
PingGateway
June 30, 2025

PINGGATEWAY

Version: 2024.6

Copyright

All product technical documentation is
Ping Identity Corporation
1001 17th Street, Suite 100
Denver, CO 80202
U.S.A.

Refer to https://docs.pingidentity.com for the most current product documentation.

Trademark

Ping Identity, the Ping Identity logo, PingAccess, PingFederate, PingID, PingDirectory, PingDataGovernance, PingIntelligence, and
PingOne are registered trademarks of Ping Identity Corporation ("Ping Identity"). All other trademarks or registered trademarks
are the property of their respective owners.

Disclaimer

The information provided in Ping Identity product documentation is provided "as is" without warranty of any kind. Ping Identity
disclaims all warranties, either express or implied, including the warranties of merchantability and fitness for a particular
purpose. In no event shall Ping Identity or its suppliers be liable for any damages whatsoever including direct, indirect, incidental,
consequential, loss of business profits or special damages, even if Ping Identity or its suppliers have been advised of the
possibility of such damages. Some states do not allow the exclusion or limitation of liability for consequential or incidental
damages so the foregoing limitation may not apply.

Table of Contents

PingGateway . 5

About PingGateway . 8
PingGateway as a reverse proxy . 10
PingGateway as a forward proxy . 11
PingGateway as a microgateway . 11
Object model . 13
Sessions . 14
API descriptors . 16

Quick install . 18
Download PingGateway . 20
Prepare the network . 20
Start and stop PingGateway . 21
Use the sample application . 22
Protect an application with PingGateway . 24
Next steps . 26

Install . 30
Prepare to install . 32
Download PingGateway . 39
Start and stop PingGateway . 40
Set up environment variables and system properties . 43
Encrypt and share JWT sessions . 45
Prepare for load balancing and failover . 58
Secure connections . 60

Configure . 77
Configuration files and routes . 79
Routes and Common REST . 83
Decorators . 85
Operating modes . 91
Configuration templates . 94
Extend . 112

Upgrade . 140
Plan the upgrade . 142
Upgrade . 142
Migrate from web container mode to standalone mode . 146

Deploy with Docker . 147
Build and run a Docker image . 149

Add configuration to a Docker image . 152

Gateway guide . 154
Authentication . 161
Policy enforcement . 189
OAuth 2.0 . 211
OpenID Connect . 274
Passing data along the chain . 301
SAML . 330
Token transformation . 384
Not-enforced URIs . 398
POST data preservation . 405
CSRF protection . 411
Throttling . 415
URI fragments in redirect . 427
JWT validation . 431
WebSocket traffic . 435
UMA support . 440
PingGateway as a microgateway . 450

PingOne Advanced Identity Cloud . 453
About PingGateway and PingOne Advanced Identity Cloud . 458
OAuth 2.0 . 459
PingOne Advanced Identity Cloud as an OpenID Connect provider 464
Cross-domain single sign-on . 468
Password replay . 473
Policy enforcement . 484
PingOne Protect integration . 489
Pass runtime data downstream in a JWT . 496
Secure the OAuth 2.0 access token endpoint . 502

Studio . 507
Start with Studio . 509
Upgrade from an earlier version of Studio . 510
Create and edit routes with Structured Editor (deprecated) . 510
Create and edit routes with Freeform Designer . 513
Edit and import routes . 515
Restrict access to Studio . 516
Example routes created with Structured Editor (deprecated) . 519
Example routes created with Freeform Designer . 532
Summary of tasks, route status, and icons . 542

Maintenance . 544
Audit the deployment . 546
Monitor services . 576
Manage sessions . 584

Manage logs . 584
Tune performance . 593
Rotate keys . 598
Troubleshoot . 608

Security . 613
Access . 615
Threats . 618
Operating systems . 620
Network connections . 621
Keys and secrets . 623
Audits and logs . 627

Reference . 627
Required configuration . 649
Handlers . 667
Filters . 731
Decorators . 894
Audit framework . 907
Monitoring . 946
Throttling policies . 959
Miscellaneous configuration objects . 966
Property value substitution . 1020
Expressions . 1030
Functions . 1041
Patterns . 1059
Scripts . 1059
Route properties . 1066
Contexts . 1072
Requests and responses . 1091
Access token resolvers . 1096
Caches . 1104
Secrets . 1105
Supported standards . 1136
Internationalization . 1137

PingGateway

PingGateway uses Ping Identity Platform capabilities to protect web applications, APIs, and microservices.

Release notes

All versions

Get started with PingGateway

Quick install

Install

Upgrade

Use PingGateway

With PingOne Advanced Identity Cloud

With PingAM

Troubleshoot PingGateway

Maintenance

Manage logs

Troubleshoot

forum

•

description

•

•

•

description

•

•

unknown_document

•

•

•

PingGateway PingGateway

Copyright © 2025 Ping Identity Corporation 7

https://docs.pingidentity.com/pinggateway/release-notes/index.html
https://docs.pingidentity.com/pinggateway/release-notes/index.html

Learn More

PingGateway community

Support portal

Partner portal (partners)

grid_view

•

•

•

PingGateway PingGateway

8 Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/global-search/%40uri#q=pinggateway&t=Community&sort=relevancy&numberOfResults=25
https://support.pingidentity.com/s/global-search/%40uri#q=pinggateway&t=Community&sort=relevancy&numberOfResults=25
https://support.pingidentity.com/s/global-search/%40uri#q=pinggateway&t=KnowledgeBase&sort=relevancy&numberOfResults=25/
https://support.pingidentity.com/s/global-search/%40uri#q=pinggateway&t=KnowledgeBase&sort=relevancy&numberOfResults=25/
https://www.pingidentity.com/en/account/sign-on.html?retURL=/bin/pic/sso/community?retURL=/PartnerPortal/s/
https://www.pingidentity.com/en/account/sign-on.html?retURL=/bin/pic/sso/community?retURL=/PartnerPortal/s/

About PingGateway

PingGateway integrates web applications, APIs, and microservices with the Ping Identity Platform. PingGateway enforces security
and access control in conjunction with PingAM modules.

This guide shows you an overview of PingGateway.

PingGateway as a reverse proxy

PingGateway as a reverse proxy server is an intermediate connection point between external clients and internal services.
PingGateway intercepts client requests and server responses, enforcing policies, and routing and shaping traffic. The following
image illustrates PingGateway as a reverse proxy:

PingGateway provides the following features as a reverse proxy:

Access management integration

Application and API security

Credential replay

OAuth 2.0 support

OpenID Connect 1.0 support

Network traffic control

Service

IG

Service Zone

Client

Request Response

Adapt request for service
Enforce policies

Route and shape traffic
Adapt response

•

•

•

•

•

•

About PingGateway PingGateway

10 Copyright © 2025 Ping Identity Corporation

Proxy with request and response capture

Request and response rewriting

SAML 2.0 federation support

Single sign-on (SSO)

PingGateway as a forward proxy

In contrast, PingGateway as a forward proxy is an intermediate connection point between an internal client and an external
service. PingGateway regulates outbound traffic to the service, and can adapt and enrich requests. The following image illustrates
PingGateway as a forward proxy:

PingGateway provides the following features as a forward proxy:

Addition of authentication or authorization to the request

Addition of tracer IDs to the requests

Addition or removal of request headers or scopes

•

•

•

•

IG

IG

Client Zone 1

Service

Regulate traffic
Enrich or adapt requests

Request

Cient

IG

IG

Client Zone 2

Request

Cient

•

•

•

PingGateway About PingGateway

Copyright © 2025 Ping Identity Corporation 11

PingGateway as a microgateway

PingGateway is optimized to run as a microgateway in containerized environments. Use PingGateway with business microservices
to separate the security concerns of your applications from their business logic. For example, use PingGateway with the
ForgeRock Token Validation Microservice to provide access token validation at the edge of your namespace.

For an example, refer to PingGateway as a microgateway. The following image illustrates the request flow in an example
deployment:

PingGateway processes the request in the following steps:

A client requests access to Secured Microservice A, providing a stateful OAuth 2.0 access token as credentials.

Microgateway A intercepts the request, and passes the access token for validation to the Token Validation Microservice,
using the /introspect endpoint.

The Token Validation Microservice requests the Authorization Server to validate the token.

The Authorization Server introspects the token, and sends the introspection result to the Token Validation Microservice.

The Token Validation Microservice caches the introspection result, and sends it to Microgateway A, which forwards the
result to Secured Microservice A.

OAuth 2.0
Authorization

Server

Cluster/Namespace

2

1

3 4

5

6

9

7 8

10

Microservice Client Bearer token

Token Validation
Microservice

Secured
Microservice B

IG as Microgateway B

Secured
Microservice A

IG as Microgateway A

Bearer token

/introspect endpoint

HTTP Basic Authentication

1.

2.

3.

4.

5.

About PingGateway PingGateway

12 Copyright © 2025 Ping Identity Corporation

Secured Microservice A uses the introspection result to decide how to process the request. In this case, it continues
processing the request. Secured Microservice A asks for additional information from Secured Microservice B, providing the
validated token as credentials.

Microgateway B intercepts the request, and passes the access token to the Token Validation Microservice for validation,
using the /introspect endpoint.

The Token Validation Microservice retrieves the introspection result from the cache, and sends it back to Microgateway B,
which forwards the result to Secured Microservice B.

Secured Microservice B uses the introspection result to decide how to process the request. In this case it passes its
response to Secured Microservice A, through Microgateway B.

Secured Microservice A passes its response to the client, through Microgateway A.

Object model

PingGateway processes HTTP requests and responses by passing them through user-defined chains of filters and handlers. The
filters and handlers provide access to the request and response at each step in the chain, and make it possible to alter the
request or response, and collect contextual information.

The following image illustrates a typical sequence of events when PingGateway processes a request and response through a
chain:

When PingGateway processes a request, it first builds an object representation of the request, including parsed query/form
parameters, cookies, headers, and the entity. PingGateway initializes a runtime context to provide additional metadata about the
request and applied transformations. PingGateway then passes the request representation into the chain.

In the request flow, filters modify the request representation and can enrich the runtime context with computed information. In
the ClientHandler, the entity content is serialized, and additional query parameters can be encoded as described in RFC 3986:
Query.

6.

7.

8.

9.

10.

PingGateway chain

Client

Client

Request filter

Request filter

Response filter

Response filter

Handler

Handler

Protected application

Protected application

Request

Transform request, possibly
modify the object representation,
or enrich runtime context with computed information

Transformed request, context

Transformed request, context

Log transformed request

Transformed request

Response

Log response

Request, context, response

Transform response,
build a response representation with headers and entity

Request, context, transformed response

Transformed response

PingGateway About PingGateway

Copyright © 2025 Ping Identity Corporation 13

https://www.rfc-editor.org/rfc/rfc3986#section-3.4
https://www.rfc-editor.org/rfc/rfc3986#section-3.4
https://www.rfc-editor.org/rfc/rfc3986#section-3.4

In the response flow, filters build a response representation with headers and the entity.

The route configuration in Adding headers and logging results demonstrates the flow through a chain to a protected application.

Sessions

PingGateway uses sessions to group requests from a user agent or other source, and collect information from the requests.
When multiple requests are made in the same session, the requests can share the session information. Because session sharing
is not thread-safe, it is not suitable for concurrent exchanges.

The following table compares stateful and stateless sessions:

Stateful sessions

To configure stateful sessions, update the session property of admin.json.

When a JwtSession isn’t configured for a request, stateful sessions are created automatically. Session information is stored in the
PingGateway cookie, called IG_SESSIONID by default. When the user agent sends a request with the cookie, the request can
access the session information on PingGateway.

When a JwtSession object is configured in the route that processes a request, or in its ascending configuration (a parent route or
config.json), the session is always stateless and can’t be stateful.

Feature Stateful sessions Stateless sessions

Cookie size. Unlimited. Maximum size of the JWT session
cookie is 4 KBytes, as defined by the
browser. If the cookie exceeds this size,
PingGateway automatically splits it into
multiple cookies.

Default name of the session cookie. IG_SESSIONID . openig-jwt-session .

Object types that can be stored in the
session.

All types. JSON-compatible types, such as strings,
numbers, booleans, null, structures
such as arrays, and list and maps
containing only JSON-compatible types.

Session sharing between instances of
PingGateway, for load balancing and
failover.

Possible when session stickiness is
configured.

Possible because the session content is
a cookie on the user agent, that can be
copied to multiple instances of
PingGateway.

Risk of data inconsistency when
simultaneous requests modify the
content of a session.

Low because the session content is
stored on PingGateway and shared by
all exchanges.
Processing is not thread-safe.

Higher because the session content is
reconstructed for each request.
Concurrent exchanges don’t have the
same content.

About PingGateway PingGateway

14 Copyright © 2025 Ping Identity Corporation

When a request enters a route without a JwtSession object in the route or its ascending configuration, a stateful session is created
lazily.

Session duration is defined by the session property in admin.json, with a default of 30 minutes.

Even if the session is empty, the session remains usable until the timeout.

Any object type can be stored in a stateful session.

Because session content is stored on PingGateway and shared by all exchanges, when PingGateway processes simultaneous
requests in a stateful session there is low risk that the data becomes inconsistent. However, sessions aren’t thread-safe; different
requests can simultaneously read and modify a shared session.

Session information is available in SessionContext to downstream handlers and filters. For more information, refer to
SessionContext.

Stateless sessions

Stateless sessions are provided when a JwtSession object is configured in config.json or in a route. For more information about
configuring stateless sessions, refer to JwtSession.

PingGateway serializes stateless session information as JSON, stores it in a JWT that can be encrypted and then signed, and places
the JWT in a cookie. The cookie contains all of the information about the session, including the session attributes as JSON, and a
marker for the session timeout.

The maximum size of the JWT session cookie is 4 KBytes, as defined by the browser. If the cookie exceeds this size, PingGateway
automatically splits it into multiple cookies.

Only JSON-compatible object types can be stored in stateless sessions. These object types include strings, numbers, booleans,
null, structures such as arrays, and list and maps containing only JSON-compatible types.

Stateless sessions are managed as follows:

When a request enters a route with a JwtSession object in the route or its ascending configuration, PingGateway creates
the SessionContext, verifies the cookie signature, decrypts the content of the cookie, and checks that the current date is
before the session timeout.

When the request passes through the filters and handlers in the route, the request can read and modify the session
content.

When the request returns to the the point where the session was created, for example, at the entrance to a route or at
config.json , PingGateway updates the cookie as follows:

If the session content has changed, PingGateway serializes the session, creates one or more new JWT session
cookies with the new content, encrypts and then signs the cookies, assigns them an appropriate expiration time,
and returns them in the response.

If the session is empty, PingGateway deletes the session, creates a new JWT session cookie with an expiration time
that has already passed, and returns the cookie in the response.

If the session content has not changed, PingGateway does nothing.

Because the session content is stored in one or more JWT session cookies on the user agent, stateless sessions can be shared
easily between PingGateway instances. The cookies are automatically carried over in requests, and any PingGateway instance can
unpack and use the session content.

•

•

•

◦

◦

◦

PingGateway About PingGateway

Copyright © 2025 Ping Identity Corporation 15

When PingGateway processes simultaneous requests in stateless sessions, there is a high risk that the data becomes
inconsistent. This is because the session content is reconstructed for each exchange, and concurrent exchanges don’t have the
same content.

PingGateway does not share sessions across requests. Instead, each request has its own session objects that it modifies as
necessary, writing its own session to the session cookie regardless of what other requests do.

Session information is available in SessionContext to downstream handlers and filters. For more information, refer to
SessionContext.

Session stickiness

Session stickiness helps to ensure that a client request goes to the server holding the original session data.

If data attached to a context must be stored on the server-side, configure session stickiness so that the load balancer sends all
requests from the same client session to the same server.

The way you configure session stickiness and session replication depends on your load balancer.

Learn more from the example configuration in Share JWT sessions between multiple instances of PingGateway.

API descriptors

Common REST endpoints in PingGateway serve API descriptors at runtime. When you retrieve an API descriptor for an endpoint, a
JSON that describes the API for that endpoint is returned.

To discover and understand APIs, use the API descriptor with a tool such as Swagger UI to generate a web page that helps you
to view and test the different endpoints.

When you start PingGateway, or add or edit routes, registered endpoint locations for the routes hosted by the main router are
written in $HOME/.openig/logs/route-system.log , where $HOME/.openig is the instance directory. Endpoint locations for
subroutes are written to other log files. To retrieve the API descriptor for a specific endpoint, append one of the following query
string parameters to the endpoint:

_api , to represent the API accessible over HTTP. This OpenAPI descriptor can be used with endpoints that are complete
or partial URLs.

The returned JSON respects the OpenAPI specification and can be consumed by Swagger tools, such as Swagger UI.

_crestapi , to provide a compact representation that is independent of the transport protocol. This ForgeRock® Common
REST (Common REST) API descriptor can’t be used with partial URLs.

The returned JSON respects a ForgeRock proprietary specification dedicated to describe Common REST endpoints.

For more information about Common REST API descriptors, refer to Common REST API documentation.

Retrieve API descriptors for a router

•

•

emergency_home
Switch to development mode to retrieve these API descriptors.

Important

About PingGateway PingGateway

16 Copyright © 2025 Ping Identity Corporation

http://swagger.io/swagger-ui/
http://swagger.io/swagger-ui/
http://swagger.io/swagger-ui/
http://swagger.io/swagger-ui/

With PingGateway running as described in the Quick install, run the following query to generate a JSON that describes the router
operations supported by the endpoint:

$ curl http://ig.example.com:8080/openig/api/system/objects/_router/routes\?_api

{
 "swagger": "2.0",
 "info": {
 "version": "IG version",
 "title": "IG"
 },
 "host": "0:0:0:0:0:0:0:1",
 "basePath": "/openig/api/system/objects/_router/routes",
 "tags": [{
 "name": "Routes Endpoint"
 }],
 . . .

Alternatively, generate a Common REST API descriptor by using the ?_crestapi query string.

Retrieve API descriptors for the UMA service

With the UMA tutorial running as described in UMA support, run the following query to generate a JSON that describes the UMA
share API:

$ curl http://ig.example.com:8080/openig/api/system/objects/_router/routes/00-uma/objects/umaservice/share\?_api

{
 "swagger": "2.0",
 "info": {
 "version": "IG version",
 "title": "IG"
 },
 "host": "0:0:0:0:0:0:0:1",
 "basePath": "/openig/api/system/objects/_router/routes/00-uma/objects/umaservice/share",
 "tags": [{
 "name": "Manage UMA Share objects"
 }],
 . . .

Alternatively, generate a Common REST API descriptor by using the ?_crestapi query string.

Retrieve API descriptors for the main router

Run a query to generate a JSON that describes the API for the main router and its subsequent endpoints. For example:

emergency_home
Switch to development mode to retrieve these API descriptors.

Important

PingGateway About PingGateway

Copyright © 2025 Ping Identity Corporation 17

$ curl http://ig.example.com:8080/openig/api/system/objects/_router\?_api

{
 "swagger": "2.0",
 "info": {
 "version": "IG version",
 "title": "IG"
 },
 "host": "ig.example.com:8080",
 "basePath": "/openig/api/system/objects/_router",
 "tags": [{
 "name": "Monitoring endpoint"
 }, {
 "name": "Manage UMA Share objects"
 }, {
 "name": "Routes Endpoint"
 }],
 . . .

Because the above URL is a partial URL, you cannot use the ?_crestapi query string to generate a Common REST API descriptor.

Retrieve API descriptors for PingGateway instances

Run a query to generate a JSON that describes the APIs provided by the PingGateway instance that’s responding to a request. For
example:

$ curl http://ig.example.com:8080/openig/api\?_api

{
 "swagger": "2.0",
 "info": {
 "version": "IG version",
 "title": "IG"
 },
 "host": "ig.example.com:8080",
 "basePath": "/openig/api",
 "tags": [{
 "name": "Internal Storage for UI Models"
 }, {
 "name": "Monitoring endpoint"
 }, {
 "name": "Manage UMA Share objects"
 }, {
 "name": "Routes Endpoint"
 }, {
 "name": "Server Info"
 }],
 . . .

If routes are added after the request is performed, they aren’t included in the returned JSON.

Because the above URL is a partial URL, you can’t use the ?_crestapi query string to generate a Common REST API descriptor.

About PingGateway PingGateway

18 Copyright © 2025 Ping Identity Corporation

Quick install

Use this guide to get a quick, hands-on look at what PingGateway software can do. You will download, install, and use
PingGateway on your local computer. Find more installation options in Install.

This guide assumes familiarity with the following topics:

HTTP, including how clients and servers exchange messages, and the role that a reverse proxy (gateway) plays

JSON, the format for PingGateway configuration files

Managing services on operating systems and application servers

Configuring network connections on operating systems

Product names changed when ForgeRock became part of Ping Identity. PingGateway was formerly known as ForgeRock Identity
Gateway, for example. Learn more about the name changes from New names for ForgeRock products.

Download PingGateway

The .zip file unpacks into a /path/to/identity-gateway-2024.6.0 directory with the following content:

bin : Start and stop executables

classes : Initially empty; used to install patches from ForgeRock support

docker/Dockerfile : Dockerfile and README to build a PingGateway Docker image

legal-notices : Licenses and copyrights

lib : PingGateway and third-party libraries

Create a local installation directory for PingGateway. The examples in this section use /path/to .

Download PingGateway-2024.6.0.zip from the Backstage download site, and copy the .zip file to the
installation directory:

$ cp PingGateway-2024.6.0.zip /path/to/PingGateway-2024.6.0.zip

Unzip the file:

$ unzip PingGateway-2024.6.0.zip

The directory /path/to/identity-gateway-2024.6.0 is created.

•

•

•

•

•

•

•

•

•

1.

emergency_home
The installation directory should be a new, empty directory. Installing PingGateway into an existing
installation directory can cause errors.

Important

2.

3.

Quick install PingGateway

20 Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

Prepare the network

Configure the network to include hosts for PingGateway, AM, and the sample application. Learn more about host files from the
Wikipedia entry, Hosts (file).

Add the following entry to your host file:

/etc/hosts

%SystemRoot%\system32\drivers\etc\hosts

127.0.0.1 localhost ig.example.com app.example.com am.example.com

Start and stop PingGateway

Start PingGateway with default settings

Use the following step to start the instance of PingGateway, specifying the configuration directory where PingGateway looks for
configuration files.

Start PingGateway:

$ /path/to/identity-gateway-2024.6.0/bin/start.sh

...

... started in 1234ms on ports : [8080 8443]

1.

Linux

Windows

1.

Linux

PingGateway Quick install

Copyright © 2025 Ping Identity Corporation 21

http://en.wikipedia.org/wiki/Hosts_(file)
http://en.wikipedia.org/wiki/Hosts_(file)

C:\path\to\identity-gateway-2024.6.0\bin\start.bat

By default, PingGateway configuration files are located under $HOME/.openig (on Windows %appdata%\OpenIG). For
information about how to use a different location, refer to Configuration location.

Check that PingGateway is running in one of the following ways:

Ping PingGateway at http://ig.example.com:8080/openig/ping and make sure an HTTP 200 is returned.

Display the product version and build information at http://ig.example.com:8080/openig/api/info .

Stop PingGateway

Use the stop.sh script to stop an instance of PingGateway, specifying the instance directory as an argument. If the instance
directory isn’t specified, PingGateway uses the default instance directory:

$ /path/to/identity-gateway-2024.6.0/bin/stop.sh $HOME/.openig

C:\path\to\identity-gateway-2024.6.0\bin\stop.bat %appdata%\OpenIG

Use the sample application

ForgeRock provides a mockup web application for testing PingGateway configurations. The sample application is used in the
examples in this guide and the Gateway guide.

Download the sample application

Download PingGateway-sample-application-2024.6.0-jar-with-dependencies.jar , from the Backstage download
site.

Windows

2.

◦

◦

Linux

Windows

1.

Quick install PingGateway

22 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

Start the sample application

Start the sample application:

$ java -jar PingGateway-sample-application-2024.6.0-jar-with-dependencies.jar

...
[...] [INFO] Press Ctrl+C to stop the server.

By default this server listens for HTTP on port 8081 and for HTTPS on port 8444. If one or both of those ports aren’t free,
specify other ports:

$ java -jar PingGateway-sample-application-2024.6.0-jar-with-dependencies.jar 8888 8889

Check that the sample application is running in one of the following ways:

Go to http://app.example.com:8081/home to access the home page of the sample application. Information
about the browser request is displayed.

Go to http://app.example.com:8081/login to access the login page of the sample application, and then log in with
username demo and password Ch4ng31t . The username and some information about the browser request is
displayed.

Stop the sample application

In the terminal where the sample application is running, select CTRL+C to stop the sample application.

Serve static resources

When the sample application is used with PingGateway in examples, it must serve static resources, such as the .css. Similarly,
browser requests often serve resources that don’t need protection, such as icons and .gif files.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

1.

2.

1.

2.

1.

Linux

Windows

PingGateway Quick install

Copyright © 2025 Ping Identity Corporation 23

http://app.example.com:8081/home
http://app.example.com:8081/home
http://app.example.com:8081/login
http://app.example.com:8081/login

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or
matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Configuration options

To view the command-line options for the sample application, start it with the -h option:

$ java -jar PingGateway-sample-application-2024.6.0-jar-with-dependencies.jar -h

Usage: <main class> [options]
Options:
--http
The HTTP port number.
Default: 8081
--https
The HTTPS port number.
Default: 8444
--session
The session timeout in seconds.
Default: 60
--am-discovery-url
The AM URL base for OpenID Provider Configuration.
Default: http://am.example.com:8088/openam/oauth2
-h, --help
Default: false

Protect an application with PingGateway

This section gives a simple example of how to use PingGateway to protect an application. For many more examples of how to
protect applications with PingGateway, refer to the Gateway guide.

In the following example, a browser requests access to the sample application, and PingGateway intercepts the request to log the
user into the application. The following image shows the flow of data in the example:

The browser sends an HTTP GET request to the HTTP server on ig.example.com .

Browser

Browser

PingGateway

PingGateway

Sample Application

Sample Application

1 Send HTTP GET request to http://ig.example.com:8080/static

2 Replace request with HTTP POST of login form

3 Validate login & send response

4 Return response

1.

Quick install PingGateway

24 Copyright © 2025 Ping Identity Corporation

PingGateway replaces the HTTP GET request with an HTTP POST login request containing credentials to authenticate.

The sample application validates the credentials, and returns the page for the user demo .

If PingGateway did not provide the credentials, or if the sample application couldn’t validate the credentials, the sample
application returns the login page.

PingGateway returns this response to the browser.

Configure PingGateway to log you in to an application

Set up PingGateway and the sample application as described in this guide.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or
matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/01-static.json

2.

3.

4.

1.

2.

Linux

Windows

3.

Linux

PingGateway Quick install

Copyright © 2025 Ping Identity Corporation 25

%appdata%\OpenIG\config\routes\01-static.json

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "demo"
],
 "password": [
 "Ch4ng31t"
]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${find(request.uri.path, '^/static')}"
}

Notice the following features of the route:

The route matches requests to /static .

The StaticRequestFilter replaces the request with an HTTP POST, specifying the resource to post the request to, and
a form to include in the request. The form includes credentials for the username demo .

The ReverseProxyHandler replays the request to the sample application.

Check that the route system log includes a message that the new files are loaded into the config:

INFO o.f.o.handler.router.RouterHandler - Loaded the route with id '00-static-resources' registered with the
name '00-static-resources'
INFO o.f.o.handler.router.RouterHandler - Loaded the route with id '01-static' registered with the name '01-
static'

Go to http://ig.example.com:8080/static.

You are directed to the sample application, and logged in automatically with the username demo .

Windows

◦

◦

◦

4.

5.

Quick install PingGateway

26 Copyright © 2025 Ping Identity Corporation

http://ig.example.com:8080/static
http://ig.example.com:8080/static

Next steps

This section describes some basic options to help you with PingGateway. For information about other installation options, refer to
the Installation guide.

Add a base configuration file

The entry point for requests coming in to PingGateway is a JSON-encoded configuration file, expected by default at:

$HOME/.openig/config/config.json

%appdata%\OpenIG\config\config.json

The base configuration file initializes a heap of objects and provides the main handler to receive incoming requests. Configuration
in the file is inherited by all applicable objects in the configuration.

At startup, if PingGateway doesn’t find a base configuration file, it provides a default version, given in Default configuration. The
default looks for routes in:

$HOME/.openig/config/routes

%appdata%\OpenIG\config\routes

Consider adding a custom config.json for these reasons:

To prevent using the default config.json , whose configuration might not be appropriate in your deployment.

Linux

Windows

Linux

Windows

•

PingGateway Quick install

Copyright © 2025 Ping Identity Corporation 27

To define an object once in config.json , and then use it multiple times in your configuration.

After adding or editing config.json , stop and restart PingGateway to take the changes into effect.

For more information, refer to GatewayHttpApplication (config.json), Heap objects, and Router.

Add a base configuration for PingGateway

Add the following file to PingGateway:

$HOME/.openig/config/config.json

%appdata%\OpenIG\config\config.json

{
 "handler": {
 "type": "Router",
 "name": "_router",
 "baseURI": "http://app.example.com:8081",
 "capture": "all"
 },
 "heap": [
 {
 "name": "JwtSession",
 "type": "JwtSession"
 },
 {
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true,
 "_captureContext": true
 }
 }
]
}

Notice the following features of the file:

The handler contains a main router named _router . When PingGateway receives an incoming request, _router
routes the request to the first route in the configuration whose condition is satisfied.

•

1.

Linux

Windows

◦

Quick install PingGateway

28 Copyright © 2025 Ping Identity Corporation

The baseURI changes the request URI to point the request to the sample application.

The capture captures the body of the HTTP request and response.

The JwtSession object in the heap can be used in routes to store the session information as JSON Web Tokens (JWT)
in a cookie. For more information, refer to JwtSession.

Stop and restart PingGateway.

Check that the route system log includes a message that the file is loaded into the config:

INFO o.f.openig.web.Initializer - Reading the configuration from ...config.json

Add a default route

When there are multiple routes in the PingGateway configuration, they are ordered lexicographically, by route name. For
example, 01-static.json is ordered before zz-default.json .

When PingGateway processes a request, the request traverses the routes in the configuration. If the request matches the
condition for 01-static.json it is processed by that route. Otherwise, it passes to the next route in the configuration. If a route
has no condition, it can process any request.

A default route is the last route in a configuration to which a request is routed. If a request matches no other route in the
configuration, it is processed by the default route.

Add a default route to prevent errors described in No handler to dispatch to.

Add the following route to PingGateway:

$HOME/.openig/config/routes/zz-default.json

%appdata%\OpenIG\config\routes\zz-default.json

{
 "handler": "ReverseProxyHandler"
}

◦

◦

◦

2.

3.

1.

Linux

Windows

PingGateway Quick install

Copyright © 2025 Ping Identity Corporation 29

Notice the following features of the route:

The route name starts with zz , so it is the last route that is loaded into the configuration.

There is no condition property, so the route processes all requests.

The route calls a ReverseProxyHandler with the default configuration, which proxies the request to the application
and returns the response, without changing either the request or the response.

