tag with
an underscore between them.

For example, to localize the text messages in Canadian French, rename the translated copy to
pingfederate-sms-messages_fr_CA.properties.

 Note:

The capitalization and underscore usage might not correspond to the way regions are listed in browser
settings. However, the usage is required by the Java-based localization implementation.

4. If you have a clustered PingFederate environment, copy the localized message files to each node.

Result

For on-screen and email messages, developers can also customize the look and feel of the templates by
using localization variables in logic statements to control fonts, color, and other style elements. For more
information, see the template files for examples.

 Tip:

To maximize performance, PingFederate caches localized UI strings on start-up. For testing new
localization implementations, an administrator can temporarily turn off caching by changing the value of
the cache-language-pack-messages element to false in the <pf_install>/pingfederate/
server/default/data/config-store/locale-options.xml file.

Return the value to true when testing is complete. You must restart the server after changes to
configuration files.

Locale overrides by cookies
An administrator or web developer might want to provide end-users a means of overriding browser
language preferences temporarily by setting cookies, such as creating a company web portal link for users
to click instead of manually changing their browser options.

By default, the PingFederate localization framework supports overriding the locale using a cookie named
pf-accept-language. The cookie value must conform to the guidelines defined under IETF BCP
47. For more information about the Java core method that PingFederate uses to parse the cookie, see
Locale.forLanguageTag(String languageTag) .

Copyright ©2024

https://tools.ietf.org/html/bcp47
https://tools.ietf.org/html/bcp47
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html#forLanguageTag(java.lang.String)

 | Administrator's Reference Guide | 841

This locale-override behavior is the default implementation of the Java interface,
LocaleOverrideService, defined in the PingFederate SDK. For more information, see the Javadoc for
that interface in the <pf_install>/pingfederate/sdk/doc directory.

PingFederate displays the language indicated in the cookie if the language is supported in the language-
packs directory. If the matching localization file is not found, PingFederate defaults to the browser
settings.

Retrieval of localized messages

Retrieval of localized messages is supported through the LanguagePackMessages class available in the
PingFederate SDK. An instance of this class is passed into every template file and made available for use
there. For more information, see the Javadoc for the class in the <pf_install>/pingfederate/sdk/
doc directory.

Configuring a password policy
PingFederate applies a configurable policy to passwords, pass phrases, and shared secrets defined by
administrators in the administrative console.

About this task

These fields include, but are not limited to:

▪ Passwords used by HTTP Basic authentication for:

▪ Inbound SOAP messages from partners via back-channel calls
▪ WS-Trust STS

▪ Shared secrets used by the credentials defined for:

▪ Attribute Query
▪ Java Management Extensions (JMX)
▪ Connection Management
▪ Single sign-on (SSO) Directory Service

▪ Passwords used by instances of the Simple Username Password Credential Validator (PCV)
▪ Passwords used for encrypting certificates exported with their private keys
▪ Pass phrases used by identity provider (IdP) Discovery
▪ Passwords used by administrative console credentials when native authentication is used

 Note:

Passwords external to PingFederate, such as passwords used by instances of the datastores, are not
subject to this password policy.

Steps

1. Edit the <pf_install>/pingfederate/server/default/data/config-store/password-
rules.xml file.

2. Save the changes.

3. Restart PingFederate.

For a clustered PingFederate environment, perform these steps on the console node. You do not have
to change or restart PingFederate on the engine nodes.

Copyright ©2024

 | Administrator's Reference Guide | 842

Managing cipher suites
You can enable, disable, and re-order cipher suites in PingFederate.

About this task

The SSL/TLS server-client handshake involves negotiating cipher suites to use for encryption and
decryption on each side of a secured transaction. You can find cipher suites in the following configuration
files:

▪ com.pingidentity.crypto.SunJCEManager.xml
▪ com.pingidentity.crypto.AWSCloudHSMJCEManager.xml
▪ com.pingidentity.crypto.LunaJCEManager.xml
▪ com.pingidentity.crypto.NcipherJCEManager.xml
▪ com.pingidentity.crypto.BCFIPSJCEManager.xml

These cipher-suite configuration files are located in the <pf_install>/server/default/data/
config-store directory. These files comment out weaker cipher suites. To ensure the most secure
transactions, retain this cipher-suite configuration.

 Important:

Due to the import restrictions of some countries, Oracle Server Java SE Runtime Environment (JRE) 8 has
built-in restrictions on available cryptographic strength (key size). To use larger key sizes, enable the Java
Cryptography Extension (JCE) unlimited strength jurisdiction policy. For more information, see the Java 8
release notes in Oracle's documentation.

For Oracle Java SE Development Kit 11, the JCE jurisdiction policy defaults to unlimited strength. For more
information, see the Oracle JDK Migration Guide in Oracle's documentation.

Starting with 9.1, cipher suites are selected based on the order that they are listed in the cipher-suite
configuration file for new installations. For upgrades, you can enable the same selection mechanism as
well.

Steps

▪ Choose one of the following actions.
Choose from:

▪ Edit the applicable cipher-suite configuration file.
▪ Save your changes.
▪ Restart PingFederate.

a. Edit the applicable cipher-suite configuration file.
b. Save your changes.
c. Restart PingFederate.

For a clustered environment, perform these steps on the console node, and then click Replicate
Configuration on System # Server # Cluster Management.

 Important:

For each engine node, restart PingFederate to load the changes made in the cipher-suite
configuration file after the configuration is replicated.

Copyright ©2024

 | Administrator's Reference Guide | 843

▪ To enable cipher-suite selection based on listing order after an upgrade, follow these steps.

a. Create a new text file with the following content.

<?xml version="1.0" encoding="UTF-8"?>
<c:config xmlns:c="http://www.sourceid.org/2004/05/config">
 <c:item name="prefer-server-cipher-suites">true</c:item>
</c:config>

b. Save this file as cipher-suite-settings.xml in the <pf_install>/pingfederate/
server/default/data/config-store directory.

c. Restart PingFederate.

For a clustered environment, perform these steps on the console node, and then click Replicate
Configuration on System # Server # Cluster Management.

 Important:

For each engine node, restart PingFederate to load the changes made in the cipher-suite-
settings.xml file after the configuration is replicated.

Manage externally stored authentication sessions
Authentication sessions control when previously authenticated users are redirected back to the
authentication sources on subsequent requests for browser-based single sign-on (SSO) and PingFederate
user-facing applications.

When you enable authentication sessions, PingFederate maintains session data in memory. PingFederate
also supports maintaining session data both in memory and on an external storage. This optional capability
allows your organization to support use cases where a longer session duration or a greater resilience
against restarts of PingFederate and browsers is desired.

PingFederate supports storing persistent authentication sessions on a database server or a PingDirectory
server. When stored on a database server, the default cleanup task removes expired authentication
sessions once a day. If stored on a PingDirectory server, configure a cleanup plugin in PingDirectory to suit
the needs of your organization.

Managing authentication sessions stored in the database
PingFederate uses a cleanup task to remove expired authentication sessions from the configured database
once a day. The cleanup task determines whether a session can be removed by looking at the session's
expiration timestamp and the current time.

About this task

Any session that has an expiration timestamp older than the current time by a configurable offset is subject
to removal. As needed, the cleanup task can look at the session's last activity timestamp instead. The
cleanup task removes 500 expired sessions at a time until all expired sessions are removed. If expired
sessions are growing rapidly, you can optionally increase the frequency of the cleanup task.

 Note:

Increasing the frequency of the cleanup task or the number of expired sessions to be removed per batch
(or both) adds more workload to your storage server. Make changes gradually to observe the impact.

 Important:

Copyright ©2024

 | Administrator's Reference Guide | 844

In a clustered PingFederate environment, the cleanup task runs only on the console node. If adjustments
are required, make them on the console node. No changes are required on any of the engine nodes.

Steps

1. Optional: Adjust the frequency of the cleanup task.

a. Edit the <pf_install>/pingfederate/server/default/data/config-store/timer-
intervals.xml file.

b. Update the StoredSessionCleanerInterval value, in milliseconds.

The default value is 86400000, which is 24 hours.
c. Save your changes.

2. Optional: Configure other cleanup options.

a. Edit the <pf_install>/pingfederate/server/default/data/config-store/
org.sourceid.saml20.service.session.data.impl.SessionStorageManagerJdbcImpl.xml
file.

See the following table for more information about each field.

Field Description

ExpiredSessionGroupBatchSizeThe number of expired authentication sessions to be removed per
batch.

The default value is 500.

Copyright ©2024

 | Administrator's Reference Guide | 845

Field Description

ExpirationTimeColumnNameThe column of which its value determines whether an authentication
session has expired in the context of the cleanup task. Valid options are
expiry_time and last_activity_time.

expiry_time

Set to expiry_time if the cleanup task should only remove
persistent authentication sessions that have expired.

The cleanup task determines if a session can be removed
by looking at the session's expiration timestamp and the
current time. If the expiration timestamp is older than the
current time by the number of minutes specified by the
ExpirationTimeOffsetMins field, the session is subject to
removal.

last_activity_time

Set to last_activity_time if the clean task should remove
persistent authentication sessions that have been left idle.

The cleanup task determines if a session can be removed
by looking at the session's last activity timestamp and the
current time. If the last activity timestamp is older than the
current time by the number of minutes specified by the
ExpirationTimeOffsetMins field, the session is subject to
removal.

For example, if PingFederate should remove persistent
authentication sessions for which the last activity time is more than
three weeks ago, set the ExpirationTimeColumnName value to
last_activity_time and the ExpirationTimeOffsetMins
value to 30240.

The default value is expiry_time.

ExpirationTimeOffsetMinsThe offset, in minutes, relative to the current time.

The default value is 10.

b. Save your changes.

3. If you have made any changes, restart PingFederate.

In a clustered PingFederate environment, you do not have to change or restart PingFederate on any of
the engine nodes.

Copyright ©2024

 | Administrator's Reference Guide | 846

Managing authentication sessions stored in PingDirectory
When storing persistent authentication sessions on a PingDirectory server, you must also configure a
cleanup plugin in PingDirectory to remove expired authentication sessions from your directory server.

Steps

1. Disable the PingFederate cleanup task.

 Important:

For a clustered PingFederate environment, make these changes on the console node. None of the
engine nodes require any changes.

a. Edit the <pf_install>/pingfederate/server/default/data/config-store/timer-
intervals.xml file.

b. Update the StoredSessionCleanerInterval value to 0.
c. Save your changes.
d. Restart PingFederate.

2. Sign on to the PingDirectory administrative console.

3. Go to Configuration # Plugin Root.

4. On the Plugin Root window, click New Plugin, and then select Purge Expired Data Plugin.

5. Configure a new instance of the Purge Expired Data Plugin.

See the following table for information about each required field.

Field Description

Name The name of this plugin instance.

Enabled The status of this plugin instance.

Select the check box to enable this plugin instance. Clear the check box to
disable this plugin instance.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 847

Field Description

Datetime Attribute The attribute value determines whether an authentication session has
expired in the context of this plugin instance. Valid options are pf-authn-
session-group-expiry-time and pf-authn-session-group-
last-activity-time.

pf-authn-session-group-expiry-time

Set to pf-authn-session-group-expiry-time if this plugin
instance should only remove persistent authentication sessions that
have expired.

This plugin instance determines if a session can be removed by
looking at the session's expiration timestamp and the current time. If
the expiration timestamp is older than the current time by the number
of minutes specified by the Expiration Offset field, the session is
subject to removal.

pf-authn-session-group-last-activity-time

Set to pf-authn-session-group-last-activity-time if the
clean task should remove persistent authentication sessions that have
been left idle.

This plugin instance determines if a session can be removed by
looking at the session's last activity timestamp and the current time. If
the last activity timestamp is older than the current time by the number
of minutes specified by the Expiration Offset field, the session is
subject to removal.

For example, if PingFederate should remove persistent authentication
sessions for which the last activity time is more than three weeks ago,
set the Datetime Attribute value to pf-authn-session-group-
last-activity-time and the Expiration Offset value to 3 w.

Datetime Format The format of the attribute specified in the Datetime Attribute field.

Select generalized-time from the list.

The default selection is generalized-time.

Expiration Offset The offset relative to the current time.

Enter an integer to indicate the time value, followed by its unit of
measurement.

This field has no default value.

Purge Behavior The method how this plugin instance removes expired data.

Select subtree-delete-entries from the list.

This field has no default selection.

Polling Interval The frequency of which this plugin instance should be run.

Enter an integer to indicate the time value, followed by its unit of
measurement.

This field has no default value.

Copyright ©2024

 | Administrator's Reference Guide | 848

Field Description

Max Updates Per
Second

This setting smooths out the performance impact on the server by throttling
the purging to the specified maximum number of updates per second.
To avoid a large backlog, this value should be set comfortably above the
average rate that expired data is generated.

When you select subtree-delete-entries from the Purge Behavior list,
deletion of the entire subtree is considered a single update for the purposes
of throttling.

This field has no default value.

6. Click Save.

OAuth persistent grants cleanup
PingFederate provides two cleanup tasks for persistent grants. One task manages expired grants,
while another task caps the number of grants based on a combination of user, client, grant type, and
authentication context.

Persistent authorizations include those obtained by OAuth clients in the following ways:

▪ Grants obtained or updated using the authorization code, resource owner credentials, or device
authorization grant type, in conjunction with the refresh token grant type

 Note:

If the use cases involve mapping attributes from authentication sources, such as IdP adapter instances
or IdP connections, or password credential validator (PCV) instances to the access tokens, directly
or through persistent grant-extended attributes, storing these attributes from authentication sources
and their values along with the persistent grants maintains them for reuse when clients subsequently
present refresh tokens for new access tokens.

▪ Grants obtained or updated by using the implicit grant type, for which is configured to reuse existing
persistent grants

 Note:

If the use cases involve mapping attributes from authentication sources or PCV instances to the
access tokens, runtime procedures obtain attribute values for each token request, but persistent grants
do not store with attributes or their values.

Persistent grants and any associated attributes and their values remain valid until the grants expire or until
explicitly revokes or cleans them up. PingFederate's persistent grant cleanup routine manages expired
grants based on the Persistent Grant Max Lifetime policy setting.

 Note:
PingFederate does not factor in the Persistent Grant Idle Timeout setting during grant cleanup. Ensure
the grant datastore has the disk space needed to store expired grants because they exceeded the
Persistent Grant Idle Timeout setting.

Copyright ©2024

 | Administrator's Reference Guide | 849

Managing expired persistent grants
PingFederate removes expired persistent grants once a day. The cleanup task removes 500 expired grants
at a time until all expired grants are removed.

About this task

If expired grants are growing rapidly, you can optionally increase the frequency of the cleanup task.

 Note:

Increasing the frequency of the cleanup task or the number of expired sessions to be removed per batch
adds more workload to your storage server. Make gradual changes, if any, to observe the impact.

 Important:

In a clustered PingFederate environment, the cleanup task runs only on the console node. If adjustments
are required, make them on the console node. No changes are required on any of the engine nodes.

When storing persistent grants on a PingDirectory server that is version 7.0 or later, you can use the
PingFederate cleanup task or configure a cleanup plugin in PingDirectory instead. The plugin allows fine-
grained control over various aspects of the cleanup task, which might improve the performance impact.
For more information and configuration steps, see Managing expired persistent grants in PingDirectory on
page 850.

Steps

1. Optional: Adjust the frequency of the cleanup task.

a. Edit the timer-intervals.xml<pf_install>/pingfederate/server/default/data/
config-store directory.

b. Update the AccessGrantCleanerInterval value, in milliseconds.

The default value is 86400000, which is 24 hours.
c. Save your changes.

2. Optional: Adjust the number of expired grants to be removed per batch.

a. Edit the configuration file relevant to your storage platform.

This configuration file is located in the <pf_install>/pingfederate/server/default/
data/config-store directory, as described in the following table.

Storage platform Configuration file

Database server org.sourceid.oauth20.token.AccessGrantManagerJdbcImpl.xml

PingDirectory org.sourceid.oauth20.token.AccessGrantManagerLDAPPingDirectoryImpl.xml

Microsoft Active Directory org.sourceid.oauth20.token.AccessGrantManagerLDAPADImpl.xml

Oracle Unified Directory org.sourceid.oauth20.token.AccessGrantManagerLDAPOracleImpl.xml

b. Update the ExpiredGrantBatchSize value.

The following example shows an updated value of 400.

 file, located in the<?xml version="1.0" encoding="UTF-8"?>
<c:config xmlns:c="http://www.sourceid.org/2004/05/config">
 ...
 <c:item name="ExpiredGrantBatchSize">400</c:item>
 ...

Copyright ©2024

 | Administrator's Reference Guide | 850

</c:config>

The default value is 500.
c. Save your changes.

3. After you have made changes, restart PingFederate.

In a clustered PingFederate environment, you do not have to change or restart PingFederate on any of
the engine nodes.

Managing expired persistent grants in PingDirectory
When storing OAuth persistent grants on a PingDirectory server that is version 7.0 or later, you can
configure a cleanup plugin in PingDirectory to remove expired data from your directory server.

About this task

This PingDirectory plugin allows fine-grained control over various aspects of the cleanup task. For
example, you can configure the maximum number of updates per second to improve the performance
impact.

Steps

1. Disable the PingFederate cleanup task.

 Important:

For a clustered PingFederate environment, make these change on the console node. No changes are
required on any of the engine nodes.

a. Edit the <pf_install>/pingfederate/server/default/data/config-store/timer-
intervals.xml file.

b. Update the AccessGrantCleanerInterval value to 0.
c. Save your changes.
d. Restart PingFederate.

2. Configure an instance of the PingDirectory plugin to clean up expired data.

a. Sign on to the PingDirectory administrative console.
b. Go to Configuration # Plugin Root.
c. Click New Plugin and then select Clean up Expired PingFederate Persistent Access Grants

Plugin.
d. Configure a new instance of the Clean up Expired PingFederate Persistent Access Grants

Plugin.

See the following table for information about each required field.

Field Description

Name The name of this plugin instance.

Enabled The status of this plugin instance.

Select the check box to enable this plugin instance. Clear the check box
to disable this plugin instance.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 851

Field Description

Base DN The distinguished name (DN) that points to the access grants location.

For more information, see the inline comment and the access-
grant-ldap-pingdirectory.ldif file in the <pf_install>/
pingfederate/server/default/conf/access-grant/ldif-
scripts directory.

Polling Interval The frequency of which this plugin instance should be run.

Enter an integer to indicate the time value, followed by its unit of
measurement.

The default value is 5 m.

Max Updates Per
Second

This setting smooths out the performance impact on the server by
throttling the purging to the specified maximum number of updates per
second. To avoid a large backlog, this value should be set above the
average rate that expired data is generated.

The default value is 100.

e. Click Save.

Managing cleanup of persistent grants
PingFederate is capable of capping the number of persistent grants based on a combination of user, client,
grant type, and authentication context.

About this task

Capping the number of persistent grants helps limit the data stored for persistent grants, especially in
scenarios where clients frequently request authorization in a single context.

When PingFederate needs to record a new grant, it checks whether such creation will push the number
of grants beyond the limit. If it does, PingFederate creates the grant and then removes just enough grants
so that the number of grants is capped at the limit. This cleanup task starts from the oldest grant, expired
or not, and continues forward if it needs to remove multiple grants. For performance reasons, this cleanup
task also limits the number of grants it can remove per attempt. If it cannot remove all grants in excess of
the limit, it removes what it can and repeats the process when PingFederate needs to record a new grant.

This cleanup runs on every engine node in a clustered PingFederate environment. Also, it does not replace
the cleanup task or the PingDirectory plugin engineered to manage expired grants. Working together, they
keep the size of the grant datastore under control.

The default limit is 100 grants per user, client, grant type, and authentication context. Depending on the
storage platform, the default maximum number of grants that this cleanup task can remove per attempt
varies.

This cleanup task is enabled on new installations. When upgrading from version 9.1 or an earlier version, it
is disabled. You can enable it by editing an XML configuration file.

Steps

1. Edit the configuration file relevant to your storage platform.

This configuration file is located in the <pf_install>/pingfederate/server/default/data/
config-store directory, as described in the following table.

Storage platform Configuration file

Database server org.sourceid.oauth20.token.AccessGrantManagerJdbcImpl.xml

Copyright ©2024

 | Administrator's Reference Guide | 852

Storage platform Configuration file

PingDirectory org.sourceid.oauth20.token.AccessGrantManagerLDAPPingDirectoryImpl.xml

Microsoft Active Directory org.sourceid.oauth20.token.AccessGrantManagerLDAPADImpl.xml

Oracle Unified Directory org.sourceid.oauth20.token.AccessGrantManagerLDAPOracleImpl.xml

2. Locate for the following comments.

...
<!--
 Maximum number of persistent grants allowed to store in the database
 per user,
 client and grant type and authentication context qualifier.

 Setting this to a value <= 0 will turn this limit off
 Default configuration:
 <c:item name="maxPersistentGrants">100</c:item>
-->
<c:item name="maxPersistentGrants">100</c:item>
<!--
 Maximum number of persistent grants to delete when max allowed is
 reached
 during new grant creation.

 Setting this to a value <= 0 will turn this limit off
 Default configuration:
 <c:item name="maxPersistentGrantsToRemoveBatchSize">n</c:item>
-->
<c:item name="maxPersistentGrantsToRemoveBatchSize">n</c:item>
...

The maxPersistentGrants value represents the maximum number of grants based on a
combination of user, client, grant type, and authentication context.

The maxPersistentGrantsToRemoveBatchSize value represents the maximum number of grants
that the cleanup task would remove per attempt. Its default value (n) varies depending on the storage
platform, 50 for a database server and 10 for a directory server.

 Note:

The maxPersistentGrants and maxPersistentGrantsToRemoveBatchSize items exist only
on new installations starting with version 9.2. When upgrading from version 9.1 or an earlier version,
the upgrade tools only insert the comments for reference.

3. Optional: Adjust the maxPersistentGrants and maxPersistentGrantsToRemoveBatchSize
values.

Use integers only.

4. To enable this cleanup task after upgrading from version 9.1 or an earlier version, insert the
maxPersistentGrants and maxPersistentGrantsToRemoveBatchSize items into the
configuration file.

You can use the default values based on the inline comment. You can also adjust the values to suit
the needs of your organization.

5. Save your changes.

Copyright ©2024

 | Administrator's Reference Guide | 853

6. Restart PingFederate.

For a clustered environment, perform these steps on the console node, and then click Replicate
Configuration on System # Server # Cluster Management. You do not have to restart on any
running engine node.

Specifying the domain of the PF cookie
PingFederate identifies sessions by their respective PingFederate cookie. You can specify the domain of
these cookies.

About this task

By default, the PingFederate cookie is set without domain information in the HTTP header.

Set-Cookie: PF=zOv4xxmzDI2rx1TFBFy78X;Path=/;Secure;HttpOnly

You can configure PingFederate to return the Set-Cookie HTTP header with domain information, as
needed.

Steps

1. Edit the <pf_install>/pingfederate/server/default/data/config-store/session-
cookie-config.xml file.

2. Modify the cookie-domain element.

Example:

<c:item name="cookie-domain">.example.com</c:item>

3. Save the change.

4. Restart PingFederate.

For a clustered environment, perform these steps on the console node, and then click Replicate
Configuration on System # Server # Cluster Management. You do not have to restart on any
running engine node.

Result

After you activate this change, PingFederate includes domain information in its Set-Cookie HTTP header.

Set-Cookie:
PF=aDfPx6uwbbWGFhwE6zEhEG;Path=/;Domain=.example.com;Secure;HttpOnly

Specifying the domain of the PF.PERSISTENT cookie
PingFederate identifies persistent authentication sessions by their respective PF.PERSISTENT cookie.
You can specify the domain of this cookie.

About this task

By default, the PF.PERSISTENT cookie is set without domain information in the HTTP header.

Set-Cookie: PF.PERSISTENT=UoBlPlf16V2oYAEPot2DnpUOXxitK7au;Path=/;Expires=Sat,
06-Nov-2021 00:48:08 GMT;Max-Age=94608000;Secure;HttpOnly

You can configure PingFederate to return the Set-Cookie HTTP header with domain information, as
needed.

Steps

1. Edit the <pf_install>/pingfederate/server/default/data/config-store/
persistent-session-cookie-config.xml file.

Copyright ©2024

 | Administrator's Reference Guide | 854

2. Modify the cookie-domain element.

Example:

<c:item name="cookie-domain">.example.com</c:item>

3. Save the change.

4. Restart PingFederate.

For a clustered environment, perform these steps on the console node, and then click Replicate
Configuration on System # Server # Cluster Management. You do not have to restart on any
running engine node.

Result

After you activate this change, PingFederate includes domain information in its Set-Cookie HTTP header.

Set-Cookie:
PF.PERSISTENT=tOYwPM7VFMeluUyeu0EKQLL0DCJyVOqG;Path=/;Domain=.example.com;Expires=Sat,
06-Nov-2021 01:00:34 GMT;Max-Age=94608000;Secure;HttpOnly

Extending the lifetime of the PingFederate cookie
PingFederate identifies sessions by their respective PingFederate cookies. You can manually extend the
lifetime of these cookies.

About this task

Some adapters, such as the HTML Form Adapter, also utilize the PingFederate cookie to manage their
adapter-sessions. The PingFederate cookie is a session cookie by default. You can extend the lifetime of
the PingFederate cookie by making it a persistent cookie. Unlike session cookies, persistent cookies are
saved to disk, enabling the browser to reuse them when restarted.

 Tip:

Alternatively, you can configure PingFederate to store authentication sessions externally and leverage
them as users request protected resources after restarting their browsers. For more information, see
Sessions on page 278.

Steps

1. Edit the session-cookie-config.xml file, located in the <pf_install>/pingfederate/
server/default/data/config-store directory.

2. Modify the cookie-max-age value.

The default value, -1, makes the PingFederate cookie a session cookie. A positive integer defines the
age of the persistent cookie in seconds.

3. Save the change.

4. Restart PingFederate.

For a clustered environment, perform these steps on the console node, and then click Replicate
Configuration on System # Server # Cluster Management. You do not have to restart on any
running engine node.

Copyright ©2024

 | Administrator's Reference Guide | 855

Configuring forward proxy server settings
You can configure PingFederate to send web traffic, such as HTTP and HTTPS, so that it initiates through
a forward proxy server.

Steps

1. Edit the <pf_install>/pingfederate/bin/run.properties file.

2. Locate for the following properties.

#http.proxyHost=<HTTP_PROXY_HOST>
#http.proxyPort=<HTTP_PROXY_PORT>
#https.proxyHost=<HTTPS_PROXY_HOST>
#https.proxyPort=<HTTPS_PROXY_PORT>
#http.nonProxyHosts=*.internal.com|localhost

3. Optional: Configure forward proxy server settings for HTTP traffic.

a. Remove the number sign (#) in front of http.proxyHost and http.proxyPort.
b. Enter the hostname or the IP address of the forward proxy server.

4. Optional: Configure forward proxy server settings for HTTPS traffic.

a. Remove the number sign in front of https.proxyHost and https.proxyPort.
b. Enter the hostname or the IP address of the forward proxy server.

5. Optional: Configure an exclusion list.

a. Remove the number sign in front of http.nonProxyHosts.
b. Specify one or more destinations where PingFederate is not required to proxy its HTTP and

HTTPS traffic through the forward proxy server.

This property supports multiple values separated by the pipe character (|) and the wildcard
character (#) for pattern matching.

*.example.com|localhost

6. Save your changes.

7. Restart PingFederate.

For a clustered environment, repeat these steps on each node.

Adding custom HTTP response headers
The PingFederate administrative console and runtime server are capable of returning custom HTTP
response headers, such as HTTP Strict-Transport-Security (HSTS), to enforce HTTPS-based access and
P3P for Microsoft Internet Explorer interoperability.

Steps

1. Edit the response-header-admin-config.xml file or the response-header-runtime-
config.xml file, or both, located in the <pf_install>/pingfederate/server/default/
data/config-store directory.

2. Save your changes.

3. Restart PingFederate.

For a clustered environment, perform these steps on the console node, and then click Replicate
Configuration on System # Server # Cluster Management. You do not have to restart on any
running engine node.

Copyright ©2024

 | Administrator's Reference Guide | 856

Configuring validation for the AudienceRestriction element
You can configure validation for the AudienceRestriction value in a SAML response.

About this task

For any identity provider (IdP) connection configured with multiple virtual server IDs, the
AudienceRestriction value in a SAML response must match the virtual server ID information
embedded in the protocol endpoint at which PingFederate receives the message.

You can disregard this validation condition on a per-connection basis.

Steps

1. Edit the org.sourceid.saml20.util.VirtualIdentityUtil.xmlfile, located in the
<pf_install>/pingfederate/server/default/data/config-store directory.

2. Optionally, if you want to disregard the validation condition for an IdP connection, add its Partner's
Entity ID value as an entry inside the c:map element.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<c:config xmlns:c="http://www.sourceid.org/2004/05/config">
 <c:map name="AllowAnyVirtualServerIdInAudience">
 <c:item name="www.example.com"/>
 <c:item name="www.example.org"/>
 </c:map>
</c:config>

Result:

In this example, the first entry adds the IdP connection with a Partner's Entity ID of
www.example.com to the list. This is so that PingFederate no longer returns an error if the
AudienceRestriction value in a SAML response does not match the virtual server ID information
embedded in the protocol endpoint at which PingFederate receives the message. The second entry
has the same effect for the IdP connection with a Partner's Entity ID of www.example.org.

3. Save your changes.

4. Restart PingFederate.

For a clustered environment, perform these steps on the console node, and then click Replicate
Configuration on System # Server # Cluster Management. You do not have to restart on any
running engine node.

Customizing the OpenID Provider configuration endpoint response
The OpenID Provider (OP) configuration endpoint at /.well-known/openid-configuration provides
configuration information for the OAuth clients to interface with PingFederate using the OpenID Connect
(OIDC) protocol.

About this task

As needed, you can customize the amount of configuration information by modifying a template file. You
can also add conditional statements to return different responses, based on information from the requests
to suit multiple use cases simultaneously.

Copyright ©2024

 | Administrator's Reference Guide | 857

Steps

1. Edit the openid-configuration.template.json file, located in the <pf_install>/
pingfederate/server/default/conf/template directory, to specify the desired information to
be returned by the OP configuration endpoint.

Multiple samples are provided, including sample statements using the $HttpServletRequest and
$HttpServletResponse objects to get and set values.

2. Save your changes.

Template customization does not require a restart of PingFederate. For a clustered environment,
repeat these steps on each node.

Customizing the heartbeat message
The heartbeat endpoint, /pf/heartbeat.ping, returns a customizable OK browser message and an
HTTP 200 status indication if the PingFederate server is running.

About this task

You can customize the message by modifying the pf.heartbeat.system.monitoring PingFederate
property.

 Note:

If a GET request receives a connection error or an HTTP status code other than 200, the server associated
with the endpoint is down or malfunctioning.

Steps

1. Set the pf.heartbeat.system.monitoring property in the <pf_install>/pingfederate/
bin/run.properties file to true or false.

When pf.heartbeat.system.monitoring is set to false, the /pf/heartbeat.ping endpoint
returns OK. When set to true, the /pf/heartbeat.ping endpoint returns all available stats.

2. Restart PingFederate.

3. If you want to customize the information returned by the heartbeat endpoint, edit the
heartbeat.page.template file, located in the <pf_install>/pingfederate/server/
default/conf/template directory.

Template customization does not require a restart of PingFederate. For a clustered PingFederate
environment, repeat these steps on each node.

4. If you want to specify percentiles in addition to, or in place of, the default 90th percentile in the
statistics reported on the heartbeat:

a. Edit the com.pingidentity.monitoring.MonitoringService.xml file located in the
<pf_install>/pingfederate/server/default/data/config-store directory.

b. Change the value of the StatisticsPercentilesList item to the preferred percentile.
You can enter a single value, such as 99.9, or multiple values separated by commas, such as
80,90,99.5.

 Note:

The StatisticsPercentilesList item allows you to customize the
percentiles displayed in the heartbeat endpoint response of the metrics ending in
.<StatisticsPercentilesList>.percentile. Percentiles can be a helpful way to

Copyright ©2024

 | Administrator's Reference Guide | 858

understand a metric's distribution and identify patterns or trends over time. They can also be used
to set performance targets or to identify bottlenecks in a system.

In the context of server response metrics, you can use percentiles to compare a server's response
time to other servers or previous periods. For more information, including a complete list of server
metrics and their descriptions, see Liveliness and responsiveness.

Example: Setting the StatisticsPercentilesList item to 50 will display the 50th percentile
of a server's response time in the heartbeat endpoint response. A value of 200 milliseconds for
the 50th percentile means that 50% of the server's responses were faster than 200 milliseconds,
while 50% were slower. Similarly, a value of 500 milliseconds for the 95th percentile means that
95% of the server's responses were faster than 500 milliseconds, while 5% were slower.

c. Save your changes.

Customizing the favicon for application and protocol endpoints
PingFederate provides a favorite icon (favicon) for its application, such as /idp/startSSO.ping, and
protocol endpoints, such as /idp/SSO.saml2.

Steps

1. In the <pf_install>/pingfederate/server/default/conf/template/assets/images
directory, replace the favicon.ico file.

2. Restart PingFederate.

For a clustered environment, repeat these steps on each node.

Configuring the behavior of searching multiple datastores with one mapping
If a datastore uses results from previous queries as input, and if the previous queries return no result,
PingFederate records a warning message in the server log and continues with the request by querying the
next datastore in the attribute source setup.

About this task

This default behavior applies to all lookup configurations using multiple datastores in one mapping. For
more information, see Attribute mapping with multiple data sources on page 374.

If you prefer PingFederate to abort the request immediately, which is the default behavior of many earlier
versions of PingFederate, you can override the behavior by modifying a configuration file. Like the default
behavior, this override also applies to all lookup configurations using multiple datastores in one mapping.

Steps

1. Edit the org.sourceid.saml20.domain.AttributeMapping.xml file, located in the
<pf_install>/pingfederate/server/default/data/config-store directory.

 Note:

If this file does not exist, you must create it.

2. To override the default behavior, change the value of the AbortOnAttrLookupFailure element
from false, the default value, to true.

The following is an example of a modified
org.sourceid.saml20.domain.AttributeMapping.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<c:config xmlns:c="http://www.sourceid.org/2004/05/config">
 <c:item name="AbortOnAttrLookupFailure">true</c:item>

Copyright ©2024

 | Administrator's Reference Guide | 859

</c:config>

 Note:

Removing the org.sourceid.saml20.domain.AttributeMapping.xml file from the
<pf_install>/pingfederate/server/default/data/config-store directory also has the
same effect as setting the value of the AbortOnAttrLookupFailure element to true.

For a clustered environment, perform these steps on the console node, and then click Replicate
Configuration on System # Server # Cluster Management.

Example

Expected result when this override is set

If a datastore uses results from previous queries as input, and if the previous queries return no result,
PingFederate records an error message in the server log, aborts the request immediately, and returns an
error message to the user, the application, or the partner.

System settings
The System menu provides access to system-related settings.

Depending on the setup of PingFederate, menu items vary. Menu items are organized into four groups:

▪ Server
▪ Metadata
▪ Monitoring & Notifications
▪ External Systems

Server
You can configure various PingFederate settings.

On the Extended Properties window, you can configure protocol settings and local administrative
accounts, import your license file, export or import a configuration archive, review other runtime servers in
the same cluster and replicate configuration from the administrative server to the clustered runtime servers.
You can also configure virtual host names, and configure extended properties for connections and OAuth
clients. See the following topics for more information:

▪ Administrative accounts on page 864
▪ License management on page 869
▪ Configuration archive on page 872
▪ Cluster management on page 876
▪ Virtual host names on page 876
▪ Extended properties on page 877

Copyright ©2024

 | Administrator's Reference Guide | 860

Protocol settings
On the Protocol Settings window, you can configure the base URL of your PingFederate environment,
and settings for WS-Trust STS authentication, outbound provisioning, and IdP discovery.
Specifying federation information
Federation information identifies your federation deployment to your partners, according to the protocols
you support.

About this task

You must provide an ID that uniquely identifies your federation gateway for each protocol you support. For
WS-Trust security token service (STS), IDs are required for both SAML 2.0 and SAML 1.x, regardless of
browser-based single sign-on (SSO) protocol support or the type of token expected to be issued, to ensure
that the STS will perform correctly under all conditions.

 Note:

Each ID normally applies across all connection partners for a given protocol. However, if your
implementation requires different IDs for the same protocol, you can use virtual server IDs. For more
information, see Federation planning checklist on page 104.

Steps

1. Go to System # Server to open the Protocol Settings window.

2. On the Federation Info tab, provide the required information.

For more information, see the following table.

Field Description

Base URL The fully qualified host name, port, and path (if applicable) on which the
PingFederate server runs. This field is used to populate configuration
settings in metadata files. For more information, see Metadata export on
page 880.

SAML 2.0 Entity ID This ID defines your organization as the entity operating the server for
SAML 2.0 transactions. It is usually defined as an organization's URL or
a DNS address, for example: pingidentity.com. The SAML SourceID
used for artifact resolution is derived from this ID using SHA1.

SAML 1.x Issuer/
Audience

This ID identifies your federation server for SAML 1.x transactions. As
with SAML 2.0, it is usually defined as an organization's URL or a DNS
address. The SourceID used for artifact resolution is derived from this ID
using SHA1.

SAML 1.x Source ID (Optional) If supplied, the Source ID value entered here is used for SAML
1.x, instead of being derived from the SAML 1.x Issuer/Audience.

WS-Federation Realm The URI of the realm associated with the PingFederate server. A realm
represents a single unit of security administration or trust.

3. Click Next and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

Copyright ©2024

 | Administrator's Reference Guide | 861

Configuring WS-Trust settings
You can configure PingFederate to require that client applications provide credentials to access the
security token service (STS).

About this task

While this is an optional configuration, it is recommended for identity provider (IdP) configurations using the
Username Token Processor. For other token processors and token generators, trust in the identity of the
client is conveyed within the token itself and verified as part of processing. However, you can still configure
authentication requirements to add another layer of security by limiting access to only authenticated clients.

 Note:

You can configure STS authentication to either apply globally to all token formats and for all IdP and
service provider (SP) partner connections, or token-to-token mappings, using more fine-grained controls at
the connection level through issuance criteria.

Steps

1. Go to System # Serverto open the Protocol Settings window

2. On the WS-Trust STS Settings tab, click Configure WS-Trust STS Authentication.

Follow the configuration wizard to complete the task. For more information, see Configuring STS
authentication on page 976

3. Click Next and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

Configuring outbound provisioning settings
You can select the database that PingFederate should use internally to facilitate provisioning for service
providers when PingFederate is configured as an identity provider (IdP).

Before you begin

Before configuring outbound provisioning settings, you must enable outbound provisioning through the
pf.provisioner.mode property in the <pf_install>/pingfederate/bin/run.properties file.
For more information, see Configuring PingFederate properties on page 771.

If you want to use failover provisioning, configure the provisioner.node.id and
provisioner.failover.grace.period properties, which are also located in <pf_install>/
pingfederate/bin/run.properties. These properties are described in Deploying provisioning
failover on page 209.

About this task

The database stores the state of synchronization between the source datastore and the target datastore,
enabling periodic checking to determine whether updates are required at the target site. PingFederate
checks the source datastore for changes every minute by default. As needed, you can change the
provisioning synchronization frequency on this tab as well.

 CAUTION:

Copyright ©2024

 | Administrator's Reference Guide | 862

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

 Note:

PingFederate is tested with Amazon Aurora (MySQL and PostgreSQL), Microsoft SQL Server, Oracle
Database, Oracle MySQL, and PostgreSQL as internal provisioning datastores. A demonstration-
only, embedded HSQLDB database is installed by default. Scripts to aid setup are in the directory
<pf_install>/pingfederate/server/default/conf/provisioner/sql-scripts.

Steps

1. Go to System # Server # Protocol Settings.

2. On the Outbound Provisioning tab, from the Provisioning Data Store list, select a datastore.

If the datastore you want is not shown in the list, PingFederate is not yet configured to access the
store. Click Manage Data Stores to create a connection to the datastore.

3. Change the Synchronization Frequency value.

The default value is 60 seconds.

4. Click Next and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

Configuring standard IdP Discovery
SAML 2.0 identity provider (IdP) Discovery provides a cookie-based look-up mechanism to identify a user's
IdP dynamically during a service provider (SP)-initiated single sign-on (SSO) event when the IdP is not
otherwise specified.

About this task

This mechanism can be helpful in cases where an SP might be a hub for several IdPs in an identity
federation.

In addition to supporting SAML 2.0 IdP Discovery, PingFederate provides a cross-protocol, proprietary
mechanism allowing a PingFederate SP server to write a persistent browser cookie. The cookie contains
a reference to the IdP partner with whom the user previously authenticated for SSO. For more information,
see Configuring IdP discovery using a persistent cookie on page 770.

 Tip:

An SP can also include the discovery mechanism within the application. For instance, an SP can provide
vanity URLs to isolate one set of end users from the others based on the URL of the requested resources.
Another possible solution is to provide a user interface for the end users to enter information about
their identity providers. With this approach, the application can start an SP-initiated SSO request with
information about the IdP.

In the standard scenario, when a user requests access to a protected resource on the SP, common-
domain browser cookies are used to determine where a user has authenticated in the past. Using

Copyright ©2024

 | Administrator's Reference Guide | 863

this information, a PingFederate server can determine which IdP connection to use for sending an
authentication request.

As an IdP Discovery provider, PingFederate can serve in up to three different roles: common domain
server, common domain cookie writer, and common domain cookie reader. Each of these roles is
necessary to support IdP Discovery. The roles can be distributed across multiple servers at different sites.

Common domain server

In this role the PingFederate server hosts a domain that its federation partners share in common.
The common domain server allows partners to manipulate browser cookies that exist within that
common domain. PingFederate can serve in this role exclusively or as part of either an IdP or an SP
federation role, or both.

Common domain cookie writer

When PingFederate is acting in an IdP role and authenticates a user, it can write an entry in the
common domain cookie, including its federation entity ID. An SP can look up this information on the
common domain, not the same location as the common domain server described above.

Common domain cookie reader

When PingFederate is acting as an SP and needs to determine the IdPs with whom the user has
authenticated in the past, it reads the common domain cookie. Based on the information contained
in the cookie, PingFederate can then initiate an SSO authentication request using the correct IdP
connection.

Steps

1. Go to the Protocol Settings window.

2. On the IdP Discovery tab, click Configure IdP Discovery.

3. On the Domain Cookie Settings tab, choose the discovery role or roles of your PingFederate server.

4. On the Common Domain Service tab, configure as follows.

Field Description

Base URL of the
PingFederate
Common Domain
Service

Enter the base URL of the PingFederate common domain service.

A common domain service is where PingFederate reads or writes
authentication information contained in shared cookies, as determined by
whether your site is an SP or IdP, respectively. The service is shared if
your PingFederate server is acting in both roles. You must use HTTPS for
the common domain.

Pass Phrase and
Confirm Pass

Enter and confirm the pass phrase that web applications must use to
access the domain.

5. On the Local Common Domain Server tab, configure the required settings.

A local common domain server is where PingFederate reads (as an SP) or writes (as an IdP) a
common domain cookie (CDC) for IdP Discovery.

Field Description

Common Domain Enter the common domain.

Your entry must include an initial period (.), as in the following example.

.example.com

Cookie Lifetime
(Days)

Enter the lifetime of the CDC in days. The range is 1 to 1825 days. To
indicate a non-persistent session cookie, enter -1.

Copyright ©2024

 | Administrator's Reference Guide | 864

Field Description

Pass Phrase and
Confirm Pass

Enter and confirm the pass phrase that web applications must use to
access the domain.

6. On the Summary tab, review and modify settings as needed. Then click Save.

Result:

The administrative console brings you back to the IdP Discovery tab.

7. Click Next and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

8. Perform one of the following actions to enable the setting of the common domain cookie at runtime:
Choose from:

▪ Make sure that, prior to launching any SSO events, the web application that implements IdP
Discovery sets the cookie using the /idp/writecdc.ping application endpoint intended for that
purpose.

▪ Enable setting the cookie at runtime during SSO events by selecting the IdP Discovery check box
on the Connection Options tab for the desired SP connection.

Reviewing protocol settings
You can review your protocol settings before saving them.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Administrative accounts
PingFederate supports five authentication schemes.

The authentication schemes are:

▪ Native authentication
▪ LDAP authentication
▪ RADIUS authentication
▪ Certificate-based authentication
▪ OIDC-based authentication

For role-based access control, PingFederate provides two account types and four administrative roles, as
shown in the following table.

PingFederate User Access Control

Account type Administrative
role

Access privileges

Admin User Admin Create users, deactivate users, change or reset passwords, and
install replacement license keys.

Copyright ©2024

 | Administrator's Reference Guide | 865

Account type Administrative
role

Access privileges

Admin Admin Configure partner connections and most system settings, except the
management of local accounts and the handling of local keys and
certificates.

Admin Expression
Admin

Map user attributes by using the expression language, Object-Graph
Navigation Language (OGNL).

 Important:

Only Administrative users who have both the Admin role and the
Expression Admin role:

▪ Can be granted the User Admin role. This restriction prevents
non-Expression Admin users from granting themselves the
Expression Admin Role.

▪ Can be granted write access to the file system or directory
where PingFederate is installed. This restriction prevents a non-
Expression Admin user from placing a data.zip file containing
expressions into the <pf_install>/pingfederate/server/
default/deploy directory, which would introduce expressions
into PingFederate.

Admin Crypto Admin Manage local keys and certificates.

Auditor Not applicable View-only permissions for all administrative functions. When the
Auditor role is assigned, no other administrative roles can be set.

For native authentication, access and authorization are controlled by the local accounts defined on the
Administrative Accounts window.

As needed, you can switch from native authentication to an alternative console authentication. Access and
authorization are defined in the respective configuration file.

An administrative user can sign on from more than one browser or location. Moreover, multiple
administrative users can sign on to the PingFederate administrative console at a time. You can
optionally restrict the administrative console to one administrative user at a time by modifying the
pf.console.login.mode property in the <pf_install>/pingfederate/bin/run.properties
file. Regardless of the property configuration, any number of auditors can sign on at any time.

 Note:

For security, after three failed sign-on attempts from the same location within a short time period, the
administrative console and the administrative API will temporarily lock out further attempts by the same
user. The user must wait one minute to try again.

Local accounts defined on the Administrative Accounts window are shared between the administrative
console and the administrative API if they are both configured to use native authentication, the default. If
the administrative console is configured to use an alternative console authentication, the Administrative
Accounts window appears only if the administrative API is left to use native authentication, and vice versa.

 Tip:

Copyright ©2024

 | Administrator's Reference Guide | 866

If you have connected PingFederate to PingOne for Enterprise, you can also single sign-on from the
PingOne admin portal to the administrative console.

Enabling native authentication for the administrative console
When the administrative console is protected by native authentication, access is restricted to the local
accounts you have defined.

Steps

1. Go to System # Serverto open the Administrative Accounts window.

2. In the <pf_insall>/pingfederate/bin/run.properties file, change the value of the
pf.console.authentication property to pf.console.authentication=native

3. Start or restart PingFederate.

Managing local accounts and role assignments
You can create, modify, update, or deactivate accounts in the Administrative Accounts window.

Steps

1. Go to System # Server # Administrative Accounts, and then perform any of the following actions.

Task Steps

Create a local account a. On the Administrative Accounts window,
click Create User.

b. On the User Information tab, enter a
username and other optional information.

 Note:

If you want PingFederate to notify the user
about password changes via email, you must
supply an email address.

c. On the Password Generation tab, enter
a password or click Generate one-time
password to generate a random password
for the account.

 Note:

Upon successful authentication, the user will
be required to change the password of the
account immediately.

d. On the Summary tab, review your
configuration, modify as needed, and then
click Done.

e. On the Administrative Accounts window,
select the applicable account type, Auditor
or Admin, and one or more administrative
roles for an Admin account.

f. Repeat these steps to create additional
accounts.

Copyright ©2024

 | Administrator's Reference Guide | 867

Task Steps

Modify user information a. On the Administrative Accounts window,
select the account by its username.

 Note:

Applicable only to active accounts.

b. On the User Information window, update
the record, and then click Done.

c. Repeat these steps to update other
accounts.

Update role assignments a. Select a different account type, Auditor or
Admin, for one or more accounts.

b. Select or clear the check boxes that
correspond to the three administrative roles,
User Admin, Admin, and Crypto Admin for
one or more accounts.

 Note:

Applicable only to the Admin accounts.

Deactivate or reactive a native a. Click Deactivate or Activate under Action.
b. Repeat this step to deactivate or reactive

other accounts.

 Note:

For traceability and accountability purposes,
local accounts cannot be deleted Their
records are retained and they can be
reactivated if needed.

2. To keep your configuration, click Save.

Enabling notification messages for account management events
Administrators can optionally enable notifications for account management events. If enabled,
PingFederate generates notification messages based on the following events.

About this task

See the following table for a description of an event and the corresponding alert.

Event Alert

An administrator
turns off the Notify
Administrator of
Account Changes
option.

PingFederate generates a notification message to all administrators.

The message includes the username of the administrator who made the
change.

Copyright ©2024

 | Administrator's Reference Guide | 868

Event Alert

An administrator's email
address is updated by
another administrator.

PingFederate generates a notification message to the previous email address
and another notification to the new email address.

The message includes the username of the administrator who made the
change.

An administrator's
password is changed.

PingFederate generates a notification to the administrator whose password
has been changed.

The message includes the username of the administrator who made the
change.

 Note:

Account management events are only applicable when native authentication is enabled for the
administrative console, the administrative API, or both in the <pf_install>/pingfederate/bin/
run.properties file. If you are using an alternative console authentication, notifications, if any, such as
password changes, are handled by the third-party system.

Steps

1. Go to System # Serverto open the Administrative Accounts window.

2. Select the Notify Administrator of Account Change check box.

An email address must be provided for the applicable accounts.

3. Select a notification publisher instance from the list.

If you have not yet configured the desired notification publisher instance, click Manage Notification
Publishers.

4. To keep your configuration, click Save.

Setting or resetting passwords
On the Password Generation tab, you can generate temporary passwords as you create local accounts
for new users.

About this task
You can also assign temporary passwords for existing users who forget their passwords. Upon successful
authentication, the users are required to change their passwords immediately.

Steps

1. Go to System # Server # Administrative Accounts.

2. To generate a random password for the account, on the Password Generation tab, enter a password
or click Generate one-time password, and then click Next.

Changing passwords
Administrative users and auditors can change the passwords of their local accounts at any time.

About this task

 Note:

If you sign on to PingFederate using your network ID and password, you can change your password only
at the network level. The new password will apply to PingFederate automatically the next time you log on.

Copyright ©2024

 | Administrator's Reference Guide | 869

Steps

1. Go to System # Server to open the Administrative Accountswindow.

2. Click Change Password under Action for your account.

3. Enter your current password and new password twice in the related fields.

 Important:

If you are the sole user administrator, take steps to ensure that you do not forget your new password.

4. To keep your configuration, click Save.

License management
PingFederate licensing is handled differently depending on whether you are installing and setting up
PingFederate for the first time, or upgrading your existing PingFederate installation to a later version.

Initial PingFederate installations

During the initial setup for a new PingFederate installation:

▪ If you choose to connect to PingOne for Enterprise, PingFederate obtains and installs an evaluation
PingFederate Bridge license from PingOne.

▪ If you choose not to connect to PingOne for Enterprise, you are prompted to upload a license file.

Depending on your licensing agreement, your license might have an expiration date. If your license key is
going to expire, or has expired recently, you can import a new license file to replace the existing license
key through the administrative console.

The administrative console displays a warning message ahead of the expiry of your license. Optionally,
you can configure PingFederate to notify the administrators ahead of the license expiration date.

PingFederate upgrades

If you choose to upgrade PingFederate using the Upgrade Utility, your current PingFederate license is
automatically copied to the target installation if it is valid. If your current license is not valid, you must obtain
a new license and specify its full path and filename when performing the upgrade.

If you choose not to use the Upgrade Utility, you must specify the full path and filename of a valid license
when performing the upgrade.

Reviewing license information
You can review a summary of your PingFederate license in the License window.

About this task

 Important:
If the license specifies an expiration date, the license expires at the beginning of that day.

Steps

1. On the Help menu, click About.

2. In the dialog box, click View / Update License. The License window opens.

 Tip:
Another way to open the License window is to go to System # Server # License.

Copyright ©2024

 | Administrator's Reference Guide | 870

Requesting a new license key
You can request a new license key if needed.

Steps

1. Go to the Ping Identity licensing website.

2. Sign on, provide the required information, and then submit your request.

Result

You will hear from our licensing team as the team processes your request.

Installing a license key on a new or upgraded PingFederate server
You can install a license key on the PingFederate server from the administrative console.

Steps

1. Start and sign on to the administrative console.

2. Go to System # Server to open the License Managementwindow, and then click Choose file to
select the license file. Click Import.

Result:

If the license is for the wrong version of PingFederate or is found to be invalid for some other reason,
PingFederate displays an error message.

When the license file is verified for use with your instance, the license information is saved in the
<pf_install>/pingfederate/server/default/conf/pingfederate.lic file.

3. If you have a clustered PingFederate environment, go to System # Server to open the Cluster
Management window, and then click Replicate Configuration.

 Note:

You must use the Replicate Configuration window to initiate the transmission of the license file from
the console node to all engine nodes. As an added measure, the administrative console reminds you
to do so as well.

When an engine node receives the license information from the console node, it saves the new license
information to the <pf_install>/pingfederate/server/default/conf/pingfederate.lic
license file.

For any engine node that was offline at the time of the import, when it restarts and joins the cluster, it
consumes the new license information from the console node and applies the same processing logic.

 Note:

no longer maintains its license information in the <pf_install>/pingfederate/server/
default/data/.pingfederate.lic file, which is referred to as the secondary license file in the
previous versions of . The .pingfederate.lic file, if any, is ignored.

Installing a replacement license key
You can replace your existing PingFederate license key by importing a new license file using the
PingFederate administrated console.

Steps

1. Start and sign on to the administrative console.

2. Go to System # Server # License.

Copyright ©2024

 | Administrator's Reference Guide | 871

3. In the License window, click Choose File, select the license file, and click Import.

Result:

If the license is for the wrong version of PingFederate or is found to be invalid for some other reason,
PingFederate displays an error message and keeps the existing license regardless of whether the
existing license has expired.

If the new license does not include support for features found in your existing license, or if there is
some other potential problem with the license, PingFederate advises and prompts you on whether to
continue.

When the license file is verified for use with your instance, the license information is saved in the
<pf_install>/pingfederate/server/default/conf/pingfederate.lic file.

The previous license file is renamed with a timestamp in the same conf directory.

4. If you have a clustered PingFederate environment, go to System # Server # Cluster Management
and click Replicate Configuration.

 Note:

You must use the Replicate Configuration window to initiate the transmission of the license file from
the console node to all engine nodes.

When an engine node receives license information from the console node, if the issue date of the new
license is not as recent as that of the existing license, the engine node ignores the new license from
the console and logs the following warning message in the server log.

License from Console node ignored as Engine node has recently obtained
 license.

 Tip:

If you prefer to use the license from the console node, even the existing license on the engine
node is more recent in terms of the issue date, manually remove or rename the <pf_install>/
pingfederate/server/default/conf/pingfederate.lic license file on the engine node,
then click Replicate Configuration on the Cluster Management window again.

If the issue date of the new license is more recent than or equal to that of the existing license, the
engine node saves the new license information to the <pf_install>/pingfederate/server/
default/conf/pingfederate.lic license file and activates it immediately. No restart is required.

For any engine node that was offline at the time of the import, when it restarts and joins the cluster, it
consumes the new license information from the console node and applies the same processing logic.

 Note:

PingFederate no longer maintains its license information in the <pf_install>/pingfederate/
server/default/data/.pingfederate.lic file, which is referred to as the secondary license
file in the previous versions of PingFederate. The .pingfederate.lic file, if any, is ignored.

Configuring notification for licensing events
If your PingFederate license has an expiration date, you can configure PingFederate to notify the
administrators ahead of the license expiration date to minimize potential service disruptions.

About this task

Copyright ©2024

 | Administrator's Reference Guide | 872

Steps

1. Go to System # Monitoring & Notifications to open the Runtime Notifications window.

2. Select the Notification for Servers Licensing Events check box.

 Note:

This check box appears only if your PingFederate license has an expiration date.

3. Enter the email address of the intended recipient.

4. Select a notification publisher instance from the list.

If you have not yet configured the desired notification publisher instance, click Manage Notification
Publishers.

5. To keep your configuration, click Save.

Configuration archive
You can use configuration archives as backup files for the current PingFederate installation.

 Note:

In addition to backup, you can use configuration archives for disaster recovery purposes.

▪ If the console server is still functional, you can import a recent configuration archive to solve the
problem.

▪ In a clustered PingFederate environment, if the console server and the engine nodes are all gone, you
can import a recent configuration archive to a new console server and then replicate the configuration
to new engine nodes. All other configurations that occurred outside of the archive will have to be
redone manually.

Using a configuration archive is not necessary in a clustered environment where the console server is
still functional and some of the engine nodes are gone. In this case, create new engine nodes and then
replicate the configuration from the console node.

PingFederate automatically creates a time-stamped configuration (.zip) archive every time an
administrator signs on to the administrative console and before an existing archive is imported. The
archives are stored in the <pf_install>/pingfederate/server/default/data/archive
directory.

The automatic backup process typically completes without delays. For deployments with hundreds of
connections or OAuth clients, or both, administrators can configure PingFederate to create configuration
archives periodically instead.

Additionally, administrators can export the current configuration to a .zip file in the Configuration
Archive window. This window is only available to administrators whose accounts have been assigned the
User Admin, Admin, Crypto Admin, and Expression Admin roles.

 Note:

The Expression Admin role must be assigned to give administrators sufficient permissions to create
configuration archives.

 Warning:

The backup file contains your complete configuration. To protect your data, confirm the backup file is
protected with appropriate security controls in place before exporting it.

Copyright ©2024

 | Administrator's Reference Guide | 873

Sharing the archive is a security risk because the private keys are stored in the archive. An archive should
only be shared if the security of that instance is not important, such as a development or test environment.

On the Configuration Archive window, administrators can import an existing archive for immediate
deployment into a running PingFederate server.

Administrators can also deploy a configuration archive manually by copying the .zip file to the
<pf_install>/pingfederate/server/default/data/drop-in-deployer directory. After
copying the .zip file, it must be renamed to data.zip.

 Attention:

If you use the drop-in deployment process:

▪ PingFederate will not let you import the configuration archive of an older or newer version, and to
ensure successful importation of the configuration archive file with this process, you must rename the
file data.zip.

▪ On startup, the heartbeat endpoint will not return 200 until the archive import completes. If you have
configured a health check or probe that can trigger a restart of the server, crash loop behavior can
result. Review the configuration of these checks to ensure time thresholds are set appropriately.

Configuration archives are intended for administrative-console configuration only. The following files are
not included in the archives:

▪ Launch scripts in the <pf_install>/pingfederate/bin and <pf_install>/pingfederate/
sbin directories.

▪ Web container configuration files in the <pf_install>/pingfederate/etc directory.
▪ Log files in the <pf_install>/pingfederate/log directory.
▪ Database drivers and program files from adapters and any other plugins in the <pf_install>/
pingfederate/server/default/lib and <pf_install>/pingfederate/server/default/
deploy directories.

▪ Other files, including the license file, the advanced cluster configuration files, and the user-facing email
and HTML templates, in the <pf_install>/pingfederate/server/default/conf directory.

If any changes have been made to files that are not part of the configuration archive, those files must be
preserved manually.

 Tip:

You can export a configuration archive, extract the .zip file, and determine whether specific files are part
of the configuration archive, or not.

 Important:

Draft connections in archives are not imported. Complete any unfinished partner connections if you want to
include them in a full backup archive or in an archive to be used for configuration migration.

Copyright ©2024

 | Administrator's Reference Guide | 874

Configuring a backup schedule
For deployments with hundreds of connections or OAuth clients, or both, administrators can configure
PingFederate to create configuration archives periodically.

Steps

Edit the <pf_install>/pingfederate/server/default/data/config-store/
org.sourceid.saml20.domain.mgmt.impl.DataArchiveBackup.xml file. See the following table
for each property.

Property Description

ScheduledBackupEnabled When set to true, PingFederate creates a
configuration archive daily if configuration has
changed since the creation of the last archive. This
is true regardless of the backup method used.

The default value is false.

BackupTime The local time at which PingFederate
creates a configuration archive when the
ScheduledBackupEnabled property is set to
true.

Ignored when the ScheduledBackupEnabled is
set to false.

The default value is 00:00:00, which represents
midnight.

NumTriesWithIntegrityFailure Upon the creation of the scheduled
configuration archive, if PingFederate detects
a configuration change during the scheduled
backup process, it retries immediately. The
NumTriesWithIntegrityFailure property
indicates the maximum number of attempts.

Ignored when the ScheduledBackupEnabled is
set to false.

The default value is 3.

BackupOnAdminLogin When set to false, PingFederate does not create
a configuration archive when an administrator
signs on. Regardless of the value of this property,
PingFederate always creates a configuration
archive before an archive is imported.

The default value is true.

MaxOldArchiveFiles The number of older configuration archives that
PingFederate keeps. When the limit is reached, the
oldest file is removed.

The default value is 25 files.

The ScheduledBackupEnabled and BackupOnAdminLogin properties are not mutually exclusive. For
example, if your deployment has 50 connections, you can enable both automatic and scheduled backup
processes.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 875

If you have a clustered PingFederate environment, edit the
org.sourceid.saml20.domain.mgmt.impl.DataArchiveBackup.xml file on the console node.

Exporting an archive
On the Configuration Archive window, you can export the current administrative-console configuration to
a .zip file. This window is only available to administrators whose accounts have been assigned the User
Admin, Admin, Expression Admin, and Crypto Admin roles.

Steps

▪ On the Export tab, click Export, then save the .zip file.

 Warning:

The backup file contains your complete configuration. To protect your data, confirm the backup file is
protected with appropriate security controls in place before exporting it.

Sharing the archive is a security risk because the private keys are stored in the archive. An archive
should only be shared if the security of that instance is not important, such as a development or test
environment.

Importing an archive
On the Configuration Archive window, you can import an administrative-console configuration from
a .zip file. This window is only available to administrators whose accounts have been assigned the User
Admin, Admin, and Crypto Admin roles.

About this task

When an administrator initiates deployment of a configuration archive using the Import tab, PingFederate
displays error messages if there are any missing plugin components, such as adapters, database
drivers, or token translators, on which the archive depends, or any mismatches of PingFederate licensing
authorization. The administrator can choose to force the deployment and then install the necessary files
later.

 Note:

Installation of any missing database drivers or other third-party libraries will require a restart of
PingFederate.

 CAUTION:

Deploying a configuration archive, either manually or by using the administrative console, always
overwrites all existing configuration data.

Steps

1. On the Import tab, choose the desired configuration archive from your system.

Copyright ©2024

 | Administrator's Reference Guide | 876

2. Select the Force Import check box if you want PingFederate to deploy the archive regardless of
whether dependency errors are detected.

 Important:

If you make this selection, consult the server start-up console or the server log for any messages
concerning missing plugin components or other errors.

3. Click Import.

Result:

The administrative console prompts you to confirm the import process.

Cluster management
When multiple PingFederate servers are set up to run as a cluster, the administrative console provides a
Cluster Management window.

Whenever applicable changes are made through the administrative console, a message appears at the
top of the console to serve as a reminder to go to the Cluster Management window and to replicate the
current console configuration to all server nodes in the cluster.

As of PingFederate 10.0, when your cluster is running multiple maintenance versions, a second message
is displayed saying that more than one version is being run. The Cluster Management window also
contains a new Version column that displays the version of PingFederate being run on each server node.

Replicating configuration
You can replicate a configuration from the PingFederate administrative console.

Steps

1. Go to System # Server.

2. In the Cluster Management window, click Replicate Configuration.

3. Click Done.

Result

The replication process takes only a moment. Requests coming into the runtime servers continue to be
processed while the updated configuration is being loaded into memory. When the reload is complete, the
updated configuration is activated for new requests.

Virtual host names
You can optionally define a list of alternate domain names at which PingFederate receives application and
protocol messages.

This is done in the Virtual Host Names window. When configured, PingFederate honors the originally
requested host throughout all browser redirects and metadata retrieval if the requested host matches
one of the virtual host names. This capability allows you to fully support any number of branded URLs
regardless of configured use cases within a single PingFederate environment.

Furthermore, virtual host names allow more flexibility for validating protocol elements, such as the
Destination and Recipient elements in SAML inbound messages and the aud claim in JSON web
tokens (JWTs) received from OAuth clients for client authentication purpose.

SAML inbound message

In certain contexts, the SAML specifications require that XML messages include a URL identifying
the host name to which the sender directed the message. As the recipient of such messages,
PingFederate validates that the value matches the location where the message is received, which is
the Base URL value defined in the Protocol Settings window on the Federation Info tab.

Copyright ©2024

 | Administrator's Reference Guide | 877

When virtual host names are configured, PingFederate takes them into consideration as part of its
message-security validation process, in addition to its base URL.

OAuth client authentication using the private_key_jwt client authentication method

An OAuth client can authenticate with an authorization server by presenting a signed JWT. Per
specification, the client must include the intended recipient as the aud claim value in its JWT. When
acting as the authorization server, PingFederate verifies that the destination of the aud claim value
matches either its base URL or the Token Endpoint Base URL value defined in the Authorization
Server Settings window.

When virtual host names are configured, PingFederate uses them in its verification process as well.

 Note:

Virtual host names and virtual server IDs serve different purposes. The latter provides separate unique
identifiers on a per-connection basis for a federation deployment, normally in the same domain. For more
information, see Multiple virtual server IDs on page 105. Virtual host names and virtual server IDs are not
mutually exclusive. Depending on your use cases and infrastructure, you can configure both virtual server
IDs and virtual host names in your PingFederate environment.

Multiple site certificates

When multiple domain names are involved, you can configure PingFederate with multiple site certificates
so that PingFederate can serve a different site certificate based on the requested host. For more
information, see Manage SSL server certificates on page 617.

Configuring virtual host names
Use the PingFederate administrative console to configure and manage virtual host names.

Steps

1. Go to System # Server to open the Virtual Host Names window.

2. Perform any of the following actions.

Option Action

Add a new entry Enter the desired value and click Add

Modify an existing entry Click Edit or Update

Remove an existing entry Click Delete

Keep your changes Click Save

Discard your changes Click Cancel

Extended properties
You can add any number of extended properties to store additional information about connections, OAuth
clients, or both.

You add these extended properties in the Extended Properties window as described in Defining extended
properties on page 878. When adding an extended property, you can define it as a single-value property
or a multivalued property. These extended properties become available to all connections and clients. As
you create or update a connection or a client, you can populate values for any of them. For OAuth clients,
if dynamic client registration is configured and enabled, developers can populate extended property values
by including them in the client registrations.

Copyright ©2024

 | Administrator's Reference Guide | 878

Authentication policies

You can leverage extended properties to drive authentication experience and requirements by configuring
an instance of the Extended Property Authentication Selector for each property that matters, placing this
selector instance in an authentication policy, and defining a policy path for each selector result value. At
runtime, PingFederate routes browser-based single sign-on (SSO) requests, OAuth authorization requests,
and OAuth grant management requests to the desired authentication sources based on the applicable
policy.

For more information, see Configuring the Extended Property Authentication Selector on page 225.

OAuth attributes fulfillment and issuance criteria

You can use extended properties as attribute sources when fulfilling persistent grants and token contracts.
You can also define issuance criteria to verify extended property values.

Defining extended properties
You can define extended properties using the PingFederate administrative console.

Steps

1. Go to System # Server # Extended Properties.

2. Add the extended properties.

a. Enter the applicable property name under Name.

After being added and saved, the name cannot be modified, but you can delete the extended
property completely.

b. Optional: In the Description field, enter a description for the extended property.
c. If the extended property should allow multiple values, select the Multivalued check box .

 Note:

If you have initially added a single-valued extended property, you can make it a multivalued
extended property by selecting the Multivalued check box later.

If you have initially added a multivalued extended property and you clear the Multivalued check
box later, when you try to make changes to a connection or an OAuth client that has been
configured with multiple values for this extended property, the administrative console prompts you
to reconfigure the connection or the client until only one value exists for this extended property.

d. Click Add.
e. Optional: Repeat these steps to define additional extended properties.

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

Metadata
You can configure metadata settings, export metadata, or sign metadata XML files.

These menu items are located in the Protocol Metadata window.

Metadata settings
Configure metadata settings using the Pingfederate administrative console.

In the Metadata Settings window, you can configure the contact information to be included
in your SAML metadata, and the metadata signing policy for metadata provided by the /pf/
federation_metadata.ping federation metadata endpoint. You can also configure the validity
of manual metadata exports and metadata provided by the metadata endpoint, and the frequency of
automatic reloading of SAML metadata from partners.

Copyright ©2024

 | Administrator's Reference Guide | 879

Entering system information
Provide the contact information to be included in your SAML metadata.

Steps

1. Go to System # Protocol Metadata.

2. In the Metadata Settings window, on theSystem Info tab, enter the desired information.

3. Click Next.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

Result

PingFederate includes the contact information in the manual metadata exports and metadata provided by
the /pf/federation_metadata.ping federation metadata endpoint.

Configuring metadata signing
Configure metadata signing using the PingFederate administrative console.

About this task

PingFederate generates publicly available metadata for partners through the federation metadata endpoint,
/pf/federation_metadata.ping. Although optional, signing the the metadata is recommended so
that partners can verify the authenticity of the metadata.

Steps

1. Go to System # Protocol Metadata.

2. In the Metadata Settings window, on theMetadata Signing tab select a certificate from the Signing
Certificate list.

If you have not yet created or imported your certificate into PingFederate, click Manage Certificates
and use the Certificate Management configuration wizard to complete the task.

3. Optional: Select a signing algorithm from the list.

The default selection is RSA SHA256 or ECDSA SHA256 depending on the key algorithm of the
chosen signing certificate. Make a different selection if you and your connection partner have agreed
to use a stronger algorithm.

The public key of the metadata signing certificate is included as part of the metadata.

4. Click Next.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

Configuring metadata lifetime
Configure the lifetime of metadata to optimize cache performance in your environment.

About this task

PingFederate provides metadata for SAML and WS-Federation connections and supports automatic
update for SAML connections by reloading metadata URLs provided by the partners

Copyright ©2024

 | Administrator's Reference Guide | 880

Metadata publication

PingFederate includes expiration information in metadata. It indicates to partners whether they have
reasonably up-to-date information about your server.

Metadata consumption

PingFederate supports automatic reloading of metadata by URL for SAML connections.

Steps

1. Go to System # Protocol Metadata.

2. In theMetadata Settings window, on the Metadata Lifetime tab, configure your metadata.

Option Action

Adjust the validity of your metadata Modify the Cache Duration field value, in
minutes.

The default value is 1440 or 1 day.

Adjust the frequency of automatic reloading
of SAML metadata

Modify the Reload Delay field value, in minutes.

The default value is 1440 or 1 day.

3. Click Next.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers you the opportunity to do so.

Reviewing metadata settings
Review your metadata settings before completing configuration.

Steps

▪ To amend your configuration, click the corresponding tab title and then follow the steps to complete
the task.

▪ To keep your changes, click Save.
▪ To discard your changes, click Cancel.

Metadata export
Use the Pingfederate administrative console to export metadata.

The SAML standards define a metadata exchange schema for conveying XML-formatted information
between two SAML entities. Metadata includes endpoint URLs, binding types, attributes, and security-
policy information, which helps federation partners expedite their configurations.

In the Metadata Export window, you can export metadata to an XML file by selecting any SAML browser
single sign-on (SSO) connection or specifying the desired information manually. The former is also
available as a per-connection action item on the Connections window. The latter addresses the scenarios
where you have not yet created a SAML connection, or you want to generate one SAML metadata XML file
for multiple partners.

To export a SAML metadata file, select the role your PingFederate server plays, configure the export
options and metadata signing policy, and then save the SAML metadata to an XML file.

For more information on exporting metadata for any SAML Browser SSO connection to an XML file, see
Exporting connection-specific SAML metadata on page 881.

Copyright ©2024

 | Administrator's Reference Guide | 881

For more information on manually selecting specific information and exporting a metadata XML file, see
Exporting selected SAML metadata on page 882.

Exporting connection-specific SAML metadata
You can export metadata for any SAML browser single sign-on (SSO) connection to an XML file.

About this task

This is useful in a situation where you have already created a SAML browser SSO connection to your
partner and the partner prefers consuming SAML metadata by file.

Steps

1. Go to System # Protocol Metadata # Metadata Export.

2. On the Metadata Role tab, select the applicable role.

3. On the Metadata Mode tab, select the Use a connection for metadata generation option.

If the secondary HTTPS port is configured and you want to use it for the SOAP channel, select the
Use the secondary port for SOAP channel check box.

 Note:

If certificate-based authentication is configured for the SOAP channel, you must configure
the pf.secondary.https.port property in the <pf_install>/pingfederate/bin/
run.properties file and select this check box.

4. On the Connection Metadata tab, select the applicable SAML browser SSO connection from the list.
Choose from:

▪ Virtual Server ID

If the selected connection contains two or more virtual server IDs, you must select the virtual
server ID that you want to use during the export. The protocol endpoints in the metadata file are
specific to the selected virtual server ID. If you decide to update the virtual server ID at a later
time, re-export the connection metadata for your partners

▪ Virtual Host Name

If PingFederate is configured with one of more virtual server host names, you can select the
applicable virtual host name from the list. If a selection is made, PingFederate use that virtual
host name when generating the metadata file. If left blank, PingFederate uses its base URL in the
metadata file. If you decide to update one or more virtual host names at a later time, re-export the
connection metadata for your partners.

5. Optional: On the Metadata Signing tab, select a certificate to use for signing the metadata XML file.

a. Select a certificate from the Signing Certificate list.

If you have not yet created or imported your certificate into , click Manage Certificates and use
the Certificate Management configuration wizard to complete the task.

b. Optional: Select the related check boxes to include the public key information and the raw key in
the signed XML file.

c. Select a signing algorithm from the list.

The default selection is RSA SHA256 or ECDSA SHA256, depending on the key algorithm of
the chosen signing certificate. Make a different selection if you and your connection partner have
agreed to use a stronger algorithm.

6. On the Export & Summary tab, click Export to save the metadata XML file, then click Done.

7. Pass the metadata XML file to your partner.

Copyright ©2024

 | Administrator's Reference Guide | 882

Exporting selected SAML metadata
You can manually select the desired information and export a metadata XML file.

About this task

This type of export is useful for the following situations:

▪ You have not yet created a SAML browser single sign-on (SSO) connection to the partner but would
like to help your partner with its configuration by including selected information in a metadata XML file.

▪ You want to export a SAML metadata with selected information, which can be passed to multiple
partners to expedite their configurations.

Steps

1. Go to System # Protocol Metadata # Metadata Export.

2. On the Metadata Role tab, select the applicable role.

3. On the Metadata Mode tab, select the Select information to include in metadata manually option.

If the secondary HTTPS port is configured and you want to use it for the SOAP channel, select the
Use the secondary port for SOAP channel check box.

 Note:

If certificate-based authentication is configured for the SOAP channel, you must configure
the pf.secondary.https.port property in the <pf_install>/pingfederate/bin/
run.properties file and select this check box.

4. On the Protocol tab, select the desired version of the SAML protocol from the list.

5. On the Virtual Host Name tab, select the applicable virtual host name from the list.

Shown and applicable only if PingFederate is configured with one of more virtual server host names.

If a selection is made, PingFederate use that virtual host name when generating the metadata file. If
left blank, PingFederate uses its base URL in the metadata file. If you decide to update one or more
virtual host names at a later time, re-export the connection metadata for your partners.

6. Optional: On the Attribute Contract tab, you can perform the following actions.

Action Description

Add Add an attribute contract by entering the contract's name and clicking
Add.

Edit Modify an existing attribute contract by clicking Edit. To save your
change, click Update. To cancel your change, click Cancel.

Delete Delete an existing attribute contract by clicking Delete.

7. Optional: On the Signing Key tab, if you want to include a public key that this system uses for digital
signatures, select an available key from the Digital Signature Keys/Certs list.

If you have not yet created or imported a digital signature key to PingFederate, click Manage
Certificates and use the Digital Signature Settings wizard to complete the task.

Copyright ©2024

 | Administrator's Reference Guide | 883

8. Optional: On the Metadata Signing tab, select a certificate to use for signing the metadata XML file.

a. Select a certificate from the Signing Certificate list.

If you have not yet created or imported your certificate into , click Manage Certificates and use
the Certificate Management configuration wizard to complete the task.

b. Optional: Select the related check boxes to include the public key information and the raw key in
the signed XML file.

c. Select a signing algorithm from the list.

The default selection is RSA SHA256 or ECDSA SHA256, depending on the key algorithm of
the chosen signing certificate. Make a different selection if you and your connection partner have
agreed to use a stronger algorithm.

9. Optional: On the XML Encryption Certificate tab, select the certificate that your partner can use to
encrypt XML content.

Applicable only when you have selected SAML 2.0 on the Protocol tab.

If you have not created or imported your certificate into PingFederate, click Manage Certificates and
use the Certificate Management configuration wizard to complete the task.

10. On the Export & Summary tab, click Export to save the metadata XML file, then click Done.

11. Pass the metadata XML file to your partner or partners.

File signing
Applying a digital signature to an XML file assures the authenticity and integrity of the original source.

If you have previously exported an unsigned metadata XML file, you can create a new signed metadata
XML file based on the unsigned metadata in the File Signing window.

Signing XML files
Use the Pingfederate administrative console to sign XML files.

Steps

1. Go to System # Protocol Metadata # File Signing.

2. On the Select Metadata File tab, choose your metadata file.

3. On the Digital Signature Settings tab, select a signing certificate from the list.

If you have not yet created or imported your certificate into PingFederate, click Manage Certificates
and use the Certificate Management configuration wizard to complete the task.

a. Clear the related check boxes to exclude the public key information and the raw key from the
signed XML file.

b. Select a signing algorithm from the list.

The default selection is RSA SHA256 or ECDSA SHA256, depending on the key algorithm of
the chosen signing certificate. Make a different selection if you and your connection partner have
agreed to use a stronger algorithm.

4. On the Export & Summary tab, click Export to save the digitally signed file.

5. Click Done.

Monitoring and notifications
You can set up notifications for licensing events, certificate events, and SAML metadata update events.
These menu items are located in System # Monitoring & Notifications.

Runtime notifications
You can configure PingFederate to generate notification messages for various events.

Complete this configuration on the Runtime Notifications window.

Copyright ©2024

 | Administrator's Reference Guide | 884

Licensing events

Depending on your licensing agreement, your PingFederate license might have an expiration date.
You can configure PingFederate to generate notification messages when your license is about to
expire. This option does not appear when you have a perpetual license.

Certificate events

When enabled, PingFederate can generate notification messages when a certificate is about to
expire or has expired. If you have also configured PingFederate to rotate self-signed certificates,
PingFederate can generate notification messages after generating a certificate and after its
activation.

SAML metadata update events

If you have enabled automatic reloading of partner metadata in any SAML browser single sign-
on (SSO) connections, you can configure PingFederate to generate notification messages when it
detects changes after pulling the metadata from the partners.

 Note:

In a clustered PingFederate environment, notification messages for licensing and certificate events are
generated by only one of the nodes. If that node leaves the cluster, planned or not, another node picks up
this task automatically.

Regardless of runtime notification settings, PingFederate always records license expiration events,
certificate events, and SAML metadata update events in the server log. For more information, see
PingFederate log files on page 778.

Configuring runtime notifications
Use the PingFederate administrative console to configure and manage runtime notifications.

Steps

1. Go to System # Monitoring & Notifications # Runtime Notifications .

2. Optional: Configure licensing events.

a. Select the Notification for Servers Licensing Events check box.

 Note:

This check box appears only if your PingFederate license has an expiration date.

b. Enter the email address of the intended recipient.
c. Select a notification publisher instance from the list.

If you have not yet configured the desired notification publisher instance, click Manage
Notification Publishers.

3. Optional: Configure certificate events.

a. Select the Notification for Certificate Events check box.
b. Enter the email address of the intended recipient.
c. Optional: Enter the initial warning time period (in days) in the Initial Warning Event field.
d. Optional: Enter the final warning time period (in days) in the Final Warning Event field.
e. Select a notification publisher instance from the list.

If you have not yet configured the desired notification publisher instance, click Manage
Notification Publishers.

Copyright ©2024

 | Administrator's Reference Guide | 885

4. Optional: Configure SAML metadata update events.

a. Select the Notification for SAML Metadata Update Events check box.
b. Enter the email address of the intended recipient.
c. Select a notification publisher instance from the list.

If you have not yet configured the desired notification publisher instance, click Manage
Notification Publishers.

Runtime monitoring using JMX
PingFederate supports runtime monitoring and reporting through Java Management Extensions (JMX).
JMX technology represents a Java-centric approach to application management and monitoring.

JMX exposes instrumented code in the form of MBeans. Application management systems that support
JMX technology, such as JConsole, can request runtime information from the PingFederate JMX server.

 Important:

Authentication is required for JMX-client access to PingFederate runtime data. For more information, see
Configuring service authentication on page 653.

 Tip:

You can use HTTP requests at any time to verify the status of the PingFederate server. For more
information, see Customizing the heartbeat message on page 857.

You can also supplement monitoring information by applying third-party analysis and reporting tools to the
security audit log, in which PingFederate records fine-grain details, including response times and event
types, for all server transactions. For more information, see Security audit logging on page 784.

PingFederate JMX server reports monitoring data for single sign-on (SSO) and single logout (SLO)
transactions. In addition, numerous Jetty-standard MBeans are available to the PingFederate server's JMX
clients.

SSO and SLO monitoring

For SSO/SLO transaction processing, PingFederate provides these MBeans:

▪ pingfederate:type=TOTAL_FAILED_TRANSACTIONS
▪ pingfederate:type=TOTAL_TRANSACTIONS

PingFederate resets these counters to zero after restart.

Sample Jetty metrics

The following table describes examples of Jetty MBean metrics, available through JMX, that administrators
might find useful to supplement information provided through the PingFederate-specific MBeans.

Copyright ©2024

 | Administrator's Reference Guide | 886

MBean Attributes

org.eclipse.jetty.server:
connectorstatistics

For Jetty connectors including the
primary and secondary PingFederate
runtime server ports.

connections – The total number of TCP connections
accepted by the server.

connectionsDuration* – How long connections are
kept open. Maximum, mean, standard deviation, and total
accumulated time are available.

connectionsOpen – The current number of
open connections. Maximum is also available
(connectionsOpenMax).

org.eclipse.jetty.server.handler:
statisticshandler

requests – Total number of requests received.

requestsActive – Number of requests currently being
processed. Max is also available.

requestTime – Request duration. Maximum, mean, standard
deviation, and total accumulated time are available.

responses1xx, responses2xx, responses3xx, … –
Total number of requests that returned HTTP status codes of
1xx, 2xx, 3xx, etc.

org.eclipse.jetty.util.thread:
queuedthreadpool

Two pools: one for the runtime server,
with 200 maximum threads; one for the
administrative console, with 20 maximum
threads.

idleThreads – Number of idle threads currently available.

threads – Number of threads currently running, including
both idle and active.

minThreads – Minimum number of threads in the pool.

maxThreads – Maximum number of threads in the pool.

lowOnThreads – A boolean flag indicating whether the pool
is running low on threads.

java.lang: Memory

java.lang: MemoryPool

java.lang: GarbageCollection

java.lang: OperatingSystem

Various attributes measuring CPU usage and memory.

Advanced JMX configuration

PingFederate uses port 1099 for its JMX server. To change the port or other Java Message Service
(JMS) configuration items, if needed, modify the jmx-remote-config.xml configuration file in the
<pf_install>/pingfederate/server/default/conf directory.

 Note:

When connecting to the JMX service using SSL, the default, ensure that the client trusts the PingFederate
SSL server certificate presented. For more information, see Manage SSL server certificates on page 617.

Datastores
Datastores represent external systems where user attributes and other data are stored. Once defined, you
can configure PingFederate to retrieve user attributes from datastores for contract fulfillment and token
authorization in various use cases.

To manage datastores, go to System # Data & Credential Stores # Data Stores.

Copyright ©2024

 | Administrator's Reference Guide | 887

▪ To create a new datastore, click Add New Data Store and then follow the configuration wizard to
complete the task.

▪ To modify an existing datastore, select the datastore and then follow the configuration wizard to
complete the task.

▪ To review usage of an existing datastore, click Check Usage under Action.
▪ To remove an existing datastore or cancel the removal request, click Delete or Undelete under

Action.

 Note:

You can only remove datastores that are not currently in use.

▪ To fine-tune the caching interval for datastore validation, update the Data-Store Validation Interval
field value to the desired amount of time in seconds.

 Note:

As you configure various components on the administrative console, PingFederate performs
connectivity tests against the applicable datastores. By default, PingFederate stores successful
test results for five minutes. This design improves the performance of the administrative console by
reducing the number of calls it makes to the target servers and the amount of time it takes to move
from one configuration window to another.

 Note:

The default value is 300 seconds (five minutes). A value of 0 turns off the caching and validation tests
are executed with each access. This setting applies to all datastores.

Adding a new datastore
On the Data Stores window, you can create and configure a new datastore.

Steps

1. Go to System # Data & Credential Stores # Data Stores.

2. Click Add New Data Store.

3. Enter a name for the datastore.

4. From the Type list, select the type of datastore.

Available types are limited to the ones currently installed on your server.

5. Optional: To mask attribute values returned from this datastore in PingFederate logs, select the Mask
Values in Log check box.

6. Click Next.

Configuring a JDBC connection
You can establish a Java Database Connectivity (JDBC) connection to your database server.

About this task

 Note:

was tested with vendor-specific JDBC drivers. For more information, see Database driver information on
page 114. To obtain the database driver JAR file, contact your database vendor. Install the database

Copyright ©2024

 | Administrator's Reference Guide | 888

driver file to the <pf_install>/pingfederate/server/default/lib directory then restart the
server.

Steps

1. Go to System # Data & Credential Stores # Data Stores.

2. On the Data Stores window, click Add New Data Store.

3. On the Data Store Type tab, type a name for the datastore.

4. From the Type list, select Database (JDBC). Click Next.

5. Optional: To mask attribute values returned from this datastore in PingFederate logs, select the Mask
Values in Log check box.

6. Click Next.

7. In the Database Config window, configure your JDBC connection. Information about each field is
provided in the following table.

Field Description

JDBC URL The location of the database server and the database. The structure of
the JDBC URL varies depending on the vendor. You can add multiple
JDBC URLs. You can also specify which node is the default by clicking
Set as Default under Action.

For regional deployments, specify region-specific URLs on different
rows, along with the node tags for the region. Tag the nodes that will use
the URL with the node.tags property in the run.properties file.
Failover may be supported within a single region via driver-specific URL
parameters. Failover is not supported across different rows.