Check that the route system log includes a message that the file is loaded into the config:

INFO o.f.o.handler.router.RouterHandler - Loaded the route with id
'zz-default' registered with the name 'zz-default'

Switch from production mode to development mode

To prevent unwanted changes to the configuration, PingGateway is by default in production mode after installation. For a
description of the modes and information about switching between modes, refer to Operating modes.

Use PingGateway Studio

PingGateway Studio is a user interface to help you build and deploy your PingGateway configuration. For more information, refer
to the Studio guide.

◦

◦

◦

2.

Quick install PingGateway

30 Copyright © 2025 Ping Identity Corporation

Install

This guide describes how to install and remove PingGateway software. For information about how to install PingGateway for
evaluation, refer to the Quick install.

Read the Release notes before you install.

Product names changed when ForgeRock became part of Ping Identity. PingGateway was formerly known as ForgeRock Identity
Gateway, for example. Learn more about the name changes from New names for ForgeRock products.

Prepare to install

Before you install, make sure your installation meets the requirements in the release notes.

Create a PingGateway service account

To limit the impact of a security breach, install and run PingGateway from a dedicated service account. This is optional when
evaluating PingGateway, but essential in production installations.

A hacker is constrained by the rights granted to the user account where PingGateway runs; therefore, never run PingGateway as
root user.

In a terminal window, use a command similar to the following to create a service account:

$ sudo /usr/sbin/useradd \
--create-home \
--comment "Account for running PingGateway" \
--shell /bin/bash PingGateway

> net user username password /add /comment:"Account for running PingGateway"

Apply the principle of least privilege to the account, for example:

Read/write permissions on the installation directory, /path/to/identity-gateway-2024.6.0.

Execute permissions on the scripts in the installation bin directory, /path/to/identity-gateway-2024.6.0/bin .

1.

Linux

Windows

2.

◦

◦

Install PingGateway

32 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/preface.html
https://docs.pingidentity.com/pinggateway/release-notes/preface.html
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://docs.pingidentity.com/pinggateway/release-notes
https://docs.pingidentity.com/pinggateway/release-notes

Prepare the network

Configure the network to include hosts for PingGateway, AM, and the sample application. Learn more about host files from the
Wikipedia entry, Hosts (file).

Add the following entry to your host file:

/etc/hosts

%SystemRoot%\system32\drivers\etc\hosts

127.0.0.1 localhost ig.example.com app.example.com am.example.com

Set up PingOne Advanced Identity Cloud

This documentation contains procedures for setting up items in PingOne Advanced Identity Cloud that you can use with
PingGateway. For more information about setting up PingOne Advanced Identity Cloud, refer to the PingOne Advanced Identity
Cloud documentation.

Authenticate a PingGateway agent to PingOne Advanced Identity Cloud

This section describes how to create a journey to authenticate an PingGateway agent to PingOne Advanced Identity Cloud. The
journey has the following requirements:

It must be called Agent

Its nodes must pass the agent credentials to the Agent Data Store Decision node.

1.

Linux

Windows

emergency_home
PingGateway agents are automatically authenticated to PingOne Advanced Identity Cloud by a non-configurable
authentication module. Authentication chains and modules are deprecated in PingOne Advanced Identity Cloud and
replaced by journeys.
You can now authenticate PingGateway agents to PingOne Advanced Identity Cloud with a journey. The procedure is
currently optional, but will be required when authentication chains and modules are removed in a future release of
PingOne Advanced Identity Cloud.
For more information, refer to PingOne Advanced Identity Cloud’s Journeys.

Important

•

•

PingGateway Install

Copyright © 2025 Ping Identity Corporation 33

http://en.wikipedia.org/wiki/Hosts_(file)
http://en.wikipedia.org/wiki/Hosts_(file)
https://docs.pingidentity.com/pingoneaic/latest/home.html
https://docs.pingidentity.com/pingoneaic/latest/home.html
https://docs.pingidentity.com/pingoneaic/latest/home.html
https://docs.pingidentity.com/pingoneaic/latest/realms/journeys.html
https://docs.pingidentity.com/pingoneaic/latest/realms/journeys.html

When you define a journey in PingOne Advanced Identity Cloud, that same journey is used for all instances of PingGateway, Java
agent, and Web agent. Consider this point if you change the journey configuration.

Log in to the Advanced Identity Cloud admin UI as an administrator.

Click Journeys > New Journey.

Add a journey with the following information and click Create journey:

Name: Agent

Identity Object: The user or device to authenticate.

(Optional) Description: Authenticate a PingGateway agent to PingOne Advanced Identity Cloud

The journey designer is displayed, with the Start entry point connected to the Failure exit point, and a Success node.

Using the Filter nodes bar, find and then drag the following nodes from the Components panel into the designer area:

Zero Page Login Collector node to check whether the agent credentials are provided in the incoming
authentication request, and use their values in the following nodes.

This node is required for compatibility with Java agent and Web agent.

Page node to collect the agent credentials if they are not provided in the incoming authentication request, and
use their values in the following nodes.

Agent Data Store Decision node to verify the agent credentials match the registered PingGateway agent profile.

Drag the following nodes from the Components panel into the Page node:

Platform Username node to prompt the user to enter their username.

Platform Password node to prompt the user to enter their password.

Connect the nodes as follows and save the journey:

1.

2.

3.

◦

◦

◦

4.

◦

◦

◦

emergency_home
Many nodes can be configured in the panel on the right side of the page. Unless otherwise stated, do not
configure the nodes, and use only the default values.

Important

5.

◦

◦

6.

Install PingGateway

34 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-zero-page-login-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-zero-page-login-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-agent-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-agent-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-password.html

Register a PingGateway agent in PingOne Advanced Identity Cloud

This procedure registers an agent that acts on behalf of PingGateway.

Log in to the Advanced Identity Cloud admin UI as an administrator.

Click verified_user Gateways & Agents > New Gateway/Agent > Identity Gateway > Next, and add an agent profile:

ID: agent-name

Password: agent-password

Redirect URLs: URL for CDSSO

Click Save Profile > Done. The agent profile page is displayed.

Click open_in_new Native Consoles > Access Management and make the following optional changes in the AM admin UI.

Set up a demo user in PingOne Advanced Identity Cloud

This procedure sets up a demo user in the alpha realm.

Log in to the Advanced Identity Cloud admin UI as an administrator.

1.

2.

◦

◦

◦

emergency_home
Use secure passwords in a production environment. Consider using a password manager to generate secure
passwords.

Important

3.

4.

Change Action

Store the agent password in AM’s
secret service.

Set a Secret Label Identifier, and configure a mapping to the corresponding
secret. If AM finds a matching secret in a secret store, it uses that secret
instead of the agent password configured in Step 2.
The secret label has the format am.application.agents.identifier.secret ,
where identifier is the Secret Label Identifier.
The Secret Label Identifier can contain only characters a-z , A-Z , 0-9 , and
periods (.). It can’t start or end with a period.
Note the following points:

Set a Secret Label Identifier that clearly identifies the agent.
If you update or delete the Secret Label Identifier, AM updates or
deletes the corresponding mapping for the previous identifier provided
no other agent shares the mapping.
When you rotate a secret, update the corresponding mapping.

Direct login to a custom URL instead
of the default AM login page.

Configure Login URL Template for CDSSO.

Apply a different introspection scope. Click Token Introspection and select a scope from the drop-down list.

◦

◦

◦

1.

PingGateway Install

Copyright © 2025 Ping Identity Corporation 35

https://docs.pingidentity.com/pingam/7.5/security-guide/secret-mapping.html
https://docs.pingidentity.com/pingam/7.5/security-guide/secret-mapping.html

Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a user with the following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

Recommendations

Use PingGateway with PingOne Advanced Identity Cloud as you would with any other service.

During updates, individual PingOne Advanced Identity Cloud tenant servers go offline temporarily. PingGateway can
receive HTTP 502 Bad Gateway responses for some requests during the update.

In your ClientHandler and ReverseProxyHandler configurations, configure PingGateway to retry operations when this
occurs:

"retries": {
 "enabled": true,
 "condition": "${response.status.code == 502}"
}

Update PingGateway to use the latest version you can to benefit from fixes and improvements.

Set up AM

This documentation contains procedures for setting up items in AM that you can use with PingGateway. For more information
about setting up AM, refer to the Access Management documentation.

Authenticate a PingGateway agent to AM

2.

◦

◦

◦

◦

◦

•

•

emergency_home
From AM 7.3

When AM 7.3 is installed with a default configuration, as described in Evaluation, PingGateway is
automatically authenticated to AM by an authentication tree. Otherwise, PingGateway is authenticated to AM
by an AM authentication module.
Authentication chains and modules were deprecated in AM 7. When they are removed in a future release of
AM, it will be necessary to configure an appropriate authentication tree when you are not using the default
configuration.
For more information, refer to AM’s Authentication nodes and trees.

Important

Install PingGateway

36 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5
https://docs.pingidentity.com/pingam/7.5
https://docs.pingidentity.com/pingam/7.5/eval-guide/preface.html
https://docs.pingidentity.com/pingam/7.5/eval-guide/preface.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-trees.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-trees.html

This section describes how to create an authentication tree to authenticate a PingGateway agent to AM. The tree has the
following requirements:

It must be called Agent

Its nodes must pass the agent credentials to the Agent Data Store Decision node.

When you define a tree in AM, that same tree is used for all instances of PingGateway, Java agent, and Web agent. Consider this
point if you change the tree configuration.

On the Realms page of the AM admin UI, choose the realm in which to create the authentication tree.

On the Realm Overview page, click Authentication > Trees > + Create tree.

Create a tree named Agent .

The authentication tree designer is displayed, with the Start entry point connected to the Failure exit point, and a
Success node.

The authentication tree designer provides the following features on the toolbar:

Using the Filter bar, find and then drag the following nodes from the Components panel into the designer area:

Zero Page Login Collector node to check whether the agent credentials are provided in the incoming
authentication request, and use their values in the following nodes.

This node is required for compatibility with Java agent and Web agent.

Page node to collect the agent credentials if they are not provided in the incoming authentication request, and
use their values in the following nodes.

Agent Data Store Decision node to verify the agent credentials match the registered PingGateway agent profile.

Drag the following nodes from the Components panel into the Page node:

Username Collector node to prompt the user to enter their username.

Password Collector node to prompt the user to enter their password.

Connect the nodes as follows and save the tree:

•

•

1.

2.

3.

Button Usage

Lay out and align nodes according to the order they are connected.

Toggle the designer window between normal and full-screen layout.

Remove the selected node. Note that the Start entry point cannot be deleted.

4.

◦

◦

◦

emergency_home
Many nodes can be configured in the panel on the right side of the page. Unless otherwise stated, do not
configure the nodes and use only the default values.

Important

5.

◦

◦

6.

PingGateway Install

Copyright © 2025 Ping Identity Corporation 37

https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-zero-page-login-collector.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-zero-page-login-collector.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-agent-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-agent-data-store-decision.html

Register a PingGateway agent in AM

In AM 7 and later versions, follow these steps to register an agent that acts on behalf of PingGateway.

In the AM admin UI, select the top-level realm, and then select Applications > Agents > Identity Gateway.

Add an agent with the following configuration, leaving other options blank or with the default value:

Agent ID : ig_agent

Password : password

Agent ID : ig_agent

Password : password

Redirect URL for CDSSO : https://ig.ext.com:8443/home/cdsso/redirect

Login URL Template for CDSSO: Configure this property to direct login to a custom URL instead of the
default AM login page.

(Optional - From AM 7.5) Use AM’s secret service to manage the agent profile password. If AM finds a matching secret in a
secret store, it uses that secret instead of the agent password configured in Step 2.

In the agent profile page, set a label for the agent password in Secret Label Identifier.

AM uses the identifier to generate a secret label for the agent.

1.

2.

For SSO

◦

◦

For CDSSO

◦

◦

◦

◦

3.

1.

Install PingGateway

38 Copyright © 2025 Ping Identity Corporation

https://ig.ext.com:8443/home/cdsso/redirect
https://ig.ext.com:8443/home/cdsso/redirect

The secret label has the format am.application.agents.identifier.secret , where identifier is the Secret Label
Identifier.

The Secret Label Identifier can contain only characters a-z , A-Z , 0-9 , and periods (.). It can’t start or end with a
period.

Select Secret Stores and configure a secret store.

Map the label to the secret. Learn more from AM’s mapping.

Note the following points for using AM’s secret service:

Set a Secret Label Identifier that clearly identifies the agent.

If you update or delete the Secret Label Identifier, AM updates or deletes the corresponding mapping for the
previous identifier provided no other agent shares the mapping.

When you rotate a secret, update the corresponding mapping.

Set up a demo user in AM

AM is provided with a demo user in the top-level realm, with the following credentials:

ID/username: demo

Last name: user

Password: Ch4ng31t

Email address: demo@example.com

Employee number: 123

For information about how to manage identities in AM, refer to AM’s Identity stores.

Find the AM session cookie name

In routes that use AmService, PingGateway retrieves AM’s SSO cookie name from the ssoTokenHeader property or from AM’s /
serverinfo/* endpoint.

In other circumstances where you need to find the SSO cookie name, access http://am-base-url/serverinfo/* . For example,
access the AM endpoint with curl :

$ curl http://am.example.com:8088/openam/json/serverinfo/*

Download PingGateway

The .zip file unpacks into a /path/to/identity-gateway-2024.6.0 directory with the following content:

bin : Start and stop executables

classes : Initially empty; used to install patches from ForgeRock support

docker/Dockerfile : Dockerfile and README to build a PingGateway Docker image

2.

3.

◦

◦

◦

•

•

•

•

•

•

•

•

PingGateway Install

Copyright © 2025 Ping Identity Corporation 39

https://docs.pingidentity.com/pingam/7.5/security-guide/secret-mapping.html
https://docs.pingidentity.com/pingam/7.5/security-guide/secret-mapping.html
https://docs.pingidentity.com/pingam/7.5/setup-guide/setting-up-identity-stores.html
https://docs.pingidentity.com/pingam/7.5/setup-guide/setting-up-identity-stores.html

legal-notices : Licenses and copyrights

lib : PingGateway and third-party libraries

Create a local installation directory for PingGateway. The examples in this section use /path/to .

Download PingGateway-2024.6.0.zip from the Backstage download site, and copy the .zip file to the
installation directory:

$ cp PingGateway-2024.6.0.zip /path/to/PingGateway-2024.6.0.zip

Unzip the file:

$ unzip PingGateway-2024.6.0.zip

The directory /path/to/identity-gateway-2024.6.0 is created.

Start and stop PingGateway

Start PingGateway with default settings

Use the following step to start the instance of PingGateway, specifying the configuration directory where PingGateway looks for
configuration files.

Start PingGateway:

$ /path/to/identity-gateway-2024.6.0/bin/start.sh

...

... started in 1234ms on ports : [8080 8443]

•

•

1.

emergency_home
The installation directory should be a new, empty directory. Installing PingGateway into an existing
installation directory can cause errors.

Important

2.

3.

1.

Linux

Install PingGateway

40 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

C:\path\to\identity-gateway-2024.6.0\bin\start.bat

By default, PingGateway configuration files are located under $HOME/.openig (on Windows %appdata%\OpenIG). For
information about how to use a different location, refer to Configuration location.

Check that PingGateway is running in one of the following ways:

Ping PingGateway at http://ig.example.com:8080/openig/ping and make sure an HTTP 200 is returned.

Display the product version and build information at http://ig.example.com:8080/openig/api/info .

Start PingGateway with custom settings

By default, PingGateway runs on HTTP, on port 8080 , from the instance directory $HOME/.openig .

To start PingGateway with custom settings, add the configuration file admin.json with the following properties, and restart
PingGateway:

vertx : Finely tune Vert.x instances.

connectors : Customize server port, TLS, and Vert.x-specific configurations. Each connectors object represents the
configuration of an individual port.

prefix : Set the instance directory, and therefore, the base of the route for administration requests.

The following example starts PingGateway on non-default ports, and configures Vert.x-specific options for the connection on port
9091:

{
 "connectors": [{
 "port": 9090
 },
 {
 "port": 9091,
 "vertx": {
 "maxWebSocketFrameSize": 128000,
 "maxWebSocketMessageSize": 256000,
 "compressionLevel": 4
 }
 }]
}

For more information, refer to AdminHttpApplication (admin.json).

Windows

2.

◦

◦

•

•

•

PingGateway Install

Copyright © 2025 Ping Identity Corporation 41

Allow startup when there is an existing PID file

By default, if there is an existing PID file during startup the startup fails. Use one of the following ways to allow startup when there
is an existing PID file. PingGateway then removes the existing PID file and creates a new one during startup.

Add the following configuration to admin.json and restart PingGateway:

{
 "pidFileMode": "override"
}

Define an environment variable for the configuration token ig.pid.file.mode , and then start PingGateway in the same
terminal:

$ IG_PID_FILE_MODE=override /path/to/identity-gateway-2024.6.0/bin/start.sh

C:\IG_PID_FILE_MODE=override
C:\path\to\identity-gateway-2024.6.0\bin\start.bat %appdata%\OpenIG

Define a system property for the configuration token ig.pid.file.mode when you start PingGateway:

$HOME/.openig/env.sh

%appdata%\OpenIG\env.sh

1.

2.

Linux

Windows

3.

Linux

Windows

Install PingGateway

42 Copyright © 2025 Ping Identity Corporation

export "IG_OPTS=-Dig.pid.file.mode=override"

Stop PingGateway

Use the stop.sh script to stop an instance of PingGateway, specifying the instance directory as an argument. If the instance
directory isn’t specified, PingGateway uses the default instance directory:

$ /path/to/identity-gateway-2024.6.0/bin/stop.sh $HOME/.openig

C:\path\to\identity-gateway-2024.6.0\bin\stop.bat %appdata%\OpenIG

Set up environment variables and system properties

Configure environment variables and system properties as follows:

By adding environment variables on the command line when you start PingGateway.

By adding environment variables in $HOME/.openig/bin/env.sh , where $HOME/.openig is the instance directory. After
changing env.sh , restart PingGateway to load the new configuration.

Start PingGateway with a customized router scan interval

By default, PingGateway scans every 10 seconds for changes to the route configuration files. Any changes to the files are
automatically loaded into the configuration without restarting PingGateway. For more information about the router scan interval,
refer to Router.

The following example overwrites the default value of the Router scan interval to two seconds when you start up PingGateway:

Linux

Windows

•

•

PingGateway Install

Copyright © 2025 Ping Identity Corporation 43

$ IG_ROUTER_SCAN_INTERVAL='2 seconds' /path/to/identity-gateway-2024.6.0/bin/start.sh

C:\IG_ROUTER_SCAN_INTERVAL='2 seconds'
C:\start.bat %appdata%\OpenIG

Define environment variables for startup, runtime, and stop

PingGateway provides the following environment variables for Java runtime options:

IG_OPTS

(Optional) Java runtime options for PingGateway and its startup process, such as JVM memory sizing options.

Include all options that are not shared with the stop script.

The following example specifies environment variables in the env.sh file to customize JVM options and keys:

Specify JVM options
JVM_OPTS="-Xms256m -Xmx2048m"

Specify the DH key size for stronger ephemeral DH keys, and to protect against weak keys
JSSE_OPTS="-Djdk.tls.ephemeralDHKeySize=2048"

Wrap them up into the IG_OPTS environment variable
export IG_OPTS="${IG_OPTS} ${JVM_OPTS} ${JSSE_OPTS}"

C:\set "JVM_OPTS=-Xms256m -Xmx2048m"
C:\set "JSSE_OPTS=-Djdk.tls.ephemeralDHKeySize=2048"
C:\set "IG_OPTS=%IG_OPTS% %JVM_OPTS% %JSSE_OPTS%"

Linux

Windows

Linux

Windows

Install PingGateway

44 Copyright © 2025 Ping Identity Corporation

JAVA_OPTS

(Optional) Java runtime options for PingGateway include all options that are shared by the start and stop script.

Encrypt and share JWT sessions

JwtSession objects store session information in JWT cookies on the user agent. The following sections describe how to set
authenticated encryption for JwtSession, using symmetric keys.

Authenticated encryption encrypts data and then signs it with HMAC, in a single step. For more information, refer to
Authenticated Encryption. For information about JwtSession, refer to JwtSession.

Encrypt JWT sessions

This section describes how to set up a keystore with a symmetric key for authenticated encryption of a JWT session.

Set up a keystore to contain the encryption key, where the keystore and the key have the password password :

Locate a directory for secrets, and go to it:

$ cd /path/to/secrets

Generate the key:

$ keytool \
 -genseckey \
 -alias symmetric-key \
 -keystore jwtsessionkeystore.pkcs12 \
 -storepass password \
 -storetype pkcs12 \
 -keyalg HmacSHA512 \
 -keysize 512

Add the following route to PingGateway:

$HOME/.openig/config/routes/jwt-session-encrypt.json

1.

1.

2.

info
Because keytool converts all characters in its key aliases to lowercase, use only lowercase in alias
definitions of a keystore.

Note

2.

Linux

PingGateway Install

Copyright © 2025 Ping Identity Corporation 45

https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption

%appdata%\OpenIG\config\routes\jwt-session-encrypt.json

{
 "name": "jwt-session-encrypt",
 "heap": [{
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/jwtsessionkeystore.pkcs12",
 "storeType": "PKCS12",
 "storePasswordSecretId": "keystore.secret.id",
 "secretsProvider": ["SystemAndEnvSecretStore-1"],
 "mappings": [{
 "secretId": "jwtsession.symmetric.secret.id",
 "aliases": ["symmetric-key"]
 }]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 }
],
 "session": {
 "type": "JwtSession",
 "config": {
 "authenticatedEncryptionSecretId": "jwtsession.symmetric.secret.id",
 "encryptionMethod": "A256CBC-HS512",
 "secretsProvider": ["KeyStoreSecretStore-1"],
 "cookie": {
 "name": "IG",
 "domain": ".example.com"
 }
 }
 },
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "Hello world!"
 }
 },
 "condition": "${request.uri.path == '/jwt-session-encrypt'}"
}

Notice the following features of the route:

The route matches requests to /jwt-session-encrypt .

The KeyStoreSecretStore uses the SystemAndEnvSecretStore in the heap to manage the store password.

Windows

◦

◦

Install PingGateway

46 Copyright © 2025 Ping Identity Corporation

The JwtSession uses the KeyStoreSecretStore in the heap to manage the session encryption secret.

In the terminal where you will run the PingGateway instance, create an environment variable for the value of the keystore
password:

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-encoded.

Share JWT sessions between multiple instances of PingGateway

When a session is shared between multiple instances of PingGateway, the instances are able to share the session information for
load balancing and failover.

This section gives an example of how to set up a deployment with three instances of PingGateway that share a JwtSession.

Set up a keystore to contain the encryption key, where the keystore and the key have the password password :

Locate a directory for secrets, and go to it:

$ cd /path/to/secrets

◦

3.

Req
ue

st
pa

th

/w
eb
ap
p/
br
ow
si
ng

an
d

/w
eb
ap
p/
br
ow
si
ng
?o
ne

Instance 1
Load balancer

8001

Instance 2
Retrieve session username

8082

Instance 3
Retrieve session username

8083

Request path

/webapp/browsing?two

All requests

Request path
/log-in-and-generate-session

1.

1.

PingGateway Install

Copyright © 2025 Ping Identity Corporation 47

Generate the key:

$ keytool \
 -genseckey \
 -alias symmetric-key \
 -keystore jwtsessionkeystore.pkcs12 \
 -storepass password \
 -storetype pkcs12 \
 -keyalg HmacSHA512 \
 -keysize 512

Prepare the PingGateway installation:

Create an installation directory for PingGateway in /path/to .

Download and unzip PingGateway-2024.6.0.zip in /path/to , as described in the Install. The directory /path/to/
identity-gateway-2024.6.0 is created.

Set up the first instance of PingGateway, which acts as the load balancer:

Create a configuration directory for the instance and go to it:

$ mkdir -p /path/to/config-instance1/config/routes

Add the following route:

/path/to/config-instance1/config/routes/instance1-loadbalancer.json

%appdata%\path\to\config-instance1\config\routes\instance1-loadbalancer.json

2.

info
Because keytool converts all characters in its key aliases to lowercase, use only lowercase in alias
definitions of a keystore.

Note

2.

1.

2.

3.

1.

2.

Linux

Windows

Install PingGateway

48 Copyright © 2025 Ping Identity Corporation

{
 "name": "instance1-loadbalancer",
 "heap": [{
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/jwtsessionkeystore.pkcs12",
 "storeType": "PKCS12",
 "storePasswordSecretId": "keystore.secret.id",
 "secretsProvider": ["SystemAndEnvSecretStore-1"],
 "mappings": [{
 "secretId": "jwtsession.symmetric.secret.id",
 "aliases": ["symmetric-key"]
 }]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 }
],
 "session": {
 "type": "JwtSession",
 "config": {
 "authenticatedEncryptionSecretId": "jwtsession.symmetric.secret.id",
 "encryptionMethod": "A256CBC-HS512",
 "secretsProvider": ["KeyStoreSecretStore-1"],
 "cookie": {
 "name": "IG",
 "domain": ".example.com"
 }
 }
 },
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [{
 "condition": "${find(request.uri.path, '/webapp/browsing') and (contains(request.uri.query,
'one') or empty(request.uri.query))}",
 "baseURI": "http://ig.example.com:8002",
 "handler": "ReverseProxyHandler"
 }, {
 "condition": "${find(request.uri.path, '/webapp/browsing') and contains(request.uri.query,
'two')}",
 "baseURI": "http://ig.example.com:8003",
 "handler": "ReverseProxyHandler"
 }, {
 "condition": "${find(request.uri.path, '/log-in-and-generate-session')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "type": "AssignmentFilter",
 "config": {
 "onRequest": [{
 "target": "${session.authUsername}",
 "value": "Sam Carter"
 }]
 }
 }],

PingGateway Install

Copyright © 2025 Ping Identity Corporation 49

 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body>Sam Carter logged IN. (JWT session generated)</body></html>"
 }
 }
 }
 }
 }]
 }
 },
 "capture": "all"
}

Notice the following features of the route:

The route has no condition, so it matches all requests.

When the request matches /log-in-and-generate-session , the DispatchHandler creates a JWT session,
whose authUsername attribute contains the name Sam Carter .

When the request matches /webapp/browsing , the DispatchHandler dispatches the request to instance 2
or instance 3, depending on the rest of the request path.

Add the following configuration:

/path/to/config-instance1/config/admin.json

%appdata%\path\to\config-instance1\config\admin.json

{
 "connectors": [{
 "port": 8001
 }]
}

▪

▪

▪

3.

Linux

Windows

Install PingGateway

50 Copyright © 2025 Ping Identity Corporation

In the terminal where you will run the PingGateway instance, create an environment variable for the value of the
keystore password:

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-encoded.

Start PingGateway:

$ /path/to/identity-gateway-2024.6.0/bin/start.sh /path/to/config-instance1/

...

... started in 1234ms on ports : [8001]

C:\path\to\identity-gateway-2024.6.0\bin\start.bat %appdata%/path/to/config-instance1

Set up and start the second instance of PingGateway:

Create a configuration directory for the instance:

$ mkdir -p /path/to/config-instance2/config/routes

Add the following route:

/path/to/config-instance2/config/routes/instance2-retrieve-session-username.json

4.

5.

Linux

Windows

4.

1.

2.

Linux

PingGateway Install

Copyright © 2025 Ping Identity Corporation 51

%appdata%\path\to\config-instance2\config\routes\instance2-retrieve-session-
username.json

Windows

Install PingGateway

52 Copyright © 2025 Ping Identity Corporation

{
 "name": "instance2-retrieve-session-username",
 "heap": [{
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/jwtsessionkeystore.pkcs12",
 "storeType": "PKCS12",
 "storePasswordSecretId": "keystore.secret.id",
 "secretsProvider": ["SystemAndEnvSecretStore-1"],
 "mappings": [{
 "secretId": "jwtsession.symmetric.secret.id",
 "aliases": ["symmetric-key"]
 }]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 }
],
 "session": {
 "type": "JwtSession",
 "config": {
 "authenticatedEncryptionSecretId": "jwtsession.symmetric.secret.id",
 "encryptionMethod": "A256CBC-HS512",
 "secretsProvider": ["KeyStoreSecretStore-1"],
 "cookie": {
 "name": "IG",
 "domain": ".example.com"
 }
 }
 },
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": [
 "<html>",
 " <body>",
 " ${session.authUsername!= null?'Hello,
'.concat(session.authUsername).concat(' !'):'Session.authUsername is not defined'}! (instance2)",
 " </body>",
 "</html>"
]
 }
 },
 "condition": "${find(request.uri.path, '/webapp/browsing')}",
 "capture": "all"
}

Notice the following features of the route compared to the route for instance 1:

The route matches the condition /webapp/browsing . When a request matches /webapp/browsing , the
DispatchHandler dispatches it to instance 2.

▪

PingGateway Install

Copyright © 2025 Ping Identity Corporation 53

The StaticResponseHandler displays information from the session context.

Add the following configuration:

/path/to/config-instance2/config/admin.json

%appdata%\path\to\config-instance2\config\admin.json

{
 "connectors": [{
 "port": 8002
 }]
}

In the terminal where you will run the PingGateway instance, create an environment variable for the value of the
keystore password:

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-encoded.

Start PingGateway:

$ /path/to/identity-gateway-2024.6.0/bin/start.sh /path/to/config-instance2/

...

... started in 1234ms on ports : [8002]

▪

3.

Linux

Windows

4.

5.

Linux

Install PingGateway

54 Copyright © 2025 Ping Identity Corporation

C:\path\to\identity-gateway-2024.6.0\bin\start.bat %appdata%/path/to/config-instance2

Set up and start the third instance of PingGateway:

Create a configuration directory:

$ mkdir -p /path/to/config-instance3/config/routes

Add the following route:

/path/to/config-instance3/config/routes/instance3-retrieve-session-username.json

%appdata%\path\to\config-instance3\config\routes\instance3-retrieve-session-
username.json

Windows

5.

1.

2.

Linux

Windows

PingGateway Install

Copyright © 2025 Ping Identity Corporation 55

{
 "name": "instance3-retrieve-session-username",
 "heap": [{
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/jwtsessionkeystore.pkcs12",
 "storeType": "PKCS12",
 "storePasswordSecretId": "keystore.secret.id",
 "secretsProvider": ["SystemAndEnvSecretStore-1"],
 "mappings": [{
 "secretId": "jwtsession.symmetric.secret.id",
 "aliases": ["symmetric-key"]
 }]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 }
],
 "session": {
 "type": "JwtSession",
 "config": {
 "authenticatedEncryptionSecretId": "jwtsession.symmetric.secret.id",
 "encryptionMethod": "A256CBC-HS512",
 "secretsProvider": ["KeyStoreSecretStore-1"],
 "cookie": {
 "name": "IG",
 "domain": ".example.com"
 }
 }
 },
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": [
 "<html>",
 " <body>",
 " ${session.authUsername!= null?'Hello,
'.concat(session.authUsername).concat(' !'):'Session.authUsername is not defined'}! (instance3)",
 " </body>",
 "</html>"
]
 }
 },
 "condition": "${find(request.uri.path, '/webapp/browsing')}",
 "capture": "all"
}

Notice that the route is the same as that for instance 2, apart from the text in the entity of the
StaticResponseHandler.

Add the following configuration:3.

Install PingGateway

56 Copyright © 2025 Ping Identity Corporation

/path/to/config-instance3/config/admin.json

%appdata%\path\to\config-instance3\config\admin.json

{
 "connectors": [{
 "port": 8003
 }]
}

In the terminal where you will run the PingGateway instance, create an environment variable for the value of the
keystore password:

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-encoded.

Start PingGateway:

$ /path/to/identity-gateway-2024.6.0/bin/start.sh /path/to/config-instance3/

...

... started in 1234ms on ports : [8003]

C:\path\to\identity-gateway-2024.6.0\bin\start.bat %appdata%/path/to/config-instance3

Linux

Windows

4.

5.

Linux

Windows

PingGateway Install

Copyright © 2025 Ping Identity Corporation 57

Test the setup:

Access instance 1, to generate a session:

$ curl -v http://ig.example.com:8001/log-in-and-generate-session

GET /log-in-and-generate-session HTTP/1.1
...

HTTP/1.1 200 OK
Content-Length: 84
Set-Cookie: IG=eyJ...HyI; Path=/; Domain=.example.com; HttpOnly
...
Sam Carter logged IN. (JWT session generated)

Using the JWT cookie returned in the previous step, access instance 2:

$ curl -v http://ig.example.com:8001/webapp/browsing\?one --header "cookie:IG=eyJ...HyI"

GET /webapp/browsing?one HTTP/1.1
...
cookie: IG=eyJ...HyI
...
HTTP/1.1 200 OK
...
Hello, Sam Carter !! (instance2)

Note that instance 2 can access the session info.

Using the JWT cookie again, access instance 3:

$ curl -v http://ig.example.com:8001/webapp/browsing\?two --header "cookie:IG=eyJ...HyI"

GET /webapp/browsing?two HTTP/1.1
...
cookie: IG=eyJ...HyI
...
HTTP/1.1 200 OK
...
Hello, Sam Carter !! (instance3)

Note that instance 3 can access the session info.

Prepare for load balancing and failover

For high scale or highly available deployments, consider using a pool of PingGateway servers with nearly identical configurations.
Load balance requests across the pool to handle more load. Route around any servers that become unavailable.

6.

1.

2.

3.

Install PingGateway

58 Copyright © 2025 Ping Identity Corporation

Manage state information

Before spreading requests across multiple servers, decide how to manage state information. PingGateway manages state
information in the following ways:

Stores state information in a context

By using filters that can store information in the context. Most filters depend on information in the request, response, or
context, some of which is first stored by PingGateway. For a summary of filters that can populate a context, refer to
Summary of contexts.

By using a handler such as the ScriptableHandler that can store state information in the context. Most handlers depend
on information in the context, some of which is first stored by PingGateway.

Retrieves state information to local memory

By using filters and handlers that depend on the configuration of the local file system, such as the following filters:

FileAttributesFilter

ScriptableFilter

ScriptableHandler

SqlAttributesFilter

When a server becomes unavailable, state information held in local memory is lost. To prevent data loss when a server
becomes unavailable, set up failover. Server failover should be transparent to client applications.

Prepare stateless sessions

For example configurations, refer to Encrypt and share JWT sessions.

JwtSession

Manage stateless sessions though JwtSession. Session content is stored on a JWT cookie on the user agent.

So that any server can read or update a JWT cookie from any other server in the same cookie domain, encrypt JWT
sessions and share keys and secret across all PingGateway configurations.

Encrypt JWT sessions. The maximum size of the JWT session cookie is 4 KBytes, as defined by the browser. If the cookie
exceeds this size, PingGateway automatically splits it into multiple cookies.

Session stickiness

Session stickiness helps to ensure that a client request goes to the server holding the original session data.

If data attached to a context must be stored on the server-side, configure session stickiness so that the load balancer
sends all requests from the same client session to the same server.

For an example configuration, refer to Share JWT sessions between multiple instances of PingGateway.

•

•

•

•

PingGateway Install

Copyright © 2025 Ping Identity Corporation 59

SAML in deployments with multiple instances of PingGateway

PingGateway uses AM federation libraries to implement SAML. When PingGateway acts as a SAML service provider, some internal
state information is maintained in the fedlet instead of the session cookie. In deployments that use multiple instances of
PingGateway as a SAML service provider, set up sticky sessions so that requests go to the server that started the SAML
interaction.

For information, refer to Session state considerations in AM’s SAML v2.0 guide.

Secure connections

PingGateway is often deployed to replay credentials or other security information. In a real world deployment, this information
must be communicated over a secure connection using HTTPS, meaning HTTP over encrypted Transport Layer Security (TLS).
Never send real credentials, bearer tokens, or other security information unprotected over HTTP.

Learn about how to use well-known CA-signed certificates from the documentation for the Java Virtual Machine (JVM).

After installing certificates for client-server trust, consider which cipher suites to use. PingGateway inherits the list of cipher suites
from the underlying Java environment.

PingGateway uses the JSSE to secure connections. You can set security and system properties to configure the JSSE. For a list of
properties to customize the JSSE in Oracle Java, refer to the Customization section of the JSSE Reference guide.

Configure PingGateway for TLS (client-side)

When PingGateway sends requests over HTTP to a proxied application, or requests services from a third-party application,
PingGateway is acting as a client of the application, and the application is acting as a server. PingGateway is client-side.

When PingGateway sends requests securely over HTTPS, PingGateway must be able to trust the server. By default, PingGateway
uses the Java environment truststore to trust server certificates. The Java environment truststore includes public key signing
certificates from many well-known Certificate Authorities (CAs).

When servers present certificates signed by trusted CAs, then PingGateway can send requests over HTTPS to those servers,
without any configuration to set up the HTTPS client connection. When server certificates are self-signed or signed by a CA whose
certificate is not automatically trusted, the following objects can be required to configure the connection:

KeyStoreSecretStore, to manage a secret store for cryptographic keys and certificates, based on a standard Java keystore.

SecretsTrustManager, to manage trust material that verifies the credentials presented by a peer.

(Optional) SecretsKeyManager, to manage keys that authenticate a TLS connection to a peer.

ClientHandler and ReverseProxyHandler reference to ClientTlsOptions, for connecting to TLS-protected endpoints.

The following procedure describes how to set up PingGateway for HTTPS (client-side), when server certificates are self-signed or
signed by untrusted CAs.

Set up PingGateway for HTTPS (client-side) for untrusted servers

Locate or set up the following directories:

Directory containing the sample application .jar: sampleapp_install_dir

•

•

•

•

1.

◦

Install PingGateway

60 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/saml2-guide/saml2-configuration.html#saml2-and-session-state
https://docs.pingidentity.com/pingam/7.5/saml2-guide/saml2-configuration.html#saml2-and-session-state
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-A41282C3-19A3-400A-A40F-86F4DA22ABA9
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-A41282C3-19A3-400A-A40F-86F4DA22ABA9

Directory to store the sample application certificate and PingGateway keystore: /path/to/secrets

Extract the public certificate from the sample application:

$ cd /path/to/secrets

$ jar --verbose --extract \
--file sampleapp_install_dir/PingGateway-sample-application-2024.6.0-jar-with-dependencies.jar tls/sampleapp-
cert.pem

inflated: tls/sampleapp-cert.pem

The file /path/to/secrets/tls/sampleapp-cert.pem is created.

Import the certificate into the PingGateway keystore, and answer yes to trust the certificate:

$ keytool -importcert \
-alias ig-sampleapp \
-file tls/sampleapp-cert.pem \
-keystore reverseproxy-truststore.p12 \
-storetype pkcs12 \
-storepass password

...
Trust this certificate? [no]: yes

Certificate was added to keystore

List the keys in the PingGateway keystore to make sure that a key with the alias ig-sampleapp is present:

$ keytool -list \
-v \
-keystore /path/to/secrets/reverseproxy-truststore.p12 \
-storetype pkcs12 \
-storepass password

Keystore type: PKCS12
Keystore provider: SUN
Your keystore contains 1 entry
Alias name: ig-sampleapp
...

Add the following route to PingGateway to serve the sample application .css and other static resources:

◦

2.

3.

info
Because keytool converts all characters in its key aliases to lowercase, use only lowercase in alias definitions of
a keystore.

Note

4.

5.

PingGateway Install

Copyright © 2025 Ping Identity Corporation 61

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or
matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/client-side-https.json

%appdata%\OpenIG\config\routes\client-side-https.json

Linux

Windows

6.

Linux

Windows

Install PingGateway

62 Copyright © 2025 Ping Identity Corporation

{
 "name": "client-side-https",
 "condition": "${find(request.uri.path, '/home/client-side-https')}",
 "baseURI": "https://app.example.com:8444",
 "heap": [
 {
 "name": "Base64EncodedSecretStore-1",
 "type": "Base64EncodedSecretStore",
 "config": {
 "secrets": {
 "keystore.secret.id": "cGFzc3dvcmQ="
 }
 }
 },
 {
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/reverseproxy-truststore.p12",
 "storeType": "PKCS12",
 "storePasswordSecretId": "keystore.secret.id",
 "secretsProvider": "Base64EncodedSecretStore-1",
 "mappings": [
 {
 "secretId": "trust.manager.secret.id",
 "aliases": ["ig-sampleapp"]
 }
]
 }
 },
 {
 "name": "SecretsTrustManager-1",
 "type": "SecretsTrustManager",
 "config": {
 "verificationSecretId": "trust.manager.secret.id",
 "secretsProvider":"KeyStoreSecretStore-1"
 }
 },
 {
 "name": "ReverseProxyHandler-1",
 "type": "ReverseProxyHandler",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": "SecretsTrustManager-1"
 }
 },
 "hostnameVerifier": "ALLOW_ALL"
 },
 "capture": "all"
 }
],
 "handler": "ReverseProxyHandler-1"
}

Notice the following features of the route:

The route matches requests to /home/client-side-https .◦

PingGateway Install

Copyright © 2025 Ping Identity Corporation 63

The baseURI changes the request URI to point to the HTTPS port for the sample application.

The Base64EncodedSecretStore provides the keystore password.

The SecretsTrustManager points to the secret bound to the sample application certificate, coming from the
KeyStoreSecretStore.

The KeyStoreSecretStore contains the sample application certificate to validate the TLS connection. The password
to access the keystore is provided by the SystemAndEnvSecretStore.

The ReverseProxyHandler uses the SecretsTrustManager for the connection to TLS-protected endpoints. All
hostnames are allowed.

Test the setup:

Start the sample application

$ java -jar sampleapp_install_dir/PingGateway-sample-application-2024.6.0-jar-with-dependencies.jar

Go to http://ig.example.com:8080/home/client-side-https.

The request is proxied transparently to the sample application, on the TLS port 8444 .

Check the route log for a line like this:

GET https://app.example.com:8444/home/client-side-https

Configure PingGateway for TLS (server-side)

When PingGateway is server-side, applications send requests to PingGateway or request services from PingGateway. PingGateway
is acting as a server of the application, and the application is acting as a client.

To run PingGateway as a server over TLS:

In the admin.json heap, add a SecretsKeyManager to authenticate PingGateway to the client. Key material is a private
key and its certificate for PingGateway.

In admin.json , update the connectors list to include a connector for the HTTPS port. The connector tls property must
refer to a ServerTlsOptions.

The ServerTlsOptions must configure keyManager to refer to the SecretsKeyManager.

The following example connector includes a ServerTlsOptions that refers to a SecretsKeyManager in the heap:

◦

◦

◦

◦

◦

7.

1.

2.

3.

•

•

•

Install PingGateway

64 Copyright © 2025 Ping Identity Corporation

http://ig.example.com:8080/home/client-side-https
http://ig.example.com:8080/home/client-side-https

"connectors": [
 {
 "port": 8443,
 "tls": {
 "type": "ServerTlsOptions",
 "config": {
 "keyManager": "SecretsKeyManager-1"
 }
 }
 }
]

Learn more from About keys and certificates.

Serve one certificate for TLS connections to all server names

This example uses PEM files and a PKCS#12 keystore for self-signed certificates, but you can adapt it to use official (non self-
signed) keys and certificates.

Before you start, install PingGateway, as described in the Install.

Locate a directory for the secrets, for example, /path/to/secrets .

Create self-signed keys in one of the following ways. If you have your own keys, use them and skip this step.

If you have your own keys, use them and skip this step.

Create the keystore, replacing /path/to/secrets with your path:

$ keytool \
-genkey \
-alias https-connector-key \
-keyalg RSA \
-keystore /path/to/secrets/keystore.pkcs12 \
-storepass password \
-keypass password \
-dname "CN=ig.example.com,O=Example Corp,C=FR"

In the secrets directory, add a file called keystore.pass , containing the keystore password password :

$ cd /path/to/secrets/
$ echo -n 'password' > keystore.pass

Make sure the password file contains only the password, with no trailing spaces or carriage returns.

Locate a directory for secrets, and go to it:

1.

2.

1.

info
Because keytool converts all characters in its key aliases to lowercase, use only lowercase in alias
definitions of a keystore.

Note

2.

1.

PingGateway Install

Copyright © 2025 Ping Identity Corporation 65

$ cd /path/to/secrets

Create the following secret key and certificate pair as PEM files:

$ openssl req \
-newkey rsa:2048 \
-new \
-nodes \
-x509 \
-days 3650 \
-subj "/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout ig.example.com-key.pem \
-out ig.example.com-certificate.pem

Two PEM files are created, one for the secret key, and another for the associated certificate.

Map the key and certificate to the same secret ID in PingGateway:

$ cat ig.example.com-key.pem ig.example.com-certificate.pem > key.manager.secret.id.pem

Set up TLS on PingGateway in one of the following ways:

Add the following file to PingGateway, replacing /path/to/secrets with your path:

$HOME/.openig/config/admin.json

%appdata%\OpenIG\config\admin.json

2.

3.

3.

Linux

Windows

Install PingGateway

66 Copyright © 2025 Ping Identity Corporation

{
 "connectors": [
 {
 "port": 8080
 },
 {
 "port": 8443,
 "tls": "ServerTlsOptions-1"
 }
],
 "heap": [
 {
 "name": "ServerTlsOptions-1",
 "type": "ServerTlsOptions",
 "config": {
 "keyManager": {
 "type": "SecretsKeyManager",
 "config": {
 "signingSecretId": "key.manager.secret.id",
 "secretsProvider": "ServerIdentityStore"
 }
 }
 }
 },
 {
 "type": "FileSystemSecretStore",
 "name": "SecretsPasswords",
 "config": {
 "directory": "/path/to/secrets",
 "format": "PLAIN"
 }
 },
 {
 "name": "ServerIdentityStore",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/IG-keystore",
 "storePasswordSecretId": "keystore.pass",
 "secretsProvider": "SecretsPasswords",
 "mappings": [
 {
 "secretId": "key.manager.secret.id",
 "aliases": ["https-connector-key"]
 }
]
 }
 }
]
}

Notice the following features of the file:

PingGateway starts on port 8080 , and on 8443 over TLS.

PingGateway’s private keys for TLS are managed by the SecretsKeyManager, whose ServerIdentityStore references
a KeyStoreSecretStore.

◦

◦

PingGateway Install

Copyright © 2025 Ping Identity Corporation 67

The KeyStoreSecretStore maps the keystore alias to the secret ID for retrieving the server keys (private key +
certificate).

The password of the KeyStoreSecretStore is provided by the FileSystemSecretStore.

Add the following file to PingGateway, replacing /path/to/secrets with your path:

$HOME/.openig/config/admin.json

%appdata%\OpenIG\config\admin.json

◦

◦

Linux

Windows

Install PingGateway

68 Copyright © 2025 Ping Identity Corporation

{
 "connectors": [
 {
 "port": 8080
 },
 {
 "port": 8443,
 "tls": "ServerTlsOptions-1"
 }
],
 "heap": [
 {
 "name": "ServerTlsOptions-1",
 "type": "ServerTlsOptions",
 "config": {
 "keyManager": {
 "type": "SecretsKeyManager",
 "config": {
 "signingSecretId": "key.manager.secret.id",
 "secretsProvider": "ServerIdentityStore"
 }
 }
 }
 },
 {
 "name": "ServerIdentityStore",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "/path/to/secrets",
 "suffix": ".pem",
 "mappings": [{
 "secretId": "key.manager.secret.id",
 "format": {
 "type": "PemPropertyFormat"
 }
 }]
 }
 }
]
}

Notice how this file differs to that for the keystore-based approach:

The ServerIdentityStore is a FileSystemSecretStore.

The FileSystemSecretStore reads the keys that are stored as file in the PEM standard format.

Start PingGateway:

◦

◦

4.

PingGateway Install

Copyright © 2025 Ping Identity Corporation 69

$ /path/to/identity-gateway-2024.6.0/bin/start.sh

...

... started in 1234ms on ports : [8080 8443]

C:\path\to\identity-gateway-2024.6.0\bin\start.bat

By default, PingGateway configuration files are located under $HOME/.openig (on Windows %appdata%\OpenIG). For
information about how to use a different location, refer to Configuration location.

Test the connection in one of the following ways:

Ping PingGateway and make sure an HTTP 200 is returned:

$ curl -v --cacert /path/to/secrets/ig.example.com-certificate.pem \
https://ig.example.com:8443/openig/ping

Display the product version and build information:

$ curl --cacert /path/to/secrets/ig.example.com-certificate.pem \
https://ig.example.com:8443/openig/api/info

Use Server Name Indication (SNI) to serve different certificates for TLS connections to different server names

This example uses PEM files for self-signed certificates, but you can adapt it to use official (non self-signed) keys and certificates.

Before you start, install PingGateway, as described in the Install.

Locate a directory for secrets, for example, /path/to/secrets , and go to it.

$ cd /path/to/secrets

Create the following secret key and certificate pair as PEM files:

For ig.example.com :

Create a key and certificate:

Linux

Windows

5.

◦

◦

1.

2.

1.

1.

Install PingGateway

70 Copyright © 2025 Ping Identity Corporation

$ openssl req \
-newkey rsa:2048 \
-new \
-nodes \
-x509 \
-days 3650 \
-subj "/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout ig.example.com-key.pem \
-out ig.example.com-certificate.pem

Two PEM files are created, one for the secret key, and another for the associated certificate.

Map the key and certificate to the same secret ID in PingGateway:

$ cat ig.example.com-key.pem ig.example.com-certificate.pem > key.manager.secret.id.pem

For servers grouped by a wildcard:

Create a key and certificate:

$ openssl req \
-newkey rsa:2048 \
-new \
-nodes \
-x509 \
-days 3650 \
-subj "/CN=*.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout wildcard.example.com-key.pem \
-out wildcard.example.com-certificate.pem

Map the key and certificate to the same secret ID in PingGateway:

$ cat wildcard.example.com-key.pem wildcard.example.com-certificate.pem > wildcard.secret.id.pem

For other, unmapped servers

Create a key and certificate:

$ openssl req \
-newkey rsa:2048 \
-new \
-nodes \
-x509 \
-days 3650 \
-subj "/CN=un.mapped.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout default.example.com-key.pem \
-out default.example.com-certificate.pem

2.

2.

1.

2.

3.

1.

PingGateway Install

Copyright © 2025 Ping Identity Corporation 71

Map the key and certificate to the same secret ID in PingGateway:

$ cat default.example.com-key.pem default.example.com-certificate.pem > default.secret.id.pem

Add the following file to PingGateway, replacing /path/to/secrets with your path, and then restart PingGateway:

$HOME/.openig/config/admin.json

%appdata%\OpenIG\config\admin.json

2.

3.

Linux

Windows

Install PingGateway

72 Copyright © 2025 Ping Identity Corporation

{
 "connectors": [
 {
 "port": 8080
 },
 {
 "port": 8443,
 "tls": "ServerTlsOptions-1"
 }
],
 "heap": [
 {
 "name": "ServerTlsOptions-1",
 "type": "ServerTlsOptions",
 "config": {
 "sni": {
 "serverNames": {
 "ig.example.com": "key.manager.secret.id",
 "*.example.com": "wildcard.secret.id"
 },
 "defaultSecretId" : "default.secret.id",
 "secretsProvider": "ServerIdentityStore"
 }
 }
 },
 {
 "name": "ServerIdentityStore",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "path/to/secrets",
 "suffix": ".pem",
 "mappings": [
 {
 "secretId": "key.manager.secret.id",
 "format": {
 "type": "PemPropertyFormat"
 }
 },
 {
 "secretId": "wildcard.secret.id",
 "format": {
 "type": "PemPropertyFormat"
 }
 },
 {
 "secretId": "default.secret.id",
 "format": {
 "type": "PemPropertyFormat"
 }
 }
]
 }
 }
]
}

PingGateway Install

Copyright © 2025 Ping Identity Corporation 73

Notice the following features of the file:

The ServerTlsOptions object maps two servers to secret IDs, and includes a default secret ID

The secret IDs correspond to the secret IDs in the FileSystemSecretStore, and the PEM files generated in an earlier
step.

Run the following commands to request TLS connections to different servers, using different certificates:

Connect to ig.example.com , and note that the certificate subject corresponds to the certificate created for
ig.example.com :

$ openssl s_client -connect localhost:8443 -servername ig.example.com

...
Server certificate
-----BEGIN CERTIFICATE-----
MII...dZC
-----END CERTIFICATE-----
subject=/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr
issuer=/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr

Connect to other.example.com , and note that the certificate subject corresponds to the certificate created with
the wildcard, *.example.com :

$ openssl s_client -connect localhost:8443 -servername other.example.com

...

Server certificate

-----BEGIN CERTIFICATE-----

MII...fY=

-----END CERTIFICATE-----

subject=/CN=*.example.com/OU=example/O=com/L=fr/ST=fr/C=fr

issuer=/CN=*.example.com/OU=example/O=com/L=fr/ST=fr/C=fr

Connect to unmapped.site.com , and note that the certificate subject corresponds to the certificate created for the
default secret ID:

$ openssl s_client -connect localhost:8443 -servername unmapped.site.com

...
Server certificate
-----BEGIN CERTIFICATE-----
MII..rON
-----END CERTIFICATE-----
subject=/CN=un.mapped.com/OU=example/O=com/L=fr/ST=fr/C=fr
issuer=/CN=un.mapped.com/OU=example/O=com/L=fr/ST=fr/C=fr

◦

◦

4.

1.

2.

3.

Install PingGateway

74 Copyright © 2025 Ping Identity Corporation

Configure PingGateway for mutual TLS (server-side)

When PingGateway is server-side, applications send requests to PingGateway or request services from PingGateway. PingGateway
is acting as a server of the application, and the application is acting as a client.

To run PingGateway as a server for mutual TLS:

Using information from Configure PingGateway for TLS (server-side), configure PingGateway for TLS connections.

In admin.json , add a SecretsTrustManager to verify the credentials presented by the client:

The trust material is a public key certificate for a client or certificate authority.

The SecretsTrustManager must refer to a secret in a secrets store, where the secret is mapped to the certificate.

ServerTlsOptions must configure trustManager to refer to that SecretsTrustManager and clientAuth to require
or request the client to authenticate.

The following example is used in mTLS using standard TLS client certificate authentication.

$HOME/.openig/config/admin.json

%appdata%\OpenIG\config\admin.json

•

•

◦

◦

◦

Linux

Windows

PingGateway Install

Copyright © 2025 Ping Identity Corporation 75

{
 "mode": "DEVELOPMENT",
 "properties": {
 "ig_keystore_directory": "/path/to/ig/secrets",
 "oauth2_client_keystore_directory": "/path/to/client/secrets"
 },
 "connectors": [
 {
 "port": 8080
 },
 {
 "port": 8443,
 "tls": {
 "type": "ServerTlsOptions",
 "config": {
 "alpn": {
 "enabled": true
 },
 "clientAuth": "REQUEST",
 "keyManager": "SecretsKeyManager-1",
 "trustManager": "SecretsTrustManager-1"
 }
 }
 }
],
 "heap": [
 {
 "name": "SecretsPasswords",
 "type": "FileSystemSecretStore",
 "config": {
 "directory": "&{ig_keystore_directory}",
 "format": "PLAIN"
 }
 },
 {
 "name": "SecretsKeyManager-1",
 "type": "SecretsKeyManager",
 "config": {
 "signingSecretId": "key.manager.secret.id",
 "secretsProvider": "ServerIdentityStore"
 }
 },
 {
 "name": "SecretsTrustManager-1",
 "type": "SecretsTrustManager",
 "config": {
 "verificationSecretId": "trust.manager.secret.id",
 "secretsProvider": {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "&{oauth2_client_keystore_directory}/cacerts.p12",
 "storePasswordSecretId": "keystore.pass",
 "secretsProvider": "SecretsPasswords",
 "mappings": [
 {
 "secretId": "trust.manager.secret.id",
 "aliases": ["client-cert"]
 }
]
 }

Install PingGateway

76 Copyright © 2025 Ping Identity Corporation

 }
 }
 },
 {
 "name": "ServerIdentityStore",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "&{ig_keystore_directory}",
 "suffix": ".pem",
 "mappings": [{
 "secretId": "key.manager.secret.id",
 "format": {
 "type": "PemPropertyFormat"
 }
 }]
 }
 }
]
}

PingGateway Install

Copyright © 2025 Ping Identity Corporation 77

Configure

This guide shows you how to configure PingGateway software features.

Configuration files and routes

PingGateway processes requests and responses by using the following JSON files: admin.json, config.json, Route, and Router.

Configuration location

The following table summarizes the default location of the PingGateway configuration and logs.

Configuration security

Allow the following access to $HOME/.openig/logs , $HOME/.openig/tmp , and all configuration directories:

Highest privilege the PingGateway system account.

Least priviledge for specific accounts, on a case-by-case basis

No priviledge for all other accounts, by default

Change the base location

By default, the base location for PingGateway configuration files is in the following directory:

Purpose Default location on Linux Default location on Windows

Log messages from PingGateway and
third-party dependencies

$HOME/.openig/logs %appdata%\OpenIG\logs

Administration (admin.json)
Gateway (config.json)

$HOME/.openig/config %appdata%\OpenIG\config

Routes (Route) $HOME/.openig/config/routes %appdata%\OpenIG\config\routes

SAML 2.0 $HOME/.openig/SAML %appdata%\OpenIG\SAML

Groovy scripts for scripted filters and
handlers, and other objects

$HOME/.openig/scripts/groovy %appdata%\OpenIG\scripts\groovy

Temporary directory
To change the directory, configure
temporaryDirectory in admin.json

$HOME/.openig/tmp %appdata%\OpenIG\tmp

JSON schema for custom audit
To change the directory, configure
topicsSchemasDirectory in
AuditService.

$HOME/.openig/audit-schemas %appdata%\OpenIG\audit-schemas

•

•

•

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 79

$HOME/.openig

%appdata%\OpenIG

Change the location in the following ways:

Edit the prefix property of admin.json.

Use an argument with the startup command. The following example reads the configuration from the config directory
under /path/to/config-dir :

$ /path/to/identity-gateway-2024.6.0/bin/start.sh /path/to/config-dir

C:\path\to\identity-gateway-2024.6.0\bin\start.bat /path/to/config-dir

Route names, IDs, and filenames

The filenames of routes have the extension .json, in lowercase.

The router scans the $HOME/.openig/config/routes folder for files with the .json extension. It uses the route name property to
order the routes in the configuration. If the route does not have a name property, the router uses the route ID.

The route ID is managed as follows:

When you add a route manually to the routes folder, the route ID is the value of the _id field. If there is no _id field, the
route ID is the filename of the added route.

When you add a route through the Common REST endpoint, the route ID is the value of the mandatory _id field.

When you add a route through Studio, you can edit the default route ID.

Linux

Windows

•

•

Linux

Windows

•

•

•

Configure PingGateway

80 Copyright © 2025 Ping Identity Corporation

Inline and heap objects

Inline objects

An inline object is declared in a route or configuration, outside of the heap.

The following example shows an inline declaration for a handler to route requests:

{
 "handler": {
 "name": "My Router",
 "type": "Router"
 }
}

The name property for inline objects is optional but useful for logging.

Other objects in the configuration can never refer to named or unnamed inline objects.

Heap objects

A heap object is declared inside the heap.

The following example shows a named router in the heap, and a handler that refers to the router by its name:

{
 "handler": "My Router",
 "heap": [
 {
 "name": "My Router",
 "type": "Router"
 }
]
}

The name property for heap objects is required. Other objects in the configuration or its child configirations can refer to
the heap obect by its name property.

Comment the configuration

JSON format doesn’t specify a notation for comments. If PingGateway does not recognize a JSON field name, it ignores the field.
As a result, it’s possible to use comments in configuration files.

The following conventions are available for commenting:

A comment field to add text comments. The following example includes a text comment.

error
The filename of a route can’t be default.json , and the route’s name property and route ID can’t be default .

Caution

•

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 81

{
 "name": "capture",
 "type": "CaptureDecorator",
 "comment": "Write request and response information to the logs",
 "config": {
 "captureEntity": true
 }
}

An underscore (_) to comment a field temporarily. The following example comments out "captureEntity": true , and
as a result it uses the default setting ("captureEntity": false).

{
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "_captureEntity": true
 }
}

Restart after configuration change

You can change routes or change a property that’s read at runtime or that relies on a runtime expression without needing to
restart PingGateway to take the change into account.

Stop and restart PingGateway only when you make the following changes:

Change the configuration of any route, when the scanInterval of Router is disabled (see Router).

Add or change an external object used by the route, such as an environment variable, system property, external URL, or
keystore.

Add or update config.json or admin.json .

Prevent reload of routes

To prevent routes from being reloaded after startup, stop PingGateway, edit the router scanInterval , and restart PingGateway.
When the interval is set to disabled , routes are loaded only at startup:

{
 "name": "Router",
 "type": "Router",
 "config": {
 "scanInterval": "disabled"
 }
}

The following example changes the location where the router looks for the routes:

•

•

•

•

Configure PingGateway

82 Copyright © 2025 Ping Identity Corporation

{
 "name": "Router",
 "type": "Router",
 "config": {
 "directory": "/path/to/safe/routes",
 "scanInterval": "disabled"
 }
}

Reserved routes

For information about reserved routes, refer to Reserved routes.

Routes and Common REST

Through Common REST, you can read, add, delete, and edit routes on PingGateway without manually accessing the file system.
You can also list the routes in the order that they’re loaded in the configuration, and set fields to filter the information about the
routes.

The following examples show some ways to manage routes through Common REST. For more information, refer to About
ForgeRock Common REST.

Manage routes through Common REST

Before you start, prepare PingGateway as described in the Quick install.

Add the following route to PingGateway:

$HOME/.openig/config/routes/00-crest.json

%appdata%\OpenIG\config\routes\00-crest.json

info
When PingGateway is in production mode, you can’t manage, list, or read routes through Common REST. For
information about switching to development mode, refer to Operating modes.

Note

1.

Linux

Windows

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 83

{
 "name": "crest",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "Hello world!"
 }
 },
 "condition": "${find(request.uri.path, '^/crest')}"
}

To check that the route is working, access the route on: http://ig.example.com:8080/crest.

To read a route through Common REST:

Enter the following command in a terminal window:

$ curl -v http://ig.example.com:8080/openig/api/system/objects/_router/routes/00-crest\?
_prettyPrint\=true

The route is displayed. Note that the route _id is displayed in the JSON of the route.