 Tip:

For Oracle MySQL, to enable automatic reconnection attempts when
the connection is not available at runtime, enter a SQL statement in the
Validate Connection SQL field and add the following query string to the
JDBC URL:

?autoReconnect=true

Tags Tags are defined in the node.tags property in the <pf_install>/
pingfederate/bin/run.properties file. For a description of the
node.tags property, see Deploying cluster servers on page 199.

In PingFederate deployments that are regional, you can enter one or
more tags for a JDBC URL, which specifies with which datastore that
particular PingFederate node should communicate. If none of the tags
match what is defined for the node.tags property, the default node is
used.

The following rules apply to tags:

▪ You must separate multiple tags specified for one node with spaces.
▪ You can't use a tag more than once per datastore.
▪ Tags are optional. If needed, you can configure a non-default node

without tags. Doing this is useful if you are not yet ready to tag the
node, or if you are still in the planning stage but want to enter the
address for the node now.

Copyright ©2024

 | Administrator's Reference Guide | 889

Field Description

Driver Class The name of the driver class used to communicate with the source
database. The driver class name should be supplied by the database
software vendor in a JAR file.

Username The name that identifies the user when connecting to the database.

Password The password needed to access the database.

Validate Connection
SQL

(Optional but
recommended)

A simple SQL statement used by the PingFederate runtime server to
verify that the database connection is still active and to reconnect if
needed.

If a SQL statement is not provided here, PingFederate might not
reconnect to the database if the connection is broken.

 Important:

Ensure that the SQL statement is valid for your database. For example:

▪ SELECT 1 from dual (for Oracle Database or Oracle MySQL)
▪ SELECT getdate() (for Microsoft SQL Server)
▪ SELECT 1 (for PostgreSQL)

 Tip:

To use this feature for Oracle MySQL, you must also add the ?
autoReconnect=true query parameter to the JDBC URL.

Mask Values in Log Determines whether all attribute values returned through this datastore
should be masked in PingFederate logs.

Applicable only when editing an existing datastore.

Allow Multi-Value
Attributes

When selected, indicates that the JDBC datastore can select more
than one record from a column and return the results as a multivalued
attribute. Otherwise, a query returns only the first value in the column.

8. Click Test Connection to determine whether the administrative node can communicate with the
specified datastore.

 Note:

Datastore validation is no longer enabled during configuration. This feature lets you configure
datastores without requiring a successful connection between the administrative node and the
datastore. You can also save the datastore even if the connection is not currently successful.

Copyright ©2024

 | Administrator's Reference Guide | 890

9. Click Advanced to configure additional settings.

a. On the Advanced Database Options window, click Apply Defaults to view or restore default
values.

 Tip:

The default values are conservative based on the server thread pool settings configured in the
<pf_install>/pingfederate/etc/jetty-runtime.xml file. If any changes are made to
thread pooling, we recommend updating settings as outlined in the next step.

b. Configure advanced settings.

For more information about each field, see the following table.

Field Description

Minimum Pool Size The smallest number of database connections that can remain in the
pool for the given datastore. A minimum value of 0 means that the
minimum number of connections in the pool is zero.

 Note:

For optimal performance, the value for this setting should equal
50% of the maxThreads value in the Jetty server configuration (see
Configuring connection pools to datastores on page 1019).

Note that PingFederate does not establish the connection pool for the
given datastore until it receives a request that requires one or more
attributes from that datastore.

The default value (after clicking on Apply Defaults) is 10.

Maximum Pool Size The largest number of database connections that can remain in the pool
for the given datastore.

 Note:

For optimal performance, the value for this setting should equal 75% to
100% of the maxThreads value in the Jetty server configuration (see
Configuring connection pools to datastores on page 1019).

The default value (after clicking on Apply Defaults) is 100.

Blocking Timeout (ms) The amount of time a request waits to get a connection from the
connection pool before it fails. A value of -1 means that a request waits
indefinitely for the connection pool to return a connection.

The default value (after clicking on Apply Defaults) is 5000.

Idle Timeout (min) The length of time the connections can sit idle in the pool before it
closes them. A value of -1 means that the connection pool does not
close its connections (once established).

Note that PingFederate maintains the minimum connection pool for the
given datastore once the pool is established.

The default value (after clicking on Apply Defaults) is 5.

10. Click Save to save your configuration.

Copyright ©2024

 | Administrator's Reference Guide | 891

Configuring an LDAP connection
You can establish an LDAP connection to your directory server.

Steps

1. Go to System # Data & Credential Stores # Data Stores.

2. On the Data Stores window, click Add New Data Store.

3. On the Data Store Type tab, type a name for the datastore.

4. From the Type list, select Directory (LDAP).

5. Optional: To mask attribute values returned from this datastore in PingFederate logs, select the Mask
Values in Log check box.

6. Click Next.

7. On the LDAP Configuration tab, configure your LDAP connection as described in the following table.

Field Description

Data Store Name The name of the datastore.

Applicable only when editing an existing datastore.

Hostname(s)

(Required)

The network address of the directory server, either an IP address, a host
name, or a fully qualified domain name. The entry might include a port
number; for example, 10.10.10.101:1389. For failover, enter multiple
directory servers, each separated by a space. In addition to network error
conditions, PingFederate also fails over to the next server if the current
server returns an LDAP system error.

 Note:

If multiple directory servers are specified, each server must be accessible
by using the same user distinguished name (DN) and password (unless the
Bind Anonymously check box is selected).

You can add multiple hostnames. You can also specify which node is the
default by clicking Set as Default under Action.

PingFederate can also leverage DNS service records to locate the directory
server (when the Use DNS SRV Record check box is selected), in
which case the value of this field must be a single domain; for example,
example.com.

Copyright ©2024

 | Administrator's Reference Guide | 892

Field Description

Tags Tags are defined in the node.tags property in the <pf_install>/
pingfederate/bin/run.properties file. See Deploying cluster
servers on page 199 for a description of the node.tags property.

In regional PingFederate deployments, you can enter one or more
tags for a host name, which specify with which datastore that particular
PingFederate node should communicate. If none of the tags match what is
defined for the node.tags property, the default node is used.

The following rules apply to tags:

▪ You must separate multiple tags specified for one node with spaces.
▪ You cannot use a tag more than once per datastore.
▪ Tags are optional. If needed, you can configure a non-default node

without tags. This is useful if you are not yet ready to tag the node, or if
you are still in the planning stage but want to enter the address for the
node now.

Use LDAPS When selected, PingFederate connects to the directory server using
LDAPS. This selection applies equally to all servers specified in the
Hostname(s) field.

 Important:

We recommend securing all LDAP connections by using LDAPS.

 Note:

To enable the password changes, password reset, or account unlock
features in the HTML Form Adapter against Microsoft Active Directory,
you must secure the connection to your directory server using LDAPS;
Microsoft Active Directory requires this level of security to allow password
changes.

This check box is not selected by default.

Use DNS SRV Record Used in conjunction with the domain information defined in the
Hostname(s) field and the preference of LDAP or LDAPS, PingFederate
uses DNS SRV records to locate the directory server when this check box
is selected. You can fine-tune the TTL value and the record prefixes on the
Advanced LDAP Options window.

 Note:

When the DNS returns multiple SRV records, PingFederate uses the
record with the lowest-numbered priority value and fails over to the record
with the next lowest priority value. If multiple records share the same
priority value, PingFederate uses the records with the highest-numbered
weight value.

PingFederate repeats this exercise until it establishes a connection or fails
to connect to any directory server after taking all records into consideration.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 893

Field Description

Follow LDAP
Referrals

Select this check box to let the datastore follow LDAP referrals on Microsoft
Active Directory, Oracle Unified Directory, or Oracle Directory Server.

 Note:

PingFederate always follows LDAP referrals from PingDirectory based on
the recommended PingDirectory configuration.

LDAP Type

(Required)

If you are using this datastore for outbound provisioning and your directory
server is PingDirectory, Microsoft Active Directory, Oracle Unified Directory,
or Oracle Directory Server, select the applicable type from the list, such
that PingFederate can pre-populate many provisioning settings on
Outbound Provisioning # Channel # Source Settings.

 Tip:

If your directory server is not PingDirectory, Microsoft Active Directory,
Oracle Unified Directory, or Oracle Directory Server, you can define a
custom LDAP Type to streamline the outbound provisioning configuration.

The LDAP type is also used to enable password-change messaging
between Microsoft Active Directory and PingFederate when an HTML Form
Adapter instance is used.

Bind Anonymously Select this check box if your directory server supports anonymous binding
and if no credentials are needed to access the directory server. When
selected, user DN and password are not required.

 Tip:

For inbound provisioning, because PingFederate needs to manage local
user records, your directory server might require a specific service account
to handle the communication between PingFederate and the target
directory server. If you choose an anonymous binding, ensure that this
access level provides permission to search the directory for user-account
information.

This check box is not selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 894

Field Description

User DN The user name credential required to access the directory server.

 Important:

The service account must have permission to search the directory for user-
account information. If your use cases involve reading from the directory
server without creating, updating, or deleting any records, consider using a
service account with read-only access.

For inbound provisioning, a service account with permission to create,
read, update, and delete users and groups is required.

When connecting to a Microsoft Active Directory server, enter a Microsoft
Active Directory user account. Do not use a computer account.

When connecting to PingDirectory, Oracle Unified Directory, or Oracle
Directory Server, configure proxied authorization for the service account
on the directory server if you intend to enable self-service password reset
in any HTML Form Adapter instances that use this datastore. For more
information, see Proxied authorization on page 897.

Password The password credential required to access the directory server.

Mask Values in Log Determines whether all attribute values returned through this datastore
should be masked in PingFederate logs.

Applicable only when editing an existing datastore.

8. Click Test Connection to determine whether the administrative node can communicate with the
specified datastore.

 Note:

Datastore validation is no longer enabled during configuration. This feature lets you configure
datastores without requiring a successful connection between the administrative node and the
datastore. You can also save the datastore even if the connection is not currently successful.

9. Optional: Click Advanced. If you choose an anonymous binding, configure additional settings in the
Advanced LDAP Options window.

10. Click Save.

Setting advanced LDAP options
PingFederate enables you to customize the default settings of both the search pool and the bind pool for
each LDAP datastore.

About this task

PingFederate maintains a search pool and a bind pool for each LDAP datastore for optimal performance.
The search pool is for LDAP directory searches. The bind pool is for LDAP bind authentication purposes.
Use the Advanced LDAP Options window to change default pool settings. These settings are applicable
to both the search pool and the bind pool.

When configuring PingFederate to locate the directory server based on DNS SRV record, you can fine-
tune the TTL value and the SRV record prefixes.

Copyright ©2024

 | Administrator's Reference Guide | 895

Steps

1. In the Advanced LDAP Options window, click Apply Defaults to view or restore default values.

 Tip:

The default values are conservative based on the server thread pool settings configured in the
<pf_install>/pingfederate/etc/jetty-runtime.xml file. If any changes are made to
thread pooling, update the settings as outlined in the following step.

2. Configure advanced settings. For more information about each field, see the following table.

Field Description

Test Connection on Borrow Indicates whether to validate objects before they are borrowed
from the pool.

This check box is not selected by default.

Test Connection on Return Indicates whether to validate objects before they return to the
pool.

This check box is not selected by default.

Create New Connection If
Necessary

Indicates whether you can create temporary connections
when the Maximum Connections threshold is reached.
Temporary connections are managed automatically.

 Note:

If disabled, when the Maximum Connections value is
reached, subsequent requests relying on this LDAP datastore
instance might fail.

This check box is selected by defaul

Verify LDAPS Hostname Indicates whether to verify that the host name of the directory
server matches the subject (CN) or one of the subject
alternative names (SANs) from the certificate.

 Important:

Verify the LDAPS host name for all LDAPS connections.

This check box is selected by default.

Minimum Connections

(Required)

The smallest number of connections that can remain in each
pool. A minimum value of 1 creates two connections, one
connection in the search pool and one connection in the bind
pool. The default value is 10.

 Note:

For optimal performance, the value for this setting should
equal 50% of the maxThreads value in the Jetty server
configuration. For more information see Configuring
connection pools to datastores on page 1019.

Copyright ©2024

 | Administrator's Reference Guide | 896

Field Description

 Note:

PingFederate does not establish the connection pool for the
given datastore until it receives a request that requires one or
more attributes from that datastore.

Maximum Connections

(Required)

The largest number of active connections that can remain in
each pool (not including the temporary connections that are
managed automatically when the Create New Connection If
Necessary check box is selected). The value must exceed or
equal the Minimum Connections value.

 Note:

For optimal performance, the value for this setting should
equal 75% to 100% of the maxThreads value in the Jetty
server configuration. For more information, see Configuring
connection pools to datastores on page 1019.

The default value is 100.

Maximum Wait (Milli)

(Required)

The maximum number of milliseconds the pool waits for an
available connection when trying to obtain a connection from
the pool. A value of -1 causes the pool not to wait at all and to
either create a new connection or produce an error (when no
connections are available).

The default value is -1.

Time Between Eviction (Milli)

(Required)

The number of milliseconds between periodic background
health checks against the available connections in this pool. A
value of -1 disables the evictor.

The default value is 60000.

Read Timeout (Milli)

(Required)

The maximum number of milliseconds a connection waits for
a response to return before producing an error. A value of -1
causes the connection to wait indefinitely.

The default value is 3000.

Connection Timeout (Milli)

(Required)

The maximum number of milliseconds that a connection
attempt can continue before returning an error. A value of -1
causes the pool to wait indefinitely.

The default value is 3000.

DNS TTL (Milli)

(Required)

The amount of time in milliseconds that a previously obtained
DNS SRV record remains valid. When this threshold is
reached, PingFederate contacts the DNS for a new SRV
record to locate the directory server.

The default value is 60000.

LDAP DNS SRV Record prefix The prefix that PingFederate uses in its DNS queries for SRV
records to locate an LDAP-capable directory server.

Copyright ©2024

 | Administrator's Reference Guide | 897

Field Description

(Required) The default value is _ldap._tcp.

LDAPS DNS SRV Record prefix

(Required)

The prefix that PingFederate uses in its DNS queries for SRV
records to locate an LDAPS-capable directory server.

The default value is _ldaps._tcp.

3. Optional: Click Next to specify LDAP binary attributes on the LDAP Binary Attributes tab.

4. Click Save.

Specifying LDAP binary attributes
PingFederate allows you to specify attributes where you must handle such attribute values as binary data
for use in attribute contract fulfillment.

About this task

You cannot use binary data in an assertion. You must apply and handle encoding on a per-connection
basis. When binary attributes are selected for attribute mapping, the administrative console prompts you to
select an encoding type for each binary attribute.

Steps

1. On the LDAP Binary Attributes window, add, edit, or remove binary attributes.

2. Click Save to keep your configuration.

Proxied authorization
When connecting to PingDirectory or Oracle Directory Server, configure proxied authorization for the
service account on the directory server if you intend to enable self-service password reset in any HTML
Form Adapter instances that use this datastore.

By configuring proxied authorization for the service account on the directory server, users are not allowed
to reset their passwords if their accounts are disabled or if they were not granted permission to change
their passwords.

For information on configuring proxied authorization for service accounts, see the following table.

Directory server Reference

PingDirectory See Working with Proxied Authorization in the PingDirectory
Administration Guide.

Oracle Directory Server Go to Oracle's Oracle Fusion Middleware Deployment Planning Guide
and search for "Proxy Authorization".

Oracle Unified Directory Go to Oracle's online guide https://docs.oracle.com/cd/E52734_01/
oud/OUDAG/toc.htm Fusion Middleware Administering Oracle Unified
Directory and search for "proxied authorization control" in its glossary .

 Note:

Microsoft Active Directory does not support proxied authorization. See https://docs.microsoft.com/en-us/
openspecs/windows_protocols/ms-adts/faf0b8c6-8c59-439f-ac62-dc4c078ed715?redirectedfrom=MSDN.

For general information about proxied authorization, see RFC4370.

Configuring the password validation details request control ACI
When connecting to PingDirectory, configure the password validation details request control Access
Control Instruction (ACI) to provide user-friendly messages when users fail to change or reset their

Copyright ©2024

https://docs.pingidentity.com/bundle/pingdirectory-81/page/vti1564011446688.html
https://docs.oracle.com/cd/E29127_01/doc.111170/e28974/security-requirements.htm#aalhm
https://docs.oracle.com/cd/E52734_01/oud/OUDAG/toc.htm
https://docs.oracle.com/cd/E52734_01/oud/OUDAG/toc.htm
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/faf0b8c6-8c59-439f-ac62-dc4c078ed715?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/faf0b8c6-8c59-439f-ac62-dc4c078ed715?redirectedfrom=MSDN
https://tools.ietf.org/html/rfc4370

 | Administrator's Reference Guide | 898

passwords through the self-service account management capabilities in any HTML Form Adapter
instances that use the datastore.

About this task
For self-service password management, where the user knows the current password and wants to update
it, the service account of the datastore must have the password validation details request control ACI. For
self-service account recovery, where the user wants to define a new password after forgetting the current
password, the user account needs the same ACI.

Steps

1. Create LDIF files to capture the following ACI information.

OID

1.3.6.1.4.1.30221.2.5.40

Name

Password Validation Details Requerst Control

Permission

read

The following examples show the example file contents for change password and password reset.

Example: aci_toSvcAccount_forChangePassword.ldif

ACI to service account for change password
dn: uid=ssoDataStore,ou=ServiceAccounts,dc=example,dc=local
changetype: modify
add: aci
aci: (targetcontrol="1.3.6.1.4.1.30221.2.5.40")(version
 3.0; acl "Access to the Password Validation Details
 Request Control"; allow (read) userdn="ldap:///
uid=ssoDataStore,ou=ServiceAccounts,dc=example,dc=local";)

Example: aci_toUsrAccount_forPasswordReset.ldif

ACI to a user account for password reset
dn: uid=user.7,ou=People,dc=example,dc=local
changetype: modify
add: aci
aci: (targetcontrol="1.3.6.1.4.1.30221.2.5.40")(version 3.0; acl "Access
 to the Password Validation Details Request Control"; allow (read)
 userdn="ldap:///uid=user.7,ou=People,,dc=example,dc=local";)

 Note:

For demonstration purposes, this sample LDIF file only targets one user. You can use other LDIF
syntax to widen its coverage to include multiple users.

2. Use the ldapmodify command to configure the required ACI.

Example:

$ ldapmodify -f <path>/aci_toSvcAccount_forChangePassword.ldif
-h <host name>
-p <LDAP port>
-D <LDAP bind username>

Copyright ©2024

 | Administrator's Reference Guide | 899

-w <LDAP bind password>

$ ldapmodify -f <path>/aci_toUsrAccount_forPasswordReset.ldif
-h <host name>
-p <LDAP port>
-D <LDAP bind username>
-w <LDAP bind password>

 Note:

Line breaks are inserted for readability only.

Defining a custom LDAP type for outbound provisioning
If you are using outbound provisioning and your directory server is not PingDirectory, Microsoft Active
Directory, Oracle Unified Directory, or Oracle Directory Server, you can define a custom LDAP type for
PingFederate to use to streamline the provisioning configuration.

Steps

1. Copy and rename <pf_install>/pingfederate/server/default/conf/template/ldap-
templates/sample.template.txt file.

2. Change the template.name property value in the new template file.

This property value appears in the LDAP Type list on the LDAP Configuration window when you
save the template.

3. Modify other property values in the file to match the corresponding configuration of your directory
server.

These properties correspond to the fields shown on Outbound Provisioning # Channel # Source
Settings. They help the provisioner determine when user records are added, changed, or removed.

4. Save the new template file.

For a clustered PingFederate environment, perform these steps on the console node. No changes or
restart of the PingFederate service is required on any nodes.

Next steps
After you have configured the LDAP type, you can create a new LDAP datastore using the newly defined
LDAP type. To streamline outbound provisioning configuration, select the LDAP data store that uses the
newly-defined LDAP type in the Source window.

Configuring other types of datastores
Besides connecting to a directory server using LDAP or a database server using Java Database
Connection (JDBC), PingFederate can connect to other types of datastores, such as REST API-enabled
data sources that return user attributes in JavaScript Object Notation (JSON).

See the following topics for configuration steps:

▪ Configuring a REST API datastore on page 899
▪ Configuring a custom datastore on page 903

Configuring a REST API datastore
To retrieve attribute data from a JSON-based REST API, you must first create a REST API datastore.

Steps

1. Go to System # Data & Credential Stores # Data Stores.

2. On the Data Stores window, click Add New Data Store.

3. On the Data Store Type tab, type a name for the datastore.

Copyright ©2024

 | Administrator's Reference Guide | 900

4. From the Type list, select Rest API.

5. Optional: To mask attribute values returned from this datastore in PingFederate logs, select the Mask
Values in Log check box.

6. Click Next.

7. On the Configure Data Store Instance tab, click Add a new row to 'Base URLS and Tags'.

a. Enter the Base URL of the data source offering REST API access to its data. You can enter
multiple base URLs.

b. Optional: Enter one or more tags per base URL.

Tags are defined in the node.tags property in the <pf_install>/pingfederate/bin/
run.properties file. For a description of the node.tags property, see Deploying cluster
servers on page 199.

In PingFederate deployments that are regional, you can enter one or more tags for a Base URL,
which specifies the PingFederate node the datastore should communicate with. If none of the tags
match what is defined for the node.tags property, the default node is used.

The following rules apply to tags:

▪ You must separate multiple tags specified for one node with spaces.
▪ Tags must unique per base datastore.
▪ You cannot use a tag more than once per datastore.
▪ Tags are optional. If needed, you can configure a non-default node without tags. Doing this is

useful if you are not yet ready to tag the node, or if you are still in the planning stage but want
to enter the address for the node now.

c. Click Update under Action.
d. Select Set as Default under Action beside the Base URL and Tags that you want to use as the

default. The first Base URL and Tags configured is set as the default automatically.

 Note:
If the data source exposes multiple paths or requires specific query parameters to retrieve user
records, enter the base URL here and then specify the path and query parameters in the attribute
source configuration.

For more information, see Specifying a resource path for a REST API datastore on page 382.

8. If the data source requires specific HTTP request headers, click Add a new row to 'HTTP Request
Headers'.

 Note:
If configured, PingFederate includes the configured HTTP request headers and their values when
contacting the data source.

a. Enter the applicable name and value under Header Name and Header Value.
b. Click Update under Action.

Repeat these steps to define additional HTTP request headers and their values.

Copyright ©2024

 | Administrator's Reference Guide | 901

9. Click Add a new row to 'Attributes' to define local attribute names and map them to the data
returned by the data source.

Map each attribute to a path representing an attribute in the JSON response. This path follows the
syntax defined in the JavaScript Object Notation (JSON) Pointer specification at tools.ietf.org/html/
rfc6901.

You must define at least one attribute.

a. Enter the Local Attribute name and JSON Response Attribute Path.
b. Click Update under Action.

Repeat these steps to define additional attributes.

 Tip:

Define only the attributes required by other configuration items, such as contract fulfillment or token
authorization. Provide meaningful attribute names so that you can easily recognize them at a later
time.

10. Select one of the following authentication methods.
Choose from:

▪ None

PingFederate makes unauthenticated REST API requests to the data source. No credential
information is required. This is the default setting.

▪ Basic Authentication

PingFederate authenticates via the HTTP Basic authentication scheme. Enter the required
credentials in the Username and Password fields.

▪ OAuth 2.0 Bearer Token

PingFederate authenticates by presenting an OAuth 2.0 access token.

In this scenario, PingFederate is an OAuth client, specifically a client that uses the client credential
grant type to obtain access token from an authorization server and presents the access token to
the data source for authentication.

Enter the client credentials in the Client ID and Client Secret fields. Then enter the token
endpoint URL at the authorization server and the applicable scope (or scopes) in the OAuth
Token Endpoint and OAuth Scope fields.

11. If PingFederate should mask attribute values returned through this datastore in its log, select the Mask
Values in Log check box.

This check box is visible only when editing an existing datastore and is not checked by default.

12. Optional: Click Show Advanced Fields to configure additional settings.

For more information, see the following table.

Field Description

Enable HTTPS
Hostname Verification

Indicates whether to verify that the hostname of the data source matches
the subject (CN) or one of the subject alternative names (SANs) from the
certificate.

 Important:

We recommend to verify hostname for all connections.

This check box is selected by default.

Copyright ©2024

https://tools.ietf.org/html/rfc6901

 | Administrator's Reference Guide | 902

Field Description

Read Timeout (MS) Defines the socket timeout in milliseconds.

Enter 0 to set an infinite timeout.

Enter a negative integer to use the default value set by the operating
system.

The default value is 10000 in milliseconds, which is 10 seconds.

Connection Timeout
(MS)

Determines the timeout in milliseconds until a connection is established.

Enter 0 to set an infinite timeout.

Enter -1 to use the default value set by the operating system.

The default value is 10000 in milliseconds, which is 10 seconds.

Max Payload Size (KB) Defines the maximum allowed size in kilobytes (KB) of the returned JSON
response payload.

Enter 0 to configure an unrestricted payload size.

The default value is 1024 in KB.

Retry Request Determines whether to retry a user data retrieval request if the data source
returns an HTTP status code found in the Retry Error Codes.

This check box is selected by default.

Maximum Retries Limit Defines the maximum number of retry attempts if the data source returns
an HTTP status code found in the Retry Error Codes.

The default value is 5.

Retry Error Codes Enter a comma-separated list of HTTP status codes, for which if received
from the data source, PingFederate might retry the request.

For example, you can enter 429 for "Too Many Request" or 503 for
"Service Unavailable".

The default value is 429.

Test Connection URL Determines the URL to which PingFederate sends GET requests to test the
datastore connection on the Actions tab.

When not specified (the default), PingFederate sends GET requests to the
base URL of the datastore.

13. On the Actions tab, verify the datastore configuration.

a. Click Test Connection to test the connectivity between PingFederate and the data source.

Result:

The administrative console displays the results returned by the data source. The PingFederate
server log may contain additional messages as well.

b. Review the results.
c. Optional: Click Reset and repeat the test.

14. On the Summary tab, review your configuration, amend as needed, click Save to keep your
configuration or click Cancel to discard it.

Copyright ©2024

 | Administrator's Reference Guide | 903

Example

You have two use cases that can leverage user attributes obtained through REST APIs. The data source
returns user records in JSON

{
 "uid": "asmith",
 "office": {
 "city": "Denver",
 "state": "CO",
 "zipCode": 80202
 },
 "telephoneNumbers": [
 "+1 303-555-1234",
 "+1 303-555-5678"
],
 "department": "Engineering"
}

The first use case requires the user's department, while the second use case requires the first telephone
number and the ZIP code.

To address both use cases, create a REST API datastore with the following attributes.

Local Attribute JSON Response Attribute Path

Dept /department

Telephone /telephoneNumbers/0

Zip /office/zipCode

Once set up, you can fulfill various contracts or configure issuance criteria based on the attribute data from
the data source.

Configuring a custom datastore
You can configure your own custom datastore instance to perform specified actions.

About this task

Developers can use the PingFederate SDK to create specific drivers for non-Java Database Connectivity
(JDBC) , LDAP datastores, or more sophisticated JDBC or LDAP queries, including flat files or SOAP-
connected databases. You can write datastores to perform configuration assistance or validation actions,
such as testing a connection to a database. Actions can also include generation of parameters that might
need manual setting in a configuration file.

For more information, see the Javadoc for the CustomDataSourceDriver interface, the
SamplePropertiesDataStore.java file for a sample implementation, and the SDK Developer's Guide
on page 1047 for build and deployment information.

 Tip:

The Javadoc for and the sample implementation are in the <pf_install>/pingfederate/sdk
directory.

Steps

1. After the data store driver (JAR) file is written and installed, select it in the Data Store window when
creating a new instance of your data store.

Copyright ©2024

 | Administrator's Reference Guide | 904

2. On the Configure Data Store Instance tab, configure your data store instance.

 Note:

Depending on the data store implementation, configuration requirements vary.

Example:

After building and deploying the sample from the <pf_install>/pingfederate/sdk/plugin-
src/custom-data-store-example directory, you can create an instance of the Sample SDK
Properties Data Store and configure the rest, as shown in the following images.

 Note:
When editing an existing instance, you can modify the name of the data store instance and toggle
the option for if PingFederate should mask attribute values returned from this data store instance in
PingFederate logs.

3. On the Actions window, follow the on-screen instructions provided by the developer to complete any
required tasks.

 Note:
Depending on the datastore implementation, configuration requirements vary. If no action is required,
this window is not shown.

4. Click Save to keep your configuration.

Defining a datastore for persistent authentication sessions
When enabling PingFederate authentication sessions, you can select the persistent option so that
PingFederate can leverage previous sessions as users request protected resources after restarting their
browsers.

About this task

This optional persistent configuration requires external storage of session-state data, as opposed to
in-memory alone. By default, PingFederate uses its internal HSQLDB database to maintain persistent
authentications. You can configure PingFederate to maintain persistent authentication sessions externally
on a database server or a PingDirectory server. Also, the PingFederate SDK lets you use custom solutions
for persistent session storage.

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

Steps

1. Create the required data structure on the external storage medium.

2. Modify two PingFederate configuration XML files.

Copyright ©2024

 | Administrator's Reference Guide | 905

Configuring an external database for authentication sessions
Set up various tables so that PingFederate can store authentication sessions on corresponding database
servers.

About this task

Specific tables are required in order for PingFederate to store authentication sessions on your database
server. Table-setup scripts are provided for supported database servers.

Steps

1. Run the table-setup scripts, provided in the <pf_install>/pingfederate/server/default/
conf/authentication-session/sql-scripts directory, for your database server.

2. If you have not already done so, go to System # Data & Credential Stores. In the Data Stores
window, create a Java Database Connection (JDBC) datastore for your database server.

3. Copy the system ID of the applicable JDBC datastore from the Data Stores window.

4. Edit the
org.sourceid.saml20.service.session.data.impl.SessionStorageManagerJdbcImpl.xml
file, located in the <pf_install>/pingfederate/server/default/data/config-store
directory.

 Note:

For a clustered environment, edit this file on the administrative console node first, and then replicate
to other engine nodes using System # Server # Cluster Management as explained in later steps.

Replace the <c:item name="PingFederateDSJNDIName"/> element value with the system ID of
your data store connection and save the file.

Example:

For example, if the system ID is JDBC-123456789ABCDEF123456789ABCDEF123456A0A6, update
the
org.sourceid.saml20.service.session.data.impl.SessionStorageManagerJdbcImpl.xml
file as follows.

<?xml version="1.0" encoding="UTF-8"?>
<c:config xmlns:c="http://www.sourceid.org/2004/05/config">
 <c:item
 name="PingFederateDSJNDIName">JDBC-123456789ABCDEF123456789ABCDEF123456A0A6</
c:item>
</c:config>

5. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml
file.

Example: If the system ID is SessionStorageManager, locate the
SessionStorageManager service point, set the value of the class attribute to
org.sourceid.saml20.service.session.data.impl.SessionStorageManagerJdbcImpl
(the default value), then save the file.

<!-- Service for storing Authentication Sessions. -->
<service-point id="SessionStorageManager"
 interface="org.sourceid.saml20.service.session.data.SessionStorageManager">
 <invoke-factory>
 ...
 <construct
 class="org.sourceid.saml20.service.session.data.impl.SessionStorageManagerJdbcImpl"/
>

Copyright ©2024

 | Administrator's Reference Guide | 906

 </invoke-factory>
</service-point>

 Note:

For a clustered environment, you must edit the hivemodule.xml file on each node manually as
cluster replication can't replicate this change to other nodes.

6. Start or restart the PingFederate service.

 Note:

For a clustered environment, replicate this new configuration to other engine nodes on System #
Server # Cluster Management. Start or restart the service on each engine node to activate the
change.

Result

PingFederate removes expired authentication sessions from the database once a day. To fine-tune the
frequency and the number of expired authentication sessions to remove, see Managing authentication
sessions stored in the database on page 843.

Configuring PingDirectory for authentication sessions
Use specific schema objects to enable PingFederate to store authentication sessions on your directory
server. For PingDirectory, LDIF scripts are provided for this purpose.

Steps

1. Update the LDAP schema.

a. Sign on to the PingDirectory administrative console.
b. Go to LDAP Schema # Schema Utilities.
c. Click Import Schema Element.
d. Copy the schema changes from the authentication-session-attributes-ldap-

pingdirectory.ldif file and paste them into the text area.

The file is located in the <pf_install>/pingfederate/server/default/conf/
authentication-session/ldif-scripts directory.

Replace the placeholder values with relevant information from your directory server.
e. Click Import.

2. Create the following indexes.

Attribute name Index type

pf-authn-session-group-hashed-session-id equality

pf-authn-session-group-user-ids equality

pf-authn-session-group-expiry-time ordering

pf-authn-session-group-last-activity-time ordering

Create these indexes with PingDirectory's dsconfig utility. The dsconfig utility is interactive. You
can also provide inputs as command arguments. The following examples create the indexes.

$ bin/dsconfig create-local-db-index \

Copyright ©2024

 | Administrator's Reference Guide | 907

 --backend-name userRoot \
 --index-name pf-authn-session-group-hashed-session-id \
 --set index-type:equality

$ bin/dsconfig create-local-db-index \
 --backend-name userRoot \
 --index-name pf-authn-session-group-user-ids \
 --set index-type:equality

$ bin/dsconfig create-local-db-index \
 --backend-name userRoot \
 --index-name pf-authn-session-group-expiry-time \
 --set index-type:ordering

$ bin/dsconfig create-local-db-index \
 --backend-name userRoot \
 --index-name pf-authn-session-group-last-activity-time \
 --set index-type:ordering

After adding the indexes, use the rebuild-index utility to build the indexes. The following example
builds the required indexes.

$ bin/rebuild-index \
 --baseDN "dc=example,dc=com" \
 --index pf-authn-session-group-hashed-session-id \
 --index pf-authn-session-group-user-ids \
 --index pf-authn-session-group-expiry-time \
 --index pf-authn-session-group-last-activity-time

For more information, see Working with Indexes in the PingDirectory Administration Guide .

3. If you have not already done so, create an LDAP data store for your directory server on System #
Data & Credential Stores # Data Stores.

4. Copy the system ID of the applicable LDAP data store from the Data Stores window.

5. Edit the /pingfederate/server/default/data/config-store/
org.sourceid.saml20.service.session.data.impl.SessionStorageManagerLdapImpl.xml
file.

 Note:

For a clustered environment, edit this file on the administrative console node first, and then replicate
to other engine nodes using System # Server # Cluster Management as explained in later steps.

a. Replace the <c:item name="PingFederateDSJNDIName"/> element value with the system
ID of your data store connection.

Example:

For example, if the system ID is LDAP-123456789ABCDEF123456789ABCDEF123456A0AC,
update the configuration file as follows.

...
<!-- Data store id -->
<c:item
 name="PingFederateDSJNDIName">LDAP-123456789ABCDEF123456789ABCDEF123456A0AC</
c:item>

Copyright ©2024

 | Administrator's Reference Guide | 908

...

b. Enter a value for the <c:item name="SearchBase"/> element.

 Tip:

This is the distinguished name (DN) that points to the client location. For more information, see
the inline comment and the LDIF scripts in the <pf_install>/pingfederate/server/
default/conf/authentication-session/ldif-scripts directory.

c. Update the attribute names only if you have changed attribute names in the LDIF scripts located in
the <pf_install>/pingfederate/server/default/conf/authentication-session/
ldif-scripts directory.

d. Save the file.

6. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml
file.

a. Locate the SessionStorageManager service point.

<!-- Service for storing Authentication Sessions. -->
<service-point id="SessionStorageManager"
 interface="org.sourceid.saml20.service.session.data.SessionStorageManager">
 <invoke-factory>
 <!--
 Supported classes are

 org.sourceid.saml20.service.session.data.impl.SessionStorageManagerJdbcImpl :
 Use this service-point for a Jdbc implementation.

 org.sourceid.saml20.service.session.data.impl.SessionStorageManagerLdapImpl :
 Use this service-point for an LDAP implementation.
 -->
 <construct
 class="org.sourceid.saml20.service.session.data.impl.SessionStorageManagerJdbcImpl"/
>
 </invoke-factory>
</service-point>

b. Set the value of the class attribute to
org.sourceid.saml20.service.session.data.impl.SessionStorageManagerLdapImpl.

c. Save the file.

 Note:

For a clustered environment, you must edit the hivemodule.xml file on each node manually as
cluster replication can't replicate this change to other nodes.

Copyright ©2024

 | Administrator's Reference Guide | 909

7. Start or restart the PingFederate service.

 Note:

For a clustered environment, replicate this new configuration to other engine nodes on System #
Server # Cluster Management. Start or restart the service on each engine node to activate the
change.

 Note:

When storing persistent authentication sessions on a PingDirectory server, you must also configure a
cleanup plugin in PingDirectory to remove expired authentication sessions from your directory server.
For more information, see Managing authentication sessions stored in PingDirectory on page 846.

Using custom solutions for persistent session storage
The PingFederate SDK supports custom storage for persistent authentication sessions.

Steps

1. Implement the SessionStorageManager interface.

 Note:
For more information, see the Javadoc for the SessionStorageManager interface. The Javadocs
for PingFederate are in the <pf_install>/pingfederate/sdk directory.

2. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml
file:

a. Locate the SessionStorageManager service point:

<!-- Service for storing Authentication Sessions -->
<service-point id="SessionStorageManager"
 interface="org.sourceid.saml20.service.session.data.SessionStorageManager">
 <invoke-factory>

 <construct
 class="org.sourceid.saml20.service.session.data.impl.SessionStorageManagerJdbcImpl"/
>

 </invoke-factory>
</service-point>

b. Update the construct attribute value to the name of your class.
c. Save the file.

 Note:

For a clustered environment, you must edit the hivemodule.xml file on each node manually as
cluster replication can't replicate this change to other nodes.

3. Deploy the required program files of your custom implementation to all PingFederate servers.

Copyright ©2024

 | Administrator's Reference Guide | 910

4. Start or restart PingFederate.

 Note:

For a clustered environment, replicate this new configuration to other engine nodes on System #
Server # Cluster Management. Start or restart the service on each engine node to activate the
change.

OAuth grant datastores
Learn about persistent grant data stores and persistent authorizations.

PingFederate uses a built-in HSQLDB as its persistent grant datastore after the initial setup.

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it may cause various problems
due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

Persistent authorizations include those obtained by OAuth clients in the following ways:

▪ Grants obtained or updated using the authorization code, resource owner credentials, or device
authorization grant type, in conjunction with the refresh token grant type

 Note:

If the use cases involve mapping attributes from authentication sources, such as IdP adapter instances
or IdP connections, or password credential validator (PCV) instances to the access tokens, directly
or through persistent grant-extended attributes, storing these attributes from authentication sources
and their values along with the persistent grants maintains them for reuse when clients subsequently
present refresh tokens for new access tokens.

▪ Grants obtained or updated by using the implicit grant type, for which is configured to reuse existing
persistent grants

 Note:

If the use cases involve mapping attributes from authentication sources or PCV instances to the
access tokens, runtime procedures obtain attribute values for each token request, but persistent grants
do not store with attributes or their values.

Persistent grants and any associated attributes and their values remain valid until the grants expire or until
explicitly revokes or cleans them up.

 Note:

Attribute values are always stored encrypted when a directory is used. If a database server is used
(including the built-in HSQLDB database), attribute values are also stored encrypted by default.

Copyright ©2024

 | Administrator's Reference Guide | 911

Configuring external databases for grant storage
Specific tables are required in order for PingFederate to store grants, the associated attributes, and their
values (if any), on your database server. Table-setup scripts are provided for supported database servers.

Steps

1. Run the table-setup scripts for your database server provided in the <pf_install>/
pingfederate/server/default/conf/access-grant/sql-scripts directory.

2. If you have not already done so, create a JDBC data store for your database server on System # Data
& Credential Stores # Data Stores.

3. Copy the system ID of the applicable Java Database Connection (JDBC) data store from the Data
Stores window.

4. Edit the <pf_install>/pingfederate/server/default/data/config-store/
org.sourceid.oauth20.token.AccessGrantManagerJdbcImpl.xml file.

 Note:

For a clustered environment, edit this file on the administrative console node first, and then replicate
to other engine nodes using System # Server # Cluster Management as explained in later steps.

Replace the <c:item name="PingFederateDSJNDIName"/> element value with the system ID of
your data store connection and save the file.

Example:

If the system ID is JDBC-123456789ABCDEF123456789ABCDEF123456A0A6, update the
org.sourceid.oauth20.token.AccessGrantManagerJdbcImpl.xml file as follows.

<?xml version="1.0" encoding="UTF-8"?>
<c:config xmlns:c="http://www.sourceid.org/2004/05/config">
 <c:item
 name="PingFederateDSJNDIName">JDBC-123456789ABCDEF123456789ABCDEF123456A0A6</
c:item>
</c:config>

5. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml
file.

a. Locate the AccessGrantManager service point.

<!-- Service for storage of access grants -->
<service-point id="AccessGrantManager"
 interface="com.pingidentity.sdk.accessgrant.AccessGrantManager">
...
 <create-instance
 class="org.sourceid.oauth20.token.AccessGrantManagerJdbcImpl"/>
</service-point>

b. Set the value of the class attribute to
org.sourceid.oauth20.token.AccessGrantManagerJdbcImpl, the default value.

c. Save the file.

 Note:

For a clustered environment, you must edit the hivemodule.xml file on each node manually as
cluster replication can't replicate this change to other nodes.

Copyright ©2024

 | Administrator's Reference Guide | 912

6. Start or restart PingFederate.

 Note:

For a clustered environment, replicate this new configuration to other engine nodes on System #
Server # Cluster Management. Start or restart the service on each engine node to activate the
change.

Result

PingFederate provides two cleanup tasks for persistent grants. One task manages expired grants,
while another task caps the number of grants based on a combination of user, client, grant type, and
authentication context. For more information, see OAuth persistent grants cleanup on page 848.

Configuring directories for grant storage
PingFederate requires specific schema objects in order to store grants, the associated attributes, and their
values (if any) on your directory server. LDIF scripts are provided for supported directory servers.

Steps

1. Review the LDIF scripts for your directory server provided in the <pf_install>/pingfederate/
server/default/conf/access-grant/ldif-scripts directory.

2. Replace placeholder values with relevant information from your directory server.

3. Run the LDIF scripts to update your LDAP schema.

 Note:

For Active Directory, run the script to create the attributes, then run the script to create the object
class.

For Ping Directory, run the ldapmodify command. For example:

ldapmodify --defaultAdd --filename "<path to ldif file>\access-grant-
ldap-pingdirectory.ldif" -h <hostname> -p <port> -D "<adminDN>" -w
<adminPassword>

4. If you have not already done so, create an LDAP datastore for your directory server on System # Data
& Credential Stores # Data Stores.

5. Copy the system ID of the applicable LDAP datastore from System # Data & Credential Stores #
Data Stores.

6. Edit the configuration file relevant to your directory server.

 Note:

This configuration file is located in the <pf_install>/pingfederate/server/default/data/
config-store directory, as described in the following table.

Directory server Configuration file

PingDirectory org.sourceid.oauth20.token.AccessGrantManagerLDAPPingDirectoryImpl.xml

Microsoft Active Directory org.sourceid.oauth20.token.AccessGrantManagerLDAPADImpl.xml

Copyright ©2024

 | Administrator's Reference Guide | 913

Directory server Configuration file

Oracle Unified Directory org.sourceid.oauth20.token.AccessGrantManagerLDAPOracleImpl.xml

 Note:

For a clustered environment, edit this file on the administrative console node first, and then replicate
to other engine nodes using System # Server # Cluster Management as explained in later steps.

a. Replace the <c:item name="PingFederateDSJNDIName"/> element value with the system
ID of your datastore connection.

Example:

If the system ID is LDAP-123456789ABCDEF123456789ABCDEF123456A0A6, update the
configuration file as follows.

...
<!-- Data store id -->
<c:item
 name="PingFederateDSJNDIName">LDAP-123456789ABCDEF123456789ABCDEF123456A0A6</
c:item>
...

b. Enter a value for the <c:item name="SearchBase"/> element.

 Tip:

This is the distinguished name (DN) that points to the access grants location. For more
information, see the inline comment and the LDIF scripts in the <pf_install>/
pingfederate/server/default/conf/access-grant/ldif-scripts directory.

c. Update the attribute names only if you have changed attribute names in the LDIF scripts located
in the <pf_install>/pingfederate/server/default/conf/access-grant/ldif-
scripts directory.

d. Save the file.

7. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml
file.

a. Locate the AccessGrantManager service point.

<!-- Service for storage of access grants -->
<service-point id="AccessGrantManager"
 interface="com.pingidentity.sdk.accessgrant.AccessGrantManager">
 <create-instance
 class="org.sourceid.oauth20.token.AccessGrantManagerJdbcImpl"/>
</service-point>

b. Update the class attribute value to one of the following values.

Directory server Class value

PingDirectory org.sourceid.oauth20.token.AccessGrantManagerLDAPPingDirectoryImpl

Microsoft Active Directory org.sourceid.oauth20.token.AccessGrantManagerLDAPADImpl

Copyright ©2024

 | Administrator's Reference Guide | 914

Directory server Class value

Oracle Unified Directory org.sourceid.oauth20.token.AccessGrantManagerLDAPOracleImpl

c. Save the file.

 Note:

For a clustered environment, you must edit the hivemodule.xml file on each node manually as
cluster replication can't replicate this change to other nodes.

8. Start or restart PingFederate.

 Note:

For a clustered environment, replicate this new configuration to other engine nodes on System #
Server # Cluster Management. Start or restart the service on each engine node to activate the
change.

9. In the directory, create indexes for the following OAuth grant attributes. If you are using PingDirectory,
see Indexing grant attributes in PingDirectory on page 914 for more information.

Attribute name Index type

accessGrantGuid equality

accessGrantUniqueUserIdentifier equality

accessGrantHashedRefreshTokenValue equality

accessGrantClientId equality

accessGrantExpires ordering

Result

PingFederate provides two cleanup tasks for persistent grants. One task manages expired grants,
while another task caps the number of grants based on a combination of user, client, grant type, and
authentication context. For more information, see OAuth persistent grants cleanup on page 848.

Indexing grant attributes in PingDirectory
If you use PingDirectory, or another directory, to store OAuth persistent grants for PingFederate, you must
index the grant attributes.

About this task

Index these OAuth grant attributes using the procedure below.

Attribute name Index type

accessGrantGuid equality

accessGrantUniqueUserIdentifier equality

accessGrantHashedRefreshTokenValue equality

accessGrantClientId equality

Copyright ©2024

 | Administrator's Reference Guide | 915

Attribute name Index type

accessGrantExpires ordering

Steps

1. Create the indexes using the PingDirectory dsconfig utility.

The dsconfig utility is interactive, letting you enter command arguments. The following examples
create the required indexes.

$ bin/dsconfig create-local-db-index \
 --backend-name userRoot \
 --index-name accessGrantGuid \
 --set index-type:equality

$ bin/dsconfig create-local-db-index \
 --backend-name userRoot \
 --index-name accessGrantUniqueUserIdentifier \
 --set index-type:equality

$ bin/dsconfig create-local-db-index \
 --backend-name userRoot \
 --index-name accessGrantHashedRefreshTokenValue \
 --set index-type:equality

$ bin/dsconfig create-local-db-index \
 --backend-name userRoot \
 --index-name accessGrantClientId \
 --set index-type:equality

$ bin/dsconfig create-local-db-index \
 --backend-name userRoot \
 --index-name accessGrantExpires \
 --set index-type:ordering

2. After adding the indexes, build the indexes using the rebuild-index utility.

The following example builds the required indexes.

$ bin/rebuild-index \
 --baseDN "dc=example,dc=com" \
 --index accessGrantGuid \
 --index accessGrantUniqueUserIdentifier \
 --index accessGrantHashedRefreshTokenValue \
 --index accessGrantClientId \
 --index accessGrantExpires

 Note:
You can configure a PingDirectory plugin to handle the cleanup of expired persistent grants and the
associated attributes. The plugin allows fine-grained control over various aspects of the cleanup task,
which can smooth out the performance impact. For more information, see Managing expired persistent
grants in PingDirectory on page 850.

Copyright ©2024

 | Administrator's Reference Guide | 916

Using custom solutions for grant storage
Use the PingFederate SDK to implement a custom solution for grant storage.

Steps

1. Implement the AccessGrantManager interface.

 Note:
For more information, see the Javadoc for the AccessGrantManager interface, the
SampleAccessGrant.java file for a sample implementation, and the SDK Developer's Guide on
page 1047 for build and deployment information.

 Tip:

The Javadoc for and the sample implementation are in the <pf_install>/pingfederate/sdk
directory.

2. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml
file.

a. Locate the AccessGrantManager service point.

<!-- Service for storage of access grants -->
<service-point id="AccessGrantManager"
 interface="com.pingidentity.sdk.accessgrant.AccessGrantManager">
 <create-instance
 class="org.sourceid.oauth20.token.AccessGrantManagerJdbcImpl"/>
</service-point>

b. Update the class attribute value to the name of your class.
c. Save the file.

 Note:

For a clustered environment, you must edit the hivemodule.xml file on each node manually as
cluster replication can't replicate this change to other nodes.

3. Deploy the required program files of your custom implementation to all PingFederate servers.

4. Start or restart PingFederate.

 Note:

For a clustered environment, replicate this new configuration to other engine nodes on System #
Server # Cluster Management. Start or restart the service on each engine node to activate the
change.

OAuth client datastores
Change the default storage method of XML files in PingFederate in order to make it easier to register
clients or manage their records through the OAuth Client Management Service.

stores client records in XML files by default. On-disk storage allows you to manage clients using the
administrative console and the administrative API. Client records are part of the configuration archive.

You can configure to store client records externally, which provides the flexibility to manage client records
through the OAuth Client Management Service, or enable dynamic client registration for your partner-
developers. In this scenario, client records are not part of the configuration archive. They are stored on a
database server, a directory server, or some other storage medium through the use of the SDK.

Copyright ©2024

 | Administrator's Reference Guide | 917

Configuring external databases for client storage
Specific tables are required in order for PingFederate to store OAuth client records on your database
server. Table-setup scripts are provided for supported database servers.

About this task

 CAUTION:

does not migrate client records from one storage medium to another. You must recreate your clients after
updating the client storage configuration. If you need only a few clients, you can recreate them using the
administrative console.

If you need a large number of clients, use the administrative API to retrieve your client records before
updating the client storage. Update the client storage configuration and recreate your clients using the
administrative API based on the retrieved records. For more information, see .

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

Steps

1. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml
file.

a. Locate the ClientManager service point.

<!-- Service for storing OAuth client configuration. -->
<service-point id="ClientManager"
 interface="org.sourceid.oauth20.domain.ClientManager">
 <invoke-factory>
 <!--
 Supported classes are
 org.sourceid.oauth20.domain.ClientManagerXmlFileImpl ...
 org.sourceid.oauth20.domain.ClientManagerJdbcImpl ...
 org.sourceid.oauth20.domain.ClientManagerLdapImpl ...
 org.sourceid.oauth20.domain.ClientManagerGenericImpl ...
 -->
 <construct
 class="org.sourceid.oauth20.domain.ClientManagerXmlFileImpl"/>
 </invoke-factory>
</service-point>

b. Update the class attribute value to
org.sourceid.oauth20.domain.ClientManagerJdbcImpl.

c. Save the file.

 Important:

You must set up an external database because you cannot share the bundled HSQLDB database
across multiple PingFederate engine nodes. For production standalone deployments, we recommend
you store the client records in an external secured database.

Copyright ©2024

 | Administrator's Reference Guide | 918

2. Run the table-setup scripts for your database server provided in the <pf_install>/
pingfederate/server/default/conf/oauth-client-management/sql-scripts directory.

3. If you have not already done so, create a Java Database Connectivity (JDBC) datastore for your
database server. Go to = System # Data & Credential Stores.

4. In the Data Stores window, copy the system ID of the applicable JDBC datastore.

5. Edit the <pf_install>/pingfederate/server/default/data/config-store/
org.sourceid.oauth20.domain.ClientManagerJdbcImpl.xml file.

 Note:

For a clustered environment, edit this file on the administrative console node first, and then replicate
to other engine nodes using System # Server # Cluster Management as explained in later steps.

Replace the <c:item name="PingFederateDSJNDIName"/> element value with the system ID of
your datastore connection and save the file.

Example:

If the system ID is JDBC-123456789ABCDEF123456789ABCDEF123456A0AC, update the
org.sourceid.oauth20.domain.ClientManagerJdbcImpl.xml file as follows.

<?xml version="1.0" encoding="UTF-8"?>
<c:config xmlns:c="http://www.sourceid.org/2004/05/config">
 <c:item
 name="PingFederateDSJNDIName">JDBC-123456789ABCDEF123456789ABCDEF123456A0AC</
c:item>
</c:config>

6. Start or restart PingFederate.

 Note:

For a clustered environment, replicate this new configuration to other engine nodes on System #
Server # Cluster Management. Start or restart the service on each engine node to activate the
change.

Configuring directories for client storage
Specific schema objects are required in order for PingFederate to store OAuth client records on your
directory server. LDIF scripts are provided for supported directory servers.

About this task

 CAUTION:

does not migrate client records from one storage medium to another. You must recreate your clients after
updating the client storage configuration. If you need only a few clients, you can recreate them using the
administrative console.

If you need a large number of clients, use the administrative API to retrieve your client records before
updating the client storage. Update the client storage configuration and recreate your clients using the
administrative API based on the retrieved records. For more information, see .

Steps

1. Review the LDIF scripts for your directory server provided in the <pf_install>/pingfederate/
server/default/conf/oauth-client-management/ldif-scripts directory.

Copyright ©2024

 | Administrator's Reference Guide | 919

2. Replace placeholder values with relevant information from your directory server.

3. Run the LDIF scripts to update your LDAP schema.

 Note:

For Active Directory, run the script to create the attributes, then run the script to create the object
class.

4. If you have not already done so, create an LDAP datastore for your directory server on System # Data
& Credential Stores # Data Stores.

5. Copy the system ID of the applicable LDAP datastore from System # Data & Credential Stores #
Data Stores.

6. Edit the <pf_install>/pingfederate/server/default/data/config-store/
org.sourceid.oauth20.domain.ClientManagerLdapImpl.xml file.

 Note:

For a clustered environment, edit this file on the administrative console node first, and then replicate
to other engine nodes using System # Server # Cluster Management as explained in later steps.

a. Replace the <c:item name="PingFederateDSJNDIName"/> element value with the system
ID of your datastore connection.

Example:

If the system ID is LDAP-123456789ABCDEF123456789ABCDEF123456A0AC, update the
configuration file as follows.

...
<!-- Data store id -->
<c:item
 name="PingFederateDSJNDIName">LDAP-123456789ABCDEF123456789ABCDEF123456A0AC</
c:item>
...

b. Enter a value for the <c:item name="SearchBase"/> element.

 Tip:

This is the distinguished name (DN) that points to the client location. For more information, see
the inline comment and the LDIF scripts in the <pf_install>/pingfederate/server/
default/conf/oauth-client-management/ldif-scripts directory.

c. Update the attribute names only if you have changed attribute names in the LDIF scripts
located in the <pf_install>/pingfederate/server/default/conf/oauth-client-
management/ldif-scripts directory.

d. Save the file.

7. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml
file.

a. Locate the ClientManager service point.

<!-- Service for storing OAuth client configuration. -->
<service-point id="ClientManager"
 interface="org.sourceid.oauth20.domain.ClientManager">
 <invoke-factory>
 <!--
 Supported classes are

Copyright ©2024

 | Administrator's Reference Guide | 920

 org.sourceid.oauth20.domain.ClientManagerXmlFileImpl ...
 org.sourceid.oauth20.domain.ClientManagerJdbcImpl ...
 org.sourceid.oauth20.domain.ClientManagerLdapImpl ...
 org.sourceid.oauth20.domain.ClientManagerGenericImpl ...
 -->
 <construct
 class="org.sourceid.oauth20.domain.ClientManagerXmlFileImpl"/>
 </invoke-factory>
</service-point>

b. Update the class attribute value to
org.sourceid.oauth20.domain.ClientManagerLdapImpl.

c. Save the file.

 Note:

For a clustered environment, you must edit the hivemodule.xml file on each node manually as
cluster replication can't replicate this change to other nodes.

8. Start or restart PingFederate.

 Note:

For a clustered environment, replicate this new configuration to other engine nodes on System #
Server # Cluster Management. Start or restart the service on each engine node to activate the
change.

9. In the directory, create indexes for the following OAuth client attributes. If you are using PingDirectory,
see Indexing client attributes in PingDirectory on page 920 for more information.

Attribute name Index type

pf-oauth-client-id equality

pf-oauth-client-id ordering

pf-oauth-client-id substring

pf-oauth-client-name equality

pf-oauth-client-name ordering

pf-oauth-client-name substring

pf-oauth-client-last-modified ordering

Indexing client attributes in PingDirectory
If you use PingDirectory, or another directory, to store OAuth client records for PingFederate, you must
index the client attributes.

About this task

Index these OAuth client attributes using the procedure below.

Attribute name Index type

pf-oauth-client-id equality

pf-oauth-client-id ordering

pf-oauth-client-id substring

pf-oauth-client-name equality

Copyright ©2024

 | Administrator's Reference Guide | 921

Attribute name Index type

pf-oauth-client-name ordering

pf-oauth-client-name substring

pf-oauth-client-last-modified ordering

Steps

1. Create the indexes using the PingDirectory dsconfig utility.

The dsconfig utility is interactive, letting you enter command arguments. The following example
creates the three indexes for the pf-oauth-client-id attribute.

$ bin/dsconfig create-local-db-index \
 --backend-name userRoot \
 --index-name pf-oauth-client-id \
 --set index-type:equality \
 --set index-type:ordering \
 --set index-type:substring

2. After creating the indexes, build them using the rebuild-index utility.

The following example builds the required indexes.

$ bin/rebuild-index \
 --baseDN "dc=example,dc=com" \
 --index pf-oauth-client-id \
 --index pf-oauth-client-name \
 --index pf-oauth-client-last-modified

Using custom solutions for client storage
Use the PingFederate SDK to implement a custom solution for client storage.

About this task

 CAUTION:

does not migrate client records from one storage medium to another. You must recreate your clients after
updating the client storage configuration. If you need only a few clients, you can recreate them using the
administrative console.

If you need a large number of clients, use the administrative API to retrieve your client records before
updating the client storage. Update the client storage configuration and recreate your clients using the
administrative API based on the retrieved records. For more information, see .

Copyright ©2024

 | Administrator's Reference Guide | 922

Steps

1. Implement the ClientStorageManagerV2 interface.

This interface includes a search() method, allowing developers to provide efficient implementations
of the pagination and search functions exposed in the administrative console.

For more information, see the Javadoc for the ClientStorageManagerV2 interface, the
SampleClientStorage.java file for a sample implementation, and the SDK Developer's Guide on
page 1047 for build and deployment information.

 Tip:

The Javadoc for and the sample implementation are in the <pf_install>/pingfederate/sdk
directory.

2. Edit the <pf_install>/pingfederate/server/default/conf/META-INF/hivemodule.xml
file.

a. Locate the ClientStorageManager service point.

<!-- Service for storing OAuth client configuration. -->
<service-point id="ClientManager"
 interface="org.sourceid.oauth20.domain.ClientManager">
 <invoke-factory>
 <!--
 Supported classes are
 org.sourceid.oauth20.domain.ClientManagerXmlFileImpl ...
 org.sourceid.oauth20.domain.ClientManagerJdbcImpl ...
 org.sourceid.oauth20.domain.ClientManagerLdapImpl ...
 org.sourceid.oauth20.domain.ClientManagerGenericImpl ...
 -->
 <construct
 class="org.sourceid.oauth20.domain.ClientManagerXmlFileImpl"/>
 </invoke-factory>
</service-point>

b. Update the class attribute value with the name of the class implementing the
ClientStorageManagerV2 interface.

c. Save the file.

 Note:

For a clustered environment, you must edit the hivemodule.xml file on each node manually as
cluster replication can't replicate this change to other nodes.

3. Start or restart PingFederate.

 Note:

For a clustered environment, replicate this new configuration to other engine nodes on System #
Server # Cluster Management. Start or restart the service on each engine node to activate the
change.

Account-linking datastores
Configure where you want to store account links, either internally or externally.

When a service provider (SP) is configured to use account linking for an identity provider (IdP) connection,
by default PingFederate uses the built-in Hyper SQL Database (HSQLDB) as the account-link repository.

Copyright ©2024

 | Administrator's Reference Guide | 923

You can also configure PingFederate to store account links on an external database server or directory
server. For specific instructions on how to configure these options, see the following topics:

▪ Configuring external databases for account-link storage on page 923
▪ Configuring directories for account-link storage on page 924

 CAUTION:

Use the built-in HSQLDB only for trial or training environments. For testing and production environments,
always use a secured external storage solution for proper functioning in a clustered environment.

Testing involving HSQLDB is not a valid test. In both testing and production, it might cause various
problems due to its limitations and HSQLDB involved cases are not supported by PingIdentity.

Configuring external databases for account-link storage
A specific table is required in order for PingFederate to store account links on your database server. Table-
setup scripts are provided for supported database servers.

Steps

1. Create a database for account linking using one of the table-setup scripts located in the
<pf_install>/pingfederate/server/default/conf/account-linking/sql-scripts
directory.

2. Go to System # Data & Credential Stores # Data Stores and create a new datastore to connect
PingFederate to the database. For more information, see Configuring a JDBC connection on page
887.

3. On the Data Stores window, copy the system ID of the new account-linking datastore.

4. In the org.sourceid.saml20.service.impl.AccountLinkingServiceDBImpl.xml file,
located in the <pf_install>/pingfederate/server/default/data/config-store directory,
replace the <c:item name="PingFederateDSJNDIName"/> element value with the system ID of
your datastore connection and save the file.

 Note:

For a clustered environment, edit this file on the administrative console node first, and then replicate
to other engine nodes using System # Server # Cluster Management as explained in later steps.

Example:

For example, if the system ID is JDBC-123456789ABCDEF123456789ABCDEF123456A0AC, update
the org.sourceid.saml20.service.impl.AccountLinkingServiceDBImpl.xml file as
follows.

<?xml version="1.0" encoding="UTF-8"?>
<c:config xmlns:c="http://www.sourceid.org/2004/05/config">
 <c:item
 name="PingFederateDSJNDIName">JDBC-123456789ABCDEF123456789ABCDEF123456A0AC</
c:item>
</c:config>

5. Start or restart PingFederate.

6. If you are running PingFederate in a cluster, go to System # Server # Cluster Management and
replicate this change to other runtime servers.

Copyright ©2024

 | Administrator's Reference Guide | 924

Configuring directories for account-link storage
You can create and configure a directory server to store account linking data.

Before you begin

 Note:

User accounts for linking must exist in the directory prior to establishing the account link. The Account
Linking Service does not add users to the directory server, it only updates AccountLinkDataAttribute
for a given user.

Steps

1. Go to System # Data & Credential Stores # Data Stores and create a new datastore to connect
PingFederate to the directory. For more information, see Configuring an LDAP connection on page
891.

2. Copy the system ID of the new account-linking datastore.

3. Edit the hivemodule.xml file.

The file is located in the <pf_install>/pingfederate/server/default/conf/META-INF
directory.

Locate the service-point for the Account Linking Service, as shown in the following example.

...
<!-- Service/adapter for storage of account linking -->
<service-point id="AccountLinkingService"
 interface="org.sourceid.saml20.service.AccountLinkingService">
<!--
Supported classes are
org.sourceid.saml20.service.impl.AccountLinkingServiceDBImpl : Use
 this service-point for a database implementation
org.sourceid.saml20.service.impl.AccountLinkingServiceLDAPImpl : Use
 this service-point for an LDAP implementation
-->
 <create-instance
 class="org.sourceid.saml20.service.impl.AccountLinkingServiceDBImpl"/>
</service-point>
...

Update the class value to
org.sourceid.saml20.service.impl.AccountLinkingServiceLDAPImpl, as shown in the
following example.

...
<!-- Service/adapter for storage of account linking -->
<service-point id="AccountLinkingService"
 interface="org.sourceid.saml20.service.AccountLinkingService">
...
 <create-instance
 class="org.sourceid.saml20.service.impl.AccountLinkingServiceLDAPImpl"/>
</service-point>
...

Locate the Service-Point ID for AccountLinkingService and change the value of the create-
instance class to
org.sourceid.saml20.service.impl.AccountLinkingServiceLDAPImpl.

Copyright ©2024

 | Administrator's Reference Guide | 925

4. Edit the <pf_install>/
org.sourceid.saml20.service.impl.AccountLinkingServiceLDAPImpl.xml file.

The following example shows the default content of the file.

<?xml version="1.0" encoding="UTF-8"?>
<c:config xmlns:c="http://www.sourceid.org/2004/05/config">

 <!-- Data store id -->
 <c:item name="PingFederateDSJNDIName"></c:item>

 <!-- LDAP search base -->
 <c:item name="UserSearchBase"></c:item>

 <!-- LDAP username attribute. ex: sAMAccountName -->
 <c:item name="UsernameAttribute"></c:item>

 <!-- Attribute on user object to place Account Linking data -->
 <c:item name="AccountLinkDataAttribute"></c:item>

</c:config>

Insert the applicable values between the XML tags as shown in the following table.

Item name Element value

PingFederateDSJNDINameThe system ID of new account-linking datastore.

UserSearchBase The location in the directory server from which the search begins.

UsernameAttribute The attribute that represents the user identifier.

AccountLinkDataAttributeThe attribute to store account linking data.

 Note:

The AccountLinkDataAttribute can be any multivalued string
attribute on a user object class. We recommend that you extend the LDAP
schema with a custom attribute for use here. For more information on
extending the Active Directory schema, see Extending the Schema from
Microsoft.

5. Start or restart PingFederate.

6. If you are running PingFederate in a cluster, go to System # Server # Cluster Management and
replicate this change to the other runtime servers.

 Note:

You must also manually apply the changes made in the hivemodule.xml file and then start or restart
PingFederate on each runtime server.

7. In the directory, create equality indexes on the LDAP attribute types you specified for the configuration
properties UsernameAttribute and AccountLinkDataAttribute.

Example: For example, you would need to create equality indexes on sAMAccountName and
AccountLink if you had specified the following in step 4:

<!-- LDAP username attribute. ex: sAMAccountName -->
<c:item name="UsernameAttribute">sAMAccountName</c:item>

<!-- Attribute on user object to place Account Linking data -->

Copyright ©2024

https://docs.microsoft.com/en-us/windows/win32/ad/extending-the-schema

 | Administrator's Reference Guide | 926

<c:item name="AccountLinkDataAttribute">AccountLink</c:item>

Password Credential Validators
PingFederate provides an authentication mechanism using plugin password credential validators
(PCVs). This feature provides centralized credential validation for various PingFederate components and
configurations.

To manage Password Credential Validators, go to System # Data & Credential Stores # Password
Credential Validators.

For each instance of the HTML Form Adapter, the HTTP Basic Adapter, and the Username Token
Processor, you can select the same PCV instance, a unique PCV instance, or multiple PCV instances.
When you select multiple PCV instances for a given adapter or token processor instance, if the first PCV
instance fails to authenticate a user, the PCV returns control to the adapter or the token processor. The
adapter or the token processor then tries the next PCV instance. The cycle stops until a PCV instance
succeeds or the last PCV instance also fails.

For OAuth clients using the Resource Owner Password Credentials grant type, you configure a grant-
mapping configuration to fulfill the persistent grant contract using the attribute values from the applicable
PCV instances.

 Note:

You can only create one grant-mapping configuration per applicable PCV instance.

If you want to manage OAuth client records using the OAuth Client Management Service or persistent
grants using the OAuth Access Grant Management Service, you must select a PCV instance when
configuring authorization server settings. When accessing these services, you must include in the requests
valid credentials via HTTP Basic authentication scheme.

PingFederate is distributed with the following plugin PCVs.

LDAP Username Password Credential Validator

Validates credentials based on an LDAP look-up in an organization's user-datastore.

PingID PCV (with integrated RADIUS server)

Validates credentials from a VPN RADIUS client based on an LDAP look-up in an organization's
user-datastore. For more information, see Integrate PingID with your VPN.

PingOne for Enterprise Directory Password Credential Validator

Validates credentials stored in PingOne for Enterprise Directory.

RADIUS Username Password Credential Validator

Validates credentials based on the RADIUS protocol on an organization's RADIUS server.

Simple Username Password Credential Validator

Validates credentials maintained by PingFederate.

 Note:

By default, automatically checks multi-connection errors whenever you access this window. This verifies
that configured connections are not adversely affected by changes made here.

If you experience noticeable delays in accessing this window, you can disable automatic connection
validation. Go to System # Server # General Settings.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingid/page/rgo1564020462618.html

 | Administrator's Reference Guide | 927

Choosing a Password Credential Validator
You can choose the type of Password Credential Validator (PCV) that you want to use in PingFederate.
You must also specify the PCV's name, ID, and whether it uses a parent instance.

About this task

Available PCV types are determined by plug-in .jar files loaded in the <pf_install>/pingfederate/
server/default/deploy directory. Several validator plugins are bundled with PingFederate. You can
add other plugins from the Ping Identity Downloads website.

Steps

1. On the Type tab, enter a name and an ID for the instance.

2. Select the type of the PCV from the Type list.

3. Optional: Select a Parent Instance from the list.

Use this option when creating an instance that is similar to an existing one. The child instance inherits
the configuration of its parent. You can also override one or more settings during the setup. Select the
Override ... check box and make the adjustments as needed in one or more subsequent windows.

Password Credential Validator instance configurations
The instance configuration of a Password Credential Validator (PCV) varies depending on the credential
validators deployed on your server.

For PCVs bundled with PingFederate, see the following topics:

▪ Configuring the LDAP Username Password Credential Validator on page 927
▪ Configuring the PingOne for Enterprise Directory Password Credential Validator on page 932
▪ Configuring the RADIUS Username Password Credential Validator on page 933
▪ Configuring the Simple Username Password Credential Validator on page 935

Configuring the LDAP Username Password Credential Validator
The LDAP Username Password Credential Validator (PCV) verifies credentials using an organization's
LDAP datastore.

About this task

When an authentication error occurs, PingFederate automatically parses the messages returned by
PingDirectory, Microsoft Active Directory (AD), Oracle Unified Directory (OUD), or Oracle Directory Server
(ODS) and categorizes them with error conditions.

When validating against a directory server other than PingDirectory, AD, OUD, or ODS, administrators can
define custom message categorization by mapping specific error messages with wildcard support to the
desired error conditions.

The error messages are returned to the HTML Form Adapter instances and the OAuth clients using the
Resource Owner Password Credential grant type. The HTML Form Adapter is designed to show the
error message it receives from the LDAP Username PCV. OAuth-client developers can create custom
experiences based on the error responses, which contain the error messages. The HTML Form Adapter
uses the relevant error conditions to determine the LDAP password-change scenarios and to present the
relevant messages to the end users.

 Tip:

These customizable messages are stored in the message file, pingfederate-
messages.properties, located in the <pf_install>/pingfederate/server/default/conf/
language-packs directory.

Copyright ©2024

 | Administrator's Reference Guide | 928

You can localize these messages by using the localization framework for an international audience. For
more information, see Localizing messages for end users on page 839.

Steps

1. Go to the Instance Configuration tab.

2. Optional: Override the authentication error messages.

 Note:

You might require this option in order for a directory server other than PingDirectory, AD, OUD, or
ODS to support the password change function in the HTML Form Adapter or to alter the end-user
messages associated with that function.

a. Click Add a new row to 'Authentication Error Overrides'.
b. Enter an applicable LDAP error message under Match Expression.

 Tip:

You can use wildcard asterisks to match messages returned from your directory server. For
example, *expired*.

c. Select a relevant error condition from the Error list.
d. Optional: Enter a key name or an error message under Message Properties Key.

No value

If you skip this field, PingFederate returns the default message based on the selected error
condition.

A unique key name

If you enter a key name in this field and then add the key name with a key value (the
desired error message) to the PingFederate message file, PingFederate returns that key
value.

The key name must be unique. Furthermore, you may localize these messages by using the
PingFederate localization framework for an international audience.

An error message

If you enter an error message in this field (without defining it in the PingFederate message
file), PingFederate returns your message verbatim.

e. Click Update under Action.
f. Repeat these steps to add more overrides as needed.

 Note:

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

Use the up and down arrows to change the display order. The display order does not affect runtime
processing.

Copyright ©2024

 | Administrator's Reference Guide | 929

3. Select the LDAP datastore and enter information into the required fields.

For more information about each field, see the following table.

Field Description

LDAP Datastore

(Required)

The LDAP datastore configured in PingFederate.

If you have not yet configured the server to communicate with the directory
server you need, click Manage Data Stores.

 Note:

When connecting to an AD LDAP server, if you want to enable the
password changes, password reset, or account unlock features in the
HTML Form Adapter, you must secure the datastore connection to your
AD LDAP server using LDAPS. AD requires this level of security to allow
password changes.

Search Base

(Required)

The location in the directory server from which the search begins.

Copyright ©2024

 | Administrator's Reference Guide | 930

Field Description

Search Filter

(Required)

The LDAP query to locate a user record.

If your use case requires the flexibility of allowing users to identify
themselves using different attributes, you can include these attributes in
your query. For instance, the following search filter allows users to sign on
using either the sAMAccountName or employeeNumber attribute value
through the HTML Form Adapter.

(|(sAMAccountName=${username})(employeeNumber=
${username}))

 Important:

To ensure that your service providers (SPs) always get the expected
attribute, select a specific user attribute as the source of the subject
identifier when configuring the applicable SP connections. There are
several ways to do so:

▪ Extend the PCV contract and fulfill the subject identifier through the
HTML Form Adapter. For more information, see Extending the contract
for the credential validator on page 935.

▪ Add a data source in the SP connection and fulfill the subject identifier
through a datastore query. For more information, see Configuring
attribute sources and user lookup on page 438.

▪ If you use authentication policy in conjunction with a policy contract,
you can add a data source in the contract mapping configuration
and fulfill the subject identifier in an SP connection through the
authentication policy contract. For more information, see Applying
policy contracts or identity profiles to authentication policies on page
251.

When configuring multifactor authentication using PingID, where you chain
an instance of the PingID Adapter behind an HTML Form Adapter instance,
ensure that you also select a specific user attribute as the incoming user
attribute for the PingID Adapter instance. For example, if you have set up
PingFederate as the identity bridge for your PingOne for Enterprise account
and have selected sAMAccountName as the subject identifier in the SP
connection, you should also select sAMAccountName as the incoming user
attribute for your PingID Adapter instance. You can accomplish this through
an instance of the Composite Adapter or an authentication policy.

For more information, see Input User ID Mapping in Configuring a
Composite Adapter instance on page 285 or Incoming User ID in
Specifying incoming user IDs on page 245, respectively.

Scope of Search The level of search to perform in the search base.

One Level indicates a search of objects immediately subordinate to the
base object, not including the base object itself. Subtree indicates a
search of the base object and the entire subtree within the base object
distinguished name.

The deault selection is Subtree.

Copyright ©2024

 | Administrator's Reference Guide | 931

Field Description

Case-Sensitive
Matching

The option to enable case-sensitive matching between the LDAP error
messages returned from the directory server and the Match Expression
values specified on this window.

This check box is selected by default.

Advanced fields for self-service password reset, account unlock, and user name recovery through
the HTML Form Adapter

Display Name
Attribute

The LDAP attribute used for personalizing messages to the users.

This field is applicable for all password reset types (other than None),
account unlock, and user name recovery.

The default value is displayName.

Mail Attribute

(for password reset)

The LDAP attribute containing the email address of the users.

This field is required when password reset using one-time link or one-time
password is enabled in any HTML Form Adapter instances that validate
credentials against this LDAP Username PCV instance.

 Note:

When configuring in conjunction with user name recovery, this attribute
should correspond to the attribute specified on the left side of the Mail
Search Filter field.

The default value is mail.

SMS Attribute

(for password reset)

The LDAP attribute containing the telephone number of the users.

This field is required when password reset using text message is enabled
in any HTML Form Adapter instances that validate credentials against this
LDAP Username PCV instance.

This field has no default value.

PingID Username
Attribute

(for password reset)

The LDAP attribute containing the PingID user name of the users.

This field is required when password reset using PingID is enabled in any
HTML Form Adapter instances that validate credentials against this LDAP
Username PCV instance.

Mail Search Filter

(for user name
recovery)

The LDAP query to locate a user record using an email address, such as
mail=${mail}.

This field is required when user name recovery is enabled in any HTML
Form Adapter instances that validate credentials against this LDAP
Username PCV instance.

 Note:

When configuring in conjunction with password reset, the attribute specified
on the left side of this search filter should correspond to the attribute
specified in the Mail Attribute field.

Copyright ©2024

 | Administrator's Reference Guide | 932

Field Description

Username Attribute

(for user name
recovery)

The LDAP attribute containing the user identifier of the users.

This field is required when user name recovery is enabled in any HTML
Form Adapter instances that validate credentials against this LDAP
Username PCV instance.

 Note:

This attribute should correspond to the attribute specified on the left side of
the Search Filter field.

Mail Verified Attribute

(for user name
recovery)

The LDAP attribute indicating whether the user's email address is verified.
The expected value of this user attribute is either true or false (case
insensitive).

This field is required when user name recovery using only verified email
addresses is enabled in any HTML Form Adapter instances that validate
credentials against this LDAP Username PCV instance.

Enable PingDirectory
Detailed Password
Policy Requirement
Messaging

(for change password
and password reset)

For password changes through an LDAP PCV backed by PingDirectory,
this option indicates whether PingDirectory should return detailed password
policy violations to PingFederate so that the invoking authentication source,
namely the HTML Form Adapter, can present them to the end-users.

 Important:

The User DN associated with the selected LDAP Datastore must be
granted the proper access control instruction (ACI) in PingDirectory. For
more information, see Configuring the password validation details request
control ACI.

Configuring the PingOne for Enterprise Directory Password Credential Validator
The PingOne for Enterprise Directory Username Password Credential Validator (PCV) verifies credentials
stored in your PingOne for Enterprise Directory.

Before you begin

To use the PingOne for Enterprise PCV, you must have:

▪ A PingOne for Enterprise account
▪ A PingFederate account

For more information, see Managing PingOne Directory Users in the PingOne for Enterprise Administration
Guide.

Steps

On the Instance Configuration tab, enter your account information in Client ID and Client Secret.

For more information about each field, refer to the following table. All fields are required. nti

Copyright ©2024

https://docs.pingidentity.com/bundle/pingone/page/osk1564020494159.html

 | Administrator's Reference Guide | 933

Field Description

Client ID The REST API client ID is a unique identifier PingFederate uses to identify
itself to the PingOne for Enterprise Directory API.

For more information, see View or renew directory API credentials in the
PingOne for Enterprise Administration Guide.

Client Secret The client secret is used to authenticate the client ID against the PPingOne for
Enterprise Directory API.

For more information, see View or renew directory API credentials in the
PingOne for Enterprise Administration Guide.

Advanced Fields

PingOne URL The PingOne for Enterprise Directory API.

The default value is https://directory-api.pingone.com/api.

Authenticate by
Subject URL

The relative path for user authentication.

The default value is /directory/users/authenticate?by=subject.

Reset Password URL The relative path for password reset.

The default value is /directory/users/password-reset.

SCIM User URL The relative path for searching users requesting password reset.

The default value is /directory/user.

Connection Pool Size The maximum size of the connection pool to PingOne for Enterprise Directory.

The default value is 100.

Connection Pool Idle
Timeout

The maximum time (in milliseconds) that a connection can remain idle before it
is closed and removed from the connection pool.

The default value is 4000.

Configuring the RADIUS Username Password Credential Validator
The RADIUS Username Password Credential Validator verifies credentials using the RADIUS protocol.

About this task

RADIUS supports strong authentication with both one-step (a combination of regular password and a one-
time password in one field) and two-step (challenge-response) authentication. Two-step authentication is
supported in the HTML Form Adapter.

 Important:

If your RADIUS server is a Microsoft Network Policy Server (NPS), passwords containing special
characters will not be encoded and decoded properly due to limitations with NPS.

 Tip:

RADIUS server messages are used by the HTML Form Adapter to determine the two-step authentication
scenarios and to present a sign on window to the end users.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingone/page/erp1564020494599-1.html
https://docs.pingidentity.com/bundle/pingone/page/erp1564020494599-1.html

 | Administrator's Reference Guide | 934

Steps

1. On the Instance Configuration tab, configure one or more RADIUS servers.

a. Click Add a new row to 'RADIUS Servers'.
b. In each field, enter the required information.

For more information about each field, refer to the following table. All fields are required.

Field Description

Hostname The IP address of the RADIUS server.

For failover, enter one or more backup RADIUS servers by adding
each server in its own row of the table. Each row represents a distinct
RADIUS server that can be used for failover. PingFederate attempts to
make a connection to each server in the order listed until a successful
connection is obtained.

Authentication Port The UDP port used to authenticate to the RADIUS server.

The default value is 1812.

Authentication
Protocol

The protocol used to authenticate to the RADIUS server.

The available choices are Password Authentication Protocol (PAP)
and Challenge Handshake Authentication Protocol (CHAP). Select the
protocol expected by your RADIUS server.

The default selection is PAP.

Shared Secret The password shared between PingFederate and the RADIUS server
used to encrypt the attribute identifying the NAS (Network Access
Server) originating the request for access.

 Note:

The NAS-IP-Address attribute is added to all Access-Request packets sent to the RADIUS server.
The value is copied from the pf.engine.bind.address property in the <pf_install>/
pingfederate/bin/run.properties file. Only IPv4 addresses are supported.

c. Click Update in the Action column.
d. Repeat these steps to add more RADIUS servers as needed.

 Note:

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

Use the up and down arrows to adjust the order in which you want PingFederate to attempt credential
authentication. If an earlier RADIUS server fails to validate the credentials, PingFederate moves
sequentially through the list until credential validation succeeds. If none of the RADIUS servers is able
to authenticate the user's credentials, the credential validation process fails.

Copyright ©2024

 | Administrator's Reference Guide | 935

2. Optional: Click Show Advanced Fields to reconfigure default settings.

For more information about each field, refer to the following table. All fields are required.

Field Description

NAS Identifier The password shared between PingFederate and the RADIUS server
used to encrypt the attribute identifying the NAS (Network Access Server)
originating the request for access.

The default value is PingFederate.

Timeout The maximum number of milliseconds before a connection timeout to the
RADIUS server.

The default value is 3000.

Retry Count The number of times to retry a failed connection before moving to the next
host.

The default value is 3.

Configuring the Simple Username Password Credential Validator
The Simple Username Password Credential Validator verifies credentials maintained by PingFederate.
This validator is best used for testing purposes or for an organization with few accounts.

Steps

1. On the Instance Configuration tab, click Add a new row to 'Users'.

2. Enter a user name, followed by a password (twice).

3. Click Update in the Action column.

4. Repeat these steps to add more user credentials as needed.

 Note:

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

Use the up and down arrows to adjust the order in which you want PingFederate to attempt credential
authentication. PingFederate moves sequentially through the list until credential validation succeeds or
no match is found.

Extending the contract for the credential validator
You can extend Password Credential Validator (PCV) instance contracts to return attribute values relevant
to authenticated users.

About this task

In some use cases, you might want to extend the contracts of the PCV instance. For example, you might
use extended attributes to map into a USER_KEY for an OAuth persistent grant configuration.

This capability allows the validator to return attribute values pertaining to the authenticated users from
PingOne for Enterprise Directory, a directory server, or a RADIUS server.

 Tip:

If you are configuring an HTML Form Adapter instance with an instance of the LDAP Username Password
Credential Validator, extend the contract of the adapter by the same attribute names in order for the
credential validator to pass extended attribute values to the HTML Form Adapter instance.

Copyright ©2024

 | Administrator's Reference Guide | 936

If you are configuring the HTML Form Adapter instance with an instance of the RADIUS Username
Password Credential Validator, you only need to extend the contract of the HTML Form Adapter instance
itself.

Steps

1. Copy the vendor-specific attribute dictionaries into the pingfederate/server/default/conf/
radius directory.

 Note:

The format of the dictionaries must use the FreeRadius dictionary syntax.

2. Edit the existing dictionary file to include each of the dictonaries.

3. Optional: On the Extended Contract tab, enter an attribute name and click Add.

 Note:

Click Edit, Update, or Cancel to make or undo a change to an existing entry. Click Delete or
Undelete to remove an existing entry or cancel the removal request.

Finishing the Password Credential Validator instance configuration
On the Summary tab, you can review your configuration.

Steps

▪ To keep your changes, click Save.
▪ To amend your configuration, click the name of the corresponding tab and then follow the configuration

wizard to complete the task.
▪ To discard your changes, click Cancel.

Active Directory and Kerberos
You can configure PingFederate to authenticate users through the following identity provider (IdP) adapters
or token processors.

Adapter or Token Processor Description

PingFederate integrated Kerberos
Adapter

Using the built-in Kerberos Adapter with a configured AD domain
allows a PingFederate identity provider (IdP) server to perform
single sign-on (SSO) to service provider (SP) applications based on
Kerberos tickets.

PingFederate integrated Kerberos
Token Processor

The built-in Kerberos Token Processor accepts and validates
Kerberos tokens through a configured Kerberos Realm from a web
service client.

 Important:
As of version 10.3 and above, PingFederate no longer supports the IWA integration kit. For more
information about Migrating from the IWA Integration Kit to the PingFederate Kerberos adapter, see https://
support.pingidentity.com/s/article/Migrating-from-the-Integrated-Windows-Authentication-integration-kit-to-
the-PingFederate-Kerberos-adapter in the Ping Identity Support Portal.

Copyright ©2024

https://freeradius.org/radiusd/man/dictionary.html
https://support.pingidentity.com/s/article/Migrating-from-the-Integrated-Windows-Authentication-integration-kit-to-the-PingFederate-Kerberos-adapter
https://support.pingidentity.com/s/article/Migrating-from-the-Integrated-Windows-Authentication-integration-kit-to-the-PingFederate-Kerberos-adapter
https://support.pingidentity.com/s/article/Migrating-from-the-Integrated-Windows-Authentication-integration-kit-to-the-PingFederate-Kerberos-adapter

 | Administrator's Reference Guide | 937

Configuring Active Directory domains or Kerberos realms
You can configure an Active Directory (AD) domain or Kerberos realm to authenticate users.

Steps

1. Go to System # Data & Credential Stores # Active Directory Domains/Kerberos Realms.

2. From the Manage AD Domains/Kerberos Realms window, configure the AD environment to integrate
with PingFederate. For more information, see Configuring the Active Directory environment on page
937.

3. Click Add Domain/Realm to create an AD domain.

 Important:

Do not configure subdomains if the parent domain in the same forest is already configured. For more
information, see Multiple-domain support on page 937.

 Note:
Click the name of an existing domain to edit it. Use the Delete and Undelete links to remove a domain
or cancel a removal request.

Multiple-domain support
If your network uses multiple domains in a single server forest, you can configure one domain within
PingFederate if there is a trust relationship with the other domains you want to use.

This configuration requires a trust relationship among domains, which is established by default when
subdomains or separate domains are created within the same forest. For more information, see https://
docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc773178(v=ws.10)?
redirectedfrom=MSDN.