To add a route through Common REST:

Move $HOME/.openig/config/routes/00-crest.json to /tmp/00-crest .json .

Check in $HOME/.openig/logs/route-system.log that the route has been removed from the configuration, where
$HOME/.openig is the instance directory. To double check, go to http://ig.example.com:8080/crest. You should
get an HTTP 404 error.

Enter the following command in a terminal window:

$ curl -X PUT http://ig.example.com:8080/openig/api/system/objects/_router/routes/00-crest \
 -d "@/tmp/00-crest.json" \
 --header "Content-Type: application/json"

This command posts the file in /tmp/00-crest.json to the routes directory.

Check in $HOME/.openig/logs/route-system.log that the route has been added to configuration, where
$HOME/.openig is the instance directory. To double-check, go to http://ig.example.com:8080/crest. You should
see the "Hello world!" message.

To edit a route through Common REST:

Edit /tmp/00-crest.json to change the message displayed by the response handler in the route.

Enter the following command in a terminal window:

2.

1.

3.

1.

2.

3.

4.

4.

1.

2.

Configure PingGateway

84 Copyright © 2025 Ping Identity Corporation

http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest

$ curl -X PUT http://ig.example.com:8080/openig/api/system/objects/_router/routes/00-crest \
 -d "@/tmp/00-crest.json" \
 --header "Content-Type: application/json" \
 --header "If-Match: *"

This command deploys the route with the new configuration. Because the changes are persisted into the
configuration, the existing $HOME/.openig/config/routes/00-crest.json is replaced with the edited version in /
tmp/00-crest.json .

Check in $HOME/.openig/logs/route-system.log that the route has been updated, where $HOME/.openig is the
instance directory. To double-check, go to http://ig.example.com:8080/crest to confirm that the displayed
message has changed.

To delete a route through Common REST:

Enter the following command in a terminal window:

$ curl -X DELETE http://ig.example.com:8080/openig/api/system/objects/_router/routes/00-crest

Check in $HOME/.openig/logs/route-system.log that the route has been removed from the configuration, where
$HOME/.openig is the instance directory. To double-check, go to http://ig.example.com:8080/crest. You should
get an HTTP 404 error.

To list the routes deployed on the router, in the order that they are tried by the router:

Enter the following command in a terminal window:

$ curl "http://ig.example.com:8080/openig/api/system/objects/_router/routes?_queryFilter=true"

The list of loaded routes is displayed.

Decorators

Decorators are heap objects to extend what other objects can do. PingGateway defines baseURI , capture , and timer
decorators that you can use without explicitly configuring them. For information about available decorators, refer to Decorators.

Use decorations that are compatible with the object type. For example, timer records the time to process filters and handlers,
but does not record information for other object types. Similarly, baseURI overrides the scheme, host, and ports, but has no
other effect.

In a route, you can decorate individual objects, the route handler, and the heap. PingGateway applies decorations in this order:

Decorations declared on individual objects. Local decorations that are part of an object’s declaration are inherited
wherever the object is used.

globalDecorations declared in parent routes, then in child routes, and then in the current route.

Decorations declared on the route handler.

3.

5.

1.

2.

6.

1.

1.

2.

3.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 85

http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest

Decorate individual objects in a route

To decorate individual objects, add the decorator’s name value as a top-level field of the object, next to type and config .

In this example, the decorator captures all requests going into the SingleSignOnFilter, and all responses coming out of the
SingleSignOnFilter:

{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "capture": "all",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Decorate the route handler

To decorate the handler for a route, add the decorator as a top-level field of the route.

In this example, the decorator captures all requests and responses that traverse the route:

Configure PingGateway

86 Copyright © 2025 Ping Identity Corporation

{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent" : {
 "username" : "ig_agent",
 "passwordSecretId" : "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "capture": "all",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Decorate the route heap

To decorate all compatible objects in a route, configure globalDecorators as a top-level field of the route. The globalDecorators
field takes a map of the decorations to apply.

To decorate all compatible objects declared in config.json or admin.json , configure globalDecorators as a top-level field in
config.json or admin.json .

In the following example, the route has capture and timer decorations. The capture decoration applies to AmService, Chain,
SingleSignOnFilter, and ReverseProxyHandler. The timer decoration doesn’t apply to AmService because it is not a filter or
handler, but does apply to Chain, SingleSignOnFilter, and ReverseProxyHandler:

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 87

{
 "globalDecorators":
 {
 "capture": "all",
 "timer": true
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Decorate named objects differently in different parts of the configuration

When a filter or handler is configured in config.json or in the heap, it can be used many times in the configuration. To decorate
each use of the filter or handler individually, use a Delegate.

In the following example, an AmService heap object configures an amHandler to delegate tasks to ForgeRockClientHandler ,
and capture all requests and responses passing through the handler.

Configure PingGateway

88 Copyright © 2025 Ping Identity Corporation

{
 "type": "AmService",
 "config": {
 "agent" : {
 "username" : "ig_agent",
 "passwordSecretId" : "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "amHandler": {
 "type": "Delegate",
 "capture": "all",
 "config": {
 "delegate": "ForgeRockClientHandler"
 }
 },
 "url": "http://am.example.com:8088/openam"
 }
}

You can use the same ForgeRockClientHandler in another part of the configuration, in a different route for example, without
adding a capture decorator. Requests and responses that pass through that use of the handler are not captured.

Decorate PingGateway’s interactions with AM

To log interactions between PingGateway and AM, delegate message handling to a ForgeRockClientHandler, and capture the
requests and responses passing through the handler. When the ForgeRockClientHandler communicates with an application, it
sends ForgeRock Common Audit transaction IDs.

In the following example, the accessTokenResolver delegates message handling to a decorated ForgeRockClientHandler:

"accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "capture": "all",
 "type": "Delegate",
 "config": {
 "delegate": "ForgeRockClientHandler"
 }
 }
 }
}

To try the example, replace the accessTokenResolver in the PingGateway route of Validate access tokens through the
introspection endpoint. Test the setup as described for the example, and note that the route’s log file contains an HTTP call to the
introspection endpoint.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 89

Decorate an object multiple times

Decorations can apply more than once. For example, if you set a decoration on a route and another decoration on an object
defined within the route, PingGateway applies the decoration twice. In the following route, the request is captured twice:

{
 "handler": {
 "type": "ReverseProxyHandler",
 "capture": "request"
 },
 "capture": "all"
}

When an object has multiple decorations, the decorations are applied in the order they appear in the JSON.

In the following route, the handler is decorated with a baseURI first, and a capture second:

{
 "name": "myroute",
 "baseURI": "http://app.example.com:8081",
 "capture": "all",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "Hello world, from myroute!"
 }
 },
 "condition": "${find(request.uri.path, '^/myroute1')}"
}

The decoration can be represented as capture[baseUri[handler]] . When a request is processed, it is captured, and then
rebased, and then processed by the handler: The log for this route shows that the capture occurs before the rebase:

2018-09-10T13:23:18,990Z | INFO | http-nio-8080-exec-1 | o.f.o.d.c.C.c.top-level-handler | @myroute |

--- (request) id:f792d2ad-4409-4907-bc46-28e1c3c19ac3-7 --->

GET http://ig.example.com:8080/myroute HTTP/1.1
...

Conversely, in the following route, the handler is decorated with a capture first, and a baseURI second:

Configure PingGateway

90 Copyright © 2025 Ping Identity Corporation

{
 "name": "myroute",
 "capture": "all",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 }
 "entity": "Hello, world from myroute1!"
 }
 },
 "condition": "${find(request.uri.path, '^/myroute')}"
}

The decoration can be represented as baseUri[capture[handler]] . When a request is processed, it is rebased, and then
captured, and then processed by the handler. The log for this route shows that the rebase occurs before the capture:

2018-09-10T13:07:07,524Z | INFO | http-nio-8080-exec-1 | o.f.o.d.c.C.c.top-level-handler | @myroute |

--- (request) id:3c26ab12-3cc0-403e-bec6-43bf5621f657-7 --->

GET http://app.example.com:8081/myroute HTTP/1.1
...

Guidelines for naming decorators

To prevent unwanted behavior, consider the following points when you name decorators:

Avoid decorators named comment or comments , and avoid reserved field names. Instead of using alphanumeric field
names, consider using dots in your decorator names, such as my.decorator .

For heap objects, avoid the reserved names config , name , and type .

For routes, avoid the reserved names auditService , baseURI , condition , globalDecorators , heap , handler , name ,
secrets , and session .

In config.json , avoid the reserved name temporaryStorage .

Operating modes

Production mode (immutable mode)

To prevent unwanted changes to the configuration, PingGateway is by default in production mode after installation. Production
mode has the following characteristics:

The /routes endpoint isn’t exposed or accessible.

•

•

•

•

•

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 91

Studio is effectively disabled. You can’t manage, list, or even read routes through Common REST.

By default, other endpoints, such as /share and api/info are exposed to the loopback address only.

To change the default protection for specific endpoints, configure an ApiProtectionFilter in admin.json and add it to the
PingGateway configuration.

Development mode (mutable mode)

In development mode, by default all endpoints are open and accessible.

You can create, edit, and deploy routes through Studio, manage routes through Common REST without authentication or
authorization, and access API descriptors.

Use development mode to evaluate or demo PingGateway, or to develop configurations on a single instance. This mode isn’t
suitable for production.

For information about Restrict access to Studio in development mode, refer to Restrict access to Studio.

Switch from production mode to development mode

Switch from production mode to development mode in one of the following ways, applied in order of precedence:

Add the following configuration to admin.json , and restart PingGateway:

{
 "mode": "DEVELOPMENT",
 "connectors": [
 { "port" : 8080 }
]
}

Define an environment variable for the configuration token ig.run.mode , and then start PingGateway in the same
terminal.

If mode is not defined in admin.json , the following example starts an instance of PingGateway in development mode:

$ IG_RUN_MODE=development /path/to/identity-gateway-2024.6.0/bin/bin/start.sh

•

•

1.

2.

Linux

Configure PingGateway

92 Copyright © 2025 Ping Identity Corporation

C:\IG_RUN_MODE=development
C:\path\to\identity-gateway-2024.6.0\bin\start.bat %appdata%\OpenIG

Define a system property for the configuration token ig.run.mode when you start PingGateway.

If mode is not defined in admin.json , or an IG_RUN_MODE environment variable is not set, the following file starts an
instance of PingGateway with the system property ig.run.mode to force development mode:

$HOME/.openig/env.sh

%appdata%\OpenIG\env.sh

export JAVA_OPTS='-Dig.run.mode=development'

Switch from development mode to production mode

Switch from development mode to production mode to prevent unwanted changes to the configuration.

In $HOME/.openig/config/admin.json (on Windows, %appdata%\OpenIG\config), change the value of mode from
DEVELOPMENT to PRODUCTION :

{
 "mode": "PRODUCTION"
}

The file changes the operating mode from development mode to production mode. For more information about the
admin.json file, refer to AdminHttpApplication (admin.json).

The value set in admin.json overrides any value set by the ig.run.mode configuration token when it is used in an
environment variable or system property. For information about ig.run.mode , refer to Configuration Tokens.

Windows

3.

Linux

Windows

1.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 93

(Optional) Prevent routes from being reloaded after startup:

To prevent all routes in the configuration from being reloaded, add a config.json as described in the Quick
install, and configure the scanInterval property of the main Router.

To prevent individual routes from being reloaded, configure the scanInterval of the routers in those routes.

{
 "type": "Router",
 "config": {
 "scanInterval": "disabled"
 }
}

For more information, refer to Router.

Restart PingGateway.

When PingGateway starts up, the route endpoints are not displayed in the logs, and are not available. You can’t access
Studio on http://ig.example.com:8080/openig/studio.

Configuration templates

This chapter contains template routes for common configurations. To use a template, set up PingGateway as described in the
Quick install, and modify the template for your deployment. Before you use a route in production, review the points in Security.

Proxy and capture

If you installed and configured PingGateway with a router and default route as described in the Quick install, then you already
proxy and capture the application requests coming in and the server responses going out.

This template route uses a DispatchHandler to change the scheme to HTTPS on login:

2.

◦

◦

3.

Configure PingGateway

94 Copyright © 2025 Ping Identity Corporation

http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

{
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
 }
 }
],
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${request.uri.path == '/login'}",
 "handler": "ReverseProxyHandler",
 "baseURI": "https://app.example.com:8444"
 },
 {
 "condition": "${request.uri.scheme == 'http'}",
 "handler": "ReverseProxyHandler",
 "baseURI": "http://app.example.com:8081"
 },
 {
 "handler": "ReverseProxyHandler",
 "baseURI": "https://app.example.com:8444"
 }
]
 }
 },
 "condition": "${find(request.uri.query, 'demo=capture')}"
}

To try this example with the sample application:

Add the following route to PingGateway:

$HOME/.openig/config/routes/20-capture.json

1.

Linux

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 95

%appdata%\OpenIG\config\routes\20-capture.json

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or
matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Go to http://ig.example.com:8080/login?demo=capture.

The login page of the sample application is displayed.

To use this as a default route with a real application:

Replace the test ReverseProxyHandler with one that is configured to trust the application’s public key server certificate.
Otherwise, use a ReverseProxyHandler that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for hostnameVerifier .

Change the baseURI settings to match the target application.

Remove the route-level condition on the handler that specifies a demo query string parameter.

Windows

2.

Linux

Windows

3.

1.

2.

3.

Configure PingGateway

96 Copyright © 2025 Ping Identity Corporation

http://ig.example.com:8080/login?demo=capture
http://ig.example.com:8080/login?demo=capture

Simple login form

This template route intercepts the login page request, replaces it with a login form, and logs the user into the target application
with hard-coded username and password:

{
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${request.uri.path == '/login'}",
 "request": {
 "method": "POST",
 "uri": "https://app.example.com:8444/login",
 "form": {
 "username": [
 "MY_USERNAME"
],
 "password": [
 "MY_PASSWORD"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${find(request.uri.query, 'demo=simple')}"
}

To try this example with the sample application:

Add the following route to PingGateway:1.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 97

$HOME/.openig/config/routes/21-simple.json

%appdata%\OpenIG\config\routes\21-simple.json

Replace MY_USERNAME with demo , and MY_PASSWORD with Ch4ng31t .

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or
matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Go to http://ig.example.com:8080/login?demo=simple.

The sample application profile page for the demo user displays information about the request:

Linux

Windows

2.

3.

Linux

Windows

4.

Configure PingGateway

98 Copyright © 2025 Ping Identity Corporation

http://ig.example.com:8080/login?demo=simple
http://ig.example.com:8080/login?demo=simple

Username demo

REQUEST INFORMATION
Method POST
URI /login
Cookies
…

To use this as a default route with a real application:

Replace the test ReverseProxyHandler with one that is configured to trust the application’s public key server certificate.
Otherwise, use a ReverseProxyHandler that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for hostnameVerifier .

Change the uri , form , and baseURI to match the target application.

Remove the route-level condition on the handler that specifies a demo query string parameter.

Login form with cookie from login page

Like the previous route, this template route intercepts the login page request, replaces it with the login form, and logs the user
into the target application with hard-coded username and password. This route also adds a CookieFilter to manage cookies.

The route uses a default CookieFilter to manage cookies. In this default configuration, cookies from the protected application
are intercepted and stored in the PingGateway session. They are not sent to the browser. For information, see CookieFilter.

1.

2.

3.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 99

{
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${request.uri.path == '/login'}",
 "request": {
 "method": "POST",
 "uri": "https://app.example.com:8444/login",
 "form": {
 "username": [
 "MY_USERNAME"
],
 "password": [
 "MY_PASSWORD"
]
 }
 }
 }
 },
 {
 "type": "CookieFilter"
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${find(request.uri.query, 'demo=cookie')}"
}

To try this example with the sample application:

Add the following route to PingGateway:1.

Configure PingGateway

100 Copyright © 2025 Ping Identity Corporation

$HOME/.openig/config/routes/22-cookie.json

%appdata%\OpenIG\config\routes\22-cookie.json

Replace MY_USERNAME with kramer , and MY_PASSWORD with N3wman12 .

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or
matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Go to http://ig.example.com:8080/login?demo=cookie.

The sample application page is displayed.

Linux

Windows

2.

3.

Linux

Windows

4.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 101

http://ig.example.com:8080/login?demo=cookie
http://ig.example.com:8080/login?demo=cookie

Method POST
URI /login
Cookies
Headers content-type: application/x-www-form-urlencoded
 content-length: 31
 host: app.example.com:8444
 connection: Keep-Alive
 user-agent: Apache-HttpAsyncClient/… (Java/…)

Refresh your connection to http://ig.example.com:8080/login?demo=cookie.

Compared to the example in Login form with cookie from login page, this example displays additional information about
the session cookie:

Cookies session-cookie=123…

To use this as a default route with a real application:

Replace the test ReverseProxyHandler with one that is configured to trust the application’s public key server certificate.
Otherwise, use a ReverseProxyHandler that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for hostnameVerifier .

Change the uri and form to match the target application.

Remove the route-level condition on the handler that specifies a demo query string parameter.

Login form with password replay and cookie filters

When a user without a valid session tries to access a protected application, this template route works with an application to
return a login page.

The route uses a PasswordReplayFilter to find the login page by using a pattern that matches a mock AM Classic UI page.

Cookies sent by the user agent are retained in the CookieFilter, and not forwarded to the protected application. Similarly, set-
cookies sent by the protected application are retained in the CookieFilter and not forwarded back to the user agent.

The route uses a default CookieFilter to manage cookies. In this default configuration, cookies from the protected application
are intercepted and stored in the PingGateway session. They are not sent to the browser. For information, see CookieFilter.

5.

1.

2.

3.

Configure PingGateway

102 Copyright © 2025 Ping Identity Corporation

http://ig.example.com:8080/login?demo=cookie
http://ig.example.com:8080/login?demo=cookie

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPageContentMarker": "OpenAM\\s\\(Login\\)",
 "request": {
 "comments": [
 "An example based on OpenAM classic UI: ",
 "uri is for the OpenAM login page; ",
 "IDToken1 is the username field; ",
 "IDToken2 is the password field; ",
 "host takes the OpenAM FQDN:port.",
 "The sample app simulates OpenAM."
],
 "method": "POST",
 "uri": "http://app.example.com:8081/openam/UI/Login",
 "form": {
 "IDToken0": [
 ""
],
 "IDToken1": [
 "demo"
],
 "IDToken2": [
 "Ch4ng31t"
],
 "IDButton": [
 "Log+In"
],
 "encoded": [
 "false"
]
 },
 "headers": {
 "host": [
 "app.example.com:8081"
]
 }
 }
 }
 },
 {
 "type": "CookieFilter"
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${find(request.uri.query, 'demo=classic')}"
}

To try this example with the sample application:

Save the file as $HOME/.openig/config/routes/23-classic.json .1.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 103

Use the following curl command to check that it works:

$ curl -D- http://ig.example.com:8080/login?demo=classic

HTTP/1.1 200 OK
Set-Cookie: IG_SESSIONID=24446BA29E866F840197C8E0EAD57A89; Path=/; HttpOnly
...

To use this as a default route with a real application:

Change the uri and form to match the target application.

Remove the route-level condition on the handler that specifies a demo query string parameter.

Login which requires a hidden value from the login page

This template route extracts a hidden value from the login page, and includes it the static login form that it then POSTs to the
target application.

2.

1.

2.

Configure PingGateway

104 Copyright © 2025 Ping Identity Corporation

{
 "properties": {
 "appBaseUri": "https://app.example.com:8444"
 },
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${request.uri.path == '/login'}",
 "loginPageExtractions": [
 {
 "name": "hidden",
 "pattern": "loginToken\\s+value=\"(.*)\""
 }
],
 "request": {
 "method": "POST",
 "uri": "${appBaseUri}/login",
 "form": {
 "username": [
 "MY_USERNAME"
],
 "password": [
 "MY_PASSWORD"
],
 "hiddenValue": [
 "${attributes.extracted.hidden}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${find(request.uri.query, 'demo=hidden')}",
 "baseURI": "${appBaseUri}"
}

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 105

The parameters in the PasswordReplayFilter form, MY_USERNAME and MY_PASSWORD , can have string values or can use
expressions.

To try this example with the sample application:

Add the following route to PingGateway:

$HOME/.openig/config/routes/24-hidden.json

%appdata%\OpenIG\config\routes\24-hidden.json

Replace MY_USERNAME with scarter , and MY_PASSWORD with S9rain12 .

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or
matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

1.

Linux

Windows

2.

3.

Linux

Windows

Configure PingGateway

106 Copyright © 2025 Ping Identity Corporation

Go to http://ig.example.com:8080/login?demo=hidden.

To use this as a default route with a real application:

Replace the test ReverseProxyHandler with one that is configured to trust the application’s public key server certificate.
Otherwise, use a ReverseProxyHandler that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for hostnameVerifier .

Change the loginPage , loginPageExtractions , uri , and form to match the target application.

Remove the route-level condition on the handler that specifies a demo query string parameter.

HTTP and HTTPS application

This template route proxies traffic to an application with both HTTP and HTTPS ports. The application uses HTTPS for
authentication and HTTP for the general application features. Assuming that all login requests are made over HTTPS, you must
add the login filters and handlers to the chain.

4.

1.

2.

3.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 107

http://ig.example.com:8080/login?demo=hidden
http://ig.example.com:8080/login?demo=hidden

{
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
 }
 }
],
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${request.uri.scheme == 'http'}",
 "handler": "ReverseProxyHandler",
 "baseURI": "http://app.example.com:8081"
 },
 {
 "condition": "${request.uri.path == '/login'}",
 "handler": {
 "type": "Chain",
 "config": {
 "comment": "Add one or more filters to handle login.",
 "filters": [],
 "handler": "ReverseProxyHandler"
 }
 },
 "baseURI": "https://app.example.com:8444"
 },
 {
 "handler": "ReverseProxyHandler",
 "baseURI": "https://app.example.com:8444"
 }
]
 }
 },
 "condition": "${find(request.uri.query, 'demo=https')}"
}

To try this example with the sample application:

Add the following route to PingGateway:1.

Configure PingGateway

108 Copyright © 2025 Ping Identity Corporation

$HOME/.openig/config/routes/25-https.json

%appdata%\OpenIG\config\routes\25-https.json

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or
matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Go to http://ig.example.com:8080/login?demo=https.

The login page of the sample application is displayed.

To use this as a default route with a real application:

Replace the test ReverseProxyHandler with one that is configured to trust the application’s public key server certificate.
Otherwise, use a ReverseProxyHandler that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

Linux

Windows

2.

Linux

Windows

3.

1.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 109

http://ig.example.com:8080/login?demo=https
http://ig.example.com:8080/login?demo=https

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for hostnameVerifier .

Change the loginPage , loginPageExtractions , uri , and form to match the target application.

Remove the route-level condition on the handler that specifies a demo query string parameter.

Replace the test ReverseProxyHandler with one that is configured to trust the application’s public key server certificate.
Otherwise, use a ReverseProxyHandler that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for hostnameVerifier .

Change the loginPage , loginPageExtractions , uri , and form to match the target application.

Remove the route-level condition on the handler that specifies a demo query string parameter.

AM integration with headers

This template route logs the user into the target application by using headers such as those passed in from an AM policy agent. If
the passed in header contains only a user name or subject and requires a lookup to an external data source, you must add an
attribute filter to the chain to retrieve the credentials.

2.

3.

1.

2.

3.

Configure PingGateway

110 Copyright © 2025 Ping Identity Corporation

{
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${request.uri.path == '/login'}",
 "request": {
 "method": "POST",
 "uri": "https://app.example.com:8444/login",
 "form": {
 "username": [
 "${request.headers['username'][0]}"
],
 "password": [
 "${request.headers['password'][0]}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${find(request.uri.query, 'demo=headers')}"
}

To try this example with the sample application:

Add the route to PingGateway:1.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 111

$HOME/.openig/config/routes/26-headers.json

%appdata%\OpenIG\config\routes\26-headers.json

Use the curl command to simulate the headers being passed in from an AM policy agent, as in the following example:

$ curl \
--header "username: kvaughan" \
--header "password: B5ibery12" \
http://ig.example.com:8080/login?demo=headers

...
<title id="welcome">Howdy, kvaughan</title>
...

To use this as a default route with a real application:

Replace the test ReverseProxyHandler with one that is configured to trust the application’s public key server certificate.
Otherwise, use a ReverseProxyHandler that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for hostnameVerifier .

Change the loginPage , uri , and form to match the target application.

Remove the route-level condition on the handler that specifies a demo query string parameter.

Extend

To achieve complex server interactions or intensive data transformations that you can’t currently achieve with scripts or existing
handlers, filters, or expressions, extend PingGateway through scripting and customization. The following sections describe how to
extend PingGateway:

Add .jar files for extensions

PingGateway includes a complete Java application programming interface for extending your deployment with customizations.
For more information, refer to Extend PingGateway through the Java API

Create a directory to hold .jar files for PingGateway extensions:

Linux

Windows

2.

1.

2.

3.

Configure PingGateway

112 Copyright © 2025 Ping Identity Corporation

$HOME/.openig/extra

%appdata%\OpenIG\extra

When PingGateway starts up, the JVM loads .jar files in the extra directory.

Extend PingGateway through scripts

The following sections describe how to extend PingGateway through scripts:

About scripts

PingGateway supports the Groovy dynamic scripting language through the use the scriptable objects. For information about
scriptable object types, their configuration, and properties, refer to Scripts.

Linux

Windows

emergency_home
When writing scripts or Java extensions that use the Promise API, avoid the blocking methods get() , getOrThrow() ,
and getOrThrowUninterruptibly() . A promise represents the result of an asynchronous operation; therefore, using
a blocking method to wait for the result can cause deadlocks and/or race issues.
Instead, consider using then() methods, such as thenOnResult() , thenAsync() , or thenCatch() , which allow
execution blocks to be executed when the response is available.

Blocking code example

def response = next.handle(ctx, req).get() // Blocking method 'get' used
response.headers['new']="new header value"
return response

Non-blocking code example

return next.handle(ctx, req)
//Process result when it is available

 .thenOnResult { response ->
 response.headers['new']="new header value"
 }

Important

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 113

Scriptable objects are configured by the script’s Internet media type, and either a source script included in the JSON configuration,
or a file script that PingGateway reads from a file. The configuration can optionally supply arguments to the script.

PingGateway provides global variables to scripts at runtime, and provides access to Groovy’s built-in functionality. Scripts can
access the request and the context, store variables across executions, write messages to logs, make requests to a web service,
and access responses returned in promise callback methods.

Before trying the scripts in this chapter, install and configure PingGateway as described in the Quick install.

When developing and debugging your scripts, consider configuring a capture decorator to log requests, responses, and context
data in JSON form. You can then turn off capturing when you move to production. For information, refer to CaptureDecorator.

Use a reference file script

The following example defines a ScriptableFilter written in Groovy, and stored in the following file:

$HOME/.openig/scripts/groovy/SimpleFormLogin.groovy

%appdata%\OpenIG\scripts\groovy\SimpleFormLogin.groovy

{
 "name": "SimpleFormLogin",
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "SimpleFormLogin.groovy"
 }
}

Relative paths in the file field depend on how PingGateway is installed. If PingGateway is installed in an application server, then
paths for Groovy scripts are relative to $HOME/.openig/scripts/groovy (or %appdata%\OpenIG\scripts\groovy).

The base location $HOME/.openig/scripts/groovy (or %appdata%\OpenIG\scripts\groovy) is on the classpath when the scripts
are executed. If some Groovy scripts are not in the default package, but instead have their own package names, they belong in
the directory corresponding to their package name. For example, a script in package com.example.groovy belongs in
$HOME/.openig/scripts/groovy/com/example/groovy/ (or %appdata%\OpenIG\scripts\groovy\com\example\groovy\).

Linux

Windows

Configure PingGateway

114 Copyright © 2025 Ping Identity Corporation

Scripts in Studio

You can use Studio to configure a ScriptableFilter or scriptableThrottlingPolicy, or use scripts to configure scopes in
OAuth2ResourceServerFilter.

During configuration, you can enter the script directly into the object, or you can use a stored reference script. Note the following
points about creating and using reference scripts:

When you enter a script directly into an object, the script is added to the list of reference scripts.

You can use a reference script in multiple objects in a route, but if you edit a reference script, all objects that use it are
updated with the change.

If you delete an object that uses a script, or remove the object from the chain, the script that it references remains in the
list of scripts.

If a reference script is used in an object, you can’t rename or delete the script.

For an example of creating a ScriptableThrottlingPolicy in Studio, refer to Configure Scriptable Throttling. For information about
using Studio, refer to Adding Configuration to a Route.

Script dispatch

To route requests when the conditions are complicated, use a ScriptableHandler instead of a DispatchHandler as described
in DispatchHandler.

Add the following script to PingGateway:

$HOME/.openig/scripts/groovy/DispatchHandler.groovy

%appdata%\OpenIG\scripts\groovy\DispatchHandler.groovy

•

•

•

•

1.

Linux

Windows

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 115

/*
 * This simplistic dispatcher matches the path part of the HTTP request.
 * If the path is /mylogin, it checks Username and Password headers,
 * accepting bjensen:H1falutin, and returning HTTP 403 Forbidden to others.
 * Otherwise it returns HTTP 401 Unauthorized.
 */

// Rather than returning a Promise of a Response from an external source,
// this script returns the response itself.
response = new Response(Status.OK);

switch (request.uri.path) {

 case "/mylogin":

 if (request.headers.Username.values[0] == "bjensen" &&
 request.headers.Password.values[0] == "H1falutin") {

 response.status = Status.OK
 response.entity = "<html><p>Welcome back, Babs!</p></html>"

 } else {

 response.status = Status.FORBIDDEN
 response.entity = "<html><p>Authorization required</p></html>"

 }

 break

 default:

 response.status = Status.UNAUTHORIZED
 response.entity = "<html><p>Please log in.</p></html>"

 break

}

// Return the locally created response, no need to wrap it into a Promise
return response

Add the following route to PingGateway, to set up headers required by the script when the user logs in:

$HOME/.openig/config/routes/98-dispatch.json

2.

Linux

Configure PingGateway

116 Copyright © 2025 Ping Identity Corporation

%appdata%\OpenIG\config\routes\98-dispatch.json

{
 "heap": [
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [{
 "condition": "${find(request.uri.path, '/mylogin')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "Username": [
 "bjensen"
],
 "Password": [
 "H1falutin"
]
 }
 }
 }
],
 "handler": "Dispatcher"
 }
 }
 },
 {
 "handler": "Dispatcher",
 "condition": "${find(request.uri.path, '/dispatch')}"
 }
]
 }
 },
 {
 "name": "Dispatcher",
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "file": "DispatchHandler.groovy"
 }
 }
],
 "handler": "DispatchHandler",
 "condition": "${find(request.uri.path, '^/dispatch') or find(request.uri.path, '^/mylogin')}"
}

Windows

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 117

Go to http://ig.example.com:8080/dispatch, and click log in .

The HeaderFilter sets Username and Password headers in the request, and passes the request to the script. The script
responds, Welcome back, Babs!

Script HTTP basic access authentication

HTTP basic access authentication is a simple challenge and response mechanism, where a server requests credentials from a
client, and the client passes them to the server in an Authorization header. The credentials are base-64 encoded. To protect
them, use SSL encryption for the connections between the server and client. For more information, refer to RFC 2617.