 Note:

If you are configuring only one domain, then you also need to configure only one Service Principal Name.
For more information, see Configuring the Active Directory environment on page 937.

If your network topology consists of multiple forests without a trust relationship between them, you must
configure multiple adapter or token processor instances. Map each instance to a separate domain and
then map these adapter or token processor instances to your service provider (SP) connections that
authenticate using the integrated Kerberos Adapter or the integrated Kerberos Token Processor.

For information about configuring Kerberos authentication for multiple-domain Active Directory trusts, see
https://support.pingidentity.com/s/article/How-to-configure-IWA-with-multiple-Active-Directory-trusts in the
Ping Identity Support Portal.

Configuring the Active Directory environment
You can configure Active Directory to access a domain and enable Kerberos as an authentication option
for it.

About this task

To enable Kerberos authentication, you must make several Active Directory configuration changes to grant
PingFederate access to the domain and add the domain to PingFederate.

 Important:

Copyright ©2024

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc773178(v=ws.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc773178(v=ws.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc773178(v=ws.10)?redirectedfrom=MSDN
https://support.pingidentity.com/s/article/How-to-configure-IWA-with-multiple-Active-Directory-trusts

 | Administrator's Reference Guide | 938

Do not configure subdomains if the parent domain in the same forest is already configured. For more
information, see Multiple-domain support on page 937.

 Note:

You must have Domain Administrator permissions to make the required changes.

Steps

1. Create a domain user account that PingFederate can use to contact the Kerberos Key Distribution
Center (KDC). The account should belong to the Domain Users group. We recommend that you set
the password with no expiration.

2. Use the Windows utility setspn to register Service Principal Name (SPN) directory properties for the
account by executing the following command on the domain controller.

setspn -s HTTP/<pf-idp.domain.name> <pf-server-account-name> , where <pf-
idp.domain.name> is the canonical name of the PingFederate server and <pf-server-account-name>
is the domain account you want to use for Kerberos authentication. For more information on canonical
name, see https://tools.ietf.org/html/rfc2181#section-10.

 Note:

When executing the setspn command, you must capitalize HTTP and follow it with a forward slash
(/).

3. Verify that the registration was successful by executing the following command.

setspn -l <pf-server-account-name>

This gives you a list of SPNs for the account. Verify that HTTP/<pf-idp.domain.name> is one of
them.

 Note:

After making an SPN change, any authenticated end users must re-authenticate by closing the
browser or signing off and back on before attempting single sign-on (SSO).

Adding a domain
You can configure Active Directory domains or Kerberos realms that PingFederate uses to contact the
domain controllers or the key distribution centers (KDCs) for verifying user authentication.

Steps

In the Manage Domain/Realm window, enter the required information based on the following table.

Field Description

Domain/Realm Name The fully-qualified domain or realm name. For example, companydomain.com

Domain/Realm
Username

The ID for the domain or realm account name.

Domain/Realm
Password

The password for the domain or realm account.

Copyright ©2024

https://tools.ietf.org/html/rfc2181#section-10

 | Administrator's Reference Guide | 939

Field Description

Domain Controller/Key
Distribution Center
Host Names

(optional)

Specify the host name or IP address of your domain controller or KDC, such
as dc01-yvr, and then click Add. Repeat this step to add multiple servers.

If a host name is used, PingFederate appends the domain to the host name
to formulate the fully qualified domain name (FQDN) of the server unless the
Suppress DC / Domain Concatenation check box is selected.

If unspecified, PingFederate uses a DNS lookup.

Suppress DC / Domain
Concatenation

Select this check box to specify the desired FQDNs under Domain Controller/
Key Distribution Center Host Names. When selected, PingFederate does
not append the domain to the host names.

Test Domain/Realm
Connectivity

Tests access to the domain controller or KDC from the administrative-console
server.

When a connection to any of the configured controllers or KDCs is successful,
the message Test Successful appears. Otherwise, the test returns error
messages near the top of the window.

 Tip:

For help resolving connectivity issues, select the Debug Log Output check
box on the Manage Domain/Realm Settings window, run the test again, and
review the debug messages in the PingFederate server log.

This test stops at the first successful result when multiple domain controllers
or KDCs are specified, so not all servers are necessarily verified. Depending
on the network architecture, the engine nodes deployed in a cluster might
establish connections differently. As a result, the engine nodes and the
console node might connect to different domain controllers or KDCs.

Managing domain connectivity settings
You can change the default security and logging settings for all configured Active Directory domains and
Kerberos realms.

Steps

▪ On the Manage Domain/Realm Settings tab, change the default transport protocol, the debug option,
the timeout value, and the number of retry attempts. For more information, refer to the following table.

Field Description

Force TCP When selected, requires use of the Transmission Control Protocol instead
of the default User Datagram Protocol. Use this option when firewall or
network configurations require acknowledgment that packets are properly
received.

 Note:

If you choose this option, you must restart PingFederate after saving the
configuration.

Debug Log Output When selected, sends verbose messages to the PingFederate server
log for all interactions with the domain controllers or the Key Distribution
Centers (KDCs).

Copyright ©2024

 | Administrator's Reference Guide | 940

Field Description

AD Domain
Controller/Key
Distribution Center
Timeout (secs)

Specifies the amount of time (in seconds) PingFederate waits for a network
response from a domain controller or KDC. The default is 3.

 Note:

This value applies to each attempt PingFederate makes to contact the
domain controller or KDC.

The new timeout takes effect only after you save the configuration and
restart PingFederate..

AD Domain
Controller/Key
Distribution Center
Retries

Specifies the number of times PingFederate tries contacting the domain
controller or KDC. The default is 3.

External systems
Many use cases require communications between PingFederate and other systems, such as PingOne or a
database server. System # External Systems is where you can set up and maintain such integrations.

Connecting to PingOne for Enterprise after initial setup
Integrating PingOne for Enterprise with PingFederate provides a powerful solution combining the benefits
of an on-premise deployment with the flexibility of a cloud solution.

Steps

1. Go to System # External Systems # Connect to PingOne for Enterprise.

2. On the Connect to PingOne for Enterprise window, click Sign on to PingOne to get your
activation key.

3. Sign on using your PingOne Admin Portal credentials.

 Tip:

If you do not have an account, you can register for a free trial.

4. Copy the Activation Key value from the PingOne admin portal.

5. Close the browser tab and go back to the PingFederate administrative console.

6. On the PingOne Account window, paste the key value in the Activation Key field. Click Next.

Configuring identity repository settings
Set up a customized directory configure identity repository settings either immediately or at a later time.

About this task

On the Identities tab, you can optionally connect to a directory server.

Steps

▪ Go to System # External Systems # Connect to PingOne for Enterprise and access the Identities
tab.

Copyright ©2024

 | Administrator's Reference Guide | 941

▪ To enable directory integration, select Yes, Connect a Directory Server.

You can create a new datastore or reuse an existing datastore in this configuration.

Create a new datastore

Provide the required information to connect to a directory server, and then click Next.

More information about each field is provided in the following table.

Field Description

Directory Type Select the type of directory server from the list.

See System requirements on page 109 for a list of supported
directory servers.

Data Store Name Enter the name of the datastore.

Hostname Enter the location of the directory server.

It can be the IP address, the host name, or the fully qualified domain
name of the directory server. The entry might include a port number.

Service Account DN Enter the distinguished name (DN) of the service account that
PingFederate can use to communicate with the directory server.

Password Enter the password associated with the service account.

Search Base Enter the DN of the location in the directory where PingFederate
begins its datastore queries.

Search Filter Enter the LDAP query to locate a user record for attribute lookup and
potentially credential validation.

The default value is either sAMAccountName=${username} or
uid=${username}, depending on the selected directory type.

If you require a more advanced search filter, ensure the value is
a valid LDAP filter. For more information, consult your directory
administrators.

When you click Next, PingFederate tries to establish a secure (LDAPS) connection to the
directory server.

If the directory server does not support LDAPS, the Unsecure Connection window appears. If
you want to continue without a secure connection, click Next. Alternatively, you can go back to
the Identities tab and specify a different directory server.

If the certificate presented by the directory server is not trusted by PingFederate, the Certificate
Error window appears. You can import the certificate used by the directory server to establish
a secure connection, and then click Next in the Identities tab and specify a different directory
server.

Use an existing datastore

Click Begin, and then follow the on-screen instructions to create a service provider (SP)
connection to PingOne for Enterprise.

▪ Optional: To set up a directory later, select No, Don't Connect a Directory Server and then click
Next.

 Tip:

This setup scenario is suitable for proof of concept. Multiple local test accounts are created as a result.

Copyright ©2024

 | Administrator's Reference Guide | 942

Connections to PingOne
Some PingFederate plugins that access services provided by PingOne can leverage a secure connection
between PingFederate and PingOne.

For example, when configuring instances of PingFederate's PingOne MFA and PingOne Risk plugins, you
can select a connection and one of the connection's PingOne environments. You do not need to enter
credentials and other connection details for each instance. Also, you do not need to update each plugin
instance individually when, for example, you replace the connection's credential.

The central element of a connection is its credential, which an administrator generates on PingOne
and copies to PingFederate when they create the connection. During runtime, a PingFederate plugin
instance that was configured to use the connection gets the credential and uses it to access a PingOne
environment.

Administrators with access to both PingFederate and PingOne create the connection. For more
information, see Creating connections to PingOne on page 943.

You can create multiple connections but most deployments require only one enabled connection. Typically,
you use only one connection from a PingFederate cluster to a given PingOne organization. A single
connection can be configured to provide access to multiple environments in PingOne.

Cards on PingFederate's System # External Systems # PingOne Connections window display
information about each connection to PingOne. When the card is collapsed, it shows only the connection's
name, ID, and status toggle switch. Use the toggle switch to enable and disable the connection on
PingFederate.

 Note:
Administrators can disable a connection on PingFederate or PingOne. Plugins can use a connection only if
it is enabled on both PingFederate and PingOne.

When a connection card is expanded, it shows more information about the connection on tabs, including
the status of the main connection and the plugin connections, if any.

Tab Description

Summary In the Summary tab's Summary Details section, the Description and
Created time come from PingFederate. The Connection ID in PingOne,
Credential ID, Organization Name, and Region come from the connection
credential.

In the Summary tab's Configuration section, the image shows:

▪ the status of the connection between PingFederate and PingOne
▪ which plugin types can use this kind of connection and are installed on

PingFederate, if any
▪ which service on PingOne each of those plugin types is designed to use
▪ whether any instances of those plugin types are configured to use this

particular connection

Usage The Usage tab lists each plugin instance on PingFederate that is configured to
use this connection. The instances are grouped by plugin category.

Environments The Environments tab shows which environments on PingOne the
connection is able to access. You assign environments to connections in
PingOne. In PingFederate, when you configure a plugin to use a connection,
you select the connection and one of its environments.

Copyright ©2024

 | Administrator's Reference Guide | 943

Creating connections to PingOne
Administrators can create connections between PingFederate and PingOne that some PingFederate
plugins can use to access services provided by PingOne.

About this task

In the following procedure, you create a connection profile and credential in PingOne. Then you use
the credential in PingFederate to establish the connection. So you need administrative access to both
applications.

 Note:
You cannot use the same credential in multiple extant connections.

After creating the connection, you can use it to configure PingFederate plugins that support connections to
PingOne, such as the PingOne MFA and PingOne Protect plugins.

For more information about these connections, see Connections to PingOne on page 942 in the
PingFederate documentation and PingFederate connections in the PingOne documentation.

Steps

1. In PingOne, create a connection profile and credential:

a. Go to Connections # Product Platform # PingFederate .
b. Click + Add Connection.
c. On the Create Connection Profile window, enter a Connection Name and Description.
d. Click Save and Continue.
e. On the Establish Connection with PingFederate window, copy the connection credential by

clicking Copy to Clipboard.
f. If you will not perform step 2 now, paste and save the credential in a text file because this is the

only time you can view and copy the credential.

2. In PingFederate, establish the connection:

a. Go to System # External Systems # PingOne Connections.
b. On the PingOne Connections window, click + Add Connection.
c. On the Add Connection window, paste the credential that was created in step 1.
d. Enter a new Connection Name or keep the auto-populated name, which is the name of your

organization on PingOne. Ensure the name is unique.
e. Enter a Connection Description.
f. Click Save. The PingOne Connections window shows the new connection. The connection is

enabled by default.

Next steps
After you create a connection, you can:

▪ use the connection to configure PingFederate plugins that support these kinds of connections
▪ change which environments in PingOne the connection can access
▪ replace or revoke the connection's credentials
▪ disable the connection
▪ change the connection's name or description

For more information, see Modifying connections to PingOne on page 944.

Copyright ©2024

https://docs.pingidentity.com/bundle/p14c/page/msc1608131200393.html

 | Administrator's Reference Guide | 944

Modifying connections to PingOne
Administrators can modify a connection between PingFederate and PingOne by, for example, adding a
PingOne environment to it, replacing its credential, changing its description, or disabling it

 Note:
If you have multiple connections to PingOne, to avoid confusion, you can identify a connection by its
connection ID in both PingFederate and PingOne. The connection ID never changes, whereas its name
can be changed.

Editing connection names and descriptions
You can change the names and descriptions of connections between PingFederate and PingOne.

About this task

The following procedure describes how to change the name and description of the connection in
PingFederate. You can also change them in PingOne.

 Note:
Changing the name and description in PingFederate does not change them in PingOne, and vice versa.
You cannot change a connection's ID.

Steps

1. In PingFederate, go to System # External Systems # PingOne Connections.

2. On the PingOne Connections window, open the connection's card by clicking its expand icon.

3. Click the pencil icon.

4. Change the Connection Name, Connection Description, or both.

5. Click Save.

Disabling and enabling connections
You can disable a connection between PingFederate and PingOne in either of those applications; however,
to enable a connection, it must be enabled in both applications.

Steps

1. To disable or enable a connection in PingFederate:

a. Go to System # External Systems # PingOne Connections.
b. On the connection's card, click the toggle switch to change the connection's state.

2. To disable or enable a connection in PingOne:

a. Go to Connections # Product Platform # PingFederate.
b. On the connection's card, click the toggle switch to change the connection's state.

Replacing connection credentials
You can replace or revoke the credential of a connection between PingFederate and PingOne.

About this task

The following procedure describes how to replace a connection's credential, which requires administrative
access to both applications.

Copyright ©2024

 | Administrator's Reference Guide | 945

Steps

1. In PingOne:

a. Go to Connections # Product Platform # PingFederate.
b. On the PingFederate Connections window, open the connection's card and go to the

Configuration tab.
c. Click the pencil icon.
d. Click + Add.

Result: PingOne generates a new credential, adds it to the tab, and opens a dialog box.
e. In the dialog box, click the credential to save it to the clipboard.
f. Close the dialog box.
g. If you will not perform step 2 now, paste and save the credential in a text file because this is the

only time you can view and copy the credential.

2. In PingFederate:

a. Go to System # External Systems # PingOne Connections.
b. On the PingOne Connections window, open the connection's card.
c. Click the pencil icon.
d. Paste the new credential that you created in step 1 in the Credential field.
e. Click Save.

Next steps
After you replace a connection's credential, you can go to PingOne and revoke the old credential.
Modifying which environments connections can access
PingOne administrators can specify which environments in PingOne a connection can access.

In PingOne, environments are assigned to roles and roles are assigned to connections. When a
connection is created, PingOne assigns it default roles and environments. A connection can access
all the environments assigned to its roles. For more information, see Edit a connection: Add roles and
responsibilities in the documentation for PingOne.

Managing PingOne for Enterprise settings
You can configure PingOne for Enterprise's general settings and single sign-on (SSO) settings, and enable
and configure a RADIUS server to integrate PingID with a VPN.

About this task

Go to System # External Systems # PingOne for Enterprise Settings, configure various PingOne for
Enterprise integration settings and optionally enable and configure a built-in RADIUS server to integrate
PingID with your VPN.

Configuring PingOne for Enterprise settings
To configure the PingOne for Enterprise settings, adjust the various integration settings.

Steps

1. Go to System # PingOne for Enterprise Settings.

2. Configure the PingOne for Enterprise integration settings. For more information, see the following
table.

Field Description

Enable Single Sign-On from
PingOne to the PingFederate
Administrative Console

Toggles the ability to sign on to the administrative console using the
PingOne admin portal credentials.

Copyright ©2024

https://docs.pingidentity.com/bundle/p14c/page/auz1608137774981.html
https://docs.pingidentity.com/bundle/p14c/page/auz1608137774981.html

 | Administrator's Reference Guide | 946

Field Description

Enable Monitoring of
PingFederate from PingOne

Toggles the ability to monitor your PingFederate server (or servers
in a clustered environment) from the PingOne admin portal

Rotate Key Update the authentication key that PingFederate uses to
communicate with PingOne for Enterprise.

 Note:
Periodic rotation can ensure optimal security of your environment.

 Note:
PingFederate also automatically rotates the signing certificate
used by the managed service provider (SP) connection. For more
information, see Managed SP connection to PingOne for Enterprise
and signing certificate on page 629.

Launch PingOne Admin
Portal

Use to access the PingOne admin portal.

Disconnect from PingOne Use to disconnect PingFederate from your PingOne account.

This is applicable if you have made changes that you should not
propagate to your PingOne for Enterprise account.

For instance, you have two environments, testing and production.
The production server is configured with a managed SP
connection to PingOne for Enterprise, but the test server is
not. You have just exported a configuration archive from the
production server and imported it to the test server. As soon as
the configuration archive is imported, the administrative console
prompts you to decide whether to update PingOne for Enterprise
or to disconnect from PingOne for Enterprise. In this example, you
should disconnect the test server from PingOne for Enterprise so
that nothing is uploaded to your PingOne for Enterprise account
from the test server.

3. Save your configuration.

Configuring PingOne SSO settings

About this task
Use PingOne for Enterprise to enable single sign-on (SSO) and upload configuration changes to your
account.

Steps

▪ To enable single sign-on (SSO) through PingOne for Enterprise, click Identity Repository
Configuration.

 Note:

This is applicable if you have not yet completed the PingOne SSO configuration in the past, which
would have created a managed service provider (SP) connection to PingOne for Enterprise.

Copyright ©2024

 | Administrator's Reference Guide | 947

▪ To upload configuration changes to your PingOne account, go to the PingOne for Enterprise
settings window and select Update PingOne Identity Repository, then confirm your decision.

This is applicable if you have made changes that you should propagate to your PingOne for Enterprise
account.

For example, you are about to set up a new SAML application on PingOne for Enterprise that requires
a telephone number of the user. Because the current attribute contract in the managed SP connection
does not include an attribute for telephone number, you extend the attribute with a new attribute,
PrimaryTelephone. After the connection is saved, the administrative console prompts you to
decide whether to update PingOne for Enterprise or to disconnect from PingOne for Enterprise. In
this example, you should upload the new configuration to PingOne for Enterprise so that the new
PrimaryTelephone attribute is made available when you set up the new SAML application in
PingOne for Enterprise.

Enabling and configuring the built-in RADIUS server to integrate PingID with your VPN

About this task
Use the PingID VPN (RADIUS) configuration wizard to merge PingID with your own VPN.

Steps

1. Click PingID Configuration to open the PingID VPN (RADIUS) configuration wizard.

This is applicable if you have not completed the PingID VPN (RADIUS) configuration in the past,
which would have created a PingID provisioning connection, an instance of the PingID password
credential validator (PCV), or both.

2. Use the wizard to configure the server.

Configuring SSO from PingOne admin portal to PingFederate administrative console
You can single sign-on (SSO) to the PingFederate administrative console from PingOne for Enterprise and
configure authentication procedures as desired.

About this task

In PingFederate 10.1 and later, you can connect to PingOne for Enterprise after the initial PingFederate
setup by going to System # External Systems # Connect to PingOne for Enterprise.

Additionally, you can continue to sign on to the administrative console through native or alternative console
authentication using the direct sign on page. You can also disable the direct sign on page to enforce the
policy that administrators must SSO to the administrative console from the PingOne admin portal.

Steps

▪ To SSO to the administrative console:

a. Start a web browser.
b. Browse to the URL https://<pf_host>:9999/pingfederate/app, where <pf_host> is the network

address of your PingFederate server, either an IP address, a host name, or a fully qualified
domain name reachable from your computer.

Result:

If the SSO option is enabled on the PingOne for Enterprise Settings window and you have signed
on to the PingOne admin portal, the PingFederate administrative console is made available. If you
are not signed on to the PingOne admin portal, you are prompted to enter your PingOne admin portal
credentials. Upon verification, the PingFederate administrative console is made available.

Copyright ©2024

 | Administrator's Reference Guide | 948

▪ To sign on through native or alternative console authentication:

a. Start a web browser.
b. Browse to the URL https://<pf_host>:9999/pingfederate/app?service=page/directLogin, where

<pf_host> is the network address of your PingFederate server, either an IP address, a host name,
or a fully qualified domain name reachable from your computer.

▪ To disable native and alternative console authentication:

a. Edit the <pf_install>/pingfederate/bin/run.properties file.
b. Change the pf.console.authentication property value to none.
c. Save the change and then restart PingFederate .

 Note:

In a clustered PingFederate environment, you only need to modify the run.properties file on
the console node.

Result:

After restart, the direct login page is disabled. Administrators can only SSO to the PingFederate
administrative console from the PingOne admin portal at https://<pf_host>:9999/pingfederate/app.

To re-enable native or alternative console authentication, update the
pf.console.authentication property accordingly and then restart PingFederate.

Monitoring PingFederate from the PingOne admin portal
After connecting PingFederate to PingOne for Enterprise, you can monitor PingFederate from the PingOne
admin portal.

About this task

The PingOne admin portal displays your PingFederate server (or servers if you have a clustered
PingFederate environment) with basic information such as the node index number, the IP address, and the
connection status with the date last seen. For each server, you can also collect additional information such
as CPU load, Java virtual machine (JVM) memory information, and system memory information.

Steps

1. Go to System # External Systems # PingOne for Enterprise Settings.

2. Optional: If you do not want to monitor PingFederate using the PingOne admin portal, clear the Enable
Monitoring of PingFederate From PingOne check box and click Save.

Updating the PingOne identity repository
You can upload configuration changes to your connected PingOne for Enterprise account's admin portal or
disconnect from your PingOne for Enterprise account if needed.

About this task

After a managed service provider (SP) connection to PingOne Admin Portal is established, PingFederate
monitors configuration changes that can impact the connection, such as updates to the base URL or
imports of configuration archives that include managed SP connections to PingOne for Enterprise. When
PingFederate detects such changes, the administrative console prompts you to decide whether to update
PingOne for Enterprise or to disconnect from PingOne for Enterprise in a banner message.

Steps

Go to System # External Systems # PingOne for Enterprise settings.
Choose from:

Copyright ©2024

 | Administrator's Reference Guide | 949

▪ To upload configuration changes to your PingOne for Enterprise account, click Update PingOne
Identity Repository.

 Note:

This is applicable if you have made changes that you should propagate to your PingOne for Enterprise
account.

For example, you are about to set up a new SAML application on PingOne for Enterprise that requires
a telephone number of the user. Because the current attribute contract in the managed SP connection
does not include an attribute for telephone number, you extend the attribute with a new attribute,
PrimaryTelephone. After the connection is saved, the administrative console prompts you to
decide whether to update PingOne for Enterprise or to disconnect from PingOne for Enterprise. In
this example, you should upload the new configuration to PingOne for Enterprise so that the new
PrimaryTelephone attribute is made available when you set up the new SAML application in
PingOne for Enterprise.

▪ To disconnect PingFederate from your PingOne for Enterprise account, click Disconnect from
PingOne.

 Note:

This is applicable if you have made changes that you should not propagate to your PingOne for
Enterprise account.

For instance, you have two environments, testing and production. The production server is configured
with a managed SP connection to PingOne for Enterprise, but the test server is not. You have just
exported a configuration archive from the production server and imported it to the test server. As soon
as the configuration archive is imported, the administrative console prompts you to decide whether
to update PingOne for Enterprise or to disconnect from PingOne for Enterprise. In this example, you
should disconnect the test server from PingOne for Enterprise so that nothing is uploaded to your
PingOne for Enterprise account from the test server.

Managing CAPTCHA settings
Use PingFederate's functionality to enter and install Google CAPTCHA.

About this task

PingFederate supports invisible reCAPTCHA from Google.

Steps

1. Go to System # External Systems # CAPTCHA Settings, and enter the site key assigned to your
account by Google.

2. Enter the associated secret key.

3. Click Save.

Managing SMS provider settings
To connect PingFederate to Twilio as an SMS provider through which PingFederate can send text
message notifications for self-service password reset requests, enter the required information based on
your Twilio account.

Steps

1. Go to System # External Systems # SMS Provider Settings.

2. Click Manage SMS Provider Settings.

Copyright ©2024

 | Administrator's Reference Guide | 950

3. On the SMS Provider Settings window, enter the required information.

Field Description

Account SID The account number assigned to your account by Twilio.

Auth Token The password assigned to your account by Twilio. Used in conjunction with
the account number to authenticate with Twilio when PingFederate makes
outbound API calls for the purpose of sending text message notifications to
the intended recipients.

From Number The sender number in the text message notifications.

 Tip:

For additional information about each field or Twilio, see http://support.twilio.com.

4. Click Save.

Result

After you have saved them, these SMS provider settings apply to all services using text message
notifications.

Managing notification publisher instances
Use PingFederate's functionality to create, edit, review, delete, or set as a default any notification publisher
instance.

About this task

PingFederate delivers messages to administrators and end users based on notification publisher settings.
Depending on your use cases, you can create one or more notification publisher instances. For example,
you might select an SMTP notification publisher instance to deliver messages to your end users in an
HTML Form Adapter instance, another SMTP notification publisher instance to deliver licensing messages
to your fellow administrators, and an Amazon SNS notification publisher instance to deliver messages
regarding SAML metadata updates.

Steps

▪ Go to System # External Systems # Notification Publishers.
Choose from:

▪ To configure a new instance, click Create New Instance.
▪ To modify an existing instance, select it by its name under Instance Name.
▪ To review the usage of an existing instance, click Check Usage under Action.
▪ To remove an existing instance or to cancel the removal request, click Delete or Undelete under

Action.
▪ To make an instance the default notification publisher instance, click Set as Default under Action.

Defining a notification publisher instance
Define a notification publisher instance.

Steps

1. Go to System # External Systems # Notification Publishers.

2. Click Create New Instance.

3. On the Type tab, enter an instance name and an instance ID.

4. From the Type list, select the type of the notification publisher instance that you want to use.

Copyright ©2024

https://support.twilio.com/hc/en-us

 | Administrator's Reference Guide | 951

5. Click Next.

Notification publisher instance configurations
You can configure a notification publisher instance based on its type.

This configuration varies depending on the type of the notification publisher.

For specific configuration steps, see the following topics..

▪ Configuring an Amazon SNS Notification Publisher instance on page 951
▪ Configuring an SMTP Notification Publisher instance on page 955

Configuring an Amazon SNS Notification Publisher instance
Create and configure an Amazon SNS notification publisher instance to help subscribers effectively direct
their messages to their intended audiences.

About this task

When using an Amazon SNS notification publisher, PingFederate is the publisher, and the intended
recipients are the subscribers. Topics are the destinations to which PingFederate publishes messages.
When configuring an Amazon SNS notification publisher instance, you must specify an Amazon SNS topic.

For more information about Amazon SNS and topic management, see the AWS documentation on https://
docs.aws.amazon.com/sns/latest/dg/welcome.html.

Steps

1. On the Instance Configuration tab, configure the notification publisher instance as follows.

Field Description

SNS Topic ARN The Amazon Resource Name (ARN) topic to which PingFederate publishes
messages. Enter an ARN in the following format.

arn:aws:[service]:[region]:[accountid]:[resourceType/
resourcePath]

Max Payload Size The maximum payload size in kilobytes. Enter a value between 1 and
8192.

Click Show Advanced Fields to reveal this field. The default value is 256.

2. Click Next to view the Summary tab, and then click Save.

Result

PingFederate categorizes notification messages into various event types. Each event type comes with a
set of relevant information to help subscribers craft the final message for the intended audience.

Event types and variables
This lists the various event types and their respective keys (variables) used within the PingFederate
Amazon SNS notification publisher instance configuration.

Message payload

As a publisher, PingFederate creates notification messages in JSON format and sends them to the
configured topic. This JSON message body contains two top-level keys: data and configuration, as
illustrated in the following snippet.

{
 "data": {
 "USERNAME": "jdoe",
 ...

Copyright ©2024

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html

 | Administrator's Reference Guide | 952

 },
 "configuration": {
 "com.pingidentity.notification.config.locale": "en-US",
 ...
 "com.pingidentity.notification.config.event.type":
 "ADMIN_PASSWORD_CHANGED"
 }
}

For all events, PingFederate provides relevant information by including various key:value pairs in the
message body, located inside the value of the data key.

The value of the com.pingidentity.notification.config.event.type key, located inside
the value of the configuration key, indicates the event type. In this example, the event type is
ADMIN_PASSWORD_CHANGED.

For end user-oriented events, the value of the com.pingidentity.notification.config.locale
key, also located inside the value of the configuration key, indicates the locale of the end user who
initiates the request.

Review the following sections for more information on event types and their respective keys, which are
referred to as variables.

Events for administrators

Local administrative account management events

Event type Variables

ADMIN_ACCOUNT_CHANGE_NOTIFICATION_OFF▪ USERNAME represents the username of the local
administrative account who has turned off the Notify
Administrator of Account Changes option.

▪ RECEIVER represents the email addresses of all the local
administrative accounts configured with an email address.

▪ NOTIFY represents the Notify Administrator of Account
Change option on the Administrative Accounts window.

▪ CURRENT_USER_MESSAGE represents the username of the
administrator who initiated the change.

 Note:

Unless otherwise noted, the rest of the variables in the
Administrative Accounts section are either self-explanatory or
identical to those mentioned here.

ADMIN_EMAIL_CHANGED ▪ USERNAME
▪ RECEIVER
▪ DEPARTMENT
▪ DESCRIPTION
▪ PHONE_NUMBER
▪ CURRENT_USER_MESSAGE

PingFederate sends two messages for this event type. Variables
and their values remain the same, except for the RECEIVER
value. They are intended to notify the end user at both the
previous email address and the new email address.

Copyright ©2024

 | Administrator's Reference Guide | 953

Event type Variables

ADMIN_PASSWORD_CHANGED ▪ USERNAME
▪ RECEIVER
▪ DEPARTMENT
▪ DESCRIPTION
▪ PHONE_NUMBER
▪ CURRENT_USER_MESSAGE

Certificate, SAML metadata update, and licensing events

Event type Variables

CERTIFICATE_EVENT_ACTIVATED
and
CERTIFICATE_EVENT_CREATED

▪ SERIAL_NUMBER
▪ SUBJECT_DN
▪ EX_DATE
▪ PENDING_CERT_SERIAL_NUM
▪ PENDING_EX_DATE
▪ ACTIVE_CONNECTIONS represents the connections

impacted by the creation of the pending certificate and the
activation of it.

▪ ACTIVATION_DATE

CERTIFICATE_EVENT_EXPIRED,CERTIFICATE_EVENT_FINAL_WARN,
and
CERTIFICATE_EVENT_INITIAL_WARN

▪ SERIAL_NUMBER
▪ SUBJECT_DN
▪ EX_DATE
▪ EX_TYPE
▪ CONN_NAME represents the connection impacted by any of

the three certificate expiration events.
▪ DAYS_LEFT
▪ ACTION

SAML_METADATA_UPDATE_EVENT_ENTITY_ID_NOT_FOUND▪ ENTITY_ID
▪ CONNECTION_NAME
▪ METADATA_URL
▪ METADATA_URL_NAME

SAML_METADATA_UPDATE_EVENT_FAILED▪ METADATA_URL
▪ METADATA_URL_NAME

SAML_METADATA_UPDATE_EVENT_UPDATED▪ ENTITY_ID
▪ CONNECTION_NAME
▪ METADATA_URL
▪ UPDATED represents any updated connection settings.
▪ OUT_OF_SYNC represents any out-of-sync connection

settings.

SERVER_LICENSING_EVENT_WARNING,
SERVER_LICENSING_EVENT_EXPIRED,
and
SERVER_LICENSING_EVENT_SHUTDOWN

▪ EX_DATE
▪ DAYS_LEFT

Copyright ©2024

 | Administrator's Reference Guide | 954

Events for end users

Self-service password management, account recovery, and username recovery

Event type Variables

ACCOUNT_UNLOCKED ▪ USERNAME represents the user name of the end user where
the request is made.

▪ RECEIVER represents the email address of the end user
where the request is made.

▪ ADAPTER_ID represents the Instance ID of the invoking
HTML Form Adapter instance.

▪ PCV_ID represents the Instance ID of the Password
Credential Validator (PCV) instance involved.

 Note:

Unless otherwise noted, the rest of the variables in the HTML
Form Adapter instances section are either self-explanatory or
identical to those mentioned here.

PASSWORD_CHANGED ▪ GIVEN_NAME
▪ USERNAME
▪ RECEIVER
▪ ADAPTER_ID
▪ PCV_ID

PASSWORD_RESET ▪ USERNAME
▪ RECEIVER
▪ ADAPTER_ID
▪ PCV_ID
▪ STATUS

PASSWORD_RESET_FAILED ▪ USERNAME
▪ RECEIVER
▪ ADAPTER_ID
▪ PCV_ID

PASSWORD_RESET_ONE_TIME_CODE
and
PASSWORD_RESET_ONE_TIME_LINK

▪ USERNAME
▪ RECEIVER
▪ ADAPTER_ID
▪ PCV_ID
▪ CODE represents the one-time code or hyperlink that the

end user can use to reset the password associated with the
account.

USERNAME_RECOVERY ▪ USERNAME
▪ RECEIVER
▪ ADAPTER_ID
▪ PCV_ID
▪ DISPLAY_NAME

Copyright ©2024

 | Administrator's Reference Guide | 955

Customer IAM email ownership verification

Event type Variables

OWNERSHIP_VERIFICATION_ONE_TIME_LINK▪ USERNAME represents the user name of the end user who
should receive an email ownership verification request.

▪ RECEIVER represents the email address to which the email
ownership verification request is sent.

▪ CODE represents the one-time hyperlink that the end
user can use to verify the ownership of the email address
associated with the account.

Configuring an SMTP Notification Publisher instance
Set up an instance of the SMTP Notification Publisher for PingFederate to notify administrators and end
users about various events. You can configure multiple instances, each with different settings as needed.

Steps

1. On the Instance Configuration tab, provide the required information or update any default or
previously configured setting values.

For more information about each field, refer to the following table.

Field Description

From Address

(Required)

The email address that appears in the “From” header line in email
messages generated by PingFederate. The address needs a valid format
but does not need to be set up on your system.

Email Server

(Required)

The IP address or host name of your email server.

SMTP Port The SMTP port on your email server.

The default value is 25.

Encryption Method Select SSL/TLS to establish a secure connection to the email server at the
SMTPS port.

Select STARTTLS to establish an unencrypted connection to the email
server at the SMTP port and initiate a secure channel afterward.

Select None, the default value, to establish an unencrypted connection to
the email server at the SMTP port.

SMTPS Port The secure SMTP port on your email server. Not applicable unless SSL/
TLS is the chosen encryption method.

The default value is 465.

Verify Hostname Indicates whether to verify the host name of the email server matches
the Subject (CN) or one of the Subject Alternative Names from
the certificate.Not applicable unless either SSL/TLS or STARTTLS is the
chosen encryption method.

This check box is selected by default.

Copyright ©2024

 | Administrator's Reference Guide | 956

Field Description

UTF-8 Message
Header Support

Indicates whether the email server supports UTF-8 encoding in message
headers; for example, in the recipient email address. Enable this option
only if your email server supports this feature.

With this option enabled, PingFederate supports UTF-8 characters in the
sender and recipient email addresses. It does not support Emojis in the
domain portion of the email address.

Username Authorized email account.

Password Password for the authorized email account.

Test Address Enter an email address PingFederate should use to verify connectivity with
the configured email server.

Click Show Advanced Fields to review the following settings. Modify as needed.

Connection Timeout The amount of time in seconds that PingFederate waits before it times out
connecting to the SMTP server.

The default value is 30.

Retry Attempt The number of times that PingFederate tries to connect to the SMTP server
after encountering an error.

The default value is 2.

Retry Delay The amount of time in minutes that PingFederate waits before trying to
send an email message again.

The default value is 2.

Enable SMTP
Debugging Messages

Turns on detailed error messages for the PingFederate server log to help
troubleshoot SMTP issues.

 CAUTION:

This setting is disabled by default. When enabled, PingFederate logs email
messages, which can contain sensitive information, to the server log.
Consider enabling debug messages solely for troubleshooting purposes
and disabling this option when debug messages are no longer required.

2. Click Next.

Next steps

You can modify email-notification template files to suit the particular branding requirements. For more
information, see Customizable email notifications on page 832.

Finalizing actions for a notification publisher instance
Finish any required tasks presented to you on the Actions tab to complete configuration for your
notification publisher instance.

About this task

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 957

Depending on the data store implementation, configuration requirements vary. If no action is required, the
Actions tab is not shown.

Steps

▪ On the Actions tab, perform any required tasks, and click Next.

Reviewing a notification publisher instance configuration
On the Summary tab, review your configuration.

Steps

Perform the following actions as needed.

Action How to accomplish it

Amend your configuration Click the corresponding tab and follow the
configuration workflow

Keep your changes Click Done and continue with the configuration

Discard your changes Click Cancel

Result

Once set up and saved, you can select this notification publisher instance in any component that is capable
of triggering or handling events.

Configuring general settings
The General Settings window lets you change some of the general system-wide settings for your
PingFederate servers.

About this task
The settings in this window are independent of one another.

Steps

1. Go to System # Server # General Settings.

2. Change any of the following settings:

▪ To turn off automatic multi-connection error checking, select the Disable Automatic Connection
Validation check box. This check box is not selected by default.

▪ To override the verbosity of runtime transaction logging for all identity provider connections, select
an option on the IdP Connection Transaction Logging Override menu. The default setting is
Don't Override.

▪ To override the verbosity of runtime transaction logging for all service provider connections, select
an option on the SP Connection Transaction Logging Override menu. The default setting is
Don't Override

▪ To fine tune the caching interval for datastore validation, change the number of seconds in the
Data-Store Validation Interval field. A value of 0 turns off the caching and validation tests are
executed with each access. The default value is 300 seconds (five minutes). This setting applies
to all datastores.

 Note:

As you configure components on the administrative console, PingFederate performs connectivity
tests against the applicable datastores. By default, PingFederate saves successful test results for
five minutes. This design improves the performance of the administrative console by reducing the

Copyright ©2024

 | Administrator's Reference Guide | 958

number of calls it makes to the target servers and the amount of time it takes to move from one
configuration window to another.

▪ To let PingFederate use the value of a specific request header for the request ID instead of
generating a request ID, enter the name of the request header in the Request Header for
Correlation ID field. By default, the field is empty.

 Note:

When a PingFederate endpoint receives HTTP requests, it records request IDs at the DEBUG
level of the server log. When the Request Header for Correlation ID field specifies a request
header, if a PingFederate endpoint receives a request that includes that header, and if the
header's value contains 1 to 50 alphanumeric characters and hyphens, then PingFederate uses
that value for the request ID. Otherwise, PingFederate uses a unique value that it generates for
the request ID.

If the request causes PingFederate to send an LDAP call to PingDirectory, PingFederate includes
the request ID in the LDAP call. For auditing and troubleshooting, you can correlate the request
ID in the PingFederate log with the request ID in the PingDirectory log. For more information, see
Correlating PingFederate events with PingDirectory LDAP activities on page 969.

3. Save the changes.

Troubleshooting
Basic troubleshooting tips are provided here to help you overcome common difficulties with PingFederate.

▪ Enabling debug messages and console logging
▪ Resolving startup issues
▪ Troubleshooting data store issues
▪ Resolving URL-related errors
▪ Resolving service-related errors
▪ Troubleshooting authentication policy issues
▪ Troubleshooting registration and profile management issues
▪ Troubleshooting runtime errors
▪ Troubleshooting OAuth transactions
▪ Other runtime issues
▪ Collecting support data

Help is also available from the Support Center.

Enabling debug messages and console logging
Make changes to the <pf_install>/pingfederate/server/default/conf/log4j2.xml file to
enable debug messages and console logging.

About this task

For troubleshooting purposes, you can adjust the log level to DEBUG in the log4j2.xml file and re-enable
console logging.

 Important:

When you no longer require debug messages and console logging, turn them off. On Windows, never
highlight the console output because it might slow or stop from processing requests.

Copyright ©2024

https://support.pingidentity.com

 | Administrator's Reference Guide | 959

Steps

1. Edit the <pf_install>/pingfederate/server/default/conf/log4j2.xml file.

a. To enable verbose messages, look for Limit categories inside the Loggers element,
particularly the five logger names shown in bold in the following snippet.

...
<Loggers>

 <!-- ================ -->
 <!-- Limit categories -->
 <!-- ================ -->

 ...
 <Logger name="org.sourceid" level="INFO" />
 <Logger name="org.sourceid.saml20.util.SystemUtil" level="INFO"
 additivity="false">
 <AppenderRef ref="CONSOLE" />
 <AppenderRef ref="FILE" />
 </Logger>
 ...
 <Logger name="com.pingidentity" level="INFO" />
 <Logger name="com.pingidentity.common.util.ErrorHandler" level="INFO"
 additivity="false">
 <AppenderRef ref="CONSOLE" />
 <AppenderRef ref="FILE" />
 </Logger>
 ...
 <Logger name="com.pingidentity.appserver.jetty.PingFederateInit"
 level="INFO" additivity="false" includeLocation="false">
 <AppenderRef ref="FILE" />
 </Logger>
 ...
</Loggers>
...

Then update the five loggers as shown in bold in the following snippet.

...
<Loggers>

 <!-- ================ -->
 <!-- Limit categories -->
 <!-- ================ -->

 ...
 <Logger name="org.sourceid" level="DEBUG" />
 <Logger name="org.sourceid.saml20.util.SystemUtil" level="DEBUG"
 additivity="false">
 <AppenderRef ref="CONSOLE" />
 <AppenderRef ref="FILE" />
 </Logger>
 ...
 <Logger name="com.pingidentity" level="DEBUG" />
 <Logger name="com.pingidentity.common.util.ErrorHandler"
 level="DEBUG" additivity="false">
 <AppenderRef ref="CONSOLE" />
 <AppenderRef ref="FILE" />
 </Logger>
 ...
 <Logger name="com.pingidentity.appserver.jetty.PingFederateInit"
 level="INFO" additivity="false" includeLocation="false">

Copyright ©2024

 | Administrator's Reference Guide | 960

 <AppenderRef ref="FILE" />
 <AppenderRef ref="CONSOLE" />
 </Logger>
 ...
</Loggers>
...

 Note:

In this snippet, console logging is enabled for loggers
org.sourceid.saml20.util.SystemUtil,
com.pingidentity.common.util.ErrorHandler, and
com.pingidentity.appserver.jetty.PingFederateInit.

Console logging can be resource intensive. If you do not require console logging or prefer to
review the server log instead, comment out the <AppenderRef ref="CONSOLE" /> entry for
these three loggers.

 Tip:

As needed, you can update the log level for other loggers.

b. To enable console logging, look for the Set up the Root logger section as shown in the
following example.

...
<!-- ======================= -->
<!-- Set up the Root logger -->
<!-- ======================= -->
...
<AsyncRoot level="INFO" includeLocation="false">
 <!-- <AppenderRef ref="CONSOLE" /> -->
 <AppenderRef ref="FILE" />
</AsyncRoot>

Then, update as shown in bold in the following snippet.

...
<!-- ======================= -->
<!-- Set up the Root logger -->
<!-- ======================= -->
...
<AsyncRoot level="INFO" includeLocation="false">
 <AppenderRef ref="CONSOLE" />
 <AppenderRef ref="FILE" />
</AsyncRoot>

 Important:

When you no longer require console logging, comment out the <AppenderRef
ref="CONSOLE" /> entry for the AsyncRoot logger.

2. Save any changes made.

3. In a clustered PingFederate environment, repeat these steps on each applicable node.

Copyright ©2024

 | Administrator's Reference Guide | 961

Result

Changes, such as adding a Logger or adjusting log levels, are activated within half a minute. You do not
need to restart .

Resolving startup issues
Resolve PingFederate startup issues related to Java runtime and the license file installs.

PingFederate startup problems and solutions

Problem Solution

PingFederate does not
start.

Make sure that a supported Java runtime is installed. For more information,
see Installing Java on page 119.

The server starts but
indicates the license file
is not found or invalid.

Ensure a current license is installed. For more information, see Reviewing
license information on page 869.

Troubleshooting data store issues
Resolve PingFederate data store issues related to failing to establish a connection to a data store and
directory.

Data store connection problems and solutions

Problem Solution

When setting up the
JDBC data store, a
connection cannot be
established.

Verify that the proper drivers and connectors have been installed.

Also, verify the connection URL, user name, and password. If unsuccessful,
contact your database administrator.

For more information, see Configuring a JDBC connection on page 887.

Cannot connect to a
Directory Service with
the LDAP protocol.

Verify the connection URL, port, principal, and credentials. If unsuccessful,
contact your system administrator. For more information, see Configuring an
LDAP connection on page 891.

If using LDAPS, ensure the LDAP server's SSL certificate is signed by
a trusted certificate authority or is imported into PingFederate. For more
information, see Manage trusted certificate authorities on page 615.

Resolving URL-related errors
Review and update the URL of the identity provider (IdP) initiated single sign-on to resolve the 404 Not
Found and System Error error messages.

If a user encounters a 404 Not Found status or a System Error message, check the URL of the
request.

Example

Examples

404 Not Found

https://sso.idp.local/idp/startSSO.ping&PartnerSpId=sp1&TargetResource=https%3A%2F
%2Fapp.sp1.local%2F causes a 404 Not Found error, because the separator between the path of

Copyright ©2024

 | Administrator's Reference Guide | 962

the URL and the first query parameter is incorrect. The correct separator is a question mark ? and
not an ampersand&.

System Error

https://sso.idp.local/idp/startSSO.ping?PartnerSpId=sp1?TargetResource=https%3A%2F
%2Fapp.sp1.local%2F causes a System Error message, because the second query parameter
separators are incorrect. The correct separator is an ampersand & and not a question mark ?.

 Tip:

You must also use ampersands for all subsequent separators between additional query parameters
in the URL.

In addition, you must URL-encode query parameter values that contain restricted characters. For
information about URL encoding, see, for example, HTML URL-encoding Reference.

For both sample issues, update the URL of the IdP-initiated single sign-on (SSO) to the following
URL.

https://sso.idp.local/idp/startSSO.ping?PartnerSpId=sp1&TargetResource=https%3A%2F
%2Fapp.sp1.local%2F

Resolving service-related errors
Resolve the Unexpected System Error message and partner not active status.

If a user encounters an Unexpected System Error message with a reference code, ask the user for
the reference code and search for the value in the server log. The log message should help determine the
root cause, which usually requires a configuration change.

If a user encounters a partner not active status, select Active in the Connection Status section
and click Save on the Activation & Summary window for the connection.

Example

Example

Unexpected System Error

When a PingFederate identity provider (IdP) server receives a SAML AuthnRequest message
through the redirect binding, but such SAML profile is not selected in the applicable service provider
(SP) connection, PingFederate replies with an Unexpected System Error response with a
reference code and logs an error message similar to the following entry.

2015-12-03 15:43:52,936 ERROR [org.sourceid.servlet.ErrorServlet]
 Top level error (ref#kwlqbn): javax.servlet.ServletException:
 org.sourceid.saml20.bindings.BindingException: Incoming binding
 urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect is not enabled for
 (SP) ::: sp1

 Tip:

In this sample log message, kwlqbn is the reference code.

Solution

Copyright ©2024

https://www.w3schools.com/tags/ref_urlencode.asp

 | Administrator's Reference Guide | 963

Update the applicable SP connection to allow the Redirect binding for inbound messages from the
SP. This works if the redirect binding is one of the mutually-agreed SAML bindings that both parties
use. Alternatively, the SP can send SAML AuthnRequest messages through an allowable SAML
binding based on the configuration of your SP connection.

Troubleshooting authentication policy issues
Authentication policies, an optional configuration in PingFederate, help implement complex authentication
requirements. Having a complex policy or multiple policies can result in unintended runtime behaviors. The
org.sourceid.util.log.PolicyTreeLogger logger makes it easier to troubleshoot such issues.

About this task
Identify and resolve authentication policy issues.

Steps

1. Enable debug messages for the org.sourceid.util.log.PolicyTreeLogger class.

 Tip:

If you have enabled debug messages for the org.sourceid logger, you have already enabled debug
messages for the org.sourceid.util.log.PolicyTreeLogger class. Skip to step 3.

a. Edit the <pf_install>/pingfederate/server/default/conf/log4j2.xml file.
b. Look for Limit categories inside the Loggers element, as shown in bold in the following

example.

...
<Loggers>

 <!-- ================ -->
 <!-- Limit categories -->
 <!-- ================ -->

 ...
 <!--
 <Logger name="org.sourceid.util.log.PolicyTreeLogger" level="DEBUG" />
 -->
 ...
</Loggers>
...

c. Uncomment the org.sourceid.util.log.PolicyTreeLogger logger, as shown in the
following example. Note that the <!-- and --> markers have been removed.

Example:

...
<Loggers>

 <!-- ================ -->
 <!-- Limit categories -->
 <!-- ================ -->

 ...

 <Logger name="org.sourceid.util.log.PolicyTreeLogger" level="DEBUG" />

 ...

Copyright ©2024

 | Administrator's Reference Guide | 964

</Loggers>
...

This change is activated within a minute. No restart of PingFederate is required.

2. Save any changes made.

For a clustered PingFederate environment, repeat these steps on each applicable node.

3. Repeat the request that demonstrates the authentication policy issue.

 Tip:

It is most useful to initiate this request in a browser without any cookies from prior sessions.

4. After you have replicated the issue, correlate server log messages using the PF cookie and tracking ID
values. For more information, see Troubleshooting runtime errors.

Look for DEBUG messages from the org.sourceid.util.log.PolicyTreeLogger class.

Example:

For example, suppose the tracking ID value is wXzQbS8MfHG40wpsQPiREIenJjc for a given
request. The following server log messages demonstrate the authentication flow.

DEBUG [org.sourceid.util.log.PolicyTreeLogger] Policy 'General clients
 policy' | Selector | generalClients | Yes
DEBUG [org.sourceid.util.log.PolicyTreeLogger] Policy 'General clients
 policy' | Authn Source | idFirst
DEBUG [org.sourceid.util.log.PolicyTreeLogger] Policy 'General clients
 policy' | Authn Source | idFirst
DEBUG [org.sourceid.util.log.PolicyTreeLogger] Policy 'General clients
 policy' | Authn Source | idFirst | Rule | Alpha
DEBUG [org.sourceid.util.log.PolicyTreeLogger] Policy 'General clients
 policy' | Authn Source | idFirst | Alpha
DEBUG [org.sourceid.util.log.PolicyTreeLogger] Policy 'General clients
 policy' | Authn Source | https://sso.alpha.local:8031
DEBUG [org.sourceid.util.log.PolicyTreeLogger] Authn Policy Tree setting
 User ID from attribute 'subject' from Source type 'Adapter' and source
 ID 'idFirst'
DEBUG [org.sourceid.util.log.PolicyTreeLogger] Policy 'General clients
 policy' | Authn Source | https://sso.alpha.local:8031 | Success
DEBUG [org.sourceid.util.log.PolicyTreeLogger] Policy 'General clients
 policy' | Authentication Policy Contract | APC | Finished

 Note:

For readability, this sample ignores the time stamp and the tracking ID information. In other
troubleshooting scenarios, such information can be valuable.

Log messages are interpreted as follows:

a. PingFederate finds an applicable policy named General clients policy. The first checkpoint
is an OAuth Client Set Authentication Selector instance generalClients. PingFederate routes

Copyright ©2024

 | Administrator's Reference Guide | 965

this request to the Yes policy path because the client that submits the authorization request
matches one of the clients defined authentication selector instance.

b. PingFederate routes this request to an instance of the Identity First Adapter idFirst because
that adapter instance is the next authentication source of the Yes policy path.

c. Based on the user's provided user identifier, PingFederate determines that the Alpha rule applies
and routes this request to the Alpha policy path.

d. PingFederate routes this request to an identity provider (IdP) connection https://
sso.alpha.local:8031 because that IdP connection is the next authentication source of the
Alpha policy path. PingFederate also populates the subject attribute in the AuthnRequest
message with the user identifier obtained from the Identity First Adapter instance.

e. PingFederate receives a valid security token from the IdP https://sso.alpha.local:8031.
PingFederate routes the request to the Success policy path, which ends with an authentication
policy contract APC and concludes the authentication flow.

Troubleshooting registration and profile management issues
Certain browser extensions and their default settings can block a user's alternative authentication options
configured to display on a third-party registration and profile management page. Review what browser a
user currently employs and, if necessary, disable and fine-tune the extension settings of the browser.

About this task

Consider the following example. You have enabled third-party identity providers (IdP) to provide users with
an alternative authentication option. Because you have enabled profile management, users can connect
and disconnect their accounts with the third-party identity providers on the profile management page.
However, some users are reporting that they do not see any such options on the sign-on page and the
profile management page. The following screen captures illustrate what they see.

Browser extensions, particularly those designed to block ads or social network components, might block
the user interface elements representing the third-party identity providers you enabled.

Steps

▪ Verify if users are using browser extensions that might have caused this issue. Disable or fine-tune the
browser extension to resolve the issue.

Copyright ©2024

 | Administrator's Reference Guide | 966

Troubleshooting runtime errors
Users might encounter runtime errors when trying to connect to your partners. To troubleshoot these
errors, investigate the user's activities, particularly the requests and the responses between the client and
the PingFederate server, to determine the root cause.

Client side

Use built-in developer tools from the browsers to analyze HTTP traffic. Alternatively, you can use
third-party tools, such as Fiddler and Charles.

Server side

Review server log messages to investigate what PingFederate has received from the client.

On rare occasions, you can also use third-party tools, such as Wireshark, or tools from the operating
systems, such as Tcpdump, to capture network traffic on the PingFederate server.

For instructions of third-party tools, see their documentation.

To correlate server log messages to user activities, you can use one of the following:

▪ The tracking ID, which can be configured to show in the user-facing error pages in PingFederate.
▪ The PF cookie value, which requires capturing the HTTP headers on the client side.
▪ Real-time monitoring of the server log, which works well if the issues can be replicated reliably and

involves using tools from the operating systems or third-party vendors.

Activating tracking ID in templates
You can configure PingFederate to display the tracking ID in the user-facing error Velocity templates.
When an error occurs, use the tracking ID to look for the related log messages.

About this task
You can find the Velocity template files in the <pf_install>/pingfederate/server/default/
conf/template directory.

The Velocity variable is $TrackingId and is available in the following templates:

▪ general.error.page.template.html
▪ generic.error.msg.page.template.html
▪ idp.slo.error.page.template.html
▪ idp.sso.error.page.template.html
▪ sourceid-wsfed-idp-exception-template.html
▪ sp.slo.error.page.template.html
▪ sp.sso.error.page.template.html
▪ state.not.found.error.page.template.html

Steps

1. Open the applicable Velocity template file.

2. Search for the $TrackingId variable.

3. Follow the inline instructions to activate the variable.

 Note:
Template customization does not require a restart of PingFederate.

4. For a clustered PingFederate environment, repeat these steps on each engine node.

Copyright ©2024

https://www.telerik.com/fiddler
https://www.charlesproxy.com/
https://www.wireshark.org/
https://www.tcpdump.org/

 | Administrator's Reference Guide | 967

Result

The following screen capture demonstrates the user experience after the $TrackingId variable is
activated and an error has occurred. In this example, V3IwuUsy8PQp-9ZbE9UfUjOEo9c is the tracking
ID.

Correlating log messages by PF cookie
If you do not want to activate the tracking ID in the user-facing error templates, you can capture the HTTP
traffic and use the PF cookie value to find related server log messages for a given request.

About this task
Search the HTTP traffic server log and use the PF cookie value to review server log messages.

Steps

1. Capture HTTP traffic and look for the PF cookie value.

2. Search for the PF cookie value in the server log.

3. Because all server log messages, except the contents of the inbound requests and the outbound
responses, are prefixed with their respective tracking IDs, use the tracking ID to review log messages
and payloads pertaining to this transaction.

Result

In general, the most useful log messages are the ones tagged with WARN, ERROR, or prefixed with Caused
by.

Example

Example

Suppose an error occurred and the associated the PF cookie value was
OaxBwPGw5OBeHVXe1sgifB7iZR5Rz2VI4rhJwqUSIXV. Based on the cookie value, you found the
following log message.

2015-12-03 11:13:33,784 tid:V3IwuUsy8PQp-9ZbE9UfUjOEo9c DEBUG
[org.sourceid.servlet.HttpServletRespProxy] adding lazy cookie
Cookie{PF=OaxBwPGw5OBeHVXe1sgifB7iZR5Rz2VI4rhJwqUSIXV; path=/; maxAge=-1;
domain=null} replacing null

After reviewing the related log messages based on the tracking ID V3IwuUsy8PQp-9ZbE9UfUjOEo9c,
you found the next few messages.

2015-12-03 12:36:21,176 tid:V3IwuUsy8PQp-9ZbE9UfUjOEo9c ERROR
[org.sourceid.saml20.profiles.idp.HandleAuthnRequest] Exception occurred

Copyright ©2024

 | Administrator's Reference Guide | 968

during request processing
org.sourceid.websso.profiles.RequestProcessingException: Unexpected Runtime
Authn Adapter Integration Problem.

...

Caused by: org.sourceid.saml20.adapter.AuthnAdapterException: Could not obtain
attributes from the IdP Authentication Service.

Based on these log messages, the remedy is to review and update the configuration of the applicable
identity provider (IdP) adapter instance.

Correlating log messages by tracking ID
All server log messages, except the contents of the inbound requests and the outbound responses, are
prefixed with their respective tracking IDs, which helps with locating related log messages and payloads for
a given transaction for troubleshooting.

About this task
Review the server log messages using the Tracking ID value provided by the user.

Steps

1. Ask the user for the Tracking ID value in the error message.

2. Search for the tracking ID in the server log.

3. Review the log messages and payloads pertaining to the transaction that is associated with the
tracking ID.

Result

In general, the most useful log messages are the ones tagged with WARN, ERROR, or prefixed with Caused
by.

Example

Example

Suppose an error occurred and the associated the tracking ID was V3IwuUsy8PQp-9ZbE9UfUjOEo9c.
Based on the tracking ID, you found the following log message.

2015-12-03 11:13:33,784 tid:V3IwuUsy8PQp-9ZbE9UfUjOEo9c DEBUG
[org.sourceid.servlet.HttpServletRespProxy] adding lazy cookie
Cookie{PF=OaxBwPGw5OBeHVXe1sgifB7iZR5Rz2VI4rhJwqUSIXV; path=/; maxAge=-1;
domain=null} replacing null

After reviewing the related log messages, you found the next few messages.

2015-12-03 12:36:21,176 tid:V3IwuUsy8PQp-9ZbE9UfUjOEo9c ERROR
[org.sourceid.saml20.profiles.idp.HandleAuthnRequest] Exception occurred
during request processing
org.sourceid.websso.profiles.RequestProcessingException: Unexpected Runtime
Authn Adapter Integration Problem.

...

Caused by: org.sourceid.saml20.adapter.AuthnAdapterException: Could not obtain
attributes from the IdP Authentication Service.

Based on these log messages, the remedy is to review and update the configuration of the applicable
identity provider (IdP) adapter instance.

Copyright ©2024

 | Administrator's Reference Guide | 969

Correlating PingFederate events with PingDirectory LDAP activities
When enabled on PingDirectory, you can correlate events in PingFederate with LDAP activities in
PingDirectory by looking for the matching session and request tracking IDs in their logs.

PingFederate can receive many requests during a session. The session ID is consistent throughout a
session, but the request ID is unique for every request. You can use the request ID to search for specific
events within a session.

PingFederate records runtime requests in its audit log and gives them tracking IDs. When PingFederate
sends an LDAP call to PingDirectory, PingFederate also sends the request's tracking ID.

 Important:

For PingFederate to send the tracking ID to PingDirectory, the Intermediate Client Request Control
(OID=1.3.6.1.4.1.30221.2.5.2) must be enabled in PingDirectory. Also, there cannot be any access control
instructions that prevent the PingFederate service account accessing PingDirectory from using this OID.

PingDirectory records the tracking ID as a session ID or request ID value in its access log. In the log, the
ID is a property of a via element.

For example, if you see the following via elements in the PingDirectory access log, you can match them
with PingFederate events by looking for session ID kkLivppizq1RvbaYBAuB1r9z-Y8' and request ID
FhMl5Lz0KwsQphYUlUVHS4xkC5s in the PingFederate audit log.

via="app='PingFederate' sessionID='tid:kkLivppizq1RvbaYBAuB1r9z-Y8'"
via="app='PingFederate' requestID='tid:FhMl5Lz0KwsQphYUlUVHS4xkC5s'"

 Note:

When a PingFederate endpoint receives a request, it records a request ID at the DEBUG level of the
server log. When the Request Header for Correlation ID field in the General Settings window specifies a
request header, if the request includes that header, and the header's value contains 1 to 50 alphanumeric
characters and hyphens, then PingFederate uses that value for the request ID. Otherwise, PingFederate
uses a unique value that it generates for the request ID. For more information, see Configuring general
settings on page 957.

Troubleshooting OAuth transactions
This troubleshooting guide walks through an OAuth request by inspecting the parameters provided by
the client in different stages of an OAuth transaction. It then compares the parameter values against the
corresponding settings defined in the PingFederate administrative console.

Troubleshooting OAuth use cases involves reviewing the OAuth requests and various OAuth settings.

Copyright ©2024

 | Administrator's Reference Guide | 970

While the guide focuses on an OAuth authorization code use case, in which the end user authenticates
through an identity provider adapter, it provides a general guidance for other OAuth use cases with or
without OpenID Connect in terms of which part of the configuration comes into play and how a request
might fail at which stage.

Reviewing an OAuth request and various OAuth settings
To troubleshoot OAuth requests, inspect the parameters provided by the client in different stages of an
OAuth transaction, and then compare the parameter values against the corresponding settings defined in
the PingFederate administrative console.

About this task

A typical OAuth request looks like the following with the parameters that are submitted by a client. These
are what you track as you go through the configuration during a troubleshooting task. Your requests could
look very different depending on the specifics of your authorization server, resource server, and clients.

?client_id=client&response_type=code&redirect_uri=uri&scope=scope1 scope2

In this example request, the client is providing 4 parameters:

▪ client_id
▪ response_type
▪ redirect_uri
▪ scope

 Note:

There are other optional parameters that can be included in the request but are at this time not of interest
to you in troubleshooting a typical request.

Steps

1. Review OAuth request in the server log.

PingFederate logs requests and responses to the server log. The details vary based on the log
level set in <pf_install>/pingfederate/server/default/conf/log4j2.xml file. The

Copyright ©2024

 | Administrator's Reference Guide | 971

following example shows a client making an Authorization Code grant type, as indicated by the
response_type parameter of code.

2015-11-29 22:11:35,795 tid:aUBgyTMjPfuSFp5BYtsK6Cb2McM DEBUG
 [org.sourceid.websso.servlet.ProtocolControllerServlet] ---REQUEST
 (GET)/as/authorization.oauth2 from 127.0.0.1:
 ---PARAMETERS---
 scope:
 list_users
 response_type:
 code
 client_id:
 pa_web_session_9

2. Check if the client is valid.

a. Go to Applications # OAuth # Clients to open the Clients window.
b. Look for the client by its Client ID.

Result:

If the client is not found, PingFederate denies the request, returns a 400 error to the client, and logs an
Unknown or invalid client_id message to the server log, similar to the following code.

2015-11-29 22:11:35,812 tid:aUBgyTMjPfuSFp5BYtsK6Cb2McM DEBUG
[org.sourceid.oauth20.handlers.HandleAuthorizationRequest]
Normal exception being handled during OAuth request processing:
org.sourceid.oauth20.handlers.AuthorizationRequestException: Unknown or
 invalid client_id

3. Check if the redirect_uri parameter value is valid for the client.

a. Go to Applications # OAuth # Clients to open the Clients window.
b. Go to the Clients window.
c. Select the applicable client.
d. Compare the redirect_uri parameter value against the values defined in the Redirect URIs

field.

Result:

If the request comes without a redirect_uri parameter and the Redirect URIs field contains
multiple entries, PingFederate denies the request, returns a 400 error to the client, and logs an
Invalid redirect_uri message to the server log, similar to the following code.

2015-11-29 22:23:59,858 tid:aUBgyTMjPfuSFp5BYtsK6Cb2McM DEBUG
 [org.sourceid.oauth20.handlers.HandleAuthorizationRequest]
 Normal exception being handled during OAuth request processing:
 org.sourceid.oauth20.handlers.AuthorizationRequestException: Invalid
 redirect_uri

If the request comes with a redirect_uri parameter value that does not match any Redirect URIs
values defined for the client, PingFederate denies the request, returns a 400 error to the client, and
logs an Invalid redirect_uri message to the server log.

Copyright ©2024

 | Administrator's Reference Guide | 972

4. Check if the response_type parameter value is authorized for the client.

a. Go to Applications # OAuth # Clients to open the Clients window.
b. Select the applicable client.
c. In the Allowed Grant Types field, verify the response_type is selected.

Result:

If the response_type value is not one of the allowable grant types, PingFederate denies the
request, returns a 403 error to the client, and logs an unauthorized_client message with an error
description to the server log, similar to the following code.

2015-11-29 22:25:51,212 tid:aUBgyTMjPfuSFp5BYtsK6Cb2McM DEBUG
 [org.sourceid.saml20.bindings.LoggingInterceptor] Transported Response.
 OutMessageContext:
 OutMessageContext
 entityId: pa_web_session_1 (null)
 virtualServerId: null
 Binding: oauth:authz
 params: {error=unauthorized_client, error_description=implicit grant
 not allowed for this client}
 Endpoint: https://servapp.ext.den-ping.com/pa/oidc/
cb#error_description=implicit+grant+not+allowed+for+this
+client&error=unauthorized_client
 SignaturePolicy: BINDING_DEFAULT

5. Check if the scopes requested with the scope parameter are defined for the authorization server.

a. Go to System # OAuth Settings # Authorization Server Settings.
b. In the Authorization Server Settings window, compare the scopes requested against the values

defined in the Scope Value or the Scope Group Value fields.

Result:

If the scopes requested are not defined, PingFederate denies the request, returns a 403 error to the
client, and logs an invalid_scope message with an error description to the server log, similar to the
following code.

2015-11-29 22:24:52,588 tid:aUBgyTMjPfuSFp5BYtsK6Cb2McM DEBUG
 [org.sourceid.saml20.bindings.LoggingInterceptor] Transported Response.
 OutMessageContext:
 OutMessageContext
 entityId: pa_web_session_1 (null)
 virtualServerId: null
 Binding: oauth:authz
 params: {error=invalid_scope, error_description=The requested
 scope(s) must be blank or a subset of the provided scopes.}
 Endpoint: https://servapp.ext.den-ping.com/pa/oidc/cb?
error_description=The+requested+scope%28s%29+must+be+blank+or+a+subset+of
+the+provided+scopes.&error=invalid_scope#.
 SignaturePolicy: BINDING_DEFAULT

6. Check if the scopes requested are valid for the client.

a. Go to Applications # OAuth # Clients to open the Clients window.
b. Select the applicable client.
c. If the client is limited to specific scopes, as indicated by the selection of the Restrict Scopes

check box, verify the scopes requested are valid for the client.

Result:

If the scopes requested are not valid for the client, PingFederate denies the request, returns a 403
error to the client, and logs an invalid_scope message with an error description to the server log.

Copyright ©2024

 | Administrator's Reference Guide | 973

7. Review the authentication process.

Suppose this OAuth request uses an identity provider (IdP) adapter for authentication. Check the IdP
adapter mapping and the runtime selection made by the user.

a. Go to Authentication # OAuth # IdP Adapter Grant Mapping.
b. Verify an entry exists for the IdP adapter involved.

Result:

If more than one option is available, authentication policies can be used to select an authentication
source. If no authentication policy is defined or applicable, the user is prompted with a list of all
available authentication sources. The user can also save the preferred authentication source for later
in the form of a pfidpaid cookie.

If a selection was made and the authentication source is not defined for OAuth, an error is returned to
the user.

8. Upon successful authentication, PingFederate presents to the user an authorization consent page or a
redirection to a trusted web application that is responsible to prompt the user for authorization unless a
bypass option is configured. Review the authorization approval settings.

a. Go to System # OAuth Settings # Authorization Server Settings.
b. Review the Reuse Existing Persistent Access Grants for Grant Types setting.

Result:

If the grant type is selected, the authorization consent page is bypassed for the same client, the
same user and same, or lesser, scope.

c. Review the Consent User Interface setting.

If PingFederate is configured to use an external consent user interface, verify that the associated
settings are correctly configured and the web application is fulfilling its responsibilities.

d. Go to Applications # OAuth # Clients to open the Clients window.
e. Go to the Clients window.
f. Select the applicable client.
g. Review the Bypass Authorization Approval setting.

Result:

If the Bypass Authorization Approval check box is selected, the authorization consent page is
bypassed as well.

9. Verify a mapping is configured.

When authorization is obtained, PingFederate maps attribute values from the authentication source
into the persistent grants, the USER_KEY, USER_NAME, and extended attributes defined in the
Authorization Server Settings window. This is the first stage of the two-stage OAuth attribute
mapping process. In this example, because the user authenticates through an IdP adapter, check the
IdP adapter mapping.

a. Go to Authentication # OAuth # IdP Adapter Grant Mapping.
b. Verify an entry exists for the IdP adapter involved and review its configuration.

10. Review the request and the settings related to access token management.

Finally, PingFederate selects the applicable access token management (ATM) instance and fulfill the
access token by mapping values from the persistent grants, the authentication source, or both. This is
the second stage of the two-stage OAuth attribute mapping process.

At runtime, the OAuth authorization server uses the following rules to determine which ATM instances
to use:

a. limits the eligible ATM instances to those that are available in the context of the request. For
most requests, these are instances that have an attribute mapping defined in the Access Token
Mapping window. For OAuth Assertion Grant requests, it is the set of instances for which a

Copyright ©2024

 | Administrator's Reference Guide | 974

mapping is defined in the IdP connection. If configured, the ACL can also limit which ATM
instances are eligible.

b. If the request comes with an access_token_manager_id or aud parameter, uses the
information to determine the applicable ATM instance.

c. If the request does not come with either parameter, for OAuth clients supporting the OpenID
Connect protocol by including the openid scope value, uses the ATM instance specified by the
OpenID Connect policy associated with the client. For resource server clients, you can optionally
configure to use any eligible ATM instances for the purpose of token validation.

d. If the request comes with neither of the two parameters nor the openid scope, uses the default
ATM instance of the client if configured, or the default ATM instance defined for the installation
if eligible. For token validation requests, if resource server clients do not provide either the
access_token_manager_id or aud parameter in their requests and the resource server clients
have not been configured to validate against any eligible ATM instances, the same logic applies.

a. Determine if the OAuth request is sent to the /as/authorization.oauth2 authorization
endpoint or the /as/token.oauth2 token endpoint with an access_token_manager_id or
aud parameter.

b. Go to Applications # OAuth # Clients to open the Clients window.
c. Select the applicable client.
d. Verify if a default access token is selected from the Default Access Token Manager list.
e. Go to Applications # OAuth # Access Token Mapping.
f. Review the attribute mapping configuration for the authentication source, if such mapping exists,

or the Default mapping.

Other runtime issues
Possible runtime issues and their solutions related to unexpected certificate expiration and CrossModule
and Network error messages.

Runtime issues and solutions

Problem Solution

Certificates unexpectedly
expire.

Verify that the server clocks are synchronized on both sides of the federation.
You can configure PingFederate to notify administrators in advance
of impending certificate expiration. For more information, see Runtime
notifications on page 883.

Receive CrossModule
or Network error
messages when
PingFederate is
deployed with a
supported hardware
security module (HSM).

Verify network connections to the HSMs are active and running. Also ensure
the HSMs have not been unintentionally shut down.

Collecting support data
When Ping Identity Support is helping an administrator troubleshoot a problem, it might ask the
administrator to use the collect support data (CSD) tool to compile information about your PingFederate
installation.

About this task

The tool collects the following information by default:

▪ pingfederate/bin
▪ pingfederate/log (the most recent files of each type within a size limit)

Copyright ©2024

 | Administrator's Reference Guide | 975

▪ pingfederate/server/conf(configuration files)
▪ pingfederate/server/data (not key files)

The tool collects the following environment details:

▪ files present and their sizes
▪ certificate data
▪ version data
▪ JVM details
▪ and so on

The tool also collects the following system details, depending on the operating system:

▪ Crontab
▪ Ifconfig
▪ Netstat
▪ Uname
▪ and so on

If Ping Identity Support needs more information about the PingFederate installation than the default
configuration provides, Support might ask the administrator to add a data collector to the tool by modifying
its csd_configuration.yaml file.

The tool consists of the following files in the pingfederate directory:

▪ bin/collect-support-data.bat
▪ bin/collect-support-data.sh
▪ bin/csd-1.0.jar
▪ server/default/conf/collect-support-data/csd_configuration.yaml

 Tip:

You can use other parameters with the collect-support-data tool, including:

--encrypt

Encrypts the CSD output.

--outputPath

Specifies a directory for the CSD package.

For additional information about these parameters and more, use the --help command.

Steps

1. Using your PingFederate administrator account and a terminal, navigate to the pingfederate/bin
directory.

2. Use one of the following commands to run the CSD tool, depending on your operating system:
Choose from:

▪ On a Windows operating system, use collect-support-data.bat.
▪ On a Unix-based operating system, use ./collect-support-data.sh.

Result: As the tool collects data, it displays its progress and any errors. When it finishes collecting
data, the tool places the data in a zip file in the bin directory. The file name format is support-
data-ping-${hostname}-r-${timestamp}.zip.

3. Review any errors that the tool displayed during the process or added to the log file support-data-
ping-${hostname}-r.log. If needed, resolve the errors and run the tool again.

4. Send the support data zip file to Ping Identity Support according to the instructions from Support.

Copyright ©2024

 | Administrator's Reference Guide | 976

WS-Trust STS configuration
The PingFederate WS-Trust Security Token Service (STS) provides security-token validation and creation
to extend single sign-on access to identity-enabled web services.

The section provides instructions for configuring the WS-Trust STS. For more information, see Web
services standards on page 47.

Server settings
To use the PingFederate WS-Trust security token service (STS) for partner connections, enable and
configure the WS-Trust protocol in your system server settings.

After you enable the protocol, you must identify the STS server with a unique federation identifier for both
SAML 2.0 and SAML 1.1 tokens, unless these IDs are already established for the corresponding browser-
based single sign-on protocols.

In addition, also within these server settings tasks, you have the option to require authentication globally for
access to STS endpoints.

Enabling the WS-Trust protocol
To use the PingFederate WS-Trust security token service (STS) for partner connections, enable the WS-
Trust protocol.

About this task
Using the administrative console, configure your server settings to enable the WS-Trust protocol.

Steps

1. Go to System # Server # Protocol Settings.

2. On the Federation Info tab, enter your SAML federation IDs unless these IDs are already established
for the corresponding browser-based SSO protocols.

 Note:

Identifiers are required for both SAML 2.0 and SAML 1.x to enable the STS to issue either type of
token when requested. If you have not established a federation ID for either of these protocols or do
not expect to use one or the other, enter a placeholder in any format and reconfigure later.

Configuring STS authentication
You can configure PingFederate to require that client applications provide credentials to access the STS.

About this task
Although it is an optional configuration, configuring security token service (STS) authentication is
recommended for identity provider (IdP) configurations that use the Username Token Processor. For other
token processors and token generators, trust in the identity of the client is conveyed within the token itself
and verified as part of processing. You can still configure authentication requirements to add another layer
of security by limiting access to only authenticated clients.

 Note:

You can configure STS authentication to either apply globally to all token formats and for all IdP and
service provider (SP) partner connections, or token-to-token mappings, using more fine grained controls, at
the connection level through issuance criteria.

Copyright ©2024

 | Administrator's Reference Guide | 977

Steps

1. Go to System # Server # Protocol Settings.

2. On the WS-Trust STS Settings tab, click Configure WS-Trust STS Authentication to open the WS-
Trust STS Settings window.

3. On the Authentication Methods tab, select the Require HTTP Basic Authentication check box, the
Require Mutual SSL/TLS Authentication check box, or both.

If both the Require HTTP Basic Authentication check box and the Require Mutual SSL/TLS
Authentication check box are selected, all clients must provide credentials for both mechanisms.

 Important:

If you select the Require Mutual SSL/TLS Authentication check box, you must configure a
secondary PingFederate HTTPS port pf.secondary.https.port in the run.properties file.
For more information, see Configuring PingFederate properties on page 771.

4. If you select the Require HTTP Basic Authentication check box, manage user accounts on the
HTTP Basic Authentication tab.

a. Click Create User.
b. In the HTTP Basic Authentication, enter a user name in the username field and a password in

the password field.. Repeat to create additional user accounts for your client applications.
c. Click Done.

 Note:

On the HTTP Basic Authentication tab, you can also delete user accounts and update their
passwords.

Copyright ©2024

 | Administrator's Reference Guide | 978

5. If you select the Require Mutual SSL/TLS Authentication check box, on the Mutual SSL
Authentication tab, click Configure Mutual SSL Authentication.

a. On the Authentication Options tab, you can select the Restrict Access by Subject DN check
box and the Restrict Access by Issuer Certificate check box. Click Next.

If both options are selected, the client certificate used for authentication to the STS endpoints
must meet both sets of restrictions.

b. If you selected the Restrict Access by Subject DN check box, enter one or more subject DNs on
the Allowed Subject DNs tab.

 Note:

On the Allowed Subject DNs tab, you can edit or delete existing entries but you must keep at
least one subject DN.

c. Click Next.. When finished, click Save.
d. If you selected the Restrict Access by Issuer Certificate check box, on the Allowed Issuer

Certificates tab, from the Issuer Certificate list, select one or more client certificates.
e. Click Add.

If you have not yet imported the client certificate, click Manage Certificates to do so.

 Note:

On the Allowed Issuer Certificates tab, you can remove existing entries but you must keep at
least one issuer.

f. On the Summary tab, review your mutual SSL/TLS authentication settings. Click Done.

Result: This will take you back to the WS-Trust STS Settings window.

6. When you finish configuring WS-Trust STS settings, on the Summary tab, review the configuration. To
keep your changes, click Save.

Identity provider STS configuration
This section covers the identity provider (IdP) configuration for the PingFederate WS-Trust security token
services (STS).

Managing token processors
The PingFederate Security Token Service (STS) uses token processors to validate incoming tokens and
token requests.

About this task
You must configure at least one processor in order to set up an STS connection or a token-to-token
mapping.

For more information about WS-Trust, see Web services standards on page 47.

PingFederate comes bundled with the following token processors:

▪ JWT Token Processor
▪ Kerberos Token Processor
▪ OAuth Bear Token Processor
▪ SAML 1.1 Token Processor
▪ SAML 2.0 Token Processor
▪ Username Token Processor

You can deploy additional token translators from Ping Identity website.

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads.html

 | Administrator's Reference Guide | 979

Steps

1. Go to Authentication # Token Exchange # Token Processors.

2. In the Token Processors window, choose from the following options.

Option Description

Configure a new instance Click Create New Instance

Modify an existing instance Click the name of instance in the Instance Name
column

View the usage of an existing instance Click Check Usage in the Action column on the
instance's row

Remove an existing instance Click Delete in the Action column on the
instance's row

 Note:

By default, automatically checks multi-connection errors whenever you access this window. This
verifies that configured connections are not adversely affected by changes made here.

If you experience noticeable delays in accessing this window, you can disable automatic connection
validation. Go to System # Server # General Settings.

Selecting a token processor type
Begin creating a token-processor instance by choosing the processor type.

About this task

Steps

1. Go to AuthenticationToken ExchangeToken Processors.

2. To create a new instance, click Create New Instance to open a new Create Token Processor
Instance configuration window and follow the following steps.

 Note:

To select an existing token processor instance, select an instance in the Instance Name section.

a. Click on the Type tab.
b. Enter a name in the Instance Name field and ID in the Instance ID field.
c. From the Type list, select the token-processor type.
d. From the Parent Instance list, select a parent instance.

This is useful when you are creating an instance that is similar to an existing instance. The child
instance inherits the configuration of its parent. In addition, you can override one or more settings
during the rest of the setup. Select the Override ... check box and make the adjustments as
needed in one or more subsequent windows.

3. Click Next.

Copyright ©2024

 | Administrator's Reference Guide | 980

Configuring a token processor instance
PingFederate configures multiple token processor instances. Select one that best fits your environment
needs.

About this task

Depending on the selected token processor, the Instance Configuration tab presents you with different
parameters.

Steps

▪ For configuring a specific token processor bundled with PingFederate, see one of the relevant
following sections:

▪ Configuring a Username Token Processor instance on page 980
▪ Configuring a Kerberos Token Processor instance on page 981
▪ Configuring an OAuth Token Processor instance on page 981
▪ Configuring a JSON Web Token Processor instance on page 981
▪ Configuring a SAML Token Processor instance on page 982

▪ For information about add-on processors, see SSO integration overview on page 59.

Configuring a Username Token Processor instance
The integrated Username Token Processor accepts and validates username security tokens.

Steps

1. Go to Authentication # Token Exchange # Token Processors to open the Token Processors
window.

2. Select on an existing token processor instance by clicking its name in the Instance Name section, or
create a new instance by clicking Create New Instance.

Result: This will open the Create Token Processor Instance window configuration.

3. On the Instance Configuration tab, configure the basics of this token processor instances.

a. If you have not yet defined the desired Password Credential Validator instance, click Manage
Password Credential Validators to do so.

b. Click Add a new row to 'Credential Validators' to select a credential-authentication mechanism
instance for this adapter instance.

c. From the Password Credential Validator Instance list, select a Password Credential Validator
instance. Click Update.

Add as many validators as necessary. Use the up and down arrows to adjust the order in
which you want to attempt credential authentication. If the first mechanism fails to validate the
credentials, moves sequentially through the list until credential validation succeeds. If none of
the Password Credential Validator instances can authenticate the user's credentials, and the
challenge retries maximum has been reached, the process fails.

 Note:

If usernames overlap across multiple Password Credential Validator instances, this failover setup
could lock out those accounts in their source locations.

d. In the Field Value section, enter a value in the Authentication Attempts.

When the number of login failures reaches this threshold, the user is locked out for a period of
time.

The default value is 3.

Copyright ©2024

 | Administrator's Reference Guide | 981

Configuring a Kerberos Token Processor instance
The integrated Kerberos Token Processor accepts and validates Kerberos tokens through a configured
Kerberos realm.

About this task
It supports authentication mechanism assurance from Active Directory (AD) domain service, making it
possible to restrict access to users authenticating through specific mechanisms. For more information, see
Authentication mechanism assurance on page 320.

Steps

1. Go to AuthenticationToken ExchangeToken Processors.

2. On the Instance Configuration tab, select the applicable domain from the Domain/Realm Name list.

An AD domain or a Kerberos realm must be configured for use with the Kerberos Token Processor. If
the domain you want does not appear, click Manage Active Directory Domains/Kerberos Realms to
add it. For more information, see Active Directory and Kerberos on page 936.

 Note:

Kerberos tickets can be accepted from domains other than the domain configured in the token
processor if there is a transient, two-way trust. This trust exists by default when domains are joined
within a single server forest. For more information, see Multiple-domain support on page 937.

Configuring an OAuth Token Processor instance
The PingFederate STS provides validation for OAuth 2.0 bearer tokens. To use the OAuth Token
Processor, you must first configure an Access Token Management (ATM) instance.

About this task
For more information about PingFederate OAuth authorization server and access token management, see
About OAuth on page 74 and Access token management on page 564.

Steps

1. Go to Authentication # Token Exchange # Token Processors.

2. On the Instance Configuration tab, configure the basics of the token processor instance.

a. In the Access Token Manager row, from the Field Value list, select an ATM instance.

If the desired ATM instance is not shown, click Manage Access Token Manager.

Result:

The token processor instance uses the selected ATM instance to validate the OAuth bearer
access tokens.

b. Optional: Select the Scope Value as Single String check box.

Result:

If selected, the scope value is returned as a single space-delimited set of string value. If it is not
selected, scope values are returned as a multivalued attribute.

Configuring a JSON Web Token Processor instance
The PingFederate security token services (STS) provides validation for JSON web tokens (JWTs).

Steps

1. Go to Authentication # Token Exchange # Token Processors.

Copyright ©2024

 | Administrator's Reference Guide | 982

2. On the Instance Configuration tab, enter the required information.

See the following table for information about each field.

JWT Token Processor instance field names and descriptions

Field Description

JWKS Endpoint URI The URI of the JWKS endpoint. A set of JSON Web Keys (JWK) are
downloaded from this endpoint and used for JWT signature verification.

Issuer A unique identifier for the issuer of the JWT.

Expiry Tolerance The amount of time, in seconds, to allow for clock skew between servers.
Valid range is 0 to 3600.

Configuring a SAML Token Processor instance
The integrated SAML (1.1 or 2.0) Token Processor accepts and validates SAML (1.1 or 2.0) security
tokens. The PingFederate security token service (STS) validates digital signatures using all trusted
certificate authorities (CAs) imported into PingFederate.

About this task
On the Instance Configuration tab, configure a SAML Token Processor instance.

You can restrict the signature verification process by subject distinguished names (DN), issuers, or both to
limit the token requests accepted for this token processor instance.

You must indicate a unique identifier for the PingFederate STS. Token processor instances reject SAML
tokens that do not contain the identifier in the audience element.

Steps

▪ Go to Authentication # Token Exchange # Token Processors.

Copyright ©2024

 | Administrator's Reference Guide | 983

▪ On the Instance Configuration tab, configure the basics of the token processor instance.

a. In the Audience row, in the field value field, enter the URI that uniquely identifies your federation
gateway for this SAML protocol.

This is the federation ID for the STS for either SAML 1.1 or SAML 2.0 tokens, depending on which
processor you are configuring.

b. Optional: Click Add a new row to 'Valid Certificate Issuer DNs' to enter one or more issuers.

 Important:

If issuer DNs are specified here, then only those issuers are considered valid for verifying
incoming digital signatures. Otherwise, all trusted certificate authorities (CAs) are used to verify
signatures.

c. Optional: Click Add a new row to 'Valid Certificate Subject DNs' to enter one or more subject
DNs.

 Important:

If subject DNs are specified here, then only those subject DNs are considered valid for verifying
incoming digital signatures. Otherwise, all trusted certificate authorities (CAs) are used to verify
signatures.

If you specify both issuer DNs and subject DNs, then the certificate used to validate signatures
must match an entry in both lists.

If you provide no issuer DN and subject DN, then all certificates are treated as valid for purposes
of verification.

Extending a token processor contract
Token processors allow administrators to add to a built-in list of user attributes that the processor returns
from an incoming token.

About this task

 Note:

The Extended Contract tab shows a different list of attributes under Core Contract, depending on the
token processor selected.

Steps

1. Go to Authentication # Token Exchange # Token Processors.

2. On the Extended Contract tab, in the Extend the Contract field, enter the name of the desired
attribute. Click Add.

 Important:

For the OAuth Bearer Token Processor, added attributes must also be among those configured with
the associated access token management instance.

Repeat these steps to add additional attributes.

Copyright ©2024

 | Administrator's Reference Guide | 984

Setting attribute masking
Mask attribute values that PingFederate logs from a processor instance at runtime.

Steps

1. Go to Authentication # Token Exchange # Token Processors.

2. On the Token Attributes tab, in the Mask Log Values section, select the check box for the attribute
whose value you want to mask in logs.

 Note:

If OGNL expressions might be used to map derived values into outgoing tokens and you want those
values masked in logs as well, select the Mask All OGNL-expression Generated Log Values check
box under the list of attributes.

Reviewing the token processor configuration
Review your token processor instance summary information.

About this task
On the Summary tab, review, amend, save, or discard the token processor configuration.

Steps

▪ To keep your changes, click Save.
▪ To amend your configuration, click the name of the corresponding tab and then follow the configuration

wizard to complete the task.
▪ To discard your changes, click Cancel.

Managing STS request parameters
Configure PingFederate to act as a WS-Trust security token service (STS) by defining sets of Request for
Security Token (RST) metadata parameters that can be used for mapping attributes into outgoing SAML
security tokens.

About this task
After these request contracts are defined, you can make them available when configuring WS-Trust STS
settings in the SP connections. For more information, see Selecting a request contract on page 990.

To manage your request contracts:

Steps

▪ Go to Authentication # Token Exchange # STS Request Parameters
Choose from:

▪ To configure a new set of request parameters, click Add New Request Contract.
▪ To modify an existing request contract, select it by its name in theContract Name column.

▪ To review the usage of an existing request contract, in the Action section, click Check Usage.
▪ To remove an existing request contract or to cancel the removal request, in the Action section, click

Delete or Undelete.

Copyright ©2024

 | Administrator's Reference Guide | 985

Creating a request contract
Specify one or more parameters that will be included in request-security-tokens (RST) applicable to
connection partners. You can make request contracts available for token-attribute mapping during partner-
connection configuration.

About this task

Identify the contract and define parameters that will be available in token requests associated with this
contract for partner connections.

Steps

1. Go to Authentication # Token Exchange # STS Request Parameters.

Result: This will open the STS Request Parameters window configuration.

2. Click Add New Request Contract.

Result:

This will open the Request Contract configuration window.

3. Enter the contract name in the Contract Name field and the contract ID in the Contract ID field.

 Note:
In the Request Contract configuration window, after you click Done, the Contract Name and
Contract ID cannot be modified.

4. In the Parameter Name field, enter the parameter that will be included in the RSTs. Click Add.

You must add at least one parameter. Repeat this step to add more parameters.

 Note:

After the request is saved, you can add, modify, or remove parameters. You must keep at least one
parameter.

5. Click Done.

Configuring SP connections for STS
Configure a security token service (STS) connection to a service provider (SP) partner either in conjunction
with browser-based single sign-on (SSO) or independently.

Steps

1. Go to System # Server # Protocol Settings.

2. On the WS-Trust STS tab, configure an STS connection.

Configuring protocol settings for IdP STS
Specify the WS-Trust protocol details for web service clients related to this connection.

Steps

1. Go to Applications # Integration # SP Connections.

2. Click on an existing connection in the SP Connection column, or click Create Connection to
configure a new SP connection to open the SP Connection configuration window.

Copyright ©2024

 | Administrator's Reference Guide | 986

3. On the WS-Trust STS tab, click Configure WS-Trust STS to open the WS-Trust STS configuration
window.

 Note:
The WS-Trust STS tab is only available after you enable the WS-Trust role on theConnection Type
tab. For more information, see Configuring SP Connections for STS.

4. On the Protocol Settings tab, enter a URL for your partner's web service in the Partner Service
Identifier field. Click Add.

This identifier compares to the AppliesTo element in the Requests for Security Token (RST)
messages and can be either a complete URL or a base URL for matching variable ports or paths.

Repeat this step to add additional identifiers.

5. Select any of the following WS-Trust protocol setting options that are applicable to your use case.

Option Description

OAuth Assertion Profiles When selected, four additional token-type
requests become available based on these
OAuth grant types:

▪ JWT Bearer Token grant type
▪ OAuth Access Token via JWT Bearer Token

grant type
▪ SAML 2.0 Bearer Assertion grant type
▪ OAuth Access Token via SAML 2.0 Bearer

Assertion grant type

See STS OAuth integration on page 73 for
more information on the use of these token-type
requests.

Default Token Type The default token type when a web service client
(WSC) does not specify in the token request
which token type the STS should issue. The
choices are:

▪ SAML 2.0
▪ SAML 1.1
▪ SAML 1.1 for Office 365

The default token type does not need to match
the protocol selected for the browser-based SSO,
if enabled, and does not apply to OAuth assertion
profiles because those RST messages must
contain the requested token type.

Generate Key for SAML Holder of Key Subject
Confirmation Method

When selected, the STS generates a symmetric
key to be used in conjunction with the "Holder
of Key" (HoK) designation for the assertion's
Subject Confirmation Method.

For information about HoK assertions, see Web
Services Security SAML Token Profile.

This option does not apply to OAuth assertion
profiles.

Copyright ©2024

https://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-SAMLTokenProfile-v1.1.1-os.html
https://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-SAMLTokenProfile-v1.1.1-os.html

 | Administrator's Reference Guide | 987

Option Description

Encrypt SAML 2.0 Assertion When selected, the STS encrypts the SAML 2.0
assertion. Applicable only to SAML 2.0 security
token.

This option does not apply to OAuth assertion
profiles.

6. On the Protocol Settings tab, customize SAML messages and assertions for WS-Trust connections.
Message customizations are OGNL expressions that allow you to customize the security token sent
from PingFederate to the service provider (SP).

a. Click Show Advanced Customizations.
b. From the Message Type list, select a type option and enter an expression. The message type is

used to override the message type returned from the OGNL expression.

The following tables describe the relationship between message type and available variables, and
the corresponding class or interface information in Java.

SP connections SAML 2.0 message types and expressions

Message types Available variables and classes/interfaces in Javadoc

AssertionType #AssertionType

org.sourceid.saml20.xmlbinding.assertion.AssertionType

#AssertionTypes

org.sourceid.saml20.xmlbinding.assertion.AssertionType[]

#Attributes

org.sourceid.util.log.AttributeMap

ResponseDocument #ResponseDocument

For a connection with WS-Trust v1.3, #ResponseDocument
will be of type org.oasisOpen.docs.wsSx.wsTrust.x200512.
RequestSecurityTokenResponseCollectionDocument

For a connection with WS-Trust v1.2, #ResponseDocument
will be of type org.xmlsoap.schemas.ws.x2005.x02.trust.
RequestSecurityTokenResponseDocument

#Attributes

org.sourceid.util.log.AttributeMap

SP Connections SAML 1.x message types and expressions

Message types Available variables and classes/interfaces in Javadoc

AssertionType #AssertionType

org.sourceid.protocol.saml11.xml.AssertionType

#AssertionTypes

org.sourceid.protocol.saml11.xml.AssertionType[]

#Attributes

org.sourceid.util.log.AttributeMap

Copyright ©2024

 | Administrator's Reference Guide | 988

Message types Available variables and classes/interfaces in Javadoc

ResponseDocument #ResponseDocument

For a connection with WS-Trust v1.3, #ResponseDocument
will be of type org.oasisOpen.docs.wsSx.wsTrust.x200512.
RequestSecurityTokenResponseCollectionDocument

For a connection with WS-Trust v1.2, #ResponseDocument
will be of type org.xmlsoap.schemas.ws.x2005.x02.trust.
RequestSecurityTokenResponseDocument

#Attributes

org.sourceid.util.log.AttributeMap

Example:

▪ Example of an AssertionType expression for SAML1.1.

#AssertionType.getAuthenticationStatementArray(0)
.getSubject().getNameIdentifier().setStringValue("JoeSAML2IDP"),
#AssertionType

▪ Example of a ResponseDocument expression for a connection with WS-Trust v1.3.

#RequestSecurityTokenResponseCollectionDocument.getRequestSecurityTokenResponseCollection()
.getRequestSecurityTokenResponseArray(0).setContext(‘context1’){code}

▪ Example of a ResponseDocument expression for a connection with WS-Trust v1.2.

#RequestSecurityTokenResponseDocument.getRequestSecurityTokenResponse().setContext(‘context1’)

7. ClickNext.

Setting a token lifetime
Specify a token's timeframe of validity before and after issuance.

About this task
Standards require a window of time during which a security token is considered valid. Each token has a
time-stamp XML element as well as elements indicating the allowable lifetime of the token, in minutes,
before and after the token time stamp.

Steps

1. Go to Applications # Integration # SP Connections.

2. In the WS-Trust STS window, click the Token Lifetime tab.

3. Override the default values for the fields in the following table.

Token timeframe parameters and descriptions

Field Description

Minutes Before The amount of time before the SAML token was issued during which it is to
be considered valid. The default value is 5.

Minutes After The amount of time after the SAML token was issued during which it is to
be considered valid. The default value is 30.

4. Click Next.

Copyright ©2024

 | Administrator's Reference Guide | 989

Configuring token creation
The PingFederate security token service (STS) requires creating tokens to enable web services access to
resources at your service provider (SP) partner's site.

About this task

For the PingFederate STS to issue a security token in response to requests for partner services, you must
indicate what user attributes are to be included in the token attribute contract. The attribute values sent
in the token are then derived by mapping those available from the token processor you select. As with
browser single sign-on (SSO), the mapping can be augmented using local data stores, variable or constant
text, or expressions.

Steps

▪ On the Token Creation, click Configure Token Creation to begin a token creation configuration.

Defining an attribute contract for IdP STS
During token creation configuration, define an attribute contract that the server sends in the security tokens
issued in response to a web service client at your site.

About this task

An attribute contract is the set of user attributes that a web service client at your site expects to receive in
security tokens issued for this connection. You identify these attributes on the Attribute Contract tab. For
more information, see Attribute contracts on page 92.

Steps

1. Enter the attribute name in the Extend the Contract field. Attribute names are case-sensitive and
must correspond to the attribute names, including claims, expected by the requesting web services
client (WSC).

Result:

 Tip:

The Format attribute associated with the NameID element in outgoing SAML tokens can be set by
adding an attribute called SAML_NAME_FORMAT. The value of that attribute can then be mapped later.
For more information, see Configuring contract fulfillment for token creation on page 994.

For information about the NameID elements and applicable URI values, locate the SAML 2.0
specification at www.oasis-open.org/standards.

 Tip:

You can add a special attribute, SAML_AUTHN_CTX, to indicate to the service provider (SP) the type
of credentials used to authenticate to the identity provider (IdP) application-authentication context.
Map a value for the authentication context on the attribute-mapping window later in the configuration,
from any available attribute source, including the RST if a requested context is specified as a request
parameter. For more information, see Configuring contract fulfillment for token creation on page 994.

Copyright ©2024

https://www.oasis-open.org/standards

 | Administrator's Reference Guide | 990

2. Optional: For SAML 1.1 tokens, select a attribute namespace from the list.

This field appears only when the chosen default token type is SAML 1.1 or SAML 1.1 for Office 365
in the WS-Trust STS # Protocol Settings configuration.

Change the default namespace selection if you and your SP partner have agreed to a specific
namespace.

 Note:

You can customize name-format alternatives in the custom-name-formats.xml configuration file
located in the <pf_install>/pingfederate/server/default/data/config-store directory.
You must restart PingFederate to activate any changes made to this file.

For more information about attribute namespace, see Attribute contracts on page 92.

3. Click Add.

4. Repeat until all applicable attributes are defined.

5. Click Next.

Result

Use the Edit, Update, and Cancel workflow to make or undo a change to an item. Use the Delete and
Undelete workflow to remove an item or cancel the removal request.

Selecting a request contract
Select a request contract to be used to map attribute values into the security token.

About this task

This optional setting allows you to use XML parameters contained in RSTs for token-attribute mapping.
For more information, see Managing STS request parameters on page 984. If you are not using request
parameters, click Next to continue.

 Note:

If you are editing an existing configuration, you can change the request contract or disable this optional
setting. These changes night require additional configuration changes in subsequent tasks.

Steps

1. To use request parameters, select the Request Contract check box to access the Request
Contractlist.

2. Select a request contract from the Request Contract list.

If the contract you want is in the Request Contract list, click Manage STS Request Parameters.

When selected, you can choose the request contract as the attribute source in the IdP Token
Processor Mapping configuration later in the setup.

3. Click Next.

Copyright ©2024

 | Administrator's Reference Guide | 991

Managing IdP token processor mappings
Identity provider (IdP) token processors are responsible for validating incoming security tokens as part
of an STS operation. A configured and deployed token processor in PingFederate is known as a token
processor instance. Map, edit, remove, or save a token processor instance.

About this task

You can map one or more token processor instances into an service provider (SP) connection to satisfy
multiple session-management requirements where needed. The same token processor instances can be
mapped in multiple SP connections.

When token processor instances are restricted to certain virtual server IDs, the allowed IDs are displayed
in the Virtual Server IDs column.

Steps

1. In the Token Creation window, click the IdP Token Processor Mapping tab.

2. To map a token processor instance, click Map New Token Processor Instance.
Choose from:

▪ To edit the mapping configuration of a token process instance, open it by clicking on its name,
select the setting that you want to reconfigure, and complete the change.

▪ To remove a token processor instance or cancel the removal request, click Delete followed by
Save or Undelete.

3. If you are creating a new connection and you are finished with mapping configuration, click Done.

4. If you are editing an existing configuration and want to keep your changes, click Save.

Selecting a token processor instance
Select an IdP token processor instance that can be used to authenticate users for a partner. Attributes
returned by the token processor instance you choose for the token processor contract can be used to fulfill
the attribute contract with your partner.

About this task

On the Token Processor Instance tab, choose an instance of a deployed token processor that suits your
requirements for this connection.

 Note:

If you are editing a currently mapped token processor instance, you can toggle the Override Instance
Settings check box. Clearing it removes all previously overridden settings for this connection. Selecting it
provides you the opportunity to customize token processor settings specifically for this connection.

Steps

1. From the Token Processor Instance list, select a token processor instance.

 Note:

If you do not see the desired token processor instance, click Manage Token Processor Instances to
create a new instance of any deployed token processor.

Copyright ©2024

 | Administrator's Reference Guide | 992

2. Select the Override Instance Settings check box if you want to customize one or more token
processor settings for this connection alone.

 Tip:

Alternatively, you can create child token processor instances of a base token processor instance
with overrides so that such customized settings can be applied to several connections. For more
information, see Hierarchical plugin configurations on page 90.

Result:

When selected, the administrative console adds a new Override Instance tab.

Overriding a token processor instance
Customize the token processor instance settings for overriding one or more token processor settings for a
connection.

About this task

On the Override Instance tab, configure override token processor settings specifically for this connection.

 Note:

Any changes to the base token processor instance are propagated to a connection provided the same
changes are not overridden for the connection.

Steps

1. Click Override Instance Settings.

2. On the Instance Configuration, Extended Contract, and Token Attributes tabs, for each of the
settings, select the Override check box and make your changes.

 Note:

If you are editing a currently mapped token processor instance, click Override Instance Settings to
reconfigure any overridden settings for this connection. You can also remove all overridden settings on
a per-tab basis by clearing the Override check box near the top of the window.

3. Click Next.

4. Click Done to close the Override Instance Settings window and continue with the rest of the IdP
Token Processor Mapping window configuration.

Restricting a token processor to certain virtual server IDs
Virtual server IDs provide more configuration flexibility in cases where you need to identify your server
differently when connecting to a partner in one connection for multiple environments or in multiple
connections where the partner also supports multiple federation IDs. When you multiplex one connection
for multiple environments, you can restrict each token processor added to a WS-Trust STS SP connection
or IdP connection.

About this task

When you multiplex one connection for multiple environments see , you can enforce authentication
requirements by restricting a token processor to certain virtual server IDs on the Virtual Server IDs tab. By
default, no restriction is imposed.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 993

If you are editing a currently mapped token processor instance, you can toggle the Restrict Virtual Server
IDs setting. You can also change the allowed virtual server IDs.

Steps

1. In the IdP Token Processor Mapping configuration window, go to the Virtual Server IDs tab.

2. Select the Restrict Virtual Server IDs check box.

3. Select one or more virtual server IDs that you want to allow for this token processor.

Selecting an attribute retrieval method for token creation
For token creation, you can query local data stores to help fulfill the attribute contract in conjunction with
attribute values supplied by the token processor you are using with PingFederate.

About this task

The values supplied by the token processor are shown on the Attribute Retrieval tab, in the Token
Processor Contract section.

To determine whether you need to look up additional values, compare the attribute contract against the
token processor contract or the request contract, if configured. If the attribute contract requires more
information, determine whether local data stores can supply it.

 Note:

If you are editing a currently mapped token processor instance, you can change the mapping method,
which may require additional configuration changes in subsequent tasks.

Steps

1. Go to the IdP Token Processor Mapping window.

2. On the Attribute Retrieval tab, in the Token Processor Contract section, choose from the following
options.
Choose from:

▪ Select the Retrieve Additional Attributes from Data Stores to Fulfill the Attribute Contract
option if you want to configure one or more data stores to look up attribute for a single mapping.

▪ Select the Use only the Token Processor Contract Values in the Outgoing Token option if you
do not require data store query.

3. When finished, click Next.

Configuring attribute sources and user lookup for token creation
Specify a series of local data stores from which data, along with the attributes supplied in the incoming
token, will be used to fulfill the attribute contract.

About this task

Attribute sources are specific data store or directory locations containing information that might be needed
for the attribute contract. They are used to retrieve supplemental attributes. You can use more than one
attribute source when mapping values to the attribute contract. The order matters and affects the queries
differently. For example, if you plan on using the result of a query as an input to a subsequent query, stack
your attribute sources accordingly.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 994

If you are editing a currently mapped token processor instance, you can add, remove, or reorder attribute
sources, which might require additional configuration changes in subsequent tasks.

Steps

1. In the IdP Token Processor Mapping window, click the Attribute Sources & User Lookup tab.

 Note:
The Attribute Sources & User Lookup tab is only visible if you selected the Retrieve Additional
Attributes from Data Stores to Fulfill the Attribute Contract option on the Attribute Retrieval tab.
For more information, see Selecting an attribute retrieval method for token creation.

2. Click Add Attribute Source.

Result: The Attribute Sources & User Lookup window configuration opens.

3. On the Data Store tab, choose a data store for PingFederate to look up attributes.

4. Enter a description in the Attribute Source Description field and a source ID in the Attribute Source
ID field, if prompted, for the data store.

5. From the Active Data Store list, select a data store instance.

 Tip:

If the data store you want is not shown in the Active Data Store list, click Manage Data Stores to
review or add a data store instance.

6. Depending on the data store type, the rest of the setup varies as follows.

Data store types and their required tasks

Data store type Required tasks

JDBC ▪ Specifying database tables and columns on page 376
▪ Entering a database search filter on page 377

LDAP ▪ Specifying directory properties and attributes on page 378
▪ Defining encoding for binary attributes on page 380 (optional)
▪ Entering a directory search filter on page 380

Other ▪ Specifying data source filter and fields on page 381

7. Repeat steps 2 - 6 as needed.

8. Click Save to exit the Attribute Sources & User Lookup window configuration.

Configuring contract fulfillment for token creation
Map values to the attributes defined for the contract. These are the values that are included in the SAML
security tokens sent to the service provider (SP).

Steps

In the Token Creation | IdP Token Processor Mapping window, on the Attribute Contract Fulfillment
tab, for each attribute, select a source from the Source list and then choose or enter a value. You must
map all target attributes.

Copyright ©2024

 | Administrator's Reference Guide | 995

▪ Token

When selected, the Value list is populated with attributes from the token processor instance. Select
the desired attribute from the list. At runtime, the attribute value from the token processor instance is
mapped to the value of the attribute in the SAML security token.

For example, to map the value of the Username Token Processor's username attribute as the value
of the TOKEN_SUBJECT attribute on the contract, select Token from the Source list and username
from the Value list.

▪ Context

When selected, the Value list is populated with the available context of the transaction. Select the
desired context from the list. At runtime, the context value is mapped to the value of the attribute in the
SAML security token.

 Note:

The HTTP Request and STS SSL Client Certificate Chain context values are retrieved as Java
objects rather than text. For this reason, OGNL expressions are more appropriate to evaluate and
return values, such as Expression.

 Note:

When using the STS Basic Authentication Username, STS SSL Client Certificate's Subject DN,
or STS SSL Client Certificate Chain contexts, ensure the associated authentication is enabled and
configured on the System # Server # Protocol Settings # WS-Trust STS Settings tab.

▪ Request

When selected, the Value list populates with parameter values from the token request received from
the web service client. This selection is available only if a request contract was selected earlier on
the Request Contract tab. Select the desired context from the list. At runtime, the context value is
mapped to the value of the attribute in the SAML security token.

▪ LDAP, JDBC, or Other

When selected, the Value list populates with attributes that you have selected in the Attribute Source
& User Lookup window configuration. Select the desired attribute from the list. At runtime, the
attribute value from the attribute source is mapped to the value of the attribute in the SAML security
token.

▪ Expression

When enabled, this option provides more complex mapping capabilities, such as transforming
incoming values into different formats. Select Expression from the Source list, click Edit under
Actions, and compose your OGNL expressions. All variables available for text entries are also
available for expressions. For more information, see Text.

Expressions are not enabled by default. For more information about enabling and editing OGNL
expressions, see Attribute mapping expressions on page 213.

▪ No Mapping

Select this option to ignore the Value field.

Copyright ©2024

 | Administrator's Reference Guide | 996

▪ Text

When selected, the text you enter is mapped to the value of the attribute in the single sign-on tokens at
runtime. You can mix text with references to any of the values from the authentication source using the
${attribute} syntax.

You can also enter values from your data store, when applicable, using the following syntax.

${ds.attr-source-id.attribute}

where attr-source-id is the attribute source ID value and attribute is any of the selected
attributes in the attribute source configuration.

 Note:

If you are editing a currently mapped token processor instance, you can update the mapping configuration,
which might require additional configuration changes in subsequent tasks.

Defining issuance criteria for token creation

About this task

On the Issuance Criteria tab, define the criteria that must be satisfied in order for to process a request
further. This token authorization feature provides the capability to conditionally approve or reject requests
based on individual attributes.

Begin this optional configuration by adding a criterion. Choose the source that contains the attribute to be
verified. Some sources, such as Mapped Attributes, are common to almost all use cases. Other sources,
such as JDBC, depend on the type of configuration. Irrelevant sources are automatically hidden. After
you select a source, choose the attribute to be verified. Depending on the selected source, the available
attributes or properties vary. Finally, specify the comparison method and the desired, compared-to, value.

If you define multiple criteria, all criteria must be satisfied for to move a request to the next phase. A
criterion is satisfied when the runtime value of the selected attribute matches or does not match the
specified value depending on the chosen comparison method. The multi-value contains and multi-value
does not contain comparison methods are intended for attributes that might contain multiple values. Such
criterion is considered satisfied if one of the multiple values matches or does not match the specified value.
Values are compared verbatim. If you require complex evaluations, including conditional criteria or partial
matching, define them using attribute mapping expressions.

 Important:

When you multiplex one connection for multiple environments, consider using attribute mapping
expressions to verify the virtual server ID in conjunction with other conditions, such as group membership
information, to protect against unauthorized access. For more information, see Multiple virtual server IDs
on page 105 and Issuance criteria and multiple virtual server IDs on page 217.

 Note:

All criteria defined must be satisfied or evaluated as true for a request to move forward. As soon as one
criterion fails, rejects the request and returns an error message.

Steps

1. In the Token Generator Mapping & User Lookup configuration window, go to the Issuance Criteria
tab.

Copyright ©2024

 | Administrator's Reference Guide | 997

2. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Attributes or properties and descriptions

Source Description

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

Because the HTTP Request and STS SSL Client Certificate Chain
context values are retrieved as a Java object rather than text, use attribute
mapping expressions to evaluate and return values.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

Token Select to evaluate attributes from the token processor instance.

3. Select the attribute to be evaluated under Attribute Name.

 Note:

To evaluate the STS Basic Authentication Username, STS SSL Client Certificate Chain, or
STS SSL Client Certificate's Subject DN context value, ensure that the associated authentication
is enabled and configured on System # Server # Protocol Settings to open the WS-Trust STS
Settings window.

Copyright ©2024

 | Administrator's Reference Guide | 998

4. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

 Note:

To evaluate the STS SSL Client Certificate's Subject DN context value, you must select one of the
... DN conditions. These methods normalize the DN before comparison to accommodate for different
string representations that are still considered equivalent, such as case sensitivity or white space.

5. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

6. In the Error Result field, enter a custom error message.

The Error Result field is used by the faultstring element for SOAP 1.1 and the Reason/Text
element for SOAP 1.2. For more information on SOAP, see Simple Object Access Protocol.

Using an error code in the Error Result field allows an application to process the code in a variety of
ways, such as displaying an error message or e-mailing an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

7. Click Add.

8. Optional: Repeat to add more criteria.

Copyright ©2024

https://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383507

 | Administrator's Reference Guide | 999

9. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

Reviewing the IdP token processor mapping
Review the identity provider (IdP) token processor mapping configuration to make and save changes as
needed.

About this task
On the Summary tab, review, amend, save, or discard your configuration changes.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Selecting a request error handling method
If you are using request parameters to fulfill the attribute contract and the parameter values are not
supplied in the request token (RST) messages, you can choose whether to continue or abort the token-
creation process.

About this task
On the Error Handling tab, select a request error handling method.

 Note:
On the Request Contract tab, you must select the Request Contract check box and configure a request
contract for this connection for the Error Handling tab to appear after the IdP Token Processor Mapping
tab.

Steps

1. Go to Applications # Integrations # SP Connections to choose the appropriate connection.

2. On the WS-Trust STS tab, click Configure WS-Trust STS.

3. On the Token Creation tab, click Configure Token Creation.

Copyright ©2024

 | Administrator's Reference Guide | 1000

4. On the Error Handling tab, select one of the following options.
Choose from:

▪ To allow the STS transaction to continue with null attribute values sent in the generated token,
select Send User to SP Using Null Values for Attributes .

▪ To abort the STS transaction with null attribute values sent in the generated token, select Abort
the STS Transaction .

5. Click Next.

Reviewing the token creation configuration
Review the token creation configuration to make changes as needed.

About this task
On the Summary tab, review, amend, save, or discard your token creation configuration changes.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Reviewing the IdP STS settings
Review the identity provider (IdP) security token service (STS) settings to make and save changes as
needed.

About this task
On the Summary tab, review, amend, save, or discard the IdP STS settings.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Copyright ©2024

 | Administrator's Reference Guide | 1001

Service provider STS configuration
This section covers the service provider (SP) configuration for security token service (STS).

Managing token generators
The PingFederate security token service (STS) uses token generators to issue security tokens that can be
consumed by web services at your site. You must configure at least one generator in order to set up an
STS connection or a token-to-token mapping.

About this task
In the Token Generators window, create, modify, review, or remove a token generator instance.

 Note:
PingFederate comes bundled with the SAML 1.1 Token Generator and SAML 2.0 Token Generator.

You can deploy additional token translators from Ping Identity website.

For simplicity, this topic focuses on configuring an instance of the SAML 1.1 or 2.0 Token Generator. For
information about add-on token generators, see SSO integration overview on page 59.

For more information about WS-Trust, see Web services standards on page 47.

Steps

1. Go to Applications # Token Exchange # Token Generators.

2. In the Token Generatorswindow, choose from the following options.

Option Description

Configure a new instance Click Create New Instance

Modify an existing instance Click the name of instance in the Instance Name
column

View the usage of an existing instance Click Check Usage in the Action column on the
instance's row

Remove an existing instance Click Delete in the Action column on the
instance's row

 Note:

By default, automatically checks multi-connection errors whenever you access this window. This
verifies that configured connections are not adversely affected by changes made here.

If you experience noticeable delays in accessing this window, you can disable automatic connection
validation. Go to System # Server # General Settings.

Selecting a token generator type
Token generators issue tokens for security token service and OAuth token exchange use cases. Select
instances of a token generator type to use in mapping and policy configuration.

About this task

The first step in creating a token-generator instance is choosing the generator type.

Steps

1. Go to Applications # Token Exchange # Token Generators.

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads.html

 | Administrator's Reference Guide | 1002

2. Select an existing generator instance by clicking its name or click Create New Instance to open the
Create Token Generator Instance window.

3. On the Type tab, enter a name in the Instance Name field and ID in the Instance ID field for the token
generator instance.

4. From the Typelist, select the token-generator type.

5. From the Parent Instance list, select an option.

This is useful when you are creating an instance that is similar to an existing instance. The child
instance inherits the configuration of its parent. You have the option to override one or more settings
during the rest of the setup. Select the Override ... check box and make the adjustments as needed in
one or more subsequent tabs.

6. Click Next.

Configuring a token generator instance
Configure the SAML token generator instance parameters depending on the use case requirements.

About this task

Depending on the selected token generator, the Instance Configuration tab presents you with different
parameters.

Steps

1. Go to Applications # Token Exchange # Token Generators.

2. Select an existing generator instance by clicking its name or click Create New Instance to open the
Create Token Generator Instance window.

3. On theInstance Configuration tab, configure the parameters for this instance type. For the integrated
SAML 1.0 and 2.0 Token Generators, see the following table and specify parameters for generated
SAML tokens.

SAML token generator instance field names and descriptions

Field Instructions

Minutes Before Enter a numerical value. This element in a SAML token allows for any
server clock variability.

Minutes After Enter a numerical value. This element in a SAML token allows for any
server clock variability.

Issuer Enter your SAML 2.0 entity ID or the SAML 1.x issuer as configured in the
System # Server # Protocol Settings window.

Signing Certificate Responses containing SAML tokens must be signed. Select a signing
certificate from the list.

If you have not yet created or imported your certificate into PingFederate,
click Manage Signing Certificates. For more information, see Manage
digital signing certificates and decryption keys on page 625.

Signing Algorithm Select the signing algorithm corresponding to the selected certificate.
Choices include SHA1 for both RSA and DSA, RSA-SHA256, SHA384, and
SHA512, as well as, ECDSA-SHA256, SHA384, and SHA512.

Include Certificate in
KeyInfo

If selected, the entire public certificate is included with the assertion.
Otherwise, a short hash reference to the certificate is sent.

Include Raw Key in
KeyValue

If selected, the raw key is included in the KeyInfo element as well.

Copyright ©2024

 | Administrator's Reference Guide | 1003

Field Instructions

Audience A unique identifier for the target web service, used for the audience
element of the generated SAML token.

Confirmation Method Choose from among available methods:

▪ urn...cm:sender-vouches Default option.
▪ urn...cm:bearer
▪ urn...cm:holder-of-key

For more information, see WSS SAML Token Profile.

Encryption Certificate The web service provider's public certificate for encryption is required only
if holder-of-key is selected as the confirmation method. Select a partner
certificate from the list.

If you have not yet imported the certificate from your partner, click Manage
Certificates to do so. For more information, see Managing certificates from
partners on page 639.

Message Customization
expression

Click Show Advanced Fields to see this field.

An OGNL expression to customize the assertion. The returned type from
the expression must be an AssertionType, or the customization will be
ignored.

The available attributes are:

▪ #AssertionType:
org.sourceid.saml20.xmlbinding.assertion.AssertionType

▪ #Attributes: org.sourceid.util.log.AttributeMap

The following example is for SAML2. The line breaks are provided to
improve readability.

#AssertionType
 .getSubject()
 .getNameID()
 .setStringValue("JoeSAML2IDP"),
#AssertionType

The following example is for SAML1.1.

#AssertionType
 .getAuthenticationStatementArray(0)
 .getSubject().getNameIdentifier()
 .setStringValue("Joe123"),
#AssertionType

For information about add-on generators, see SSO integration overview on page 59.

4. Click Next.

Extending a token generator contract
Token generators allow administrators to add to a built-in list of user attributes that the generator includes
in the outgoing token—an extended generator-attribute contract.

About this task

The Extended Contract tab shows a different list of attributes in the Core Contract section, depending on
the token generator selected.

Copyright ©2024

https://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-SAMLTokenProfile-v1.1.1-os.html

 | Administrator's Reference Guide | 1004

Steps

1. Go to Applications # Token Exchange # Token Generators.

2. Select an existing generator instance by clicking its name or click Create New Instance to open the
Create Token Generator Instance window.

3. On the Extended Contract tab, in the Extend the Contract field, enter a name of the desired
attribute. Click Add.

Repeat this step as needed to add another attribute.

4. Click Next.

Reviewing the token generator configuration
Review, save, or make changes as needed to your token generator instance configuration.

About this task

On the Summary tab, review, amend, save, or discard your token generator instance configuration.

Steps

▪ To keep your changes, click Save.
▪ To amend your configuration, click the name of the corresponding tab and then follow the configuration

wizard to complete the task.
▪ To discard your changes, click Cancel.

Configuring IdP connections for STS
Configure a security token services (STS) connection to an identity provider (IdP) partner either in
conjunction with browser-based single sign-on (SSO) or independently.
Configuring protocol settings for SP STS
Configure the processing options for validating incoming SAML tokens in your identity provider (IdP)
partner connection either in conjunction with browser-based single sign-on (SSO) or independently.

About this task
Select whether the STS should validate incoming tokens only or validate and then generate other types of
tokens.

Steps

1. Go to Authentication # Integration # IdP Connections.

2. On the WS-Trust STS tab, click Configure WS-Trust STS.

3. On the Protocol Settings tab, from the Request Processing Options list, choose one of the
following options:
Choose from:

▪ To only validate incoming SAML tokens, select Validate Incoming SAML Token.
▪ To validate and then also generate local tokens to enable single sign-on (SSO) access to web

services at your site, select Validate Incoming SAML Token and Issue Local Token.

 Note:

If you choose to generate local tokens as well, you must set up at least one token generator.

Configuring token generation

About this task

Details of this configuration are handled under the Token Generation configuration.

Copyright ©2024

 | Administrator's Reference Guide | 1005

Steps

▪ Go to Authentication # Integration # IdP Connections.
▪ On the WS-Trust STS tab, click Configure WS-Trust STS.
▪ On the Token Generation tab, click Configure Token Generation.

Result: The Token Generation window opens.

Defining an attribute contract for SP STS
An attribute contract is the set of user attributes expected in incoming SAML assertions. For more
information, see Attribute contracts on page 92.

About this task

On the Attribute Contract tab, identify the user attributes.

Optionally, you can mask the values of attributes, other than SAML_SUBJECT, in logs that PingFederate
writes when it receives security tokens.

 Note:

Use the Edit, Update, and Cancel workflows to make or undo a change to an item. Use the Delete and
Undelete workflows to remove an item or cancel the removal request.

Steps

1. Go to Authentication # Integration # IdP Connections.

2. On the WS-Trust STS tab, click Configure WS-Trust STS.

3. On the Token Generation tab, click Configure Token Generation.

Result: The Token Generation configuration window opens.

4. Click the Attribute Contract tab.

5. Enter the name in the Extend the Contract field.

 Note:

Attribute names are case-sensitive and must correspond to the attribute names expected by the
requester.

6. Optional: Select the Mask Values in Log check box .

7. Click Add.

8. Repeat until all applicable attributes are defined.

9. Click Next.

Managing SP token generator mappings
Token generators provide a mechanism through which PingFederate can generate a local token based
upon an incoming SAML token, including mapping user attributes to be included in the generated token. A
configured and deployed token generator in PingFederate is known as a token generator instance.

About this task
In the Token Generator Mapping & User Lookup configuration window, manage service provider (SP)
token generator mappings.

Map one or more token generator instances into an identity provider (IdP) connection to satisfy different
token requirements by the web services at your site. The same token generator instances can be mapped
in multiple connections.

Copyright ©2024

 | Administrator's Reference Guide | 1006

When token generator instances are restricted to certain virtual server IDs, the allowed IDs are displayed
under Virtual Server IDs.

Steps

1. Go to Authentication # Integration # IdP Connections # WS-Trust STS.

2. Click Configure WS-Trust STS.

Result: The WS-Trust STS configuration window opens.

3. On the Protocol Settings tab, from the Request Processing Options list, select Validate Incoming
SAML Token and Local Issue Token. Click Next.

Result: This will add a Token Generation tab.

4. On the Token Generation tab, click Configure Token Generation.

Result: The Token Generation configuration window opens.

5. On the Token Generator Mapping & User Lookuptab, click Map New Token Generator Instance to
open the Token Generator Mapping & User Lookup configuration window.
Choose from:

▪ To map a token generator instance, click Map New Token Generator Instance.
▪ To edit the mapping configuration of a token generator instance, on the Token Generator

Instance tab, click Manage Token Generator to open the Token Generators window. Click the
token generator instance in the Instance Name section to open the configuration summary for
this token generator instance. Select the setting that you want to reconfigure, and complete the
change by clicking Done.

▪ To remove a token generator instance or cancel the removal request, click Delete followed by
Save or Undelete.

6. If you are creating a new connection and you are finished with mapping configuration, click Done. If
you are editing an existing configuration and want to keep your changes, click Save.

Selecting a token generator instance
Select the token generator instance you would like to activate for incoming SAML messages from the
service provider (SP) partner.

About this task

 Note:

If you are editing a currently mapped token generator instance, you can toggle the Override Instance
Settings setting. Clearing it removes all previously overridden settings for this connection. Selecting it
provides you the opportunity to customize token processor settings specifically for this connection.

Steps

1. On the Token Generator Mapping & User Lookup tab, click Map New Token Generator Instance.

Result: The Token Generator Mapping & User Lookup configuration window opens.

2. On the Token Generator Instance tab, select an instance from the Token Generator Instance.

 Note:

If you do not see the desired token generator instance, click Manage Token Generator Instances to
create a new instance of any deployed token generator.

Copyright ©2024

 | Administrator's Reference Guide | 1007

3. Select the Override Instance Settings check box to customize one or more token processor settings
for this connection alone.

Result:

When selected, the administrative console adds a Override Instance tab and a its new set of sub
tasks.

 Tip:

You can also create child token processor instances of a base token processor instance with overrides
so that the customized settings can be applied to several connections. For more information, see
Hierarchical plugin configurations on page 90.

4. Click Next.

Overriding a token generator instance
Make changes to the token generator instance to override it or to leave it as is and propagate it for a
particular service provider connection.

About this task

Override token generator settings for a specific service provider connection.

 Note:

Any changes to the base token generator instance are propagated to a connection provided the same
changes are not overridden for the connection.

Steps

1. On the Token Generator Mapping & User Lookup tab, click Map New Token Generator Instance. .

Result: The Token Generator Mapping & User Lookup configuration window opens.

2. On the Override Instance tab, select the Override Instance Settings check box.

 Note:

The override setting windows are functionally identical to those used for creating a new token
generator instance. For more information, see Managing token generators on page 1001.

3. On each of the settings windows, select the Override check box, make your changes, and then click
Next.

4. When you are finished, click Done to continue with the rest of the mapping configuration.

Restricting a token generator to certain virtual server IDs
Virtual server IDs provide more configuration flexibility in cases where you need to identify your server
differently when connecting to a partner in one connection for multiple environments or in multiple
connections where the partner also supports multiple federation IDs.

About this task

When you multiplex one connection for multiple environments, you can enforce integration requirements
by restricting a token generator to certain virtual server IDs on the Virtual Server IDs tab. By default, no
restriction is imposed. For more information, see .

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 1008

If you are editing a currently mapped token generator instance, you can toggle the Restrict Virtual Server
IDs setting. You can also change the allowed virtual server IDs.

Steps

1. On the Token Generator Mapping & User Lookup tab, click Map New Token Generator Instance
to open the Token Generator Mapping & User Lookup configuration window.

2. Click the Virtual Server IDs tab.

3. Select the Restrict Virtual Server IDs check box.

4. Select one or more virtual server IDs that you want to allow for this token generator.

Selecting an attribute retrieval method for token generation
You can fulfill the token generator contract by using only the attributes from the incoming SAML token or by
using these attributes to look up additional information from a local data store.

About this task

For token generation, you can query local data stores to help fulfill the token generator contract, in
conjunction with attribute values supplied by the incoming token.

The values supplied by the token are shown in the Attribute Contract section on the Attribute Retrieval
tab.

Steps

1. On the Token Generator Mapping & User Lookup tab, click Map New Token Generator Instance.

Result: The Token Generator Mapping & User Lookup configuration window opens.

2. On the Attribute Retrieval tab, select how you want to fulfill the token generator contract for an
instance.
Choose from:

▪ If the incoming SAML token contains all the attributes that your application requires, select Use
only the attributes available in the incoming token.

▪ To set up a data store query, select Use the incoming token to look up additional information
and then follow a series of sub tasks to complete the configuration.

For step-by-step instructions, see Choosing a datastore on page 375.

 Note:

If you are editing a currently mapped token generator instance, you can change the mapping method,
which might require additional configuration changes in subsequent tasks.

Configuring contract fulfillment for token generation
Fulfill your token generator contract requirements with values from the incoming SAML token, dynamic
text, expressions, or from a data store lookup.

About this task

Map the values that the web services require to the attributes defined for the contract.

Steps

1. On the Token Generator Mapping & User Lookup tab, click Map New Token Generator Instance .

Result: The Token Generator Mapping & User Lookup configuration window opens.

Copyright ©2024

 | Administrator's Reference Guide | 1009

2. On the Token Generator Contract Fulfillment tab, for each attribute, select a source from theSource
list and then choose or enter a value. You must map all attributes.

▪ Assertion

When selected, the Value list populates with attributes from the incoming SAML token (assertion).
Select the desired attribute from the list. At runtime, the attribute value from the assertion is
mapped to the value of the attribute in the local token.

For example, to map the value of TOKEN_SUBJECT from a SAML assertion as the value of the
subject user identifier on the token generator contract, select Assertion from the Source list
and TOKEN_SUBJECT from the Value list.

▪ Context

When selected, the Value list populates with the available context of the transaction. Select the
desired context from the list. At runtime, the context value is mapped to the value of the attribute in
the local token.

 Note:

Because the HTTP Request and STS SSL Client Certificate Chain context values are retrieved
as Java objects rather than text, use OGNL expressions to evaluate and return values, sees
Expression.

 Note:

When using the STS Basic Authentication Username, STS SSL Client Certificate's Subject
DN, or STS SSL Client Certificate Chain contexts, ensure the associated authentication is
enabled and configured on the System # Server # Protocol Settings # WS-Trust STS Settings
tab.

▪ LDAP, JDBC, or Other

When selected, the Value list populates with attributes that you have selected from the data store.
Select the desired attribute from the list. At runtime, the attribute value from the data store is
mapped to the value of the attribute in the local token.

▪ Expression

When enabled, this option provides more complex mapping capabilities, such as transforming
incoming values into different formats. Select Expression from the Source list, click Edit under

Copyright ©2024

 | Administrator's Reference Guide | 1010

Actions, and compose your OGNL expressions. All variables available for text entries are also
available for expressions. For more information, see Text.

Expressions are not enabled by default. For more information about enabling and editing OGNL
expressions, see Attribute mapping expressions on page 213.

▪ No Mapping

Select this option to ignore the Value field.
▪ Text

When selected, the text you enter is used at runtime. You can mix text with references to any of
the values from the SAML token, using the ${attribute} syntax.

You can also enter values from your datastore, when applicable, using this syntax:

${ds.attribute}

where attribute is any of the attributes that you have selected from the data store.

 Note:

If you are editing a currently mapped token generator instance, you can update the mapping
configuration, which might require additional configuration changes in subsequent tasks.

3. Click Next.

Defining issuance criteria for token generation
PingFederate can evaluate various criteria to determine whether users are authorized to access service
provider (SP) resources.

About this task

On the Issuance Criteria tab, define the criteria that must be satisfied in order for to process a request
further. This token authorization feature provides the capability to conditionally approve or reject requests
based on individual attributes.

Begin this optional configuration by adding a criterion. Choose the source that contains the attribute to be
verified. Some sources, such as Mapped Attributes, are common to almost all use cases. Other sources,
such as JDBC, depend on the type of configuration. Irrelevant sources are automatically hidden. After
you select a source, choose the attribute to be verified. Depending on the selected source, the available
attributes or properties vary. Finally, specify the comparison method and the desired, compared-to, value.

If you define multiple criteria, all criteria must be satisfied for to move a request to the next phase. A
criterion is satisfied when the runtime value of the selected attribute matches or does not match the
specified value depending on the chosen comparison method. The multi-value contains and multi-value
does not contain comparison methods are intended for attributes that might contain multiple values. Such
criterion is considered satisfied if one of the multiple values matches or does not match the specified value.
Values are compared verbatim. If you require complex evaluations, including conditional criteria or partial
matching, define them using attribute mapping expressions.

 Important:

When you multiplex one connection for multiple environments, consider using attribute mapping
expressions to verify the virtual server ID in conjunction with other conditions, such as group membership
information, to protect against unauthorized access. For more information, see Multiple virtual server IDs
on page 105 and Issuance criteria and multiple virtual server IDs on page 217.

 Note:

Copyright ©2024

 | Administrator's Reference Guide | 1011

All criteria defined must be satisfied or evaluated as true for a request to move forward. As soon as one
criterion fails, rejects the request and returns an error message.

Steps

1. On the Token Generator Mapping & User Lookup tab, click Map New Token Generator Instance.

Result: The Token Generator Mapping & User Lookup configuration window opens.

2. Click the Issuance Criteria tab.

3. From the Source list, select the attribute's source.

Depending on the selection, the Attribute Name list populates with associated attributes. See the
following table for more information.

Source entries and descriptions

Source Description

Context Select to evaluate properties returned from the context of the transaction at
runtime.

 Note:

Because the HTTP Request and STS SSL Client Certificate Chain
context values are retrieved as a Java object rather than text, use attribute
mapping expressions to evaluate and return values.

JDBC, LDAP, or other
types of datastore (if
configured)

Select to evaluate attributes returned from a data source.

Mapped Attributes Select to evaluate the mapped attributes.

Token Select to evaluate attributes from the incoming SAML token.

4. Select the attribute to be evaluated in the Attribute Name column.

 Note:

To evaluate the STS Basic Authentication Username, STS SSL Client Certificate Chain, or
STS SSL Client Certificate's Subject DN context value, ensure that the associated authentication
is enabled and configured on System # Server # Protocol Settings to open the WS-Trust STS
Settings window.

Copyright ©2024

 | Administrator's Reference Guide | 1012

5. From the Condition list, select the comparison method.

Available methods:

▪ equal to
▪ equal to (case insensitive)
▪ equal to DN
▪ not equal to
▪ not equal to (case insensitive)
▪ not equal to DN
▪ multi-value contains
▪ multi-value contains (case insensitive)
▪ multi-value contains DN
▪ multi-value does not contain
▪ multi-value does not contain (case insensitive)
▪ multi-value does not contain DN

 Note:

The first six conditions are intended for single-value attributes. Use one of the multi-value ...
conditions for to validate whether one of the attribute values matches the specified value. When an
attribute has multiple values, using a single-value condition causes the criteria to fail.

 Note:

To evaluate the STS SSL Client Certificate's Subject DN context value, you must select one of the
... DN conditions. These methods normalize the DN before comparison to accommodate for different
string representations that are still considered equivalent, such as case sensitivity or white space.

6. In the Value field, enter the comparison value.

 Note:

Values are compared verbatim. If you require complex evaluations, including conditional criteria or
partial matching, define them using attribute mapping expressions. For more information, see Attribute
mapping expressions on page 213.

7. In the Error Result field, enter a custom error message.

The Error Result field is used by the faultstring element for SOAP 1.1 and the Reason/Text
element for SOAP 1.2. For more information on SOAP, see the World Wide Web Consortium's Simple
Object Access Protocol.

Using an error code in the Error Result field allows an application to process the code in a variety of
ways, such as display an error message or e-mail an administrator.

To use localized descriptions, enter a unique alias in the Error Result field, such as
someIssuanceCriterionFailed. Insert the same alias with the desired localized text in the
applicable language resource files, located in the <pf_install>/pingfederate/server/
default/conf/language-packs directory.

If not defined, returns ACCESS_DENIED when the criterion fails at runtime.

8. Click Add.

9. Optional: Repeat to add more criteria.

Copyright ©2024

https://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383507
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383507

 | Administrator's Reference Guide | 1013

10. If you require complex evaluations, including conditional criteria or partial matching, define them using
attribute mapping expressions. For more information, see Attribute mapping expressions on page
213.

a. Click Show Advanced Criteria.
b. In the Expression field, enter the required expressions.
c. Optional: In the Error Result field, enter an error code or message.

 Note:

If the expressions resolve to a string value instead of true or false, the returned value overrides
the Error Result field value.

d. Click Add.
e. Optional: Click Test, enter values in the applicable fields, and verify the results.
f. Optional: Repeat to add multiple criteria using attribute mapping expressions.

11. When finished, click Next.

Reviewing the SP token generator mapping
Review the service provider (SP) token generator mapping instance.

About this task
On the Summary tab, review, amend, save, or discard your changes.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Reviewing the token generation configuration
Review the token generation configuration to make changes or save as needed.

About this task
On the Summary tab, review, amend, save, or discard your configuration.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1014

 Reviewing the SP STS configuration
Review the service provider (SP) security token service (STS) configuration to make changes or save as
needed.

About this task
On the Summary tab, review, amend, save, or discard your changes.

Steps

▪ To amend your configuration, click the corresponding tab title, then follow the configuration wizard to
complete the task.

▪ To keep your changes, click Done and continue with the rest of the configuration.

 Tip:

When editing an existing configuration, you can also click Save as soon as the administrative console
offers the opportunity to do so.

▪ To discard your changes, click Cancel.

PingFederate Performance Tuning Guide

This section shows you to how to fine-tune a few simple application and system level settings to enable
PingFederate to achieve maximum performance of the hardware chosen for your deployment.

The default configuration since PingFederate 10.2 is acceptable for most small size deployments. Mission-
critical and high-transaction volume deployments might require additional tuning.

This guide addresses several areas of tuning such as logging, concurrency, memory, and Java-specific
tuning options. It is not designed as a one-size-fits-all set of instructions to optimize PingFederate, but
more as a checklist of suggestions for areas of the product that can be tuned to improve performance, and
any tradeoffs associated with those changes. For ultimate reassurance that any fine-tuned settings will
meet your expectations, performance testing in a lab environment is recommended.

Logging
This section explains the logging practices of PingFederate and discusses minimizing the system's overall
performance impact.

Logging tracks various aspects of the system's overall performance and requires a certain amount of
system resources, which affects the system's overall performance. In particular, writing to the log files
takes the greatest amount of resources. To minimize the performance impact, PingFederate uses the high-
performance asynchronous logger from Log4j 2 for logging runtime and administrative events, including
status and error messages used for troubleshooting. To preserve transactional integrity, audit information
logs synchronously.

Although the bulk of logging is executed asynchronously, decreasing the amount of information written to
log files always provides the best possible performance.

only records messages tagged with log level INFO, WARN, ERROR, and FATAL to the server log and the
provisioner log. Messages with DEBUG, or TRACE tags, are not recorded to optimize performance. Console
logging is also disabled for the same reason.

For troubleshooting purposes, you can adjust the log level to DEBUG in the log4j2.xml file and re-enable
console logging.

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1015

 Important:

When you no longer require debug messages and console logging, turn them off. On Windows, never
highlight the console output because it might slow or stop from processing requests.

Operating system tuning
This section contains tuning recommendations for your operating system.

The tuning recommendations provided here work best in preventing deployment issues in high capacity
environments.

Linux tuning
Follow these recommendations for your Linux environment to prevent deployment issues, to increase the
performance and capacity of the networking stack, particularly TCP and the file descriptor usage, and to
enable PingFederate to handle a high volume of concurrent requests.

Network/TCP tuning

For SystemV, add or modify the following entries in the /etc/sysctl.conf file.

For systemd, you can create a sysctl preload/configuration file in /etc/sysctl.d (for example, 99-
sysctl.conf) in which to add and modify the following entries.

##TCP Tuning##
Controls the use of TCP syncookies (default is 1)
and increase the number of outstanding syn requests allowed.
net.ipv4.tcp_syncookies=1
net.ipv4.tcp_max_syn_backlog=8192

Increase number of incoming connections.
somaxconn defines the number of request_sock structures allocated
per each listen call.
The queue is persistent through the life of the listen socket.
net.core.somaxconn=4096

Increase number of incoming connections backlog queue.
Sets the maximum number of packets, queued on the INPUT side,
when the interface receives packets faster
than kernel can process them.
net.core.netdev_max_backlog=65536

increase system IP port limits
net.ipv4.ip_local_port_range=2048 65535

Turn on window scaling which can enlarge the transfer window:
net.ipv4.tcp_window_scaling=1

decrease TCP timeout
net.ipv4.tcp_fin_timeout=10

Allow reuse of sockets in TIME_WAIT state for new connections
(While this may increase performance, use with caution according
to the kernel documentation. This setting should only be enabled
after the system administrator reviews security considerations.)
net.ipv4.tcp_tw_reuse=1

Increase the read and write buffer space allocatable
(minimum size, initial size, and maximum size in bytes)

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1016

net.ipv4.tcp_rmem = 4096 65536 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216

The maximum number of packets which may be queued
for each unresolved address by other network layers
net.ipv4.neigh.default.unres_qlen=100
net.ipv4.neigh.eth0.unres_qlen=100
net.ipv4.neigh.em1.unres_qlen=100

Default Socket Receive and Write Buffer
net.core.rmem_default=8388608
net.core.wmem_default=8388608
##############

Increase file descriptor limits

Add or modify the following lines in the /etc/security/limits.conf file where pf_user is the user
account used to run the PingFederate java process or * for all user accounts.

pf_user soft nofile 10400
pf_user hard nofile 10400

Windows tuning
Follow these recommendations for your Windows environment to prevent deployment issues, to increase
the performance and the capacity of the networking stack, specifically the TCP socket, and to enable
PingFederate to handle a high volume of concurrent requests.

About this task
Use Command Prompt and a Registry Editor to edit the cmd.exe file and the regedit.exe file
respectively.

Steps

1. Edit the jvm-memory.options file with a time stamp.

a. Start the Command Prompt application cmd.exe.
b. Enter netsh int ipv4 show dynamicportrange tcp to view the ephemeral ports.
c. Enter netsh int ipv4 set dynamicport tcp start=1025 num=64510 to increase the

range of the ephemeral ports using administrative privileges.
d. Reboot the server.
e. Enter netsh int ipv4 show dynamicportrange tcp to confirm the updated port range.

2. Reduce socket TIME_WAIT delay.

a. Start the Registry Editor application regedit.exe.
b. Go to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip

\Parameters.
c. Create a new DWORD 32 bit value and set the name as TcpTimedWaitDelay.
d. Set a decimal value of 30.
e. Reboot the server.

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1017

Concurrency
This section describes how to configure PingFederate to support more concurrent requests to optimize
your deployment.

The more requests processed in parallel, the more requests processed over all. Given the appropriate
amount of hardware, processing N requests concurrently is typically faster than processing N requests
serially.

In PingFederate, there are two main pools of threads that control the level of concurrent user requests:
Acceptor Threads and Server Threads. Acceptor threads receive the HTTPS requests and pass those
requests on to available server threads to be processed.

Caveats

This topic serves as a guideline for optimizing the concurrency of your deployment. On a large system with
multiple CPUs, or cores, a thread pool that is too small will under-utilize the available processor resources.
A thread pool that is too large can cause the system to become flooded and unusable.

A good target for the CPU is between 60%-80% utilization when under nominal, standard user load. This
way CPU resources are not under-utilized while still allowing room for occasional load spikes. The level of
concurrency in PingFederate might need to be decreased, or even increased, depending on the system's
configuration, the adapters in use, available memory, and other processes competing for resources. All
deployments are different. This section serves as a guideline of where to start when tuning the server.

Tuning the acceptor queue size
For optimal performance, particularly in larger deployments, PingFederate uses a non-blocking I/O model
to process requests. Follow these steps to adjust the queue size parameter for your environment needs.

About this task

As needed, administrators can fine-tune the queue size parameter, acceptQueueSize. If the queue
reaches its maximum size, additional requests will receive a connection refused error. If this occurs in your
environment, you can increase the value of the acceptQueueSize parameter.

Steps

1. Stop PingFederate.

2. Edit the <pf_install>/pingfederate/etc/jetty-runtime.xml file.

 Tip:

Consider making a backup copy of this file.

3. Go to the following section, and change the acceptQueueSize as needed.

<Call id="httpsPrimaryConnector" name="addConnector">
 <Arg>
 <New
 class="com.pingidentity.appserver.jetty.server.connector.ServerConnector">
 <Arg name="server"><Ref refid="RuntimeServer" /></Arg>
 <Arg name="acceptors" type="int"><Property name="ssl.acceptors"
 default="0"/></Arg>
 ...
 <Set name="acceptQueueSize">512</Set>
 </New>
 </Arg>

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1018

</Call>

4. When finished, save your changes and restart PingFederate.

5. For a clustered PingFederate environment, repeat these steps on each engine node as needed.

Tuning the server thread pool
When tuning the server thread pool, set the minimum and maximum number of threads to optimize
PingFederate for your needs.

About this task
Tune the server thread pool to a minimum and maximum number to size the system based on expected
user load.

Testing has shown that PingFederate performs well when the server thread pool is sized between 25 and
50 server threads per available CPU core, assuming sufficient memory. For more information on managing
your memory for PingFederate, see Memory on page 1020.

 Note:

This guidance might not be advisable for scaling on larger systems. For example, if you are running
PingFederate on a system with 24 CPU cores, it does not make sense to size the thread pool at a
minimum of 600 threads and a maximum of 1200 unless you expect to normally handle at least 800
concurrent requests.

Steps

1. Stop PingFederate.

2. Edit the <pf_install>/pingfederate/etc/jetty-runtime.xml file.

 Tip:

Consider making a backup copy of this file.

3. Go to the following section, and change the thread number as needed.

<Get name="ThreadPool">
 <Set name="minThreads" type="int">100</Set>
 <Set name="maxThreads" type="int">200</Set>
 <Set name="detailedDump">false</Set>
</Get>

4. Modify the thread number using the following guidelines:

▪ Set minThreads to (available CPU cores * 25)
▪ Set maxThreads to (available CPU cores * 50)

Example:

If your PingFederate system has 1 CPU with 4 cores, the total available cores is 4. The configuration
would be as follows.

<Get name="ThreadPool">
 <Set name="minThreads" type="int">100</Set>
 <Set name="maxThreads" type="int">200</Set>
 <Set name="detailedDump">false</Set>

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1019

</Get>

 Tip:

Set the minimum number of threads to between 75% and 100% of the number of requests you
expect the system to handle most often. Set the maximum to between 25% and 50% higher than the
minimum to handle load spikes.

5. When finished, save your changes. Restart PingFederate.

6. For a clustered PingFederate environment, repeat these steps on each engine node as needed.

Configuring connection pools to datastores
Java Database Connectivity (JDBC) and LDAP datastores use connection pooling to improve the
performance and efficiency of communicating with external systems. For optimal performance, a number of
connections are required to handle most or all the requests in parallel.

About this task
Set the minimum and maximum sizes for connection pools to JDBC and LDAP data stores.

Connection pools improve efficiency by maintaining persistent connections to the JDBC or LDAP server
preventing the expense of creating the connection on demand. Connection pools also allow more control
over the load placed on the back-end server. It might not be necessary to have a connection available for
every concurrent request received by the server, but having too few available will cause requests to wait
when accessing JDBC and LDAP resources.

 Important:
Size the connection pool based on the capacity and limitation of the database or LDAP server. Sizing
the connection pool beyond the capability of the back-end server could lead to PingFederate flooding the
datastore without any performance improvement. For optimal performance, size connection pools large
enough to handle between 50% and 100% of the number of concurrent requests the server is expected to
encounter often. For more information on optimizing the connection pool, see Best practices for tuning the
JDBC connection pool in the Ping Identity Knowledge Base.

Steps

1. Choose from configuring connection pools to JDBC or LDAP datastores:

Configuring connection pools to JDBC
datastores

a. Go to System # Data & Credential Stores #
Data Stores, and select the applicable JDBC
datastore.

b. Go to Database Config # Advanced.
c. On the Advanced Database Options

window:

1. Set the Minimum Pool Size value to
50% of the maxThreads value.

2. Set the Maximum Pool Size value
to between 75% and 100% of the
maxThreads value, subject to the

Copyright ©2024

https://support.pingidentity.com/s/article/Best-practices-for-tuning-the-JDBC-Connection-Pool
https://support.pingidentity.com/s/article/Best-practices-for-tuning-the-JDBC-Connection-Pool

 | PingFederate Performance Tuning Guide | 1020

capability of the back-end database
server.

 Remember:
The maxThreads value is defined in
the <pf_install>/pingfederate/
etc/jetty-runtime.xml file. For
more information, see Tuning the server
thread pool on page 1018).

Configuring connection pools to LDAP
datastores

a. Go to System # Data & Credential Stores #
Data Stores, and select the applicable LDAP
datastore.

b. Go to the LDAP Configuration # Advanced
Advanced LDAP Options.

c. Set the Minimum Connections value to
50% of the maxThreads value.

d. Set the Maximum Connections value to
between 75% and 100% of the maxThreads
value, subject to the capability of the back-
end database server.

2. For a clustered PingFederate environment, replicate the changes to all engine nodes on the System #
Server # Cluster Management window.

Memory
After the CPU, memory is the most important resource for sizing Java virtual machine (JVM) heap,
managing garbage collection, and optimizing the overall performance of your PingFederate deployment.

The Concurrency section describes how to configure PingFederate to support more concurrent requests.
This section highlights how supporting increasing concurrency requests can affect PingFederate's
performance because these requests require an increase in memory. Because PingFederate is a Java
application, it is important to consider how tuning affects, or is affected by, garbage collection. This section
is not a guide to garbage collection theory or ergonomics.

JVM heap
The most important tuning for the Java Virtual Machine (JVM) is the size of the heap memory, which
ensures adequate memory is available to manage garbage collection and optimize overall performance.

If the demands require more memory than what is currently available, the JVM must grow the heap,
if it can, or perform garbage collection to provide memory to allocate. Resizing the heap and garbage
collecting can be an expensive processes and negatively impact performance. Sizing the heap to ensure
an adequate amount of memory is available but still manageable to garbage collection is important in
optimizing overall performance.

PingFederate attempts to optimize JVM heap and garbage collector settings based on available system
resources at the time of installation and upgrade. Depending on your environment, you can override these
settings at a later time.

Additional considerations

The JVM can grow the heap from the minimum heap variable value up to the maximum heap variable
value. However, growing the heap is often an expensive exercise and requests memory from the operating
system. In addition, the JVM must also reorganize the heap to account for the memory being added. To

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1021

conserve memory in your deployment, set a lower value for the minimum heap than that of the maximum
heap to ensure you are not reserving unused memory. If you have enough memory that a certain amount
is easily earmarked for the PingFederate server, adjust the size of the heap by setting the minimum heap
and maximum heap to the same value. This allows the JVM to reserve its entire heap and decrease the
amount of resizing that the JVM needs to perform if the amount of memory in use exceeds the value of the
minimum heap.

Garbage collectors
Although the java virtual machine (JVM) configures itself for optimal performance for most situations, it is
advantageous to configure it for a specific application.

This section explores additional tuning options to improve the PingFederate service in your deployment.
In all cases, test these options to ensure that they do benefit your deployment before enabling them in a
production environment.

Parallel collector

By default, the server HotSpot JVM selects the parallel collector on machines with multiple CPUs or cores.
On machines with a single CPU, the serial collector is used.

On machines with eight or more hardware threads, the parallel collector uses a fraction of them as the
number of garbage collector threads; the fraction is roughly 5/8. If the number of hardware threads drops
below 8, the number of garbage collector threads matches the number of hardware threads.

The number of garbage collector threads can be overridden by the -XX:ParallelGCThreads=n JVM
option, where n is the desired number of garbage collector threads. It is generally recommended to leave
ParallelGCThreads as the default. Specifically, setting to a value greater than the number of CPUs
will not improve garbage collection performance as the GC threads will all contend for CPU time, causing
the operating system to context switch between them. Setting to less than the number of CPUs can cause
longer than necessary pause times because not all available CPU resources will be utilized.

The parallel collection is generational, so minor (young generation only) and major (entire heap) collections
do occur. Because PingFederate uses a much larger proportion of short to medium lived objects, consider
applying a young generation bias to the JVM heap, which will improve performance because the parallel
scavenge copying collector used for the young generation is fast. For more information, see Young
generation bias on page 1022.

Concurrent mark sweep collector

The concurrent mark sweep (CMS) collector suits applications that prefer shorter garbage collection
pauses, can afford to share CPU resources with the garbage collector, have a large set of long-lived
objects in the tenured (or old) generation, and run on machines with multiple CPUs.

The CMS collection is generational, so minor, young generation only, and major, entire heap, collections
occur. Because PingFederate uses a much larger proportion of short to medium lived objects, the CMS
collector is not generally the best fit. However, if you use a JVM heap greater than 6 GB on larger
machines with eight or more CPUs, the CMS collector can provide shorter pause time than the parallel
collector in major collections. Applying a young generation bias to the JVM heap will improve performance
when using the CMS collector because it employs the same parallel scavenge copying collector for the
young generation as the parallel collector.

Enable the CMS collector using the -XX:+UseConcMarkSweepGC JVM option as needed.

Garbage first collector

The garbage first (G1) collector is best for machines with multiple CPUs and a JVM heap of 6 GB or more.
The G1 collector is designed to achieve high throughput while meeting its pause times goal for garbage
collection.

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1022

 Important:

When using the G1 Collector, it is best to remove any sizing options specific to the young generation. The
G1 collector self-tunes by adjusting the size and nature of the various heap regions to meet the pause time
goal. By setting a fixed amount of memory to be used for young generation regions, it limits its self-tuning
options.

When applicable, you can enable the G1 collector using the #XX:+UseG1GC JVM option.

For more information about each garbage collector, see Java Platform, Standard Edition HotSpot Virtual
Machine Garbage Collection Tuning Guide from Oracle.

Young generation bias
An overview of the generation memory management model in Java and the processing model of
PingFederate, how they create, collect, and manage objects, and how to optimize both for your deployment
needs.

In the Java generational memory management model, the young generation creates new objects and
the garbage collector gathers them when they are no longer used. For example, if the young generation
creates a new object, and a reference is maintained, then the garbage collector moves that object to the
old generation.

 Tip:

If you intend to use the garbage first (G1) collector, let the Java virtual machine (JVM) handle this aspect of
the heap because specific settings can affect the performance of the G1 collector adversely.

For more information on fine-tuning memory and garbage collection settings and instructions, see Fine-
tuning JVM options on page 1028.

The processing model of PingFederate is mostly geared towards short-lived transactions, such as
single sign-on and token processing and not long-held, interactive, user sessions. Because most of the
objects created are relatively short-lived, it does not make sense to promote short-lived objects to the old
generation because they are not needed for long. When the young generation fills up, space must be made
for new objects. To allow for more space, objects still in use in the young generation must be moved to
the old generation. Moreover, those objects will become garbage and need to be collected from the old
generation.

The old generation is typically more expensive to clean up than the young generation. The old generation
is cleaned only during a full garbage collection, which happens when the JVM has almost reached the
value of the maximum heap variable -Xmx and the entire heap must be cleaned. With multiple threads by
default on systems with multiple cores, the young generation is garbage collected more often and so the
pauses for collections are shorter.

By default, the JVM tends to size the generations biased to the old generation, giving it most of the
space of the heap. This results in moving objects more frequently from the young generation into the old
generation to make space for new objects, and more frequent full collections as the old generation fills up.
By configuring the JVM to provide more memory to the young generation, it reduces the frequency of full,
more costly, collections. You can either specify fixed values for the size of the young generation or modify
the ratio of young generation to old generation.

To specify a fixed value for the young generation, use the -XX:NewSize= and -XX:MaxNewSize=
arguments. These arguments are to the young generation what the minimum heap variable (-Xms) and
the maximum heap variable (-Xmx) are to the entire heap. The -XX:NewSize= and -XX:MaxNewSize=
arguments define the initial or minimum and the maximum sizes of the young generation. The same
reasoning that applies to the minimum and maximum heap variables also applies when adjusting these
values.

Copyright ©2024

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/

 | PingFederate Performance Tuning Guide | 1023

To specify a ratio between the old and new generation size, use the -XX:NewRatio= argument. For
example, setting -XX:NewRatio=3 means that the ratio between the young and old generation is 1:3. The
size of the young generation is 25% of the total heap size.

In a mostly short-lived object environment, give 50 - 60% of the heap to the young generation. See the
following table for examples.

Setting the JVM options according to young generation sizing

Young generation bias condition JVM options

To fix a heap size of 2 GB with 50% the young
generation bias using the NewSize argument -Xms2048m

-Xmx-2048m
-XX:NewSize=1024m
-XX:MaxNewSize=1024m

To fix a heap size of 2 GB with 50% the young
generation bias using the NewRatio argument -Xms2048m

-Xmx-2048m
-XX:NewRatio=1

The memoryoptions utility
Where to find the memoryoptions utility in a PingFederate installation and how the utility's expected
behavior differs in a Linux or Windows system.

PingFederate installation and upgrade tools use the memoryoptions utility to detect the available
resources at the time of the installation or upgrade and record the recommended options for Java heap
and the garbage collector in a configuration file. As needed, administrators can re-run the utility or
manually edit the configuration file.

The memoryoptions utility, located in the <pf_install>/pingfederate/bin directory, comes in two
variants:

▪ memoryoptions.bat for Windows
▪ memoryoptions.sh for Linux

The configuration file, jvm-memory.options, is located in the same bin directory.

Installation and upgrade

When the installer is executed for Windows or a subsequent rerun of the memoryoptions utility, it
creates a backup copy of the current jvm-memory.options, if any, detects available system resources
at the time, and records the recommended options in the jvm-memory.options file. Changes made as a
result of the execution of the utility or a manual edit are activated after a restart of .

Depending upon the selected tool and whether the jvm-memory.options file exists in the source
installation, the expected behavior of the memoryoptions utility differs. In general, the jvm-
memory.options file from the source installation is preserved without new recommended values.

memoryoptions and installation
When the PingFederate installer for Windows runs the memoryoptions utility tool or when changes are
made from a manual edit, expect the following behaviors to the installation medium.

The PingFederate installer for Windows runs the memoryoptions utility in an attempt to optimize the Java
virtual machine (JVM) heap and garbage collector options based on available system resources at the time
of installation. As needed, administrators can rerun the utility or manually edit these options at a later time.

When the installer is executed for Windows or a subsequent rerun of the memoryoptions utility, it
creates a backup copy of the current jvm-memory.options, if any, detects available system resources

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1024

at the time, and records the recommended options in the jvm-memory.options file. Changes made as a
result of the execution of the utility or a manual edit are activated after a restart of . See the following table
for information regarding expected behaviors.

PingFederate installation mediums and their expected behaviors from the execution of the
memoryoptions utility tool

Installation medium Expected behavior

installer for Windows ▪ The installer creates a new installation.
▪ The installer runs the memoryoptions utility, which is designed to

determine the recommended Java heap and garbage collector options
based on the available resources and to record them in the jvm-
memory.options file.

▪ The installer configures to run as a service.
▪ The recommended options are activated as the service starts.

PingFederate product
distribution ZIP file

The default jvm-memory.options file becomes part of the new installation
as program and default configuration files are extracted from the PingFederate
product distribution .zipfile.

PingFederate as a console application on Windows or as a console
application, or a service on Linux

▪ The JVM options set in the default jvm-memory.options file are
activated as starts.

▪ The default JVM options are conservative. For most deployment
scenarios using various physical or virtual resources, run
the memoryoptions utility, which is designed to determine
the recommended Java heap and garbage collector options
based on the available resources and record them in the jvm-
memory.options file.

▪ As a result of the execution of the memoryoptions utility or a
manual edit of the jvm-memory.options file, the JVM options are
activated as restarts.

as a service on Windows

▪ When administrators run the service-installation program install-
service.bat, located in the <pf_install>/pingfederate/
sbin/win-x86-64 directory, to install the Windows service
manually, the program runs the memoryoptions utility, which is
designed to determine the recommended Java heap and garbage
collector options based on the available resources and record them
in the jvm-memory.options file.

The service-installation program then runs a helper utility
generate-wrapper-jvm-options.bat, located in the
<pf_install>/pingfederate/sbin/wrapper directory, to read
the JVM options from the jvm-memory.options file and create a
resource file that the Windows service requires to configure its JVM
options.

▪ The recommended options are activated as the service starts.

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1025

memoryoptions and upgrade
Upgrade paths behave differently when changes are executed based on the recommendations and
execution of the memoryoptions utility tool.

Depending upon the selected tool and whether the jvm-memory.options file exists in the source
installation, the expected behavior of the memoryoptions utility differs. In general, the jvm-
memory.options file from the source installation is preserved without new recommended values. See the
following table for information regarding expected behaviors.

PingFederate upgrade paths and their expected behaviors from the execution of the
memoryoptions utility tool

Upgrade path Expected behavior when the jvm-memory.options file does not exist in
the source installation

installer for Windows ▪ The installer creates a new installation.
▪ The installer runs the memoryoptions utility, which is designed to

determine the recommended Java heap and garbage collector options
based on the available resources and to record them in the jvm-
memory.options file.

▪ The installer configures to run as a service.
▪ The recommended options are activated as the service starts.

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1026

Upgrade path Expected behavior when the jvm-memory.options file does not exist in
the source installation

PingFederate Upgrade
Utility (upgrade.bat)

The upgrade utility creates a new installation based on the source installation
and the product distribution .zip file. The default jvm-memory.options
file becomes part of the new installation as the upgrade utility extracts files
from the product distribution .zipfile.

PingFederate as a console application on Windows

▪ The JVM options set in the default jvm-memory.options file are
activated as starts.

▪ The default JVM options are conservative. For most deployment
scenarios using various physical or virtual resources, run
the memoryoptions utility, which is designed to determine
the recommended Java heap and garbage collector options
based on the available resources and record them in the jvm-
memory.options file.

▪ As a result of the execution of the memoryoptions utility or a
manual edit of the jvm-memory.options file, the JVM options are
activated as restarts.

as a service on Windows

▪ When administrators run the service-installation program install-
service.bat, located in the <pf_install>/pingfederate/
sbin/win-x86-64 directory, to install the Windows service
manually, the program runs the memoryoptions utility, which is
designed to determine the recommended Java heap and garbage
collector options based on the available resources and record them
in the jvm-memory.options file.

The service-installation program then runs a helper utility
generate-wrapper-jvm-options.bat, located in the
<pf_install>/pingfederate/sbin/wrapper directory, to read
the JVM options from the jvm-memory.options file and create a
resource file that the Windows service requires to configure its JVM
options.

▪ The recommended options are activated as the service starts.

PingFederate Upgrade
Utility (upgrade.sh)

▪ The upgrade utility creates a new installation based on the source
installation and the product distribution .zip file. The default jvm-
memory.options file becomes part of the new installation as the
upgrade utility extracts files from the product distribution .zipfile.

▪ The JVM options set in the default jvm-memory.options file are
activated as starts.

▪ The default JVM options are conservative. For most deployment scenarios
using various physical or virtual resources, run the memoryoptions
utility, which is designed to determine the recommended Java heap and
garbage collector options based on the available resources and record
them in the jvm-memory.options file.

▪ As a result of the execution of the memoryoptions utility or a manual
edit of the jvm-memory.options file, the JVM options are activated as
restarts.

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1027

Upgrade path Expected behavior when the jvm-memory.options file exists in the
source installation

PingFederate installer for
Windows

▪ The installer creates a new installation based on the source installation
and copies the jvm-memory.options file from the source installation to
the new installation.

▪ At the end of the installation, the installer runs the PingFederate service-
installation program, which runs a helper utility generate-wrapper-
jvm-options.bat, located in the <pf_install>/pingfederate/
sbin/wrapper directory, to read the JVM options from the jvm-
memory.options file and create a resource file that the Windows
service requires to configure its JVM options.

▪ The preserved Java virtual machine (JVM) options are activated as the
PingFederate service starts.

PingFederate Upgrade
Utility (upgrade.sh)

▪ The upgrade utility creates a new installation based on the source
installation and copies the jvm-memory.options file from the source
installation to the new installation.

▪ The preserved JVM options are activated as the PingFederate service
starts.

PingFederate Upgrade
Utility (upgrade.bat)

The upgrade utility creates a new installation based on the source installation
and copies the jvm-memory.options file from the source installation to the
new installation.

PingFederate as a console application on Windows

The preserved JVM options are activated as the PingFederate service
starts.

PingFederate as a service on Windows

▪ When administrators run the service-installation program install-
service.bat, located in the <pf_install>/pingfederate/
sbin/win-x86-64 directory, to install the Windows service
manually, the program runs the memoryoptions utility, which is
designed to determine the recommended Java heap and garbage
collector options based on the available resources and record them
in the jvm-memory.options file.

The service-installation program then runs a helper utility
generate-wrapper-jvm-options.bat, located in the
<pf_install>/pingfederate/sbin/wrapper directory, to read
the JVM options from the jvm-memory.options file and create a
resource file that the Windows service requires to configure its JVM
options.

▪ The new recommended options are activated as the PingFederate
service starts.

 Note:

To restore the preserved JVM options from the source installation, see
Restoring the preserved JVM.

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1028

Restoring the preserved JVM options
When administrators run the PingFederate service-installation program install-service.bat,
the upgrade utility creates a new installation based on the source installation and copies the jvm-
memory.options file from the source installation to the new installation. You can edit the jvm-
memory.options file with a time stamp to restore the preserved JVM options that exist in the jvm-
memory.options file from the source installation.

About this task
Use the command prompt to edit the jvm-memory.options file with a time stamp.

Steps

1. Rename the currentjvm-memory.options file. For example,jvm-memory.options.backup.

2. Look for the preserved jvm-memory.options file.

 Note:

The preserved file was renamed with a time stamp.

3. Remove the time stamp from the file name.

 Note:

The jvm-memory.options is the file preserved from the source installation.

4. Open a command prompt and go to the <pf_install>/pingfederate/sbin/wrapper directory.

5. Run generate-wrapper-jvm-options.bat.

 Note:

This helper utility reads the JVM options from the jvm-memory.options file and creates a resource
file that the PingFederate Windows service requires to configure its JVM options.

6. Close the command prompt.

The preserved file was renamed with a time stamp.

7. Restart the PingFederate Windows service.

Result
The preserved JVM options are activated as the PingFederate service starts.

Fine-tuning JVM options
Edit the JVM options jvm-memory.options file to customize minimum and maximum heap sizing,
garbage collection, and generation specific sizing for your memory use and to optimize PingFederate's
performance.

About this task

PingFederate reads java virtual machine (JVM) options from the jvm-memory.options file, located in
the <pf_install>/pingfederate/bin directory. Any manual modifications or additions should be
made in this file.

 Remember:

Before making any edits to the file, consider the following:

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1029

▪ Make a backup copy prior to any manual edits.
▪ The empty lines and comments, indicated by a leading # character, are ignored.
▪ JVM options do not need a specific organization or order.

Steps

1. Edit the <pf_install>/pingfederate/bin/jvm-memory.options file.

2. To configure a specific heap size, edit the minimum -Xms and maximum -Xmx heap options.

The valid unit qualifiers are k for kilobytes, m for megabytes, and g for gigabytes. In other words, -
Xmx1536m and -Xmx1.5g are equivalent.

Example:

For example, to fix the JVM heap size to 2 GB, configure the minimum and maximum options as
follows.

-Xms2g
-Xmx2g

3. To override the number of garbage collection threads used by the parallel collector, add the -
XX:ParallelGCThreads=n option, where n is the desired number of garbage collector threads.

Example:

For example, to configure the parallel collector to use four threads, add the following option to the
configuration file.

-XX:ParallelGCThreads=4

4. To enable the concurrent mark sweep (CMS) collector, remove the -XX:+UseParallelGC
option, or the options pertaining to another garbage collector, and replace it with the -XX:
+UseConcMarkSweepGC option.

5. To enable the garbage first (G1) collector, remove the -XX:+UseParallelGC option, or the options
pertaining to another garbage collector, and replace it with the #XX:+UseG1GC option.

 Note:

If you enable the G1 collector, remove any sizing options specific to the young generation. Skip to step
7.

6. To configure young generation-specific sizing options, edit the minimum -XX:NewSize and maximum
-XX:MaxNewSize options for the young generation space.

Example:

For example, to fix the young generation bias to 1 GB, set the minimum and maximum options as
follows.

-XX:NewSize=1024m
-XX:MaxNewSize=1024m

7. To remove young generation-specific sizing options completely, remove the aforementioned options or
add a leading # character.

8. To add additional JVM options, insert the applicable options to the file.

Example:

For example, to enable the aggressive options flag, configure the file as follows.

...

Copyright ©2024

 | PingFederate Performance Tuning Guide | 1030

Enable the aggressive options flag
-XX:+AggressiveOpts

The comment is optional.

9. When finished, save your changes.

10. If PingFederate is configured to run as a service on a Windows server, follow these steps:

a. Open command prompt and go to the <pf_install>/pingfederate/sbin/wrapper
directory.

b. Run generate-wrapper-jvm-options.bat.

Result:

This helper utility reads the JVM options from the jvm-memory.options file and creates a
resource file that the PingFederate Windows service requires to configure its JVM options.

c. Close the command prompt.

11. Restart PingFederate.

12. For a clustered PingFederate environment, repeat these steps on each engine node as needed.

Hardware security modules
When configuring PingFederate to use a hardware security module, be aware of the following performance
impact considerations.

You can configure to use a hardware security module (HSM) for cryptographic material storage and
operations. When configured, private keys and their corresponding certificate are stored on the HSM.
Related signing and decryption operations are processed there for enhanced security.

For more information on supported configurations for secure material storing and processing, see
Supported hardware security modules on page 168.

Performance considerations

Configuring PingFederate to use an HSM for cryptographic material storage and operations can introduce
an impact on performance. The level of impact depends on the performance of cryptographic functionality
provided by the HSM and the network latency between PingFederate and the HSM. Consult your HSM
vendor for performance tuning and optimization recommendations if you plan to use an HSM as part of
your PingFederate deployment.

Configuration at scale
You can configure PingFederate to improve the administrative-console experience for your scaling needs.

For deployments that have hundreds of connections or OAuth clients, or both, and observe noticeable
delays in the administrative console, administrators can optionally configure PingFederate to create
configuration archives during off-peak hours and disable automatic connection validation to improve the
administrative-console experience.

References
For more information on memory management and Hotspot Java virtual machine (JVM) arguments for
garbage collection tuning, see the following resources.

Memory management

Copyright ©2024

 | PingFederate Monitoring Guide | 1031

For more information, see Java Platform, Standard Edition HotSpot Virtual Machine Garbage
Collection Tuning Guide from Oracle.

Hotspot JVM arguments

For more information, see Java HotSpot VM Options from Oracle.

PingFederate Monitoring Guide

PingFederate provides a range of monitoring options, from simple heartbeat options for checking
responsiveness to transaction response-time logging and resource-utilization metrics.

To help you gain insight into the health and performance of your PingFederate deployment, this guide
provides the following information:

▪ Liveliness and responsiveness on page 1031 describes the heartbeat request endpoint and audit
logs

▪ Resource metrics on page 1034 describes mechanisms for obtaining resource metrics including JMX
▪ Monitoring on page 1036 describes the key JVM performance metrics for evaluating the performance

of PingFederate deployments
▪ Thread pool on page 1040 describes the MBeans tab and the recommended number of threads in the

pool
▪ Logging, reporting, and troubleshooting on page 1041 describes the available logging, reporting, and

troubleshooting features

Liveliness and responsiveness
One of the simpler methods for monitoring the performance of a PingFederate deployment involves
determining whether the PingFederate Server is available and responsive. To help you identify the status
of a server, PingFederate provides a heartbeat request endpoint.

Heartbeat endpoint

If the PingFederate server is running, the process of sending a request to the endpoint /pf/
heartbeat.ping returns an HTTP 200 status. If the request times out or requires an extended amount
of time to return, the server might be overloaded or experiencing other difficulties.

If a request requires more than two or three seconds to return, multiple factors in your PingFederate
deployment might be responsible. We recommend that you develop a baseline for the desired response
time by testing the heartbeat endpoint of your deployment at various times. This endpoint can be useful
when load balancing a cluster of PingFederate instances. Some load balancers can alter the number of
requests that are sent to a particular server based on the response code received, or the responsiveness
of requests that are made to the heartbeat endpoint.

The output of the heartbeat endpoint can be modified to provide performance-related information, such
as CPU and memory usage, and response times. The response metrics can help you make better auto-
scaling decisions. The map size metrics can help you recognize performance issues.

The following example shows a report containing all the PingFederate server metrics available from the
heartbeat endpoint.

"cpu.load": "6.13",
"total.jvm.memory": "769.13 MB",
"free.jvm.memory": "517.702 MB",
"used.jvm.memory": "251.429 MB",
"total.physical.system.memory": "17.18 GB",
"total.free.physical.system.memory": "358.928 MB",

Copyright ©2024

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

 | PingFederate Monitoring Guide | 1032

"total.used.physical.system.memory": "16.821 GB",
"number.of.cpus": "8",
“atm.ref.token.map.size”: “99",
“idp.session.registry.session.map.size”: “157",
“response.concurrency.statistics.90.percentile”: “1",
“response.concurrency.statistics.max”: “2",
“response.concurrency.statistics.mean”: “1.0093023255813953",
“response.concurrency.statistics.min”: “1",
“response.statistics.count”: “215",
“response.statistics.window.seconds”: “300",
“response.time.statistics.90.percentile”: “2",
“response.time.statistics.max”: “376",
“response.time.statistics.mean”: “144.646511627906977",
“response.time.statistics.min”: “101",
“session.state.attribute.map.size”: “157",
“sp.session.registry.session.map.size”: “0",
“total.failed.transactions”: “0",
“total.transactions”: “150"

The following table describes all the PingFederate server metrics available from the heartbeat endpoint.

 Note:
In the following table, for server metrics that end in .90.percentile, the
current 90 value is determined by the ServerPercentilesList item in the
com.pingidentity.monitoring.MonitoringService.xml file. 90 is the default value. For more
information on how to edit this value, see step 4 in Liveliness and responsiveness.