Add the following script to PingGateway, to add an Authorization header based on a username and password
combination:

$HOME/.openig/scripts/groovy/BasicAuthFilter.groovy

%appdata%\OpenIG\scripts\groovy\BasicAuthFilter.groovy

3.

1.

Linux

Windows

Configure PingGateway

118 Copyright © 2025 Ping Identity Corporation

http://ig.example.com:8080/dispatch
http://ig.example.com:8080/dispatch
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt

/*
 * Perform basic authentication with the user name and password
 * that are supplied using a configuration like the following:
 *
 * {
 * "name": "BasicAuth",
 * "type": "ScriptableFilter",
 * "config": {
 * "type": "application/x-groovy",
 * "file": "BasicAuthFilter.groovy",
 * "args": {
 * "username": "bjensen",
 * "password": "H1falutin"
 * }
 * }
 * }
 */

def userPass = username + ":" + password
def base64UserPass = userPass.getBytes().encodeBase64()
request.headers.add("Authorization", "Basic ${base64UserPass}" as String)

// Credentials are only base64-encoded, not encrypted: Set scheme to HTTPS.

/*
 * When connecting over HTTPS, by default the client tries to trust the server.
 * If the server has no certificate
 * or has a self-signed certificate unknown to the client,
 * then the most likely result is an SSLPeerUnverifiedException.
 *
 * To avoid an SSLPeerUnverifiedException,
 * set up HTTPS correctly on the server.
 * Either use a server certificate signed by a well-known CA,
 * or set up the gateway to trust the server certificate.
 */
request.uri.scheme = "https"

// Calls the next Handler and returns a Promise of the Response.
// The Response can be handled with asynchronous Promise callbacks.
next.handle(context, request)

Add the following route to PingGateway, to set up headers required by the script when the user logs in:

$HOME/.openig/config/routes/09-basic.json

2.

Linux

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 119

%appdata%\OpenIG\config\routes\09-basic.json

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "BasicAuthFilter.groovy",
 "args": {
 "username": "bjensen",
 "password": "H1falutin"
 }
 },
 "capture": "filtered_request"
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "Hello bjensen!"
 }
 }
 }
 },
 "condition": "${find(request.uri.path, '^/basic')}"
}

When the request path matches /basic , the route calls the Chain, which runs the ScriptableFilter. The capture setting
captures the request as updated by the ScriptableFilter. Finally, PingGateway returns a static page.

Go to http://ig.example.com:8080/basic.

The captured request in the console log shows that the scheme is now HTTPS, and that the Authorization header is set
for HTTP Basic:

GET https://app.example.com:8081/basic HTTP/1.1
 ...
 Authorization: Basic Ymp...aW4=

Windows

3.

Configure PingGateway

120 Copyright © 2025 Ping Identity Corporation

http://ig.example.com:8080/basic
http://ig.example.com:8080/basic

Script SQL queries

This example builds on Password replay from a database to use scripts to look up credentials in a database, set the credentials in
headers, and set the scheme in HTTPS to protect the request.

Set up and test the example in Password replay from a database.

Add the following script to PingGateway, to look up user credentials in the database, by email address, and set the
credentials in the request headers for the next handler:

$HOME/.openig/scripts/groovy/SqlAccessFilter.groovy

%appdata%\OpenIG\scripts\groovy\SqlAccessFilter.groovy

emergency_home
The example in this section uses SqlClient, which exposes a JdbcDataSource. Because the JDBC API provides only
blocking APIs, the example code offloads JdbcDataSource calls to another thread.

Important

1.

2.

Linux

Windows

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 121

/*
 * Look up user credentials in a relational database
 * based on the user's email address provided in the request form data,
 * and set the credentials in the request headers for the next handler.
 */
import org.forgerock.openig.http.protocol.ResponseUtils
import org.forgerock.util.promise.Promises

// Return a promise.
Promises
 // Submit the task to another thread (asynchronous execution).
 .executeAsync(service) {
 // Get the credentials with the synchronous JDBC APIs.
 new SqlClient(dataSource).getCredentials(request.queryParams?.mail[0])
 }
 // When the task completes...
 .thenAsync { credentials ->
 // ...with a result, it successfully got the credentials.
 // Add the credentials as headers in the request object.
 request.headers.add('Username', credentials.Username)
 request.headers.add('Password', credentials.Password)

 // The credentials are not protected in the headers, so use HTTPS.
 request.uri.scheme = 'https'

 // Let the chain continue to process the request.
 next.handle(context, request)
 } { exception ->
 // ...with a checked exception
 // because the dataSource has thrown a JDBC exception,
 // fail the promise with an illegal state exception.
 ResponseUtils.newIllegalStateExceptionPromise(exception)
 } { runtimeException ->
 // ...with a runtime exception
 // because the dataSource had an unrecoverable error,
 // fail the promise with an illegal state exception.
 ResponseUtils.newIllegalStateExceptionPromise(runtimeException)
 }

Add the following script to PingGateway to access the database, and get credentials:

$HOME/.openig/scripts/groovy/SqlClient.groovy

%appdata%\OpenIG\scripts\groovy\SqlClient.groovy

3.

Linux

Windows

Configure PingGateway

122 Copyright © 2025 Ping Identity Corporation

import groovy.sql.Sql

import javax.sql.DataSource

/**
 * Access a database with a well-known structure,
 * in particular to get credentials given an email address.
 */
class SqlClient {

 // DataSource supplied as constructor parameter.
 def sql

 SqlClient(DataSource dataSource) {
 if (dataSource == null) {
 throw new IllegalArgumentException("DataSource is null")
 }
 this.sql = new Sql(dataSource)
 }

 // The expected table is laid out like the following.

 // Table USERS
 // --
 // | USERNAME | PASSWORD | EMAIL |...|
 // --
 // | <username>| <passwd> | <mail@...>|...|
 // --

 String tableName = "USERS"
 String usernameColumn = "USERNAME"
 String passwordColumn = "PASSWORD"
 String mailColumn = "EMAIL"

 /**
 * Get the Username and Password given an email address.
 *
 * @param mail Email address used to look up the credentials
 * @return Username and Password from the database
 */
 def getCredentials(mail) {
 def credentials = [:]
 def query = "SELECT " + usernameColumn + ", " + passwordColumn +
 " FROM " + tableName + " WHERE " + mailColumn + "='$mail';"

 sql.eachRow(query) {
 credentials.put("Username", it."$usernameColumn")
 credentials.put("Password", it."$passwordColumn")
 }
 return credentials
 }
}

Add the following route to PingGateway to set up headers required by the scripts when the user logs in:4.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 123

$HOME/.openig/config/routes/11-db.json

%appdata%\OpenIG\config\routes\11-db.json

Linux

Windows

Configure PingGateway

124 Copyright © 2025 Ping Identity Corporation

{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "JdbcDataSource-1",
 "type": "JdbcDataSource",
 "config": {
 "driverClassName": "org.h2.Driver",
 "jdbcUrl": "jdbc:h2:tcp://localhost/~/test",
 "username": "sa",
 "passwordSecretId": "database.password",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ScriptableFilter",
 "config": {
 "args": {
 "dataSource": "${heap['JdbcDataSource-1']}",
 "service": "${heap['ScheduledExecutorService']}"
 },
 "type": "application/x-groovy",
 "file": "SqlAccessFilter.groovy"
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${request.headers['Username'][0]}"
],
 "password": [
 "${request.headers['Password'][0]}"
]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${find(request.uri.path, '^/db')}"
}

Notice the following features of the route:

The route matches requests to /db .◦

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 125

The JdbcDataSource in the heap sets up the connection to the database.

The ScriptableFilter calls SqlAccessFilter.groovy to look up credentials over SQL.

SqlAccessFilter.groovy , in turn, calls SqlClient.groovy to access the database to get the credentials.

The StaticRequestFilter uses the credentials to build a login request.

Although the script sets the scheme to HTTPS, for convenience in this example, the StaticRequestFilter resets the
URI to HTTP.

To test the setup, go to a URL with a query string parameter that specifies an email address in the database, such as
http://ig.example.com:8080/db?mail=george@example.com .

The sample application profile page for the user is displayed.

Extend PingGateway through the Java API

PingGateway includes a complete Java application programming interface to allow you to customize PingGateway to perform
complex server interactions or intensive data transformations that you cannot achieve with scripts or the existing handlers,
filters, and expressions described in Expressions. The following sections describe how to extend PingGateway through the Java
API:

Key extension points

Interface Stability: Evolving, as defined in ForgeRock product stability labels.

The following interfaces are available:

◦

◦

◦

5.

emergency_home
When writing scripts or Java extensions that use the Promise API, avoid the blocking methods get() , getOrThrow() ,
and getOrThrowUninterruptibly() . A promise represents the result of an asynchronous operation; therefore, using
a blocking method to wait for the result can cause deadlocks and/or race issues.
Instead, consider using then() methods, such as thenOnResult() , thenAsync() , or thenCatch() , which allow
execution blocks to be executed when the response is available.

Blocking code example

def response = next.handle(ctx, req).get() // Blocking method 'get' used
response.headers['new']="new header value"
return response

Non-blocking code example

return next.handle(ctx, req)
//Process result when it is available

 .thenOnResult { response ->
 response.headers['new']="new header value"
 }

Important

Configure PingGateway

126 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability

Decorator

A Decorator adds new behavior to another object without changing the base type of the object.

When suggesting custom Decorator names, know that PingGateway reserves all field names that use only alphanumeric
characters. To avoid clashes, use dots or dashes in your field names, such as my-decorator .

ExpressionPlugin

An ExpressionPlugin adds a node to the Expression context tree, alongside env (for environment variables), and
system (for system properties). For example, the expression ${system['user.home']} yields the home directory of the
user running the application server for PingGateway.

In your ExpressionPlugin , the getKey() method returns the name of the node, and the getObject() method returns
the unified expression language context object that contains the values needed to resolve the expression. The plugins for
env and system return Map objects, for example.

When you add your own ExpressionPlugin , you must make it discoverable within your custom library. You do this by
adding a services file named after the plugin interface, where the file contains the fully qualified class name of your plugin,
under META-INF/services/org.forgerock.openig.el.ExpressionPlugin in the .jar file for your customizations. When
you have more than one plugin, add one fully qualified class name per line. For information, refer to the reference
documentation for the Java class ServiceLoader. If you build your project using Maven, then you can add this under the
src/main/resources directory. Add custom libraries, as described in Embed customizations in PingGateway.

Remember to provide documentation for PingGateway administrators on how your plugin extends expressions.

Filter

A Filter serves to process a request before handing it off to the next element in the chain, in a similar way to an
interceptor programming model.

The Filter interface exposes a filter() method, which takes a Context, a Request, and the Handler, which is
the next filter or handler to dispatch to. The filter() method returns a Promise that provides access to the Response
 with methods for dealing with both success and failure conditions.

A filter can elect not to pass the request to the next filter or handler, and instead handle the request itself. It can achieve
this by merely avoiding a call to next.handle(context, request) , creating its own response object and returning that in
the promise. The filter is also at liberty to replace a response with another of its own. A filter can exist in more than one
chain, therefore should make no assumptions or correlations using the chain it is supplied. The only valid use of a chain by
a filter is to call its handle() method to dispatch the request to the rest of the chain.

Handler

A Handler generates a response for a request.

The Handler interface exposes a handle() method, which takes a Context, and a Request. It processes the request
and returns a Promise that provides access to the Response with methods for dealing with both success and failure
conditions. A handler can elect to dispatch the request to another handler or chain.

ClassAliasResolver

A ClassAliasResolver makes it possible to replace a fully qualified class name with a short name (an alias) in an object
declaration’s type.

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 127

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/decoration/Decorator.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/decoration/Decorator.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/el/ExpressionPlugin.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/el/ExpressionPlugin.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ServiceLoader.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ServiceLoader.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Filter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Filter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Request.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Request.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Handler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Handler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Handler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Handler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Request.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Request.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/alias/ClassAliasResolver.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/alias/ClassAliasResolver.html

The ClassAliasResolver interface exposes a resolve(String) method to do the following:

Return the class mapped to a given alias

Return null if the given alias is unknown to the resolver

All resolvers available to PingGateway are asked until the first non-null value is returned or until all resolvers have
been contacted.

The order of resolvers is nondeterministic. To prevent conflicts, don’t use the same alias for different types.

Implement a customized sample filter

The SampleFilter class implements the Filter interface to set a header in the incoming request and in the outgoing response.

In the following example, the sample filter adds an arbitrary header:

•

•

Configure PingGateway

128 Copyright © 2025 Ping Identity Corporation

package org.forgerock.openig.doc.examples;

import org.forgerock.http.Filter;
import org.forgerock.http.Handler;
import org.forgerock.http.protocol.Request;
import org.forgerock.http.protocol.Response;
import org.forgerock.openig.heap.GenericHeaplet;
import org.forgerock.openig.heap.HeapException;
import org.forgerock.openig.model.type.service.NoTypeInfo;
import org.forgerock.services.context.Context;
import org.forgerock.util.promise.NeverThrowsException;
import org.forgerock.util.promise.Promise;

/**
 * Filter to set a header in the incoming request and in the outgoing response.
 */
public class SampleFilter implements Filter {

 /** Header name. */
 String name;

 /** Header value. */
 String value;

 /**
 * Set a header in the incoming request and in the outgoing response.
 * A configuration example looks something like the following.
 *
 * <pre>
 * {
 * "name": "SampleFilter",
 * "type": "SampleFilter",
 * "config": {
 * "name": "X-Greeting",
 * "value": "Hello world"
 * }
 * }
 * </pre>
 *
 * @param context Execution context.
 * @param request HTTP Request.
 * @param next Next filter or handler in the chain.
 * @return A {@code Promise} representing the response to be returned to the client.
 */
 @Override
 public Promise<Response, NeverThrowsException> filter(final Context context,
 final Request request,
 final Handler next) {

 // Set header in the request.
 request.getHeaders().put(name, value);

 // Pass to the next filter or handler in the chain.
 return next.handle(context, request)
 // When it has been successfully executed, execute the following callback
 .thenOnResult(response -> {
 // Set header in the response.
 response.getHeaders().put(name, value);
 });
 }

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 129

 /**
 * Create and initialize the filter, based on the configuration.
 * The filter object is stored in the heap.
 */
 @NoTypeInfo
 public static class Heaplet extends GenericHeaplet {

 /**
 * Create the filter object in the heap,
 * setting the header name and value for the filter,
 * based on the configuration.
 *
 * @return The filter object.
 * @throws HeapException Failed to create the object.
 */
 @Override
 public Object create() throws HeapException {

 SampleFilter filter = new SampleFilter();
 filter.name = config.get("name").as(evaluatedWithHeapProperties()).required().asString();
 filter.value = config.get("value").as(evaluatedWithHeapProperties()).required().asString();

 return filter;
 }
 }
}

The corresponding filter configuration is similar to this:

{
 "name": "SampleFilter",
 "type": "org.forgerock.openig.doc.examples.SampleFilter",
 "config": {
 "name": "X-Greeting",
 "value": "Hello world"
 }
}

Note how type is configured with the fully qualified class name for SampleFilter . To simplify the configuration, implement a
class alias resolver, as described in Implement a Class Alias Resolver.

Implement a class alias resolver

To simplify the configuration of a customized object, implement a ClassAliasResolver to allow the use of short names instead
of fully qualified class names.

In the following example, a ClassAliasResolver is created for the SampleFilter class:

Configure PingGateway

130 Copyright © 2025 Ping Identity Corporation

package org.forgerock.openig.doc.examples;

import static java.util.stream.Collectors.toUnmodifiableSet;

import java.util.HashMap;
import java.util.Map;
import java.util.Optional;
import java.util.Set;

import org.forgerock.openig.alias.ClassAliasResolver;
import org.forgerock.openig.heap.Heaplet;
import org.forgerock.openig.heap.Heaplets;

/**
 * Allow use of short name aliases in configuration object types.
 *
 * This allows a configuration with {@code "type": "SampleFilter"}
 * instead of {@code "type": "org.forgerock.openig.doc.examples.SampleFilter"}.
 */
public class SampleClassAliasResolver implements ClassAliasResolver {

 private static final Map<String, Class<?>> ALIASES =
 new HashMap<>();

 static {
 ALIASES.put("SampleFilter", SampleFilter.class);
 }

 /**
 * Get the class for a short name alias.
 *
 * @param alias Short name alias.
 * @return The class, or null if the alias is not defined.
 */
 @Override
 public Class<?> resolve(final String alias) {
 return ALIASES.get(alias);
 }

 @Override
 public Set<Class<? extends Heaplet>> supportedTypes() {
 return ALIASES.values()
 .stream()
 .map(Heaplets::findHeapletClass)
 .filter(Optional::isPresent)
 .map(Optional::get)
 .collect(toUnmodifiableSet());
 }
}

With this ClassAliasResolver , the filter configuration in Implement a Customized Sample Filter can use the alias instead of the
fully qualified class name, as follows:

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 131

{
 "name": "SampleFilter",
 "type": "SampleFilter",
 "config": {
 "name": "X-Greeting",
 "value": "Hello world"
 }
}

To create a customized ClassAliasResolver , add a services file with the following characteristics:

Name the file after the class resolver interface.

Store the file under META-INF/services/org.forgerock.openig.alias.ClassAliasResolver , in the customization .jar
file.

If you build your project using Maven, you can add the file under the src/main/resources directory.

In your ClassAliasResolver file, add a line for the fully qualified class name of your resolver as follows:

org.forgerock.openig.doc.examples.SampleClassAliasResolver

If you have more than one resolver in your .jar file, add one line for each fully qualified class name.

Configure the heap object for the customization

Objects are added to the heap and supplied with configuration artifacts at initialization time. To be integrated with the
configuration, a class must have an accompanying implementation of the Heaplet interface. The easiest and most common way
of exposing the heaplet is to extend the GenericHeaplet class in a nested class of the class you want to create and initialize,
overriding the heaplet’s create() method.

Within the create() method, you can access the object’s configuration through the config field.

Embed customizations in PingGateway

Build your PingGateway extension into a .jar file.

Create the directory $HOME/.openig/extra , where $HOME/.openig is the instance directory:

$ mkdir $HOME/.openig/extra

Add the .jar file to the directory. The following example adds sample-filter.jar to $HOME/.openig/extra :

$ cp ~/sample-filter/target/sample-filter.jar $HOME/.openig/extra

If the extension has dependencies that are not included in PingGateway, also add them to the directory.

Start PingGateway, as described in Start and stop PingGateway.

•

•

•

1.

2.

3.

4.

5.

Configure PingGateway

132 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/heap/Heaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/heap/Heaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/heap/GenericHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/heap/GenericHeaplet.html

Record custom audit events

This section describes how to record a custom audit event to standard output. The example is based on the example in Validate
access tokens through the introspection endpoint, adding an audit event for the custom topic OAuth2AccessTopic .

To record custom audit events to other outputs, adapt the route in the following procedure to use another audit event handler.

For information about how to configure supported audit event handlers, and exclude sensitive data from log files, refer to Audit
the deployment. For more information about audit event handlers, refer to Audit framework.

Record custom audit events to standard output

Before you start, prepare PingGateway and the sample application as described in the Quick install.

Set up AM as described in Validate access tokens through the introspection endpoint.

Define the schema of an event topic called OAuth2AccessTopic by adding the following route to PingGateway:

$HOME/.openig/audit-schemas/OAuth2AccessTopic.json

%appdata%\OpenIG\audit-schemas/OAuth2AccessTopic.json

1.

2.

Linux

Windows

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 133

{
 "schema": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "OAuth2Access",
 "type": "object",
 "properties": {
 "_id": {
 "type": "string"
 },
 "timestamp": {
 "type": "string"
 },
 "transactionId": {
 "type": "string"
 },
 "eventName": {
 "type": "string"
 },
 "accessToken": {
 "type": "object",
 "properties": {
 "scopes": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "expiresAt": "number",
 "sub": "string"
 },
 "required": ["scopes"]
 },
 "resource": {
 "type": "object",
 "properties": {
 "path": {
 "type": "string"
 },
 "method": {
 "type": "string"
 }
 }
 }
 }
 },
 "filterPolicies": {
 "field": {
 "includeIf": [
 "/_id",
 "/timestamp",
 "/eventName",
 "/transactionId",
 "/accessToken",
 "/resource"
]
 }
 },
 "required": ["_id", "timestamp", "transactionId", "eventName"]
}

Configure PingGateway

134 Copyright © 2025 Ping Identity Corporation

Notice that the schema includes the following fields:

Mandatory fields _id , timestamp , transactionId , and eventName .

accessToken , to include the access token scopes, expiry time, and the subject.

resource , to include the path and method.

filterPolicies , to specify additional event fields to include in the logs.

Define a script to generate audit events on the topic named OAuth2AccessTopic , by adding the following file to the
PingGateway configuration as:

$HOME/.openig/scripts/groovy/OAuth2Access.groovy

%appdata%\OpenIG\scripts\groovy/OAuth2Access.groovy

◦

◦

◦

◦

3.

Linux

Windows

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 135

import static org.forgerock.json.resource.Requests.newCreateRequest;
import static org.forgerock.json.resource.ResourcePath.resourcePath;

// Helper functions
def String transactionId() {
 return contexts.transactionId.transactionId.value;
}

def JsonValue auditEvent(String eventName) {
 return json(object(field('eventName', eventName),
 field('transactionId', transactionId()),
 field('timestamp', clock.instant().toEpochMilli())));
}

def auditEventRequest(String topicName, JsonValue auditEvent) {
 return newCreateRequest(resourcePath("/" + topicName), auditEvent);
}

def accessTokenInfo() {
 def accessTokenInfo = contexts.oauth2.accessToken;
 return object(field('scopes', accessTokenInfo.scopes as List),
 field('expiresAt', accessTokenInfo.expiresAt),
 field('subname', accessTokenInfo.info.subname));
}

def resourceEvent() {
 return object(field('path', request.uri.path),
 field('method', request.method));
}

// --

// Build the event
JsonValue auditEvent = auditEvent('OAuth2AccessEvent')
 .add('accessToken', accessTokenInfo())
 .add('resource', resourceEvent());

// Send the event, and log a message if there is an error
auditService.handleCreate(context, auditEventRequest("OAuth2AccessTopic", auditEvent))
 .thenOnException(e -> logger.warn("An error occurred while sending the audit event", e));

// Continue onto the next filter
return next.handle(context, request)

The script generates audit events named OAuth2AccessEvent , on a topic named OAuth2AccessTopic . The events
conform to the topic schema.

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway:

4.

5.

Configure PingGateway

136 Copyright © 2025 Ping Identity Corporation

$HOME/.openig/config/routes/30-custom.json

%appdata%\OpenIG\config\routes\30-custom.json

Linux

Windows

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 137

{
 "name": "30-custom",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/rs-introspect-audit')}",
 "heap": [
 {
 "name": "AuditService-1",
 "type": "AuditService",
 "config": {
 "config": {},
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "config": {
 "name": "jsonstdout",
 "elasticsearchCompatible": false,
 "topics": [
 "OAuth2AccessTopic"
]
 }
 }
]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",

Configure PingGateway

138 Copyright © 2025 Ping Identity Corporation

 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 },
 {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "OAuth2Access.groovy",
 "args": {
 "auditService": "${heap['AuditService-1']}",
 "clock": "${heap['Clock']}"
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></body></
html>"
 }
 }
 }
 }
}

Notice the following features of the route:

The route matches requests to /rs-introspect-audit .

The accessTokenResolver uses the token introspection endpoint to validate the access token.

The HttpBasicAuthenticationClientFilter adds the credentials to the outgoing token introspection request.

The ScriptableFilter uses the Groovy script OAuth2Access.groovy to generate audit events named
OAuth2AccessEvent , with a topic named OAuth2AccessTopic .

◦

◦

◦

◦

PingGateway Configure

Copyright © 2025 Ping Identity Corporation 139

The audit service publishes the custom audit event to the JsonStdoutAuditEventHandler. A single line per audit
event is published to standard output.

Test the setup

In a terminal window, use a curl command similar to the following to retrieve an access token:

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail%20employeenumber" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Access the route, with the access_token returned in the previous step:

$ curl -v http://ig.example.com:8080/rs-introspect-audit --header "Authorization: Bearer ${mytoken}"

Information about the decoded access_token is returned.

Search the standard output for an audit message like the following example, that includes an audit event on the
topic OAuth2AccessTopic :

{
 "_id": "fa2...-14",
 "timestamp": 155...541,
 "eventName": "OAuth2AccessEvent",
 "transactionId": "fa2...-13",
 "accessToken": {
 "scopes": ["employeenumber", "mail"],
 "expiresAt": 155...000,
 "subname": "demo"
 },
 "resource": {
 "path": "/rs-introspect-audit",
 "method": "GET"
 },
 "source": "audit",
 "topic": "OAuth2AccessTopic",
 "level": "INFO"
}

◦

6.

1.

2.

3.

Configure PingGateway

140 Copyright © 2025 Ping Identity Corporation

Upgrade

This guide shows you how to upgrade PingGateway software.

Read the Release notes before you upgrade.

Product names changed when ForgeRock became part of Ping Identity. PingGateway was formerly known as ForgeRock Identity
Gateway, for example. Learn more about the name changes from New names for ForgeRock products.

Plan the upgrade

Do these planning tasks before you start an upgrade:

Planning task Description

Find the upgrade path Refer to Upgrade to see if you need a drop-in upgrade or a major upgrade.

Find out what changed Read the release notes for all releases between the current version and the new version.
Understand the new features and changes in the new version compared to the current
version.

Check the requirements Make sure you meet all the requirements in the release notes for the new version. In
particular, make sure you have a recent, supported Java version.

Plan for server downtime At least one of your PingGateway servers will be down during upgrade. Plan to route client
applications to another server until the upgrade process is complete and you have validated
the result. Make sure the owners of client application are aware of the change, and let them
know what to expect.
If you have a single PingGateway server, make sure the downtime happens in a low-usage
window, and make sure you let client application owners plan accordingly.

Back up The PingGateway configuration is a set of files, including admin.json , config.json ,
logback.xml , routes, and scripts. Back up the PingGateway configuration and store it in
version control, so that you can roll back if something goes wrong.
Back up any tools scripts you have edited for your deployment and any trust stores used to
connect securely.

Plan for rollback Sometimes even a well-planned upgrade fails to go smoothly. In such cases, you need a plan
to roll back smoothly to the pre-upgrade version.
For PingGateway servers, roll back by restoring a backed-up configuration.

Prepare a test environment Before applying the upgrade in your production environment, always try to upgrade
PingGateway in a test environment. This will help you gauge the amount of work required,
without affecting your production environment, and will help smooth out unforeseen
problems.
The test environment should resemble your production environment as closely as possible.

Upgrade PingGateway

142 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/preface.html
https://docs.pingidentity.com/pinggateway/release-notes/preface.html
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://docs.pingidentity.com/pinggateway/release-notes
https://docs.pingidentity.com/pinggateway/release-notes
https://docs.pingidentity.com/pinggateway/release-notes/before-you-install.html#prerequisites-java
https://docs.pingidentity.com/pinggateway/release-notes/before-you-install.html#prerequisites-java

Upgrade

Learn about upgrade between supported versions of PingGateway in Product Support Lifecycle Policy | PingGateway and Agents
.

Learn about upgrade of routes in Studio in Upgrade from an earlier version of Studio.

This section describes how to upgrade a single PingGateway instance. The most straightforward option when upgrading sites with
multiple PingGateway instances is to upgrade in place. One by one, stop, upgrade, and then restart each server individually,
leaving the service running during the upgrade.

PingGateway supports the following types of upgrade:

Drop-in software update

Usually, an update from a version of PingGateway to a newer minor version, as defined in Product Support Lifecycle Policy
| PingGateway and Agents. For example, the update from 2023.2 to 2023.4.

Drop-in software updates can introduce additional functionality and fix bugs or security issues. Consider the following
restrictions for drop-in software updates:

Do not require any update to the configuration

Cannot cause feature regression

Can change default or previously configured behavior only for bug fixes and security issues

Can deprecate but not remove existing functionality

Major upgrade

Usually, an update from a version of PingGateway to a newer major version, as defined in Product Support Lifecycle Policy
| PingGateway and Agents. For example, the upgrade from 7.2 to 2023.2.

Major upgrades can introduce additional functionality and fix bugs or security issues. Major upgrades do not have the
restrictions of drop-in software update. Consider the following features of major upgrades:

Can require code or configuration changes

Can cause feature regression

Can change default or previously configured behavior

Can deprecate and remove existing functionality

Drop-in software update with binaries

Read and act on Plan the upgrade.

Back up the PingGateway configuration and store it in version control so that you can roll back if something goes wrong.

Download PingGateway

Stop PingGateway.

•

•

•

•

•

•

•

•

1.

2.

3.

4.

PingGateway Upgrade

Copyright © 2025 Ping Identity Corporation 143

https://support.pingidentity.com/s/article/ping-identity-product-support-lifecycle-policy-pinggateway-and-agents
https://support.pingidentity.com/s/article/ping-identity-product-support-lifecycle-policy-pinggateway-and-agents
https://support.pingidentity.com/s/article/ping-identity-product-support-lifecycle-policy-pinggateway-and-agents
https://support.pingidentity.com/s/article/ping-identity-product-support-lifecycle-policy-pinggateway-and-agents
https://support.pingidentity.com/s/article/ping-identity-product-support-lifecycle-policy-pinggateway-and-agents
https://support.pingidentity.com/s/article/ping-identity-product-support-lifecycle-policy-pinggateway-and-agents
https://support.pingidentity.com/s/article/ping-identity-product-support-lifecycle-policy-pinggateway-and-agents
https://support.pingidentity.com/s/article/ping-identity-product-support-lifecycle-policy-pinggateway-and-agents
https://support.pingidentity.com/s/article/ping-identity-product-support-lifecycle-policy-pinggateway-and-agents

Make the new configuration available on the file system.

By default, PingGateway configuration files are located under $HOME/.openig (on Windows %appdata%\OpenIG). For
information about how to use a different location, refer to Configuration location.

Restart PingGateway from the new installation directory.

In a test environment that simulates your production environment, validate that the upgraded service performs as
expected with the new configuration. Check the logs for new or unexpected notifications or errors.

Allow client application traffic to flow to the upgraded site.

Drop-in software update with Docker files

Read and act on Plan the upgrade.

Back up the PingGateway configuration and store it in version control so that you can roll back if something goes wrong.

Stop the Docker image.

Build the new base image for PingGateway.

Run the Docker image.

In a test environment that simulates your production environment, validate that the upgraded service performs as
expected with the new configuration. Check the logs for new or unexpected notifications or errors.

Allow client application traffic to flow to the upgraded site.

Major upgrade with binaries

Read and act on Plan the upgrade.

Use the release notes for all releases between the version you currently use and the new version, and create a new
configuration as follows:

Review all incompatible changes and removed functionality, and adjust your configuration as necessary.

Switch to the replacement settings for deprecated functionality. Although deprecated objects continue to work,
they add to the notifications in the logs and are eventually removed.

Check the lists of fixes, limitations, and known issues to find out if they impact your deployment.

Recompile your Java extensions. The method signature or imports for supported and evolving APIs can change in
each version.