Server metrics Description

cpu.load Load on the PingFederate server's cores as a percentage of total capacity

total.jvm.memory Total memory of the JVM

free.jvm.memory Free memory of the JVM

used.jvm.memory Used memory of the JVM

total.physical.system.memoryTotal system memory

total.free.physical.system.memoryFree system memory

total.used.physical.system.memoryUsed system memory

number.of.cpus Number of cores on the PingFederate server

atm.<atm>.token.map.sizeNumber of tokens in the access token manager with the ID specified by <atm>

idp.session.registry.session.map.sizeNumber of identity provider sessions

response.concurrency.statistics.90.percentileThe 90th percentile response concurrency (for example, if this value is 124,
then 90% of the report samples had response concurrency values below 124)

response.concurrency.statistics.maxMaximum number of HTTP requests that the PingFederate server processed
concurrently

response.concurrency.statistics.meanMean number of HTTP requests that the PingFederate server processed
concurrently

Copyright ©2024

 | PingFederate Monitoring Guide | 1033

Server metrics Description

response.concurrency.statistics.minMinimum number of HTTP requests that the PingFederate server processed
concurrently

response.statistics.countNumber of items considered in the heartbeat report for the time and
concurrency statistics

response.statistics.window.secondsTime interval (in seconds) for the statistics report (this is an echo of the
StatisticsWindowSecs value and provides context for the concurrency and
time statistics)

response.time.statistics.90.percentileThe 90th percentile response time in milliseconds (for example, if this value
is 168, then 90% of the report samples had response times below 168
milliseconds)

response.time.statistics.maxLongest time in milliseconds that the PingFederate server took to respond

response.time.statistics.meanMean time in milliseconds that the PingFederate server took to respond

response.time.statistics.minShortest time in milliseconds that the PingFederate server took to respond

session.state.attribute.map.sizeNumber of items in the session state

sp.session.registry.session.map.sizeNumber of service provider sessions

total.failed.transactionsNumber of failed transactions since the PingFederate server started

total.transactions Number of transactions since the PingFederate server started

The statistics are for a 5 minute interval and they are updated every 30 seconds. The report takes only the
first 5000 items into account.

For more information, see Customizing the heartbeat message on page 857

Response-time logging

By default, the audit logs record the processing time for each transaction. With audit logging enabled, you
can identify the speed with which PingFederate processes the following transaction types:

▪ Single sign-on (SSO)
▪ OAuth
▪ Security token services (STS)

Depending on your logging configuration, audit logging might not log any transactions. For more
information, see Security audit logging on page 784.

The following provides examples of the default audit log.

2019-11-10 13:24:57,493| tid:cYunBsgybiw_fiRnJjkAhbIXvzc|
 AUTHN_SESSION_USED| | 127.0.0.1 | | ac_client| | localhost| IdP| success|
 PdFormAdpt| | 17

2019-11-10 13:24:58,720| tid:cYunBsgybiw_fiRnJjkAhbIXvzc| OAuth|
 5c60f022-1e9d-3fbe-9749-4b9ca5591356| 127.0.0.1 | | ac_client| OAuth20|
 localhost| AS| success| PdFormAdpt| | 7

Processing times are shown at the end of the entry in milliseconds.

Copyright ©2024

 | PingFederate Monitoring Guide | 1034

Resource metrics
PingFederate provides mechanisms for obtaining resource metrics including JMX and heartbeat endpoint.

PingFederate provides the following mechanisms for obtaining resource metrics:

▪ JMX - Ping recommends using JMX MBeans because this method provides a more comprehensive
set of resource metric counters for analyzing performance. Several tools are available for collecting
and analyzing data from JMX MBeans, including many security information and event management
(SIEM) tools, like Splunk.

▪ Heartbeat endpoint - For information about enabling and customizing heartbeat message reporting,
see Customizing the heartbeat message on page 857.

Monitoring discusses the JConsole monitoring tool that is included with the Java SE platform. For more
information about the Comprehensive JConsole, see Troubleshoot with the JConsole Tool in the Oracle
JDK documentation and The Java Monitoring and Management Console (jconsole) in the OpenJDK
documentation.

Connecting with JMX
You can connect to JMX using local and remote processes.

JConsole permits connections to local and remote Java processes. If your instance of PingFederate
is running as a Windows Service, you must connect through the remote option. For more information
on connecting to a local process, see Connecting to a local process on page 1034. For information on
connecting to a remote process, see Connecting to a remote process on page 1035.

Connecting to a local process
Unless you are running PingFederate as a Windows service, the easiest method by which to launch
JConsole on the same machine as the server is to select Local Process.

About this task
For information about connecting to a remote process, see Connecting to a remote process on page 1035.

To connect to a local instance and start the monitoring process:

Copyright ©2024

https://docs.oracle.com/javase/9/troubleshoot/diagnostic-tools.htm#JSTGD174
http://openjdk.java.net/tools/svc/jconsole/

 | PingFederate Monitoring Guide | 1035

Steps

▪ From the Local Process list, select org.pingidentity.RunPF and then click Connect.

 Note:
If you are running the process locally, the system might prompt you to accept the connection as
insecure.

Connecting to a remote process
If PingFederate is running as a Windows Service, or if the .org.pingidentity.RunPF class is
unavailable in the Local Process list, use this procedure to establish a connection.

About this task
To enable remote JMX monitoring in PingFederate:

Steps

1. In the Administrative Console, go to the Security # System Integration # Service Authentication
window.

2. Define the credentials that are required to connect to the PingFederate JMX service.

3. Restart PingFederate to enable the JMX Service.

4. In a clustered PingFederate environment:

a. Replicate the configuration changes on each node in the cluster.
b. Restart each engine node.

5. After you enable the JMX service, connect to the remote JMX service by specifying one of the
following:
Choose from:

▪ The name of the PingFederate server instance.
▪ The IP address, port 1099 (the default JMX port for PingFederate), and the authentication

credentials that the Service Authentication page defines.

Because JMX uses SSL by default when communicating with a remote host, the client host
must trust the PingFederate SSL certificate that is presented during setup for JMX. For more
information, see Runtime monitoring using JMX on page 885. To disable the use of SSL for

Copyright ©2024

 | PingFederate Monitoring Guide | 1036

JMX, open the /server/default/conf/jmx-remote-config.xml file and set the <item
name="jmx.rmi.ssl"> property to false.

 Note:
If the JMX client does not trust the JMX certificate, a connection failed SSL message appears.

6. If SSL is enabled in jmx-remote-config.xml, import the PingFederate SSL certificate to the
client's trusted certificates.

7. If SSL if disabled, click Insecure to connect.

Monitoring
This topic outlines the key JVM performance metrics for evaluating the performance of a PingFederate
deployment.

After a connection is established, you can access the JConsole monitoring interface.

Monitoring clustered PingFederate engines

JConsole can be connected to multiple processes. To monitor several instances of PingFederate after a
connection is established, click Connection # New Connection and add the additional connection.

Monitoring CPU utilization

The Overview tab provides a dashboard of the following performance and resource-utilization charts:

▪ Heap Memory Usage (cumulative memory that is used by all memory pools).
▪ Live Threads
▪ CPU Usage
▪ Classes (number of classes that are loaded)

This tab provides a high-level view of the JVM's performance metrics.

Use the Overview tab to visualize and collect CPU usage data. When your PingFederate deployment
is subjected to its normal or expected load, the CPU utilization typically falls between 60 and 80%. If the
system registers consistently at 80% or higher, additional CPU resources might be necessary to handle
load spikes that occur during peak usage times.

Copyright ©2024

 | PingFederate Monitoring Guide | 1037

Monitoring memory utilization

The Overview tab shows only overall heap usage. To view additional details about memory utilization,
click the Memory tab, which lets you analyze usage patterns in specific memory pools within the heap.
This tab also provides information about the overall heap utilization profile.

Old Generation space

Objects that survive a sufficient number of garbage-collection cycles are promoted to the Old Generation.
To view the memory usage in the pool of such objects, click Memory Pool # PS Old Gen or Memory
Pool # G1 Old, depending on the relevant garbage collection. PingFederate services mostly short-lived
transactions, like SSO, STS, and OAuth requests and most of the created memory objects are required
only for a short period of time.

Although PingFederate makes use of some memory objects that are medium to long lived, such as
session data for authentication session, adapter sessions, or single logout functionality, most of the objects
that are promoted to the Old Generation are likely to become garbage that requires cleaning up. If the
younger generation, or Eden space, is not sized appropriately, objects are moved to and retained in the
Old Generation before they are collected as garbage. If size limitations prevent the Old Generation from
accumulating future garbage as well as longer-lived objects, then garbage-collection cycles occur more
frequently.

The Old Generation space is the most important space to monitor. It is easy to identify if the heap is sized
and proportioned appropriately for a specific load, based on its usage pattern. The following examples
involve two Old Generation usage charts. In both examples, the following examples involve two Old
Generation usage charts. In both examples, the same user load executes the same workflow. The size of
the heap represents the only difference.

The most important space to monitor. It is easy to identify if the heap is sized andBecause the heap is
sized adequately in the first example, memory in the Old Generation rises at a reasonably slow rate.
Garbage collection frees around 60 to 75% of the space, and room is available to accommodate the
future garbage of newly created objects that are moved from the Eden space, as well as the longer-term
objects that remain in use. Although the space is 1 GB in size, the average full (PS MarkSweep or G1 Old
Generation) collection time is approximately only 240 milliseconds (0.728 seconds for three collections).

When a heap is sized inadequately, the Old Generation runs out of space. In the following example, the
amount of memory that becomes free with each garbage collection shrinks, due to the rate at which objects
are promoted from the Eden space.

Copyright ©2024

 | PingFederate Monitoring Guide | 1038

184 PS MarkSweep (full) collections require garbage collections more frequently, totaling 60 seconds, or
an average of 326 milliseconds per collection.

Entire heap space

If the heap is sized appropriately for the load that the system must handle, it fills up and is followed by
an appreciable drop in usage as a full garbage collection occurs (such as a PS MarkSweep collection
triggered by the Old Generation filling up). In this example, the heap rises steadily, with drops from minor
collections until a PS MarkSweep collection occurs and collects approximately 70% of the heap.

When the heap is undersized, full collections that are performed more frequently return less memory. In
the following example, the frequency of JMX data that the JConsole retrieves does not keep pace with the
frequency of full collections. As a result, only a fraction of them occur.

Copyright ©2024

 | PingFederate Monitoring Guide | 1039

Eden space

Regardless of whether the heap is adequately sized or undersized, the usage pattern is nearly identical
with the Eden space. This similarity can be due to the sampling frequency of the data-collection tool
because the number of samples might be insufficient to show that, with an undersized heap, memory is
consumed and subsequently freed with greater frequency. The behavior of garbage collection in the Eden
space is such that when it fills, the space is completely emptied by moving live objects to the Survivor and
Old Generation spaces. Under load, the pattern resembles a jagged sawtooth, as shown in the following
examples of an adequately sized heap and an undersized heap.

Copyright ©2024

 | PingFederate Monitoring Guide | 1040

Increasing heap size

Because garbage collectors manage memory in the Java Runtime Environment, simply increasing the
size of the heap is not always the appropriate solution. The following table outlines the total heap size
recommendations for the available garbage collectors, based on available CPU resources. For more
information about garbage collectors, see Garbage collectors on page 1021.

Garbage Collector Minimum Recommended
Number of CPUs

Recommended Heap Size

Parallel 4 6 GB maximum

Concurrent Mark Sweep 12 4 - 6 GB minimum

Garbage First (G1) 12 6 GB minimum

If additional memory is unavailable, or if increasing the size of the heap is inadvisable because of these
recommendations, the load that is handled by this instance is probably too high. In such instances,
consider adding additional resources to your deployment. To verify whether the load for the instance is too
high, check the CPU utilization

To allow for the most efficient management of memory, set the minimum and maximum heap sizes to
the maximum allowed values to avoid potentially expensive heap allocation resizing and divide it evenly
between the young and old generations. If you are using the Garbage First collector, generational spaces
are not specified through command line options because they are managed logically in real time. Even in
such instances, we recommend setting the minimum and maximum heap sizes to the maximum allowed
values. For more information about fine-tuning the JVM options in the jvm-memory.options file, see
Fine-tuning JVM options on page 1028.

Thread pool
The following topic describes the MBeans tab and the recommended number of threads in the pool.

The MBeans tab provides access to the JMX Managed Beans and their available attributes and
operations. Of particular interest are the queuedthreadpool instances that are available within the
org.eclipse.jetty.util.thread bean. For example, instance 0 represents the thread pool that
handles runtime requests. When you click the Attributes item for instance 0, the current state of the thread
pool is displayed.

Copyright ©2024

 | PingFederate Monitoring Guide | 1041

The number of threads in the pool (the threads attribute) can be compared to the number of threads
that are not currently in use (the idleThreads attribute). Ideally, a sufficient number of threads is
available to handle load spikes that occur during peak usage times, while also limiting the number of idle
threads that are running. If the thread pool is too small, requests might be blocked. If the thread pool is too
large, memory might be used unnecessarily, and CPU contention might increase, limiting the processing
effectiveness.

We recommend allowing for 10 to 25% more threads than are typically active while the system executes a
normal or expected load. Because most of your users will not be active at the same time, set the minimum
threads to 10% above the average number of active threads that are observed during monitoring.

We also recommend setting the maximum number of threads to 25% above the average number of active
threads that are observed while monitoring under expected load conditions. Make certain to weigh this
recommendation against the observed CPU utilization metrics and the suggestions in the Performance
Tuning Guide.

Logging, reporting, and troubleshooting
This section provides an overview of the available logging, reporting, and troubleshooting features for
PingFederate.

PingFederate Logs

The server.log file represents the primary troubleshooting log. Along with an HTTP trace from
the browser, which can be generated from a debugging application like Fiddler, this file is helpful for
identifying issues that must be resolved. The following table identifies the available PingFederate logs and
summarizes their purposes.

Name Purpose

admin.log Records the actions that users of the Administrative
Console perform.

admin-event-detail.log If detailed event logging is enabled, this log
records detailed information about each applicable
administrative-console event that users of the
Administrative Console perform.

admin-api.log Records the actions that users of the administrative
API perform.

Copyright ©2024

 | PingFederate Monitoring Guide | 1042

Name Purpose

runtime-api.log Records the actions that API users perform by
using the OAuth Client Management Service, the
OAuth Access Grant Management Service, and the
Session Revocation API.

transaction.log Records individual identity-federation runtime
transactions at specified levels of detail.

audit.log Records a selected, configurable subset of
transaction log information plus additional details.
Intended for security-audit and regulatory-
compliance purposes.

provisioner-audit.log Records outbound provisioning events intended for
security-audit purposes.

provisioner.log Records provisioning activity only. Useful when
troubleshooting issues that relate to provisioning.

server.log Records PingFederate runtime and administrative
server activities. For more information about the
primary troubleshooting log, see Creating an error-
only server log.

init.log Records only Jetty messages that are generated
prior to starting PingFederate.

Creating an error-only server log
This section describes am approach for modifying your log4j2.xml file, which can be sent to a security
information and event management (SIEM) tool, such as Splunk. You can configure alerts to send
notifications when such events occur, or to improve the monitoring of these events.

About this task
We recommend using the server.log file for error-level messages. Even when levels are down to a
minimum, the server log generates large amounts of information in an active production environment. As
an alternative, you can set up a specific log to log only ERROR and higher.

To change your log4j2.xml file to enable a separate log file:

Steps

1. Create an appender.

The easiest way to create an appender is to copy an existing one as a base. In the following example,
the RollingFile is the same one that the server.log file uses. Bold text identifies items that have
been changed.

<!-- Error Only Main Log : A size based file rolling appender -->
<RollingFile name="FILEERR" fileName="${sys:pf.log.dir}/server.error.log"
 filePattern="${sys:pf.log.dir}/server.error.log.%i"
 ignoreExceptions="false">
 <PatternLayout>
 <!-- Uncomment this if you want to use UTF-8 encoding instead
 of system's default encoding.
 <charset>UTF-8</charset> -->
 <pattern>%d %X{trackingid} %-5p [%c] %m%n</pattern>
 </PatternLayout>
 <Policies>

Copyright ©2024

 | PingFederate Monitoring Guide | 1043

 <SizeBasedTriggeringPolicy
 size="10000 KB" />
 </Policies>
 <DefaultRolloverStrategy max="5" />
</RollingFile>

2. At the end of your log4j2.xml file, set the appender that you created in the previous step for
AsyncRoot.

<AsyncRoot level="INFO" includeLocation="false">
 <!-- <AppenderRef ref="CONSOLE" /> -->
 <AppenderRef ref="FILE" />
 <AppenderRef ref="FILEERR" level="ERROR" />
</AsyncRoot>

In this example, the level attribute indicates the level of messages that are sent to the log file.

3. Remove the attribute additivity="false" from all other loggers that contain a reference to the
File appender.

Logger name="org.sourceid.saml20.util.SystemUtil" level="INFO"
 additivity="false">
 <!--<AppenderRef ref="CONSOLE" /> -->
 <AppenderRef ref="FILE" />

Becomes:

<Logger name="org.sourceid.saml20.util.SystemUtil" level="INFO" >
 <!--<AppenderRef ref="CONSOLE" /> -->
 <AppenderRef ref="FILE" />

4. Make this change on all nodes within the cluster.

 Note:
To expedite this step, we recommend creating a base file with the appropriate changes and copying it
to all the nodes.

5. Restart PingFederate.

Splunk dashboards and audit logs
Ping provides a free Splunk for PingFederate application that customers can use to create dashboards.

This application takes advantage of the Writing audit logs for Splunk on page 796 and Outbound
provisioning audit logging on page 789, which can be enabled in log4j2.xml file.

Examples of Splunk dashboards

To help you review different events, the following dashboards are available from the top-level menu of the
PingFederate app for Splunk:

▪ Account Manager
▪ Identity Provider
▪ Service Provider
▪ OAuth Server

Copyright ©2024

https://splunkbase.splunk.com/app/976/

 | PingFederate Monitoring Guide | 1044

Click a menu item to view its sub-menus, as the following example shows for OAuth Server.

The following image shows the Identity Provider Access sub-menu dashboard with examples from the
security audit log entries.

After you select a sub-menu, an image like the following OAuth Server Client Request example is
displayed while the dashboard waits for the search results.

Copyright ©2024

 | PingFederate Monitoring Guide | 1045

After you click Submit, the dashboard displays the following search results for the client request.

To view additional results, scroll downward or select another page. The following Client Request page
provides an example.

Copyright ©2024

 | PingFederate Monitoring Guide | 1046

The following images provide additional examples of the Service Provider Access sub-menu dashboard.

Copyright ©2024

 | SDK Developer's Guide | 1047

SDK Developer's Guide

The PingFederate SDK enables integration with identity providers (IdPs) and service providers (SPs).
The SDK allows application developers and system administrators to build custom implementations
for communicating authentication and security information between PingFederate and their enterprise
environment.

Possible customizations

Extending PingFederatecould include:

▪ Authentication adapters to integrate web applications or identity-management systems
▪ Authentication selectors to direct single sign-on (SSO) authentication to instances of authentication

adapters based on specified conditions
▪ WS-Trust Security Token Service (STS) token translators, including token processors and token

generators
▪ Custom data source drivers
▪ Password credential validators
▪ Identity store provisioners
▪ Notification publishers

The PingFederate Java SDK consists of several APIs, including:

▪ Adapter and STS token-translator interfaces
▪ Authentication selector interfaces
▪ Custom data source interfaces
▪ Password credential validator interfaces
▪ Identity store provisioner interfaces
▪ Notification publisher interface

These interfaces allow users to create their own custom PingFederate plugins to suit their organization's
needs. This SDK provides a means to develop, compile, and deploy custom plugins to PingFederate. The

Copyright ©2024

 | SDK Developer's Guide | 1048

package also contains example plugins for reference. These example plugin projects are located in the
<pf_install>/sdk/plugin-src directory.

The PingFederate SSO integration overview on page 59 describes the pre-built authentication
adapters Ping Identity provides for integrating web applications and identity-management systems with
PingFederate. Review this document before building your own adapter to see if an available adapter fits
your use case.

 Important:

Custom components might not work the same way after upgrading PingFederate. When upgrading, ensure
you thoroughly retest the behavior of customizations in a non-critical upgraded environment.

Adapter and STS token-translator interfaces

The adapter and token-translator APIs enable PingFederate integration with IdPs or SPs. Adapter token-
translator APIs are configurable UI plugins that provide requisite runtime integration and allow you to
render custom configuration windows.

 Note:

Suitable adapter or token-translator implementations for your deployment might already exist.
Before developing your own custom solution, see the Ping Identity Downloads website for available
implementations.

Authentication selector interfaces

Authentication selectors provide a mechanism to choose among multiple authentication sources and to
direct a user to use a particular adapter or IdP connections. For example, an authentication selector might
map internal corporate users to use one adapter and map external non-corporate users to a different
adapter. Authentication selectors are configurable UI plugins that allow you to render custom configuration
windows.

Custom data source interfaces

The custom data source API is a set of Java interfaces that enable PingFederate to integrate with
datastores not covered by existing Java Database Connectivity (JDBC) or LDAP drivers. This allows
developers to retrieve attributes from their choice of data source during attribute fulfillment. Custom data
source interfaces are configurable UI plugins that allow you to render custom configuration windows.

Password credential validator interfaces

The password credential validator interfaces allow developers to define credential validators that verify
a given username and password in various contexts throughout the system. For example, credential
validators are used to configure OAuth Resource Owner authorization grants and the HTML Form Adapter.

Identity store provisioner interfaces

Identity store provisioners provide a mechanism for provisioning and deprovisioning users to external
user stores. For example, you can configure a custom identity store provisioner within an inbound
provisioning IdP connection to provision users using the System for Cross-domain Identity Management
(SCIM) protocol. Identity store provisioners are configurable UI plugins that allow you to render custom
configuration windows.

Copyright ©2024

https://www.pingidentity.com/en/resources/downloads.html

 | SDK Developer's Guide | 1049

Notification publisher interface

PingFederate delivers messages to administrators and end users based on notification publisher settings.
Developers can implement custom notification publishers using the NotificationPublisherPlugin
interface.

Additional documentation

▪ Javadocs provide detailed reference information for developers. The Javadocs are located in the
<pf_install>/pingfederate/sdk/doc directory.

▪ The user guides for Java, .NET, and PHP integration kits show examples of SDK implementations.

SDK directory structure
This topic describes the directory and build components that comprise the SDK.

The PingFederate SDK directory (<pf_install>/pingfederate/sdk) contains the following:

▪ plugin-src/ — The directory where you place your custom plugin projects. This directory also
contains example plugin implementations showing a wide range of functionality. You can use these
examples to develop your own implementations.

▪ doc/ — Contains the SDK Javadocs. Open index.html to get started.
▪ lib/ — Contains libraries used for compiling and deploying custom components into PingFederate.
▪ build.properties — Contains properties used by the Ant build script, build.xml, to compile

and deploy your custom components. Do not modify this file. If you need to override a property, use
build.local.properties .

▪ build.local.properties — Allows you to specify which project you want to build and define
properties specific to your environment. Use this file to declare the project you want to build.

▪ build.xml — The Ant build script used to compile, build, and deploy your component. This file
should not need modification.

The Java SDK, along with Apache Ant, enables you to create directories for your project and use the build
script to build, clean, or deploy it. For more information, see Developing your own plugin on page 1049.

Developing your own plugin
You can set up a development environment within the SDK and use it to create a plugin.

Before you begin
Ensure you have the Java SDK and Apache Ant installed.

About this task
The Java SDK, along with Apache Ant, enables you to create directories for your project and use the build
script to build, clean, or deploy it.

Steps

1. Create a new project directory in the <pf_install>/pingfederate/sdk/plugin-src directory.

2. In the new project directory, create a subdirectory named java.

This is where you place the Java source code for your implementation. Follow standard Java package
and directory structure layout.

3. If your project depends on third-party libraries, create another subdirectory called lib and place the
necessary .jar files in it.

4. Edit the build.local.properties file and set target-plugin-name to specify the name of the
directory that contains your project.

Copyright ©2024

 | SDK Developer's Guide | 1050

5. Run the appropriate target to clean, build, or deploy your plugin.

To display a list of available build targets, run ant from <pf_install>/pingfederate/sdk.

[java] Main targets:
[java]
[java] clean-plugin Clean the plug-in build directory
[java] deploy-plugin Deploy the plug-in jar and libs to PingFederate
[java] jar-plugin Package the plug-in jar
[java]
[java] Default target: help

 Note:

Because it packages the .jar files with additional metadata to make them discoverable by
PingFederate, we recommend building the project with the build.xml file included in the SDK.

Implementation guidelines
The following topics provide programming guidance for developing custom interfaces.

▪ Shared plugin interfaces on page 1050
▪ Developing IdP adapters on page 1051
▪ Developing SP adapters on page 1054
▪ Developing token processors on page 1055
▪ Developing token generators on page 1056
▪ Developing authentication selectors on page 1056
▪ Developing data source connectors on page 1057
▪ Developing password credential validators on page 1059
▪ Developing identity store provisioners on page 1059
▪ Developing notification publishers on page 1065
▪ Building and deploying your project

For more details about interfaces discussed here and additional functionality, see the SDK Javadocs.

Shared plugin interfaces
Plugin implementations generally invoke methods categorized as either configurable or describable. This
document describes these types of plugins and how they are used in PingFederate.

Configurable plugin

Any custom plugin that requires UI settings is configurable and implements the ConfigurablePlugin
interface. This ensures that PingFederate loads the plugin instance with the correct configuration settings.

All plugin types implement the ConfigurablePlugin interface and must define the following within the
ConfigurablePlugin interface to enable configuration loading.

void configure(Configuration configuration)

During processing of a configurable plugin instance, PingFederate calls the
ConfigurablePlugin.configure() method and passes a Configuration object. The
Configuration object provides the plugin adapter instance configuration set by an administrator in the
PingFederate UI.

Copyright ©2024

 | SDK Developer's Guide | 1051

The SpAuthnAdapterExample.java sample provided with the SDK shows how to use this method to
initialize an adapter instance from a saved configuration. After your implementation loads the configuration
values, the plugin instance can use them in other method calls.

Describable plugin

Any plugin that requires configuration windows in the PingFederate administrative console is a describable
plugin. Most plugins implement the DescribablePlugin interface to ensure that PingFederate renders
the correct UI components based on the returned PluginDescriptor.

Adapter and custom data source plugins are special cases and do not implement
the DescribablePlugin interface. However, they still return a plugin descriptor
(AuthnAdapterDescriptor and SourceDescriptor) and are still describable plugins.

All describable plugins must define a UI descriptor. Use one of the following methods to implement a UI
descriptor, depending on the type of plugin:

▪ For plugins using the DescribablePlugin interface

PluginDescriptor getPluginDescriptor()

▪ For adapter plugins

AuthnAdapterDescriptor getAdapterDescriptor()

▪ For custom data source plugins

SourceDescriptor getSourceDescriptor()

Describable plugins can return a subclass of PluginDescriptor, so the return type might differ
between plugin implementations. Your plugin implementation populates PluginDescriptor with
FieldDescriptors, FieldValidators, and Actions and is presented as a set of UI components in
the PingFederate administrative console.

 Tip:

Some plugin types offer concrete descriptor implementations for developers. The Javadocs and examples
provided with the SDK show which descriptor classes are available for each plugin type. The examples
also show you how to use FieldDescriptors, FieldValidators, and Actions to define your plugin
descriptor.

Developing IdP adapters
PingFederate uses a select few of your identity provider's (IdP's) methods to call requests, handle logout
requests, and perform other functions.

IdP authentication adapter interface

Create an IdP adapter by implementing the IdpAuthenticationAdapterV2 interface. Implementing
this interface requires the following Java packages:

▪ org.sourceid.saml20.adapter.idp.authn
▪ org.sourceid.saml20.adapter.gui
▪ org.sourceid.saml20.adapter.conf

For each IdP adapter implementation, in addition to the methods described under Shared plugin interfaces
on page 1050, you must define the following:

▪ Session lookup

Copyright ©2024

 | SDK Developer's Guide | 1052

▪ Session logout

IdP adapter session lookup

PingFederate invokes the lookupAuthN() method of your IdP adapter to look up user-session
information to handle a request, regardless of whether the request is for IdP- or service provider (SP)-
initiated single sign-on (SSO), an OAuth transaction, or direct IdP-to-SP adapter processing.

 Note:
The IdentityStoreUserProvisioner interface is deprecated. Developers should implement either the
IdentityStoreProvisionerWithFiltering or IdentityStoreProvisioner interfaces.

java.util.Map lookupAuthN(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse resp,
 java.lang.String partnerSpEntityId,
 AuthnPolicy authnPolicy,
 java.lang.String resumePath)
 throws AuthnAdapterException, java.io.IOException

 Note:

The IdpAuthenticationAdapterV2 interface provides an overloaded version of the lookupAuthN()
method. The other overloaded lookupAuthN() version is deprecated; you should only use the one
within the IdpAuthenticationAdapterV2 interface. Use this interface if your adapter requires
additional parameters from PingFederate. For a complete list of available parameters, see the
IdpAuthenticationAdapterV2 interface in the Javadocs.

In most implementations, a user's session information or a reference to it is communicated to PingFederate
using the HttpServletRequest parameter, which is passed to the lookupAuthN() method. For
example, the implementation can pass the user's session information from the IdP application as a cookie
or query parameter.

If the request from the user's browser does not contain the necessary information to identify the user, you
can use the HttpServletResponse parameter in various ways to retrieve the user's session data, such
as creating a 302 redirect or presenting a web page asking for credentials. If your adapter implementation
uses the HttpServletResponse parameter to retrieve the user's session, you must, return the user's
browser to the URL declared in the resumePath parameter that was set by the PingFederate runtime
server. The resumePath parameter is a relative URL signaling PingFederate that a user is continuing an
already initiated SSO transaction.

 Tip:

When creating a custom adapter, you can design it to render a template for processing and returning
HTML to the user's browser using the TemplateRendererUtil class. A sample (template-render-
adapter-example) is included in the sdk/plugin-src directory of your PingFederate instance.

If your adapter implementation writes to the HttpServletResponse to retrieve the user's session data,
we recommend returning the URL specified by the resumePath parameter at all times, whether the
retrieval succeeds or fails. This ensures the adapter does not interrupt the adapter chain if it is used with
the composite adapter. The composite adapter allows an administrator to chain together a selection of
available adapter instances for a connection. At runtime, adapter chaining means that SSO requests are
passed sequentially through each adapter instance until one or more authentication results are found for
the user. If the browser is unable to return to the resumePath URL at all times, then it could interrupt the
adapter chain, causing unexpected results for the composite adapter.

Copyright ©2024

 | SDK Developer's Guide | 1053

For some authentication mechanisms, not all adapters can return the browser to the resumePath URL.
Do not use such adapters with the composite adapter's “Sufficient” chaining policy. For more information,
see Composite Adapter.

The following diagram illustrates the request sequence of an IdP-initiated SSO scenario that uses the URL
specified by the resumePath parameter.

Processing steps

1. User logs in to a local application or domain through an authentication mechanism such as an identity-
management system.

2. User requests access to a protected resource located in the service provider (SP) domain. The link or
other mechanism invokes the PingFederate SSO service.

3. PingFederate invokes the designated adapter's lookup method, including the resumePath parameter.
4. The application server returns the session information and redirects the browser along with the

returned information to the resumePath URL.
5. PingFederate generates a SAML assertion and sends the browser with the SAML assertion to the SP's

SAML gateway.

IdP adapter session logout

During single logout (SLO) request processing, PingFederate invokes your IdP adapter's logoutAuthN()
method to terminate a user's session. This method is invoked during IdP- or SP-initiated SLO requests.

boolean logoutAuthN(java.util.Map authnIdentifiers,
 javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse resp,
 java.lang.String resumePath)
 throws AuthnAdapterException, java.io.IOException

Like the lookupAuthN() method, the logoutAuthN() method has access to the user's
HttpServletRequest and HttpServletResponse objects. Use these objects to retrieve data
about the user's session and to redirect the browser to an endpoint used to terminate the session at the
application. The resumePath parameter contains the URL to which the user is redirected to complete the
SLO process.

Copyright ©2024

 | SDK Developer's Guide | 1054

Developing SP adapters
This topic describes how to create a service provider (SP) adapter, as well as the methods used during SP
session creation, SP adapter session logout, and SP account linking.

SP authentication adapter interface

Create service provider (SP) adapters by implementing the SPAuthenticationAdapter interface.
Implementing this interface requires the following Java packages:

▪ org.sourceid.saml20.adapter.sp.authn
▪ org.sourceid.saml20.adapter.gui
▪ org.sourceid.saml20.adapter.conf

For each SP adapter implementation, in addition to the methods described in Shared plugin interfaces on
page 1050, you must define:

▪ SP session creation
▪ SP adapter session logout
▪ SP account linking

SP session creation

PingFederate invokes the createAuthN() method during the processing of a single sign-on (SSO)
request to establish a security context in the external application for the user.

java.io.Serializable createAuthN(SsoContext ssoContext,
 javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse resp,
 java.lang.String resumePath)

This method resembles the IdpAuthenticationAdapter.lookupAuthN() method in terms of the
objects passed to it and its support for asynchronous requests using the HttpServletResponse and
resumePath parameters. It also accepts an SsoContext object, which has access to information such as
user attributes and the target destination URL.

SP adapter session logout

PingFederate invokes the logoutAuthN() method during a single logout (SLO) request to terminate a
user's session with the external application.

boolean logoutAuthN (java.io.Serializable authnBean,
 javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse resp,
 java.lang.String resumePath)
 throws AuthnAdapterException, java.io.IOException

The HttpServletResponse and resumePath objects are available to support scenarios where the
user's browser redirects to an additional service to clean up any remaining sessions.

SP account linking

PingFederate invokes the lookupLocalUserId() method during an SSO request when the identity
provider (IdP) connection uses account linking but no account link for this user is yet established.

java.lang.String lookupLocalUserId(
 javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse resp,
 java.lang.String partnerIdpEntityId,
 java.lang.String resumePath)

Copyright ©2024

 | SDK Developer's Guide | 1055

 throws AuthnAdapterException, java.io.IOException

After the account link is set, PingFederate maintains this information until the user defederates, which
occurs when the user clicks a hyperlink redirecting them to the /sp/defederate.ping PingFederate
endpoint.

The HttpServletResponse and resumePath objects are used to send the user to a local service
where the user authenticates. After authentication, the user is redirected to the URL specified in the
resumePath parameter and PingFederate completes the account link.

The following diagram illustrates a typical account-link sequence.

Use the HttpServletRequest to read a local session token. The lookupLocalUserId() method
should return a local user identifier String object.

Developing token processors
You can create a token processor by implementing the TokenProcessor interface.

The following Java packages are required for implementing the TokenProcessor interface:

▪ org.sourceid.saml20.adapter.attribute
▪ org.sourceid.saml20.adapter.idp.authn
▪ org.sourceid.saml20.adapter.gui
▪ org.sourceid.saml20.adapter.conf
▪ org.sourceid.wstrust.model
▪ org.sourceid.wstrust.plugin

Copyright ©2024

 | SDK Developer's Guide | 1056

▪ org.sourceid.wstrust.plugin.process
▪ com.pingidentity.sdk

For each token-processor implementation, in addition to the methods described under Shared plugin
interfaces on page 1050, you must define the TokenContext processToken(T token) method.

PingFederate invokes the processToken() method when processing a security token service (STS)
request to perform necessary operations for determining the validity of a token. The type parameter T must
extend, at a minimum, the type SecurityToken. The type BinarySecurityToken is also available to
represent custom security tokens that can be transported as Base64-encoded data.

Developing token generators
You can create a token-generator implementation by using the TokenGenerator interface.

The following Java packages are required for implementing the TokenGenerator interface:

▪ org.sourceid.saml20.adapter.sp.authn
▪ org.sourceid.saml20.adapter.gui
▪ org.sourceid.saml20.adapter.conf
▪ org.sourceid.wstrust.model
▪ org.sourceid.wstrust.plugin
▪ org.sourceid.wstrust.plugin.process
▪ com.pingidentity.sdk

For each token-generator implementation, in addition to the methods described under Shared plugin
interfaces on page 1050, you must define the SecurityToken generateToken(TokenContext
attributeContext) method.

PingFederate invokes the generateToken() method when processing a security token service
(STS) request to perform necessary operations for generation of a security token. The type
BinarySecurityToken is available and you can use it to represent custom security tokens that can be
transported as Base64-encoded data. The TokenContext contains subject data available for insertion
into the generated security token.

Developing authentication selectors
This topic describes aspects of authentication selectors within the context of PingFederate, including
implementation, context selection, and callbacks.

Authentication selector interface

Authentication selectors allow PingFederate to choose an appropriate authentication source, an identity
provider (IdP) adapter or an IdP connection (for federation hub use cases), based on criteria defined in the
authentication selector instance.

When creating an authentication selector, use the following primary Java packages:

▪ org.sourceid.saml20.adapter.gui
▪ org.sourceid.saml20.adapter.conf
▪ com.pingidentity.sdk

For each authentication selector implementation, in addition to the methods described under Shared plugin
interfaces on page 1050, you must define the following:

▪ Context Selection
▪ Authentication selector callback

Copyright ©2024

 | SDK Developer's Guide | 1057

Context selection

PingFederate calls the selectContext() method to determine which authentication source to select.
The mappedAuthnSourcesNames contains the list of AuthenticationSourceKeys and names that
are available for the selector to reference.

AuthenticationSelectorContext selectContext(HttpServletRequest req,
 HttpServletResponse resp,
 Map<AuthenticationSourceKey, String> mappedAuthnSourcesNames,
 Map<String, Object> extraParameters,
 String resumePath)

The HttpServletRequest can evaluate cookies, parameters, headers, and other request information
to determine which authentication source to select. The HttpServletResponse also helps determine
the appropriate authentication source to select if the authentication selector requires user interaction. If the
resp object is written to, it is considered a committed response and returned to the user's browser. The
resumePath is a relative URL used in conjunction with the resp object, such that the user's browser is
sent to this URL to resume the single sign-on (SSO) work flow.

After an authentication source is selected, you can create an AuthenticationSelectorContext to
denote which authentication source to use. You can reference the selected authentication source by its ID
or by its context, which is a name that decouples authentication selectors from the configured IDs.

Authentication selector callback

PingFederate calls the callback() method after authenticating against a selected source. The
callback() method allows authentication selectors to update resulting attributes, set cookies, or perform
other custom functions.

void callback(HttpServletRequest req,
HttpServletResponse resp,
Map authnIdentifiers,
AuthenticationSourceKey authenticationSourceKey,
AuthenticationSelectorContext authnSelectorContext);

 Note:

Writing content to the resp object in the callback() method is not supported, and doing so might result
in unexpected behavior. Setting cookies is supported.

Developing data source connectors
Use PingFederate to query various data sources or build data source connectors to process customized
data sources.

PingFederate can query data sources for a variety of purposes using LDAP or Java Database Connectivity
(JDBC) interfaces. Use the PingFederate SDK to build data source connectors to query additional data
source types. Examples of other data sources include a web service, a flat file, or a different way of using a
JDBC or LDAP connection than what is supplied by PingFederate.

The following are the primary Java packages used to build a custom data source:

▪ com.pingidentity.sources
▪ com.pingidentity.sources.gui

For each implementation described in Shared plugin interfaces on page 1050, you must define the
following:

▪ Connection testing
▪ Available fields retrieval

Copyright ©2024

 | SDK Developer's Guide | 1058

▪ Data source query handling

Data source connection testing

boolean testConnection()

When associating a custom data source with an identity provider (IdP) or service provider (SP) connection,
PingFederate tests connectivity to the data source by calling the testConnection() method. Your
implementation of this method should perform the necessary steps to demonstrate a successful connection
and return true, or return false if your implementation cannot communicate with the datastore. A false
result prevents an administrator from continuing with the data source configuration.

Data source available fields retrieval

java.util.List<java.lang.String> getAvailableFields()

PingFederate calls the getAvailableFields() method to determine the available fields that can be
returned from a query of this data source. These fields are displayed to the PingFederate administrator
during the configuration of a data source lookup, and the administrator selects the attributes from the
data source and maps them to the adapter or attribute contract. PingFederate requires at least one field
returned from this method.

Data source query handling

java.util.Map<java.lang.String,java.lang.Object> retrieveValues(
 java.util.Collection<java.lang.String> attributeNamesToFill,
 SimpleFieldList filterConfiguration)

When processing a connection using a custom data source, PingFederate calls the retrieveValues()
method to perform the actual query for user attributes. This method receives a list of attribute names
populated with data. The method can also receive a filterConfiguration object populated with a list
of fields. Each field contains a name/value pair determined at runtime and collectively used as the criteria
for selecting a specific record. In most cases, the criteria are used to locate additional user attributes.

Create the filter criteria selections needed for this lookup by passing back a
CustomDataSourceDriverDescriptor, an implementation of SourceDescriptor, from the
getSourceDescriptor() method. A CustomDataSourceDriverDescriptor can include a
FilterFieldDataDescriptor composed of a list of fields that can be used as the query criteria. This
list of fields is displayed similarly to the other UI-descriptor display fields.

 Note:

The filterConfiguration object is set and populated with a list of fields only if
the data source was defined with a CustomDataSourceDriverDescriptor. If the
CustomDataSourceDriverDescriptor was not used in the definition of the data source, the
filterConfiguration object is set to null.

 Important:

To pass runtime attribute values to the filter, an administrator must reference the attributes using the
${attribute name} format when defining a filter in the PingFederate administrative console.

After all relevant attributes are retrieved from the data source, they must be returned as a map of name/
value pairs, where the names correspond to the initial collection of attribute names passed into the method
and the values are the attributes.

Copyright ©2024

 | SDK Developer's Guide | 1059

Developing password credential validators
Password credential validators allow PingFederate administrators to define a centralized location for
username/password validation, allowing PingFederate configurations to reference validator instances.

To implement a custom password credential validator, import the following Java packages:

▪ org.sourceid.saml20.adapter.gui
▪ org.sourceid.saml20.adapter.conf
▪ org.sourceid.util.log
▪ com.pingidentity.sdk
▪ com.pingidentity.sdk.password

For each implementation, in addition to the methods described under Shared plugin interfaces on page
1050, you must define the following method.

AttributeMap processPasswordCredential(String username,
 String password)
 throws PasswordValidationException

This method takes a username and password and verifies the credential against an external source.
If the credentials are valid, it returns an AttributeMap containing at least one entry representing
the principal. If the credentials are invalid, then it returns null or an empty map. If the plugin was
unable to validate the credentials (for example, due to an offline host or network problems), it returns a
PasswordValidationException.

To enable password changes in a password credential validator, implement the
com.pingidentity.sdk.password.ChangeablePasswordCredential interface.

To enable password resets in a password credential validator, implement the
com.pingidentity.sdk.password.ResettablePasswordCredential interface.

 Note:

Depending on your password management system, you might need additional system configuration to
enable password changes. For example, you can change passwords in Active Directory only if LDAPS is
enabled.

Developing identity store provisioners
You can create an identity store provisioner by implementing either the
IdentityStoreProvisionerWithFiltering or IdentityStoreProvisioner interface.

Both interfaces support provisioning and deprovisioning users and groups to an external user store.
The IdentityStoreProvisionerWithFiltering interface supports list/query and filtering; the
IdentityStoreProvisioner interface does not. For more information about list/query and filtering, see
3.2.2. List/Query Resources and 3.2.2.1. Filtering in the SCIM specification.

 Note:

The IdentityStoreUserProvisioner interface is deprecated. Developers should implement either
the IdentityStoreProvisionerWithFiltering or IdentityStoreProvisioner interfaces.

IdentityStoreProvisionerWithFiltering interface implementation
Implement the IdentityStoreProvisionerWithFiltering interface to provision and deprovision
users and groups to an external user store with list/query and filtering support.

 Note:

Copyright ©2024

http://www.simplecloud.info/specs/draft-scim-api-01.html#query-resources

 | SDK Developer's Guide | 1060

If you do not need to support list/query and filtering, you can implement the
IdentityStoreProvisioner interface instead.

Implementing this interface requires the following Java packages:

▪ com.pingidentity.sdk.provision
▪ com.pingidentity.sdk.provision.exception
▪ com.pingidentity.sdk.provision.users.request
▪ com.pingidentity.sdk.provision.users.response
▪ com.pingidentity.sdk.provision.groups.response
▪ com.pingidentity.sdk.provision.groups.request

 Note:

Group support is optional (see Check for group provisioning support).

For each identity store provisioner implementation, in addition to the methods described under Shared
plugin interfaces on page 1050, you must implement the following:

▪ Create user
▪ Read user
▪ Read users (not applicable to the IdentityStoreProvisioner interface)
▪ Update user
▪ Delete user
▪ Check for group provisioning support
▪ Create group
▪ Read group
▪ Read groups (not applicable to the IdentityStoreProvisioner interface)
▪ Update group
▪ Delete group

Create user

UserResponseContext createUser(CreateUserRequestContext createRequestCtx)
throws IdentityStoreException

invokes the createUser() method of your identity store provisioner in response to create-user requests
made to services, such as inbound provisioning. This method creates the user in the user store managed
by the identity store provisioner.

The CreateUserRequestContext contains all information needed to fulfill the request. If the user is
successfully provisioned, the method returns a UserResponseContext containing the user attributes
used to provision the user. The method throws an IdentityStoreException if an error occurred
during the creation process. See the com.pingidentity.sdk.provision.exception package for
exceptions that can be thrown.

Read user

UserResponseContext readUser(ReadUserRequestContext readRequestCtx)
throws IdentityStoreException

invokes the readUser() method of your identity store provisioner in response to get-user requests made
to services, such as inbound provisioning. This method retrieves user data from the user store managed
by the identity store provisioner.

Copyright ©2024

 | SDK Developer's Guide | 1061

The ReadUserRequestContext contains all information needed to fulfill the request. If the user data is
successfully retrieved, the method returns a UserResponseContext containing the user attributes for the
user. The method throws an IdentityStoreException if an error occurred during the retrieval process.
See the com.pingidentity.sdk.provision.exception package for exceptions that can be thrown.

Read users

UsersResponseContext readUsers(ReadUsersRequestContext readRequestCtx)
throws IdentityStoreException

PingFederate invokes the readUsers() method of your identity store provisioner in response to list/query
requests for user attributes made to PingFederate services, such as inbound provisioning. This method
retrieves user data from the user store managed by the identity store provisioner.

 Note:

The readUsers method applies only to the IdentityStoreProvisionerWithFiltering interface; it
does not apply to the IdentityStoreProvisioner interface.

The ReadUsersRequestContext contains all information needed to fulfill the request. If the user
data is successfully retrieved, the method returns a UsersResponseContext containing the user
attributes satisfying the filter. If an error occurred during the retrieval process, the method returns an
IdentityStoreException . See the com.pingidentity.sdk.provision.exception package for
exceptions that can be thrown.

Update user

UserResponseContext updateUser(UpdateUserRequestContext updateRequestCtx)
throws IdentityStoreException

invokes the updateUser() method of your identity store provisioner in response to update-user requests
made to services, such as inbound provisioning. This method updates the user in the user store managed
by the identity store provisioner.

The UpdateUserRequestContext contains all information needed to fulfill the request. If the user data
is successfully updated, the method returns a UserResponseContext containing the user's updated
attributes. The method throws an IdentityStoreException if an error occurred during the update
process. See the com.pingidentity.sdk.provision.exception package for exceptions that can
be thrown.

Delete user

void deleteUser(DeleteUserRequestContext deleteRequestCtx)
throws IdentityStoreException

invokes the deleteUser() method of your identity store provisioner in response to delete-user requests
made to services, such as inbound provisioning. This method deprovisions the user in the user store
managed by the identity store provisioner.

The DeleteUserRequestContext contains all information needed to fulfill the request. The method
throws an IdentityStoreException if an error occurred during the deprovision process. See the
com.pingidentity.sdk.provision.exception package for exceptions that can be thrown.

 Note:

Copyright ©2024

 | SDK Developer's Guide | 1062

The plugin implementation can choose not to permanently delete the resource, but must return a
NotFoundException for all readUser(), updateUser(), and deleteUser() operations associated
with the previously deleted ID. In addition, the plugin must not consider the deleted user in conflict
calculation. For example, a createUser() request for a user with a previously deleted ID should not
throw a ConflictException.

Check for group provisioning support

boolean isGroupProvisioningSupported()
throws IdentityStoreException

Implement the isGroupProvisioningSupported() method to return true if group
provisioning is supported by your identity store provisioner or false otherwise. The method
throws an IdentityStoreException if an error occurred during the query process. See
com.pingidentity.sdk.provision.exception package for exceptions that can be thrown.

Create group

GroupResponseContext createGroup(CreateGroupRequestContext
 createRequestCtx)
throws IdentityStoreException

PingFederate invokes the createGroup() method of your identity store provisioner in response
to create-group requests made to PingFederate services, such as inbound provisioning.
This method creates the group in the user store managed by the identity store provisioner if
the isGroupProvisioningSupported() method returns true; otherwise, it should throw
NotImplementedException.

The CreateGroupRequestContext contains all information needed to fulfill the request,
such as group attributes. If the group is successfully provisioned, the method returns a
GroupResponseContext containing the group attributes used to provision the group. The method
throws an IdentityStoreException if an error occurred during the creation process. See the
com.pingidentity.sdk.provision.exception package for exceptions that can be thrown.

Read group

GroupResponseContext readGroup(ReadGroupRequestContext readRequestCtx)
throws IdentityStoreException

PingFederate invokes the readGroup() method of your identity store provisioner in response
to get-group requests made to PingFederate services, such as inbound provisioning. This
method retrieves group data from the user store managed by the identity store provisioner
if the isGroupProvisioningSupported() returns true; otherwise, it should throw
NotImplementedException.

The ReadGroupRequestContext contains all information needed to fulfill the request, such as group
ID. If the group data is successfully retrieved, the method returns a GroupResponseContext containing
the group attributes. The method throws an IdentityStoreException if an error occurred during the
retrieval process. See the com.pingidentity.sdk.provision.exception package for exceptions
that can be thrown.

Read groups

GroupsResponseContext readGroups(ReadGroupsRequestContext readRequestCtx)
throws IdentityStoreException

Copyright ©2024

 | SDK Developer's Guide | 1063

PingFederate invokes the readGroups() method of your identity store provisioner in response
to list/query requests for group attributes made to PingFederate services, such as inbound
provisioning. This method retrieves group data from the user store managed by the identity store
provisioner if the isGroupProvisioningSupported() returns true; otherwise, it should throw
NotImplementedException.

 Note:

The readGroups method applies only to the IdentityStoreProvisionerWithFiltering interface;
it does not apply to the IdentityStoreProvisioner interface.

The ReadGroupsRequestContext will contain all information needed to fulfill the request (for example, a
filter). If the group data was successfully retrieved, a GroupsResponseContext should be returned and
contain the group attributes for the groups. An IdentityStoreException should be thrown if an error
occurred during the retrieval process. See com.pingidentity.sdk.provision.exception package
for different exceptions that can be thrown.

Update group

GroupResponseContext updateGroup(UpdateGroupRequestContext
 updateRequestCtx)
throws IdentityStoreException

PingFederate invokes the updateGroup() method of your identity store provisioner in response
to update-group requests made to PingFederate services, such as inbound provisioning.
This method updates the group in the user store managed by the identity store provisioner if
the isGroupProvisioningSupported() method returns true; otherwise, it should throw
NotImplementedException.

The UpdateGroupRequestContext contains all information needed to fulfill the request, such as group
attributes. If the group data is successfully updated, the method returns a GroupResponseContext
containing the group's updated attributes. The method throws an IdentityStoreException if an
error occurred during the update process. See the com.pingidentity.sdk.provision.exception
package for exceptions that can be thrown.

Delete group

void deleteGroup(DeleteGroupRequestContext deleteRequestCtx)
throws IdentityStoreException

PingFederate invokes the deleteGroup() method of your identity store provisioner in response
to delete-group requests made to PingFederate services, such as inbound provisioning. This
method deprovisions the group in the user store managed by the identity store provisioner
if the isGroupProvisioningSupported() returns true; otherwise, it should throw
NotImplementedException.

The DeleteGroupRequestContext contains all information needed to fulfill the request, such
as a group ID. The method throws an IdentityStoreException if an error occurred during the
deprovisioning process. See the com.pingidentity.sdk.provision.exception package for
exceptions that can be thrown.

Copyright ©2024

 | SDK Developer's Guide | 1064

IdentityStoreUserProvisioner interface implementation
The IdentityStoreUserProvisioner interface is deprecated, but you can still implement it to
provision and deprovision users to an external user store.

The IdentityStoreUserProvisioner interface is deprecated. Developers can
implement it to provision and deprovision users, but they should implement either the
IdentityStoreProvisionerWithFiltering or IdentityStoreProvisioner interface.

 Note:
The IdentityStoreUserProvisioner interface does not provision or deprovision groups. For group
support, see IdentityStoreProvisionerWithFiltering interface implementation on page 1059.

The following Java packages are required for implementing the interface:

▪ com.pingidentity.sdk.provision
▪ com.pingidentity.sdk.provision.exception
▪ com.pingidentity.sdk.provision.users.request
▪ com.pingidentity.sdk.provision.users.response

For each identity store provisioner implementation, in addition to the methods described under Shared
plugin interfaces on page 1050, you must implement the following methods:

▪ Create user
▪ Read user
▪ Update user
▪ Delete user

Create user

UserResponseContext createUser(CreateUserRequestContext createRequestCtx)
throws IdentityStoreException

invokes the createUser() method of your identity store provisioner in response to create-user requests
made to services, such as inbound provisioning. This method creates the user in the user store managed
by the identity store provisioner.

The CreateUserRequestContext contains all information needed to fulfill the request. If the user is
successfully provisioned, the method returns a UserResponseContext containing the user attributes
used to provision the user. The method throws an IdentityStoreException if an error occurred
during the creation process. See the com.pingidentity.sdk.provision.exception package for
exceptions that can be thrown.

Read user

UserResponseContext readUser(ReadUserRequestContext readRequestCtx)
throws IdentityStoreException

invokes the readUser() method of your identity store provisioner in response to get-user requests made
to services, such as inbound provisioning. This method retrieves user data from the user store managed
by the identity store provisioner.

The ReadUserRequestContext contains all information needed to fulfill the request. If the user data is
successfully retrieved, the method returns a UserResponseContext containing the user attributes for the
user. The method throws an IdentityStoreException if an error occurred during the retrieval process.
See the com.pingidentity.sdk.provision.exception package for exceptions that can be thrown.

Copyright ©2024

 | SDK Developer's Guide | 1065

Update user

UserResponseContext updateUser(UpdateUserRequestContext updateRequestCtx)
throws IdentityStoreException

invokes the updateUser() method of your identity store provisioner in response to update-user requests
made to services, such as inbound provisioning. This method updates the user in the user store managed
by the identity store provisioner.

The UpdateUserRequestContext contains all information needed to fulfill the request. If the user data
is successfully updated, the method returns a UserResponseContext containing the user's updated
attributes. The method throws an IdentityStoreException if an error occurred during the update
process. See the com.pingidentity.sdk.provision.exception package for exceptions that can
be thrown.

Delete user

void deleteUser(DeleteUserRequestContext deleteRequestCtx)
throws IdentityStoreException

invokes the deleteUser() method of your identity store provisioner in response to delete-user requests
made to services, such as inbound provisioning. This method deprovisions the user in the user store
managed by the identity store provisioner.

The DeleteUserRequestContext contains all information needed to fulfill the request. The method
throws an IdentityStoreException if an error occurred during the deprovision process. See the
com.pingidentity.sdk.provision.exception package for exceptions that can be thrown.

 Note:

The plugin implementation can choose not to permanently delete the resource, but must return a
NotFoundException for all readUser(), updateUser(), and deleteUser() operations associated
with the previously deleted ID. In addition, the plugin must not consider the deleted user in conflict
calculation. For example, a createUser() request for a user with a previously deleted ID should not
throw a ConflictException.

Developing notification publishers
To develop a notification publisher, implement the NotificationPublisherPlugin interface.

PingFederate administrators can define and manage notification publishers, as described in Managing
notification publisher instances on page 950. If those features do not meet your needs, you can develop
a custom notification publisher using the PingFederate NotificationPublisherPlugin interface and
the following Java packages:

▪ com.pingidentity.sdk
▪ org.sourceid.saml20.adapter.conf
▪ org.sourceid.saml20.adapter.gui

The NotificationPublisherPlugin interface, which extends the Plugin interface, defines the
publishNotification() method.

For each implementation, define the publishNotification() method, in addition to the
methods described in Shared plugin interfaces on page 1050. PingFederate invokes the
publishNotification() method when publishing a notification. For example, you can configure
PingFederate so that an account password change invokes the method.

PublishResult publishNotification(String eventType,
 Map<String, String> data,

Copyright ©2024

 | SDK Developer's Guide | 1066

 Map<String, String> configuration)

The method returns the PublishResult, the status of the notification that the plugin instance sent.

For more information about the NotificationPublisherPlugin interface, see the SDK Javadocs. You
can also see a sample implementation in pingfederate/sdk/plugin-src.

Building and deploying with Ant
Use the Apache Ant build script to clean, build, package, and deploy projects within the PingFederate Java
SDK.

About this task

The PingFederate Java SDK comes with an Apache Ant build script that simplifies building and deploying
your projects.

Steps

1. Edit the build.local.properties file and set the target-plugin.name property to the name of
your project subdirectory (see Directory structure).

 Note:

You can develop source code for multiple projects simultaneously, but you can build and deploy only
one at a time. Change the value of the target-plugin.name property as needed to build and
deploy other projects.

2. If your project depends on any third-party .jar files, place them into your project's lib directory.

If the directory does not exist, create a new directory called lib directly under your project's directory.
For example, pingfederate/sdk/plugin-src/<subproject-name>/lib.

3. On the command line in the sdk directory, use ant to clean, build, and package or to build, package,
and deploy your project.

Option Description

Clean the project ant clean-plugin

Compile the project ant compile-plugin

Compile the project and create a .jar file ant jar-plugin

 Note:

The SDK creates a deployment descriptor in the PF_INF directory and places it in a .jar file.
The descriptor tells PingFederate what plugin implementations are contained in the file, and the
compiled class files and the deployment descriptor are placed in the pingfederate/sdk/plugin-
src/<subproject-name>/build/classes directory. The pf.plugins.<subproject-

Copyright ©2024

 | SDK Developer's Guide | 1067

name>.jar file is placed in the pingfederate/sdk/plugin-src/<subproject-name>/build/
jar directory.

To compile the project, create a .jar file, and deploy the project to PingFederate, enter:

ant deploy-plugin

This build target performs the steps described above and deploys any .jar files found in the lib
directory of your subproject.

 Note:

To deploy your plugin manually to an installation of the PingFederate server, copy the .jar file
and any third-party.jar files into the /server/default/deploy/ directory of that PingFederate
installation.

4. Restart the PingFederate server.

Building and deploying manually
Use a build utility to add directories, create deployment descriptors, and create a .jarfile to build and
deploy your plugins with PingFederate.

Before you begin
To compile your project, you must have the following directories on your classpath:

▪ <pf_install>/pingfederate/server/default/lib
▪ <pf_install>/pingfederate/lib
▪ <pf_install>/pingfederate/sdk/lib
▪ <pf_install>/pingfederate/sdk/plugin-src/<subproject-name>/lib

About this task

To build your project with another build utility, you must create the deployment descriptors for each of
your plugins. The deployment descriptor files allow PingFederate to discover your plugins. Once this is
complete, use the build tool to create a .jar file and deploy it within the appropriate directory.

Steps

1. Add a new directory called PF-INF into your project. This directory must be at the root of your .jar
file, similar to META-INF.

2. In PF-INF, add an appropriate text file for each type of plugin you created:

Plugin type File name

IdP Adapter idp-authn-adapters

SP Adapter sp-authn-adapters

Custom Data Source custom-drivers

Token Processor token-processors

Token Generator token-generators

Authentication Selector authentication-selectors

Password Credential
Validator

password-credential-validators

Copyright ©2024

 | Developer's Reference Guide | 1068

Plugin type File name

Identity Store
Provisioner

identity-store-provisioners

CIBA Authenticator oob-auth-plugins

Notification Publisher notification-sender

3. In each text file added, specify the fully-qualified class name of each plugin that implements the
corresponding plugin interface. Place each class name on a separate line.

4. To create a .jar, archive the compiled class files along with the deployment descriptors using your
build tool. The deployment descriptors must be in the PF-INF directory, located at the root of the
.jar file.

5. To deploy your plugin, copy the .jar file and any third-party .jar files into the <pf_install>/
pingfederate/server/default/deploy directory of the PingFederate installation.

Log messages
You can use a typical logging pattern based on the Apache Commons logging framework to log messages
from your adapter, token translator, or custom data source driver.

The service provider (SP) adapter contained in the directory sdk/adapters-src/sp-adapter-
example shows how to use a logger for your adapter.

Developer's Reference Guide

This section describes the PingFederate endpoints and APIs.

Use this developer's guide to learn how to develop authentication API-capable adapters and selectors with
the following endpoints and APIs:

▪ OAuth 2.0 endpoints on page 1068
▪ Web service interfaces and APIs on page 1115
▪ Application endpoints on page 1166
▪ Authentication API on page 1190
▪ Development of authentication API-capable adapters and selectors on page 1198

OAuth 2.0 endpoints
When developing OAuth-capable applications, developers must follow the OAuth 2.0 Authorization
Framework and OpenID Connect specifications if applicable.

OAuth-capable applications must send requests to various OAuth endpoints to obtain authorization grants,
access tokens, refresh tokens, and ID tokens if applicable. Additional endpoints exist for other purposes,
including for clients to validate access and refresh tokens, for developers to submit client registrations
using the OAuth 2.0 Dynamic Client Registration protocol, and for clients to retrieve OpenID Connect
metadata.

Each endpoint extends from the runtime server at the base URL. If you configure virtual host names, the
endpoints are also accessible at those locations.

Copyright ©2024

 | Developer's Reference Guide | 1069

Example

Example

If the base URL is https://www.example.com:9031 and the configured virtual host names are
www.example.org and www.example.info, the authorization and token endpoints are accessible at the
following locations:

Authorization endpoint /as/authorization.oauth2

▪ https://www.example.com:9031/as/authorization.oauth2
▪ https://www.example.org:9031/as/authorization.oauth2
▪ https://www.example.info:9031/as/authorization.oauth2

Token endpoint /as/token.oauth2

▪ https://www.example.com:9031/as/token.oauth2
▪ https://www.example.org:9031/as/token.oauth2
▪ https://www.example.info:9031/as/token.oauth2

Authorization endpoint
The OAuth authorization server (AS) uses the authorization endpoint to interact directly with resource
owners, authenticate them, and obtain their authorizations.

The OAuth 2.0 Authorization Framework defines the authorization endpoint. Typically, an OAuth client
makes an authorization request by directing a resource owner through an HTTP user-agent to the
authorization endpoint. After the OAuth AS completes its interaction with the resource owner, the OAuth
AS redirects the resource owner's user-agent back to the client's redirect URI with the response to the
authorization request.

 Note:

This endpoint can be used in an OAuth Scope Authentication Selector configuration, which can affect
the behavior of the endpoint. For example, the idp parameter might be enforced or overridden by policy
determined by an instance of the OAuth Scope Authentication Selector.

This endpoint accepts the HTTP GET and POST methods.

Endpoint: /as/authorization.oauth2

When transmitting through the HTTP POST method, the required Content-Type value is
application/x-www-form-urlencoded. The following table describes parameters for this endpoint.

Parameter Description

client_id

(Required)

The client identifier.

response_mode When set to form_post, the authorization response is returned to the client
in an auto-POST form, in accordance with the OAuth 2.0 Form Post Response
Mode specification.

Copyright ©2024

https://tools.ietf.org/html/rfc6749#section-3.1
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

 | Developer's Reference Guide | 1070

Parameter Description

response_type A value of code results in the Authorization Code grant type while a value of
token implies the Implicit grant type. Additionally, a value of id_token can
be requested by implicit clients.

To initiate a Hybrid Flow, multiple response_type values can be specified
by space-separating them. When using the Hybrid Flow, some tokens are
returned from the Authorization Endpoint and others are returned from
the Token Endpoint. For information about multiple-valued response type
combinations, see the description of the restrictedResponseTypes
parameter in OAuth Client Management Service on page 1122.

code_challenge To reduce the risk of authorization code interception attack, supply a one-time
string value to associate the authorization request with the token request. For
more information, see Proof Key for Code Exchange (PKCE) by OAuth Public
Clients.

Applicable only when response_type parameter value is code. Mandatory
if the client is required to do so. For more information, see Require Proof Key
for Code Exchange (PKCE) in Configuring OAuth clients on page 529.

 Note:

If used, the OAuth client must submit the corresponding code verifier when
using the authorization code to obtain an access token. For more information,
see code_verifier in OAuth grant type parameters on page 1086.

Copyright ©2024

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636

 | Developer's Reference Guide | 1071

Parameter Description

code_challenge_methodApplicable only when the response_type parameter value is code and a
code_challenge parameter value is provided.

This parameter indicates the transformation method used to derive the
code_challenge parameter value from that of the code_verifier
parameter. PingFederate OAuth AS supports two transformation methods:

▪ plain, which indicates the code_challenge parameter value is that of
the code_verifier parameter.

▪ S256, which indicates the code_challenge parameter is derived from
the code_verifier parameter value as follows

code_challenge=Base64Url-
encode(SHA256(ASCII(code_verifier))), where:

▪ ASCII(code_verifier) denotes the octets of the ASCII
representation of the code_verifier value.

▪ SHA256(octets) denotes the SHA 256-bit hash of the octets.
▪ Base64Url-encode(octets) denotes the base64url encoding of

octets; the output is URL-safe.

 Note:

For detailed information about the transformation method, see Proof Key
for Code Exchange (PKCE) by OAuth Public Clients.

The code_challenge_method parameter value is case-sensitive. An error
message is returned to the clients for any other values.

Omitting the code_challenge_method parameter has the same effect as
providing the code_challenge_method parameter with a value of plain.

redirect_uri The URI to which PingFederate redirects the resource owner's user-agent
after an authorization is obtained.

For OpenID Connect protocol compliance, clients that use the authorization
code or implicit grant type must include this parameter in their authorization
requests. It is also the default behavior in new PingFederate installations
starting with version 9.1.4.

For upgraded installations, this requirement remains true for clients that have
been configured with more than one redirection URIs. For clients that have
been configured with only one redirection URI, this requirement is waived to
minimize the impact that it might impose on customers upgrading to version
9.1.4 or a subsequent release. As needed, it can be enabled at a later time.

 Note:

If this parameter is used, the same parameter and value must also be used
in subsequent token requests. For more information, see OAuth grant type
parameters on page 1086.

Copyright ©2024

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636

 | Developer's Reference Guide | 1072

Parameter Description

claims_locales Specifies the end-user's preferred languages for claims being returned in a
space-separated list, ordered by preference. The values must conform to the
IETF BCP 47 guidelines.

 Tip:

You can map the claims_locales value into the persistent grants (and
therefore the access tokens, the ID tokens, or both) from an IdP adapter or an
IdP connection by selecting Context under Source and Requested Claims
Locales under Value in the Contract Fulfillment tab in the IdP Adapter
Mapping configuration or the OAuth Attribute Mapping configuration in an
IdP connection.

login_hint Provides a hint to the PingFederate AS about the end user. For example,
when an OAuth client includes a login_hint in its authorization request and
the authentication source is an HTML Form Adapter instance, the username
field in the login form is pre-populated with the login_hint parameter value.

max_age Sets an allowable elapsed time in seconds since the end user last
authenticated. If the elapsed time exceeds the value of max_age,
PingFederate prompts the end user for authentication.

 Tip:

The HTML Form Adapter supports the max_age parameter by tracking the
authentication time for each user.

Copyright ©2024

https://tools.ietf.org/html/bcp47

 | Developer's Reference Guide | 1073

Parameter Description

request A single, self-contained parameter; a signed JWT whose claims represent
the request parameters of the authorization request. The OpenID Connect
specification calls this JWT a request object.

The request parameter is required if a client is configured to transmit request
parameters in signed request objects. When PingFederate receives an
authorization request, it verifies the digital signature of the signed request
object based on the key obtained from the pre-configured JWKS URL or
JWKS, and the selected request object signing algorithms. If the signature
does not pass the verification process, the request fails.

The request parameter is optional if a client is not configured to transmit
request parameters in signed request objects but is configured with a JWKS
URL or an actual JWKS. This flexibility allows the client to transmit request
parameters in signed request objects for some requests and without the use
of signed request objects for some other transactions. When PingFederate
receives an authorization request with a signed request object, it verifies the
digital signature of the signed request object based on the key obtained from
the pre-configured JWKS URL or JWKS, and the selected request object
signing algorithms. If the signature does not pass the verification process, the
request fails.

If a client is not configured to transmit request parameters in signed
request objects and is not configured with a JWKs URL or an actual JWKs,
PingFederate ignores the request parameter. When PingFederate receives
an authorization request with a signed request object, it processes the
authorization request and disregards the signed request object. As needed,
develop a custom IdP adapter using the PingFederate SDK to extract
the request parameter and its value from the HTTP request for further
processing.

 Note:

If a client includes in an authorization request a request parameter other than
client_id, as a parameter outside of the signed request object and a claim
inside of the signed request object, always uses the claim value found inside
the signed request object to process the request further.

For the client_id request parameter, the values outside of the signed
request object must match the claim values inside of the signed request
object. If the values do not match, returns an error message to the client.

If a request parameter is found only outside of the signed request object,
ignores the request parameter and returns no error message.

 Tip:

Per OAuth and OpenID Connect specifications, a client must always include
in an authorization request the client_id parameter outside of the signed
request object.

For client configuration information, see the Require Signed Request
setting in Configuring OAuth clients on page 529. For more information
about request objects, see JWT Secured Authorization Request (JAR) draft
specification.

Copyright ©2024

https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30

 | Developer's Reference Guide | 1074

Parameter Description

request_uri This parameter indicates that the client is using the pushed authorization
requests (PAR) protocol to initiate an authorization flow. The client previously
pushed an authorization request payload to the PAR endpoint of the AS.
The payload can contain any of the parameters that usually comprise an
authorization request and any additional parameters needed for client
authentication. After the AS validated the request and saved the payload, it
sent the request_uri parameter to the client to serve as a reference to the
payload.

Now the client is using the request_uri parameter to request an
authorization code or token. The AS uses the value of the request_uri to
look up the request payload and continue the authorization flow as usual. The
AS accepts a particular request URI only once. For more information about
PAR, see Pushed authorization requests endpoint on page 1113.

scope Expresses the scope of the access request as a list of space-separated, case-
sensitive strings. For detailed information about scopes, see Scopes and
scope management on page 499.

state An opaque value used by the client to maintain state between the request and
callback. If included, the AS returns this parameter and the given value when
redirecting the user agent back to the client.

ui_locales Specifies the end-user's preferred languages for OAuth user interactions in a
space-separated list, ordered by preference. The values must conform to the
IETF BCP 47 guidelines.

idp or PartnerIdpId A PingFederate OAuth AS parameter indicating the entity ID or the connection
ID of the IdP with whom to initiate Browser SSO for user authentication.

pfidpadapterid or
IdpAdapterId

A PingFederate OAuth AS parameter indicating the IdP adapter instance ID of
the adapter to use for user authentication.

 Note:

This parameter might be overridden by policy based on authentication policies.
For example, an OAuth Scope Authentication Selector instance could enforce
the use of a given adapter instance based on client-requested scopes.

PolicyAction

(optional)

The HTML Form Adapter immediately returns the value of this parameter
in the policy.action attribute, allowing the policy to bypass the
adapter in favor of an alternative authentication source, provided a
rule matching the action is configured. When this parameter is set to
identity.registration and the adapter is followed by a local identity
profile, the user is directed to the registration page for the profile.

If more than one source of authentication is configured in the system and no pfidpadapterid or idp
parameter is provided, PingFederate provides users with an intermediate page asking them to choose
among the available sources of authentication. The authentication results in a set of user attributes that
must be mapped into the USER_KEY attribute for persistent grant storage and the USER_NAME attribute that
displays on the user authorization page.

OpenID Connect parameters

The following table describes OpenID Connect parameters for this endpoint.

Copyright ©2024

https://datatracker.ietf.org/doc/html/rfc9126
https://datatracker.ietf.org/doc/html/rfc9126
https://tools.ietf.org/html/bcp47

 | Developer's Reference Guide | 1075

Parameter Description

acr_values Specifies the Authentication Context Class Reference (acr) values for the AS
to use when processing an Authentication Request. Express the values as a
space-separated string, and list them in order of preference.

id_token_hint Includes an ID token as a hint to the PingFederate AS about the end user. If
the authenticated user does not match the information stored in the ID token,
the PingFederate AS rejects the authorization request and returns an error
message.

nonce Specifies a string value used to associate a client session with an ID token
and to reduce replay attacks. The value passes through unmodified from an
authorization request to the ID token.

prompt Specifies whether the AS prompts the end user for reauthentication and
consent. Expressed as a list of space-separated, case-sensitive ASCII string
values. If included, the client can use this parameter to verify that the end user
is still present for the current session or to bring attention to the request.

PingFederate supports values of none, login, and consent.

OAuth access token management parameters

supports multiple access token management (ATM) instances. Clients can specify an ATM instance by
providing the ATM ID (access_token_manager_id) or a resource URI (aud) in their requests to the
OAuth AS.

Parameter Description

access_token_manager_idThe access_token_manager_id value is the instance ID of the desired
ATM instance. When specified, uses the desired ATM instance for the request
if it is eligible; otherwise it aborts the request.

 Note:

When the access_token_manager_id parameter is specified, ignores the
aud parameter.

aud The aud is the resource URI the client wants to access. The provided value
is matched against resource URIs configured in access token management
instances. When a match is found, uses the corresponding access token
management instance for the request if it is eligible; otherwise it aborts the
request.

A match can be an exact match or a partial match where the provided URI has the same scheme and
authority parts and a more specific path contained within the path of the pre-configured resource URI.
takes an exact match over a partial match. If there are multiple partial matches, takes the partial match
where the provided URI matches more specifically against the pre-configured resource URI.

Example

A partial match

A resource URI of https://app.example.local is a partial match for the following provided URIs:

▪ https://app.example.local/file1.ext
▪ https://app.example.local/path/file2.ext

Copyright ©2024

 | Developer's Reference Guide | 1076

▪ https://app.example.local/path/more

Example

An exact match is a better match than a partial match

Access Token
Management instances

Resource URIs (configured)

ATM1 https://localhost:9031/app1

https://localhost:9031/app2/data

https://app.example.local

ATM2 https://localhost:9031/app1/data

https://localhost:9031/app2/data/get

https://localhost:9031/app1 (a resource URI pre-configured for ATM1) is a partial match for
https://localhost:9031/app1/data (the provided URI). However, chooses ATM2 because https://
localhost:9031/app1/data (a resource URI pre-configured for ATM2) is an exact match against the
provided URI.

Example

A more specific partial match is a better match

Both https://localhost:9031/app2/data (a resource URI for ATM1) and https://
localhost:9031/app2/data/get (a resource URI for ATM2) are partial matches for https://
localhost:9031/app2/data/get/sample (the provided URI). However, chooses ATM2 because https://
localhost:9031/app2/data/get matches more specifically against the provided URI.

Client-initiated backchannel authentication endpoint
A CIBA-capable client uses this endpoint to initiate a backchannel, out-of-band flow to authenticate the
resource owners and obtain their authorizations.

The OpenID Connect Client Initiated Backchannel Authentication Flow defines the client-initiated
backchannel authentication (CIBA) endpoint.

 Note:

This endpoint accepts only the HTTP POST method.

Endpoint: /as/bc-auth.ciba

The following table describes parameters for this endpoint. The required Content-Type value is
application/x-www-form-urlencoded.

Copyright ©2024

https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html

 | Developer's Reference Guide | 1077

Parameter Description

client_id

(Required)

The client identifier.

 Important:

When sending request parameters of an authentication request with a signed
request object, the client must include the client_id parameter and its
value inside and outside of the request parameter value. Both client_id
parameter values must match.

scope

(Required)

The scope of the access request. Expressed as a list of space-separated,
case-sensitive strings.

Scope values are globally defined on the System # OAuth Settings # Scope
Management window. You can constrain scopes on a client-to-client basis.

This parameter must include the openid scope value.

client_notification_tokenA bearer token provided by the client that PingFederate must include when
sending a ping callback message to the client's notification endpoint. This
usage must conform to the syntax for bearer credentials as defined in section
2.1 of RFC 6750.

If the client is configured to use the poll delivery method, this parameter is
required.

id_token_hint,
login_hint_token, or
login_hint

Per the CIBA specification, the client must include one and only one hint
for the OpenID Provider to identify the user. The valid hint parameters are
id_token_hint, login_hint, and login_hint_token.

id_token_hint

Use this parameter to include an ID token as a hint for PingFederate to
identify the user. This ID token must be unencrypted. It must be a signed
ID token.

login_hint_token

Use this parameter to include a JSON web token (JWT) as a hint for
PingFederate to identify the user. The attributes of this token can vary
from one use case to another. For more information how PingFederate
uses the login hint token, see Configuring identity hint contract on page
598.

login_hint

Use this parameter to provide a hint to PingFederate to identify the
user. The value can contain an email address, phone number, account
number, subject identifier, username, or any attribute that both sides
agreed upon.

user_code A secret code that is known only to the user and verifiable by PingFederate
through the use of a Password Credential Validator instance. The purpose of
this code is to authorize the transmission of an authentication request to the
user's authentication device.

If the client record is configured to support user code and associated with a
user code-enabled CIBA request policy, this parameter is required.

Copyright ©2024

https://tools.ietf.org/html/rfc6750#section-2.1

 | Developer's Reference Guide | 1078

Parameter Description

binding_message An alphanumeric message intended to be made available on both the
authentication device and the consumption device. The user can tie them
together and decide whether to grant the authorization.

When provided, the length of the message must range from 1 - 20 characters.

requested_expiry The requested expiration time of the request in seconds since the generation
of the authentication request acknowledgment.

 Note:

PingFederate honors the requested expiration time only if the value is shorter
than that of the Transaction Lifetime field found in the associated CIBA
request policy.

request A single, self-contained parameter; a signed JWT whose claims represent
the request parameters of the authentication request. The OpenID Connect
specification calls this JWT a request object. The requirement of this
parameter and the processing rules vary depending on whether the client is
configured with the Require CIBA Signed Requests option.

If the client is configured to transmit request parameters to the backchannel
authentication endpoint in signed request objects, this parameter is required.
In other words, the Require CIBA Signed Requests check box is selected in
the configuration of the client. When PingFederate receives an authentication
request with a signed request object, it verifies the digital signature of the
signed request object based on the key obtained from the pre-configured
JWKS URL (or JWKS) and the selected CIBA request object signing algorithm
(or algorithms). If the signature does not pass the verification process, the
request fails.

If a client is not configured to transmit request parameters to the backchannel
authentication endpoint in signed request objects, but it is configured with
a JWKS URL or an actual JWKS, this parameter is optional. This flexibility
allows the client to transmit request parameters in signed request objects
for some requests and without the use of signed request objects for some
other transactions. When PingFederate receives an authentication request
with a signed request object, it verifies the digital signature of the signed
request object based on the key obtained from the pre-configured JWKS URL
(or JWKS) and the selected CIBA request object signing algorithms. If the
signature does not pass the verification process, the request fails.

 Important:

If the client is not configured to transmit request parameters to the
backchannel authentication endpoint in signed request objects, and not
configured with a JWKS URL or an actual JWKS, an authentication request
with a signed request object will always fail.

Sample authentication request

POST /as/bc-auth.ciba HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: www.example.com

Copyright ©2024

 | Developer's Reference Guide | 1079

client_id=myCibaApp&scope=openid&login_hint=joe@example.com

Sample authentication request acknowledgements

▪ 200 - Success

HTTP/1.1 200 OK
...
{
 "auth_req_id":
 "HQnCgSeUzWNORZEv8n3E8wIip9L3iwBdJAAect04BqdpEsFBGqfxRvoa_Q",
 "interval": 3,
 "expires_in": 120
}

▪ 400 - Bad Request

HTTP/1.1 400 Bad Request
...
{
 "error_description": "CIBA authentication requests MUST contain
 the openid scope value.",
 "error": "invalid_scope"
}

HTTP/1.1 400 Bad Request
...
{
 "error_description": "Authentication request parameters (such
 as binding_message) MUST NOT be present outside of the JWT when a
 signed authentication request is used.",
 "error": "invalid_request"
}

HTTP/1.1 400 Bad Request
...
{
 "error_description": "Exactly one (not more, not less) of
 the hint parameters (i.e. 'login_hint_token', 'id_token_hint' or
 'login_hint') must be provided.",
 "error": "invalid_request"
}

HTTP/1.1 400 Bad Request
...
{
 "error_description": "User could not be sufficiently identified
 to initiate out-of-band auth",
 "error": "unknown_user_id"
}

HTTP/1.1 400 Bad Request
...
{ "error": "invalid_user_code" }

HTTP/1.1 400 Bad Request
...

Copyright ©2024

 | Developer's Reference Guide | 1080

{ "error": "missing_user_code" }

HTTP/1.1 400 Bad Request
...
{
 "error_description": "Client is not configured to support user
 code but a user_code was sent in the request.",
 "error": "invalid_request"
}

HTTP/1.1 400 Bad Request
...
{

 "error_description": "Policy is set to require a token for the
 user hint but login_hint was sent.",
 "error": "invalid_request"
}

▪ 401 - Unauthorized

HTTP/1.1 401 Unauthorized
...
{
 "error_description": "Invalid client or client credentials.",
 "error": "invalid_client"
}

▪ 500 - Server Error

HTTP/1.1 500 Server Error
...
{
 "error_description": "Client is configured to support user code
 but server policy doesn't have a PCV configured to do the user code
 checking",
 "error": "server_error"
}

For more information about error responses, see section 13. Authentication Error Response in
the specification.

OAuth client identification and authentication

The authentication requirement of this endpoint depends on the client authentication method configured for
the clients.

Copyright ©2024

https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html#rfc.section.13

 | Developer's Reference Guide | 1081

Authentication method Parameters

Client secret Clients can present their client identifier and client secret using the HTTP
Basic authentication scheme, where the client identifier is the username, and
the client secret is the password.

Clients can provide credentials using the request parameters client_id and
client_secret.

 Important:

This is a sensitive parameter. To avoid recording it in web server logs, only
pass in this parameter with the HTTP POST method in the message body, or
through the HTTP Basic authentication scheme.

Client certificate Clients must present their client certificate for mutual TLS authentication. The
issuer and the subject distinguished name (DN) of the client certificate must
match values configured for the clients.

Private key JWT Clients must include request parameters client_assertion_type and
client_assertion in the message body of their requests.

client_assertion_type

The value describes the format of the assertion as defined by the
authorization server. For the private_key_jwt client authentication
method, the value is urn:ietf:params:oauth:client-
assertion-type:jwt-bearer.

client_assertion

The value is the authentication token.

Example

...
client_assertion_type=
urn%3Aietf%3Aparams%3Aoauth%
3Aclient-assertion-type%3Ajwt-bearer&
client_assertion=
eyJhbGciOiJSUzI1NiIs...LbSWi1YO-TILOd4L7ZCg&
...

 Note:

For readability, line breaks are inserted and the authentication token is
truncated.

For more information about the private_key_jwt client authentication method,
see Client Authentication and Using Assertions for Client Authentication.

None Clients must pass in the client_id parameter in a query string or the
message body to identify themselves.

Copyright ©2024

 | Developer's Reference Guide | 1082

OAuth access token management parameters

supports multiple access token management (ATM) instances. Clients can specify an ATM instance by
providing the ATM ID (access_token_manager_id) or a resource URI (aud) in their requests to the
OAuth AS.

Parameter Description

access_token_manager_idThe access_token_manager_id value is the instance ID of the desired
ATM instance. When specified, uses the desired ATM instance for the request
if it is eligible; otherwise it aborts the request.

 Note:

When the access_token_manager_id parameter is specified, ignores the
aud parameter.

aud The aud is the resource URI the client wants to access. The provided value
is matched against resource URIs configured in access token management
instances. When a match is found, uses the corresponding access token
management instance for the request if it is eligible; otherwise it aborts the
request.

A match can be an exact match or a partial match where the provided URI has the same scheme and
authority parts and a more specific path contained within the path of the pre-configured resource URI.
takes an exact match over a partial match. If there are multiple partial matches, takes the partial match
where the provided URI matches more specifically against the pre-configured resource URI.

Example

A partial match

A resource URI of https://app.example.local is a partial match for the following provided URIs:

▪ https://app.example.local/file1.ext
▪ https://app.example.local/path/file2.ext
▪ https://app.example.local/path/more

Example

An exact match is a better match than a partial match

Access Token
Management instances

Resource URIs (configured)

ATM1 https://localhost:9031/app1

https://localhost:9031/app2/data

https://app.example.local

ATM2 https://localhost:9031/app1/data

https://localhost:9031/app2/data/get

https://localhost:9031/app1 (a resource URI pre-configured for ATM1) is a partial match for
https://localhost:9031/app1/data (the provided URI). However, chooses ATM2 because https://

Copyright ©2024

 | Developer's Reference Guide | 1083

localhost:9031/app1/data (a resource URI pre-configured for ATM2) is an exact match against the
provided URI.

Example

A more specific partial match is a better match

Both https://localhost:9031/app2/data (a resource URI for ATM1) and https://
localhost:9031/app2/data/get (a resource URI for ATM2) are partial matches for https://
localhost:9031/app2/data/get/sample (the provided URI). However, chooses ATM2 because https://
localhost:9031/app2/data/get matches more specifically against the provided URI.

Token endpoint
The client presents its authorization grant to the token endpoint to obtain an access token and a refresh
token when needed.

The OAuth 2.0 Authorization Framework defines the token endpoint. Because the authorization endpoint
directly issues an access token, every authorization grant uses this endpoint except the Implicit grant type.

 Note:

This endpoint accepts only the HTTP POST method.

Endpoint: /as/token.oauth2

Parameters vary depending on the grant type. For more information, see OAuth grant type parameters on
page 1086. The required Content-Type value is application/x-www-form-urlencoded.

Like other OAuth 2.0 endpoints, the token endpoint is accessible at the base URL and any configured
virtual host names.

If the Token Endpoint Base URL field is configured on the Authorization Server Settings window
(System # OAuth Settings # Authorization Server Settings) the token endpoint is also accessible at
that location.

For example, if the base URL is https://www.example.com:9031 and the Token Endpoint Base URL value
is https://www.example.local:9031, the token endpoints are accessible at the following locations:

▪ https://www.example.com:9031/as/token.oauth2
▪ https://www.example.local:9031/as/token.oauth2

OAuth client identification and authentication

The authentication requirement of this endpoint depends on the client authentication method configured for
the clients.

Copyright ©2024

https://tools.ietf.org/html/rfc6749#section-3.2

 | Developer's Reference Guide | 1084

Authentication method Parameters

Client secret Clients can present their client identifier and client secret using the HTTP
Basic authentication scheme, where the client identifier is the username, and
the client secret is the password.

Clients can provide credentials using the request parameters client_id and
client_secret.

 Important:

This is a sensitive parameter. To avoid recording it in web server logs, only
pass in this parameter with the HTTP POST method in the message body, or
through the HTTP Basic authentication scheme.

Client certificate Clients must present their client certificate for mutual TLS authentication. The
issuer and the subject distinguished name (DN) of the client certificate must
match values configured for the clients.

Private key JWT Clients must include request parameters client_assertion_type and
client_assertion in the message body of their requests.

client_assertion_type

The value describes the format of the assertion as defined by the
authorization server. For the private_key_jwt client authentication
method, the value is urn:ietf:params:oauth:client-
assertion-type:jwt-bearer.

client_assertion

The value is the authentication token.

Example

...
client_assertion_type=
urn%3Aietf%3Aparams%3Aoauth%
3Aclient-assertion-type%3Ajwt-bearer&
client_assertion=
eyJhbGciOiJSUzI1NiIs...LbSWi1YO-TILOd4L7ZCg&
...

 Note:

For readability, line breaks are inserted and the authentication token is
truncated.

For more information about the private_key_jwt client authentication method,
see Client Authentication and Using Assertions for Client Authentication.

None Clients must pass in the client_id parameter in a query string or the
message body to identify themselves.

Copyright ©2024

 | Developer's Reference Guide | 1085

OAuth access token management parameters

supports multiple access token management (ATM) instances. Clients can specify an ATM instance by
providing the ATM ID (access_token_manager_id) or a resource URI (aud) in their requests to the
OAuth AS.

Parameter Description

access_token_manager_idThe access_token_manager_id value is the instance ID of the desired
ATM instance. When specified, uses the desired ATM instance for the request
if it is eligible; otherwise it aborts the request.

 Note:

When the access_token_manager_id parameter is specified, ignores the
aud parameter.

aud The aud is the resource URI the client wants to access. The provided value
is matched against resource URIs configured in access token management
instances. When a match is found, uses the corresponding access token
management instance for the request if it is eligible; otherwise it aborts the
request.

A match can be an exact match or a partial match where the provided URI has the same scheme and
authority parts and a more specific path contained within the path of the pre-configured resource URI.
takes an exact match over a partial match. If there are multiple partial matches, takes the partial match
where the provided URI matches more specifically against the pre-configured resource URI.

Example

A partial match

A resource URI of https://app.example.local is a partial match for the following provided URIs:

▪ https://app.example.local/file1.ext
▪ https://app.example.local/path/file2.ext
▪ https://app.example.local/path/more

Example

An exact match is a better match than a partial match

Access Token
Management instances

Resource URIs (configured)

ATM1 https://localhost:9031/app1

https://localhost:9031/app2/data

https://app.example.local

ATM2 https://localhost:9031/app1/data

https://localhost:9031/app2/data/get

https://localhost:9031/app1 (a resource URI pre-configured for ATM1) is a partial match for
https://localhost:9031/app1/data (the provided URI). However, chooses ATM2 because https://

Copyright ©2024

 | Developer's Reference Guide | 1086

localhost:9031/app1/data (a resource URI pre-configured for ATM2) is an exact match against the
provided URI.

Example

A more specific partial match is a better match

Both https://localhost:9031/app2/data (a resource URI for ATM1) and https://
localhost:9031/app2/data/get (a resource URI for ATM2) are partial matches for https://
localhost:9031/app2/data/get/sample (the provided URI). However, chooses ATM2 because https://
localhost:9031/app2/data/get matches more specifically against the provided URI.

OAuth grant type parameters
The /as/token.oauth2 endpoint accepts other parameters which vary by the grant type presented.

These parameters include OAuth-defined standard parameters and parameters proprietary to
PingFederate. The following parameter indicates the grant type of the access token request.

Parameter Description

grant_type

(Required)

Indicates the type of grant being presented in exchange for an access token
and possibly a refresh token. The value is an extensibility mechanism of the
OAuth 2.0 specification. PingFederate supports these values:

▪ authorization_code
▪ refresh_token
▪ password
▪ client_credentials
▪ urn:openid:params:grant-type:ciba
▪ urn:ietf:params:oauth:grant-type:device_code
▪ urn:ietf:params:oauth:grant-type:jwt-bearer
▪ urn:ietf:params:oauth:grant-type:saml2-bearer
▪ urn:ietf:params:oauth:grant-type:token-exchange
▪ urn:pingidentity.com:oauth2:grant_type:validate_bearer

 Note:

The following sections define further parameters associated with each grant
type.

Authorization code grant type

These parameters apply when the grant_type parameter for /as/token.oauth2 is set to
authorization_code.

Parameter Description

code

(Required)

The authorization code received from the authorization server during the
redirect interaction at the authorization endpoint when the response_type
parameter is code.

Copyright ©2024

 | Developer's Reference Guide | 1087

Parameter Description

code_verifier Required if the authorization request was sent with a code_challenge
parameter to reduce the risk of code interception attack.

If a code_challenge_method parameter value is provided in the request
for the authorization code, PingFederate OAuth Authorization Server
(AS) validates the code_verifier parameter value against that of the
code_challenge value. If the validation returns no errors, PingFederate
OAuth AS returns an access token; otherwise it returns an error to the client.

For more information about the code_challenge parameter, the
code_challenge_method parameter, and the support for the Proof Key for
Code Exchange (PKCE) by OAuth Public Clients specification (tools.ietf.org/
html/rfc7636), see Authorization endpoint on page 1069.

redirect_uri This parameter is required if the redirect_uri parameter was included in
the authorization request that resulted in the issuance of the code. For more
information, see Authorization endpoint on page 1069). The value here must
match the authorization-request value, if applicable.

The parameter is also required for clients with multiple redirection URIs or one
redirection URI that uses wildcards.

The parameter is optional for clients with only one specific redirection URI.

scope

(Optional)

The scope of the access request expressed as a list of space-delimited, case-
sensitive strings. The requested scope must be equal to or less than the scope
originally authorized. If omitted, the scope is treated as equal to the scope
originally authorized.

Scopes can also be constrained on a client-to-client basis. For more
information, see Scopes and scope management on page 499.

Refresh token grant type

These parameters apply when the grant_type parameter for /as/token.oauth2 is set to
refresh_token.

Parameter Description

refresh_token

(Required)

The refresh token issued to the client during a previous access token request.

 Important:

To avoid recording this parameter in web server logs, only pass it in the
message body using the HTTP POST method.

scope The scope of the access request expressed as a list of space-delimited, case-
sensitive strings. The requested scope must be equal to or less than the scope
originally granted. If omitted, the scope is treated as equal to the original set.

Scopes can also be constrained on a client-to-client basis. For more
information, see Scopes and scope management on page 499.

Resource owner password credentials grant type

These parameters apply when the grant_type parameter for /as/token.oauth2 is set to password.

Copyright ©2024

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636

 | Developer's Reference Guide | 1088

Parameter Description

username

(Required)

The username, encoded as UTF-8.

password

(Required)

The password, encoded as UTF-8.

 Important:

To avoid recording this parameter in web server logs, only pass it in the
message body using the HTTP POST method.

scope The scope of the access request expressed as a list of space-delimited, case-
sensitive strings. Scopes can also be constrained on a client-to-client basis.
For more information, see Scopes and scope management on page 499.

validator_id A PingFederate OAuth AS parameter indicating the instance ID of the
password credential validator to check the username and password, and the
associated attribute mapping into the USER_KEY of the persistent grant.

If multiple validator instances are configured and mapped and no
validator_id parameter is provided, each instance will be tried sequentially
until one succeeds or they all fail.

When a token request triggers an invalid_grant error because the corresponding LDAP Username
Password Credential Validator instance returns an authentication error, PingFederate includes the relevant
message in the error response. See the following example.

{
 "error":"invalid_grant",
 "error_description":"We didn't recognize the username or password you
 entered. Please try again."
}

The error description varies based on the error condition that the LDAP Username PCV detects. OAuth-
client developers can create custom experiences based on the error messages.

 Tip:

These customizable messages are stored in the message file, pingfederate-
messages.properties, located in the <pf_install>/pingfederate/server/default/conf/
language-packs directory.

You can localize these messages by using the localization framework for an international audience. For
more information, see Localizing messages for end users on page 839.

The client_id parameter is not required when the Allow unidentified clients to make resource owner
password credentials grants check box is selected in the System # OAuth Settings # Authorization
Server Settings window.

Client credentials grant type

The following parameters applies when the grant_type parameter for /as/token.oauth2 is set to
client_credentials.

Copyright ©2024

 | Developer's Reference Guide | 1089

Parameter Description

scope The scope of the access request expressed as a list of space-delimited, case-
sensitive strings. Scopes can also be constrained on a client-to-client basis.
For more information, see Scopes and scope management on page 499.

Client-initiated backchannel authentication (CIBA)

The following parameter applies when the grant_type parameter for /as/token.oauth2 is set to
urn:openid:params:grant-type:ciba.

Parameter Description

auth_req_id The unique identifier to identify the authentication request.

Sample request

POST /as/token.oauth2 HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: www.example.com
...

grant_type=urn%3Aopenid%3Aparams%3Agrant-type
%3Aciba&client_id=myCibaApp&auth_req_id=yQn...1Vw

The auth_req_id parameter value in the sample is truncated for readability.

Device authorization grant type

The following parameter applies when the grant_type parameter for /as/token.oauth2 is set to
urn:ietf:params:oauth:grant-type:device_code.

The OAuth 2.0 Device Authorization Grant specification defines the process that allows a user to grant
authorization to a device using a browser on a second device, such as a smart phone or a computer. For
more information, see Device authorization grant on page 51.

Parameter Description

device_code

(Required)

The device code found in the device authorization response.

JWT Bearer Token grant type

These parameters apply when the grant_type parameter for /as/token.oauth2 is set to
urn:ietf:params:oauth:grant-type:jwt-bearer.

Parameter Description

assertion

(Required)

A JSON Web Token (JWT), as defined in RFC7523, section 2.1.

 Important:

To avoid recording this parameter in web server logs, only pass it in the
message body using the HTTP POST method.

Copyright ©2024

https://tools.ietf.org/html/rfc8628
https://tools.ietf.org/html/rfc7523#section-2.1

 | Developer's Reference Guide | 1090

Parameter Description

scope The scope of the access request expressed as a list of space-delimited, case-
sensitive strings. Scopes can be constrained on a client-to-client basis. For
more information, see Scopes and scope management on page 499.

The client_id parameter is not required when the Allow unidentified clients to request extension
grants check box is selected in the System # OAuth Settings # Authorization Server Settings window.

SAML 2.0 Bearer Assertion grant type

The following parameters apply when the grant_type parameter for /as/token.oauth2 is set to
urn:ietf:params:oauth:grant-type:saml2-bearer.

Parameter Description

assertion

(Required)

A single SAML 2.0 assertion, which must be encoded using base64url. For
more information, see RFC4648, section 5.

 Important:

To avoid recording this parameter in web server logs, only pass it in the
message body using the HTTP POST method.

scope The scope of the access request expressed as a list of space-delimited, case-
sensitive strings. Scopes can be constrained on a client-to-client basis. For
more information, see Scopes and scope management on page 499.

 Note:

The client_id parameter is not required when the Allow unidentified clients to request extension
grants check box is selected in the System # OAuth Settings # Authorization Server Settings window.

token exchange grant type

The following parameters apply when the grant_type parameter for /as/token.oauth2 is set to
urn:ietf:params:oauth:grant-type:token_exchange.

Parameter Description

resource An absolute URI that indicates the target service or resource where the client
will use the requested security token. This information lets the authorization
server apply the appropriate policy for the target.

For example, the authorization server can ensure that the token it issues has
the type, content, and encryption that the target requires. If the issued token
will be used at multiple targets, multiple resource parameters can be used.

audience The logical name of the target where the client will use the requested
security token. This serves a purpose like the resource parameter. To
interpret the audience, the value must be something that both the client
and the authorization server understand. The value must be unique within
the authorization server. If the issued token will be used at multiple targets,
multiple audience parameters can be used. When indicating multiple targets,
audience and resource parameters can be used together.

Copyright ©2024

https://tools.ietf.org/html/rfc4648#section-5

 | Developer's Reference Guide | 1091

Parameter Description

scope The scope of the access request expressed as a list of space-delimited, case-
sensitive strings. Scopes can also be constrained on a client-to-client basis.
For more information, see Scopes and scope management on page 499.

requested_token_typeAn identifier for the type of the requested security token. If the requested type
is not specified, the authorization server can determine which type is required
by the target that the resource or audience parameter identifies.

subject_token

(Required)

A security token that represents the identity of the party on behalf of whom the
request is being made. Typically, the subject of this token will be the subject of
the security token issued in response to the request.

 Important:

To avoid recording this parameter in web server logs, only pass it in the
message body using the HTTP POST method.

subject_token_type

(Required)

An identifier for the type of security token in the subject_token parameter.

actor_token A security token that represents the identity of the acting party. Typically, this
will be the party that is authorized to use the requested security token and act
on behalf of the subject.

 Important:

To avoid recording this parameter in web server logs, only pass it in the
message body using the HTTP POST method.

actor_token_type An identifier for the type of security token in the actor_token parameter.

 Important:

This parameter is required when the actor_token parameter is present in
the request but must not be included otherwise.

Access token validation grant type

The following parameter applies when the grant_type parameter for /as/token.oauth2 is set to
urn:pingidentity.com:oauth2:grant_type:validate_bearer.

Parameter Description

token

(Required)

The bearer access token to be validated.

 Important:

To avoid recording this parameter in web server logs, only pass it in the
message body using the HTTP POST method.

This validation grant type is a custom PingFederate OAuth extension that enables a resource server (RS)
to communicate with the OAuth AS while leveraging the established communication and encoding patterns

Copyright ©2024

 | Developer's Reference Guide | 1092

from OAuth 2.0. This grant type allows an RS to verify with the OAuth AS on the validity of a bearer access
token that it has received from a client making a protected-resources call.

 Tip:

An RS client can also use the standard-based Introspection Endpoint at /as/introspect.oauth2 to
validate an access token or a refresh token.

Client authentication is not required. In other words, when creating a client for the sole purpose of
validating access tokens, the Client Secret field is optional. For this grant type, the RS acts in the role of a
client for the request/response exchange with the OAuth AS to make the validation call.

The response is a standard OAuth access-token response from the token endpoint with some extensions
and minor semantic differences in the treatment of some of the parameters. The returned token is in a
JSON structure with name-to-value elements or name-to-array elements.

The token type is urn:pingidentity.com:oauth2:validated_token, a URN indicating the token
represents the attributes associated with the validated access token passed on the request. A client_id
element is returned indicating the client identifier of the client to whom the grant was made. A scope
element is returned, if the scope is greater than the default implied scope, indicating the approved scope of
the grant. If the issuing access token management (ATM) instance is configured to expand scope groups,
the response includes the corresponding sub scopes instead of the scope groups. The expires_in
element indicates for how many more seconds the token is valid; the value can increase on subsequent
validation calls if a token lifetime extension policy is in place.

Sample response when scope group expansion is disabled (the default)

{
 "access_token": {
 "Username": "joe",
 "OrgName": "Ping Identity Corporation"
 },
 "scope": "openid AAAGroup",
 "token_type": "urn:pingidentity.com:oauth2:validated_token",
 "expires_in": 7121,
 "client_id": "ac_oic_client"
}

AAAGroup is a scope group.

Sample response when scope group expansion is enabled

{
 "access_token": {
 "Username": "joe",
 "OrgName": "Ping Identity Corporation"
 },
 "scope": "openid AAA1 AAA2",
 "token_type": "urn:pingidentity.com:oauth2:validated_token",
 "expires_in": 7169,
 "client_id": "ac_oic_client"
}

AAA1 and AAA2 are the expanded outcome of AAAGroup.

Validate against all eligible ATM instances

If multiple ATM instances are eligible, the configuration of the RS client determines whether it must
specify the desired ATM instance in its token validation requests. For more information, see .

Copyright ©2024

 | Developer's Reference Guide | 1093

After an ATM instance is chosen, considers the per-instance session validation settings and
processes the validation request. For more information, see Managing session validation settings on
page 572.

Introspection endpoint
A resource server (RS) client uses the introspection endpoint to validate an access token or a refresh
token prior to granting access to a protected-resources call.

The OAuth 2.0 Token Introspection documentation defines the introspection endpoint.

 Note:

This endpoint accepts only the HTTP POST method.

Endpoint: /as/introspect.oauth2

When transmitting through the HTTP POST method, the required Content-Type value is
application/x-www-form-urlencoded. The RS acts in the role of a client for the request/response
exchange with the PingFederate OAuth AS. The validation call is made using the following parameters.

Parameter Description

token

(Required)

The bearer access token or refresh token to be validated.

 Important:

To avoid recording this parameter in web server logs, only pass it in the
message body using the HTTP POST method.

token_type_hint A hint about the type of token submitted for validation. PingFederate supports
values of access_token and refresh_token.

Required only when validating a refresh token.

Client authentication is not required; when creating a client for the sole purpose of validating access tokens
and refresh tokens, the Client Secret field is optional.

The response is in a JSON structure with a list of name-to-value elements. If a token is valid, the OAuth AS
returns to the client a JSON object with the following elements:

▪ An "active": true element to indicate the token is valid. This is also the only element returned by
the OAuth AS for a valid refresh token.

▪ A client_id element to indicate the client identifier of the client to whom the grant was made.
▪ A scope element, if the scope is greater than the default implied scope, indicating the approved scope

of the grant. If you configured the issuing access token management (ATM) instance to expand scope
groups, the response includes the corresponding sub scopes instead of the scope groups.

▪ An exp element indicates the token is valid until the number of seconds since January 1, 1970 UTC
(epoch time).

▪ Other elements from the access token.

 Note:
The response includes the username and subject (sub) elements only if they were mapped in the ATM
instance.

If a token is invalid, the OAuth AS returns {"active": false} to the client.

Copyright ©2024

https://tools.ietf.org/html/rfc7662

 | Developer's Reference Guide | 1094

A sample response for a valid access token when scope group expansion is disabled (the default)

{
 "scope": "openid AAAGroup",
 "active": true,
 "OrgName": "Ping Identity Corporation",
 "token_type": "Bearer",
 "exp": 1556823489,
 "client_id": "ac_oic_client"
}

AAAGroup is a scope group.

A sample response for a valid access token when scope group expansion is enabled

{
 "scope": "openid AAA1 AAA2",
 "active": true,
 "OrgName": "Ping Identity Corporation",
 "token_type": "Bearer",
 "exp": 1556823764,
 "client_id": "ac_oic_client"
}

AAA1 and AAA2 are the expanded outcome of AAAGroup.

Response for a valid refresh token

{
 "active": true
 "exp": 1556823764
}

 Note:

If the refresh token is configured to never expire, the "exp" attribute will not be returned.

Response for an invalid token

{"active":false}

OAuth client identification and authentication

The authentication requirement of this endpoint depends on the client authentication method configured for
the clients.

Copyright ©2024

 | Developer's Reference Guide | 1095

Authentication method Parameters

Client secret Clients can present their client identifier and client secret using the HTTP
Basic authentication scheme, where the client identifier is the username, and
the client secret is the password.

Clients can provide credentials using the request parameters client_id and
client_secret.

 Important:

This is a sensitive parameter. To avoid recording it in web server logs, only
pass in this parameter with the HTTP POST method in the message body, or
through the HTTP Basic authentication scheme.

Client certificate Clients must present their client certificate for mutual TLS authentication. The
issuer and the subject distinguished name (DN) of the client certificate must
match values configured for the clients.

Private key JWT Clients must include request parameters client_assertion_type and
client_assertion in the message body of their requests.

client_assertion_type

The value describes the format of the assertion as defined by the
authorization server. For the private_key_jwt client authentication
method, the value is urn:ietf:params:oauth:client-
assertion-type:jwt-bearer.

client_assertion

The value is the authentication token.

Example

...
client_assertion_type=
urn%3Aietf%3Aparams%3Aoauth%
3Aclient-assertion-type%3Ajwt-bearer&
client_assertion=
eyJhbGciOiJSUzI1NiIs...LbSWi1YO-TILOd4L7ZCg&
...

 Note:

For readability, line breaks are inserted and the authentication token is
truncated.

For more information about the private_key_jwt client authentication method,
see Client Authentication and Using Assertions for Client Authentication.

None Clients must pass in the client_id parameter in a query string or the
message body to identify themselves.

Copyright ©2024

 | Developer's Reference Guide | 1096

OAuth access token management parameters

supports multiple access token management (ATM) instances. Clients can specify an ATM instance by
providing the ATM ID (access_token_manager_id) or a resource URI (aud) in their requests to the
OAuth AS.

Parameter Description

access_token_manager_idThe access_token_manager_id value is the instance ID of the desired
ATM instance. When specified, uses the desired ATM instance for the request
if it is eligible; otherwise it aborts the request.

 Note:

When the access_token_manager_id parameter is specified, ignores the
aud parameter.

aud The aud is the resource URI the client wants to access. The provided value
is matched against resource URIs configured in access token management
instances. When a match is found, uses the corresponding access token
management instance for the request if it is eligible; otherwise it aborts the
request.

A match can be an exact match or a partial match where the provided URI has the same scheme and
authority parts and a more specific path contained within the path of the pre-configured resource URI.
takes an exact match over a partial match. If there are multiple partial matches, takes the partial match
where the provided URI matches more specifically against the pre-configured resource URI.

Example

A partial match

A resource URI of https://app.example.local is a partial match for the following provided URIs:

▪ https://app.example.local/file1.ext
▪ https://app.example.local/path/file2.ext
▪ https://app.example.local/path/more

Example

An exact match is a better match than a partial match

Access Token
Management instances

Resource URIs (configured)

ATM1 https://localhost:9031/app1

https://localhost:9031/app2/data

https://app.example.local

ATM2 https://localhost:9031/app1/data

https://localhost:9031/app2/data/get

https://localhost:9031/app1 (a resource URI pre-configured for ATM1) is a partial match for
https://localhost:9031/app1/data (the provided URI). However, chooses ATM2 because https://

Copyright ©2024

 | Developer's Reference Guide | 1097

localhost:9031/app1/data (a resource URI pre-configured for ATM2) is an exact match against the
provided URI.

Example

A more specific partial match is a better match

Both https://localhost:9031/app2/data (a resource URI for ATM1) and https://
localhost:9031/app2/data/get (a resource URI for ATM2) are partial matches for https://
localhost:9031/app2/data/get/sample (the provided URI). However, chooses ATM2 because https://
localhost:9031/app2/data/get matches more specifically against the provided URI.

Validate against all eligible ATM instances

If multiple ATM instances are eligible, the configuration of the RS client determines whether it must
specify the desired ATM instance in its token validation requests. For more information, see .

After an ATM instance is chosen, considers the per-instance session validation settings and
processes the validation request. For more information, see Managing session validation settings on
page 572.

Token revocation endpoint
The token revocation endpoint allows clients to notify the authorization server that a previously obtained
refresh or access token is no longer needed. The revocation request invalidates the actual token and
possibly other tokens based on the same authorization grant.

The OAuth 2.0 Token Revocation documentation defines the token revocation endpoint.

 Note:

This endpoint accepts only the HTTP POST method.

Endpoint: /as/revoke_token.oauth2

 Important:

Only Internally Managed Reference Tokens support direct access token revocation. JSON web token
(JWT) type access tokens do not support direct revocation. JWT access tokens can only be indirectly
revoked if the associated refresh token is revoked, and the JWT's configuration field Access Grant GUID
Claim Name is set for the given access token manager instance.

When the authorization server revokes a refresh token, it also revokes the associated access grant and
access tokens. When the authorization server revokes an access token, the associated access grant
and refresh token remain untouched with the exception of the implicit grant type. If the Reuse Existing
Persistent Access Grants for GrantTypes check box is selected in the System # OAuth Settings #
Authorization Server Settings window, the implicit access grant will also be revoked with the access
token.

The following table describes parameters for this endpoint. The required Content-Type value is
application/x-www-form-urlencoded when transmitting through the HTTP POST method.

Copyright ©2024

https://tools.ietf.org/html/rfc7009

 | Developer's Reference Guide | 1098

Parameter Description

token

(Required)

The token that the client wants to revoke.

 Important:

To avoid recording this parameter in web server logs, only pass it in the
message body using the HTTP POST method.

token_type_hint A hint about the type of token submitted for revocation. PingFederate supports
values of access_token and refresh_token.

The following table describes parameters for this endpoint. The required Content-Type value is
application/x-www-form-urlencoded.

OAuth client identification and authentication

The authentication requirement of this endpoint depends on the client authentication method configured for
the clients.

Authentication method Parameters

Client secret Clients can present their client identifier and client secret using the HTTP
Basic authentication scheme, where the client identifier is the username, and
the client secret is the password.

Clients can provide credentials using the request parameters client_id and
client_secret.

 Important:

This is a sensitive parameter. To avoid recording it in web server logs, only
pass in this parameter with the HTTP POST method in the message body, or
through the HTTP Basic authentication scheme.

Client certificate Clients must present their client certificate for mutual TLS authentication. The
issuer and the subject distinguished name (DN) of the client certificate must
match values configured for the clients.

Copyright ©2024

 | Developer's Reference Guide | 1099

Authentication method Parameters

Private key JWT Clients must include request parameters client_assertion_type and
client_assertion in the message body of their requests.

client_assertion_type

The value describes the format of the assertion as defined by the
authorization server. For the private_key_jwt client authentication
method, the value is urn:ietf:params:oauth:client-
assertion-type:jwt-bearer.

client_assertion

The value is the authentication token.

Example

...
client_assertion_type=
urn%3Aietf%3Aparams%3Aoauth%
3Aclient-assertion-type%3Ajwt-bearer&
client_assertion=
eyJhbGciOiJSUzI1NiIs...LbSWi1YO-TILOd4L7ZCg&
...

 Note:

For readability, line breaks are inserted and the authentication token is
truncated.

For more information about the private_key_jwt client authentication method,
see Client Authentication and Using Assertions for Client Authentication.

None Clients must pass in the client_id parameter in a query string or the
message body to identify themselves.

Grant-management endpoint
Resource owners use the grant-management endpoint to view, and optionally revoke, the persistent
access grants they have made.

Two grant-management endpoints are provided. One is for use with parameters. This endpoint is not part
of the OAuth specification, but many OAuth providers offer a similar function.

Grants associated with the USER_KEY of the authenticated user are displayed. The same attribute
mappings from the authentication source to USER_KEY, which are used for the authorization endpoint, are
used here to look up the user's existing grants.

Endpoints: /as/grants.oauth2 and /as/oauth_access_grants.ping

The following table describes the available parameters for the /as/grants.oauth2 endpoint. Use only
one of them as needed.

Parameter Description

idp or PartnerIdpId Indicates the entity ID of the connection ID of the identity provider (IdP) with
whom to initiate browser single sign-on (SSO) for user authentication.

Copyright ©2024

 | Developer's Reference Guide | 1100

Parameter Description

pfidpadapterid Indicates the IdP adapter instance ID of the adapter to use for user
authentication.

 Note:

This parameter may be overridden by policy based on authentication selection
configuration. For example, the OAuth Scope Authentication Selector could
enforce the use of a given adapter based on client-requested scopes.

If no recent user attributes are found for the session context, the user is redirected to /as/
oauth_access_grants.ping to initiate the authentication process, which behaves in the same way as
the authorization endpoint.

Dynamic client registration endpoint
The client registration endpoint allows developers to dynamically register OAuth clients on a PingFederate
authorization server.

The OAuth 2.0 Dynamic Client Registration Protocol defines this endpoint. Developers can send client
registrations with the desired properties, such as client metadata, to this endpoint. If the requests are valid,
PingFederate evaluates them and returns a response with a client ID and the registered client metadata
values.

 Note:

This runtime endpoint is only active when the dynamic registration client is enabled and configured.

 Important:

As dynamic client registration can expose your server to unwanted client registrations, we recommend
protecting by requiring an initial access token, configuring one or more client registration policies, and
protecting access to the dynamic client registration endpoint.

You can configure access token requirement and client registration policies using the System # OAuth
Settings # Client Settings window. To further protect against unauthorized access to the dynamic client
registration endpoint, consider using PingAccess or your choice of web access management solution to do
so.

 Note:

This endpoint accepts only the HTTP POST method.

Endpoint: /as/clients.oauth2

Both the request and the response follow the OAuth 2.0 Dynamic Client Registration Protocol.

Copyright ©2024

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591

 | Developer's Reference Guide | 1101

Example

Example 1

A developer wants to register a client that supports the authorization code flow, two redirection URIs,
two scopes, and HTTP Basic as the client authentication method. In this example, PingFederate is not
configured to require an initial access token.

Request

POST /as/clients.oauth2 HTTP/1.1
Content-Type: application/json
Accept: application/json
Host: sso.example.com

{
 "client_name":"Example Org Sample One",
 "redirect_uris":[
 "https://example.org/app1",
 "https://example.org/appM"
],
 "scope":"email phone",
 "grant_types":[
 "authorization_code"
]
}

Response

HTTP/1.1 201 Created
Date: Fri, 13 Oct 2017 12:34:56 GMT
Referrer-Policy: origin
Content-Type: application/json
Transfer-Encoding: chunked

{
 "client_id": "dc-F3JxcBlNCtjk36J3Yi4yQK",
 "client_name": "Example Org Sample One",
 "redirect_uris": [
 "https://example.org/app1",
 "https://example.org/appM"
],
 "token_endpoint_auth_method": "client_secret_basic",
 "grant_types": [
 "authorization_code"
],
 "client_secret": "fYhGUjnkjGp0UPQGaAfdcS",
 "client_secret_expires_at": 0,
 "scope": "phone email",
 "validate_using_all_eligible_atms": false,
 "refresh_token_rolling_policy": "server_default",
 "persistent_grant_expiration_type": "server_default",
 "grant_access_session_revocation_api": false
 "grant_access_session_management_api": false
}

PingFederate returns 201 Created, the client ID, and other registered client metadata after creating the
new client.

Copyright ©2024

 | Developer's Reference Guide | 1102

Additionally, when a registration request does not specify a client authentication method
(token_endpoint_auth_method), PingFederate defaults to client_secret_basic per OAuth 2.0
Dynamic Client Registration Protocol.

Example

Example 2

A developer wants to register a client that supports the authorization code flow, refresh tokens, one
redirection URI, one profile scope, and HTTP Basic as the client authentication method. In this
example, PingFederate is not configured to require an initial access token. However, the profile scope
is restricted. As a result, the registration request should fail.

Request

POST /as/clients.oauth2 HTTP/1.1
Content-Type: application/json
Accept: application/json
Host: www.example.com

{
 "client_name":"Example Org Sample Two",
 "redirect_uris":[
 "https://example.org/app2"
],
 "scope":"profile",
 "grant_types":[
 "authorization_code",
 "refresh_token"
]
}

Response

HTTP/1.1 400 Bad Request
Date: Fri, 13 Oct 2017 13:00:00 GMT
Referrer-Policy: origin
Content-Type: application/json
Transfer-Encoding: chunked
{
 "error": "invalid_client_metadata",
 "error_description": "The requested scope is invalid."
}

PingFederate returns 400 Bad Request and the relevant error message when a client registration fails.

Example

Example 3

A developer wants to register a client that supports the authorization code flow, two redirection URIs, two
scopes, and HTTP Basic as the client authentication method. In this example, PingFederate is configured
to require an initial access token.

Request

POST /as/clients.oauth2 HTTP/1.1
Content-Type: application/json

Copyright ©2024

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591

 | Developer's Reference Guide | 1103

Accept: application/json
Authorization: Bearer
 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsxIn0.eyJzY29wZSI6WyJkQ1IiXSwiY2xpZW50X2lkX25hbWUiOiJwYXJ0bmVyRGV2X0FjbWUiLCJhZ2lkIjoiMG44NHV6Nm1mZFJWbzNIWU9VODlrc3FxMTVNR3hxUFMiLCJVc2VybmFtZSI6Ikl2YW4gTW9rIiwiT3JnTmFtZSI6IkFDTUUgRGV2IiwiZXhwIjoxNTA4MzY3MDcyfQ.XfKd8--
CHtcQ79Wefz2Sw5GOB5LfV9mWJ0n3vzJ93Ie7wbEAkalIFg53J-9e7s59MjA1igx6ybflGMQ9QAjYobs-
jM24arJZZgopEXvcx6IQpyU8U4AMTJ7tr9Lmody8P0QZOKcUDBTT5egv9vr5NuXCtUBfVPhGZ-3p5g5mwrnGHBfqZOAsg7U4hKq8cauKQtVyBBV9iIZNG5Q3ovnxBTclKII9HX-
oDhmilbmiga4319YSFfX5-
U3li9XPeN3JZB2ukLbTFjjVIVLJIInbSR_IFTWP5Irg92aXLrIfm5MvBp8D1fOU6xYjbgjvw9QKNiFFVD7oEeJG9MwzgcGruw
Host: www.example.com

{
 "client_name":"Example Org Sample Three",
 "redirect_uris":[
 "https://example.org/app3",
 "https://example.org/appN"
],
 "scope":"email phone",
 "grant_types":[
 "authorization_code"
]
}

Response

HTTP/1.1 201 Created
Date: Fri, 13 Oct 2017 15:30:00 GMT
Referrer-Policy: origin
Content-Type: application/json
Transfer-Encoding: chunked

{
 "client_id": "dc-rqUtii4vRXj5NMztkAeJ1S",
 "client_name": "Example Org Sample Three",
 "redirect_uris": [
 "https://example.org/app3",
 "https://example.org/appN"
],
 "token_endpoint_auth_method": "client_secret_basic",
 "grant_types": [
 "authorization_code"
],
 "client_secret": "p7MD0Ul1DNI9xRDc5kcOxs",
 "client_secret_expires_at": 0,
 "scope": "phone email",
 "validate_using_all_eligible_atms": false,
 "refresh_token_rolling_policy": "server_default",
 "persistent_grant_expiration_type": "server_default",
 "grant_access_session_revocation_api": false
 "grant_access_session_management_api": false
}

The registration request must include an Authorization HTTP header with a valid access token as its
value.

If the authorization fails, PingFederate returns the following JSON payload in the response.

{
 "error": "invalid_access_token",
 "error_description": "Please provide a valid Access Token with the correct
 scope"
}

Copyright ©2024

 | Developer's Reference Guide | 1104

Device authorization endpoint
The device authorization endpoint allows a user to grant authorization to a device client using a browser on
a second device, such as a smart phone or a computer.

The OAuth 2.0 Device Authorization Grant defines the device authorization endpoint. Based on the
specification, the device sends a device authorization request to PingFederate, the authorization server
(AS), at its device authorization endpoint.

 Note:

Per OAuth specifications, this endpoint accepts only the HTTP POST method.

Endpoint: /as/device_authz.oauth2

The required Content-Type value is application/x-www-form-urlencoded. The following table
describes parameters for this endpoint.

Parameter Description

client_id A unique identifier the client provides to the resource server (RS) to identify
itself. This identifier is included with every request the client makes

scope

(Optional)

The scope of the access request expressed as a list of space-delimited, case-
sensitive strings.

Scopes can also be constrained on a client-to-client basis. For more
information about scopes, see Scopes and scope management on page
499.

Both the request and the response follow the OAuth 2.0 Device Authorization Grant.

Example

Example request

POST /as/device_authz.oauth2 HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: www.example.com
...

client_id=df_client

Example

Response codes and example responses

200 - Success

HTTP/1.1 200 OK

...
{
 "user_code": "YYD6-CD4T",
 "device_code": "4EHsIngavzIPvvqMlFgQlseTCsH7EpU75f9yGvj60T",
 "interval": 5,
 "verification_uri_complete": "https://www.example.com/as/
user_authz.oauth2?user_code=YYD6-CD4T",

Copyright ©2024

https://tools.ietf.org/html/rfc8628
https://tools.ietf.org/html/draft-ietf-oauth-device-flow

 | Developer's Reference Guide | 1105

 "verification_uri": "https://www.example.com/as/user_authz.oauth2",
 "expires_in": 600
}

400 - Bad Request

HTTP/1.1 400 Bad Request

...
{
 "error_description": "The requested scope(s) must be blank or a subset
 of the provided scopes.",
 "error": "invalid_scope"
}

401 - Unauthorized

HTTP/1.1 401 Unauthorized

...
{
 "error_description": "Invalid client or client credentials.",
 "error": "invalid_client"
}

OAuth client identification and authentication

The authentication requirement of this endpoint depends on the client authentication method configured for
the clients.

Authentication method Parameters

Client secret Clients can present their client identifier and client secret using the HTTP
Basic authentication scheme, where the client identifier is the username, and
the client secret is the password.

Clients can provide credentials using the request parameters client_id and
client_secret.

 Important:

This is a sensitive parameter. To avoid recording it in web server logs, only
pass in this parameter with the HTTP POST method in the message body, or
through the HTTP Basic authentication scheme.

Client certificate Clients must present their client certificate for mutual TLS authentication. The
issuer and the subject distinguished name (DN) of the client certificate must
match values configured for the clients.

Copyright ©2024

 | Developer's Reference Guide | 1106

Authentication method Parameters

Private key JWT Clients must include request parameters client_assertion_type and
client_assertion in the message body of their requests.

client_assertion_type

The value describes the format of the assertion as defined by the
authorization server. For the private_key_jwt client authentication
method, the value is urn:ietf:params:oauth:client-
assertion-type:jwt-bearer.

client_assertion

The value is the authentication token.

Example

...
client_assertion_type=
urn%3Aietf%3Aparams%3Aoauth%
3Aclient-assertion-type%3Ajwt-bearer&
client_assertion=
eyJhbGciOiJSUzI1NiIs...LbSWi1YO-TILOd4L7ZCg&
...

 Note:

For readability, line breaks are inserted and the authentication token is
truncated.

For more information about the private_key_jwt client authentication method,
see Client Authentication and Using Assertions for Client Authentication.

None Clients must pass in the client_id parameter in a query string or the
message body to identify themselves.

User authorization endpoint
The user authorization endpoint allows a user to grant authorization to a device client using a browser on a
second device, such as a smart phone or a computer.

Based on the OAuth 2.0 Device Authorization Grant specification, the user goes to the user authorization
endpoint of the PingFederate authorization server (AS) to complete the authorization process.

 Note:

This endpoint accepts the HTTP GET and POST methods.

Endpoint: /as/user_authz.oauth2

The following table describes parameter for this endpoint. The required Content-Type value is
application/x-www-form-urlencoded when transmitting through the HTTP POST method.

Parameter Description

user_code

(Optional)

This value represents the activation code.

Copyright ©2024

https://tools.ietf.org/html/rfc8628

 | Developer's Reference Guide | 1107

Both the request and the response follow the OAuth 2.0 Device Authorization Grant.

Example

Example request

POST /as/user_authz.oauth2 HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: www.example.com
...

user_code=QQWP-TJ6B

Subsequent responses

Phase 1: Activation code verification

If the verification request does not include an activation code, PingFederate returns the Connect
a device (user code prompt) page, prompting the user to enter the activation code shown by the
device.

If the verification request includes an activation code, PingFederate returns the Connect a device
(pre-populated user code prompt) page, prompting the user to confirm the activation code from
the verification request matches the activation code shown by the device. PingFederate skips this
step if the Bypass Activation Code Confirmation option is enabled globally or individually for that
invoking client.

PingFederate validates the activation code, prompts the user to enter another activation code if it is
invalid, or moves to the next phase.

Phase 2: Authentication

PingFederate prompts the user to fulfill the authentication requirements based on OAuth grant
mapping configurations and authentication policies.

If the user fulfills the authentication requirements, PingFederate moves to the next phase; otherwise
it returns an error message to the user.

Phase 3: Authorization

PingFederate returns the Request for Approval page, prompting the user to approve or deny the
requested scopes. PingFederate skips this step if the Bypass Authorization Approval option is
enabled globally or individually for that invoking client and the user has granted authorization for the
requested scopes previously.

PingFederate returns the Connect a device (result) page to the user. The message reflects the
authorization status.

If the user approves the requested scopes, the next time the device sends a device access token
request to PingFederate at its token endpoint, PingFederate returns an access token to the device.

When an error occurs, PingFederate returns 400 Bad Request in response to the device access
token request.

Example

Examples of 400 Bad Request

HTTP/1.1 400 Bad Request

...

Copyright ©2024

https://tools.ietf.org/html/draft-ietf-oauth-device-flow

 | Developer's Reference Guide | 1108

{"error_description":"Authorization request is
 denied","error":"access_denied"}

HTTP/1.1 400 Bad Request

...
{"error_description":"Device code not found, expired or
 invalid","error":"invalid_grant"}

HTTP/1.1 400 Bad Request

...
{"error_description":"The authorization request has
 expired.","error":"expired_token"}

OpenID Provider configuration endpoint
The OpenID Provider (OP) configuration endpoint provides configuration information for the OAuth clients
to interface with PingFederate using the OpenID Connect protocol.

This endpoint returns configuration information that is controlled by a template file and can be customized
to suit multiple use cases simultaneously.

This public endpoint accepts HTTP GET requests without authentication.

Endpoint: /.well-known/openid-configuration

The following table describes the parameter for this endpoint.

Parameter Description

policy_id Indicates the OpenID Connect policy from which PingFederate derives the
attributes to include under claims_supported in the response body.

If omitted, PingFederate includes the attributes based on the default policy.

Example

Example response

$ curl -s https://localhost:9031/.well-known/openid-configuration|python -m
 json.tool
{
 "authorization_endpoint": "https://localhost:9031/as/
authorization.oauth2",
 "backchannel_authentication_endpoint": "https://localhost:9031/as/bc-
auth.ciba",
 "backchannel_authentication_request_signing_alg_values_supported": [
 "RS256",
 "RS384",
 "RS512",
 "ES256",
 "ES384",
 "ES512",
 "PS256",
 "PS384",
 "PS512"
],
 "backchannel_token_delivery_modes_supported": [
 "poll",

Copyright ©2024

 | Developer's Reference Guide | 1109

 "ping"
],
 "backchannel_user_code_parameter_supported": true,
 "code_challenge_methods_supported": [
 "plain",
 "S256"
],
 "claim_types_supported": [
 "normal"
],
 "claims_parameter_supported": false,
 "claims_supported": [
 "address",
 "birthdate",
 "email",
 "email_verified",
 "family_name",
 "gender",
 "given_name",
 "locale",
 "middle_name",
 "name",
 "nickname",
 "phone_number",
 "phone_number_verified",
 "picture",
 "preferred_username",
 "profile",
 "sub",
 "updated_at",
 "website",
 "zoneinfo"
],
 "device_authorization_endpoint": "https://localhost:9031/as/
device_authz.oauth2",
 "grant_types_supported": [
 "implicit",
 "authorization_code",
 "refresh_token",
 "password",
 "client_credentials",
 "urn:pingidentity.com:oauth2:grant_type:validate_bearer",
 "urn:ietf:params:oauth:grant-type:jwt-bearer",
 "urn:ietf:params:oauth:grant-type:saml2-bearer",
 "urn:ietf:params:oauth:grant-type:device_code",
 "urn:openid:params:grant-type:ciba"
],
 "id_token_encryption_alg_values_supported": [
 "dir",
 "A128KW",
 "A192KW",
 "A256KW",
 "A128GCMKW",
 "A192GCMKW",
 "A256GCMKW",
 "ECDH-ES",
 "ECDH-ES+A128KW",
 "ECDH-ES+A192KW",
 "ECDH-ES+A256KW",
 "RSA-OAEP"
],
 "id_token_encryption_enc_values_supported": [
 "A128CBC-HS256",
 "A192CBC-HS384",

Copyright ©2024

 | Developer's Reference Guide | 1110

 "A256CBC-HS512",
 "A128GCM",
 "A192GCM",
 "A256GCM"
],
 "id_token_signing_alg_values_supported": [
 "none",
 "HS256",
 "HS384",
 "HS512",
 "RS256",
 "RS384",
 "RS512",
 "ES256",
 "ES384",
 "ES512",
 "PS256",
 "PS384",
 "PS512"
],
 "introspection_endpoint": "https://localhost:9031/as/introspect.oauth2",
 "issuer": "https://localhost:9031",
 "jwks_uri": "https://localhost:9031/pf/JWKS",
 "ping_end_session_endpoint": "https://localhost:9031/idp/startSLO.ping",
 "ping_revoked_sris_endpoint": "https://localhost:9031/pf-ws/rest/
sessionMgmt/revokedSris",
 "registration_endpoint": "https://localhost:9031/as/clients.oauth2",
 "request_object_signing_alg_values_supported": [
 "RS256",
 "RS384",
 "RS512",
 "ES256",
 "ES384",
 "ES512",
 "PS256",
 "PS384",
 "PS512"
],
 "request_parameter_supported": true,
 "request_uri_parameter_supported": false,
 "response_modes_supported": [
 "fragment",
 "query",
 "form_post"
],
 "response_types_supported": [
 "code",
 "token",
 "id_token",
 "code token",
 "code id_token",
 "token id_token",
 "code token id_token"
],
 "revocation_endpoint": "https://localhost:9031/as/revoke_token.oauth2",
 "scopes_supported": [
 "address",
 "phone",
 "edit",
 "openid",
 "profile",
 "admin",
 "email"
],

Copyright ©2024

 | Developer's Reference Guide | 1111

 "subject_types_supported": [
 "public",
 "pairwise"
],
 "token_endpoint": "https://www.example.com:9031/as/token.oauth2",
 "token_endpoint_auth_methods_supported": [
 "client_secret_basic",
 "client_secret_post",
 "private_key_jwt"
],
 "token_endpoint_auth_signing_alg_values_supported": [
 "RS256",
 "RS384",
 "RS512",
 "ES256",
 "ES384",
 "ES512",
 "PS256",
 "PS384",
 "PS512"
],
 "userinfo_endpoint": "https://localhost:9031/idp/userinfo.openid"
}

Notable metadata parameters

CIBA user code support

The backchannel_user_code_parameter_supported parameter indicates whether the
default CIBA request policy supports user codes, which are an optional feature in the CIBA
specification.

In the previous example, because the User Code PCV field is configured with a Password
Credential Validator instance in the default CIBA request policy, the value of the
backchannel_user_code_parameter_supported parameter is true. For more information,
see OpenID Connect Client Initiated Backchannel Authentication Flow and Defining a request policy
on page 597.

Digital signature algorithms

The backchannel_authentication_request_signing_alg_values_supported,
id_token_signing_alg_values_supported,
token_endpoint_auth_signing_alg_values_supported, and
request_object_signing_alg_values_supported parameters provide lists of supported
algorithms to process digital signatures.

In this example, because PingFederate is integrated with a hardware security module (HSM) and
configured to use static keys for OAuth and OpenID Connect, the endpoint includes additional
RSASSA-PSS digital signature algorithms (PS256, PS384, and PS512) in its response. For more
information on HSM integration and static keys, see Supported hardware security modules on
page 168 and Keys for OAuth and OpenID Connect on page 633, respectively. Deploying
PingFederate to run on a Java 8 or a Java 11 environment will have the same result.

JWKS endpoint

The JWKS endpoint, jwks_uri, returns a set of public keys for OAuth and OpenID Connect.
Clients can use this information to verify the integrity of asymmetrically-signed ID tokens, JSON web
tokens (JWTs) for client authentication, and OpenID Connect request objects.

Scopes

The OP configuration endpoint returns all common static scopes and common scope groups but not
exclusive static scopes, exclusive scope groups, common dynamic scopes, or exclusive dynamic

Copyright ©2024

https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html

 | Developer's Reference Guide | 1112

scopes by default. The response can be customized by editing a template file to include or exclude
individual scopes and scope groups.

Token endpoint

The token endpoint, token_endpoint, is used by clients to obtain access tokens and refresh
tokens if applicable.

In the previous example, because the Token Endpoint Base URL is set to https://
www.example.com:9031 in the System # OAuth Settings # Authorization Server Settings
window, the token_endpoint value is set to https://www.example.com:9031/as/token.oauth2. For
more information, see Configuring authorization server settings on page 488 and Token endpoint
on page 1083.

UserInfo endpoint
OAuth clients can present access tokens to the UserInfo endpoint to retrieve additional information about
the resource owners.

You can customize the amount of information presented by the endpoint by using OpenID Connect
policies. Information can include specification-defined attributes (standard attributes) and non-standard
attributes. Scopes, authorized by the users, also determine the attributes to be returned.

This endpoint accepts HTTP GET requests without parameters. Clients must present valid access tokens
for authentication.

Example

Endpoint example: /idp/userinfo.openid

$ curl -s https://localhost:9031/idp/userinfo.openid -H 'Authorization:
 Bearer eyJ...9-g'|python -m json.tool
{
 "email": "auser@example.com",
 "phone_number": "(555) 555-5555",
 "phone_number_verified": true,
 "sub": "joe"
}

 Note:

The self-contained access token in the Authorization HTTP header is truncated for readability.

If the access token presented is not valid, PingFederate returns 401 Unauthorized.

Self-contained tokens

If clients using self-contained access tokens are expected to contact the UserInfo endpoint, consider the
following implications.

Client ID Claim Name

This field's default value is client_id. When this field is configured with a value, PingFederate
includes the client ID of the requesting client as a claim in the self-contained tokens. The claim
name is the value of the Client ID Claim Name field.

If the field value is empty, will not include the client ID of the requesting client in the self-contained
tokens. In this scenario, the access token manager (ATM) instance used by the default OpenID
Connect policy must remain accessible to all clients, or clients using self-contained access tokens
issued by this ATM instance will not be able to retrieve additional claims from the UserInfo endpoint.

Copyright ©2024

 | Developer's Reference Guide | 1113

Instead, they receive an HTTP status code 401 Unauthorized from PingFederate. For more
information, see Defining access control on page 576.

Scope Claim Name

This field's default value is scope. When this field is configured with a value, PingFederate includes
the requested scopes as a claim in the self-contained tokens. The claim name is the value of the
Scope Claim Name field.

If the field value is empty, PingFederate will not include any scope information in the self-contained
token, and clients using self-contained access tokens issued by this ATM instance will not be able
to retrieve additional claims from the UserInfo endpoint. Instead, they receive an HTTP status code
403 Forbidden from PingFederate.

Pushed authorization requests endpoint
The PingFederate authorization server (AS) can provide a pushed authorization requests (PAR) endpoint /
as/par.oauth2. OAuth 2.0 clients can use the PAR endpoint to securely initiate authorization flows.

When the PAR endpoint is enabled, a client can push an authorization request payload to the AS with a
direct back-channel request. This is a more secure method of sending sensitive data, such as personally
identifiable information, than sending it with a browser on the front channel. The payload contains
parameters that are application/x-www-form-urlencoded formatted. The PAR endpoint can accept all
parameters that usually comprise an authorization request and any additional parameters needed for client
authentication. It also can accept signed requests.

 Note:

The PAR endpoint only accepts the HTTP POST method.

After the AS validates the request and saves the payload, it returns the request_uri parameter to serve
as a reference to the payload. The response also indicates the lifetime of the request URI. The default
lifetime is 60 seconds.

Sample request for a request_uri to the PAR endpoint

 POST /as/par.oauth2 HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded
 Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

 response_type=code
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

Sample response with a request_uri from the PAR endpoint

 HTTP/1.1 201 Created
 Cache-Control: no-cache, no-store
 Content-Type: application/json

 {
 "expires_in": 60,
 "request_uri": "urn:example:bwc4JK-ESC0w8acc191e-Y1LTC2"
 }

Subsequently, the client uses the front channel to request an authorization code or token, sending the
request_uri parameter to the AS authorization endpoint. The AS uses the request URI to look up the
request payload and continue the authorization flow as usual. The AS accepts a particular request URI
only once.

Copyright ©2024

 | Developer's Reference Guide | 1114

Sample request for an authorization code or token to the authorization endpoint

 GET /as/authorization.oauth2?client_id=s6BhdRkqt3
 &request_uri=urn%3Aexample%3Abwc4JK-ESC0w8acc191e-Y1LTC2 HTTP/1.1
 Host: as.example.com

To let OAuth clients use the PAR endpoint, you must enable PAR on the AS. Additionally, you can
configure individual clients so that they must use the PAR endpoint to initiate authorization flows. For
more information about PAR settings, see Configuring authorization server settings on page 488 and
Configuring OAuth clients on page 529.

When PAR is enabled on the AS, the well-known endpoint /.well-known/openid-configuration
includes these PAR parameters in responses:

▪ pushed_authorization_request_endpoint contains the PAR endpoint
▪ require_pushed_authorization_requests indicates whether the AS requires clients to use

PAR

For more information about the PAR protocol, see OAuth 2.0 Pushed Authorization Requests on the IETF
website.

OAuth Playground
Developers can install and use the PingFederate OAuth Playground to experiment with OAuth and OpenID
Connect.

Before you begin
Before you can install the OAuth Playground, install the instance of PingFederate in which you will install
the OAuth Playground.

 Note:
You should not install OAuth Playground in PingFederate production environments.

About this task

Acting as both a client and a resource server, the OAuth Playground simulates authorization requests,
responses, and token validation. These features can help you integrate OAuth and OpenID Connect
protocols into your applications.

To install the OAuth Playground, perform the following procedure. For more information, including the
credentials needed for some OAuth grants, see the ReadMeFirst file in the OAuth Playground ZIP file.

Steps

1. Get the OAuth Playground files:

a. In a browser, go to the Developer Tools page on the Ping Identity website.
b. Click the OAuth Playground Download button. If requested, log in to your Ping Identity account.

Your browser downloads the OAuth Playground ZIP file.
c. Extract the contents from the ZIP file.

2. Install the OAuth Playground:

a. Copy the contents of the /dist/deploy directory to /pingfederate/server/default/
deploy in PingFederate.

b. Merge the contents of the /dist/conf directory into /pingfederate/server/default/
conf in PingFederate.

Copyright ©2024

https://datatracker.ietf.org/doc/html/rfc9126
https://developer.pingidentity.com/en/tools.html

 | Developer's Reference Guide | 1115

3. Configure the OAuth Playground:

a. Open the OAuth Playground by going to https://<pf_host>:9031/OAuthPlayground in a browser.
b. Click the Setup button. The Setup wizard appears.
c. Follow the wizard's instructions.

 Note:

The Setup button appears only the first time that you configure the OAuth Playground. To reconfigure
the OAuth Playground, click Settings on the taskbar. On the Settings window, click the Set Up Again
button. Then following the wizard's instructions.

Web service interfaces and APIs
PingFederate provides two built-in, SOAP-accessible web services related to browser-based single sign-on
(SSO).

These services can be used by client applications to manage partner connections and support integration
of web applications, respectively.

Connection Management Service

 Note:

As of PingFederate 10.2, the Connection Management Service has been deprecated and will be
removed in a future release.

The Connection Management Service enables creation and deletion of single connection
configurations in PingFederate. This service can be used to migrate connections from one server
environment to another, for example, from testing or staging to production, or to create new
connections in a single server programmatically.

 Tip:

PingFederate provides a command-line utility that can be used to export and modify connections,
as well as other administrative-console configurations, and then import them to target environments.
For more information, see Automating configuration migration on page 812.

SSO Directory Service

 Note:

As of PingFederate 10.2, the SSO Directory Service has been deprecated and will be removed in a
future release.

The SSO Directory Service provides web application developers with information regarding partner
connections and adapter instances.

 Tip:

Copyright ©2024

 | Developer's Reference Guide | 1116

Applications accessing the Connection Management Service must first authenticate themselves to
the PingFederate server. SSO Directory Service authentication is optional by default, but might be
required. For more information, see Configuring service authentication on page 653.

Additionally, PingFederate provides REST-based web services and APIs for a variety of administrative and
runtime tasks.

OAuth Client Management Service

A runtime API to manage OAuth client applications.

OAuth Access Grant Management Service

A runtime API to retrieve and revoke persistent grants. This API is intended for administrators to
manage grants per client or per user.

OAuth Persistence Grant Management API

Another runtime API to retrieve and revoke persistent grants. This API is intended for the use case
where clients can assume the responsibility of grant management, provided that the users authorize
the clients to do so.

Session Revocation API

A runtime API allowing clients supporting the OpenID Connect protocol to query revocation status of
their sessions and add user sessions to the revocation list.

Administrative API

An administrative API to manage various PingFederate settings.

Connection Management Service
The Connection Management Service supports basic connection management capabilities and is
accessible only on a PingFederate server running the administrative console.

 Note:

As of PingFederate 10.2, the Connection Management Service has been deprecated and will be removed
in a future release.

The Connection Management Service is useful in a variety of circumstances. Consider the following use
cases:

▪ Using the Connection Management Service as a utility, you can migrate changes to a partner
connection through staging environments. For example, development, test, and production.

Using the Connection Management Service, you might need to make changes to URLs and keys to
make the connection appropriate to the next environment.

▪ Using the Connection Management Service, an external application can update or delete connections
programmatically, or create new ones using an exported connection XML file as a template.

You can find the WAR file for this service, pf-mgmt-ws.war, in the <pf_install>/pingfederate/
server/default/deploy2 directory.

 Note:

Copyright ©2024

 | Developer's Reference Guide | 1117

If you do not want to allow use of the service, do not deploy it: remove the WAR file from the deploy2
directory.

The SOAP-accessible service endpoint is pf-mgmt-ws/ws/ConnectionMigrationMgr.

The web services Description Language (WSDL) document describing this service can be retrieved from /
pf-mgmt-ws/ws/ConnectionMigrationMgr?wsdl.

Exporting a connection
You can export a connection either manually, using the administrative console, or programmatically
through a call to the Connection Management Service.

Whether you export a connection manually or programmatically, the exported XML complies with the
standard SAML 2.0 metadata format, with extensions to capture PingFederate's proprietary configuration.
Most connection configuration information is contained in the XML markup, with the exception of
global configuration items such as adapter instances, datastores, and key pairs. Adapter instances
and datastores are referenced by ID, and key pairs are referenced by the MD5 fingerprint of their
X.509 certificate. Public certificates, such as the partner's signature verification certificate, are included
completely (base-64 encoded).

Export manually

For information about using the administrative console to export connections, see Accessing SP
connections on page 412 or Accessing IdP connections on page 679.

Export via the Connection Management Service

The Connection Management Service exposes the following method for exporting connections.

public string getConnection(String entityId, String role,) throws
 IOException

The entityId parameter is the connection ID, which identifies the connection to be deleted. The role
parameter is the connection role, the identity provider (IdP) or the service provider (SP).

Code sample

The following example invokes this web service to export a connection.

Service service = new Service();
Call call = (Call)service.createCall();
call.setUsername("username");
call.setPassword("password");
call.setTargetEndpointAddress("https://localhost:9999/pf-mgmt-ws/ws/
ConnectionMigrationMgr");
call.setOperationName("getConnection");
Object result = call.invoke(new Object[] {"<entityId>", "SP"});

Importing connections
Moving a connection from one PingFederate server to another requires care, as the target server must
contain the global configuration items, such as datastores, key pairs, and adapter instances, that the
connection references.

Changing the references in the XML file, either manually or programmatically, may be necessary to adjust
the connection to the target PingFederate environment.

After the required changes are made to the XML file, developers can use the Connection Management
Service to import the connection into a different instance of PingFederate.

Copyright ©2024

 | Developer's Reference Guide | 1118

 Tip:

Alternatively, you can import XML connection files through the PingFederate administrative console.
For more information, see Accessing SP connections on page 412 or Accessing IdP connections on
page 679. You can also import the connections into PingFederate manually by copying them into the
<pf_install>/pingfederate/server/default/ data/connection-deployer directory.

PingFederate scans this directory periodically and imports connections automatically.

 CAUTION:

Manually importing a connection always overwrites an existing connection with the same ID. The web
service provides a switch to disallow this behavior, if desired. For more information, see below.

The web service exposes the following method for importing connections.

public void saveConnection(String xml, boolean allowUpdate) throws
 IOException

The xml parameter is the complete representation of the connection retrieved by your application from an
exported connection file, and optionally modified.

If allowUpdate is false, the web service can be used only to add a new connection. An error occurs
if a connection already exists with the same connection ID and federation protocol in the XML. If
allowUpdate is true and the connection already exists, it will be overwritten.

Sample code

The following example uses the Apache AXIS libraries to invoke this web service to create a new
connection.

Service service = new Service();
 Call call = (Call) service.createCall();
 call.setUsername("username");
 call.setPassword("password");
 String addr = "https://localhost:9999/pf-mgmt-ws/ws/
ConnectionMigrationMgr";
 call.setTargetEndpointAddress(addr);
 call.setOperationName("saveConnection");
 String xml = "<EntityDescriptor entityID=\"some_entity_id\"
 ...
 </EntityDescriptor>";
 boolean allowUpdate = false;
 call.invoke(new Object[]{xml, allowUpdate});

Deleting connections
You can invoke the web service to delete connections.

The web service exposes the following method for connection deletion.

public void deleteConnection(String entityId, String role) throws
 IOException

The entityId parameter is the connection ID, which identifies the connection to be deleted. The role
parameter is the connection role, identity provider (IdP) or service provider (SP).

Copyright ©2024

 | Developer's Reference Guide | 1119

Code sample

The following example uses the Apache AXIS libraries to invoke this web service to delete a connection.

Service service = new Service();
Call call = (Call) service.createCall();
call.setUsername("username");
call.setPassword("password");
call.setTargetEndpointAddress(
 "https://localhost:9999/pf-mgmt-ws/ws/ConnectionMigrationMgr"
);
call.setOperationName("deleteConnection");
call.invoke(new Object[]{"entityid", "SP"});

Cluster configuration replication
A web service endpoint is available to replicate the administrative-console configuration to other nodes in a
PingFederate cluster from the Connection Management Service.

The cluster configuration replication web service endpoint allows a client of this web service to create,
update, or delete a connection, and then push the new configuration to the other cluster nodes.

The service endpoint is /pf-mgmt-ws/ws/ConfigReplication.

The WSDL document describing this service can be retrieved from /pf-mgmt-ws/ws/
ConfigReplication?wsdl .

The web service exposes the following method: public void replicateConfiguration();.

Code sample

Below is example client code using the Apache AXIS libraries that invokes the configuration replication
functionality.

Call call2 = (Call) service.createCall();
 call2.setUsername("joe");
 call2.setPassword("test");
 String addr2 = "https://localhost:9999/pf-mgmt-ws/ws/ConfigReplication";
 call2.setTargetEndpointAddress(addr2);
 call2.setOperationName("replicateConfiguration");
 call2.invoke(new Object[]{});

Validation disclaimer
Use the administrative console whenever possible to reduce the risk to data integrity.

The import process is not subject to the same rigorous data validation performed by the administrative
user interface. Although some checks are made, it is possible to create invalid connections using the
connection-migration process. As the XML is complex and validation is limited, use the administrative
console to create the initial XML connection instead of attempting to create an XML connection from
scratch. That way, changes necessary to the exported connection's XML representation can be held to a
minimum, reducing the risk of compromising data integrity.

SSO Directory Service
PingFederate single sign-on (SSO) Directory Service allows applications to retrieve configuration data from
a runtime PingFederate server. A PingFederate server in a cluster configured as an administrative console
does not support this web service.

 Note:

Copyright ©2024

 | Developer's Reference Guide | 1120

As of PingFederate 10.2, the SSO Directory Service has been deprecated and will be removed in a future
release.

The SSO Directory Service lets web applications avoid storing and maintaining the data locally.These
applications can retrieve the following types of data:

▪ A list of identity provider (IdP) partners
▪ A list of service provider (SP) partners
▪ A list of IdP adapter instances
▪ A list of SP adapter instances

The SSO Directory Service provides useful information for integrating an application with a PingFederate
server. It is a way for the application to dynamically determine which partners can be used for SSO. This
means applications do not need to be modified when new partners are configured in PingFederate.

You can find the WAR file for this module, pf-ws.war, in the pingfederate/server/default/
deploy directory.

 Note:

If you do not want to allow use of the service, remove the WAR file from the deploy directory.

The service endpoint is: pf-ws/services/SSODirectoryService.

You can retrieve the WSDL document describing this service from /pf-ws/services/
SSODIrectoryService?wsdl.

You can retrieve a list using any of the following methods:

▪ getIDPList returns a list of active IdP connections configured for SP-initiated SSO. The list contains
each IdP's connection ID and connection name.

▪ getSPList returns a list of active SP connections configured for IdP-initiated SSO. The list contains
each SP's connection ID and connection name.

 Note:

For either IdP or SP lists, connection IDs are returned as values for the XML tag <entityId>.
Connection Names are returned as values for the XML tag <company>. For more information see
SOAP request and response examples on page 1121.

▪ getAdapterInstanceList returns a list of SP adapter instances containing an ID and name.
▪ getIdpAdapterInstanceList returns a list of IdP adapter instances containing an ID and name.

 Note:

These methods do not require input parameters.

The service is also available over HTTP. The query string for retrieving any of the lists is /pf-ws/
services/SSODirectoryService?method=<method_name>.

Coding example
When you integrate a web application with PingFederate, use the single sign-on (SSO) Directory Service to
generate a connection or adapter list. The code needed to create any of the lists is similar.

The following Java code example retrieves an identity provider (IdP) list from the web service. The
program calls the getIDPList method in the SSO Directory Service to retrieve an IdP list and print it to the
console. This example uses the Apache Axis library and includes optional code for authentication to the

Copyright ©2024

 | Developer's Reference Guide | 1121

PingFederate server. For more information see Configuring service authentication on page 653. HTTPS
is recommended when including credentials.

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import java.net.URL;
import javax.xml.namespace.QName;
import com.pingidentity.ws.SSOEntity;
public class SSODirectoryClientSample
{
 public static void main(String[] args) throws Exception
 {
 Service service = new Service();
 Call call = (Call) service.createCall();
 call.setUsername("username");
 call.setPassword("pass");
 URL serviceUrl = new URL(
 "https://localhost:9031/pf-ws/services/
 SSODirectoryService");
 QName qn = new QName("urn:BeanService", "SSOEntity");
 call.registerTypeMapping(SSOEntity.class, qn,
 new org.apache.axis.encoding.ser.BeanSerializerFactory(
 SSOEntity.class, qn),

 new org.apache.axis.encoding.ser.BeanDeserializerFactory(
 SSOEntity.class, qn));
 call.setTargetEndpointAddress(serviceUrl);
 call.setOperationName(new QName(
 "http://www.pingidentity.com/servicesSSODirectoryService",
 "getIDPList"));
 Object result = call.invoke(new Object[] {});
 if (result instanceof SSOEntity[])
 {
 SSOEntity[] idpArray = (SSOEntity[])result;
 for (SSOEntity idp : idpArray)
 {
 System.out.println(idp.getEntityId() + " " +
 idp.getCompany());
 }
 }
 else
 {
 System.out.println("Received problem response from
 server: " + result);
 }
 }
}

SOAP request and response examples
A client application must send a SOAP request to the PingFederate server specifying the requested web
service and the specific method.

The following is a typical SOAP request for an identity provider (IdP) list using the single sign-on (SSO)
Directory Service.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:getIDPList

Copyright ©2024

 | Developer's Reference Guide | 1122

 soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1=
 "https://localhost:9031/ssodir/services/
 SSODirectoryService"/>
 </soapenv:Body>
</soapenv:Envelope>

The PingFederate server's web service returns a response containing the list you requested. The following
is an example of a typical SOAP response for an IdP list.

<?xml version="1.0" encoding="UTF-8" ?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
 soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <getIDPListResponse
 soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <getIDPListReturn
 soapenc:arrayType=
 "ns1:IDP[2]" xsi:type="soapenc:Array"
 xmlns:ns1="urn:BeanService"
 xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding">
 <getIDPListReturn href="#id0" />
 <getIDPListReturn href="#id1" />
 </getIDPListReturn>
 </getIDPListResponse>
 <multiRef id="id0" soapenc:root="0"
 soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns2:IDP"
 xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns2="urn:BeanService">
 <company xsi:type="xsd:string">MegaMarket</company>
 <entityId xsi:type="xsd:string">www.megamarket.com
 </entityId>
 </multiRef>
 <multiRef id="id1" soapenc:root="0"
 soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns3:IDP" xmlns:ns3="urn:BeanService"
 xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <company xsi:type="xsd:string">Ping</company>
 <entityId
 xsi:type="xsd:string">pingfederate3:default:entityId
 </entityId>
 </multiRef>
 </soapenv:Body>
</soapenv:Envelope>

OAuth Client Management Service
PingFederate includes a REST-based web service for OAuth client management.

The OAuth client management service is provided primarily for organizations with many OAuth clients, for
allowing programmatic management of OAuth clients, and as an alternative to using the administrative
console, the administrative API, or dynamic client registration.

Copyright ©2024

 | Developer's Reference Guide | 1123

The /pf-ws/rest/oauth/clients and /pf-ws/rest/oauth/clients/<clientId> REST
resources are URL path extensions of the PingFederate runtime endpoint:

▪ https://www.example.com:9031/pf-ws/rest/oauth/clients
▪ https://www.example.com:9031/pf-ws/rest/oauth/clients/<clientId>

 Important:

The OAuth Client Management Service requires client records to be stored on an external storage.

 Note:

Applications must authenticate to this web service using HTTP Basic authentication and credentials
validated through an instance of a Password Credential Validator (PCV). The PCV instance, in turn, must
be selected in the OAuth authorization server (AS) configuration.

 Tip:

The administrative API can also manage OAuth clients programmatically regardless of whether the client
records are managed in XML files or in a database.

Endpoint: /pf-ws/rest/oauth/clients

This resource accepts the POST, PUT, and GET methods. The POST and PUT methods described in this
section require parameter name/value pairs formatted in JSON.

POST

Use the POST method to create a new client based on the parameters provided in the
request. Parameters correspond to the fields on the Client window. The required MIME type is
application/json.

JSON Parameters

Parameter Description

clientId

(Required)

A unique identifier the client provides to the resource server (RS) to
identify itself. This identifier is included with every request the client
makes.

enabled Specifies whether the client is enabled. The default value is true. A
valid value is either true or false.

name

(Required)

A descriptive name for the client instance. This name appears when
the user is prompted for authorization.

description A description of what the client application does. This description
appears when the user is prompted for authorization.

Copyright ©2024

 | Developer's Reference Guide | 1124

Parameter Description

clientAuthnType The authentication method that the client uses.

▪ Set to none if your use case does not require client
authentication.

 Note:

A value other than none is required for any of the following use
cases:

▪ This client uses the client_credentials grant type.
See the grantTypes parameter.

▪ This client signs its ID tokens using an HMAC signing
algorithm. See the idTokenSigningAlgorithm
parameter.

▪ This client can access the Session
Revocation API endpoint. See the
grantAccessSessionRevocationApi parameter.

▪ This client sends a secret parameter value.

▪ Set to SECRET for HTTP Basic authentication.

This authentication method requires the secret parameter.
▪ Set to CLIENT_CERT for mutual SSL/TLS authentication;

recommended for client applications where security policies
prohibit storing passwords.

This authentication method requires the
clientCertIssuerDn and clientCertSubjectDn
parameters.

 Important:

If you choose mutual SSL/TLS authentication, you must
configure a secondary PingFederate HTTPS port. For more
information, see the property pf.secondary.https.port in
the table under Configuring PingFederate properties on page
771.

▪ Set to PRIVATE_KEY_JWT check box if the client authenticates
through the private_key_jwt client authentication method,
as defined in Client Authentication in the OpenID Connect
specification. For more information, see openid.net/specs/
openid-connect-core-1_0.html#ClientAuthentication.

secret The client password or phrase.

Required when the clientAuthnType parameter is set to
SECRET.

Copyright ©2024

https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

 | Developer's Reference Guide | 1125

Parameter Description

clientCertIssuerDnThe issuer distinguished name (DN) of the client certificate.

These are certificate authority (CA) certificates imported into
PingFederate on the Security # Certificate & Key Management #
Trusted CAs window. Alternatively, it might be set to Trust Any to
trust all the issuers found on the Trusted CAs window.

Required when the clientAuthnType parameter is set to
CLIENT_CERT.

clientCertSubjectDnThe subject DN of the client certificate.

Required when the clientAuthnType parameter is set to
CLIENT_CERT.

tokenEndpointAuthSigningAlgorithmThe signing algorithm that the client must use to sign the JSON web
tokens (JWT) for client authentication.

Applicable only when the clientAuthnType parameter is provided
with a value of PRIVATE_KEY_JWT.

accepts the following values:

▪ RS256 - RSA using SHA-256
▪ RS384 - RSA using SHA-384
▪ RS512 - RSA using SHA-512
▪ ES256 - ECDSA using P256 Curve and SHA-256
▪ ES384 - ECDSA using P384 Curve and SHA-384
▪ ES512 - ECDSA using P521 Curve and SHA-512
▪ PS256 - RSASSA-PSS using SHA-256
▪ PS384 - RSASSA-PSS using SHA-384
▪ PS512 - RSASSA-PSS using SHA-512

 Note:

RSASSA-PSS signing algorithms require a Java 8 or Java 11
runtime environment, or an integration with a hardware security
module (HSM) and a static-key configuration for OAuth and
OpenID Connect. For more information on HSM integration and
static keys, see Supported hardware security modules on page
168 and Keys for OAuth and OpenID Connect on page 633,
respectively.

If this parameter is not provided, the client can use any of the
supported signing algorithms.

Copyright ©2024

 | Developer's Reference Guide | 1126

Parameter Description

enforceReplayPreventionThis field determines whether mandates a unique signed JWT
from the client for each request when the client is configured to
authenticate via the private_key_jwt client authentication method, to
transmit request parameters using in signed request objects, or to
do both.

A valid value is either true or false.

 Note:

The underlying Assertion Replay Prevention Service is cluster-
aware. For more information, see Assertion Replay Prevention
Service on page 195.

requireSignedRequestsDetermines whether the client must transmit request parameters
in a single, self-contained parameter. The parameter name is
request. The value of the request parameter is a signed JWT
whose claims represent the request parameters of the authorization
request. The OpenID Connect specification calls this JWT a request
object.

A valid value is either true or false.

 Note:

If a client includes in an authorization request a request parameter
other than client_id, as a parameter outside of the signed
request object and a claim inside of the signed request object,
always uses the claim value found inside the signed request object
to process the request further.

For the client_id request parameter, the values outside of the
signed request object must match the claim values inside of the
signed request object. If the values do not match, returns an error
message to the client.

If a request parameter is found only outside of the signed request
object, ignores the request parameter and returns no error
message.

 Tip:

Per OAuth and OpenID Connect specifications, a client must always
include in an authorization request the client_id parameter
outside of the signed request object.

For more information about request objects, see JWT Secured
Authorization Request (JAR) draft specification.

If this parameter is not provided, a value of false is assumed.

Copyright ©2024

https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30

 | Developer's Reference Guide | 1127

Parameter Description

requestObjectSigningAlgorithmThe signing algorithm that the client must use to sign its request
objects for transmission of request parameters.

Applicable only when the client might send its authorization requests
using request objects.

accepts the following values:

▪ RS256 - RSA using SHA-256
▪ RS384 - RSA using SHA-384
▪ RS512 - RSA using SHA-512
▪ ES256 - ECDSA using P256 Curve and SHA-256
▪ ES384 - ECDSA using P384 Curve and SHA-384
▪ ES512 - ECDSA using P521 Curve and SHA-512
▪ PS256 - RSASSA-PSS using SHA-256
▪ PS384 - RSASSA-PSS using SHA-384
▪ PS512 - RSASSA-PSS using SHA-512

 Note:

RSASSA-PSS signing algorithms require a Java 8 or Java 11
runtime environment, or an integration with a hardware security
module (HSM) and a static-key configuration for OAuth and
OpenID Connect. For more information on HSM integration and
static keys, see Supported hardware security modules on page
168 and Keys for OAuth and OpenID Connect on page 633,
respectively.

If this parameter is not provided, the client can use any of the
supported signing algorithms.

Copyright ©2024

 | Developer's Reference Guide | 1128

Parameter Description

jwksUrl, or

jwks

The URL of the JSON Web Key Set (JWKS) or the actual JWKS
from the client.

If the client is configured to use the private_key_jwt client
authentication method, to transmit request parameters in signed
request objects, or to transmit CIBA request parameters in signed
request objects, only one of the previous values is required for to
verify the authenticity of the JWTs.

Either value can be defined even if the client is not configured to
use JWTs for authentication or transmission of request parameters.
This flexibility allows the client to transmit request parameters in
signed request objects for some requests and without the use of
signed request objects for some other transactions. For information
on runtime processing, see .

If the client signs its JWTs using an RSASSA-PSS signing
algorithm, must be deployed to run in a Java 8 or Java 11 runtime
environment, or integrated with a hardware security module (HSM)
and a static-key configuration for OAuth and OpenID Connect. For
more information on HSM integration and static keys, see Supported
hardware security modules on page 168 and Keys for OAuth and
OpenID Connect on page 633, respectively.

If the client is configured to encrypt ID tokens using an asymmetric
encryption algorithm, either the JWKS URL or the actual JWKS
must be provided. See the ID Token Key Management Encryption
Algorithm setting.

redirectUris URIs where the OAuth AS may redirect the resource owner's user
agent after authorization is obtained. The authorization code and
implicit grant types require at least one redirection URI.

logoUrl The location of the logo used on user-facing OAuth grant
authorization and revocation pages. For best results with the
installed HTML templates, the recommended size is 72 x 72 pixels.

bypassApprovalPageIf set to true, resource-owner approval for client access is
assumed, and no longer presents to the user an authorization
consent page or redirects to a trusted web application that is
responsible to prompt the user for authorization for this client.

A valid value is either true or false.

If this parameter is not provided, a value of false is assumed.

Copyright ©2024

 | Developer's Reference Guide | 1129

Parameter Description

restrictScopes This setting controls whether all existing common scopes and
scope groups, and those created in the future, or only the select few
should be made available to the client.

A valid value is either true or false.

When set to true, PingFederate limits the client to a list of common
scopes and scope groups as specified by the restrictedScopes
parameter.

When set to false, all existing common scopes and scope groups
and those created in the future are available to the client.

If this parameter is not provided, a value of false is assumed.

 Note:

Depending on the configured dynamic scope patterns and whether
they are defined as common or exclusive dynamic scopes, this
setting and the restrictedScopes parameter value can impact
the results of scope evaluation. The default scope, however,
is always allowed for and available to all clients. For detailed
information, see the Dynamic scope evaluation and per-client
scope management section in Scopes and scope management on
page 499.

restrictedScopes Used in conjunction with the restrictScopes parameter value of
true to limit this client to a list of common scopes or scope groups
in addition to the default scope. The rest and any common scopes
and scope groups created in the future become invalid for the client;
that is, if the client tries to use such scope or scope group, it will
receive an invalid_scope error message from PingFederate.

exclusiveScopes This setting controls whether any exclusive scopes and scope
groups should be made available to the client.

As needed, provide this parameter with a list of exclusive scopes
or scope groups that are intended for the client. The rest and any
exclusive scopes and scope groups created in the future become
invalid for the client. In other words, if the client tries to use such
scope or scope group, it will receive an invalid_scope error
message from PingFederate.

If this parameter is not provided, no exclusive scopes or scope
groups are available to the client.

 Note:

Depending on the configured dynamic scope patterns and whether
they are defined as common or exclusive dynamic scopes, this
setting can impact the results of scope evaluation. The default
scope, however, is always allowed for and available to all clients.
For detailed information, see the Dynamic scope evaluation
and per-client scope management section in Scopes and scope
management on page 499.

Copyright ©2024

 | Developer's Reference Guide | 1130

Parameter Description

grantTypes An array of one or more grant types, which a client can request.

accepts the following values:

▪ authorization_code
▪ implicit
▪ refresh_token
▪ client_credentials
▪ urn:ietf:params:oauth:grant-type:device_code
▪ urn:openid:params:grant-type:ciba
▪ password
▪ extension (JWT Bearer Token or SAML 2.0 Bearer Assertion)

For more information about each grant type, see Grant types.

restrictedResponseTypesAn array of one or more response types, which a client can request.
.

accepts the following values:

▪ code
▪ code id_token
▪ code id_token token
▪ code token
▪ id_token
▪ id_token token
▪ token

For more information about these response types, see Definitions of
Multiple-Valued Response Type Combinations.

If one or more response types are specified, the resulting client is
only allowed to send one of the specified response types at runtime.
Requests from this client with other response types will be rejected.

Response type and grant type parameters must be provided in
tandem because certain response types require one or more grant
types, and vice versa. The following table provides a summary of
their relationship.

response type grant types

code authorization_code

code id_token authorization_code and
implicit

code id_token token authorization_code and
implicit

code token authorization_code and
implicit

id_token implicit

id_token token implicit

token implicit

Copyright ©2024

 | Developer's Reference Guide | 1131

Parameter Description

defaultAccessTokenManagerIdDetermines the default Access Token Management (ATM) instance
for this client.

validateUsingAllEligibleAtmsApplicable only to resource server clients.

If selected, this resource server client is not required to specify the
additional access_token_manager_id or aud parameters to
disambiguate the ATM instance in its token validation requests.
When the resource server client does not specify the desired ATM
instance, validates the access tokens against all eligible ATM
instances. This simplifies interactions with PingAccess by avoiding
the need to align resource URIs between PingAccess and .

This check box is not selected by default.

requireProofKeyForCodeExchangeApplicable when the client is configured to support the
authorization_code grant type.

A valid value is either true or false.

Determines whether the client must provide certain parameters
to reduce the risk of authorization code interception attack. For
more information, see the Proof Key for Code Exchange (PKCE) by
OAuth Public Clients specification.

When enabled, this client must include a one-time string value
through the use of the code_challenge parameter in its
authorization request. For more information, see Authorization
endpoint on page 1069. It must also submit the corresponding code
verifier through the code_verifier parameter in its token request
when exchanging an authorization code for an access token. For
more information, see OAuth grant type parameters on page 1086.

If this parameter is not provided, the assumed value is false.

persistentGrantExpirationTypeOverrides the Persistent Grant Max Lifetime value set globally in
System # OAuth Settings # Authorization Server Settings.

 Note:

This setting can be overridden per grant-mapping
configuration through the use of an extended persistent
grant attribute PERSISTENT_GRANT_LIFETIME. The
PERSISTENT_GRANT_LIFETIME attribute is defined in System
OAuth Settings # Authorization Server Settings. When this
attribute is active, you can set the lifetime of persistent grants based
on the outcome of attribute mapping expressions in individual grant-
mapping configurations. For grant-mapping configurations that do
not require this fine-grain control, you can configure them to use the
default value.

persistentGrantExpirationTimeAn integer representing units of time for storage of persistent grants
for this client.

Required when the persistentGrantExpirationType
parameter is provided with a value of
OVERRIDE_SERVER_DEFAULT.

Copyright ©2024

 | Developer's Reference Guide | 1132

Parameter Description

persistentGrantExpirationTimeUnitUnits for the expiration time set by the
persistentGrantExpirationTime parameter.

Allowed values:

▪ h (hours)
▪ d (days)
▪ n (minutes)

Required when the persistentGrantExpirationType
parameter is provided with a value of
OVERRIDE_SERVER_DEFAULT.

persistentGrantIdleTimeoutTypeOverrides the Persistent Grant Idle Timeout field value set globally
in System # OAuth Settings # Authorization Server Settings.

Allowed values:

▪ SERVER_DEFAULT (the default): Use the global setting.
▪ NONE: Grants do not expire due to inactivity.
▪ OVERRIDE_SERVER_DEFAULT: Use in conjunction

with the persistentGrantIdleTimeout and
persistentGrantIdleTimeoutUnit parameters to set the
idle timeout window.

If an idle timeout value is configured, the idle timeout window slides
when a persistent grant is updated. For more information, see .

If you configure an idle timeout value, the idle timeout window slides
when a persistent grant updates. When you have an idle timeout
value configured without a maximum lifetime, persistent grants
remain valid until they expire due to inactivity or until the grant
storage revokes or removes them. When you have an idle timeout
value configured with a maximum lifetime, persistent grants remain
valid until they expire due to inactivity or lifetime expiration or until
the grant storage removes them.

persistentGrantIdleTimeoutAn integer representing the inactivity timeout value for this client.

Required when the persistentGrantIdleTimeoutType
parameter is provided with a value of
OVERRIDE_SERVER_DEFAULT.

persistentGrantIdleTimeoutTimeUnitUnits for the inactivity timeout value set by the
persistentGrantIdleTimeout parameter.

Allowed values:

▪ h (hours)
▪ d (days)
▪ n (minutes)

Required when the persistentGrantIdleTimeoutType
parameter is provided with a value of
OVERRIDE_SERVER_DEFAULT.

Copyright ©2024

 | Developer's Reference Guide | 1133

Parameter Description

refreshRolling Overrides the Roll Refresh Token Values setting configured
globally in System # OAuth Settings # Authorization Server
Settings.

A valid value is either true or false.

Note that a value of true does not override the Minimum Interval
to Roll Refresh Tokens value set on the Authorization Server
Settings window.

If this parameter is not provided, the Roll Refresh Token Values
setting configured globally setting in the System # OAuth Settings
Authorization Server Settings window is used.

refreshTokenRollingIntervalTypeWhen set to the default value, SERVER_DEFAULT, the client's
minimum refresh token rolling interval comes from the global value
in the Minimum Interval to Roll Refresh Tokens field on the
Authorization Server Settings window.

When set to OVERRIDE_SERVER_DEFAULT, the client's
refresh token rolling interval comes from the value of the
refreshTokenRollingInterval parameter.

refreshTokenRollingIntervalAn integer from 0 to 8760 that represents the minimum number of
hours that must pass before a new refresh token can be issued.
This value overrides the global value in the Minimum Interval to
Roll Refresh Tokens field on the Authorization Server Settings
window when the refreshTokenRollingIntervalType
parameter is set to OVERRIDE_SERVER_DEFAULT.

Required when the refreshTokenRollingIntervalType
parameter is set to OVERRIDE_SERVER_DEFAULT.

requirePushedAuthorizationRequestsWhen set to true the client must use the PAR endpoint /as/
par.oauth2 on the AS to initiate authorization flows. When set to
false, the client can use the PAR endpoint. The default value is
false.

This parameter works in conjunction with the PAR Status setting on
the AS. For example:

▪ If PAR is Enabled on the AS and this parameter is set to true,
then the client must use PAR

▪ If PAR is Enabled on the AS but this parameter is set to false,
then the client can use PAR

▪ If PAR is Required on the AS but this parameter is set to
false, then the client must use PAR

▪ If PAR is Disabled on the AS and this parameter is set to true,
then the client cannot access the AS

Do not set this parameter to true if PAR is disabled on the AS.

For more information about PAR, see Pushed authorization
requests endpoint on page 1113 and Configuring authorization
server settings on page 488.

Copyright ©2024

 | Developer's Reference Guide | 1134

Parameter Description

OpenID Connect client settings

 Note:
The following parameters are only applicable when this client supports the OpenID Connect
use cases.

idTokenSigningAlgorithmThe JSON Web Signature (JWS) algorithm required for the OpenID
Connect ID tokens.

Allowed values:

▪ none - No signing algorithm
▪ HS256 - HMAC using SHA-256
▪ HS384 - HMAC using SHA-384
▪ HS512 - HMAC using SHA-512
▪ ES256 - ECDSA using P256 Curve and SHA-256
▪ ES384 - ECDSA using P384 Curve and SHA-384
▪ ES512 - ECDSA using P521 Curve and SHA-512
▪ RS256 - RSA using SHA-256
▪ RS384 - RSA using SHA-384
▪ RS512 - RSA using SHA-512
▪ PS256 - RSASSA-PSS using SHA-256
▪ PS384 - RSASSA-PSS using SHA-384
▪ PS512 - RSASSA-PSS using SHA-512

 Note:

RSASSA-PSS signing algorithms require a Java 8 or Java 11
runtime environment, or an integration with a hardware security
module (HSM) and a static-key configuration for OAuth and
OpenID Connect. For more information on HSM integration and
static keys, see Supported hardware security modules on page
168 and Keys for OAuth and OpenID Connect on page 633,
respectively.