Read the documentation updates for new examples and information that can help with your configuration.

Back up the PingGateway configuration and store it in version control so that you can roll back if something goes wrong.

Download PingGateway

Stop PingGateway.

Make the new configuration available on the file system.

5.

6.

7.

8.

1.

2.

3.

4.

5.

6.

7.

1.

2.

◦

◦

◦

◦

◦

3.

4.

5.

6.

Upgrade PingGateway

144 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes
https://docs.pingidentity.com/pinggateway/release-notes
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability

By default, PingGateway configuration files are located under $HOME/.openig (on Windows %appdata%\OpenIG). For
information about how to use a different location, refer to Configuration location.

Restart PingGateway from the new installation directory.

In a test environment that simulates your production environment, validate that the upgraded service performs as
expected with the new configuration. Check the logs for new or unexpected notifications or errors.

Allow client application traffic to flow to the upgraded site.

Major upgrade with Docker files

Read and act on Plan the upgrade.

Use the release notes for all releases between the version you currently use and the new version, and create a new
configuration as follows:

Review all incompatible changes and removed functionality, and adjust your configuration as necessary.

Switch to the replacement settings for deprecated functionality. Although deprecated objects continue to work,
they add to the notifications in the logs and are eventually removed.

Check the lists of fixes, limitations, and known issues to find out if they impact your deployment.

Recompile your Java extensions. The method signature or imports for supported and evolving APIs can change in
each version.

Read the documentation updates for new examples and information that can help with your configuration.

Back up the PingGateway configuration and store it in version control so that you can roll back if something goes wrong.

Stop the Docker image.

Build the new base image for PingGateway.

Run the Docker image.

In a test environment that simulates your production environment, validate that the upgraded service performs as
expected with the new configuration. Check the logs for new or unexpected notifications or errors.

Allow client application traffic to flow to the upgraded site.

Post upgrade tasks

After upgrade, review the what’s new section in the release notes and consider activating new features and functionality.

Rollback

7.

8.

9.

1.

2.

◦

◦

◦

◦

◦

3.

4.

5.

6.

7.

8.

emergency_home
Before you roll back to a previous version of PingGateway, consider whether any change to the configuration during
or since upgrade could be incompatible with the previous version.

Important

PingGateway Upgrade

Copyright © 2025 Ping Identity Corporation 145

https://docs.pingidentity.com/pinggateway/release-notes
https://docs.pingidentity.com/pinggateway/release-notes
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/whats-new.html
https://docs.pingidentity.com/pinggateway/release-notes/whats-new.html

Roll back with binaries

Plan for server downtime

Plan to route client applications to another server until the rollback process is complete and you have validated the result.
Make sure the owners of client application are aware of the change, and let them know what to expect.

Stop PingGateway

Download the replacement PingGateway .zip file

Make the new configuration available on the file system.

By default, PingGateway configuration files are located under $HOME/.openig (on Windows %appdata%\OpenIG). For
information about how to use a different location, refer to Configuration location.

Restart PingGateway.

Roll back with Dockerfiles

Plan for server downtime

Plan to route client applications to another server until the rollback process is complete and you have validated the result.
Make sure the owners of client application are aware of the change, and let them know what to expect.

Stop the Docker image.

Build the new base image for PingGateway.

Run the Docker image.

Migrate from web container mode to standalone mode

An PingGateway .war file isn’t created or delivered from PingGateway 2024.3. Consider these points when migrating from a .war
delivery to a .zip delivery.

Session replication between PingGateway instances

High-availability of sessions isn’t supported by PingGateway in the .zip delivery.

Streaming asynchronous responses and events

In ClientHandler and ReverseProxyHandler, use only the default mode of asyncBehavior:non_streaming ; responses are
processed when the entity content is entirely available.

If the property is set to streaming , the setting is ignored.

Connection reuse when client certificates are used for authentication

In ClientHandler and ReverseProxyHandler, use only the default mode of stateTrackingEnabled:true ; when a client certificate
is used for authentication, connections can’t be reused.

If the property is set to false , the setting is ignored.

1.

2.

3.

4.

5.

1.

2.

3.

4.

Upgrade PingGateway

146 Copyright © 2025 Ping Identity Corporation

Replacement settings for migration from web container mode with Tomcat

Feature Setting for web container mode with Tomcat Replacement setting

Port number Configure in the Connector element of /path/
to/tomcat/conf/server.xml :

<Connector port="8080" protocol="HTTP/
1.1" connectionTimeout="20000"
redirectPort="8443" />

Configure the connectors property of
admin.json.

HTTPS server-side
configuration

Create a keystore, and set up the SSL port in the
Connector element of /path/to/tomcat/conf/
server.xml .

Create a keystore, set up secrets, and configure
secrets stores, ports, and ServerTlsOptions in
admin.json.
For information, refer to Configure PingGateway
for TLS (server-side).

Session cookie name Configure WEB-INF/web.xml when you unpack
the PingGateway .war file.

Configure the session property of admin.json.

Access logs Configure with AccessLogValve . Configure in the Audit framework.
For information, refer to Audit the deployment
and Audit framework.

JDBC datasource Configure in the GlobalNamingResources
element of /path/to/tomcat/conf/
server.xml .

Configure with the JdbcDataSource object.
For information, refer to JdbcDataSource.
For an example, refer to Password replay from a
database.

Environment variables Configure in /path/to/tomcat/bin/setenv.sh . Configure in $HOME/.openig/bin/env.sh ,
where $HOME/.openig is the instance directory.

Jar files Add to to web container classpath; for
example /path/to/tomcat/webapps/ROOT/WEB-
INF/lib .

Add to $HOME/.openig/extra , where
$HOME/.openig is the instance directory.

PingGateway Upgrade

Copyright © 2025 Ping Identity Corporation 147

Deploy with Docker

This guide shows you how to build an evaluation-only Docker image by using the Dockerfile provided inside
PingGateway-2024.6.0.zip .

This guide is for Ping Identity Platform developers who want an easy-to-use example of containerized deployment, and for
PingGateway developers who want to configure a production environment for containerized deployment.

For information about deploying Ping Identity Platform by using DevOps techniques, refer to ForgeOps' Start here.

This guide assumes that you are familiar with the following topics:

PingGateway, to edit the basic configuration and test the changes.

Docker, to build and run and Docker images.

The examples in this guide use some of the following third-party tools:

curl : https://curl.haxx.se

HTTPie : https://httpie.org

jq : https://stedolan.github.io/jq/

keytool : https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html

Build and run a Docker image

A Dockerfile is delivered inside PingGateway-2024.6.0.zip to help you build an evaluation-only, base Docker image for
PingGateway. After building and running the Docker image, add a configuration as described in Add configuration to a Docker
image.

The Docker image has the following characteristics:

The Docker image runs on Linux and Mac operating systems.

PingGateway binaries are delivered in /opt/ig .

The environment variable $IG_INSTANCE_DIR has the value /var/ig .

A ForgeRock user with username: forgerock and uid: 11111 , runs the PingGateway process and owns the configuration
files.

warning
ForgeRock provides no commercial support for production deployments that use ForgeRock’s evaluation-only Docker
images. When deploying the ForgeRock Identity Platform using Docker images, you must build and use your own
images for production deployments.

Warning

•

•

•

•

•

•

warning
ForgeRock provides no commercial support for production deployments that use ForgeRock’s evaluation-only Docker
images. When deploying the ForgeRock Identity Platform using Docker images, you must build and use your own
images for production deployments.

Warning

•

•

•

•

PingGateway Deploy with Docker

Copyright © 2025 Ping Identity Corporation 149

https://docs.pingidentity.com/forgeops/7.5/start/start-here.html
https://docs.pingidentity.com/forgeops/7.5/start/start-here.html
https://curl.haxx.se
https://curl.haxx.se
https://httpie.org
https://httpie.org
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html

Build the base image for PingGateway

Download PingGateway-2024.6.0.zip from the Backstage download site, and unzip. The directory /path/to/identity-
gateway-2024.6.0 is created.

Go to /path/to/identity-gateway-2024.6.0.

With a Docker daemon running, build a base Docker image:

$ docker build . -f docker/Dockerfile -t ig-image

Sending build context to Docker daemon
Step 1/7 : FROM gcr.io/forgerock-io/...:latest
latest: Pulling from forgerock-io/...
...
Successfully tagged ig-image:latest

Make sure the Docker image is available:

$ docker image list

REPOSITORY TAG IMAGE ID
ig-image latest
gcr.io/forgerock-io/... latest

Run the Docker image

The following steps run the Docker image on port 8080 . Make sure the port is not being used, or use a different port as
described in the procedure.

With a Docker daemon running, run the Docker image:

$ docker run -p 8080:8080 ig-image

PingGateway starts up, and the console displays the message log.

Go to http://localhost:8080 to view the PingGateway welcome page.

Stop the Docker image

List the Docker containers that are running:

$ docker container ls

For a container with the status Up , use the container ID to stop the container:

1.

2.

3.

4.

1.

2.

1.

2.

Deploy with Docker PingGateway

150 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads
http://localhost:8080
http://localhost:8080

$ docker container stop CONTAINER_ID

Run options

Consider using the following options when you run the Docker image:

-e IG_OPTS=-Dig.pid.file.mode=value ig-image

Allow startup if there is an existing PID file. PingGateway removes the existing PID file and creates a new one during
startup. The following example passes an environment variable with the value override as a Java runtime option:

$ docker run -e "IG_OPTS=-Dig.pid.file.mode=override" ig-image

To prevent restart if there is an existing PID file, set the value to the default fail .

-p port:port

The default ports 8080:8080 equate to local-machine-port:internal-container-port . PingGateway can run on a
different port, but the container must always run on 8080 . The following example runs PingGateway on port 8090 :

$ docker run -p 8090:8080 ig-image

-v configuration directory

The default configuration directory is /var/ig/ . The following example sets the configuration directory to
$HOME/.openig :

$ docker run -v $HOME/.openig:/var/ig/ ig-image

-user user

Run the image as the provided user. The following example uses the ID 11111 :

$ docker run --user 11111 ig-image

it

Run the image in interactive mode:

$ docker run -it ig-image

sh

Run the image in sh shell:

PingGateway Deploy with Docker

Copyright © 2025 Ping Identity Corporation 151

$ docker run ig-image sh

Add configuration to a Docker image

The following sections describe how to add configuration to your Docker image. Before working through this section, complete
the procedures in Build and run a Docker image.

Run an image with a mutable configuration

This section describes how to add a basic route to your local PingGateway configuration folder, and mount the configuration to
the Docker container.

If you change your configuration in a way that doesn’t require PingGateway to restart, you see the change in your running Docker
image without restarting it or rebuilding it. For information changes that require restart, refer to When to restart PingGateway
after changing the configuration.

Use this procedure to manage configuration externally to the Docker image. For example, use it when developing routes.

Add the following route to your local PingGateway configuration as $HOME/.openig/config/routes/hello.json :

{
 "name": "hello",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "Hello world!"
 }
 },
 "condition": "${find(request.uri.path, '^/hello')}"
}

The configuration contains a static response handler to return a "Hello world!" statement when the URI of a request
finishes with /hello .

Run the Docker image, using the option to mount the local PingGateway configuration directory:

$ docker run -p 8080:8080 -v $HOME/.openig:/var/ig/ ig-image

Go to http://localhost:8080/hello to access the route in the mounted configuration.

The "Hello world!" statement is displayed.

Edit hello.json to change the "Hello world!" statement, and save the file.

1.

2.

3.

4.

Deploy with Docker PingGateway

152 Copyright © 2025 Ping Identity Corporation

http://localhost:8080/hello
http://localhost:8080/hello

Go again to http://localhost:8080/hello to see that the message changed without changing your Docker image.

Run an image with an immutable configuration

This section describes how to add a basic route to your local PingGateway configuration folder, copy it into a new Docker image,
and run that Docker image.

Unlike the previous example, the Docker image is immutable. If you change your configuration locally, the Docker image is not
changed.

Use this procedure to manage configuration within the Docker image. For example, use it when you want to deploy the same
configuration multiple times.

Add the following route to your local PingGateway configuration as $HOME/.openig/config/routes/hello.json :

{
 "name": "hello",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "Hello world!"
 }
 },
 "condition": "${find(request.uri.path, '^/hello')}"
}

The configuration contains a static response handler to return a "Hello world!" statement when the URI of a request
finishes with /hello .

Add the following file to your local PingGateway configuration as $HOME/.openig/Dockerfile , where $HOME/.openig is
the instance directory:

FROM ig-image
COPY config/routes/hello.json "$IG_INSTANCE_DIR"/config/routes/hello.json

The Dockerfile copies hello.json into the Docker image. The $IG_INSTANCE_DIR environment variable is defined in the
PingGateway base image.

Build the Docker image:

$ docker build . -t ig-custom

Sending build context to Docker daemon
 Step 1/2 : FROM ig-image
 Step 2/2 : COPY config/routes/hello.json "$IG_INSTANCE_DIR"/config/routes/hello.json
 Successfully tagged ig-custom:latest

1.

2.

3.

PingGateway Deploy with Docker

Copyright © 2025 Ping Identity Corporation 153

http://localhost:8080/hello
http://localhost:8080/hello

Make sure the Docker image is available:

$ docker image list

REPOSITORY TAG IMAGE ID
ig-custom image_tag 51b...3b7
gcr.io/forgerock-io/ig image_tag 404...a2b

Run the Docker image on port 8080 :

$ docker run -p 8080:8080 ig-custom

Go to http://localhost:8080/hello. The "Hello world!" statement is displayed.

4.

5.

6.

Deploy with Docker PingGateway

154 Copyright © 2025 Ping Identity Corporation

http://localhost:8080/hello
http://localhost:8080/hello

Gateway guide

This guide shows you how to set up examples that use PingGateway. It is for access management designers and administrators
who develop, build, deploy, and maintain PingGateway for their organizations.

This guide assumes familiarity with the following topics:

Hypertext Transfer Protocol (HTTP), including how clients and servers exchange messages, and the role that a reverse
proxy (gateway) plays

JavaScript Object Notation (JSON), which is the format for PingGateway configuration files

Managing services on operating systems and application servers

Configuring network connections on operating systems

Managing Public Key Infrastructure (PKI) used to establish HTTPS connections

Access management for web applications

Depending on the features you use, you should also have basic familiarity with the following topics:

Structured Query Language (SQL) if you use PingGateway with relational databases

Configuring AM if you use password capture and replay, or if you plan to follow the OAuth 2.0 or SAML 2.0 tutorials

The Groovy programming language if you plan to extend PingGateway with scripts

The Java programming language if you plan to extend PingGateway with plugins, and Apache Maven for building plugins

Example installation for this guide

Unless otherwise stated, the examples in this guide assume the following installation:

PingGateway accessible on http://ig.example.com:8080 and https://ig.example.com:8443 , as described in Quick
install.

Sample application installed on http://app.example.com:8081, as described in Use the sample application.

AM installed on http://am.example.com:8088/openam, with the default configuration.

If you use a different configuration, substitute in the procedures accordingly.

Set up AM

This documentation contains procedures for setting up items in AM that you can use with PingGateway. For more information
about setting up AM, refer to the Access Management documentation.

•

•

•

•

•

•

•

•

•

•

•

•

•

Gateway guide PingGateway

156 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5
https://docs.pingidentity.com/pingam/7.5

Authenticate a PingGateway agent to AM

This section describes how to create an authentication tree to authenticate a PingGateway agent to AM. The tree has the
following requirements:

It must be called Agent

Its nodes must pass the agent credentials to the Agent Data Store Decision node.

When you define a tree in AM, that same tree is used for all instances of PingGateway, Java agent, and Web agent. Consider this
point if you change the tree configuration.

On the Realms page of the AM admin UI, choose the realm in which to create the authentication tree.

On the Realm Overview page, click Authentication > Trees > + Create tree.

Create a tree named Agent .

The authentication tree designer is displayed, with the Start entry point connected to the Failure exit point, and a
Success node.

The authentication tree designer provides the following features on the toolbar:

Using the Filter bar, find and then drag the following nodes from the Components panel into the designer area:

Zero Page Login Collector node to check whether the agent credentials are provided in the incoming
authentication request, and use their values in the following nodes.

This node is required for compatibility with Java agent and Web agent.

emergency_home
From AM 7.3

When AM 7.3 is installed with a default configuration, as described in Evaluation, PingGateway is
automatically authenticated to AM by an authentication tree. Otherwise, PingGateway is authenticated to AM
by an AM authentication module.
Authentication chains and modules were deprecated in AM 7. When they are removed in a future release of
AM, it will be necessary to configure an appropriate authentication tree when you are not using the default
configuration.
For more information, refer to AM’s Authentication nodes and trees.

Important

•

•

1.

2.

3.

Button Usage

Lay out and align nodes according to the order they are connected.

Toggle the designer window between normal and full-screen layout.

Remove the selected node. Note that the Start entry point cannot be deleted.

4.

◦

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 157

https://docs.pingidentity.com/pingam/7.5/eval-guide/preface.html
https://docs.pingidentity.com/pingam/7.5/eval-guide/preface.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-trees.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-trees.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-zero-page-login-collector.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-zero-page-login-collector.html

Page node to collect the agent credentials if they are not provided in the incoming authentication request, and
use their values in the following nodes.

Agent Data Store Decision node to verify the agent credentials match the registered PingGateway agent profile.

Drag the following nodes from the Components panel into the Page node:

Username Collector node to prompt the user to enter their username.

Password Collector node to prompt the user to enter their password.

Connect the nodes as follows and save the tree:

Register a PingGateway agent in AM

In AM 7 and later versions, follow these steps to register an agent that acts on behalf of PingGateway.

In the AM admin UI, select the top-level realm, and then select Applications > Agents > Identity Gateway.

Add an agent with the following configuration, leaving other options blank or with the default value:

Agent ID : ig_agent

Password : password

◦

◦

emergency_home
Many nodes can be configured in the panel on the right side of the page. Unless otherwise stated, do not
configure the nodes and use only the default values.

Important

5.

◦

◦

6.

1.

2.

For SSO

◦

◦

Gateway guide PingGateway

158 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-agent-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-agent-data-store-decision.html

Agent ID : ig_agent

Password : password

Redirect URL for CDSSO : https://ig.ext.com:8443/home/cdsso/redirect

Login URL Template for CDSSO: Configure this property to direct login to a custom URL instead of the
default AM login page.

(Optional - From AM 7.5) Use AM’s secret service to manage the agent profile password. If AM finds a matching secret in a
secret store, it uses that secret instead of the agent password configured in Step 2.

In the agent profile page, set a label for the agent password in Secret Label Identifier.

AM uses the identifier to generate a secret label for the agent.

The secret label has the format am.application.agents.identifier.secret , where identifier is the Secret Label
Identifier.

The Secret Label Identifier can contain only characters a-z , A-Z , 0-9 , and periods (.). It can’t start or end with a
period.

Select Secret Stores and configure a secret store.

Map the label to the secret. Learn more from AM’s mapping.

Note the following points for using AM’s secret service:

Set a Secret Label Identifier that clearly identifies the agent.

If you update or delete the Secret Label Identifier, AM updates or deletes the corresponding mapping for the
previous identifier provided no other agent shares the mapping.

When you rotate a secret, update the corresponding mapping.

Set up a demo user in AM

AM is provided with a demo user in the top-level realm, with the following credentials:

ID/username: demo

Last name: user

Password: Ch4ng31t

Email address: demo@example.com

Employee number: 123

For information about how to manage identities in AM, refer to AM’s Identity stores.

For CDSSO

◦

◦

◦

◦

3.

1.

2.

3.

◦

◦

◦

•

•

•

•

•

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 159

https://ig.ext.com:8443/home/cdsso/redirect
https://ig.ext.com:8443/home/cdsso/redirect
https://docs.pingidentity.com/pingam/7.5/security-guide/secret-mapping.html
https://docs.pingidentity.com/pingam/7.5/security-guide/secret-mapping.html
https://docs.pingidentity.com/pingam/7.5/setup-guide/setting-up-identity-stores.html
https://docs.pingidentity.com/pingam/7.5/setup-guide/setting-up-identity-stores.html

Find the AM session cookie name

In routes that use AmService, PingGateway retrieves AM’s SSO cookie name from the ssoTokenHeader property or from AM’s /
serverinfo/* endpoint.

In other circumstances where you need to find the SSO cookie name, access http://am-base-url/serverinfo/* . For example,
access the AM endpoint with curl :

$ curl http://am.example.com:8088/openam/json/serverinfo/*

Set up PingOne

This documentation contains procedures for setting up items in PingOne that you can use with PingGateway.

Create a PingOne test environment

Learn more from PingOne’s Adding an environment.

In the PingOne console, create a test environment with the following values:

Select a solution for your Environment: Build your own solution

Select solution(s) for your Environment: PingOne SSO

ENVIRONMENT NAME: Test environment

DESCRIPTION: OIDC Test environment

ENVIRONMENT TYPE: Sandbox

Add a PingOne test user

Learn more from PingOne’s Adding a user.

In the PingOne test environment, select Directory > Users and add a user with the following values:

Given Name: demo

Family Name: user

Username: demo

Email: demo@example.com

Password: Ch4ng31t .

You are required to change the password on first login.

•

•

•

•

•

•

•

•

•

•

Gateway guide PingGateway

160 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingone/getting_started_with_pingone/p1_getting_started_adding_environment.html
https://docs.pingidentity.com/pingone/getting_started_with_pingone/p1_getting_started_adding_environment.html
https://docs.pingidentity.com/pingone/directory/p1_adduser.html
https://docs.pingidentity.com/pingone/directory/p1_adduser.html

External tools used in this guide

The examples in this guide use some of the following third-party tools:

curl : https://curl.haxx.se

HTTPie : https://httpie.org

jq : https://stedolan.github.io/jq/

keytool : https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html

Authentication

Single sign-on (SSO)

The following sections describe how to set up SSO for requests in the same domain:

In SSO using the SingleSignOnFilter, PingGateway processes a request using authentication provided by AM. PingGateway and the
authentication provider must run on the same domain.

The following sequence diagram shows the flow of information during SSO between PingGateway and AM as the authentication
provider.

•

•

•

•

emergency_home
To require users to authenticate in the correct realm for security reasons, configure SSO or CDSSO with a
PolicyEnforcementFilter, that refers to an AM policy where the realm is enforced. For an example, refer to Require
users to authenticate to a specific realm.

Important

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 161

https://curl.haxx.se
https://curl.haxx.se
https://httpie.org
https://httpie.org
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html

The browser sends an unauthenticated request to access the sample app.

PingGateway intercepts the request, and redirects the browser to AM for authentication.

AM authenticates the user, creates an SSO token.

AM redirects the request back to the original URI with the token in a cookie, and the browser follows the redirect to
PingGateway.

PingGateway validates the token it gets from the cookie. It then adds the AM session info to the request, and stores the
SSO token in the context for use by downstream filters and handlers.

PingGateway forwards the request to the sample app, and the sample app returns the requested resource to the browser.

SSO through the default AM authentication tree

This section gives an example of how to authenticate by using SSO and the default authentication service provided in AM.

Before you start, prepare AM, PingGateway, and the sample application as described in Example installation for this guide.

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

Browser

Browser

PingGateway
ig.example.com

PingGateway
ig.example.com

PingAM
am.example.com

PingAM
am.example.com

Sample App
app.example.com

Sample App
app.example.com

1 Request to access sample app

1. Unauthenticated browser redirected to AM for authentication

2 Redirect browser to AM

3 Authentication

4 Create SSO token

2. Authenticated browser redirect to original URI

5 Redirect to original URI, with cookie containing SSO token

3. Request forwarded to application

6 Follow redirect, with cookie

7
Request SessionInfo and add to request
Store SSO token in SsoTokenContext

8 Forward request

9 Return response

10 Return response

•

•

•

•

•

•

1.

1.

▪

Gateway guide PingGateway

162 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Select Configure > Global Services > Platform, and add example.com as an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM, requests can be redirected to AM instead of
to the resource.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

4.

2.

1.

2.

3.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 163

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/sso.json

%appdata%\OpenIG\config\routes\sso.json

4.

Linux

Windows

Gateway guide PingGateway

164 Copyright © 2025 Ping Identity Corporation

{
 "name": "sso",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/sso$')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the PingGateway route in Studio, refer to Policy enforcement in Structured
Editor or Protecting a web app with Freeform Designer.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/sso.

Log in to AM as user demo , password Ch4ng31t .

The SingleSignOnFilter passes the request to sample application, which returns the sample application home page.

SSO through a specified AM authentication tree

This section gives an example of how to authenticate by using SSO and the example authentication tree provided in AM, instead
of the default authentication tree.

Set up the example in Authenticate with SSO through the default authentication service.

3.

1.

2.

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 165

https://ig.example.com:8443/home/sso
https://ig.example.com:8443/home/sso

Add the following route to PingGateway:

$HOME/.openig/config/routes/sso-authservice.json

%appdata%\OpenIG\config\routes\sso-authservice.json

2.

Linux

Windows

Gateway guide PingGateway

166 Copyright © 2025 Ping Identity Corporation

{
 "name": "sso-authservice",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/sso-authservice')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1",
 "authenticationService": "Example"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the features of the route compared to sso.json :

The route matches requests to /home/sso-authservice .

The authenticationService property of SingleSignOnFilter refers to Example , the name of the example
authentication tree in AM. This authentication tree is used for authentication instead of the AM admin UI.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/sso-authservice.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

Note that the login page is different to that returned in Authenticate with SSO through the default authentication
service.

◦

◦

3.

1.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 167

https://ig.example.com:8443/home/sso-authservice
https://ig.example.com:8443/home/sso-authservice

Cross-domain single sign-on (CDSSO)

The following sections describe how to set up CDSSO for requests in a different domain:

The SSO mechanism described in Authenticating with SSO can be used when PingGateway and AM are running in the same
domain. When PingGateway and AM are running in different domains, AM cookies are not visible to PingGateway because of the
same-origin policy.

CDSSO using the CrossDomainSingleSignOnFilter provides a mechanism to push tokens issued by AM to PingGateway running in
a different domain.

The following sequence diagram shows the flow of information between PingGateway, AM, and the sample application during
CDSSO. In this example, AM is running on am.example.com , and PingGateway is running on ig.ext.com .

1. The browser sends an unauthenticated request to access the sample app.

2-3. PingGateway intercepts the request, and redirects the browser to AM for authentication.

emergency_home
To require users to authenticate in the correct realm for security reasons, configure SSO or CDSSO with a
PolicyEnforcementFilter, that refers to an AM policy where the realm is enforced. For an example, refer to Require
users to authenticate to a specific realm.

Important

Browser

Browser

PingGateway
am.example.com

PingGateway
am.example.com

PingAM
am.example.com

PingAM
am.example.com

Sample App
app.example.com

Sample App
app.example.com

1 Request to access sample app

1. Unauthenticated browser redirected to AM for authentication

2
Create a nonce and store in session
Redirect browser to AM

3 Request authentication

4
Login user and request
Create CDSSO token

2. Authenticated browser redirect to original URI

5 Autosubmit form to redirectEndpoint, with CDSSO token as form parameter

6
Autosubmit form to redirectEndpoint,
with CDSSO token as form parameter

7 Validate CDSSO token

8
Check nonce to confirm that IG initiated
the authentication

9 Construct cookie containing CDSSO token

10 Redirect to original URI, with cookie

3. Request forwarded to application

11 Follow redirect, with cookie

12 Validate CDSSO token

13 Request SessionInfo and add to request

14 Store SSO token in SsoTokenContext

15 Store CDSSO token in CdSsoContext

16 Forward request

17 Return response

18 Return response

Gateway guide PingGateway

168 Copyright © 2025 Ping Identity Corporation

4. AM authenticates the user and creates a CDSSO token.

5. AM responds to a successful authentication with an HTML autosubmit form containing the issued token.

6. The browser loads the HTML and autosubmit form parameters to the PingGateway callback URL for the redirect endpoint.

7. When verificationSecretId in CrossDomainSingleSignOnFilter is configured, PingGateway uses it to verify signature of AM
session tokens.

When verificationSecretId isn’t configured, PingGateway discovers and uses the AM JWK set to verify the signature of AM
session tokens.

If that fails, the CrossDomainSingleSignOnFilter fails to load.

8. PingGateway checks the nonce found inside the CDSSO token to confirm that the callback comes from an authentication
initiated by PingGateway.

9. PingGateway constructs a cookie, and fulfills it with a cookie name, path, and domain, using the
CrossDomainSingleSignOnFilter property authCookie . The domain must match that set in the AM PingGateway agent.

10-11. PingGateway redirects the request back to the original URI, with the cookie, and the browser follows the redirect back to
PingGateway.

12. PingGateway validates the SSO token inside of the CDSSO token

13-15. PingGateway adds the AM session info to the request, and stores the SSO token and CDSSO token in the contexts for use
by downstream filters and handlers.

16-18. PingGateway forwards the request to the sample application, and the sample application returns the requested resource
to the browser.

Before you start, prepare AM, PingGateway, and the sample application as described in Example installation for this guide.

Set up AM:

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent_cdsso

Password: password

Redirect URL for CDSSO: https://ig.ext.com:8443/home/cdsso/redirect

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

1.

1.

▪

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

2.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 169

Select Services > Add a Service, and add a Validation Service with the following Valid goto URL Resources:

https://ig.ext.com:8443/*

https://ig.ext.com:8443/*?*

Select Configure > Global Services > Platform, and add example.com as an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM, requests can be redirected to AM instead of
to the resource.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following session configuration to admin.json , to ensure that the browser passes the session cookie in
the form-POST to the redirect endpoint (step 6 of Information flow during CDSSO):

{
 "connectors": […],

"session": {
 "cookie": {
 "sameSite": "none",
 "secure": true
 }
 },
 "heap": […]
}

This step is required for the following reasons:

When sameSite is strict or lax , the browser does not send the session cookie, which contains the
nonce used in validation. If PingGateway doesn’t find the nonce, it assumes that the authentication failed.

When secure is false , the browser is likely to reject the session cookie.

For more information, refer to admin.json.

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

3.

▪

▪

4.

2.

1.

2.

▪

▪

3.

4.

Linux

Gateway guide PingGateway

170 Copyright © 2025 Ping Identity Corporation

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/cdsso.json

%appdata%\OpenIG\config\routes\cdsso.json

Windows

5.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 171

{
 "name": "cdsso",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/cdsso')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "http://am.example.com:8088/openam",
 "realm": "/",
 "agent": {
 "username": "ig_agent_cdsso",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "sessionCache": {
 "enabled": false
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "CrossDomainSingleSignOnFilter-1",
 "type": "CrossDomainSingleSignOnFilter",
 "config": {
 "redirectEndpoint": "/home/cdsso/redirect",
 "authCookie": {
 "path": "/home",
 "name": "ig-token-cookie"
 },
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route matches requests to /home/cdsso .

The agent password for AmService is provided by a SystemAndEnvSecretStore in the heap.

Because the CrossDomainSingleSignOnFilter’s verificationSecretId isn’t configured, PingGateway
discovers and uses the AM JWK set to verify the signature of AM session tokens. If that fails, the
CrossDomainSingleSignOnFilter fails to load.