 Important:

If static keys for OAuth and OpenID Connect are enabled, use either
an RSA algorithm or an EC algorithm that has been configured with
an active static key.

Copyright ©2024

 | Developer's Reference Guide | 1135

Parameter Description

idTokenEncryptionAlgorithmThe algorithm used to encrypt or otherwise determine the value of
the content encryption key.

Allowed values:

▪ dir - Direct Encryption with symmetric key
▪ A128KW - AES-128 Key Wrap
▪ A192KW - AES-192 Key Wrap
▪ A256KW - AES-256 Key Wrap
▪ A128GCMKW - AES-GCM-128 key encryption
▪ A192GCMKW - AES-GCM-192 key encryption
▪ A256GCMKW - AES-GCM-256 key encryption
▪ ECDH-ES - ECDH-ES
▪ ECDH-ES+A128KW - ECDH-ES with AES-128 Key Wrap
▪ ECDH-ES+A192KW - ECDH-ES with AES-192 Key Wrap
▪ ECDH-ES+A256KW - ECDH-ES with AES-256 Key Wrap
▪ RSA-OAEP - RSAES-OAEP

idTokenContentEncryptionAlgorithmThe content encryption algorithm used to perform authenticated
encryption on the plain text payload of the token.

Required if an algorithm is provided through the
idTokenEncryptionAlgorithm parameter.

Allowed values:

▪ A128CBC-HS256 - Composite AES-CBC-128 HMAC-SHA-256
▪ A192CBC-HS384 - Composite AES-CBC-192 HMAC-SHA-384
▪ A256CBC-HS512 - Composite AES-CBC-256 HMAC-SHA-512
▪ AES-GCM-128 - A128GCM
▪ AES-GCM-192 - A192GCM
▪ AES-GCM-256 - A256GCM

policyGroupId The desired Open ID Connect policy.

grantAccessSessionRevocationApiSet to true to allow this client to access the Session Revocation
API for back-channel session query and revocation.

A valid value is either true or false.

If this parameter is not provided, a value of false is assumed.

 Note:

If clients are allowed to add sessions to the revocation list, you
can enable the Check session revocation status option in the
applicable Access Token Management instances for the token
validation process to consider whether a session has been added
to the revocation list. For more information, see Managing session
validation settings on page 572.

pairwiseUserType Set to true to allow this client to use pairwise pseudonymous IDs.
This parameter is set to false by default.

sectorIdentifierUriSpecify one HTTPS URL only. This parameter is applicable only if
pairwiseUserType is set to true.

Copyright ©2024

 | Developer's Reference Guide | 1136

Parameter Description

 Note:
If the Track User Sessions for Logout check box is selected in the System # OAuth
Settings # Authorization Server Settings window, you can provide two additional
parameters to enable asynchronous front-channel logout for this client.

pingAccessLogoutCapableIf set to true, sends logout requests through the browser to an
OpenID Connect endpoint in PingAccess as part of the logout
process.

A valid value is either true or false.

If this parameter is not provided, a value of false is assumed.

logoutUris A list of additional endpoints at the relying parties as needed. sends
requests to these URIs through the browser as part of the logout
process. The relying parties must return an image in their logout
responses, otherwise returns an error message or redirects to the
InErrorResource parameter value, if specified..

Device Authorization Grant client settings

Copyright ©2024

 | Developer's Reference Guide | 1137

Parameter Description

deviceFlowSettingTypeThis field controls whether to use global device authorization grant
settings defined on the System # OAuth Settings # Authorization
Server Settings window.

Allowed values are SERVER_DEFAULT and
OVERRIDE_SERVER_DEFAULT.

Set to OVERRIDE_SERVER_DEFAULT and configure any of the
following settings:

userAuthzUrlOverride

This field controls whether PingFederate should use a different
URL, perhaps for ease of use or branding purposes, when
formulating the verification URLs to be included in its device
authorization responses. For more information, see Device
authorization endpoint on page 1104.

For example, if this field is configured with a value of https://
www.example.org/welcome, PingFederate returns https://
www.example.org/welcome and https://www.example.org/
welcome?user_code=<activationcode> as the verification URIs.

After processing the device authorization response, which
includes the verification URIs, the device presents one of them
to the user. The user is expected to browse to the presented
verification URI on a second device.

 Important:

The target web server must redirect the browser to
PingFederate at its user authorization endpoint. For more
information, see User authorization endpoint on page 1106.
Moreover, it must also preserve the user_code parameter
value, if provided.

For example, if the base URL of your PingFederate server is
https://www.example.com and this field is configured with a
value of https://www.example.org/welcome, the target web
server must redirect as follows:

▪ https://www.example.org/welcome to https://
www.example.com/as/user_authz.oauth2

▪ https://www.example.org/welcome?
user_code=<activationcode> to https://www.example.com/
as/user_authz.oauth2?user_code=<activationcode>

pendingAuthzTimeoutOverride

The lifetime of an activation code (the user_code parameter
value) in seconds.

devicePollingIntervalOverride

The amount of time in seconds that the device waits between
polling requests to the PingFederate token endpoint.

bypassActivationCodeConfirmationOverride

When PingFederate receives a verification request that
includes an activation code (the user_code parameter value),
it prompts the user to confirm the activation code.

This field controls whether PingFederate should skip this
confirmation step.

Set to true if you want PingFederate to skip the confirmation
step.

Copyright ©2024

 | Developer's Reference Guide | 1138

Parameter Description

Client-initiated backchannel authentication (CIBA) client settings

cibaTokenDeliveryModeThe token delivery method that the client supports. supports poll
and ping.

Set to poll if the client can check for the authorization results
periodically at the token endpoint.

Set to ping if the client prefers to wait for a ping callback message
from as a signal that the authorization result is ready for pickup.

If the CIBA grant type is enabled, this parameter is required; no
value is assumed.

cibaNotificationEndpointThe client's notification endpoint, to which sends its ping call back
messages.

Required only if ping is the configured token delivery method.

cibaPollingIntervalSpecifies the number of seconds that the client must wait between
its attempts to check for the authorization results at the token
endpoint. When receives a token request within this time interval, it
returns a slow_down error message to the client.

A valid value ranges from 1 to 3600.

If the CIBA grant type is enabled, this parameter is required; no
value is assumed.

cibaPolicyId Specifies the CIBA request policy associated with the client.

uses CIBA request policies to determine various aspects of
CIBA authentication request, such as the maximum lifetime of
authentication requests, the validity of unsigned login hint tokens,
and the mapping configuration of identity hints.

Provide an existing CIBA policy

If this parameter is not provided and the CIBA grant type is enabled,
PingFederate associates the client with the CIBA request policy
has been designated as the default CIBA request policy on the
Applications # OAuth # CIBA Request Policies window.

cibaUserCodeSupportedIndicates whether the client supports user code.

The purpose of this code is to authorize the transmission of an
authentication request to the user's authentication device.

A valid value is either true or false.

If this parameter is not provided and the CIBA grant type is enabled,
user code support is not enabled.

When user code support is enabled, the associated CIBA request
policy must also be user code enabled.

Copyright ©2024

 | Developer's Reference Guide | 1139

Parameter Description

cibaRequireSignedRequestsDetermines whether the client must transmit request parameters
in a single, self-contained parameter. The parameter name is
request. The value of the request parameter is a signed JWT
whose claims represent the request parameters of the authorization
request. The OpenID Connect specification calls this JWT a request
object.

A valid value is either true or false.

If this parameter is not provided and the CIBA grant type is enabled,
CIBA signed requests are not required.

If CIBA signed requests are required, the client must also be
configured with either the JWKS URL or the actual JWKS from the
client.

cibaRequestObjectSigningAlgorithmThe signing algorithm that the client must use to sign its request
objects for transmission of request parameters.

accepts the following values:

▪ RS256 - RSA using SHA-256
▪ RS384 - RSA using SHA-384
▪ RS512 - RSA using SHA-512
▪ ES256 - ECDSA using P256 Curve and SHA-256
▪ ES384 - ECDSA using P384 Curve and SHA-384
▪ ES512 - ECDSA using P521 Curve and SHA-512
▪ PS256 - RSASSA-PSS using SHA-256
▪ PS384 - RSASSA-PSS using SHA-384
▪ PS512 - RSASSA-PSS using SHA-512

 Note:

RSASSA-PSS signing algorithms require a Java 8 or Java 11
runtime environment, or an integration with a hardware security
module (HSM) and a static-key configuration for OAuth and
OpenID Connect. For more information on HSM integration and
static keys, see Supported hardware security modules on page
168 and Keys for OAuth and OpenID Connect on page 633,
respectively.

If this parameter is not provided and the CIBA grant type is enabled,
the client can use any of the allowed signing algorithms.

Extended properties

Copyright ©2024

 | Developer's Reference Guide | 1140

Parameter Description

extendedParametersProvide values for extended client metadata fields.

{
 ...,
 "extendedParams": {
 "entry": [
 {
 "key": "ContactName",
 "value": {
 "elements": "J. Smith"
 }
 },
 {
 "key": "ContactNumbers",
 "value": {
 "elements": [
 "555-123-4567",
 "555-987-6543"
]
 }
 }
]
 },
 ...
}

This sample request provides a value for a single-valued client
metadata field, ContactName, and multiple values for a multivalued
client metadata field, ContactNumbers.

Extended client metadata fields are defined on the System # Server
Extended Properties window.

Sample JSON

{
 "client": [
 {
 "secret":
 "L1u508MfeZYTvR03kcpa6ezysNEspFEtzxSAIEOTll8AuNd2pnNqjkRdOXzfTFXc",
 "clientId": "SampleClient",
 "description": "This is a sample client.",
 "grantTypes": [
 "refresh_token",
 "authorization_code"
],
 "name": "Sample Client",
 "redirectUris": [
 "https://www.example.com/redirect1",
 "https://www.example.com/redirect2"
]
 }
]
}

Return codes

▪ 200 – Success

Copyright ©2024

 | Developer's Reference Guide | 1141

▪ 400 – Failed To Create Client

The response contains details as to why the client creation failed.
▪ 401 – Invalid Credentials

The user does not exist or is not authorized to create a client.
▪ 500 – Internal Server Error

An unknown error has occurred.

PUT

Updates client details for a specified client.

 Note:

You cannot update a client ID value. You can delete the client record and create a new one with a
new client ID value.

JSON Parameters

The same parameters described for POST apply for PUT with one addition:
forceSecretChange.

Use this parameter, set to true, in conjunction with the secret parameter to change a client
pass phrase.

A valid value is either true or false.

If this parameter is not provided, a value of false is assumed.

 Note:

If the secret parameter is used without a forceSecretChange parameter value of true,
the secret value is ignored.

Sample JSON

{
 "client": [
 {
 "secret":
 "L1u508MfeZYTvR03kcpa6ezysNEspFEtzxSAIEOTll8AuNd2pnNqjkRdOXzfTFXc",
 "forceSecretChange": "true",
 "clientId": "SampleClient",
 "description": "This is a sample client.",
 "grantTypes": [
 "refresh_token",
 "authorization_code"
],
 "name": "Sample Client",
 "redirectUris": [
 "https://www.example.com/redirectOne",
 "https://www.example.com/redirectTwo"
]
 }
]
}

Copyright ©2024

 | Developer's Reference Guide | 1142

Return codes

▪ 200 – Success

The body contains a list of updated clients.

400 – Failed To Update Client

The response contains details as to why the client could not be updated.
▪ 401 – Invalid Credentials

The user does not exist or is not authorized to update a client.
▪ 500 – Internal Server Error

An unknown error has occurred.

GET

Retrieves details for all OAuth clients.

JSON Parameters

None.

Return codes

▪ 200 – Success

The body contains JSON data for all clients.

 Note:

The parameter refreshRolling is not returned if the AS global setting is set for a client
(the default).

▪ 400 – Failed To Retrieve Clients

The response contains details as to why clients could not be retrieved.
▪ 401 – Invalid Credentials

The user does not exist or is not authorized.
▪ 500 – Internal Server Error

An unknown error has occurred.

Endpoint:/pf-ws/rest/oauth/clients/<clientId>

This resource accepts the GET and DELETE methods.

GET

Retrieves details for the specified client ID.

JSON Parameters

None.

Return codes

Copyright ©2024

 | Developer's Reference Guide | 1143

▪ 200 – Success

JSON client parameters are included.

 Note:

The parameter refreshRolling is not returned if the AS global setting is set for a
client, the default setting.

▪ 400 – Failed To Retrieve Client

The response contains details as to why client could not be retrieved.
▪ 401 – Invalid Credentials

The user does not exist or is not authorized.
▪ 500 – Internal Server Error

An unknown error has occurred.

DELETE

Deletes records for the specified client ID.

JSON Parameters

None.

Return codes

▪ 200 – Success
▪ 400 – Failed To Delete Client

The response contains details as to why client could not be deleted.
▪ 401 – Invalid Credentials

The user does not exist or is not authorized.
▪ 405 – Method Not Allowed

The client ID was not specified.
▪ 500 – Internal Server Error

An unknown error has occurred.

Logging

records the actions performed through this endpoint in the runtime-api.log file. While the events
themselves are not configurable, you can adjust the log4j2.xml configuration settings to alter the format
and desired level of detail surrounding each event.

Each log entry contains information relating to the event, including:

▪ Time the event occurred on the server
▪ Administrator username performing the action
▪ Authentication method
▪ Client IP
▪ HTTP method
▪ REST endpoint
▪ HTTP status code

Each of the above fields is separated by a vertical pipe (|) for ease of parsing.

Copyright ©2024

 | Developer's Reference Guide | 1144

OAuth Access Grant Management Service
PingFederate includes a REST-based web service to manage OAuth persistent grants administratively.

The OAuth access grant management service enables retrieval and revocation of persistent grants and
their associated extended attribute names and values, if any, on a per-client or per-resource owner basis.

 Important:

Client records must be stored in an external client data store.

 Note:

Applications must authenticate to this web service using HTTP Basic authentication and credentials
validated through an instance of a Password Credential Validator (PCV). The PCV instance, in turn, must
be selected in the OAuth authorization server (AS) configuration.

Endpoints

Manage by client

/pf-ws/rest/oauth/clients/<clientId>/grants[/<grantId>]

Manage by user (based on the USER_KEY value)

/pf-ws/rest/oauth/users/<userKey>/grants[/<grantId>]

Both REST resources accept the GET, for retrieval methods, and DELETE, for revocation methods. The
results are formatted in JSON.

Parameters

Parameter Description

clientId The client ID for which to retrieve or revoke grants.

Required to manage grants for a specific client.

userKey The USER_KEY value for which to retrieve or revoke grants.

Required to manage grants for a specific resource owner.

 Tip:

The USER_KEY value varies, depending on its fulfillment based on the
mapping configuration defined in the IdP Adapter Grant Mapping,
Authentication Policy Contract Mapping, or Resource Owner
Credentials Grant Mapping tabs.

Copyright ©2024

 | Developer's Reference Guide | 1145

Parameter Description

grantId

(Optional)

The persistent grant identifier for which to retrieve or revoke a specific
grant.

The value corresponds to the value of the id field found in
the JSON array of grants returned from a previous GET /
oauth/clients/<clientId>/grants or GET /oauth/
users/<userKey>/grants request.

 Note:

If this parameter is not specified, the request applies to all grants for the
client or user.

Cross Site Request Forgery Protection

Both endpoints require the X-XSRF-HEADER HTTP Header with any value to prevent cross site
request forgery.

Example 1

Sample request

A request to retrieve all grants for client with an ID value of ac_client. Note that this client
is configured with Allowed Grant Types values of Authorization Code and Refresh Token.

GET /pf-ws/rest/oauth/clients/ac_client/grants HTTP/1.1
Host: localhost:9031
Authorization: Basic YWRtaW46MkZlZGVyYXRl
X-XSRF-HEADER: PingFederate

Sample response

{
 "items": [
 {
 "id": "ixqWL3k9ZnPxjTaphcFLrVqwdrtvc6tV",
 "userKey": "asmith",
 "grantType": "AUTHORIZATION_CODE",
 "scopes": [],
 "clientId": "ac_client",
 "issued": "2019-03-15T20:00:27.343Z",
 "updated": "2019-03-15T20:00:27.343Z",
 "grantAttributes": [
 {
 "name": "pgeaAttrMulti",
 "values": [

 "CN=group1,OU=Resources,DC=example,DC=local",

 "CN=group2,OU=Resources,DC=example,DC=local"
]
 },
 {
 "name": "pgeaAttrSingle",
 "values": [
 "asmith@example.local"

Copyright ©2024

 | Developer's Reference Guide | 1146

]
 }
]
 }
]
}

Example 2

Sample request

A request to retrieve all grants for client with an ID value of im_client. This client is
configured with an Allowed Grant Types value of Implicit, and PingFederate is configured
to reuse existing persistent access grants for the implicit grant type on the System # OAuth
Settings # Authorization Server Settings window.

GET /pf-ws/rest/oauth/clients/im_client/grants HTTP/1.1
Host: localhost:9031
Authorization: Basic YWRtaW46MkZlZGVyYXRl
X-XSRF-HEADER: PingFederate

Sample response

{
 "items": [
 {
 "id": "G7fV0HVALkplTl1Hdw109DYzlLNPXXIt",
 "userKey": "asmith",
 "grantType": "IMPLICIT",
 "scopes": [],
 "clientId": "im_client",
 "issued": "2019-03-15T18:20:39.652Z",
 "updated": "2019-03-15T18:20:39.652Z"
 }
]
}

For more information about persistent grants and their relationship with various grant types, see Transient
grants and persistent grants on page 79.

Return codes

▪ 200 – Success
▪ 204 – Success with no content returned

Returned when revoking a persistent grant.
▪ 401 – Invalid Credentials

The user does not exist, the password is incorrect, or the user account is locked.
▪ 404 – Not Found

Returned when the requested persistent grant or client is not found.
▪ 500 – Internal Server Error

An unknown error has occurred.

Copyright ©2024

 | Developer's Reference Guide | 1147

Logging

records the actions performed through this endpoint in the runtime-api.log file. While the events
themselves are not configurable, you can adjust the log4j2.xml configuration settings to alter the format
and desired level of detail surrounding each event.

Each log entry contains information relating to the event, including:

▪ Time the event occurred on the server
▪ Administrator username performing the action
▪ Authentication method
▪ Client IP
▪ HTTP method
▪ REST endpoint
▪ HTTP status code

Each of the above fields is separated by a vertical pipe (|) for ease of parsing.

OAuth Persistent Grant Management API
This REST-based runtime API facilitates the use case where clients can assume the responsibility of grant
management if the users authorize the clients to do so.

In this scenario, a client prompts the user to approve a specific scope for managing persistent grants
on the user's behalf. If the user approves, the client requests an access token with such scope from
PingFederate. As long as the access token remains valid, the client can retrieve and revoke persistent
grants and their associated extended attribute names and values, if any, for that user.

The activation of the Persistent Grant Management API requires two settings: the scope required to
perform this task and the Access Token Management instance under which the access tokens issued
can be used by clients to manage persistent grants. You can find both settings from the System tab on
the System # OAuth Settings # Authorization Server Settings window. Additionally, clients that are
capable of managing grants on their users' behalf must be configured to use the selected Access Token
Management instance in their client records.

 Note:

To use this runtime API, clients must authenticate by presenting a valid access token with the required
scope. The token is presented as a bearer token through the HTTP Bearer authentication scheme.

 Tip:

Not all OAuth use cases involve persistent grants. For more information, see Transient grants and
persistent grants on page 79.

Endpoint: /pf-ws/rest/oauth/grants[/<grantId>]

This REST resource accepts the GET for retrieval methods, and DELETE for revocation methods. The
results are formatted in JSON.

Parameter

Copyright ©2024

 | Developer's Reference Guide | 1148

Parameter Description

grantId The persistent grant identifier to retrieve or revoke a specific grant.

The value corresponds to the value of the id field found in the JSON
array of grants returned by a previous GET request from this endpoint.

Cross Site Request Forgery Protection

This endpoint requires the X-XSRF-HEADER HTTP Header with any value to prevent cross-site
request forgery.

Sample request

A request to retrieve all grants.

GET /pf-ws/rest/oauth/grants/ HTTP/1.1
Host: localhost:9031
Authorization: Bearer eyJhbG...IKqMfg
X-XSRF-HEADER: PingFederate

In this example, the client prompted the resource owner (Joe) to authorize it to manage persistent
grants on his behalf. Joe agreed and approved the requested adminscope. The client then obtained
an access token with the scope from PingFederate. The issued access token is a self-contained
JSON web token (JWT).

This sample request illustrates a GET request from the client. The client wants to retrieve a list of
grants associated with Joe by presenting the access token to the Persistent Grant Management API
for authentication. The access token is truncated for readability.

Sample response

{
 "items": [
 {
 "id": "5a4nszZOppgo9RfRtrVXNY0Eq5ka1YZ6",
 "userKey": "joe",
 "grantType": "RESOURCE_OWNER_CREDENTIALS",
 "scopes": [
 "phone"
],
 "clientId": "ro_client",
 "issued": "2018-12-15T00:54:30.190Z",
 "updated": "2018-12-15T00:54:30.190Z"
 },
 {
 "id": "PTfURLoaXC97JXU6uilAORSkFQoMOLyV",
 "userKey": "joe",
 "grantType": "AUTHORIZATION_CODE",
 "scopes": [
 "openid",
 "profile",
 "admin"
],
 "clientId": "ac_oic_client",
 "issued": "2018-12-15T18:29:26.018Z",
 "updated": "2018-12-15T18:29:26.018Z"
 },
 {
 "id": "k1oFbxujlGHbfEBfVqDj0aIDllFBzghX",

Copyright ©2024

 | Developer's Reference Guide | 1149

 "userKey": "joe",
 "grantType": "AUTHORIZATION_CODE",
 "scopes": [
 "openid",
 "email",
 "phone"
],
 "clientId": "ac_oic_client",
 "issued": "2018-12-15T19:03:29.439Z",
 "updated": "2018-12-15T19:03:29.439Z"
 },
 {
 "id": "EhzZYggNuFT9EWpw9p21SYCddwAPFAKR",
 "userKey": "joe",
 "grantType": "IMPLICIT",
 "scopes": [
 "openid",
 "profile"
],
 "clientId": "im_oic_client",
 "issued": "2018-12-15T19:04:05.044Z",
 "updated": "2018-12-15T19:04:05.044Z"
 }
]
}

In this example, PingFederate returned four persistent grants associated with the resource owner
from three clients.

Return codes

▪ 200 – Success
▪ 204 – Success with no content returned

Returned when revoking a persistent grant.
▪ 401 – Invalid Credentials

The access token is invalid (including the lack of the required scope) or missing.
▪ 404 – Not Found

Returned when the requested persistent grant is not found or a grant ID is missing.
▪ 500 – Internal Server Error

An unknown error has occurred.

Logging

records the actions performed through this endpoint in the runtime-api.log file. While the events
themselves are not configurable, you can adjust the log4j2.xml configuration settings to alter the format
and desired level of detail surrounding each event.

Each log entry contains information relating to the event, including:

▪ Time the event occurred on the server
▪ Administrator username performing the action
▪ Authentication method
▪ Client IP
▪ HTTP method
▪ REST endpoint
▪ HTTP status code

Copyright ©2024

 | Developer's Reference Guide | 1150

Each of the above fields is separated by a vertical pipe (|) for ease of parsing.

Session Management API by session identifiers
The runtime session management API lets OAuth clients get information about user sessions, extend
sessions, revoke sessions, and delete sessions. Knowing the remaining lifetime of a valid session could,
for example, let an application prompt the user to extend the session.

An OAuth client can take the pi.sri session identifier from its access token and send it to the session
management API in an HTTP GET request. An OAuth client can also send the pi.sri to the session
management API in an HTTP POST request to extend or revoke the sessions. The API returns information
in JSON format about each session associated with the pi.sri, including:

▪ Last activity time
▪ Idle and maximum timeout time
▪ Authentication source that created the session

 Note:

The API response body includes only sessions that were configured with the authentication sessions
capability described in Configuring authentication sessions on page 281.

The session management API works with sessions stored in persistent storage and across clustered
nodes. For this API, the runtime APIs audit log only records session revoke events.

 Important:

OAuth clients must authenticate to the API using their configured client authentication method.

To configure PingFederate so that an OAuth client can use the session management API:

▪ Allow the client to access the session management API, as described in Configuring OAuth clients on
page 529.

▪ Configure the client's access token manager instance to include a pi.sri in access tokens, as described
in Managing session validation settings on page 572.

Session management API by session identifiers endpoints

The session management API by session identifiers has three endpoints, which all require the sri
parameter.

The OpenID Provider configuration endpoint /.well-known/openid-configuration provides
configuration information for OAuth clients to access the session management API endpoints. For more
information, see OpenID Provider configuration endpoint on page 1108.

The session management API endpoints return several response codes, including:

▪ 200 OK: The request was successfully processed.
▪ 400 Bad request: The format of the SRI is invalid.

Endpoint /pf-ws/rest/sessionMgmt/sessions/{sri}

Use HTTP GET requests to get information about all sessions associated with the pi.sri specified by the
sri parameter.

Copyright ©2024

 | Developer's Reference Guide | 1151

Here is a sample GET request from a client to the /pf-ws/rest/sessionMgmt/sessions/{sri}
endpoint:

GET /pf-ws/rest/sessionMgmt/sessions/qzTEiEroxdzAufjYKQawm72lcBE..4RbA
 HTTP/1.1
Host: www.example.com
X-XSRF-Header: PingFederate
Authorization: Basic YWNfY2xpZW50OmdPWDh0NEQ...h3ZjI=
Cookie: PF=K60mOoBlTvWcD4frFzcKF5

After receiving a successful request, the endpoint returns a response like one of the following
samples, depending on whether the status is HAS_VALID_SESSIONS, NO_VALID_SESSIONS, or
SESSION_REVOKED:

▪ {
 "sri": "qzTEiEroxdzAufjYKQawm72lcBE..4RbA",
 "status": "HAS_VALID_SESSIONS",
 "lastActivityTime": "2020-06-10T17:25:00.461Z",
 "authnSessions": [// This section can include multiple sessions
 {
 "authnSource": {
 "sourceType": "IDP_CONN",
 "id": "L07d8fse7dslShd6d_20HA8jP6",
 "entityId": "Amazon_Africa_A" // Only for IDP_CONN
 sourceType sessions
 },
 "id": "ba5a3d97afee5ef9450b710ff932680e3579dc7f",
 "creationTime": "2020-06-10T17:25:00.454Z",
 "idleTimeout": "2020-06-10T18:25:00.461Z",
 "maxTimeout": "2020-06-11T01:25:00.461Z"
 },
 {
 "authnSource": {
 "sourceType": "ADAPTER",
 "id": "HtmlFormAdapter",
 "adapterType": "HTML Form IdP Adapter" // Only for
 ADAPTER sourceType sessions
 },
 "id": "7cbef5022be8d841f14a95ace8987cbb34c77a21",
 "creationTime": "2020-06-10T17:25:00.454Z",
 "idleTimeout": "2020-06-10T18:25:00.461Z",
 "maxTimeout": "2020-06-11T01:25:00.461Z"
 }
]
}

▪ {
 "sri": "qzTEiEroxdzAufjYKQawm72lcBE..4RbA",
 "status": "NO_VALID_SESSIONS",
}

▪ {
 "sri": "qzTEiEroxdzAufjYKQawm72lcBE..4RbA",
 "status": "SESSION_REVOKED",
}

Endpoint /pf-ws/rest/sessionMgmt/sessions/{sri}/extend

Use HTTP POST requests to extend the idleTimeout value of all sessions associated with the pi.sri
specified by the sri parameter.

Copyright ©2024

 | Developer's Reference Guide | 1152

Here is a sample POST request from a client to the /pf-ws/rest/sessionMgmt/sessions/{sri}/
extend endpoint:

POST /pf-ws/rest/sessionMgmt/sessions/qzTEiEroxdzAufjYKQawm72lcBE..4RbA/
extend HTTP/1.1
Host: www.example.com
X-XSRF-Header: PingFederate
Authorization: Basic YWNfY2xpZW50OmdPWDh0NEQ...h3ZjI=
Cookie: PF=K60mOoBlTvWcD4frFzcKF5

After receiving a successful request, the endpoint returns a response like the following sample:

{
 "sri": "qzTEiEroxdzAufjYKQawm72lcBE..4RbA",
 "status": "HAS_VALID_SESSIONS",
 "lastActivityTime": "2020-06-10T18:15:00.461Z", // Updated
 "authnSessions": [// This section can include multiple sessions
 {
 "authnSource": {
 "sourceType": "IDP_CONN",
 "id": "L07d8fse7dslShd6d_20HA8jP6",
 "entityId": "Amazon_Africa_A" // Only for IDP_CONN
 sourceType sessions
 },
 "id": "ba5a3d97afee5ef9450b710ff932680e3579dc7f",
 "creationTime": "2020-06-10T17:25:00.454Z",
 "idleTimeout": "2020-06-10T19:15:00.071Z", // Extended
 "maxTimeout": "2020-06-11T01:25:00.461Z"
 },
 {
 "authnSource": {
 "sourceType": "ADAPTER",
 "id": "HtmlFormAdapter",
 "adapterType": "HTML Form IdP Adapter" // Only for ADAPTER
 sourceType sessions
 },
 "id": "7cbef5022be8d841f14a95ace8987cbb34c77a21",
 "creationTime": "2020-06-10T17:25:00.454Z",
 "idleTimeout": "2020-06-10T19:15:00.071Z", // Extended
 "maxTimeout": "2020-06-11T01:25:00.461Z"
 }
]
}

Endpoint /pf-ws/rest/sessionMgmt/sessions/{sri}/revoke

Use HTTP POST requests to revoke all sessions associated with the pi.sri specified by the sri parameter.

Here is a sample POST request from a client to the /pf-ws/rest/sessionMgmt/sessions/{sri}/
revoke endpoint:

POST /pf-ws/rest/sessionMgmt/sessions/qzTEiEroxdzAufjYKQawm72lcBE..4RbA/
revoke HTTP/1.1
Host: www.example.com
X-XSRF-Header: PingFederate
Authorization: Basic YWNfY2xpZW50OmdPWDh0NEQ...h3ZjI=
Cookie: PF=K60mOoBlTvWcD4frFzcKF5

After receiving a successful request, the endpoint returns a response like the following sample:

{
 "sri": "qzTEiEroxdzAufjYKQawm72lcBE..4RbA",

Copyright ©2024

 | Developer's Reference Guide | 1153

 "status": "SESSION_REVOKED",
}

Endpoint /pf-ws/rest/sessionMgmt/sessions/{sri}/authnSessions/{id}

Use HTTP DELETE requests to remove an authentication session with the specified id parameter from
the sessions associated with the pi.sri specified by the sri parameter.

Here is a sample DELETE request from a client to the /pf-ws/rest/sessionMgmt/sessions/
{sri}/authnSessions/{id} endpoint:

DELETE /pf-ws/rest/sessionMgmt/sessions/qzTEiEroxdzAufjYKQawm72lcBE..4RbA/
authnSessions/ba5a3d97afee5ef9450b710ff932680e3579dc7f HTTP/1.1
Host: www.example.com
X-XSRF-Header: PingFederate
Authorization: Basic YWNfY2xpZW50OmdPWDh0NEQ...h3ZjI=
Cookie: PF=K60mOoBlTvWcD4frFzcKF5

After receiving a successful request, the endpoint returns a response like the following sample:

{
 "sri": "qzTEiEroxdzAufjYKQawm72lcBE..4RbA",
 "status": "HAS_VALID_SESSIONS",
 "lastActivityTime": "2020-06-10T18:15:00.461Z", // Not changed
 "authnSessions": [
 // This section had an IdP connection authentication session
 // with ID = "ba5a3d97afee5ef9450b710ff932680e3579dc7f" and is now
 removed.
 // Only the adapter session remains.
 {
 "authnSource": {
 "sourceType": "ADAPTER",
 "id": "HtmlFormAdapter",
 "adapterType": "HTML Form IdP Adapter"
 },
 "id": "7cbef5022be8d841f14a95ace8987cbb34c77a21",
 "creationTime": "2020-06-10T17:25:00.454Z",
 "idleTimeout": "2020-06-10T19:15:00.071Z",
 "maxTimeout": "2020-06-11T01:25:00.461Z"
 }
]
}

Session Management API by user identifiers
OAuth applications can send a user identifier to the Session Management API endpoint to query or revoke
authentication sessions belonging to the end-user.

 Note:

▪ Allow Access to Session Management API must be enabled on an OAuth client to allow the client to
access this session management API by user identifier.

▪ Adapters must be configured with a Unique User Key Attribute, as described in Setting pseudonym
and masking options on page 398.

▪ The user_key specified in the session management API request must match the value of the Unique
User Key Attribute determined at runtime.

▪ If the Hash Unique User Key Value option is enabled in the Authentication Sessions section in
Authentication # Policies # Sessions, the user identifier passed into the URL parameter user_key
needs to be the hashed value. The hashed value will be visible in server and audit logs, and in session
storage if Make Authentication Sessions Persistent is enabled.

Copyright ©2024

 | Developer's Reference Guide | 1154

▪ This API is different than the other session management APIs in that it only returns currently valid
sessions (status = HAS_VALID_SESSIONS). Revoked sessions (SESSION_REVOKED) or users
without any sessions (NO_VALID_SESSIONS) will not be seen from this API.

▪ The user_key parameter needs to be URL encoded (@ is encoded as %40) since the value appears
as a query parameter in the URL.

Applications can query or revoke user sessions based on user identifiers. The bulk revocation capability
provides a convenient way to expire server-side authentication sessions on a per-user basis if needed.
When revoked and without valid credentials, such end-users will not be able to fulfill authentication
requirements and access protected resources.

An OAuth client needs to obtain a user identifier and send it to the session management API in an HTTP
GET or POST request. If the client is configured to obtain an access token, an ID token, or a User Info
response, it could potentially get the user identifier that way. However, if the client is not configured to
obtain one of these items, or if none of them delivers the applicable user identifier, the client can still use
this endpoint by sending a user identifier. For example, an application for the help desk to query or revoke
all authentication sessions for a given user falls into this category. In this example, the developer will build
an application to prompt the help desk staff to provide a user identifier, which becomes the user_key
parameter value, send a GET or POST request to the session management API endpoint, and display the
result of the request.

The API returns information in JSON format about each session associated with the user, such as:

▪ SRI
▪ Status
▪ Last activity time
▪ Authentication sessions

▪ Authentication Source
▪ ID of the per-authentication source session information
▪ Creation time
▪ Idle and maximum timeout

 Note:

The API response body includes only sessions that were configured with the authentication sessions
capability described in Configuring authentication sessions on page 281.

An OAuth client can also send the user identifier to the session management API in an HTTP POST
request to revoke the sessions.

The session management API works with sessions stored in persistent storage and across clustered
nodes. For this API, the runtime API's audit log only records session revoke events.

 Important:

OAuth clients must authenticate to the API using their configured client authentication method.

To configure PingFederate so that an OAuth client can use the session management API, allow the client
to access the session management API, as described in Configuring OAuth clients on page 529

Session management API by user identifier endpoints

The session management API by user identifiers has one endpoint, which requires the user_key
parameter.

Copyright ©2024

 | Developer's Reference Guide | 1155

The OpenID Provider configuration endpoint /.well-known/openid-configuration provides
configuration information for OAuth clients to access the session management API endpoints. For more
information, see OpenID Provider configuration endpoint on page 1108.

Endpoint /pf-ws/rest/sessionMgmt/users/{user_key}

Use HTTP GET requests to get information about all sessions associated with the user specified by the
user_key parameter.

Sample request:

GET /pf-ws/rest/sessionMgmt/users/john%40test.com-east HTTP/1.1

Sample response

{
 "sri": "A0heNjTF8NwY9MNNmC42IQGDgvw..tHPC",
 "status": "HAS_VALID_SESSIONS",
 "lastActivityTime": "2020-11-18T01:07:20.097Z",
 "authnSessions": [// This section can include multiple sessions
 {
 "authnSource": {
 "sourceType": "IDP_CONN",
 "id": "XMiOW6GGUBNYGYjJdXUEN2jU3Dg",
 "entityId": "CIAM.Google"
 },
 "id": "ba5a3d97afee5ef9450b710ff932680e3579dc7f",
 "creationTime": "2020-11-18T01:07:20.096Z",
 "idleTimeout": "2020-11-18T02:07:20.097Z",
 "maxTimeout": "2020-11-19T09:07:20.096Z"
 },
 {
 "authnSource": {
 "sourceType": "ADAPTER",
 "id": "CIAMHtml",
 "adapterType": "HTML Form IdP Adapter"
 },
 "id": "7cbef5022be8d841f14a95ace8987cbb34c77a21",
 "creationTime": "2020-11-18T01:07:19.537Z",
 "idleTimeout": "2020-11-18T02:07:20.097Z",
 "maxTimeout": "2020-11-19T09:07:19.537Z"
 }
]
]

Endpoint /pf-ws/rest/sessionMgmt/users/{user_key}/revoke

Use HTTP POST requests to revoke all PingFederate runtime authentication sessions that are associated
with the given user identifier user_key. After running this request, any revoked sessions will be logged
with an event as "SRI_REVOKED" in the audit log.

Sample request:

POST /pf-ws/rest/sessionMgmt/users/john%40test.com-east/revoke HTTP/1.1
Host: www.example.com
X-XSRF-Header: PingFederate
Authorization: Basic YWNfY2xpZW50OmdPWDh0NEQ...h3ZjI=
Cookie: PF=K60mOoBlTvWcD4frFzcKF5

Return codes:

▪ 200 OK: The request was successfully processed

Copyright ©2024

 | Developer's Reference Guide | 1156

▪ 503 Service Unavailable: An error occurred while deleting stored sessions

 Note:

You can optionally use the endpoints described in Session Management API by session identifiers on page
1150 if needed.

Session Revocation API endpoint
PingFederate includes a REST-based web service for back-channel session revocation.

This service enables OAuth clients to add sessions to the revocation list or to query their revocation
status. This endpoint is not part of the OAuth specification. You must select the Allow Access to Session
Revocation API check box in the configuration for the applicable clients. This endpoint is a URL path
extension of the PingFederate runtime endpoint. For example, https://www.example.com:9031/pf-ws/rest/
sessionMgmt/revokedSris.

 Important:

OAuth clients must authenticate to the web service using their configured client authentication method.

 Note:

If clients are allowed to add sessions to the revocation list, you can enable the Check session revocation
status option in the applicable Access Token Management instances for the token validation process to
consider whether a session has been added to the revocation list. For more information, see Managing
session validation settings on page 572.

Endpoint: /pf-ws/rest/sessionMgmt/revokedSris

This resource accepts the POST and GET methods. It also requires the X-XSRF-HEADER HTTP header
with any value to prevent cross site request forgery.

 Note:

The POST method described in this section requires the element name/value pair formatted in JSON.

 Tip:

You can find information about the Session Revocation API endpoint in the OpenID Provider Configuration
endpoint metadata: ping_revoked_sris_endpoint.

POST

A POST request adds a session to the revocation list based on its session identifier, id, in the
POST data. The ID value corresponds to that of the pi.sri element in the ID token. The required
Content-Type is application/json.

Sample request

A POST request to add a session with a session identifier of abc123 to the revocation list.

POST /pf-ws/rest/sessionMgmt/revokedSris
Host: localhost:9031

Copyright ©2024

 | Developer's Reference Guide | 1157

Authorization: Basic
 YWNfb2ljX2NsaWVudDphYmMxMjNERUZnaGlqa2xtbm9wNDU2N3JzdHV2d3h5elpZWFdVVDg5MTBTUlFQT25tbGlqaG9hdXRocGxheWdyb3VuZGFwcGxpY2F0aW9u
X-XSRF-HEADER: PingFederate
Content-Type: application/json

{"id":"abc123"}

Return codes

▪ 201 – Created

The session is added to the revocation list.
▪ 400 – Bad Request

The X-XSRF-HEADER HTTP header is not found in the HTTP POST request.
▪ 401 – Unauthorized

The response contains details as to why the attempt failed.
▪ 415 – Unsupported Media Type

The Content-Type: application/json HTTP header is not found in the HTTP
POST request.

▪ 500 – Internal Server Error

An unknown error has occurred.

GET

A GET request sends a query for the revocation status for a session with its session identifier, id,
appended to the endpoint. The ID value corresponds to that of pi.sri in the ID token.

Sample request

A GET request to query the revocation status for a session with a session identifier of abc123.

GET /pf-ws/rest/sessionMgmt/revokedSris/abc123
Host: localhost:9031
Authorization: Basic
 YWNfb2ljX2NsaWVudDphYmMxMjNERUZnaGlqa2xtbm9wNDU2N3JzdHV2d3h5elpZWFdVVDg5MTBTUlFQT25tbGlqaG9hdXRocGxheWdyb3VuZGFwcGxpY2F0aW9u
X-XSRF-HEADER: PingFederate

If PingFederate authentication sessions are enabled, querying a valid session also extends
the session lifetime by the time value specified in the global Idle Timeout field or the idle
timeout override for the authentication source associated with the session. The latter takes
precedence. For externally stored authentication sessions, this operation is optimized to only
send updates to the external storage when the remaining idle timeout window is less than
75%.

Alternatively, include the optional updateActivityTime query parameter and set the value
to false in the request to query the status of a session without extending its lifetime.

Example

GET /pf-ws/rest/sessionMgmt/revokedSris/abc123?updateActivityTime=false
Host: localhost:9031
Authorization: Basic
 YWNfb2ljX2NsaWVudDphYmMxMjNERUZnaGlqa2xtbm9wNDU2N3JzdHV2d3h5elpZWFdVVDg5MTBTUlFQT25tbGlqaG9hdXRocGxheWdyb3VuZGFwcGxpY2F0aW9u
X-XSRF-HEADER: PingFederate

Return codes

Copyright ©2024

 | Developer's Reference Guide | 1158

▪ 200 – OK

{"id":"abc123"} is found in the revocation list.
▪ 400 – Bad Request

The X-XSRF-HEADER HTTP header is not found in the HTTP POST request.
▪ 401 – Unauthorized

The response contains details as to why the attempt failed.
▪ 404 – Not Found

{"resultId":"session_mgmt_sri_not_revoked","message":"The SRI has
not been revoked."} if the session is not found in the revocation list. If PingFederate
is configured to manage authentication sessions and the request does not come with the
updateActivityTime=false query parameter, the session is extended as well.

▪ 500 – Internal Server Error

An unknown error has occurred.

Logging

records the actions performed through this endpoint in the runtime-api.log file. While the events
themselves are not configurable, you can adjust the log4j2.xml configuration settings to alter the format
and desired level of detail surrounding each event.

Each log entry contains information relating to the event, including:

▪ Time the event occurred on the server
▪ Administrator username performing the action
▪ Authentication method
▪ Client IP
▪ HTTP method
▪ REST endpoint
▪ HTTP status code

Each of the above fields is separated by a vertical pipe (|) for ease of parsing.

PingFederate administrative API
PingFederate includes a REST-based API for administrative functions. The administrative API provides
a programmatic way to make configuration changes to PingFederate as an alternative to using the
administrative console.

The configuration changes that you can make through the administrative API include, but are not limited to:

▪ Adapters and connections
▪ Authentication policy contracts
▪ Cluster management
▪ Data stores and password credential validators
▪ Keys and certificates
▪ License management
▪ Local administrative account management
▪ OAuth settings
▪ Server settings

For a complete list, see Accessing the API interactive documentation on page 1165. For known limitations,
see Release notes.

Copyright ©2024

 | Developer's Reference Guide | 1159

Initial setup using the administrative API

After installing PingFederate you can make four unauthenticated administrative API requests to perform
the following tasks:

1. A GET request to /license/agreement to retrieve a URL to the license agreement.
2. A PUT request to /license/agreement to accept the license agreement.
3. A PUT request to /license to import a license file.
4. A POST request to /administrativeAccounts to create the first local administrative account, for

native authentication.

You must assign the User Admin administrative role, USER_ADMINISTRATOR, to the first local
administrative account. Other administrative roles are optional at this point. For more information, see the
interactive documentation for the administrative API Accessing the API interactive documentation on page
1165.

After the first local administrative account is created, you can make other authenticated administrative API
requests to configure various components in PingFederate.

Authentication and authorization

Similar to the administrative console, access to the administrative API is protected after initial setup. The
administrative API supports various authentication and authorization options. For more information, see
Configure access to the administrative API.

Concurrent access

The administrative API supports concurrent access. When concurrent API calls are made to modify the
same API resource, such as the IdP adapter instance or the SP connection, PingFederate processes the
last request made.

Logging

PingFederate records actions performed through the administrative API in the admin-api.log file.
Information includes the time of the event, the action performed, the authentication method, and other
fields. For more information, see Administrative API audit log.

Configure access to the administrative API
Similar to the administrative console, access to the administrative API after initial setup might be protected
by several authentication and authorization schemes.

Access to the administrative API after initial setup is protected by one of the following authentication and
authorization schemes:

▪ Native authentication, against local administrative accounts
▪ LDAP authentication
▪ RADIUS authentication
▪ Mutual TLS client certificate-based authentication
▪ OAuth 2.0 authorization

For new installations, native authentication is the default.

For upgrades, if the authentication or authorization method of the administrative API was not previously
set, such as when upgrading from PingFederate 7.3 or an earlier version, the Upgrade Utility sets the
value to that of the administrative console. Otherwise, it preserves the previously set value, such as when
upgrading from PingFederate 8.0 to a future release.

The authentication or authorization method for the administrative API can change at a later time to any of
the choices, regardless of which authentication or authorization method is chosen for the administrative
console.

Copyright ©2024

 | Developer's Reference Guide | 1160

Besides authentication and authorization, PingFederate also provides role-based access control, as shown
in the following table. The roles assigned to the accounts affect the results of the API calls.

User Access Control

Account type Administrative
role

Access privileges

Admin User Admin Create users, deactivate users, change or reset passwords, and
install replacement license keys.

Admin Admin Configure partner connections and most system settings, except the
management of local accounts and the handling of local keys and
certificates.

Admin Expression
Admin

Map user attributes by using the expression language, Object-Graph
Navigation Language (OGNL).

 Important:

Only Administrative users who have both the Admin role and the
Expression Admin role:

▪ Can be granted the User Admin role. This restriction prevents
non-Expression Admin users from granting themselves the
Expression Admin Role.

▪ Can be granted write access to the file system or directory where
is installed. This restriction prevents a non-Expression Admin
user from placing a data.zip file containing expressions into
the <pf_install>/pingfederate/server/default/
deploy directory, which would introduce expressions into .

Admin Crypto Admin Manage local keys and certificates.

Auditor Not applicable View-only permissions for all administrative functions. When the
Auditor role is assigned, no other administrative roles can be set.

 Note:

All four administrative roles are required to access and make changes through the following services:

▪ The /bulk, /configArchive, and /configStore administrative API endpoints
▪ The Configuration Archive window, accessed from System # Server, in the administrative console
▪ The Connection Management configuration item on the Service Authentication window, accessed

from Security # System Integration

Enabling native authentication for the administrative API
When the administrative API is protected by native authentication, access to the administrative API is
restricted to the users defined in the Account Management window.

About this task
The API calls must be authenticated by valid credentials over HTTP Basic authentication; otherwise, the
administrative API returns an error message. The roles assigned to the users affect the results of the API
calls.

Copyright ©2024

 | Developer's Reference Guide | 1161

Steps

1. Verify the pf.admin.api.authentication value in <pf_install>/pingfederate/bin/
run.properties is set to native. Update as needed and restart PingFederate to activate this
change.

 Note:

In a clustered PingFederate environment, you only need to modify run.properties on the console
node.

2. Sign on to the administrative console with an account that has the User Admin role.

 Important:

When the administrative console is protected by an alternative console authentication, such as
certificate-based, LDAP, or RADIUS authentication, most user-management functions are handled
outside the scope of the PingFederate administrative console. Therefore, the administrative console
disables the functionality of the System # Server # Administrative Accounts window unless the
logged-on administrator has been granted User Admin permissions.

To create or manage users in this scenario, add at least one external account to the role setting
userAdmin in the configuration file for the respective authentication method. When the administrator
logs on to the administrative console, the Administrative Accounts window becomes available to
create or manage users for the purposes of accessing the administrative API.

For more information about the alternative console authentication and the respective configuration,
see Alternative console authentication on page 799.

3. On the Administrative Accounts window, create or manage users as needed, and assign various
PingFederate administrative roles as indicated by the PingFederate User Access Control table. For
more information, see Configure access to the administrative API on page 1159.

 Note:

When assigning roles, remember that all users defined in the Administrative Accounts window can
access the administrative API and the administrative console.

Enabling LDAP authentication
When the administrative API is protected by LDAP authentication, the API calls must be authenticated by
valid LDAP credentials over HTTP Basic authentication; otherwise, the administrative API returns an error
message.

About this task

The LDAP authentication setup, including role assignment, is available through <pf_install>/
pingfederate/bin/ldap.properties. The roles assigned to the LDAP accounts affect the results of
the API calls.

 Note:

When you configure LDAP authentication, PingFederate does not lock out accounts based upon the
number of failed sign-on attempts. The LDAP server is responsible for preventing access and is enforced
according to its password lockout settings.

Copyright ©2024

 | Developer's Reference Guide | 1162

Steps

1. Verify the pf.admin.api.authentication value in <pf_install>/pingfederate/bin/
run.properties is set to LDAP. Update as needed.

2. In the <pf_install>/pingfederate/bin/ldap.properties file, change property values as
needed for your network configuration. For instructions and additional information, see the comments
in the file.

 Important:

Remember to assign LDAP users or designated LDAP groups, or both, to at least one of the
PingFederate administrative roles, as indicated in the properties file. For information about
permissions attached to the PingFederate roles, see the PingFederate User Access Control table in
Configure access to the administrative API on page 1159.

 Note:

When you assign roles, remember that all LDAP accounts specified in ldap.properties can
access the administrative API and the administrative console.

 Tip:

You can also use this configuration file in conjunction with RADIUS authentication to determine
permissions dynamically with an LDAP connection.

3. Restart PingFederate.

 Note:

In a clustered PingFederate environment, you only need to modify run.properties and
ldap.properties on the console node.

Enabling RADIUS authentication
The RADIUS protocol provides a common approach for implementing strong authentication in a client-
server configuration.

About this task

The RADIUS authentication setup is available through configuration files in the <pf_install>/
pingfederate/bin directory. The administrative API supports the protocol scenario for one-step
authentication, for example, appending a one time password (OTP) after the password.

When RADIUS authentication is protecting the administrative API, the API calls must be authenticated
by valid credentials over HTTP Basic authentication. Otherwise, the administrative API returns an error
message. The roles assigned to the accounts affect the results of the API calls.

 Note:

When you configure RADIUS authentication, PingFederate does not lock out accounts based upon the
number of failed logon attempts. Instead, responsibility for preventing access is delegated to the RADIUS
server and enforced according to its password lockout settings.

 Note:

Copyright ©2024

 | Developer's Reference Guide | 1163

The NAS-IP-Address attribute is added to all Access-Request packets sent to the RADIUS server.
The value is copied from the pf.engine.bind.address property in run.properties. Only IPv4
addresses are supported.

Steps

1. Verify the pf.admin.api.authentication value in <pf_install>/pingfederate/bin/
run.properties is set to RADIUS. Update as needed.

2. In the <pf_install>/pingfederate/bin/radius.properties file, change property values as
needed for your network configuration. For instructions and additional information, see the comments
in the file.

 Important:

Assign RADIUS users or designated RADIUS groups, or both, to at least one of the PingFederate
administrative roles as indicated in the properties file. Alternatively, you can set the use.ldap.roles
property to true and use the LDAP properties file, which is also in the bin directory, to map LDAP
group-based permissions to PingFederate roles. For more information about permissions attached to
the PingFederate roles, see the PingFederate User Access Control table in Configure access to the
administrative API on page 1159.

 Note:

When assigning roles, remember that all accounts specified in radius.properties can access the
administrative API and the administrative console.

3. Restart PingFederate.

 Note:

In a clustered PingFederate environment, you only need to modify run.properties and
radius.properties on the console node.

Enabling certificate-based authentication
When client-certificate authentication is enabled, the API calls must be authenticated by X.509 client
certificates; otherwise, the administrative API returns an error message.

About this task

In addition to X.509 client certificate authentication, the corresponding root certificate authority (CA)
certificates must either be contained in the Java runtime or be imported into the PingFederate's Trusted CA
store. For more information, see Manage trusted certificate authorities on page 615.

The rest of the certificate-based authentication setup, including specifying the Issuer DN of the root
CA certificates and the applicable roles of the client certificates, is available through <pf_install>/
pingfederate/bin/cert_auth.properties. The roles assigned to the certificates affect the results
of the API calls.

Steps

1. Sign on to the administrative console with an account that has the role Crypto Admin.

Copyright ©2024

 | Developer's Reference Guide | 1164

2. Ensure the client-certificate's root CA and any intermediate CA certificates are contained in the trusted
store, either for the Java runtime, or PingFederate, or both.

 Note:

To import a certificate, click Trusted CAs in the Certificate Management section under Server
Configuration.

 Tip:

Click the Serial number and copy the Issuer distinguished name (DN) to use in a couple steps later.

3. Verify the pf.admin.api.authentication value in <pf_install>/pingfederate/bin/
run.properties is set to cert. Update as needed.

4. In the <pf_install>/pingfederate/bin/cert_auth.properties file, enter the Issuer DN
for the client certificate as a value for the property: rootca.issuer.<x>, where <x> is a sequential
number starting at 1. For more information, see the properties file.

 Important:

The configuration values are case-sensitive.

If you copied the Issuer DN a couple steps earlier, paste this value.

5. Repeat the previous step for any additional CAs as needed.

6. Enter the certificate's Subject DN for the applicable PingFederate permission roles, as described in
the properties file. For information about permissions attached to the PingFederate roles, see the
PingFederate User Access Control table in Configure access to the administrative API on page 1159.

 Important:

The configuration values are case-sensitive.

 Note:

When assigning roles, keep in mind that all client certificates specified in cert_auth.properties
can be used to access the administrative API and the administrative console.

7. Repeat the previous step for all client certificates as needed.

8. Restart PingFederate.

 Note:

In a clustered PingFederate environment, you only need to modify run.properties and
cert_auth.properties on the console node.

Copyright ©2024

 | Developer's Reference Guide | 1165

Enabling OAuth 2.0 authorization
PingFederate clients can gain access to the administrative API endpoint by providing an OAuth 2.0 access
token. The <pf_install>/pingfederate/bin/oauth2.properties file contains settings that allow
you to configure information required to interact with the authorization server as a client.

Steps

1. Set the pf.admin.api.authentication value in <pf_install>/pingfederate/bin/
run.properties to OAuth2.

2. In the <pf_install>/pingfederate/bin/oauth2.properties file, change property values as
needed. For instructions and additional information, see the comments in the file.

 Important:

Remember to assign at least one of the PingFederate administrative roles, as indicated in the
properties file. For information about permissions attached to the PingFederate roles, see the
PingFederate User Access Control table in Configure access to the administrative API on page 1159.

3. Restart PingFederate.

 Note:

In a clustered PingFederate environment, you only need to modify run.properties and
oauth2.properties on the console node.

Accessing the API interactive documentation
PingFederate ships with interactive documentation for both developers and non-developers to explore the
API endpoints, view documentation for the API, and experiment with API calls.

About this task

In general, you can make API calls from an interactive user interface, custom applications, or from
command line tools such as cURL. The endpoint is only available at the administrative port, as defined by
the pf.admin.https.port property in <pf_install>/pingfederate/bin/run.properties.

 Important:

For enhanced API security, you must include X-XSRF-Header: PingFederate in all requests and use
the application/json content type for PUT and POST requests.

To access the administrative API documentation, follow these steps:

Steps

1. Start PingFederate.

2. Start a web browser.

Copyright ©2024

 | Developer's Reference Guide | 1166

3. Browse to the following URL: https://<pf_host>:9999/pf-admin-api/api-docs/

 Note:

<pf_host> is the network address of your PingFederate server. It can be an IP address, a host name,
or a fully qualified domain name. It must be reachable from your computer.

9999 is the default value of the pf.admin.https.port property in the run.properties file.

 Tip:
The administrative API is also documented in the OpenAPI Specification, previously known as the
Swagger Specification. Click on the /pf-admin-api/v1/swagger.json URL on the Administrative
API Documentation page to access the contents.

4. To test an administrative API, follow these steps:

a. Select a section of the administrative API you would like to explore; for example, /dataStores.
b. Expand the method you want to use; for example, GET /dataStores.
c. Enter required parameters, if any. For more information, see Operation Models underneath the

selected API endpoint.
d. Click Try it out.

 Note:

You might be prompted to sign on using administrative credentials over HTTP Basic authentication.
The role assigned to the respective administrative accounts affects the access to the requested API.

Result:

If the request completes successfully, the administrative API returns the Request URL, the Response
Body, the Response Code, and the Response Headers.

Application endpoints
Application endpoints provide a means, through standard HTTP, by which external applications can
communicate with the PingFederate server.

The single sign-on (SSO) and single log-out (SLO) endpoints for an identity provider (IdP) and a service
provider (SP) include optional parameters which you can use to specify error pages that users see in the
event of an SSO or SLO failure. By default, PingFederate provides templates for these and other errors or
conditions. For more information, see Customizable user-facing pages on page 820.

SP endpoints also include those available for system for cross-domain identity management (SCIM)
inbound provisioning. For more information, see Provisioning for SPs on page 98.

For either SP or IdP servers, PingFederate provides a maintenance endpoint for administrators to verify
that the server is running. Endpoints applicable to both server roles include those needed for adapter-
to-adapter mapping and retrieval of WS-Trust metadata. For more information, see Adapter-to-adapter
mappings on page 384 and WSC and WSP support on page 72.

PingFederate provides a favorite icon for all application endpoints. For more information, see Customizing
the favicon for application and protocol endpoints on page 858.

Copyright ©2024

 | Developer's Reference Guide | 1167

IdP endpoints
The following sections describe PingFederate identity provider (IdP) endpoints, including the case-sensitive
query parameters that each accepts or requires. These endpoints accept either the HTTP GET or POST
methods.

Begin each URL with the fully-qualified server name and port number of your PingFederate IdP server, for
example, https://www.example.com:9031/idp/startSSO.ping.

 Important:

When using the parameters TargetResource or TARGET with their own query parameters included, the
parameter value must be URL-encoded. Any other parameters that contain restricted characters, such
as many SAML URNs, also must be URL-encoded. For information about URL encoding, see third party
resources such as HTML URL-encoding Reference. Parameters are case-sensitive.

You can customize and localize user-facing templates.

/idp/startSSO.ping

This is the path used to initiate an unsolicited IdP-initiated single sign-on (SSO) transaction during which a
SAML response containing an assertion is sent to a service provider (SP). Typically, a systems integrator
or developer creates one or more links to this endpoint in the IdP application or portal to allow users to
initiate SSO to various SPs.

For information about allowing applications to retrieve configuration data from the PingFederate server
over SOAP, see Web service interfaces and APIs on page 1115.

The following table shows the HTTP parameters for this endpoint.

Parameter Description

PartnerSpId or
PARTNER

The federation ID of the SP to whom the SAML response containing an
assertion should be issued. This ID value is case-sensitive.

One of these parameters is required unless the federation ID can be derived
from TargetResource or TARGET.

TargetResource or
TARGET

(optional)

For SAML 2.0, the value of either parameter is passed to the SP as
the RelayState element of a SAML response message. This is the
PingFederate implementation of the SAML 2.0 indicator for a desired resource
at the SP during IdP-initiated SSO.

For SAML 1.x, the value is sent to the SP as a parameter named TARGET.

The parameter value must be URL-encoded.

InErrorResource

(optional)

Indicates where the user is redirected after an unsuccessful SSO. If this
parameter is not included in the request, PingFederate redirects the user to
the SSO error landing page hosted within PingFederate.

Binding

(optional)

Indicates the binding to be used; allowed values are URIs defined in the SAML
specifications. For example, the SAML 2.0 applicable URIs are:

▪ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact
▪ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Post

When the parameter is not used, the default ACS URL configured for the SP-
partner connection is used unless an ACS index is specified using the ACSIdx
parameter.

Copyright ©2024

 | Developer's Reference Guide | 1168

Parameter Description

ACSIdx

(optional - SAML 2.0)

Specifies the index number of partner's ACS. For more information, see
Setting Assertion Consumer Service URLs (SAML) on page 443. Takes
precedence over the Binding parameter if both are specified. If neither the
binding nor index is specified in the call, the default ACS is used.

IdpAdapterId

(optional)

Allows an application to call out what IdP adapter to use for authentication in a
configuration with multiple IdP adapters.

 Note:

This parameter might be overridden by policy based on authentication policies.
For example, a CIDR Authentication Selector instance could enforce the use
of a given adapter instance based on whether a user is on or off the network.
For more information, see Authentication policies on page 219.

ChangePassword If a request includes this parameter with a value of true and invokes an
HTML Form Adapter instance, the user is redirected to the Change Password
template and prompted to update the network password.

 Note:

To use this parameter, the Allow Password Changes check box must be
selected in the adapter configuration of the invoked HTML Form Adapter
instance. For more information, see Configuring an HTML Form Adapter
instance on page 291.

RequestedFormat

(optional - SAML 2.0)

Allows control over the NameId format.

vsid

(optional)

Specifies the virtual server ID.

When absent, PingFederate uses the default virtual server ID, if specified,
for the connection or the SAML federation ID defined in Server Settings.
For more information, see Identifying the SP on page 420 and Specifying
federation information on page 860.

PolicyAction

(optional)

The HTML Form Adapter immediately returns the value of this parameter
in the policy.action attribute, allowing the policy to bypass the
adapter in favor of an alternative authentication source, provided a
rule matching the action is configured. When this parameter is set to
identity.registration and the adapter is followed by a local identity
profile, the user is directed to the registration page for the profile.

/idp/startSLO.ping

This is the path used to start an IdP-initiated SLO (under SAML 2.0) or an OpenID Connect logout. For
more information see Asynchronous Front-Channel Logout on page 608. Typically, a systems integrator
or developer creates one or more links to this endpoint in the protected resources of their IdP application
or portal to allow users to end their sessions at various SPs. This endpoint uses the local PingFederate
session to determine which SPs have been issued an SSO assertion and sends them a SAML logout
request.

PingFederate sends SLO requests in the following sequence, which prioritizes synchronous logouts:

1. IdP adapters

Copyright ©2024

 | Developer's Reference Guide | 1169

2. SAML IdP partners
3. SP adapters
4. SAML SP partners
5. WS-Fed and OIDC partners in parallel

The LogoutType parameter lets you customize the SLO process. For example, you can change the SLO
process so that it does not prioritize synchronous logouts.

To start with asynchronous logouts, you could chain the logouts. Start with /idp/startSLO.ping?
LogoutType=AsyncOnly. Set the TargetResource to /idp/startSLO.ping?
LogoutType=SyncOnly. In this case, you would also need to add the /idp/startSLO.ping endpoint
as an allowed redirect for SLO on the Redirect Validation window.

To perform asynchronous and synchronous logouts in parallel, you could create a page with two iframes.
One iframe points to /idp/startSLO.ping?LogoutType=AsyncOnly and the other points to /idp/
startSLO.ping?LogoutType=SyncOnly.

The following table describes the HTTP parameters for this endpoint.

Parameter Description

TargetResource

(optional)

Indicates where the user is redirected after a successful SLO. If this parameter
is not included in the request, PingFederate uses as a default the URL for a
successful SLO as entered on the IdP Default URL window.

The parameter value must be URL-encoded.

InErrorResource

(optional)

Indicates where the user is redirected after an unsuccessful SLO. If this
parameter is not included in the request, PingFederate redirects the user to
the SLO error landing page hosted within PingFederate.

Binding

(optional - SAML 2.0)

Indicates the binding to use. The allowed values are URIs defined in the SAML
specifications. The SAML 2.0 applicable URIs are:

▪ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact
▪ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST
▪ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect
▪ urn:oasis:names:tc:SAML:2.0:bindings:SOAP

When the parameter is not used, the first SLO Service URL configured for
the SP-partner connection is used. For more information, see Specifying SLO
service URLs (SAML 2.0) on page 447.

Copyright ©2024

 | Developer's Reference Guide | 1170

Parameter Description

LogoutType

(optional)

Controls which kinds of adapters and partners PingFederate will send SLO
requests to. The allowed values are:

▪ All (the default value) logs out all adapters and partners in the default
sequence

▪ SyncOnly logs out only SAML partners and adapters in series
▪ AsyncOnly logs out only WS-Fed and OIDC partners in parallel

 Note:

When WS-Fed partner logout entries exist, LogoutType=AsyncOnly
might still cause the log out of all partners and adapters. The reason
is that WS-Fed logout requests to a partner might reflect back to
PingFederate. For example, a wsignout1.0 request to an IdP reflects back
to PingFederate as a wsignoutcleanup1.0 request. When PingFederate
receives the signout request, there is no context connecting it to the
original request. As a result, PingFederate performs a full SLO.

/idp/writecdc.ping

This endpoint is used for SAML 2.0 IdP Discovery. This is the path used when the IdP wants to write to
the common domain cookie (CDC) held within the user's browser. The information written to the cookie
indicates from which IdP this user has authenticated.

The following table shows the one HTTP query parameter for this endpoint.

Parameter Description

TargetResource

(optional)

Indicates where the user is redirected after successful IdP Discovery. If this
parameter is not included in the request, PingFederate redirects the user to
the referrer in the HTTP header. If there is no TargetResource or referrer,
the call to this endpoint will fail.

The parameter value must be URL-encoded.

/pf/idprofile.ping

This endpoint is used for profile management. When profile management is enabled for customer
identities, authenticated users can review and modify the local identity fields that have been configured
to be shown on the profile management page, connect or disconnect third-party identity providers,
also known as Social Connections to the end users on the profile management page, and delete their
local identities if the option to do so has been enabled. Each local identity profile has its own profile
management URL.

The following table shows the one HTTP query parameter for this endpoint.

Copyright ©2024

 | Developer's Reference Guide | 1171

Parameter Description

LocalIdentityProfileIDIndicates which profile management page that PingFederate should serve to
the authenticated users based on the ID of the local identity profile.

 Tip:

You can copy the profile management URL for a given local identity profile on
its configuration summary window.

/pf/id/verification.ping

This endpoint is used for email ownership verification. When email ownership verification is enabled for
customer identities, authenticated users can request additional email-verification notifications by accessing
this endpoint.

The following table shows the one HTTP query parameter for this endpoint.

Parameter Description

LocalIdentityProfileIDIndicates the local identity profile from which the authenticated users, who are
requesting additional email-verification notifications, originate.

 Tip:

You can copy the email ownership verification endpoint for a given local
identity profile on its configuration summary window.

/ext/pwdchange/Identify

The Change Password endpoint allows users to change their password through an HTML Form Adapter
instance without submitting SSO requests. This endpoint requires one parameter, AdapterId; the
parameter value is the identifier of the HTML Form Adapter instance that has been configured with
such capability. For example, if the fully-qualified name of your PingFederate environment and the
adapter ID are www.example.com and HTMLFormSimplePCV respectively, the resulting URL is https://
www.example.com/ext/pwdchange/Identify?AdapterId=HTMLFormSimplePCV.

The following table shows the one additional HTTP query parameter for this endpoint.

Parameter Description

TargetResource Indicates the desired destination after users have successfully change their
network password.

 Note:

When target resource validation is enabled for this endpoint, as indicated
by the SLO and Other check box on the Security # System Integration #
Redirect Validation # Local Redirect Validation tab, PingFederate honors
the URL only if the parameter value satisfies the configured requirement
on the Local Redirect Validation tab. If the validation fails, PingFederate
displays the default success or error message.

For more information, see Configuring redirect validation on page 648.

Copyright ©2024

 | Developer's Reference Guide | 1172

/ext/pwdreset/Identify

The Account Recovery endpoint allows users to reset their password or unlock their account through
an HTML Form Adapter instance without submitting SSO requests. This endpoint requires one
parameter, AdapterId; the parameter value is the identifier of the HTML Form Adapter instance that
has been configured with such capabilities. For example, if the fully-qualified name of your PingFederate
environment and the adapter ID is www.example.com and HTMLFormSimplePCV respectively, the
resulting URL is https://www.example.com/ext/pwdreset/Identify?AdapterId=HTMLFormSimplePCV.

The following table shows the one additional HTTP query parameter for this endpoint.

Parameter Description

TargetResource Indicates the desired destination after users have successfully reset their
network password or unlocked their account.

 Note:

When target resource validation is enabled for this endpoint, as indicated
by the SLO and Other check box on the Security # System Integration #
Redirect Validation # Local Redirect Validation tab, PingFederate honors
the URL only if the parameter value satisfies the configured requirement
on the Local Redirect Validation tab. If the validation fails, PingFederate
displays the default success or error message.

For more information, see Configuring redirect validation on page 648.

/ext/idrecovery/Recover

The Username Recovery endpoint allows users to recover their username through an HTML Form
Adapter instance without submitting SSO requests. This endpoint requires one parameter, AdapterId;
the parameter value is the identifier of the HTML Form Adapter instance that has been configured with
such capabilities. For example, if the fully-qualified name of your PingFederate environment and the
adapter ID is www.example.com and HTMLFormSimplePCV respectively, the resulting URL is https://
www.example.com/ext/idrecovery/Recover?AdapterId=HTMLFormSimplePCV.

The following table shows the one additional HTTP query parameter for this endpoint.

Parameter Description

TargetResource Indicates the desired destination after users have successfully recovered their
username.

 Note:

When target resource validation is enabled for this endpoint, as indicated
by the SLO and Other check box on the Security # System Integration #
Redirect Validation # Local Redirect Validation tab, PingFederate honors
the URL only if the parameter value satisfies the configured requirement
on the Local Redirect Validation tab. If the validation fails, PingFederate
displays the default success or error message.

For more information, see Configuring redirect validation on page 648.

Copyright ©2024

 | Developer's Reference Guide | 1173

SP endpoints
PingFederate provides configuration options for a variety of endpoints.

The following sections describe the PingFederate service provider (SP) endpoints for SP services and
system for cross-domain identity management (SCIM) inbound provisioning.

SP services
The following sections describe PingFederate service provider (SP) endpoints, including the query
parameters that each accepts or requires. These endpoints accept either the HTTP GET or POST
methods.

Begin each URL with the fully-qualified server name and port number of your PingFederate SP server; for
example, https://www.example.com:9031/sp/startSSO.ping.

 Important:

When using the parameters TargetResource or TARGET with their own query parameters included, the
parameter value must be URL-encoded. Any other parameters that contain restricted characters, such
as many SAML URNs, also must be URL-encoded. For information about URL encoding, see third party
resources such as HTML URL-encoding Reference. Parameters are case-sensitive.

/sp/startSSO.ping

This is the path used to initiate SP-initiated single sign-on (SSO). In this scenario, the SP issues an SSO
request to the identity provider (IdP) asking for an SSO authentication response. Typically, a systems
integrator or developer creates links to this endpoint in SP applications to allow users to access various
protected resources through SSO using the IdP as an authentication authority.

For information about allowing applications to retrieve configuration data from the PingFederate server
over SOAP, see Web service interfaces and APIs on page 1115.

The following table shows the HTTP parameters for this endpoint.

 Note:

Some parameters described below can have multiple values. Specify these values by using multiple
independent query string parameters of the same name.

Parameter Description

PartnerIdpId The federation ID of the IdP that authenticates the user and issues an
assertion. This ID is case-sensitive.

Required if more than one IdP connection is configured and Domain is not
used, and SP authentication policies are turned off.

Not required if SP authentication policies are turned on.

SpSessionAuthnAdapterIdThe explicit SP adapter instance ID indicating the adapter to use to create an
authenticated session or security context.

Optional if SP authentication policies are turned off.

Required if SP authentication policies are turned on unless the PingFederate
SP server can determine the applicable SP adapter instance based on the
target URL mapping configuration and the TargetResource or TARGET
value at runtime.

Copyright ©2024

 | Developer's Reference Guide | 1174

Parameter Description

TargetResource or
TARGET

This parameter indicates the target applications where a successful SSO
redirects the end-user.

The parameter value must be URL-encoded.

When this parameter is not provided in the URL, you can specify a default
target resource in the administrative console, either for all IdP connections, for
individual connections, or both. For more information, see Configuring default
URLs on page 673 and Configuring default target URLs on page 712.

InErrorResource

(optional)

This parameter indicates where an unsuccessful SSO redirects the end-user.
If this parameter is not included in the request, PingFederate redirects the user
to the single log-out (SLO) error landing page hosted within PingFederate. For
more information, see Customizable user-facing pages on page 820.

Binding

(optional)

Indicates the binding to use; allowed values are URIs defined in the SAML
specifications. For example, the SAML 2.0 applicable URIs are

urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact
urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST
urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

When the parameter is not used for SAML 2.0, the first SSO Service URL
configured for the IdP-partner connection is used. For more information, see
Specifying SSO service URLs (SAML) on page 702.

AllowCreate

(optional - SAML 2.0)

Controls the value of the AllowCreate attribute of the NameIDPolicy
element in the AuthnRequest. The default is true.

AuthenticatingIdpId

(optional - SAML 2.0)

This parameter indicates the preferred IdP for authenticating the user through
an IdP proxy, such as PingOne for Enterprise. The parameter specifies the
value of the ProviderID attribute in the Scoping/IDPList/IDPEntry
element in the AuthnRequest. For more information, see section 3.4.1.3.1 of
the OASIS SAML document saml-core-2.0-os.pdf.

You can specify multiple values to build a preferred list.

ForceAuthn

(optional - SAML 2.0 or
OpenID Connect)

For SAML 2.0, this parameter controls the attribute of the same name in the
AuthnRequest.

For OpenID Connect, a value of true sets the prompt parameter in
the authentication request to login. For more information about the
authentication request and its parameter, see the OpenID Connect
specification.

The default is false.

IsPassive

(optional - SAML 2.0 or
OpenID Connect)

For SAML 2.0, this parameter controls the attribute of the same name in the
AuthnRequest.

For OpenID Connect, a value of true sets the prompt parameter in the
authentication request to none.

The default is false.

RequestedACSIdx

(optional - SAML 2.0)

The index number of your site's Assertion Consumer Service, where you want
the assertion to be sent.

Copyright ©2024

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

 | Developer's Reference Guide | 1175

Parameter Description

RequestedAcsUrl

(optional - SAML 2.0)

The URL of your site's Assertion Consumer Service, where you want the
assertion to be sent.

RequestedAuthnCtx

(optional - SAML 2.0 or
OpenID Connect)

For SAML 2.0, this parameter indicates the requested authentication
context of the assertion; allowed values include URIs defined in the SAML
specifications. For more information, see the OASIS SAML document saml-
authn-context-2.0-os.pdf.

For OpenID Connect, the specified value becomes the acr_values
parameter value in the authentication request.

You can specify multiple values to build a preferred list.

RequestedAuthnDeclRef

(optional - SAML 2.0)

An alternative to RequestedAuthnCtx above, indicating the requested
authentication context of the assertion by declaring any URI reference. For
more information see section 2.7.2.2 of the OASIS SAML document saml-
core-2.0-os.pdf.

You can specify multiple values to build a preferred list.

RequestedBinding

(optional - SAML 2.0)

Indicates the binding requested for the response containing the assertion;
allowed values are URIs defined in the SAML specifications.

RequestedFormat

(optional - SAML 2.0)

Specifies the value for the Format attribute in the NameIDPolicy element
of the AuthnRequest. If not specified, the AuthnRequest does not include the
attribute.

RequestedSPNameQualifier

(optional - SAML 2.0)

Indicates that the IdP should return the given name qualifier as part of the
assertion used primarily to identify SP affiliations. For more information, see
SP affiliations on page 484.

vsid

(optional)

Specify the virtual server ID.

When absent, PingFederate uses the default virtual server ID (if specified)
for the connection or the SAML federation ID defined in Server Settings. For
more information, see Identifying the partner on page 685 and Specifying
federation information on page 860.

PolicyAction

(optional)

The HTML Form Adapter immediately returns the value of this parameter
in the policy.action attribute, allowing the policy to bypass the
adapter in favor of an alternative authentication source, provided a
rule matching the action is configured. When this parameter is set to
identity.registration and the adapter is followed by a local identity
profile, the user is directed to the registration page for the profile.

If SpSessionAuthnAdapterId specifies an adapter, then that adapter is used to create an authenticated
session for SP-initiated SSO. If there is no SpSessionAuthnAdapterId, the ultimate destination of the
user after SSO, either the TargetResource or the default SSO success URL, is used along with the
mappings defined in the administrative console on the Map URLs to Adapter Instances window. For
more information, see Configuring target URL mapping on page 669.

Note that adapter selection for SP-initiated SSO is similar to that for IdP-initiated SSO except that, because
the adapter ID depends on the SAML deployment, PingFederate cannot expect it from an IdP. Therefore, it
uses only the URL mapping for adapter selection for SSO.

Copyright ©2024

https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

 | Developer's Reference Guide | 1176

/sp/startSLO.ping

This is the path used to initiate SP-initiated SLO. Typically, a systems integrator or developer creates one
or more links to this endpoint in the protected resources of their SP application, which allows users to end
a session by sending a logout request to the IdP that authenticated the session.

Note that the IdP might send additional logout request messages to other SPs when it receives a logout
request from a PingFederate server acting as an SP.

The following table shows the HTTP parameters for this endpoint.

Parameter Description

TargetResource

(optional)

Indicates where a successful SLO redirects the user. If the request does not
include this parameter, PingFederate uses the URL for a successful SLO as a
default, as entered on the SP Default URLs window.

Note that the parameter value must be URL-encoded.

Binding

(optional - SAML 2.0)

Indicates the binding to use; allowed values are URIs defined in the SAML
specifications. The SAML 2.0 applicable URIs are

urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact
urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST
urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect
urn:oasis:names:tc:SAML:2.0:bindings:SOAP

When the parameter is not used, the first SLO Service URL configured for the
IdP-partner connection is used. For more information, see Specifying SLO
service URLs (SAML 2.0) on page 447.

InErrorResource

(optional)

Indicates where an unsuccessful SLO redirects the user. If the request
does not include this parameter, PingFederate redirects the user to the SLO
error landing page hosted within PingFederate. For more information, see
Customizable user-facing pages on page 820.

/sp/defederate.ping

This path terminates an account link created during SSO. Account linking provides a means for subject
identification on the SP side. On the SP side, only users create and terminate links. The link contains the
name identifier from the IdP, the IdP's federation ID, the adapter instance ID, and the local user identifier.

There are no HTTP parameters for this endpoint.

You can unlink a user session only if it was established during SSO using an existing account link on the
SP side. If more than one SP session was established through account linking on the same PingFederate
session, this endpoint will terminate each of those links. A local logout is also performed for any link that is
terminated.

/sp/cdcstartSSO.ping

This endpoint is used for IdP-Discovery implementations. For more information, see Standard IdP
Discovery on page 44 . This endpoint is similar to /sp/startSSO.ping and accepts the same
parameters, with the exception of PartnerIdpId and vsid. Instead of this parameter, the server
attempts to use the common domain cookie to determine the IdP.

/sp/startAttributeQuery.ping

This endpoint initiates an Attribute Query with a SAML 2.0 IdP. For more information, see Attribute Query
and XASP on page 43 .

The following table shows the HTTP parameters for this endpoint.

Copyright ©2024

 | Developer's Reference Guide | 1177

 Note:

Some parameters described below can have multiple values. Specify these values by using multiple
independent query string parameters of the same name.

Parameter Description

Subject Uniquely identifies the user to the IdP. When user authenticates with an X.509
certificate, this is the Subject DN, which must be URL-encoded.

Issuer

(optional)

The IssuerDN from the user's X.509 certificate, when X.509 attribute sharing
profile (XASP) is used, which uniquely identifies the entity that issued the
user's certificate. The parameter must be URL-encoded.

 Note:

When specified this parameter overrides the Subject parameter.

PartnerIdpId

(except for XASP)

Used to identify the specific IdP partner to which the attribute query should be
sent. Without this parameter, the Subject and Issuer are used to determine the
correct IdP.

 Note:

For XASP, this parameter overrides both the Subject and Issuer
parameters.

Format

(required for XASP,
otherwise optional)

Identifies the name-identifier format of the Subject query parameter. If
included, the value must be one of the SAML 2.0 Name Identifier Format URIs.
For more information, see section 8.3 of the SAML specifications.

 Note:

For XASP, this parameter must be set to
urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName

If not specified, the parameter defaults to
urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified.

The parameter must be URL-encoded.

AppId The unique identifier of the initiating application.

SharedSecret Used to authenticate the initiating application. Both the AppId and
SharedSecret values must match those defined on the Security # System
Integration # Service Authentication window.

 Important:

To avoid recording this parameter in web server logs, only pass it in the
message body using the HTTP POST method.

Copyright ©2024

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

 | Developer's Reference Guide | 1178

Parameter Description

RequestedAttrName

(optional)

A name of a user attribute requested from the IdP. For each desired user
attribute, include this parameter. If this parameter is not present, then the IdP
returns all allowable user attributes.

You can specify multiple values to build a preferred list.

vsid

(optional)

Specify the virtual server ID.

When absent, PingFederate uses the default virtual server ID, if specified, for
the connection or the SAML federation ID defined in Server Settings. For
more information, see Identifying the partner on page 685 and Specifying
federation information on page 860.

SCIM inbound provisioning endpoints
PingFederate supports system for cross-domain identity management (SCIM) inbound provisioning and
provides four endpoints.

The four endpoints are:

▪ /pf-scim/v1/Users
▪ /pf-scim/v1/Groups
▪ /pf-scim/v1/Schemas
▪ /pf-scim/v1/ServiceProviderConfigs

These endpoints are defined in the following SCIM 1.1 specifications:

▪ SCIM Core Schema
▪ SCIM Specification

Begin each endpoint with the fully-qualified server name and port number of your PingFederate server, for
example: https://pingidentity.com:9031/pf-scim/v1/Users.

/pf-scim/v1/Users

The users endpoint is where client applications make HTTP requests to create, retrieve, update, and delete
or deactivate users. This REST-based endpoint accepts POST, GET, PUT, and DELETE methods, as
described in the following table.

 Note:

HTTP requests must be made using either Basic or client-certificate application authentication. JSON is
currently the only supported format for the HTTP message body.

Copyright ©2024

http://www.simplecloud.info/specs/draft-scim-core-schema-01.html
http://www.simplecloud.info/specs/draft-scim-api-01.html

 | Developer's Reference Guide | 1179

HTTP method Description

POST /pf-scim/v1/Users

▪ Sends user attributes in JSON format—defined in the SCIM Core Schema
—to create a new user.

▪ A successful response is indicated by an HTTP 201 status code and
a message body containing the user record that has been added to
the target datastore. The user ID is set as the id attribute in the JSON
response, and the full URL to reference the user is in the HTTP response
Location header.

For an existing user, you can also use the POST method to either update or
delete or disable a user record by appending the user ID to the path in the
format of /pf-scim/v1/Users/user_id and setting the request header X-
HTTP-Method-Override value to PUT or DELETE, respectively. For more
information, see the PUT and DELETE method descriptions at the end of this
topic.

Copyright ©2024

 | Developer's Reference Guide | 1180

HTTP method Description

GET /pf-scim/v1/Users

▪ Retrieves all user records.
▪ A successful response is indicated by an HTTP 200 status code and a list

of all users and their attributes.

/pf-scim/v1/Users/user_id

▪ Retrieves the user record of a specific user.
▪ A successful response is indicated by an HTTP 200 status code and the

requested user record.

/pf-scim/v1/Users?attributes=attribute

▪ Retrieves the specific attribute from all users.
▪ A successful response is indicated by an HTTP 200 status code and a list

of the desired attribute from all users.

 Note:

For more information, see 3.2.2 List/Query Resources in SCIM
Specification.

/pf-scim/v1/Users?filter=filter

▪ Retrieves resources based on the filter.
▪ A successful response is indicated by an HTTP 200 status code and a list

of resources matching the filter.

 Note:

For more information, see 3.2.2.1 Filtering in SCIM Specification.

/pf-scim/v1/Users?sortBy=attribute&sortOrder=ascending|
descending

▪ Retrieves all user records and sorts them based on a specific attribute in
ascending or descending order.

▪ A successful response is indicated by an HTTP 200 status code and
a sorted result set. Depending on the implementation of the target
datastore, the target datastore might not return the user records that do
not contain a value for that specific attribute as indicated by the sortBy
parameter in the request.

 Note:

For more information, see 3.2.2.2 Sorting in SCIM Specification.

/pf-scim/v1/Users?startIndex=x[&count=y]

▪ Retrieves the user records starting with a specific index number, a positive
integer x. If the optional count parameter is included, with a positive
integer y, the endpoint limits the number of user records in the result set.

▪ A successful response is indicated by an HTTP 200 status code and a
limited set of user records.

 Note:

For more information, see 3.2.2.3 Pagination in SCIM Specification.

 Tip:

You can use a combination of the aforementioned parameters in one query to
narrow your search results.

Copyright ©2024

http://www.simplecloud.info/specs/draft-scim-api-01.html#query-resources
http://www.simplecloud.info/specs/draft-scim-api-01.html#rfc.section.3.2.2.1
http://www.simplecloud.info/specs/draft-scim-api-01.html#rfc.section.3.2.2.2
http://www.simplecloud.info/specs/draft-scim-api-01.html#rfc.section.3.2.2.3

 | Developer's Reference Guide | 1181

HTTP method Description

PUT /pf-scim/v1/Users/user_id

▪ Updates user attributes for the specified user, using JSON in the body
of the HTTP request. Attributes not included in the request are set to a
default value in the datastore.

▪ A successful PUT operation returns an HTTP 200 status code and the
entire updated user record within the response body.

DELETE /pf-scim/v1/Users/user_id

▪ Deletes or disables the user record for the specified user. Note that
whether a user is deleted or disabled is determined by the selection of the
SCIM DELETE message behavior option on the Delete/Disable Users
tab in the applicable identity provider (IdP) connection.

▪ A successful response is indicated by an HTTP 200 status code.

 Note:

For a list of HTTP error codes that might be returned, see 3.9 HTTP Response Codes in SCIM
Specification.

/pf-scim/v1/Groups

The groups endpoint is where client applications make HTTP requests to create, retrieve, update, and
delete groups.

 Note:

Inbound provisioning for groups is a per-connection, optional feature. To enable group provisioning, select
the User and Group Support option on the Connection Type tab when configuring the applicable IdP
connection.

This REST-based endpoint accepts POST, GET, PUT, and DELETE methods, as described in the
following table.

 Note:

HTTP requests must be made using either Basic or client-certificate application authentication. JSON is
currently the only supported format for the HTTP message body.