▪

▪

▪

Gateway guide PingGateway

172 Copyright © 2025 Ping Identity Corporation

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.ext.com:8443/home/cdsso.

The CrossDomainSingleSignOnFilter redirects the request to AM for authentication.

Log in to AM as user demo , password Ch4ng31t .

When you have authenticated, AM calls /home/cdsso/redirect , and includes the CDSSO token. The
CrossDomainSingleSignOnFilter passes the request to sample app, which returns the home page.

Password replay from AM

Use PingGateway with AM’s password capture and replay to bring SSO to legacy web applications, without the need to edit,
upgrade, or recode. This feature helps you to integrate legacy web applications with other applications using the same user
identity.

The following figure illustrates the flow of requests when an unauthenticated user accesses a protected application. After
authenticating with AM, the user is logged into the application with the username and password from the AM login session.

Figure 1. Data flow to log in to a protected application

PingGateway intercepts the browser’s HTTP GET request.

Because the user is not authenticated, the SingleSignOnFilter redirects the user to AM for authentication.

AM authenticates the user, capturing the login credentials, and storing the encrypted password in the user’s AM session.

AM redirects the browser back to the protected application.

3.

1.

2.

Browser

Browser

PingGateway

PingGateway

PingAM

PingAM

Sample App

Sample App

1
Send an HTTP GET request to
http://ig.example.com:8080/replay

2
User not authenticated:
-redirect request to AM for authentication

3 Authenticate and capture credentials in AM session

4 Redirect browser back to the protected application

5
Resend the HTTP GET request to
http://ig.example.com:8080/replay

6

User authenticated:
-retrieve encrypted AM password
-decrypt it
-place it in the context

7 Replace request with an HTTP POST of login form

8 Validate login

9 Return response page showing user is logged in

10 Return the response page showing user is logged in

•

•

•

•

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 173

https://ig.ext.com:8443/home/cdsso
https://ig.ext.com:8443/home/cdsso

PingGateway intercepts the browser’s HTTP GET request again:

The user is now authenticated, so PingGateway’s SingleSignOnFilter passes the request to the
CapturedUserPasswordFilter.

The CapturedUserPasswordFilter checks that the SessionInfoContext $
{contexts.amSession.properties.sunIdentityUserPassword} is available and not null . It then decrypts the
password and stores it in the CapturedUserPasswordContext, at ${contexts.capturedPassword} .

The PasswordReplayFilter uses the username and decrypted password in the context to replace the request with an HTTP
POST of the login form.

The sample application validates the credentials.

The sample application responds with the user’s profile page.

PingGateway then passes the response from the sample application to the browser.

Before you start, prepare AM, PingGateway, and the sample application as described in Example installation for this guide.

The following steps use the AM default aestest 256-bit AES test key as the shared secret. AM uses the key to encrypt the
password and PingGateway uses it to decrypt the password. Do not use the test key in production:

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

•

◦

◦

•

•

•

•

info
In PingOne Advanced Identity Cloud and from AM 7.5, the password capture and replay feature can optionally
manage the replay password through AM’s secret service. The secret label for the replay password must be
am.authentication.replaypassword.key .
For backward compatibility, if a secret isn’t defined, is empty, or can’t be resolved, AM manages the replay password
through the AM system property am.authentication.replaypassword.key .

Note

1.

1.

▪

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

Gateway guide PingGateway

174 Copyright © 2025 Ping Identity Corporation

Update the Authentication Post Processing Classes for password replay:

Select Authentication > Settings > Post Authentication Processing.

In Authentication Post Processing Classes, add
com.sun.identity.authentication.spi.JwtReplayPassword .

Select Configure > Secret Stores > default-keystore in the global secret stores list.

Switch to the Mappings tab and click + Add Mapping

Secret Label

am.authentication.replaypassword.key

Aliases

Add aestest (not for use in production)

Use an appropriate global secret store and 256-bit AES key in production, not the test key. AM 7.5
requires adding the am.authentication.replaypassword.key mapping to a global secret store, not
a realm-based secret store.

How you generate the key depends on the secret store. For example, the openssl rand -base64 32
command generates a base64-encoded 256-bit string. The keytool -genseckey -alias my-aes-key
-keyalg AES -keysize 256 command generates a 256-bit symmetric key in a Java keystore.

Click Create to complete the mapping.

Select Configure > Global Services > Platform, and add example.com as an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM, requests can be redirected to AM instead of
to the resource.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set environment variables for the value of the AES 256-bit key, and the PingGateway agent password, and then
restart PingGateway:

The base64-encoded "aestest" key:
$ export AES_KEY='YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd5eHowMTIzNDU='
The base64-encoded PingGateway agent "password":
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

Add the following route to PingGateway to serve the sample application .css and other static resources:

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

4.

1.

2.

5.

1.

2.

6.

2.

1.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 175

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/04-replay.json

%appdata%\OpenIG\config\routes\04-replay.json

Linux

Windows

4.

Linux

Windows

Gateway guide PingGateway

176 Copyright © 2025 Ping Identity Corporation

{
 "name": "04-replay",
 "condition": "${find(request.uri.path, '^/replay')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore",
 "config": {
 "mappings": [
 {
 "secretId": "aes.key",
 "format": {
 "type": "SecretKeyPropertyFormat",
 "config": {
 "format": "BASE64",
 "algorithm": "AES"
 }
 }
 }
]
 }
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 },
 {
 "name": "CapturedUserPasswordFilter",
 "type": "CapturedUserPasswordFilter",
 "config": {
 "ssoToken": "${contexts.ssoToken.value}",
 "keySecretId": "aes.key",
 "keyType": "AES",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "amService": "AmService-1"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${true}",

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 177

 "credentials": "CapturedUserPasswordFilter",
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${contexts.ssoToken.info.uid}"
],
 "password": [
 "${contexts.capturedPassword.value}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route matches requests to /replay .

The agent password for AmService is provided by a SystemAndEnvSecretStore in the heap.

If the request does not have a valid AM session cookie, the SingleSignOnFilter redirects the request to AM
for authentication.

After authentication, the SingleSignOnFilter passes the request to the next filter, storing the cookie value in
an SsoTokenContext .

The PasswordReplayFilter uses the CapturedUserPasswordFilter declared in the heap to retrieve the AM
password from AM session properties. The CapturedUserPasswordFilter uses the AES 256-bit key to decrypt
the password, and then makes it available in a CapturedUserPasswordContext.

The value of the AES 256-bit key is provided by the SystemAndEnvSecretStore.

The PasswordReplayFilter retrieves the username and password from the context. It replaces the browser’s
original HTTP GET request with an HTTP POST login request containing the credentials to authenticate to the
sample application.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/replay. The SingleSignOnFilter
redirects the request to AM for authentication.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

Log in to AM as user demo , password Ch4ng31t . The request is redirected to the sample application.

Password replay from a database

This section describes how to configure PingGateway to get credentials from a database. This example is tested with H2 1.4.197.

▪

▪

▪

▪

3.

1.

2.

3.

Gateway guide PingGateway

178 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/replay
https://ig.example.com:8443/replay

The following figure illustrates the flow of requests when PingGateway uses credentials from a database to log a user in to the
sample application:

PingGateway intercepts the browser’s HTTP GET request.

The PasswordReplayFilter confirms that a login page is required, and passes the request to the SqlAttributesFilter.

The SqlAttributesFilter uses the email address to look up credentials in H2, and stores them in the request context
attributes map.

The PasswordReplayFilter retrieves the credentials from the attributes map, builds the login form, and performs the HTTP
POST request to the sample app.

The sample application validates the credentials, and responds with a profile page.

Before you start, prepare PingGateway and the sample application as described in the Quick install.

Set up the database:

On your system, add the following data in a comma-separated value file:

/tmp/userfile.txt

C:\Temp\userfile.txt

PingGateway

Browser

Browser

Database

Database

PasswordReplayFilter

PasswordReplayFilter

SqlAttributesFilter

SqlAttributesFilter

ReverseProxyHandler

ReverseProxyHandler

Application

Application

1
HTTP GET request to
http://ig.example.com:8080/profile/george

2 Confirm login page is required

3 Request

4 Look up the record containing credentials

5 Credentials

6 Store credentials in the context

7 Retrieve credentials from context

8 Replace request with HTTP POST of login form

9 Relay request

10 Validate login & relay response

11 Relay response

•

•

•

•

•

1.

1.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 179

username,password,fullname,email
george,C0stanza,George Costanza,george@example.com
kramer,N3wman12,Kramer,kramer@example.com
bjensen,H1falutin,Babs Jensen,bjensen@example.com
demo,Ch4ng31t,Demo User,demo@example.com
kvaughan,B5ibery12,Kirsten Vaughan,kvaughan@example.com
scarter,S9rain12,Sam Carter,scarter@example.com

Download and unpack the H2 database, and then start H2:

$ sh /path/to/h2/bin/h2.sh

H2 starts, listening on port 8082, and opens the H2 Console in a browser.

In the H2 Console, select the following options, and then select Connect to access the console:

Saved Settings : Generic H2 (Server)

Setting Name : Generic H2 (Server)

Driver Class: org.h2.Driver

JDBC URL: jdbc:h2:~/ig-credentials

User Name: sa

Password : password

In the console, add the following text, and then run it to create the user table:

DROP TABLE IF EXISTS USERS;
CREATE TABLE USERS AS SELECT * FROM CSVREAD('/tmp/userfile.txt');

In the console, add the following text, and then run it to verify that the table contains the same users as the file:

SELECT * FROM users;

Add the .jar file /path/to/h2/bin/h2-*.jar to the PingGateway configuration:

Create the directory $HOME/.openig/extra , where $HOME/.openig is the instance directory, and add .jar
files to the directory.

2.

3.

▪

▪

▪

▪

▪

▪

lightbulb_2
If you have run this example before but can’t access the console now, try deleting your local ~/
ig-credentials files and starting H2 again.

Tip

4.

5.

6.

▪

Gateway guide PingGateway

180 Copyright © 2025 Ping Identity Corporation

http://h2database.com
http://h2database.com

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the database password, and then restart PingGateway:

$ export DATABASE_PASSWORD='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/03-sql.json

2.

1.

2.

3.

Linux

Windows

4.

Linux

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 181

%appdata%\OpenIG\config\routes\03-sql.json

Windows

Gateway guide PingGateway

182 Copyright © 2025 Ping Identity Corporation

{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "JdbcDataSource-1",
 "type": "JdbcDataSource",
 "config": {
 "driverClassName": "org.h2.Driver",
 "jdbcUrl": "jdbc:h2:tcp://localhost/~/ig-credentials",
 "username": "sa",
 "passwordSecretId": "database.password",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "name": "sql",
 "condition": "${find(request.uri.path, '^/profile')}",
 "handler": {
 "type": "Chain",
 "baseURI": "http://app.example.com:8081",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${find(request.uri.path, '^/profile/george') and (request.method == 'GET')}",
 "credentials": {
 "type": "SqlAttributesFilter",
 "config": {
 "dataSource": "JdbcDataSource-1",
 "preparedStatement":
 "SELECT username, password FROM users WHERE email = ?;",
 "parameters": [
 "${igDemoEmail}"
],
 "target": "${attributes.sql}"
 }
 },
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.sql.USERNAME}"
],
 "password": [
 "${attributes.sql.PASSWORD}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 183

Notice the following features of the route:

The route matches requests to /profile .

The PasswordReplayFilter specifies a loginPage page property:

When a request is an HTTP GET, and the request URI path is /profile/george , the expression resolves to
true . The request is directed to a login page.

The SqlAttributesFilter specifies the data source to access, a prepared statement to look up the user’s
record, a parameter to pass into the statement, and where to store the search results in the request context
attributes map.

The request object retrieves the username and password from the context, and replaces the browser’s
original HTTP GET request with an HTTP POST login request, containing the credentials to authenticate.

The request is for username, password , but H2 returns the fields as USERNAME and PASSWORD . The
configuration reflects this difference.

For other requests, the expression resolves to false . The request passes to the ReverseProxyHandler,
which directs it to the profile page of the sample app.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/profile.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

Because the property loginPage resolves to false , the PasswordReplayFilter passes the request directly to the
ReverseProxyHandler. The sample app returns the login page.

Go to https://ig.example.com:8443/profile/george.

Because the property loginPage resolves to true , the PasswordReplayFilter processes the request to obtain the
login credentials. The sample app returns the profile page for George.

Password replay from a file

The following figure illustrates the flow of requests when PingGateway uses credentials in a file to log a user in to the sample
application:

▪

▪

▪

▪

3.

1.

2.

Gateway guide PingGateway

184 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/profile
https://ig.example.com:8443/profile
https://ig.example.com:8443/profile/george
https://ig.example.com:8443/profile/george

PingGateway intercepts the browser’s HTTP GET request, which matches the route condition.

The PasswordReplayFilter confirms that a login page is required, and

The FileAttributesFilter uses the email address to look up the user credentials in a file, and stores the credentials in the
request context attributes map.

The PasswordReplayFilter retrieves the credentials from the attributes map, builds the login form, and performs the HTTP
POST request to the sample app.

The sample application validates the credentials, and responds with a profile page.

The ReverseProxyHandler passes the response to the browser.

Before you start, prepare PingGateway and the sample application as described in the Quick install.

On your system, add the following data in a comma-separated value file:

/tmp/userfile.txt

C:\Temp\userfile.txt

PingGateway

Browser

Browser

Userfile

Userfile

PasswordReplayFilter

PasswordReplayFilter

FileAttributesFilter

FileAttributesFilter

ReverseProxyHandler

ReverseProxyHandler

Application

Application

1
HTTP GET request to
http://ig.example.com:8080/profile/george

2 Confirm login page is required

3 Request

4 Look up credentials in userfile.txt

5 Credentials

6 Store credentials in the context

7 Retrieve credentials from the context

8 Replace request with HTTP POST of login form

9 Relay request

10 Validate login & send response

11 Relay response

•

•

•

•

•

•

1.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 185

username,password,fullname,email
george,C0stanza,George Costanza,george@example.com
kramer,N3wman12,Kramer,kramer@example.com
bjensen,H1falutin,Babs Jensen,bjensen@example.com
demo,Ch4ng31t,Demo User,demo@example.com
kvaughan,B5ibery12,Kirsten Vaughan,kvaughan@example.com
scarter,S9rain12,Sam Carter,scarter@example.com

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/02-file.json

2.

1.

2.

Linux

Windows

3.

Linux

Gateway guide PingGateway

186 Copyright © 2025 Ping Identity Corporation

%appdata%\OpenIG\config\routes\02-file.json

{
 "name": "02-file",
 "condition": "${find(request.uri.path, '^/profile')}",
 "capture": "all",
 "handler": {
 "type": "Chain",
 "baseURI": "http://app.example.com:8081",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${find(request.uri.path, '^/profile/george') and (request.method == 'GET')}",
 "credentials": {
 "type": "FileAttributesFilter",
 "config": {
 "file": "/tmp/userfile.txt",
 "key": "email",
 "value": "${igDemoEmail}",
 "target": "${attributes.credentials}"
 }
 },
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.credentials.username}"
],
 "password": [
 "${attributes.credentials.password}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route matches requests to /profile .

The PasswordReplayFilter specifies a loginPage page property:

When a request is an HTTP GET, and the request URI path is /profile/george , the expression
resolves to true . The request is directed to a login page.

Windows

▪

▪

▪

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 187

The FileAttributesFilter looks up the key and value in /tmp/userfile.txt , and stores them in
the context.

The request object retrieves the username and password from the context, and replaces the
browser’s original HTTP GET request with an HTTP POST login request, containing the credentials to
authenticate.

For other requests, the expression resolves to false . The request passes to the
ReverseProxyHandler, which directs it to the profile page of the sample app.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/profile/george.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

Because the property loginPage resolves to true , the PasswordReplayFilter processes the request to obtain the
login credentials. The sample app returns the profile page for George.

Go to https://ig.example.com:8443/profile/bob, or to any other URI starting with https://ig.example.com:
8443/profile .

Because the property loginPage resolves to false , the PasswordReplayFilter passes the request directly to the
ReverseProxyHandler. The sample app returns the login page.

Session cache eviction

When WebSocket notifications are enabled in PingGateway, PingGateway receives notifications when the following events occur:

A user logs out of AM

An AM session is modified, closed, or times out

An AM admin forces logout of user sessions (from AM 7.3)

The following procedure gives an example of how to change the configurations in Single sign-on and Cross-domain single sign-on
to receive WebSocket notifications for session logout, and to evict entries related to the session from the cache. For information
about WebSocket notifications, refer to WebSocket notifications.

Before you start, set up and test the example in Single sign-on (SSO).

Websocket notifications are enabled by default. If they are disabled, enable them by adding the following configuration to
the AmService in your route:

"notifications": {
 "enabled": true
}

Enable the session cache by adding the following configuration to the AmService in your route:

▪

3.

1.

2.

3.

•

•

•

1.

2.

Gateway guide PingGateway

188 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/profile/george
https://ig.example.com:8443/profile/george
https://ig.example.com:8443/profile/bob
https://ig.example.com:8443/profile/bob

"sessionCache": {
 "enabled": true
}

In logback.xml add the following logger for WebSocket notifications, and then restart PingGateway:

<logger name="org.forgerock.openig.tools.notifications.ws" level="TRACE" />

For information, refer to Changing the log level for different object types.

On the AM console, log the demo user out of AM to end the AM session.

Note that the PingGateway system logs are updated with Websocket notifications about the logout:

... | TRACE | vert.x-eventloop-thread-4 | o.f.o.t.n.w.l.DirectAmLink | @system | Received a message:
{ "topic": ... "eventType": "LOGOUT" } }
... | TRACE | vert.x-eventloop-thread-4 | o.f.o.t.n.w.SubscriptionService | @system | Notification received...
"eventType": "LOGOUT" }}
... | TRACE | vert.x-eventloop-thread-4 | o.f.o.t.n.w.SubscriptionService | @system | Notification sent to a
[/agent/session.v2] listener

Policy enforcement

About policy enforcement

PingGateway as a policy enforcement point (PEP) uses the PolicyEnforcementFilter to intercept requests for a resource and
provide information about the request to AM.

AM as a policy decision point (PDP) evaluates requests based on their context and the configured policies. AM then returns
decisions that indicate what actions are allowed or denied, as well as any advices, subject attributes, or static attributes for the
specified resources.

For more information, refer to the PolicyEnforcementFilter and AM’s Authentication and SSO guide.

Deny requests without advices

The following image shows a simplified flow of information when AM denies a request without advices.

3.

4.

5.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 189

https://docs.pingidentity.com/pingam/7.5/authentication-guide/
https://docs.pingidentity.com/pingam/7.5/authentication-guide/

Deny requests with advices as parameters in a redirect response

The following image shows a simplified flow of information when AM denies a request with advices and PingGateway returns the
advices as parameters in a redirect response.

This is the default flow, most used for web applications.

Browser

Browser

PingGateway
ig.example.com

PingGateway
ig.example.com

PingAM
am.example.com

PingAM
am.example.com

Sample app
app.example.com

Sample app
app.example.com

1 Request to access sample app

2 Information about the request

3 Policy decision

4 Policy decision

alt [Request allowed]

5 Request

6 Response

7 Response

[Request denied without advices]

alt [FailureHandler configured]

8 FailureHandler

[No FailureHandler configured]

9 403 Forbidden

Gateway guide PingGateway

190 Copyright © 2025 Ping Identity Corporation

Deny requests with advices in a header

The following image shows a simplified flow of information when the request to PingGateway includes an x-authenticate-
response header with the value header . If the header has any other value, the flow in Deny requests with advices as
parameters in a redirect response takes place.

To change the name of the x-authenticate-response header, refer to the authenticateResponseRequestHeader property of
the PolicyEnforcementFilter.

In this flow, AM denies the request with advices, and PingGateway sends the response with the advices in the WWW-authenticate
header.

Use this method for SDKs and single page applications. Placing advices in a header gives these applications more options for
handling the advices.

Browser

Browser

PingGateway
ig.example.com

PingGateway
ig.example.com

PingAM
am.example.com

PingAM
am.example.com

Sample app
app.example.com

Sample app
app.example.com

1 Request to access sample app

2 Information about the request

3 Policy decision

4
Request denied with
advices as parameters

5
Redirect to AM with
advices as parameters

6 Send advices

7 Process advices

8 Advices authentication

9 Complete advices authentication

10 Process advices authentication

11 Redirect to PingGateway

12 Request

13 Request

14 Policy decision

15 Policy decision

alt [Request allowed]

16 Request

17 Response

[Request denied]

18
FailureHandler
or 403 Forbidden

19 Response

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 191

Consider the following example GET with an x-authenticate-response header with the value HEADER :

[CONTINUED]GET https://ig.example.com:8443/home HTTP/1.1
[CONTINUED]accept-encoding: gzip, deflate
[CONTINUED]Connection: close
[CONTINUED]cookie: iPlanetDirectoryPro=0Dx...e3A.*....; amlbcookie=01
[CONTINUED]Host: ig.example.com:8443
[CONTINUED]x-authenticate-response: HEADER

PingGateway returns a WWW-Authenticate header containing advices, as follows:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: SSOADVICE realm="/",advices="eyJ...XX0=",am_uri="http://openam.example.com:8080/am/"
transfer-encoding: chunked
connection: close

The advice decodes to a transaction condition advice:

{"TransactionConditionAdvice":["493...3c4"]}

Single Page Application

Single Page Application

PingGateway
ig.example.com

PingGateway
ig.example.com

PingAM
am.example.com

PingAM
am.example.com

Sample app
app.example.com

Sample app
app.example.com

1
Request to access sample app
x-authenticate-response header
set to header

2 Information about the request

3 Policy decision

4
Request denied with
advices as parameters

5 Check for x-authenticate-response header

6
Unauthorized Response with
WWW-Authenticateheader
containing advices

7 Send advices

8 Request

9 Information about the request

10 Policy decision

11 Policy decision

alt [Request allowed]

12 Request

13 Response

[Request denied]

14
FailureHandler
or 403 Forbidden

15 Response

Gateway guide PingGateway

192 Copyright © 2025 Ping Identity Corporation

Enforce policy decisions from AM

The following sections describe how to set up single sign on for requests in the same domain and in a different domain.

Enforce AM policy decisions in the same domain

The following procedure gives an example of how to create a policy in AM and configure an agent that can request policy
decisions, when PingGateway and AM are in the same domain.

Before you start, set up and test the example in Authenticate with SSO through the default authentication service.

Set up AM:

Select Authorization > Policy Sets > New Policy Set, and add a policy set with the following values:

Id : PEP-SSO

Resource Types : URL

In the policy set, add a policy with the following values:

Name : PEP-SSO

Resource Type : URL

Resource pattern : *://*:*/*

Resource value : http://app.example.com:8081/home/pep-sso*

This policy protects the home page of the sample application.

On the Actions tab, add an action to allow HTTP GET .

On the Subjects tab, remove any default subject conditions, add a subject condition for all Authenticated Users .

Add the following route to PingGateway:

$HOME/.openig/config/routes/04-pep.json

%appdata%\OpenIG\config\routes\04-pep.json

1.

1.

▪

▪

2.

▪

▪

▪

▪

3.

4.

2.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 193

{
 "name": "pep-sso",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/pep-sso')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "name": "PolicyEnforcementFilter-1",
 "type": "PolicyEnforcementFilter",
 "config": {
 "application": "PEP-SSO",
 "ssoTokenSubject": "${contexts.ssoToken.value}",
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the PingGateway route in Studio, refer to Policy enforcement in Structured Editor or
Protecting a web app with Freeform Designer.

For an example route that uses claimsSubject instead of ssoTokenSubject to identify the subject, refer to Example
policy enforcement using claimsSubject.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/pep-sso.

3.

1.

Gateway guide PingGateway

194 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/pep-sso
https://ig.example.com:8443/home/pep-sso

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

Because you haven’t previously authenticated to AM, the request does not contain a cookie with an SSO token. The
SingleSignOnFilter redirects you to AM for authentication.

Log in to AM as user demo , password Ch4ng31t .

When you have authenticated, AM redirects you back to the request URL, and PingGateway requests a policy
decision using the AM session cookie.

AM returns a policy decision that grants access to the sample application.

Require users to authenticate to a specific realm

This example creates a policy that requires users to authenticate in a specific realm.

To reduce the attack surface on the top level realm, ForgeRock advises you to create federation entities, agent profiles,
authorizations, OAuth2/OIDC, and STS services in a subrealm. For this reason, the AM policy, AM agent, and services are in a
subrealm.

Set up AM:

In the AM admin UI, click Realms and add a realm named alpha . Leave all other values as default.

For the rest of the steps in this procedure, make sure you are managing the alpha realm by checking that the
alpha icon is displayed on the top left.

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

2.

3.

1.

1.

2.

▪

▪

3.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

4.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 195

Add a policy:

Select Authorization > Policy Sets > New Policy Set, and add a policy set with the following values:

Id : PEP-SSO-REALM

Resource Types : URL

In the policy set, add a policy with the following values:

Name : PEP-SSO-REALM

Resource Type : URL

Resource pattern : *://*:*/*

Resource value : http://app.example.com:8081/home/pep-sso-realm

This policy protects the home page of the sample application.

On the Actions tab, add an action to allow HTTP GET .

On the Subjects tab, remove any default subject conditions, add a subject condition for all Authenticated
Users .

On the Environments tab, add an environment condition that requires the user to authenticate to the
alpha realm:

Type : Authentication to a Realm

Authenticate to a Realm : /alpha

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

5.

1.

▪

▪

2.

▪

▪

▪

▪

3.

4.

5.

▪

▪

2.

1.

2.

3.

Linux

Gateway guide PingGateway

196 Copyright © 2025 Ping Identity Corporation

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/04-pep-sso-realm.json

%appdata%\OpenIG\config\routes\04-pep-sso-realm.json

Windows

4.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 197

{
 "name": "pep-sso-realm",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/pep-sso-realm')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/",
 "realm": "/alpha"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "name": "PolicyEnforcementFilter-1",
 "type": "PolicyEnforcementFilter",
 "config": {
 "application": "PEP-SSO-REALM",
 "ssoTokenSubject": "${contexts.ssoToken.value}",
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following differences compared to 04-pep-sso.json :

The AmService is in the alpha realm. That means that the user authenticates to AM in that realm.

The PolicyEnforcementFilter realm is not specified, so it takes the same value as the AmService realm. If
refers to a policy in the AM alpha realm.

▪

▪

Gateway guide PingGateway

198 Copyright © 2025 Ping Identity Corporation

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/pep-sso-realm.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

Log in to AM as user demo , password Ch4ng31t .

Because you are authenticating in the alpha realm, AM returns a policy decision that grants access to the sample
application.

If you were to send the request from a different realm, AM would redirect the request with an
AuthenticateToRealmConditionAdvice .

Enforce AM policy decisions in different domains

The following procedure gives an example of how to create a policy in AM and configure an agent that can request policy
decisions, when PingGateway and AM are in different domains.

Before you start, set up and test the example in Cross-domain single sign-on.

Set up AM:

In the AM admin UI, select Applications > Agents > Identity Gateway, and change the redirect URL for
ig_agent_cdsso :

Redirect URL for CDSSO : https://ig.ext.com:8443/home/pep-cdsso/redirect

Select Authorization > Policy Sets > New Policy Set, and add a policy set with the following values:

Id : PEP-CDSSO

Resource Types : URL

In the new policy set, add a policy with the following values:

Name : CDSSO

Resource Type : URL

Resource pattern : *://*:*/*

Resource value : http://app.example.com:8081/home/pep-cdsso*

This policy protects the home page of the sample application.

On the Actions tab, add an action to allow HTTP GET .

On the Subjects tab, remove any default subject conditions, add a subject condition for all Authenticated
Users .

Add the following route to PingGateway:

3.

1.

2.

3.

1.

1.

▪

2.

▪

▪

▪

▪

▪

▪

▪

▪

▪

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 199

https://ig.example.com:8443/home/pep-sso-realm
https://ig.example.com:8443/home/pep-sso-realm

$HOME/.openig/config/routes/04-pep-cdsso.json

%appdata%\OpenIG\config\routes\04-pep-cdsso.json

Linux

Windows

Gateway guide PingGateway

200 Copyright © 2025 Ping Identity Corporation

{
 "name": "pep-cdsso",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/pep-cdsso')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent_cdsso",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "CrossDomainSingleSignOnFilter-1",
 "type": "CrossDomainSingleSignOnFilter",
 "config": {
 "redirectEndpoint": "/home/pep-cdsso/redirect",
 "authCookie": {
 "path": "/home",
 "name": "ig-token-cookie"
 },
 "amService": "AmService-1"
 }
 },
 {
 "name": "PolicyEnforcementFilter-1",
 "type": "PolicyEnforcementFilter",
 "config": {
 "application": "PEP-CDSSO",
 "ssoTokenSubject": "${contexts.cdsso.token}",
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

warning
When verificationSecretId isn’t configured, PingGateway discovers and uses the AM JWK set to verify the
signature of AM session tokens. If the JWK set isn’t available, PingGateway doesn’t verify the tokens.

Warning

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 201

Test the setup:

In your browser’s privacy or incognito mode, go to to https://ig.ext.com:8443/home/pep-cdsso.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

PingGateway redirects you to AM for authentication.

Log in to AM as user demo , password Ch4ng31t .

When you have authenticated, AM redirects you back to the request URL, and PingGateway requests a policy
decision. AM returns a policy decision that grants access to the sample application.

Enforce policy decisions using claimsSubject

This example extends Enforce AM policy decisions in the same domain to enforce a policy decision from AM, using
claimsSubject instead of ssoTokenSubject to identify the subject.

Before you start, set up and test the example in Enforce AM policy decisions in the same domain.

Set up AM:

Select the policy PEP-SSO and add a new resource:

Resource Type: URL

Resource pattern: *://*:*/*

Resource value: http://app.example.com:8081/home/pep-claims

In the same policy, add the following subject condition:

Any of

Type : OpenID Connect/JwtClaim

claimName : iss

claimValue : am.example.com

Add the following route to PingGateway:

$HOME/.openig/config/routes/04-pep-claims.json

%appdata%\OpenIG\config\routes\04-pep-claims.json

3.

1.

2.

3.

1.

1.

▪

▪

▪

2.

▪

▪

▪

▪

2.

Linux

Windows

Gateway guide PingGateway

202 Copyright © 2025 Ping Identity Corporation

https://ig.ext.com:8443/home/pep-cdsso
https://ig.ext.com:8443/home/pep-cdsso

{
 "name": "pep-claims",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/pep-claims')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "http://am.example.com:8088/openam",
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "name": "PolicyEnforcementFilter-1",
 "type": "PolicyEnforcementFilter",
 "config": {
 "application": "PEP-SSO",
 "claimsSubject": {
 "sub": "${contexts.ssoToken.info.uid}",
 "iss": "am.example.com"
 },
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/pep-claims.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

Log in to AM as user demo , password Ch4ng31t .

3.

1.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 203

https://ig.example.com:8443/home/pep-claims
https://ig.example.com:8443/home/pep-claims

AM returns a policy decision that grants access to the sample application.

Using WebSocket notifications to evict the policy cache

When WebSocket notifications are enabled, PingGateway receives notifications whenever AM creates, deletes, or changes a
policy.