Copyright ©2024

http://www.simplecloud.info/specs/draft-scim-api-01.html#anchor6

 | Developer's Reference Guide | 1182

HTTP method Description

POST /pf-scim/v1/Groups

▪ Sends group attributes in JSON format—defined in the SCIM Core
Schema—to create a new group.

▪ A successful response is indicated by an HTTP 201 status code and
a message body containing the group record that has been added
to the target datastore. The group ID is set as the id attribute in the
JSON response, and the full URL to reference the group is in the HTTP
response Location header.

For an existing group, you can also use the POST method to either update
or delete the group by appending the group ID to the path, in the format of
/pf-scim/v1/Groups/group_id, and setting the request header X-
HTTP-Method-Override value to PUT or DELETE, respectively. For more
information, see the PUT and DELETE method descriptions at the end of this
topic.

Copyright ©2024

 | Developer's Reference Guide | 1183

HTTP method Description

GET /pf-scim/v1/Groups

▪ Retrieves all group records.
▪ A successful response is indicated by an HTTP 200 status code and a list

of all groups and their attributes.

/pf-scim/v1/Groups/group_id

▪ Retrieve the group record of a specific group.
▪ A successful response is indicated by an HTTP 200 status code and the

requested group record.

/pf-scim/v1/Groups?attributes=attribute

▪ Retrieves the specific attribute from all groups.
▪ A successful response is indicated by an HTTP 200 status code and a list

of the desired attribute from all groups.

 Note:

For more information, see 3.2.2 List/Query Resources in SCIM
Specification.

/pf-scim/v1/Groups?filter=filter

▪ Retrieves resources based on the filter.
▪ A successful response is indicated by an HTTP 200 status code and a list

of resources matching the filter.

 Note:

For more information, see 3.2.2.1 Filtering in SCIM Specification.

/pf-scim/v1/Groups?sortBy=attribute&sortOrder=ascending|
descending

▪ Retrieves all group records and sorts them based on a specific attribute in
ascending or descending order.

▪ A successful response is indicated by an HTTP 200 status code and
a sorted result set. Depending on the implementation of the target
datastore, the target datastore might not return the group records that do
not contain a value for that specific attribute as indicated by the sortBy
parameter in the request.

 Note:

For more information, see 3.2.2.2 Sorting in SCIM Specification.

/pf-scim/v1/Groups?startIndex=x[&count=y]

▪ Retrieves the group records starting with a specific index number, a
positive integer x. If the optional count parameter is included, with a
positive integer y, the endpoint limits the number of user records in the
result set.

▪ A successful response is indicated by an HTTP 200 status code and a
limited set of group records.

 Note:

For more information, see 3.2.2.3 Pagination in SCIM Specification.

 Tip:

You can use a combination of the aforementioned parameters in one query to
narrow your search results.

Copyright ©2024

http://www.simplecloud.info/specs/draft-scim-api-01.html#query-resources
http://www.simplecloud.info/specs/draft-scim-api-01.html#rfc.section.3.2.2.1
http://www.simplecloud.info/specs/draft-scim-api-01.html#rfc.section.3.2.2.2
http://www.simplecloud.info/specs/draft-scim-api-01.html#rfc.section.3.2.2.3

 | Developer's Reference Guide | 1184

HTTP method Description

PUT /pf-scim/v1/Groups/group_id

▪ Updates group attributes for the specified group, using JSON in the body
of the HTTP request. Attributes not included in the request are set to a
default value in the datastore.

▪ A successful PUT operation returns an HTTP 200 status code and the
entire updated group record within the response body.

DELETE /pf-scim/v1/Groups/group_id

▪ Deletes the group record for the specified group.
▪ A successful response is indicated by an HTTP 200 status code.

 Note:

For a list of HTTP error codes that might be returned, see 3.9 HTTP Response Codes in SCIM
Specification.

/pf-scim/v1/Schemas

The schemas endpoint is where a client can retrieve a resource's schema. This REST-based endpoint
accepts GET method as described in the following table.

 Note:

HTTP requests must be made using either Basic or client-certificate application authentication. JSON is
currently the only supported format for the HTTP message body.

HTTP method Description

GET Retrieves the resource's schema for an IdP connection based on the
authentication information.

A successful response is indicated by an HTTP 200 status code and the
results in the message body.

Example

$ curl -u basicUser 'https://localhost:9031/pf-scim/v1/Schemas' | python -m
 json.tool
{
 "attributes": [
 {
 "caseExact": false,
 "description": "Unique identifier for the SCIM resource as
 defined by the Service Provider. Each representation of the resource MUST
 include a non-empty id value. This identifier MUST be unique across the
 Service Provider's entire set of resources. It MUST be a stable, non-
reassignable identifier that does not change when the same resource is
 returned in subsequent requests. The value of the id attribute is always
 issued by the Service Provider and MUST never be specified by the Service
 Consumer. REQUIRED.",
 "multiValued": false,
 "name": "id",
 "readOnly": true,

Copyright ©2024

http://www.simplecloud.info/specs/draft-scim-api-01.html#anchor6

 | Developer's Reference Guide | 1185

 "required": true,
 "schema": "urn:scim:schemas:core:1.0",
 "type": "string"
 },
 ...
],
 "description": "Core User",
 "endpoint": "/Users",
 "id": "urn:scim:schemas:core:1.0:User",
 "name": "User",
 "schema": "urn:scim:schemas:core:1.0"
}

/pf-scim/v1/ServiceProviderConfigs

This service provider (SP) configuration endpoint is where developers can retrieve detailed information
on the PingFederate SCIM 1.1 implementation. When you enable inbound provisioning for an SP
PingFederate server, an HTTP GET request to this endpoint returns a JSON response outlining SCIM 1.1
compliance details.

 Note:

The /pf-scim/v1/ServiceProviderConfigs endpoint does not require authentication. JSON is
currently the only supported format for the HTTP message body.

Example

$ curl https://localhost:9031/pf-scim/v1/ServiceProviderConfigs
{
 "schemas": ["urn:scim:schemas:core:1.0"],
 ...
 "patch": {
 "supported":false
 },
 "bulk": {
 "supported":false
 },
 "filter": {
 "supported":true
 },
 "changePassword" : {
 "supported":true
 },
 "sort": {
 "supported":false
 },
 "etag": {
 "supported":false
 },
 "xmlDataFormat": {
 "supported":false
 },
 "authenticationSchemes": [
 {
 "name": "HTTP Basic",
 "description": "Authentication using HTTP Basic",
 ...
 "type":"httpbasic"
 },
 {

Copyright ©2024

 | Developer's Reference Guide | 1186

 "name": "TLS Client Certificate",
 "description": "Authentication via TLS Client Certificate",
 ...
 "type":"tls"
 }
]
}

System-services endpoints
System-services endpoints generally apply to the PingFederate server, whether used as an identity
provider (IdP), service provider (SP), or both. Parameters are case-sensitive.

/pf/heartbeat.ping

This endpoint returns an HTTP status code of 200 and a message body of OK if the PingFederate runtime
server is up and functional. You can customize the message by modifying a PingFederate property and a
Velocity template file. For more information, see Customizing the heartbeat message on page 857.

 Note:

If a GET request receives a connection error or an HTTP status code other than 200, the server associated
with the endpoint is down or malfunctioning.

Load balancers can use this endpoint to determine the status of PingFederate independently of checks
used to determine the status of the supporting hardware.

You can also configure the server to provide regular status information to a network-management utility.
For more information, see Runtime reporting.

/pf/adapter2adapter.ping

This endpoint initiates direct IdP-to-SP adapter mapping, when that feature is configured in the Adapter-
to-Adapter Mappings window. For more information, see Adapter-to-adapter mappings on page 384.

 Note:

To prevent users from circumventing the SP authentication policies, this endpoint becomes inactive when
SP authentication policies are enabled but IdP authentication policies are disabled. Administrators can
configure SP authentication policies for the internal users to re-enable access to protected resources.

For information, see Configuring SP authentication policies for internal users on page 270.

The following table shows the HTTP parameters for this endpoint.

Parameter Description

TargetResource

(optional)

Indicates where the user is redirected after a successful SSO. If this parameter
is not included in the request, PingFederate redirects the user to a default
location if one is specified in the Applications # Integration # SP Default
URLs window.

InErrorResource

(optional)

Indicates where the user is redirected if the SSO is unsuccessful. If this
parameter is not included in the request, PingFederate redirects the user to
the SSO error landing page hosted within PingFederate. For more information,
see Customizable user-facing pages on page 820.

Copyright ©2024

 | Developer's Reference Guide | 1187

Parameter Description

IdpAdapterId

(optional)

Indicates the IdP adapter instance to use for authentication if more than one
IdP adapter is configured in adapter-to-adapter mappings.

SpSessionAuthnAdapterId

(optional)

Indicates the SP adapter instance to be used. If not provided and more than
one SP adapter instance is configured with adapter-to-adapter mapping,
PingFederate selects one based on entries defined in the Applications #
Integration # Target URL Mapping window. For more information, see
Configuring target URL mapping on page 669.

ChangePassword If a request includes this parameter with a value of true and invokes an
HTML Form Adapter instance, the user is redirected to the Change Password
template and prompted to update the network password.

 Note:

To use this parameter, the Allow Password Changes check box must be
selected in the adapter configuration of the invoked HTML Form Adapter
instance. For more information, see Configuring an HTML Form Adapter
instance on page 291.

PolicyAction

(optional)

The HTML Form Adapter immediately returns the value of this parameter
in the policy.action attribute, allowing the policy to bypass the
adapter in favor of an alternative authentication source, provided a
rule matching the action is configured. When this parameter is set to
identity.registration and the adapter is followed by a local identity
profile, the user is directed to the registration page for the profile.

/pf/sts.wst

This endpoint initiates direct security token service (STS) token-to-token exchange and token validation
from an IdP token processor to an SP token generator, when that feature is configured in the Token
Translator Mappings window. For more information, see Token translator mappings on page 390.

The following table shows the HTTP parameters for this endpoint.

Parameter Description

TokenProcessorId Indicates the IdP token processor to use in the mapping. Required when
multiple IdP token processors are configured in token-to-token mappings.

TokenGeneratorId Indicates the SP token generator to use in the mapping. Required when
multiple SP token generators are configured in token-to-token mappings.

 Important:

If mutual SSL/TLS is used for authentication, you must configure a secondary PingFederate listening port
used by partners or STS clients for the relevant endpoints—*.ssaml* and *.wst. For more information,
see Configuring PingFederate properties on page 771.

/pf/sts_mex.ping

This endpoint returns STS metadata for use in expediting configuration of web-service applications.

The following table shows the HTTP parameters for this endpoint.

Copyright ©2024

 | Developer's Reference Guide | 1188

Parameter Description

PartnerSpId The connection ID of the SP to whom the SAML token will be issued. This
parameter determines the connection for which metadata will be generated.

PartnerIdpId The connection ID of the IdP issuing the SAML token to be consumed by
PingFederate. This parameter determines the connection for which the
metadata will be generated.

vsid

(optional)

Specify the virtual server ID.

If absent, PingFederate uses the default virtual server ID (if specified) for the
connection or the federation ID defined on the System # Server # Protocol
Settings # Federation Info tab.

 Note:

If your partner fails to retrieve metadata when sending both the PartnerSpId or the PartnerIdpId, and
the vsid query parameters, perhaps it is only capable of sending one query parameter in such requests.
An alternative metadata exchange endpoint that includes the virtual server ID information should resolve
the issue.

For more information, see Constructing an alternative metadata exchange endpoint on page 1189.

/pf/federation_metadata.ping

This endpoint returns SAML and WS-Federation metadata.

The following table shows the HTTP parameters for this endpoint.

Parameter Description

PartnerSpId The connection ID of the SP to whom the assertions or tokens are issued. This
parameter determines the connection for which metadata is generated.

PartnerIdpId The connection ID of the IdP issuing the assertions or tokens to be consumed
by PingFederate. This parameter determines the connection for which the
metadata is generated.

vsid

(optional)

Specify the virtual server ID.

If absent, generates the metadata based on the connection's default virtual
server ID, if two or more virtual server IDs are defined, or the federation ID
defined on the System # Server # Protocol Settings # Federation Info tab.

 Note:

If your partner fails to retrieve metadata when sending both the PartnerSpId or the PartnerIdpId, and
the vsid query parameters, perhaps it is only capable of sending one query parameter in such requests.
An alternative metadata exchange endpoint that includes the virtual server ID information should resolve
the issue.

For more information, see Constructing an alternative metadata exchange endpoint on page 1189.

Copyright ©2024

 | Developer's Reference Guide | 1189

Constructing an alternative metadata exchange endpoint
You can embed virtual server ID information into a security token service (STS) metadata exchange
endpoint or a SAML and WS-Federation metadata exchange endpoint.

About this task

This process is useful for scenarios where partners prefer to retrieve metadata by sending one
query parameter such asPartnerSpId or PartnerIdpId, instead of two query parameters such
asPartnerSpId or PartnerIdpId and vsid.

Steps

1. Construct a JSON object containing a key-value pair of the virtual server ID by using the following
format.

{"vsid":"<VirtualServerIdValue>"}

Example:

For example, if the virtual server ID is Engineering, the JSON object is
{"vsid":"Engineering"}.

2. Base64url-encode the JSON object.

Example:

For example, if the JSON object is {"vsid":"Engineering"}, the base64url-encoded value is
eyJ2c2lkIjoiRW5naW5lZXJpbmcifQ.

For more information about base64url, see tools.ietf.org/html/rfc4648.

3. Insert the base64url-encoded value prefixed with a forward slash into the metadata exchange
endpoints, described as follows:

Federation metadata endpoint (/pf/federation_metadata.ping)

Between /pf and /federation_metadata.ping.

STS metadata endpoint (/pf/sts_mex.ping)

Between /pf and /sts_mex.ping.

Example:

For example, if the base64url-encoded value is eyJ2c2lkIjoiRW5naW5lZXJpbmcifQ, the
metadata exchange endpoints embedding with the virtual server ID are:

Federation metadata endpoint

/pf/eyJ2c2lkIjoiRW5naW5lZXJpbmcifQ/federation_metadata.ping

Example: https://idp.example.com:9031/pf/eyJ2c2lkIjoiRW5naW5lZXJpbmcifQ/
federation_metadata.ping?PartnerSpId=sp.example.org

STS metadata endpoint

/pf/eyJ2c2lkIjoiRW5naW5lZXJpbmcifQ/sts_mex.ping

Example: https://idp.example.com:9031/pf/eyJ2c2lkIjoiRW5naW5lZXJpbmcifQ/sts_mex.ping?
PartnerSpId=sp.example.org

Copyright ©2024

https://tools.ietf.org/html/rfc4648

 | Developer's Reference Guide | 1190

Authentication API
The PingFederate authentication API is a JSON-based API that enables end-user interactions, such as
credential prompts, to be handled by an external web application. This API does so by providing access to
the current state of the flow as an end user steps through a PingFederate authentication policy.

Authentication flows are initiated through browser-based single sign-on (SSO) application endpoints,
such as /idp/startSSO.ping, or a protocol request, such as an OpenID Connect authentication
request received at the authorization endpoint: /as/authorization.oauth2. As PingFederate runs the
configured authentication policy, if it encounters an API-capable adapter or selector, and an authentication
application is configured for the policy, PingFederate redirects to the authentication application's URL,
passing the ID of the flow in the flowId query parameter.

The authentication application can then retrieve the current state of the flow by issuing a GET request to
the /pf-ws/authn/flows/{flowId} endpoint. The _links field in the response lists the available
authentication actions that can be performed from the current state. To invoke an action, the authentication
application sends a POST request to the /pf-ws/authn/flows/{flowId} endpoint.

The API client can choose authentication actions using either an action query parameter or a custom
content type. The action query parameter should be used when your networks block custom content
types, and is specified using the format

/pf-ws/authn/flows/<flowId>?action=<actionID>

For example, to check username and password, pass the checkUsernamePassword action ID through
the query parameter as follows:

/pf-ws/authn/flows/<flowId>?action=checkUsernamePassword

For the custom content type, the action ID is specified using the Content-Type HTTP request header in the
format

application/vnd.pingidentity.<actionId>+json

For example, to indicate a username and password check from the HTML Form Adapter, specify the
following:

application/vnd.pingidentity.checkUsernamePassword+json

When the application invokes an action, PingFederate responds either with the next state for the flow or an
error.

When the user completes the authentication policy steps successfully, the authentication API returns a
RESUME status to the authentication application. This status indicates that the API client should redirect
the user's browser to the resumeUrl specified in the response. PingFederate will then be responsible for
the final step in the flow, such as passing a SAML assertion to a partner. A RESUME status will also be sent
if PingFederate encounters an identity provider (IdP) connection in the policy tree, or an IdP adapter or
selector that is not API-capable. When the API client redirects the user, PingFederate will take the steps
needed to invoke the authentication source.

If the user has interacted with an authentication application and the flow terminates with an error, the API
client will receive a FAILED status from the API.

 Note:

To avoid issues with third-party cookies in some browsers, you should give the authentication application
the same parent domain as the PingFederate authentication API URL that the application accesses. This
could be a common domain of PingFederate's base URL or one of PingFederate's defined virtual hosts.

Copyright ©2024

 | Developer's Reference Guide | 1191

Key concepts

Flow

The SSO transaction invoking the authentication API.

States

The available states (if any) for a given API-enabled adapter or selector.

Current state

Indicates what the adapter or selector is ready to do next.

Actions

The available actions (if any) for a given state.

Session management

The authentication API endpoint has the same domain as PingFederate's other application endpoints and
shares the PingFederate session cookies with those endpoints. This ensures that session data created by
API applications can be retrieved when the user interacts with PingFederate's other endpoints and vice
versa.

 Note:

Because the authentication API relies on the PingFederate session cookies, only browser-based web
applications can currently make use of the API. Server-side web applications are not supported.

In order for PingFederate to manage session cookies correctly, the Javascript-written authentication
application must set the withCredentials flag on the XMLHttpRequest object to true.

To protect against cross-site request forgeries, API clients are also required to include an X-XSRF-Header
HTTP request header with each request, for example: X-XSRF-Header: PingFederate. This custom
header ensures that browsers enforce cross-origin resource sharing (CORS) policies when API requests
are sent. This header can have any value.

Authentication API Explorer

PingFederate includes an API Explorer, which allows you to view the states, actions, and models available
for the various API-capable adapters and selectors included in your PingFederate environment. The
endpoint for the Authentication API Explorer is /pf-ws/authn/explorer.

You can download a Postman collection file from Authentication # Integration # Authentication API
Applications. The file contains information converted from the Explorer into a Postman collection. You
can then import the collection file into the Postman application. The collection file provides every possible
action of every state in every plugin deployed in the PingFederate instance. It contains:

▪ All API-capable plugins, both adapters and selectors, with all of their states and actions
▪ Pre-populated body containing information about required information types and parameters
▪ Headers for API calls, both X-XSRF-Header and Content-Type

For more information, see Exploring the authentication API on page 1192.

JavaScript widget for the PingFederate authentication API

The JavaScript Widget for the PingFederate authentication API is a customizable JavaScript library that
provides the capabilities of the HTML Form Adapter and Identifier First Adapter through the authentication
API:

▪ User Login

Copyright ©2024

 | Developer's Reference Guide | 1192

▪ Trouble Signing in
▪ Trouble with Username
▪ Password Reset

The widget is a ready-to-use drop-in bundle with CSS and customizable templates. This alternative to the
PingFederate templates provides a sign-in experience as a single page application. For more information,
go to JavaScript Widget for the PingFederate Authentication API.

Exploring the authentication API
PingFederate includes an Authentication API Explorer that lets you view the states, actions, and models
available for the various API-capable adapters and selectors included in your PingFederate environment.

Steps

1. Enable the authentication API and Authentication API Explorer.

a. Go to Authentication # Integration # Authentication API Applications.
b. Select the Enable Authentication API check box.
c. Select the Enable API Explorer check box.

2. Configure an authentication application for the Authentication API Explorer.

a. Go to Authentication # Integration # Authentication API Applications.
b. Click Add Authentication Application.
c. In the Authentication Application window, configure each field as described in the following

table.

Field Description

Name A name of the authentication application, such as Authentication
API Explorer.

Description An optional description of the authentication application, such as
Explore the authentication API!

URL A combination of the PingFederate base URL and the application path /
pf-ws/authn/explorer.

For example, if the base URL is https://localhost:9031, enter: https://
localhost:9031/pf-ws/authn/explorer.

You can find your PingFederate base URL at System # Server #
Protocol Settings # Federation Info.

Additional Allowed
Origins

Any additional allowed origins. For more information, see Configuring
authentication applications on page 407.

If you are using a PingFederate base URL of https://localhost:9031 for
testing purposes, you can skip this field.

d. In the Authentication Application window, click Save.
e. In the Authentication API Applications window, click Save.

Copyright ©2024

https://github.com/pingidentity/pf-authn-js-widget

 | Developer's Reference Guide | 1193

3. In the Authentication API Explorer, view the available states, actions, and models for any API-capable
adapter or selector in your PingFederate environment:

a. Go to the URL of the Authentication API Explorer, such as https://localhost:9031/pf-ws/authn/
explorer

b. In the Authentication Adapter/Selector list, select an authentication adapter or selector.

Result:

The Authentication API Explorer displays a list of states. You can then inspect the following items
for any given state:

▪ The state purpose
▪ The state data model (if any)
▪ The available action of actions (if any)
▪ The action data model (if any) for a given action
▪ The errors (if any) for a given action

The developers of your web applications use this information to create the desired authentication
experience.

4. Explore the authentication API through a request without an authentication policy:

a. Configure a use case to use an instance of the HTML Form Adapter for authentication.

For example, you can create an SP connection that uses an instance of the HTML Form Adapter
for authentication. For more information, see Configuring a sample use case on page 236.

b. Go to Authentication # Integration # Authentication API Applications.
c. In the Default Authentication Application list, select the authentication application that

represents the Authentication API Explorer. Click Save.
d. Initiate a request supported by the use case.

Result:

When PingFederate receives your request, it determines from your use case that it should
invoke the HTML Form Adapter. Because the HTML Form Adapter is API-enabled and you have
configured the Authentication API Explorer to be the default authentication application, instead of
returning the Sign On page (from the HTML Form Adapter), PingFederate redirects the browser to
the Authentication API Explorer with a flowid query parameter, such as https://localhost:9031/pf-
ws/authn/explorer?flowId=Tt9n7.

The Authentication API Explorer opens and pre-populates the Flow ID field with the flow ID value
generated by PingFederate.

e. In the Authentication API Explorer, click Get next to the pre-populated flow ID value.

Result:

The Authentication API Explorer displays a JSON response as the result of the GET request.
This response contains information that the web application requires to proceed further.
For instance, the status parameter value indicates the current state of the request.
Because the sample request invokes the HTML Form Adapter, the current state should be
USERNAME_PASSWORD_REQUIRED.

At the end of the result is a hyperlink to the current state. In this example, when
you select the current state link, the Authentication API Explorer jumps to the
USERNAME_PASSWORD_REQUIRED state and expands its contents for further review.

From this point, you can review the state data model and move the request further by selecting the
appropriate action and action data, if it's required.

Copyright ©2024

 | Developer's Reference Guide | 1194

5. Explore the authentication API through a request with an authentication policy:

a. Go to Authentication # Integration # Authentication API Applications.
b. In the Default Authentication Application list, select Select.

Result:

No application is designated as the default authentication application.
c. Define an authentication policy to use the Authentication API Explorer:

1. Go to Authentication # Policies # Policies, and click Add Policy.
2. Enter a policy name and optionally a description.
3. In the Authentication Application list, select the authentication application that represents

the Authentication API Explorer.
4. Select the HTML Form Adapter instance that has been mapped to the use case you

configured in step 4a.

For both the Fail and Success policy paths, select Done.
5. Click Done.
6. Select the IdP Authentication Policies check box.
7. Click Save.

d. Initiate a request supported by the use case you configured in step 4a.
e. Use the Authentication API Explorer to learn more about the authentication API.

6. Generate and configure a Postman collection JSON file.

a. Go to the Authentication API Explorer.
b. Click What is the PingFederate Authentication API? to expand the top panel
c. Click the Postman Collection button.

Result: The Authentication API Explorer downloads the Postman collection file.
d. Open the Postman application, and import the file.
e. In Postman, manually configure the following:

▪ The flowid collection variable. When PingFederate receives a request, it generates a
flowid, such asTt9n7, and displays it in the Flow ID field on the Authentication API
Explorer page.

▪ The baseUrl collection variable. This is the base URL of your Authentication API Explorer,
such as https://localhost:9031.

▪ The PingFederate cookie.

You must also modify the body, if one exists, to ensure that API calls work correctly.

Mobile application authentication through REST APIs
In PingFederate, you can configure mobile applications to authenticate through REST APIs as OAuth
clients without needing to handle HTTP redirections. When authentication is complete, the applications
receive an OAuth authorization code, or an access token and possibly an OpenID Connect (OIDC) ID
token.

Single-page web applications can also use redirectless mode if administrators configure them in
PingFederate as authentication applications. For more information, see Configuring authentication
applications on page 407. Web-based authentication applications must be highly trusted. See Denying
authentication applications access to the authorization endpoint on page 408 for more information on
security considerations for authentication applications.

Administrators can allow an OAuth client to initiate authorization directly through the authentication API:

1. Go to the client's configuration in the Client window.
2. Select the Allow Authentication API Redirectless Mode check box.

When enabling this feature, consider the following:

Copyright ©2024

 | Developer's Reference Guide | 1195

▪ Redirection URLs are optional, but without a redirection URL, browser-based OAuth flows do not work.
▪ This flow does not support the user-facing scope consent page, Request for Approval.

 Note:

Enabling this feature automatically enables the Bypass Authorization Approval feature and Restrict
Common Scopes feature.

▪ The application must manage the PF cookie and, if persistent authentication sessions are configured,
the PF.PERSISTENT cookie.

To authenticate with this method, an OAuth client makes two or more API requests:

1. The OAuth client initiates authentication by calling the OAuth 2.0 authorization endpoint /as/
authorization.oauth2 to get a flow ID and other information it needs for the next request. The
client must specify the pi.flow response mode in this call. See the first request sample below.

 Note:

If a valid authentication session already exists when the OAuth client makes the first request, the client
will receive a response with a token. In this case, the client does not need to make the next request.

2. The client calls the authentication API flow endpoint /pf-ws/authn/flows/{flow_id} to get the
token. See the Second request sample below.

 Note:

In some cases, depending on the configuration of the authentication policy, the client must make more
than two requests to get a token.

Copyright ©2024

 | Developer's Reference Guide | 1196

First request sample

GET /as/authorization.oauth2?
client_id=im_client&response_type=token&response_mode=pi.flow HTTP/1.1
Host: www.example.com:9031

Sample response 1 to the first request

If a valid authentication session does not already exist, the OAuth client receives a response that
provides the information the client needs for the next request (see the second request sample).

{
 "id": "PyH5g", // Flow ID
 "pluginTypeId": "7RmQNDWaOnBoudTufx2sEw",
 "status": "USERNAME_PASSWORD_REQUIRED",
 "showRememberMyUsername": false,
 "showThisIsMyDevice": false,
 "thisIsMyDeviceSelected": false,
 "showCaptcha": false,
 "rememberMyUsernameSelected": false,
 "_links": {
 "self": {
 "href": "https://www.example.com:9031/pf-ws/authn/flows/
PyH5g"
 },
 "checkUsernamePassword": {
 "href": "https://www.example.com:9031/pf-ws/authn/flows/
PyH5g"
 }

Copyright ©2024

 | Developer's Reference Guide | 1197

 }
}

The self link in the response shows that the second request must call the pf-ws/authn/flows
endpoint instead of the authorization endpoint. The value of the id field is the ID of the flow that was
created. The client must append the flow ID to the pf-ws/authn/flows endpoint for subsequent
API requests.

Sample response 2 to the first request

If a valid authentication session already exists, the OAuth client receives a response with a token,
so the client does not need to make the second request.

{
 "id": "PyH5g", // Flow ID
 "pluginTypeId": "7RmQNDWaOnBoudTufx2sEw",
 "status": "COMPLETED",
 "authorizeResponse": {
 "access_token": "000144Qlv9eqpBk03ngAd7M35Gaj41Mgisk",
 "token_type": "Bearer"
 "_links": {
 "self": {
 "href": "https://www.example.com:9031/pf-ws/authn/flows/
PyH5g"
 }
 }
}

Second request sample

POST /pf-ws/authn/flows/PyH5g HTTP/1.1
Host: www.example.com:9031
X-XSRF-Header: PingFederate
Content-Type: application/vnd.pingidentity.checkUsernamePassword+json
Cookie: PF=8PgutwFizNS7EoaiB0qVsa

{
 "username": "joe",
 "password": "Password1"
}

Sample response to the second request

{
 "id": "PyH5g",
 "pluginTypeId": "7RmQNDWaOnBoudTufx2sEw",
 "status": "COMPLETED",
 "authorizeResponse": {
 "access_token": "000144Qlv9eqpBk03ngAd7M35Gaj41Mgisk",
 "token_type": "Bearer"
 "_links": {

 "self": {
 "href": "https://www.example.com:9031/pf-ws/authn/flows/
PyH5g"
 }
 }
}

Copyright ©2024

 | Developer's Reference Guide | 1198

Development of authentication API-capable adapters and selectors
The PingFederate authentication API lets applications interact with authentication policies. Making an
adapter or selector plugin API-capable means ensuring that an authentication application can invoke the
plugin through this API.

API-capable plugins must handle JSON-based API requests. When a plugin is invoked through the
authentication API endpoint, if it needs interaction from the user, the plugin sends a JSON-based response
rather than rendering a template.

Adapter and selector plugins handle distinct kinds of requests and generate distinct kinds of responses.
The main method you implement in adapters is lookupAuthN(). The main method you implement in
selectors is selectContext().

Developing an API-capable plugin requires a dependency on the PingFederate authentication API SDK
JAR file, pf-authn-api-sdk-version.jar. In the PingFederate installation package, you can find the
SDK JAR file in the server/default/lib directory. Documentation for the classes are in the Javadocs
for the standard PingFederate SDK, under sdk/doc/index.html in the PingFederate install package.

Authentication API states, actions, and models
To develop authentication API-capable adapters and selectors, you must understand the states, actions,
and models of single sign-on (SSO) transactions through the PingFederate authentication API.

PingFederate assigns a flow ID to each SSO transaction that uses the authentication API. PingFederate
uses the flow ID to determine a transaction's state.

As a user steps through an SSO transaction, the transaction is always in some state. The state includes a
status field and other fields specific to that state. The class containing those other fields is the model for the
state.

The API endpoint returns the following when the user's SSO transaction has reached the
USERNAME_PASSWORD_REQUIRED state for the form adapter.

{
 "id": "PyH5g",
 "pluginTypeId": "7RmQNDWaOnBoudTufx2sEw",
 "status": "USERNAME_PASSWORD_REQUIRED",
 "showRememberMyUsername": false,
 "showThisIsMyDevice": false,
 "thisIsMyDeviceSelected": false,
 "showCaptcha": false,
 "rememberMyUsernameSelected": false,
 "_links": {
 "self": {
 "href": "https://localhost:9031/pf-ws/authn/flows/PyH5g"
 },
 "checkUsernamePassword": {
 "href": "https://localhost:9031/pf-ws/authn/flows/PyH5g"
 }
 }
}

The model for this state is the class UsernamePasswordRequired. It includes fields such as
showThisIsMyDevice, which help the API client know how to render the credential prompt to the user.

The API response also includes a list of available actions. In this case, the only action available
is checkUsernamePassword. The API client can select this action by sending a POST request
with the Content-Type of application/vnd.pingidentity.checkUsernamePassword
+json. Each action has its own model containing the fields that the POST body can provide. For the
checkUsernamePassword action, the model is CheckUsernamePassword.

Copyright ©2024

 | Developer's Reference Guide | 1199

The POST body can be as simple as the following.

{
 "username": "joe",
 "password": "2Federate"
}

After receiving this request, PingFederate calls the lookupAuthN() method of the form adapter. If
the form adapter encounters an error while validating the credentials, it writes a JSON API error to the
response. If the form adapter successfully validates the credentials, it returns AUTHN_STATUS.SUCCESS
from its lookupAuthN()method. PingFederate then goes to the next step in the authentication policy.
If the next step is an API-capable adapter, PingFederate calls lookupAuthN()on that adapter and the
adapter determines its current state and writes it to the response, along with the available actions.

 Note:

The PingFederate authentication API follows a different naming convention for actions than PingOne.
PingOne names actions as noun.verb, such as otp.check. PingFederate uses verbNoun, such as
checkOtp.

Specification of the plugin API
The first step in adding API support to your plugin is to implement the AuthnApiPlugin interface.

The AuthnApiPlugin interface has two methods: getApiSpec() and getApiPluginDescriptor().
You only need to implement the getApiSpec() method. The API specification this method returns
defines the states, models, and actions that your plugin exposes in the API.

The API specification is defined by the *Spec classes in the SDK. These include AuthnStateSpec,
AuthnActionSpec, AuthnErrorSpec, and AuthnErrorDetailSpec. The information in these classes
lets the PingFederate authentication API Explorer provide documentation for API client developers. That
documentation describes your plugin's API and lets developers experiment with it.

You can access the API Explorer at https://PingFederate_host:9031/pf-ws/authn/explorer. To enable
the API Explorer, go to the Authentication API Applications window and select the Enable API
Explorer check box. An easy way to use the API Explorer is to create an authentication API application in
PingFederate and set the URL for the application to the API Explorer's URL.

 Note:

When defining models for states and actions, use the @Schema annotation to describe each field in the
model and show whether the field is required.

The rest of this document primarily uses the TemplateRenderAdapter as an example. The source
for this adapter is in the PingFederate installation package's sdk/plugin-src/template-render-
adapter-example directory. This adapter is simple. It just prompts the user to enter their username
and provide a set of string attributes. The administrator defines the list of attributes by extending the
adapter contract. The attribute values are passed back in the SubmitUserAttributes model as a
map. Representing field values using a map in the model is unusual. Usually a separate field in the model
defines each allowed field, which provides better type safety in the code.

State model example
The following is an example of a state model used by the TemplateRenderAdapter.

/**
 * This is the model for the USER_ATTRIBUTES_REQUIRED state. It defines the
 * fields that are returned to the API client in a GET response for this
 state.

Copyright ©2024

 | Developer's Reference Guide | 1200

 */
public class UserAttributesRequired
{
 private List<String> attributeNames = new ArrayList<>();

 /**
 * Get the list of user attributes supported by this adapter instance.
 *
 * It is recommended to annotate each getter with the @Schema annotation
 * and provide a description. This description will be used in
 * generating API documentation.
 */
 @Schema(description="A list of user attribute names that are supported by
 this adapter instance.")
 public List<String> getAttributeNames()
 {
 return attributeNames;
 }

 /**
 * Set the list of user attributes supported by this adapter instance.
 */
 public void setAttributeNames(List<String> attributeNames)
 {
 this.attributeNames = attributeNames;
 }
}

Action model example
The following is the model for the submitUserAttributes action.

/**
 * This is the model for the submitUserAttributes API action. It defines
 the
 * fields that may be included in the POST body for this action.
 */
public class SubmitUserAttributes
{
 private String username;
 private Map<String,Object> userAttributes = new HashMap<>();

 /**
 * Get the username.
 *
 * It is recommended to annotate each getter with the @Schema annotation
 * and provide a description. The 'required' flag can also be specified.
 This
 * information will be used in generating API documentation.
 */
 @Schema(description="The user's username.", required=true)
 public String getUsername()
 {
 return username;
 }

 /**
 * Set the username.
 */
 public void setUsername(String username)
 {
 this.username = username;
 }

Copyright ©2024

 | Developer's Reference Guide | 1201

 /**
 * Get the user attributes.
 */
 @Schema(description="Additional user attributes, as name-value pairs.")
 public Map<String, Object> getUserAttributes()
 {
 return userAttributes;
 }

 /**
 * Set the user attributes.
 */
 public void setUserAttributes(Map<String, Object> userAttributes)
 {
 this.userAttributes = userAttributes;
 }
}

AuthnStateSpec and AuthnActionSpec objects
A fluent builder is provided for creating AuthnStateSpec and AuthnActionSpec objects.

Here is the definition of the AuthnStateSpec for the USER_ATTRIBUTES_REQUIRED state:

public final static AuthnStateSpec<UserAttributesRequired>
 USER_ATTRIBUTES_REQUIRED = new
 AuthnStateSpec.Builder<UserAttributesRequired>()
 .status("USER_ATTRIBUTES_REQUIRED")
 .description("The user's username and attributes are required.")
 .modelClass(UserAttributesRequired.class)
 .action(ActionSpec.SUBMIT_USER_ATTRIBUTES)
 .action(CommonActionSpec.CANCEL_AUTHENTICATION)
 .build();

Here is the specification for the submitUserAttributes action:

public final static AuthnActionSpec<SubmitUserAttributes>
 SUBMIT_USER_ATTRIBUTES = new
 AuthnActionSpec.Builder<SubmitUserAttributes>()
 .id("submitUserAttributes")
 .description("Submit the user's username and attributes.")
 .modelClass(SubmitUserAttributes.class)
 .error(CommonErrorSpec.VALIDATION_ERROR)
 .errorDetail(ErrorDetailSpec.INVALID_ATTRIBUTE_NAME)
 .build();

Error specifications
Action specifications can include a list of possible errors and error details. Each top-level error that an
authentication API request returns can include one or more error detail objects underneath it.

Typically, in the API specification, your only top-level error will be
CommonErrorSpec.VALIDATION_ERROR. However, you can include error detail specifications that can
appear under that top-level error.

The following is how the TemplateRenderAdapter defines the specification for the
INVALID_ATTRIBUTE_NAME error detail.

public final static AuthnErrorDetailSpec INVALID_ATTRIBUTE_NAME = new
 AuthnErrorDetailSpec.Builder()
 .code("INVALID_ATTRIBUTE_NAME")
 .message("An invalid attribute name was provided.")
 .parentCode(CommonErrorSpec.VALIDATION_ERROR.getCode())

Copyright ©2024

 | Developer's Reference Guide | 1202

 .build();

 Note:

The error detail specification must reference the error code of its parent top-level error. This ensures that
the authentication API Explorer correctly represents the error information.

INVALID_ATTRIBUTE_NAME is an example of an error that would be useful for API client developers but
not for end users.

For more information about defining user-facing errors, see Error messages and localization.

State model contents
The model for a state includes all the information an API client would need to build a form (not necessarily
an HTML form) to show the user. A state model should not include the text for messages to display to the
user.

Defining messages for users, and localizing them if needed, is the responsibility of the API client. One
of the reasons we avoid including messages in state models is that those messages will often end up
including semantic content that the API client needs to drive its code. Following the rule that models do not
include messages helps ensure that our models include all the fields that an API client needs to provide the
desired user experience.

Sometimes following this rule requires you to add more states. This is preferable to embedding the state
information inside of a message because it makes it easier for an API client to handle that state in the
desired way.

The one exception we have to this rule is around error messages. API errors include error message text,
and in some cases, API clients will display the message text directly to users. This avoids every API client
having to write its own messages for every user-facing error the API can generate. For more information,
see Error messages and localization.

Non-interactive plugins
Some plugins, typically selectors, do not need to interact with the user to do their job. Making these plugins
API-capable is straight-forward.

You still implement the AuthnApiPlugin interface, but you can just return null from the getApiSpec()
method. And then you override the default implementation of getApiPluginDescriptor() and return
an AuthnApiPluginDescriptor instance with the interactive flag set to false. As with many other
classes in the SDK, there is an AuthnApiPluginDescriptor.Builder class to help in creating the
descriptor.

When interactive is false, PingFederate knows that it never needs to redirect when it encounters
your selector. If the request is occurring on the API endpoint, PingFederate can immediately call
selectContext(). The same is true if the request is occurring on a front-channel endpoint, such as /
as/authorization.oauth2.

If your selector does not implement AuthnApiPlugin, then PingFederate assumes that only a front-
channel endpoint can call your selector. If PingFederate encounters your selector while executing an
API request, PingFederate will send a RESUME response to the API client so that the user is redirected to
PingFederate.

Runtime behavior implementation
After you specify your plugin's API at least partially, you can start implementing the runtime behavior. Use
the specification that you defined previously to implement the runtime functionality.

Follow this pattern in lookupAuthN():

1. Check for the possible actions the adapter expects in the current state.

Copyright ©2024

 | Developer's Reference Guide | 1203

2. If an action is matched, then try to extract the expected model from the request and handle the action.
3. If an action is requested, but it does not match an action allowed for the current state, then return an

INVALID_ACTION_ID error.
4. If no action is requested, render the response for the current state.

The AuthnApiSupport class provides much of the functionality for handling API requests and sending
responses. The TemplateRenderAdapter stores a reference to this singleton in its apiSupport field.

private AuthnApiSupport apiSupport = AuthnApiSupport.getDefault();

Checking for actions
The following code shows the preferred approach for checking for the submitIdentifiers action.

The adapter performs this check two ways, depending on whether the current request is from the API
endpoint. The TemplateRenderAdapter uses a slightly different but equivalent method.

/**
 * Determine if the user chose "Submit".
 */
private boolean isSubmitAttributesRequest(HttpServletRequest req)
{
 if (apiSupport.isApiRequest(req))
 {
 return ActionSpec.SUBMIT_USER_ATTRIBUTES.isRequested(req);
 }
 return StringUtils.isNotBlank(req.getParameter("pf.submit"));
}

Extracting models from requests
The next step extracts the model from the request. This step varies depending on whether the request
is from the API endpoint. For an API request, call the AuthnApiSupport.deserializeAsModel()
method. For a non-API request, you must build the model from the parameters in the request.

private SubmitUserAttributes getSubmittedAttributes(HttpServletRequest req)
 throws AuthnErrorException, AuthnAdapterException
{
 if (apiSupport.isApiRequest(req))
 {
 try
 {
 return apiSupport.deserializeAsModel(req, SubmitUserAttributes.class);
 }
 catch (IOException e)
 {
 throw new AuthnAdapterException(e);
 }
 }
 else
 {
 SubmitUserAttributes result = new SubmitUserAttributes();
 result.setUsername(req.getParameter("username"));

 for (String key : extendedAttr)
 {
 result.getUserAttributes().put(key, req.getParameter(key));
 }
 return result;
 }
}

Copyright ©2024

 | Developer's Reference Guide | 1204

The deserializeAsModel() method also does some validation on the incoming JSON. This includes
checking for fields flagged as required in the model, using the @Schema annotation. If a validation error
occurs during this step, the method throws an AuthnErrorException, which the adapter can convert to
an API error response. For more information, see Handling authentication error exceptions.

Performing additional validation
The deserializeAsModel() method performs some basic validation on the submitted JSON. Your
adapter probably needs to perform more validation and send an AuthnError to the API client if it
finds any errors. Here is how the TemplateRenderAdapter validates the names of the provided user
attributes:

private void validateSubmittedAttributes(HttpServletRequest req,
 SubmitUserAttributes submitted) throws AuthnErrorException
{
 if (apiSupport.isApiRequest(req))
 {
 List<AuthnErrorDetail> errorDetails = new ArrayList<>();
 for (String attrName : submitted.getUserAttributes().keySet())
 {
 if (!extendedAttr.contains(attrName))
 {

 errorDetails.add(ErrorDetailSpec.INVALID_ATTRIBUTE_NAME.makeInstanceBuilder()
 .message("Invalid attribute name: " + attrName).build());
 }
 }
 if (!errorDetails.isEmpty())
 {
 AuthnError authnError = CommonErrorSpec.VALIDATION_ERROR.makeInstance();
 authnError.setDetails(errorDetails);
 throw new AuthnErrorException(authnError);
 }
 }
}

Handling invalid action IDs
If a request from an API client includes an action ID that does not match any actions available in the
current state, it is best practice to return an error to the client.

After checking all the possible actions, if none match and the request's action ID is not null, the adapter
can throw an AuthnErrorException. The adapter catches this exception and writes an error to the API
response.

if (apiSupport.getActionId(req) != null)
{
 // An action ID was provided but it does not match one of those expected in
 the current state.
 throw new
 AuthnErrorException(CommonErrorSpec.INVALID_ACTION_ID.makeInstance());
}

Handling authentication error exceptions
If the deserializeAsModel() method detects an error while deserializing the model, it throws an
AuthnErrorException. If the added validation checks in validateSubmittedAttributes detect an
error, they also throw this exception.

The adapter should catch this exception and send an API error response using the method
AuthnApiSupport.writeErrorResponse().

try

Copyright ©2024

 | Developer's Reference Guide | 1205

{
 ...
}
catch (AuthnErrorException e)
{
 // A validation error occurred while processing an API request, return an
 error response to the API client
 apiSupport.writeErrorResponse(req, resp, e.getValidationError());
 authnAdapterResponse.setAuthnStatus(AUTHN_STATUS.IN_PROGRESS);
 return authnAdapterResponse;
}

Sending API responses
AuthnApiSupport provides several methods for writing API responses.

The following example shows how the TemplateRenderAdapter writes the response for the
USER_ATTRIBUTES_REQUIRED state.

private void renderApiResponse(HttpServletRequest req, HttpServletResponse
 resp, Map<String, Object> inParameters) throws AuthnAdapterException
{
 UserAttributesRequired model = new UserAttributesRequired();
 model.setAttributeNames(new ArrayList<>(extendedAttr));
 AuthnState<UserAttributesRequired> authnState =
 apiSupport.makeAuthnState(req, StateSpec.USER_ATTRIBUTES_REQUIRED, model);
 try
 {
 apiSupport.writeAuthnStateResponse(req, resp, authnState);
 }
 catch (IOException e)
 {
 throw new AuthnAdapterException(e);
 }
}

The makeAuthnState() method takes an AuthnStateSpec and an instance of the model for that state
and builds an AuthnState object. The AuthnState object can then be further modified. For example,
you could remove an action that is not currently applicable using the removeAction() method. Then you
write the AuthnState object to the response using the writeAuthnStateResponse() method.

Returning authentication statuses
As with non-API requests, when the adapter finishes, it returns AUTHN_STATUS.SUCCESS or
AUTHN_STATUS.FAILURE from lookupAuthN().

If the adapter has not yet finished and has written something to the response, it should return
AUTHN_STATUS.IN_PROGRESS.

Session state management
Session state management for authentication API adapters is no different than for regular adapters. The
same mechanisms, such as SessionStateSupport and TransactionalStateSupport, are used to
store and retrieve session attributes on behalf of a user.

It should not be necessary to store more state attributes just to support the authentication API. The same
session attributes should cover both API and non-API requests.

You can also wrap an API-capable adapter in a PingFederate-managed authentication session.
PingFederate-managed authentication sessions mean that many adapters no longer need to provide their
own internal session tracking.

Copyright ©2024

 | Legal Information | 1206

Error messages and localization
Error messages are the one case where an API response could include user-facing text. The typical case
is a validation error.

For validation errors, the adapter constructs an AuthnError with the code VALIDATION_ERROR, and
then adds AuthnErrorDetail objects for each of the errors that occurred. The userMessage field of
the AuthnErrorDetail object provides the user-facing text. Like states and actions, you can define
errors up front using an AuthnErrorSpec or an AuthnErrorDetailSpec. Then an instance of the error
is constructed from the specification on demand.

The following example shows how you can define the specification for an invalid OTP error.

public final static AuthnErrorDetailSpec INVALID_OTP = new
 AuthnErrorDetailSpec.Builder()
 .code("INVALID_OTP")
 .message("An invalid or expired OTP code was provided.")
 .userMessage("This code is invalid or has expired.")
 .parentCode(CommonErrorSpec.VALIDATION_ERROR.getCode())
 .build();

The following example shows how you can use that specification to send an error response to the API
client.

AuthnErrorDetail errorDetail =
 ErrorDetailSpec.INVALID_OTP.makeInstanceBuilder().build();
AuthnError authnError =
 CommonErrorSpec.VALIDATION_ERROR.makeInstanceBuilder().detail(errorDetail).build();
apiSupport.writeErrorResponse(req, resp, authnError);

To localize the error message using a properties file for your adapter, you can use LocaleUtil and
LanguagePackMessages from the standard PingFederate SDK.

LanguagePackMessages messages = new LanguagePackMessages("my-adapter-
messages", LocaleUtil.getUserLocale(req));
String errorMessage = messages.getMessage("invalid.otp.key", new String[]
{});
AuthnErrorDetail errorDetail =
 ErrorDetailSpec.INVALID_OTP.makeInstanceBuilder().userMessage(errorMessage).build();
AuthnError authnError =
 CommonErrorSpec.VALIDATION_ERROR.makeInstanceBuilder().detail(errorDetail).build();
apiSupport.writeErrorResponse(req, resp, authnError);

For more information about how PingFederate determines the user's locale at runtime, see Locale
overrides by cookies on page 840.

Some errors reflect problems with API client programming rather than with end user input. If you think an
error will not be shown to an end user, then you do not need to populate the userMessage field.

Legal Information

Server documentation

© 2021 Ping Identity Corporation. All rights reserved.

Copyright ©2024

 | Legal Information | 1207

Trademarks

Ping Identity, the Ping Identity logo, PingAccess, , PingID, and PingOne are registered trademarks of Ping
Identity Corporation ("Ping Identity"). All other trademarks or registered trademarks are the property of their
respective owners.

Disclaimer

The information provided in these documents is provided "as is" without warranty of any kind. Ping
Identity disclaims all warranties, either express or implied, including the warranties of merchantability and
fitness for a particular purpose. In no event shall Ping Identity or its suppliers be liable for any damages
whatsoever including direct, indirect, incidental, consequential, loss of business profits or special damages,
even if Ping Identity or its suppliers have been advised of the possibility of such damages. Some states
do not allow the exclusion or limitation of liability for consequential or incidental damages so the foregoing
limitation may not apply.

Copyright ©2024

 | Index | 1208

Index

A

Assertions 29
attribute sources

custom 899

C

certificates
revocation of 640

CIAM 98
Customer IAM 98

D

directory service
SOAP example 1121

E

Exchange admin center 380

I

installation
federation server 120

O

Office 365
Outlook web app 380

OpenID Connect 58

S

SSO 1119
SSO directory service 1119

U

uninstalling 126

W

web services
SSO Directory 1119

	Contents
	PingFederate
	Release Notes
	PingFederate 10.3.14 - April 2024
	PingFederate 10.3.13 - August 2023
	PingFederate 10.3.12 - February 2023
	PingFederate 10.3.11 - February 2023
	PingFederate 10.3.10 - October 2022
	PingFederate 10.3.9 - August 2022
	PingFederate 10.3.8 - June 2022
	PingFederate 10.3.7 - May 2022
	PingFederate 10.3.6 - March 2022
	PingFederate 10.3.5 - January 2022
	PingFederate 10.3.4 - November 2021
	PingFederate 10.3.3 - October 2021
	PingFederate 10.3.2 - September 2021
	PingFederate 10.3.1 - August 2021
	PingFederate 10.3 - June 2021
	Known issues and limitations
	Deprecated features
	Previous releases

	Introduction to PingFederate
	About identity federation and SSO
	Service providers and identity providers
	Federation hub

	Supported standards
	Federation roles
	Terminology
	Browser-based SSO
	SAML 1.x profiles
	SSO—Browser-POST
	SSO—Browser-Artifact
	SP-initiated (destination-first) SSO

	SAML 2.0 profiles
	Single sign-on
	SP-initiated SSO—POST-POST
	SP-initiated SSO—Redirect-POST
	SP-initiated SSO—Artifact-POST
	SP-initiated SSO—POST-Artifact
	SP-initiated SSO—Redirect-Artifact
	SP-initiated SSO—Artifact-Artifact
	IdP-initiated SSO—POST
	IdP-initiated SSO—Artifact

	Single logout
	Attribute Query and XASP
	Standard IdP Discovery

	WS-Federation
	About account linking

	Web services standards
	Web Services Security
	WS-Trust
	Request types

	OAuth 2.0
	Web redirect flow
	Device authorization grant
	CIBA grant
	CIBA by poll
	CIBA by ping

	Token exchange grant
	Assertion grant profile for OAuth 2.0 authorization grants
	OpenID Connect support
	Client management

	System for Cross-domain Identity Management (SCIM)
	Transport and message security

	SSO integration overview
	SSO integration concepts
	Identity provider integration
	Service provider integration
	Integrations and deployment scenarios

	Security token service
	OAuth authorization server
	User account management
	Enterprise deployment architecture
	Additional features
	Key concepts
	WS-Trust STS
	Connection-based policy
	Token processors and generators
	WSC and WSP support
	STS OAuth integration

	About OAuth
	Delegated access types
	Token models and management
	Grant types
	Scopes
	Consent approval
	Client management and storage
	Client authentication schemes
	Dynamic client registration
	Transient grants and persistent grants
	Grant storage and management
	Mapping OAuth attributes
	OAuth user-facing windows
	OpenID Connect
	CORS support for OAuth endpoints

	SSO integration kits and adapters
	Security infrastructure
	Digital signatures
	Message signing
	Certificate validation
	Digital signing policy coordination

	Secure sockets layer
	Encryption

	Hierarchical plugin configurations
	Identity mapping
	Account linking
	Account mapping

	User attributes
	Attribute contracts
	Adapter contracts
	STS token contracts
	Datastores
	Attribute masking
	Token authorization

	User provisioning
	Outbound provisioning for IdPs
	Provisioning for SPs

	Customer identity and access management
	Federation hub use cases
	Bridging an IdP to an SP
	Bridging an IdP to multiple SPs
	Bridging multiple IdPs to an SP
	Bridging multiple IdPs to multiple SPs
	Federation hub and authentication policy contracts
	Federation hub and virtual server IDs

	Federation planning checklist
	Multiple virtual server IDs
	Configuration data exchange

	Installing PingFederate
	System requirements
	Database driver information

	Port requirements
	Installing Java
	Installation options
	Installing PingFederate on Windows
	Installing PingFederate on Linux systems
	Installing the PingFederate service on Linux manually
	Installing PingFederate service on Windows manually

	Uninstalling PingFederate
	Uninstalling PingFederate from a Windows server
	Uninstalling PingFederate from a Linux server

	Upgrading PingFederate
	Downloading PingFederate
	Preparing to upgrade PingFederate
	Upgrade considerations
	Upgrade considerations introduced in PingFederate 9.x
	Upgrade considerations introduced in PingFederate 8.x
	Upgrade considerations introduced in PingFederate 7.x
	Upgrade considerations introduced in PingFederate 6.x

	Updating to the latest maintenance release
	Upgrading PingFederate on Windows using the installer
	Upgrading PingFederate on Windows using the Upgrade Utility
	Upgrading PingFederate on Linux systems
	Custom mode
	Reviewing post-upgrade tasks
	Reviewing administrative users
	Copying customized files or settings
	User-facing windows
	Email notifications
	Jetty or JBoss configuration
	size-limits.conf
	Cross-origin resource sharing (CORS) support for OAuth endpoints
	Configuration files in the config-store directory
	Other configuration files

	Reviewing database changes
	Provisioning datastore reset
	Security enhancement in JDBC datastore queries
	New connection pool library
	An improved index in the database table for OAuth clients
	Changes in the database tables for log messages
	Changes in the database table for account linking
	Changes in the database tables for OAuth clients
	Changes in the database tables for OAuth persistent grants and extended attributes
	A new database table for OAuth persistent grant extended attributes
	New indexes in the database table for OAuth persistent grants
	Changes in a database table supporting nested group membership

	Reviewing log configuration
	Upgrading from PingFederate 8.x, 9.x, or 10.x
	Upgrading from PingFederate 6.x or 7.x

	Migrating other components
	Updating the custom authentication selector
	Migrating to the integrated LDAP Username PCV
	Migrating to the integrated Username Token Processor

	Resetting files and variable for HSM
	Verifying the new installation

	Getting Started with PingFederate
	Start and stop PingFederate
	Starting and stopping PingFederate on Windows
	Starting and stopping PingFederate on Linux

	Opening the PingFederate administrative console
	Set up PingFederate
	Importing your license
	Entering basic information
	Configuring identity provider settings
	Connecting to a directory
	Configuring Kerberos authentication
	Reviewing your directory configuration

	Creating an administrator account
	Reviewing your configuration

	PingFederate administrative console
	Navigation tabs and menus
	Customizing shortcuts
	Tasks and steps
	Console buttons

	Third-party cryptographic solutions
	Supported hardware security modules
	Integrating with AWS CloudHSM
	AWS CloudHSM operational notes

	Integrating with Thales Luna Network HSM
	SafeNet Luna Network HSM operational notes

	Integrating with Entrust nShield Connect HSM
	nShield Connect HSM operational notes

	Supported software security package
	Integrating with Bouncy Castle FIPS provider
	Setting up with Java 8 or Java 11
	Bouncy Castle operational notes

	Server Clustering Guide
	Overview of clustering
	Cluster protocol architecture
	Runtime state-management architectures
	Adaptive clustering
	Multi-region support
	Configuring multi-region support

	Directed clustering
	Sharing all nodes
	Designating state servers
	Defining subclusters

	Runtime state-management services
	Inter-Request State-Management (IRSM) Service
	IdP Session Registry Service
	SP Session Registry Service
	LRU memory management schemes
	Assertion Replay Prevention Service
	Artifact-Message Persistence and Retrieval Service
	Back-Channel Session Revocation Service
	Account Locking Service
	Other services

	Deploying cluster servers
	Enabling dynamic discovery for clustering

	Deploying provisioning failover
	Configuration synchronization
	Console configuration push
	Configuration-archive deployment

	Administrator's Reference Guide
	Attribute mapping expressions
	Enabling and disabling expressions
	Construct OGNL expressions
	Sample OGNL expressions
	Issuance criteria and multiple virtual server IDs
	Expressions for OAuth and OpenID Connect uses cases

	Using the OGNL edit window

	Authentication policies
	Selectors
	Managing authentication selector instances
	Choosing a selector type
	Configuring an authentication selector instance
	Configuring the CIDR Authentication Selector
	Configuring the Cluster Node Authentication Selector
	Configuring the Connection Set Authentication Selector
	Configuring the Extended Property Authentication Selector
	Configuring the HTTP Header Authentication Selector
	Configuring the HTTP Request Parameter Authentication Selector
	Configuring the OAuth Client Set Authentication Selector
	Configuring the OAuth Scope Authentication Selector
	Configuring the Requested AuthN Context Authentication Selector
	Configuring the Session Authentication Selector
	Configuring a sample use case

	Policies
	Defining authentication policies
	Specifying incoming user IDs
	Configuring rules in authentication policies
	Defining authentication policies based on group membership information

	Applying policy contracts or identity profiles to authentication policies
	Configuring contract mapping
	Configuring local identity mapping
	Defining issuance criteria for contract or local identity mapping

	Mapping a policy contract to multiple use cases
	SP authentication policies
	Configuring an SP authentication policy for users from one IdP
	Configuring SP authentication policies for users from multiple IdPs
	Configuring SP authentication policies for internal users

	Policy fragments
	Defining a policy fragment

	Policy contracts
	Managing policy contracts
	Editing contract information
	Defining contract attributes
	Reviewing the policy contract

	Adapter Mappings
	Configuring authentication policy adapter mappings
	Defining issuance criteria for adapter mapping

	Sessions
	Configuring tracking options for logout
	Configuring application sessions
	Configuring authentication sessions

	Bundled adapters
	Composite Adapter
	Configuring a Composite Adapter instance

	HTML Form Adapter
	Configuring an HTML Form Adapter instance
	HTML Form Adapter advanced fields

	HTTP Basic Adapter
	Configuring an HTTP Basic Adapter instance

	Identifier First Adapter
	Configuring an Identifier First Adapter instance
	Identifier First Adapter and authentication policies
	Configuring a policy for multiple user populations

	Kerberos Adapter
	Authentication mechanism assurance
	Configuring a Kerberos Adapter instance for SSO authentication
	Configuring end-user browsers
	Configuring Microsoft Internet Explorer
	Configuring Mozilla Firefox

	OpenToken Adapter
	Configuring an OpenToken IdP Adapter instance
	Configuring an OpenToken SP Adapter instance

	Configuring a Reference ID adapter
	Configuring an X.509 Certificate IdP adapter

	Customer IAM configuration
	Setting up PingDirectory for customer identities
	Managing local identity profiles
	Configuring local identity profile information
	Defining authentication sources
	Configuring local identity fields
	Configuring email ownership verification options
	Configuring registration options
	Configuring profile management options
	Managing datastore configuration
	Selecting a datastore for customer identities
	Configuring LDAP base DN and attributes
	Configuring LDAP relative DN and object class
	Defining datastore mapping configuration
	Reviewing datastore configuration

	Reviewing a local identity profile

	Configuring the HTML Form Adapter for customer identities
	Setting up self-service registration
	Enabling third-party identity providers
	Enabling profile management
	Creating advanced registration mapping

	Enabling third-party identity providers without registration

	Customizing assertions and authentication requests
	Message types and available variables
	Sample customizations

	Fulfillment by datastore queries
	Attribute mapping with multiple data sources
	Datastore query configuration
	Choosing a datastore
	Specifying database tables and columns
	Entering a database search filter
	Specifying directory properties and attributes
	Defining encoding for binary attributes
	Entering a directory search filter
	Specifying data source filter and fields
	Specifying a resource path for a REST API datastore
	Specifying a dynamic authorization header for a REST API datastore
	Specifying filters and fields for a custom datastore

	Configuring failsafe options
	Reviewing datastore query configurations

	IdP-to-SP bridging
	Adapter-to-adapter mappings
	Managing mappings
	Assigning a license group
	Identifying the target application
	Configuring attribute sources and user lookup for adapter-to-adapter mappings
	Configuring target application information
	Configuring contract fulfillment for adapter-to-adapter mappings
	Configuring a default target URL (optional)
	Defining issuance criteria for adapter-to-adapter mappings
	Reviewing the adapter-to-adapter mapping

	Token translator mappings
	Managing token mappings
	Configuring attribute sources and user lookup for token mapping
	Configuring contract fulfillment for token exchange mapping
	Defining issuance criteria for token translator mapping
	Reviewing the token exchange mapping

	Identity provider SSO configuration
	IdP application integration settings
	Managing IdP adapters
	Creating an IdP adapter instance
	Configuring an IdP adapter instance
	Invoking IdP adapter actions
	Extending an IdP adapter contract
	Setting pseudonym and masking options
	Defining the IdP adapter contract
	Defining attribute sources and user lookup
	Configuring IdP adapter contract fulfillment
	Defining issuance criteria for IdP adapter contract
	Reviewing an IdP adapter contract

	Reviewing and saving an IdP adapter configuration

	Authentication applications and the authentication API
	Managing authentication applications
	Configuring authentication applications
	Denying authentication applications access to the authorization endpoint

	Configuring a default URL and error message
	Viewing IdP application endpoints

	IdP protocol endpoints
	SP connection management
	Accessing SP connections
	Resolving SP connection errors
	Importing a connection
	Updating a SAML connection using metadata
	Choosing an SP connection template
	Choosing an SP connection type
	Choosing SP connection options
	Importing SP metadata
	Identifying the SP
	Populating extended property values for SP connections
	Configure IdP Browser SSO
	Choosing SAML 2.0 profiles
	Setting an SSO token lifetime
	Configuring SSO token creation
	Choosing an identity mapping method for IdP SSO
	Selecting a SAML Name ID type
	Selecting a WS-Federation Name ID type

	Setting up an attribute contract
	Managing authentication source mappings
	Mapping an adapter instance
	Mapping an authentication policy
	Overriding an IdP adapter instance
	Restricting an authentication source to certain virtual server IDs
	Selecting an attribute mapping method
	Configuring default contract fulfillment for IdP Browser SSO
	Defining issuance criteria for IdP Browser SSO
	Configuring attribute sources and user lookup
	Configuring contract fulfillment for IdP Browser SSO
	Reviewing the authentication source mapping

	Reviewing the SSO token creation summary

	Configuring protocol settings
	Setting Assertion Consumer Service URLs (SAML)
	Setting a default target URL (SAML 1.x)
	Specifying the WS-Trust version
	Defining a service URL (WS-Federation)
	Specifying SLO service URLs (SAML 2.0)
	Choosing allowable SAML bindings (SAML 2.0)
	Setting an artifact lifetime (SAML)
	Specifying artifact resolver locations (SAML 2.0)
	Defining signature policy (SAML)
	Configuring XML encryption policy (SAML 2.0)
	Reviewing protocol settings

	Reviewing browser-based SSO settings

	Configuring the Attribute Query profile in an SP connection
	Defining retrievable attributes
	Configuring attribute lookup
	Choosing a datastore for Attribute Query
	Configuring mapping fulfillment for Attribute Query
	Defining issuance criteria for Attribute Query
	Specifying security policy
	Reviewing the Attribute Query configuration

	Configuring credentials
	Configuring back-channel authentication (SAML)
	Configuring authentication requirements for outbound messages
	Configuring authentication requirements for inbound messages

	Configuring digital signature settings
	Configuring signature verification settings (SAML 2.0)
	Selecting an encryption certificate
	Selecting a decryption key (SAML 2.0)
	Reviewing SP credential settings

	Configuring outbound provisioning
	Defining a provisioning target
	Specifying custom SCIM attributes
	Managing channels
	Specifying channel information
	Identifying the source datastore
	Modifying source settings
	Specifying a source location
	Mapping attributes
	Specifying mapping details
	Defining mapping information for a standard attribute
	Defining mapping information for a custom attribute

	Reviewing channel settings

	Reviewing SP connection settings

	SP affiliations
	Managing SP affiliations
	Importing affiliation metadata
	Entering affiliation information
	Managing affiliation membership
	Reviewing an SP affiliation

	OAuth configuration
	Configuring OAuth use cases
	Configuring authorization server settings
	External consent user interface

	Scopes and scope management
	Defining scopes

	Adding virtual issuers for OpenID Connect
	Configuring client settings
	Configuring dynamic client registration settings
	Supported client metadata

	Configuring scope constraints
	Managing client configuration defaults
	Selecting client registration policies
	Reviewing client settings

	Managing Client Registration Policy instances
	Configuring a Client Registration Policy instance
	Configuring a Response Type Constraints instance

	Managing OAuth clients
	Configuring OAuth clients

	Grant contract mapping
	Managing IdP adapter grant mapping
	Configuring IdP adapter attribute sources and user lookup
	Fulfilling IdP adapter grant mapping
	Defining issuance criteria for OAuth IdP adapter mapping
	Reviewing the IdP adapter mapping

	Configuring IdP connection grant mapping
	Choosing an OAuth datastore
	Fulfilling OAuth attribute mapping
	Defining issuance criteria for OAuth attribute mapping
	Reviewing the OAuth attribute mapping summary

	Managing authentication policy contract grant mapping
	Configuring policy contract attribute sources and user lookup
	Fulfilling policy contract grant mapping
	Defining issuance criteria for policy contract mapping
	Reviewing authentication policy contract mapping

	Managing resource owner credentials grant mapping
	Configuring resource owner attribute sources and user lookup
	Fulfilling resource owner credentials grant mapping
	Defining issuance criteria for resource-owner credentials mapping
	Reviewing the resource owner credentials mapping

	Token mapping
	Access token management
	Managing access token management instances
	Defining an access token management instance
	Configuring an access token management instance
	Configuring reference token management
	Configuring JSON token management

	Managing session validation settings
	Defining the access token attribute contract
	Managing resource URIs
	Defining access control
	Reviewing the access token management configuration

	Managing access token mappings
	Configuring access token attribute sources and user lookup
	Configuring access token fulfillment
	Defining issuance criteria for access token mapping
	Reviewing the access token mapping

	Configuring an OAuth assertion grant IdP connection
	Defining an attribute contract for the OAuth assertion grant
	Configuring access token manager mappings
	Selecting an access token manager instance
	Configuring a datastore for OAuth assertion grant attribute mapping
	Configuring OAuth assertion grant contract fulfillment
	Defining issuance criteria for OAuth assertion grants
	Reviewing OAuth assertion grant attribute mapping configuration

	Reviewing OAuth assertion grant configuration

	Configuring OpenID Connect policies
	Configuring policy and ID token settings
	Configuring the policy attribute contract
	Configuring attribute scopes
	Configuring policy attribute sources and user lookup
	Configuring ID token fulfillment
	Defining issuance criteria for policy mapping
	Reviewing your OpenID Connect policy

	Client Initiated Backchannel Authentication (CIBA)
	Managing CIBA authenticators
	Configuring a CIBA authenticator instance

	Managing CIBA request policies
	Defining a request policy
	Configuring identity hint contract
	Configuring identity hint contract fulfillment
	Configuring attribute sources and user lookup
	Fulfilling identity hint contract
	Defining issuance criteria for identity hint contract
	Reviewing identity hint contract fulfillment

	Configuring attribute sources and user lookup for request policy contract
	Configuring request policy contract fulfillment
	Defining issuance criteria for CIBA request policy
	Reviewing your CIBA request policy

	OAuth attribute mapping using a datastore
	OAuth client session management
	Asynchronous Front-Channel Logout
	Back-Channel Session Revocation

	OAuth token exchange
	Configuring OAuth token exchange
	Defining token exchange processor policies
	Creating token exchange generator groups
	Mapping token exchange attributes to token generator attributes
	Mapping token exchange attributes to access token manager attributes
	Enabling token exchange in OAuth clients

	Security management
	Certificate and key management
	Manage trusted certificate authorities
	Importing trusted certificate authorities
	Exporting trusted certificate authorities
	Reviewing trusted certificate authorities
	Removing trusted certificate authorities

	Manage SSL server certificates
	Creating a new certificate
	Importing a certificate and its private key
	Creating a certificate-authority signing request (CSR)
	Importing a certificate-authority response (CSR response)
	Exporting a certificate
	Reviewing a certificate
	Activating or deactivating a certificate
	Removing a certificate

	Manage SSL client keys and certificates
	Creating new certificates
	Importing certificates and their private keys
	Creating a certificate signing request (CSR)
	Importing a certificate-authority response (CSR response)
	Exporting certificates
	Reviewing certificates
	Removing certificates

	Manage digital signing certificates and decryption keys
	Certificate rotation
	Connection and federation metadata
	Managing certificate rotation settings
	Managed SP connection to PingOne for Enterprise and signing certificate

	Creating new certificates
	Importing certificates and their private keys
	Creating a certificate signing request (CSR)
	Importing a certificate-authority response (CSR response)
	Exporting certificates
	Reviewing certificates
	Reviewing a certificate's usage
	Removing certificates

	Keys for OAuth and OpenID Connect
	Configuring static signing keys
	Configuring static decryption keys
	Mapping ID token signing keys to virtual issuers

	Managing certificates from partners
	Signature verification
	Encryption
	Back-channel authentication

	Configuring certificate revocation
	Transitioning to an HSM
	Manage Partner metadata URLs
	Adding a new metadata URL
	Updating an existing metadata URL
	Reviewing a metadata URL usage
	Removing a metadata URL

	Rotating system keys

	System integration
	Configuring redirect validation
	Managing partner redirect validation

	Configure incoming proxy settings
	Configuring service authentication

	Account lockout protection
	Configuring account lockout protection

	Password spraying prevention
	Configuring password spraying prevention

	Implementing a MasterKeyEncryptor using AWS KMS

	Self-service user account management
	Configuring self-service password management
	Configuring self-service account recovery
	Configuring self-service user name recovery

	Service provider SSO configuration
	SP application integration settings
	Managing SP adapters
	Creating an SP adapter instance
	Configuring an SP adapter instance
	Invoking SP adapter actions
	Extending an SP adapter contract
	Identifying the target application
	Reviewing an SP adapter configuration

	Configuring target URL mapping
	Configuring Identity Store Provisioners
	Creating an Identity Store Provisioner instance
	Defining the Identity Store Provisioner behavior
	Extending the Identity Store Provisioner contract
	Extending the Identity Store Provisioner contract for groups
	Reviewing the Identity Store Provisioner configuration

	Configuring default URLs
	Viewing SP application endpoints

	Federation settings
	Managing attribute requester mappings
	Viewing SP protocol endpoints

	Managing IdP connections
	Accessing IdP connections
	Resolving IdP connection errors
	Choosing an IdP connection type
	Choosing IdP connection options
	Importing IdP metadata
	Identifying the partner
	Populating extended property values for IdP connections
	Defining additional issuers
	Configure SP Browser SSO
	Selecting SAML profiles
	Configuring user-session creation
	Choosing an identity mapping method for SP SSO
	Defining an attribute contract
	Managing target session mappings
	Selecting a target session
	Overriding an SP adapter instance
	Restricting a target session to certain virtual server IDs
	Choosing an attribute mapping method
	Configuring target session fulfillment
	Defining issuance criteria for SP Browser SSO
	Reviewing the target session mapping

	Reviewing the session creation summary

	Managing protocol settings
	Specifying SSO service URLs (SAML)
	Specifying a service URL (WS-Federation)
	Defining SLO service URLs (SAML 2.0)
	Selecting allowable SAML bindings (SAML)
	Specifying an artifact lifetime (SAML 2.0)
	Defining artifact resolver locations (SAML)
	Configuring OpenID Provider information
	Configuring default target URLs
	Overriding authentication context in an IdP connection

	Configuring signature policy
	Specifying XML encryption policy (for SAML 2.0)
	Reviewing protocol settings for SP browser SSO

	Reviewing Browser SSO settings

	Manage the Attribute Query profile in an IdP connection
	Setting the Attribute Authority Service URL
	Mapping attribute names for Attribute Query
	Configuring security policy for Attribute Query
	Reviewing the Attribute Query settings

	Configuring just-in-time provisioning
	Selecting attribute sources (SAML 2.0)
	Identifying the user repository
	Specifying an LDAP user-record location
	Entering an LDAP filter
	Identifying provisioning attributes for LDAP
	Choosing a SQL method
	Specifying a database user-record location
	Specifying a unique ID database column
	Specifying a stored procedure location
	Mapping attributes to a user account
	Choosing an event trigger
	Configuring an error handling method
	Reviewing the JIT provisioning configuration

	Configuring SCIM inbound provisioning
	Specifying the user repository
	Identifying an LDAP user-record location
	Defining a unique user ID
	Defining a unique group ID
	Defining custom SCIM attributes
	Configuring custom SCIM attribute options

	Writing user information to the datastore
	Identifying inbound provisioning attributes for LDAP
	Mapping attributes to user accounts
	Reviewing user mapping (Write Users) configuration

	Configuring a SCIM response
	Identifying expected user attributes for the SCIM response
	Identifying LDAP attributes for the SCIM response
	Mapping attributes into the SCIM response
	Reviewing SCIM response (Read Users) configuration

	Configuring the handling of SCIM delete requests
	Writing group information to the datastore
	Identifying inbound provisioning group attributes for LDAP
	Mapping attributes to groups
	Reviewing group mapping (Write Groups) configuration

	Configuring a SCIM response for groups
	Identifying expected group attributes for the SCIM response
	Identifying LDAP group attributes for the SCIM response
	Mapping group attributes into SCIM response
	Reviewing SCIM response for groups (Read Groups) configuration

	Reviewing the inbound provisioning configuration

	Configuring security credentials
	IdP connection management
	Configuring back-channel authentication for outbound messages
	Configuring back-channel authentication for inbound messages

	Managing digital signature settings
	Managing signature verification settings
	Choosing an encryption certificate (SAML 2.0)
	Choosing a decryption key (SAML 2.0)
	Reviewing IdP credential settings

	Reviewing an IdP connection

	OpenID Connect Relying Party support
	Creating an OpenID Connect IdP connection
	Configuring request parameters and SSO URLs
	Query parameters versus request object

	Configuring IdP discovery using a persistent cookie

	System administration
	Configuring PingFederate properties
	Configuring size limits
	PingFederate log files
	Log4j 2 logging service and configuration
	HTTP request logging
	Administrator audit logging
	API audit logging
	Administrative API audit log
	Runtime APIs audit log

	Runtime transaction logging
	Security audit logging
	Outbound provisioning audit logging
	Server logging
	Server log filter

	Logging in other formats
	Writing logs to databases
	Logging in Common Event Format
	Writing audit log in CEF
	Writing provisioner audit log in CEF

	Writing audit logs for Splunk

	Alternative console authentication
	Enabling OIDC-based authentication
	Enabling LDAP authentication
	Enabling RADIUS authentication
	Multi-factor console authentication using PingID
	Solution overview
	Configuring your PingID account
	Creating an LDAP Username Password Credential Validator instance
	Configuring a PingID Password Credential Validator instance
	Configuring PingFederate to use RADIUS authentication
	Verifying your setup

	Enabling certificate-based authentication

	Configuring automatic connection validation
	Automating configuration migration
	Copying the key from the source to the target server
	Administrative console migration
	Using the migration tool

	Outbound provisioning CLI
	Customizable user-facing pages
	IdP user-facing pages
	SP user-facing pages
	Either IdP or SP user-facing pages
	OAuth user-facing pages

	Customizable email notifications
	Local administrative account management events
	Certificate events
	SAML metadata update events
	Licensing events
	HTML Form Adapter events

	Customizable text message
	Localizing messages for end users
	Locale overrides by cookies
	Retrieval of localized messages

	Configuring a password policy
	Managing cipher suites
	Manage externally stored authentication sessions
	Managing authentication sessions stored in the database
	Managing authentication sessions stored in PingDirectory

	OAuth persistent grants cleanup
	Managing expired persistent grants
	Managing expired persistent grants in PingDirectory
	Managing cleanup of persistent grants

	Specifying the domain of the PF cookie
	Specifying the domain of the PF.PERSISTENT cookie
	Extending the lifetime of the PingFederate cookie
	Configuring forward proxy server settings
	Adding custom HTTP response headers
	Configuring validation for the AudienceRestriction element
	Customizing the OpenID Provider configuration endpoint response
	Customizing the heartbeat message
	Customizing the favicon for application and protocol endpoints
	Configuring the behavior of searching multiple datastores with one mapping

	System settings
	Server
	Protocol settings
	Specifying federation information
	Configuring WS-Trust settings
	Configuring outbound provisioning settings
	Configuring standard IdP Discovery
	Reviewing protocol settings

	Administrative accounts
	Enabling native authentication for the administrative console
	Managing local accounts and role assignments
	Enabling notification messages for account management events
	Setting or resetting passwords
	Changing passwords

	License management
	Reviewing license information
	Requesting a new license key
	Installing a license key on a new or upgraded PingFederate server
	Installing a replacement license key
	Configuring notification for licensing events

	Configuration archive
	Configuring a backup schedule
	Exporting an archive
	Importing an archive

	Cluster management
	Replicating configuration

	Virtual host names
	Configuring virtual host names

	Extended properties
	Defining extended properties

	Metadata
	Metadata settings
	Entering system information
	Configuring metadata signing
	Configuring metadata lifetime
	Reviewing metadata settings

	Metadata export
	Exporting connection-specific SAML metadata
	Exporting selected SAML metadata

	File signing
	Signing XML files

	Monitoring and notifications
	Runtime notifications
	Configuring runtime notifications

	Runtime monitoring using JMX

	Datastores
	Adding a new datastore
	Configuring a JDBC connection
	Configuring an LDAP connection
	Setting advanced LDAP options
	Specifying LDAP binary attributes
	Proxied authorization
	Configuring the password validation details request control ACI
	Defining a custom LDAP type for outbound provisioning

	Configuring other types of datastores
	Configuring a REST API datastore
	Configuring a custom datastore

	Defining a datastore for persistent authentication sessions
	Configuring an external database for authentication sessions
	Configuring PingDirectory for authentication sessions
	Using custom solutions for persistent session storage

	OAuth grant datastores
	Configuring external databases for grant storage
	Configuring directories for grant storage
	Indexing grant attributes in PingDirectory
	Using custom solutions for grant storage

	OAuth client datastores
	Configuring external databases for client storage
	Configuring directories for client storage
	Indexing client attributes in PingDirectory
	Using custom solutions for client storage

	Account-linking datastores
	Configuring external databases for account-link storage
	Configuring directories for account-link storage

	Password Credential Validators
	Choosing a Password Credential Validator
	Password Credential Validator instance configurations
	Configuring the LDAP Username Password Credential Validator
	Configuring the PingOne for Enterprise Directory Password Credential Validator
	Configuring the RADIUS Username Password Credential Validator
	Configuring the Simple Username Password Credential Validator
	Extending the contract for the credential validator
	Finishing the Password Credential Validator instance configuration

	Active Directory and Kerberos
	Configuring Active Directory domains or Kerberos realms
	Multiple-domain support
	Configuring the Active Directory environment
	Adding a domain
	Managing domain connectivity settings

	External systems
	Connecting to PingOne for Enterprise after initial setup
	Configuring identity repository settings

	Connections to PingOne
	Creating connections to PingOne
	Modifying connections to PingOne
	Editing connection names and descriptions
	Disabling and enabling connections
	Replacing connection credentials
	Modifying which environments connections can access

	Managing PingOne for Enterprise settings
	Configuring PingOne for Enterprise settings
	Configuring PingOne SSO settings
	Enabling and configuring the built-in RADIUS server to integrate PingID with your VPN

	Configuring SSO from PingOne admin portal to PingFederate administrative console
	Monitoring PingFederate from the PingOne admin portal
	Updating the PingOne identity repository
	Managing CAPTCHA settings
	Managing SMS provider settings
	Managing notification publisher instances
	Defining a notification publisher instance
	Notification publisher instance configurations
	Configuring an Amazon SNS Notification Publisher instance
	Event types and variables

	Configuring an SMTP Notification Publisher instance
	Finalizing actions for a notification publisher instance
	Reviewing a notification publisher instance configuration

	Configuring general settings

	Troubleshooting
	Enabling debug messages and console logging
	Resolving startup issues
	Troubleshooting data store issues
	Resolving URL-related errors
	Resolving service-related errors
	Troubleshooting authentication policy issues
	Troubleshooting registration and profile management issues
	Troubleshooting runtime errors
	Activating tracking ID in templates
	Correlating log messages by PF cookie
	Correlating log messages by tracking ID
	Correlating PingFederate events with PingDirectory LDAP activities

	Troubleshooting OAuth transactions
	Reviewing an OAuth request and various OAuth settings

	Other runtime issues
	Collecting support data

	WS-Trust STS configuration
	Server settings
	Enabling the WS-Trust protocol
	Configuring STS authentication

	Identity provider STS configuration
	Managing token processors
	Selecting a token processor type
	Configuring a token processor instance
	Configuring a Username Token Processor instance
	Configuring a Kerberos Token Processor instance
	Configuring an OAuth Token Processor instance
	Configuring a JSON Web Token Processor instance
	Configuring a SAML Token Processor instance
	Extending a token processor contract
	Setting attribute masking
	Reviewing the token processor configuration

	Managing STS request parameters
	Creating a request contract

	Configuring SP connections for STS
	Configuring protocol settings for IdP STS
	Setting a token lifetime
	Configuring token creation
	Defining an attribute contract for IdP STS
	Selecting a request contract
	Managing IdP token processor mappings
	Selecting a token processor instance
	Overriding a token processor instance
	Restricting a token processor to certain virtual server IDs
	Selecting an attribute retrieval method for token creation
	Configuring attribute sources and user lookup for token creation
	Configuring contract fulfillment for token creation
	Defining issuance criteria for token creation
	Reviewing the IdP token processor mapping

	Selecting a request error handling method
	Reviewing the token creation configuration

	Reviewing the IdP STS settings

	Service provider STS configuration
	Managing token generators
	Selecting a token generator type
	Configuring a token generator instance
	Extending a token generator contract
	Reviewing the token generator configuration

	Configuring IdP connections for STS
	Configuring protocol settings for SP STS
	Configuring token generation
	Defining an attribute contract for SP STS
	Managing SP token generator mappings
	Selecting a token generator instance
	Overriding a token generator instance
	Restricting a token generator to certain virtual server IDs
	Selecting an attribute retrieval method for token generation
	Configuring contract fulfillment for token generation
	Defining issuance criteria for token generation
	Reviewing the SP token generator mapping

	Reviewing the token generation configuration

	Reviewing the SP STS configuration

	Performance Tuning Guide
	Logging
	Operating system tuning
	Linux tuning
	Windows tuning

	Concurrency
	Tuning the acceptor queue size
	Tuning the server thread pool
	Configuring connection pools to datastores

	Memory
	JVM heap
	Garbage collectors
	Young generation bias
	The memoryoptions utility
	memoryoptions and installation
	memoryoptions and upgrade
	Restoring the preserved JVM options
	Fine-tuning JVM options

	Hardware security modules
	Configuration at scale
	References

	PingFederate Monitoring Guide
	Liveliness and responsiveness
	Resource metrics
	Connecting with JMX
	Connecting to a local process
	Connecting to a remote process

	Monitoring
	Thread pool
	Logging, reporting, and troubleshooting
	Creating an error-only server log
	Splunk dashboards and audit logs

	SDK Developer's Guide
	SDK directory structure
	Developing your own plugin
	Implementation guidelines
	Shared plugin interfaces
	Developing IdP adapters
	Developing SP adapters
	Developing token processors
	Developing token generators
	Developing authentication selectors
	Developing data source connectors
	Developing password credential validators
	Developing identity store provisioners
	IdentityStoreProvisionerWithFiltering interface implementation
	IdentityStoreUserProvisioner interface implementation

	Developing notification publishers
	Building and deploying with Ant
	Building and deploying manually
	Log messages

	Developer's Reference Guide
	OAuth 2.0 endpoints
	Authorization endpoint
	Client-initiated backchannel authentication endpoint
	Token endpoint
	OAuth grant type parameters

	Introspection endpoint
	Token revocation endpoint
	Grant-management endpoint
	Dynamic client registration endpoint
	Device authorization endpoint
	User authorization endpoint
	OpenID Provider configuration endpoint
	UserInfo endpoint
	Pushed authorization requests endpoint
	OAuth Playground

	Web service interfaces and APIs
	Connection Management Service
	Exporting a connection
	Importing connections
	Deleting connections
	Cluster configuration replication
	Validation disclaimer

	SSO Directory Service
	Coding example

	SOAP request and response examples
	OAuth Client Management Service
	OAuth Access Grant Management Service
	OAuth Persistent Grant Management API
	Session Management API by session identifiers
	Session Management API by user identifiers
	Session Revocation API endpoint
	PingFederate administrative API
	Configure access to the administrative API
	Enabling native authentication for the administrative API
	Enabling LDAP authentication
	Enabling RADIUS authentication
	Enabling certificate-based authentication
	Enabling OAuth 2.0 authorization

	Accessing the API interactive documentation

	Application endpoints
	IdP endpoints
	SP endpoints
	SP services
	SCIM inbound provisioning endpoints

	System-services endpoints
	Constructing an alternative metadata exchange endpoint

	Authentication API
	Exploring the authentication API
	Mobile application authentication through REST APIs

	Development of authentication API-capable adapters and selectors
	Authentication API states, actions, and models
	Specification of the plugin API
	State model example
	Action model example
	AuthnStateSpec and AuthnActionSpec objects
	Error specifications

	State model contents
	Non-interactive plugins
	Runtime behavior implementation
	Checking for actions
	Extracting models from requests
	Performing additional validation
	Handling invalid action IDs
	Handling authentication error exceptions
	Sending API responses
	Returning authentication statuses

	Session state management
	Error messages and localization

	Legal Information
	Index