The following procedure gives an example of how to change the configuration in Enforce AM policy decisions in the same domain
and Enforce AM policy decisions in different domains to evict outdated entries from the policy cache. For information about
WebSocket notifications, refer to WebSocket notifications.

Before you start, set up and test the example in Enforce AM policy decisions in the same domain.

Websocket notifications are enabled by default. If they are disabled, enable them by adding the following configuration to
the AmService in your route:

"notifications": {
 "enabled": true
}

Enable policy cache in the PolicyEnforcementFilter in your route:

"cache": {
 "enabled": true
}

In logback.xml add the following logger for WebSocket notifications, and then restart PingGateway:

<logger name="org.forgerock.openig.tools.notifications.ws" level="TRACE" />

For information, refer to Changing the log level for different object types.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.ext.com:8443/home/pep-sso.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

Log in to AM as user demo , password Ch4ng31t .

In a separate terminal, log on to AM as admin, and change the PEP-SSO policy. For example, in the Actions tab, add
an action to allow HTTP DELETE .

Note that the PingGateway system logs are updated with Websocket notifications about the change:

1.

2.

3.

4.

1.

2.

3.

4.

5.

Gateway guide PingGateway

204 Copyright © 2025 Ping Identity Corporation

https://ig.ext.com:8443/home/pep-sso
https://ig.ext.com:8443/home/pep-sso

... | TRACE | vert.x-eventloop-thread-14 | o.f.o.t.n.w.l.DirectAmLink | @system | Received a
message: ... "policy": "PEP-SSO", "policySet": "PEP-SSO", "eventType": "UPDATE" } }
... | TRACE | vert.x-eventloop-thread-14 | o.f.o.t.n.w.SubscriptionService | @system | Notification
received, ... "policy": "PEP-SSO", "policySet": "PEP-SSO", "eventType": "UPDATE" }}
... | TRACE | vert.x-eventloop-thread-14 | o.f.o.t.n.w.SubscriptionService | @system | Notification
sent to a [/agent/policy] listener

Harden authorization with advice from AM

To protect sensitive resources, AM policies can be configured with additional conditions to harden the authorization. When AM
communicates these policy decisions to PingGateway, the decision includes advices to indicate what extra conditions the user
must meet.

Conditions can include requirements to access the resource over a secure channel, access during working hours, or to
authenticate again at a higher authentication level. For more information, refer to AM’s Authorization guide.

The following sections build on the policies in Enforce policy decisions from AM to step up the authentication level:

Step up the authentication level for an AM session

When you step up the authentication level for an AM session, the authorization is verified and then captured as part of the AM
session, and the user agent is authorized to that authentication level for the duration of the AM session.

This section uses the policies you created in Enforce AM policy decisions in the same domain and Enforce AM policy decisions in
different domains, adding an authorization policy with a Authentication by Service environment condition. Except for the paths
where noted, procedures for single domain and cross-domain are the same.

After the user agent redirects the user to AM, if the user is not already authenticated they are presented with a login page. If the
user is already authenticated, or after they authenticate, they are presented with a second page asking for a verification code to
meet the AuthenticateToService environment condition.

Before you start, set up one of the following examples in Enforce AM policy decisions in the same domain or Enforce AM policy
decisions in different domains.

In the AM admin UI, add an environment condition to the policy:

Select a policy set:

For SSO, select Authorization > Policy Sets > PEP-SSO.

For CDSSO, select Authorization > Policy Sets > PEP-CDSSO.

In the policy, select Environments, and add the following environment condition:

All of

Type : Authentication by Service

Authenticate to Service : VerificationCodeLevel1

Set up client-side and server-side scripts:

Select Scripts > Scripted Module - Client Side, and replace the default script with the following script:

1.

1.

▪

▪

2.

▪

▪

▪

2.

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 205

https://docs.pingidentity.com/pingam/7.5/authorization-guide/
https://docs.pingidentity.com/pingam/7.5/authorization-guide/

autoSubmitDelay = 60000;

function callback() {
 var parent = document.createElement("div");
 parent.className = "form-group";

 var label = document.createElement("label");
 label.className = "sr-only separator";
 label.setAttribute("for", "answer");
 label.innerText = "Verification Code";
 parent.appendChild(label);

 var input = document.createElement("input");
 input.className = "form-control input-lg";
 input.type = "text";
 input.placeholder = "Enter your verification code";
 input.name = "answer";
 input.id = "answer";
 input.value = "";
 input.oninput = function(event) {
 var element = document.getElementById("clientScriptOutputData");
 if (!element.value || element.value == "clientScriptOutputData") element.value = "{}";
 var json = JSON.parse(element.value);
 json["answer"] = event.target.value;
 element.value = JSON.stringify(json);
 };
 parent.appendChild(input);

 var fieldset = document.forms[0].getElementsByTagName("fieldset")[0];
 fieldset.prepend(parent);
}

if (document.readyState !== 'loading') {
 callback();
} else {
 document.addEventListener("DOMContentLoaded", callback);
}

Leave all other values as default.

This client-side script adds a field to the AM form, in which the user is required to enter a verification code. The
script formats the entered code as a JSON object, as required by the server-side script.

Select Scripts > Scripted Module - Server Side, and replace the default script with the following script:2.

Gateway guide PingGateway

206 Copyright © 2025 Ping Identity Corporation

username = 'demo'
logger.error('username: ' + username)

// Test whether the user 'demo' enters the correct validation code
data = JSON.parse(clientScriptOutputData);
answer = data.answer;

if (answer !== '123456') {
 logger.error('Authentication Failed !!')
 authState = FAILED;
} else {
 logger.error('Authenticated !!')
 authState = SUCCESS;
}

Leave all other values as default.

This server-side script tests that the user demo has entered 123456 as the verification code.

Add an authentication module:

Select Authentication > Modules, and add a module with the following settings:

Name : VerificationCodeLevel1

Type : Scripted Module

In the authentication module, enable the option for client-side script, and select the following options:

Client-side Script : Scripted Module - Client Side

Server-side Script : Scripted Module - Server Side

Authentication Level : 1

Add the authentication module to an authentication chain:

Select Authentication > Chains, and add a chain called VerificationCodeLevel1 .

Add a module with the following settings:

Select Module : VerificationCodeLevel1

Select Criteria : Required

Test the setup:

Log out of AM.

Access the route:

For SSO, go to https://ig.example.com:8443/home/pep-sso.

For CDSSO, go to https://ig.ext.com:8443/home/pep-cdsso.

If you haven’t previously authenticated to AM, the SingleSignOnFilter redirects the request to AM for
authentication.

3.

1.

▪

▪

2.

▪

▪

▪

3.

1.

2.

▪

▪

4.

1.

2.

▪

▪

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 207

https://ig.example.com:8443/home/pep-sso
https://ig.example.com:8443/home/pep-sso
https://ig.ext.com:8443/home/pep-cdsso
https://ig.ext.com:8443/home/pep-cdsso

Log in to AM as user demo , password Ch4ng31t .

AM creates a session with the default authentication level 0 , and PingGateway requests a policy decision.

The updated policy requires authentication level 1 , which is higher than the AM session’s current authentication
level. AM issues a redirect with a AuthenticateToServiceConditionAdvice to authenticate at level 1 .

In the session upgrade window, enter the verification code 123456 .

AM upgrades the authentication level for the session to 1, and grants access to the sample application. If you try to
access the sample application again in the same session, you don’t need to provide the verification code.

Increase authorization for a single transaction

Transactional authorization improves security by requiring a user to perform additional actions when trying to access a resource
protected by an AM policy. For example, they must reauthenticate to an authentication module or respond to a push notification
on their mobile device.

Performing the additional action successfully grants access to the protected resource, but only once. Additional attempts to
access the resource require the user to perform the configured actions again.

This section builds on the example in Step up the authentication level for an AM session, adding a simple authorization policy
with a Transaction environment condition. Each time the user agent tries to access the protected resource, the user must
reauthenticate to an authentication module by providing a verification code.

Before you start, configure AM as described in Step up the authentication level for an AM session. The PingGateway
configuration is not changed.

In the AM admin UI, add a new environment condition:

Select the policy set:

For SSO, select Authorization > Policy Sets > PEP-SSO.

For CDSSO, select Authorization > Policy Sets > PEP-CDSSO.

In the PingGateway policy, select Environments and add another environment condition:

All of

Type : Transaction

Authentication strategy : Authenticate To Module

Strategy specifier : TxVerificationCodeLevel5

Set up client-side and server-side scripts:

Select Scripts > New Script, and add the following client-side script:

Name : Tx Scripted Module - Client Side

Script Type : Client-side Authentication

3.

4.

1.

1.

▪

▪

2.

▪

▪

▪

▪

2.

1.

▪

▪

Gateway guide PingGateway

208 Copyright © 2025 Ping Identity Corporation

autoSubmitDelay = 60000;

function callback() {
 var parent = document.createElement("div");
 parent.className = "form-group";

 var label = document.createElement("label");
 label.className = "sr-only separator";
 label.setAttribute("for", "answer");
 label.innerText = "Verification Code";
 parent.appendChild(label);

 var input = document.createElement("input");
 input.className = "form-control input-lg";
 input.type = "text";
 input.placeholder = "Enter your TX code";
 input.name = "answer";
 input.id = "answer";
 input.value = "";
 input.oninput = function(event) {
 var element = document.getElementById("clientScriptOutputData");
 if (!element.value || element.value == "clientScriptOutputData") element.value = "{}";
 var json = JSON.parse(element.value);
 json["answer"] = event.target.value;
 element.value = JSON.stringify(json);
 };
 parent.appendChild(input);

 var fieldset = document.forms[0].getElementsByTagName("fieldset")[0];
 fieldset.prepend(parent);
}

if (document.readyState !== 'loading') {
 callback();
} else {
 document.addEventListener("DOMContentLoaded", callback);
}

This client-side script adds a field to the AM form, in which the user is required to enter a TX code. The script
formats the entered code as a JSON object, as required by the server-side script.

Select Scripts > New Script, and add the following server-side script:

Name : Tx Scripted Module - Server Side

Script Type : Server-side Authentication

2.

▪

▪

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 209

username = 'demo'
logger.error('username: ' + username)

// Test whether the user 'demo' enters the correct validation code
data = JSON.parse(clientScriptOutputData);
answer = data.answer;

if (answer !== '789') {
 logger.error('Authentication Failed !!')
 authState = FAILED;
} else {
 logger.error('Authenticated !!')
 authState = SUCCESS;
}

This server-side script tests that the user demo has entered 789 as the verification code.

Add an authentication module:

Select Authentication > Modules, and add a module with the following settings:

Name : TxVerificationCodeLevel5

Type : Scripted Module

In the authentication module, enable the option for client-side script, and select the following options:

Client-side Script : Tx Scripted Module - Client Side

Server-side Script : Tx Scripted Module - Server Side

Authentication Level : 5

Test the setup:

Log out of AM.

In your browser’s privacy or incognito mode, access your route:

For SSO, go to https://ig.example.com:8443/home/pep-sso.

For CDSSO, go to https://ig.ext.com:8443/home/pep-cdsso.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

If you haven’t previously authenticated to AM, the SingleSignOnFilter redirects the request to AM for
authentication.

Log in to AM as user demo , password Ch4ng31t .

AM creates a session with the default authentication level 0 , and PingGateway requests a policy decision.

Enter the verification code 123456 to upgrade the authorization level for the session to 1 .

The authentication module you configured for transactional authorization requires authentication level 5 , so AM
issues a TransactionConditionAdvice .

3.

1.

▪

▪

2.

▪

▪

▪

4.

1.

2.

▪

▪

3.

4.

5.

Gateway guide PingGateway

210 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/pep-sso
https://ig.example.com:8443/home/pep-sso
https://ig.ext.com:8443/home/pep-cdsso
https://ig.ext.com:8443/home/pep-cdsso

In the transaction upgrade window, enter the verification code 789 .

AM upgrades the authentication level for this policy evaluation to 5 , and then returns a policy decision that grants
a one-time access to the sample application. If you try to access the sample application again, you must enter the
code again.

OAuth 2.0

OAuth 2.0 includes the following entities:

Resource owner : A user who owns protected resources on a resource server. For example, a resource owner can store
photos in a web service.

Resource server : A service that gives authorized client applications access to the resource owner’s protected resources. In
OAuth 2.0, an Authorization Server grants authorization to a client application, based on the resource owner’s consent. For
example, a resource server can be a web service that holds a user’s photos.

Client : An application that requests access to the resource owner’s protected resources, on behalf of the resource owner.
For example, a client can be a photo printing service requesting access to a resource owner’s photos stored on a web
service, after the resource owner gives the client consent to download the photos.

Authorization server : A service responsible for authenticating resource owners, and obtaining their consent to allow client
applications to access their resources. For example, AM can act as the OAuth 2.0 Authorization Server to authenticate
resource owners and obtain their consent. Other services, such as Google and Facebook can provide OAuth 2.0
authorization services.

PingGateway as an OAuth 2.0 client

PingGateway as an OAuth 2.0 client supports the OAuth 2.0 filters and flows in the following table:

6.

•

•

•

•

Filter OAuth 2.0 flow Description

AuthorizationCodeOAuth2ClientFilter
(previously named
OAuth2ClientFilter)

Authorization Code Grant

This filter requires the user agent to authorize the
request interactively to obtain an access token and
optional ID token.
The access token is maintained only for the OAuth 2.0
session, and is valid only for the configured scopes.
This filter can act as an OpenID Connect relying party
or as an OAuth 2.0 client. Use for Web applications
running on a server.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 211

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1

PingGateway as an OAuth 2.0 resource server

The following image illustrates the steps for a client application to access a user’s protected resources, with AM as the
Authorization Server and PingGateway as the resource server:

Filter OAuth 2.0 flow Description

ResourceOwnerOAuth2ClientFilter Resource Owner
Password Credentials
Grant

According to information in the The OAuth 2.0
Authorization Framework, minimize use of this
grant type and use other grant types when possible.
This filter supports the transformation of client
credentials and user credentials to obtain an access
token from the Authorization Server. It injects the
access token into the inbound request as a Bearer
Authorization header. The access token is valid only for
the configured scopes.
Use for clients trusted with the resource owner
credentials.

ClientCredentialsOAuth2ClientFilter Client Credentials Grant This filter is similar to the Resource Owner Password
Credentials grant type, but the resource owner is not
part of the flow and the client accesses only
information relevant to itself.
Use when the client is the resource owner, or the client
does not act on behalf of the resource owner.

Gateway guide PingGateway

212 Copyright © 2025 Ping Identity Corporation

https://datatracker.ietf.org/doc/html/rfc6749#section-4.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.3
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-4.4
https://datatracker.ietf.org/doc/html/rfc6749#section-4.4

Figure 1. PingGateway as an OAuth 2.0 resource server handling OAuth 2.0 requests

The application obtains an authorization grant, representing the resource owner’s consent. For information about the
different OAuth 2.0 grant mechanisms supported by AM, refer to OAuth 2.0 grant flows in AM’s OAuth 2.0 guide.

The application authenticates to the Authorization Server and requests an access token. The Authorization Server returns
an access token to the application.

An OAuth 2.0 access token is an opaque string issued by the authorization server. When the client interacts with the
resource server, the client presents the access token in the Authorization header. For example:

Authorization: Bearer 7af...da9

Access tokens are the credentials to access protected resources. The advantage of access tokens over passwords or other
credentials is that access tokens can be granted and revoked without exposing the user’s credentials.

The access token represents the authorization to access protected resources. Because an access token is a bearer token,
anyone who has the access token can use it to get the resources. Access tokens must therefore be protected, so that
requests involving them go over HTTPS.

In OAuth 2.0, the token scopes are strings that identify the scope of access authorized to the client, but can also be used
for other purposes.

Resource
Owner

Resource
Owner

Client
Application

Client
Application

Authorization Server
PingAM

Authorization Server
PingAM

Resource Server
PingGateway

Resource Server
PingGateway

1 Authorization request

2 Authorization grant

3 Authorization grant

4 Access token

5 Access token

6
Grab the token from the
request header

7
Request token validation
and information

8
If the token is valid,
respond with information

9
Validate that the token is
active and has sufficient scopes

10
Create new context for the
Authorization Server response,
at ${contexts.oauth2}

11 Protected resources

•

•

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 213

https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-implementing-flows.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-implementing-flows.html

The application supplies the access token to the resource server, which then resolves and validates the access token by
using an access token resolver, as described in Access token resolvers.

If the access token is valid, the resource server permits the client access to the requested resource.

The OAuth2ResourceServerFilter grants access to a resource by using an OAuth 2.0 access token from the HTTP Authorization
header of a request.

When auditing is enabled, OAuth 2.0 token tracking IDs can be logged in access audit events for routes that contain an
OAuth2ResourceServerFilter. For information, refer to Audit the deployment and Audit framework.

Validate stateful or stateless access tokens through the introspection endpoint

This section sets up PingGateway as an OAuth 2.0 resource server, using the introspection endpoint.

For more information about configuring AM as an OAuth 2.0 authorization service, refer to AM’s OAuth 2.0 guide.

Before you start, prepare AM, PingGateway, and the sample application as described in Example installation for this guide.

Set up AM:

Select Applications > Agents > Identity Gateway, and register a PingGateway agent with the following values:

Agent ID: ig_agent

Password: password

Token Introspection: Realm Only

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Create an OAuth 2.0 Authorization Server:

Select Services > Add a Service > OAuth2 Provider.

Add a service with the default values.

•

emergency_home
This procedure uses the Resource Owner Password Credentials grant type. According to information in the The OAuth
2.0 Authorization Framework, minimize use of this grant type and utilize other grant types whenever possible.

Important

1.

1.

▪

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

2.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

3.

1.

2.

Gateway guide PingGateway

214 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/oauth2-guide/index.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/index.html
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

Create an OAuth 2.0 Client to request OAuth 2.0 access tokens:

Select Applications > OAuth 2.0 > Clients, and add a client with the following values:

Client ID: client-application

Client secret: password

Scope(s): mail , employeenumber

On the Advanced tab, select the following value:

Grant Types: Resource Owner Password Credentials

Set up PingGateway

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway:

$HOME/.openig/config/routes/rs-introspect.json

%appdata%\OpenIG\config\routes\rs-introspect.json

4.

1.

▪

▪

▪

2.

▪

2.

1.

2.

3.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 215

{
 "name": "rs-introspect",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/rs-introspect$')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }

Gateway guide PingGateway

216 Copyright © 2025 Ping Identity Corporation

 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></
body></html>"
 }
 }
 }
 }
}

For information about how to set up the PingGateway route in Studio, see Token validation using the introspection
endpoint in Structured Editor.

Notice the following features of the route:

The route matches requests to /rs-introspect .

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token in the authorization header of the
incoming authorization request, with the scopes mail and employeenumber .

The accessTokenResolver uses the AM server declared in the heap. The introspection endpoint to validate
the access token is extrapolated from the URL of the AM server.

For convenience in this test, requireHttps is false. In production environments, set it to true.

After the filter validates the access token, it creates a new context from the Authorization Server response.
The context is named oauth2 , and can be reached at contexts.oauth2 or contexts['oauth2'] .

The context contains information about the access token, which can be reached at
contexts.oauth2.accessToken.info . Filters and handlers further down the chain can access the token
info through the context.

If there is no access token in the request, or token validation does not complete successfully, the filter
returns an HTTP error status to the user agent, and PingGateway does not continue processing the request.
This is done as specified in the RFC, The OAuth 2.0 Authorization Framework: Bearer Token Usage.

The HttpBasicAuthenticationClientFilter adds the credentials to the outgoing token introspection request.

The StaticResponseHandler returns the content of the access token from the context $
{contexts.oauth2.accessToken.info} .

Test the setup:

In a terminal window, use a curl command similar to the following to retrieve an access token:

▪

▪

▪

▪

▪

3.

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 217

https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail%20employeenumber" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Validate the access token returned in the previous step:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/rs-introspect

{
 active = true,
 scope = employeenumber mail,
 realm=/,
 client_id = client-application,
 user_id = demo,
 token_type = Bearer,
 exp = 158...907,
 ...
}

Define required scopes with a script

This example builds on the example in Validate access tokens through the introspection endpoint to use a script to define the
scopes that a request requires in an access token.

If the request path is /rs-tokeninfo , the request requires only the scope mail .

If the request path is /rs-tokeninfo/employee , the request requires the scopes mail and employeenumber .

Before you start, set up and test the example in Validate access tokens through the introspection endpoint.

Add the following route to PingGateway:

$HOME/.openig/config/routes/rs-dynamicscope.json

%appdata%\OpenIG\rs-dynamicscope.json

2.

•

•

1.

Linux

Windows

Gateway guide PingGateway

218 Copyright © 2025 Ping Identity Corporation

{
 "name": "rs-dynamicscope",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/rs-dynamicscope')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": {
 "name": "myscript",
 "type": "ScriptableResourceAccess",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "// Minimal set of required scopes",
 "def scopes = ['mail'] as Set",
 "if (request.uri.path =~ /employee$/) {",
 " // Require another scope to access this resource",
 " scopes += 'employeenumber'",
 "}",
 "return scopes"
]
 }
 },
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 219

 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></body></
html>"
 }
 }
 }
 }
}

Test the setup with the mail scope only:

In a terminal, use a curl command to retrieve an access token with the scope mail :

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Confirm that the access token is returned for the /rs-dynamicscope path:

2.

1.

2.

Gateway guide PingGateway

220 Copyright © 2025 Ping Identity Corporation

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/rs-dynamicscope

{
 active = true,
 scope = mail,
 client_id = client-application,
 user_id = demo,
 token_type = Bearer,
 exp = 158...907,
 sub = demo,
 iss = http://am.example.com:8088/openam/oauth2, ...
 ...
}

Confirm that the access token is not returned for the /rs-dynamicscope/employee path:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/rs-dynamicscope/employee

Test the setup with the scopes mail and employeenumber :

In a terminal window, use a curl command similar to the following to retrieve an access token with the scopes
mail and employeenumber :

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail%20employeenumber" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Confirm that the access token is returned for the /rs-dynamicscope/employee path:

$ curl -v
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}"
https://ig.example.com:8443/rs-dynamicscope/employee

Validate stateless access tokens with the StatelessAccessTokenResolver

The StatelessAccessTokenResolver confirms that stateless access tokens provided by AM are well-formed, have a valid issuer,
have the expected access token name, and have a valid signature.

After the StatelessAccessTokenResolver resolves an access token, the OAuth2ResourceServerFilter checks that the token is within
the expiry time, and that it provides the required scopes. For more information, refer to StatelessAccessTokenResolver.

3.

3.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 221

The following sections provide examples of how to validate signed and encrypted access tokens:

Validate signed access tokens with the StatelessAccessTokenResolver and JwkSetSecretStore

This section provides examples of how to validate signed access tokens with the StatelessAccessTokenResolver, using a
JwkSetSecretStore. For more information about JwkSetSecretStore, refer to JwkSetSecretStore.

Set up AM:

Configure an OAuth 2.0 Authorization Provider:

Select Services, and add an OAuth 2.0 Provider.

Accept the default values and select Create. The service is added to the Services list.

On the Core tab, select the following option:

Use Client-Based Access & Refresh Tokens : on

On the Advanced tab, select the following options:

Client Registration Scope Allowlist : myscope

OAuth2 Token Signing Algorithm : RS256

Encrypt Client-Based Tokens : Deselected

Create an OAuth2 Client to request OAuth 2.0 access tokens:

Select Applications > OAuth 2.0 > Clients, and add a client with the following values:

Client ID : client-application

Client secret : password

Scope(s) : myscope

On the Advanced tab, select the following values:

Grant Types : Resource Owner Password Credentials

Response Types : code token

On the Signing and Encryption tab, include the following setting:

ID Token Signing Algorithm : RS256

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway:

emergency_home
This procedure uses the Resource Owner Password Credentials grant type. According to information in the The OAuth
2.0 Authorization Framework, minimize use of this grant type and utilize other grant types whenever possible.

Important

1.

1.

1.

2.

3.

▪

4.

▪

▪

▪

2.

1.

▪

▪

▪

2.

▪

▪

3.

▪

2.

1.

2.

Gateway guide PingGateway

222 Copyright © 2025 Ping Identity Corporation

https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

$HOME/.openig/config/routes/rs-stateless-signed.json

%appdata%\OpenIG\config\routes\rs-stateless-signed.json

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 223

{
 "name": "rs-stateless-signed",
 "condition": "${find(request.uri.path, '/rs-stateless-signed')}",
 "heap": [
 {
 "name": "SecretsProvider-1",
 "type": "SecretsProvider",
 "config": {
 "stores": [
 {
 "type": "JwkSetSecretStore",
 "config": {
 "jwkUrl": "http://am.example.com:8088/openam/oauth2/connect/jwk_uri"
 }
 }
]
 }
 }
],
 "handler": {
 "type": "Chain",
 "capture": "all",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": ["myscope"],
 "requireHttps": false,
 "accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "secretsProvider": "SecretsProvider-1",
 "issuer": "http://am.example.com:8088/openam/oauth2",
 "verificationSecretId": "any.value.in.regex.format"
 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></
body></html>"
 }
 }
 }
 }
}

Notice the following features of the route:

The route matches requests to /rs-stateless-signed .▪

Gateway guide PingGateway

224 Copyright © 2025 Ping Identity Corporation

A SecretsProvider in the heap declares a JwkSetSecretStore to manage secrets for signed access tokens.

The JwkSetSecretStore specifies the URL to a JWK set on AM, that contains the signing keys.

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token in the header of the incoming
authorization request, with the scope myscope .

The StatelessAccessTokenResolver uses the SecretsProvider to verify the signature of the provided access
token.

After the OAuth2ResourceServerFilter validates the access token, it creates the OAuth2Context context. For
more information, refer to OAuth2Context.

If there is no access token in a request, or token validation does not complete successfully, the filter returns
an HTTP error status to the user agent, and PingGateway does not continue processing the request. This is
done as specified in the RFC The OAuth 2.0 Authorization Framework: Bearer Token Usage.

The StaticResponseHandler returns the content of the access token from the context.

Test the setup for a signed access token:

Get an access token for the demo user, using the scope myscope :

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=myscope" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Display the token:

$ echo ${mytoken}

Note that the token is structured as a signed token.

Access the route by providing the token returned in the previous step:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/rs-stateless-signed

...
 Decoded access_token: {
 sub=(usr!demo),
 cts=OAUTH2_STATELESS_GRANT,
 ...

Validate signed access tokens with the StatelessAccessTokenResolver and KeyStoreSecretStore

This section provides examples of how to validate signed access tokens with the StatelessAccessTokenResolver, using a
KeyStoreSecretStore. For more information about KeyStoreSecretStore, refer to KeyStoreSecretStore.

▪

▪

▪

▪

▪

▪

▪

3.

1.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 225

https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750

Set up keys to sign access tokens

Locate the following directories for keys, keystores, and certificates, and in a terminal create variables for them:

Directory where the keystore is created: keystore_directory

AM keystore directory: am_keystore_directory

PingGateway keystore directory: ig_keystore_directory

Set up the keystore for signing keys:

Generate a private key called signature-key , and a corresponding public certificate called x509certificate.pem :

$ openssl req -x509 \
-newkey rsa:2048 \
-nodes \
-subj "/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout $keystore_directory/signature-key.key \
-out $keystore_directory/x509certificate.pem \
-days 365

...
writing new private key to '$keystore_directory/signature-key.key'

Convert the private key and certificate files into a PKCS#12 file, called signature-key , and store them in a
keystore named keystore.p12 :

$ openssl pkcs12 \
-export \
-in $keystore_directory/x509certificate.pem \
-inkey $keystore_directory/signature-key.key \
-out $keystore_directory/keystore.p12 \
-passout pass:password \
-name signature-key

List the keys in keystore.p12 :

$ keytool -list \
-v \
-keystore "$keystore_directory/keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 1 entry
Alias name: signature-key

Set up keys for AM:

Copy the signing key keystore.p12 to AM:

1.

◦

◦

◦

2.

1.

2.

3.

3.

1.

Gateway guide PingGateway

226 Copyright © 2025 Ping Identity Corporation

$ cp $keystore_directory/keystore.p12 $am_keystore_directory/AM_keystore.p12

List the keys in the AM keystore:

$ keytool -list \
-v \
-keystore "$am_keystore_directory/AM_keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 1 entry
Alias name: signature-key

Add a file called keystore.pass , containing the store password password :

$ cd $am_keystore_directory
$ echo -n 'password' > keystore.pass

The filename corresponds to the secret ID of the store password and entry password for the KeyStoreSecretStore.

Restart AM.

Set up keys for PingGateway:

Import the public certificate to the IG keystore, with the alias verification-key :

$ keytool -import \
-trustcacerts \
-rfc \
-alias verification-key \
-file "$keystore_directory/x509certificate.pem" \
-keystore "$ig_keystore_directory/IG_keystore.p12" \
-storetype PKCS12 \
-storepass "password"

...
Trust this certificate? [no]: yes
Certificate was added to keystore

List the keys in the PingGateway keystore:

2.

3.

info
Make sure the password file contains only the password, with no trailing spaces or carriage returns.

Note

4.

4.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 227

$ keytool -list \
-v \
-keystore "$ig_keystore_directory/IG_keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 1 entry
Alias name: verification-key

In the PingGateway configuration, set an environment variable for the keystore password:

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

Restart PingGateway.

Validate signed access tokens with the StatelessAccessTokenResolver and KeyStoreSecretStore

Set up AM:

Create a KeyStoreSecretStore to manage the new AM keystore:

In AM, select Secret Stores, and then add a secret store with the following values:

Secret Store ID : keystoresecretstore

Store Type : Keystore

File : am_keystore_directory/AM_keystore.p12

Keystore type : PKCS12

Store password secret label : keystore.pass

Entry password secret label : keystore.pass

Select the Mappings tab, and add a mapping with the following values:

Secret Label : am.services.oauth2.stateless.signing.RSA

Aliases : signature-key

The mapping sets signature-key as the active alias to use for signature generation.

Create a FileSystemSecretStore to manage secrets for the KeyStoreSecretStore:

Select Secret Stores, and then create a secret store with the following configuration:

Secret Store ID : filesystemsecretstore

3.

4.

emergency_home
This procedure uses the Resource Owner Password Credentials grant type. According to information in the The OAuth
2.0 Authorization Framework, minimize use of this grant type and utilize other grant types whenever possible.

Important

1.

1.

1.

▪

▪

▪

▪

▪

▪

2.

▪

▪

2.

1.

▪

Gateway guide PingGateway

228 Copyright © 2025 Ping Identity Corporation

https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

Store Type : File System Secret Volumes

Directory : am_keystore_directory

File format : Plain text

Configure an OAuth 2.0 Authorization Provider:

Select Services, and add an OAuth 2.0 Provider.

Accept all of the default values, and select Create. The service is added to the Services list.

On the Core tab, select the following option:

Use Client-Based Access & Refresh Tokens : on

On the Advanced tab, select the following options:

Client Registration Scope Allowlist : myscope

OAuth2 Token Signing Algorithm : RS256

Encrypt Client-Based Tokens : Deselected

Create an OAuth2 Client to request OAuth 2.0 access tokens:

Select Applications > OAuth 2.0 > Clients, and add a client with the following values:

Client ID : client-application

Client secret : password

Scope(s) : myscope

On the Advanced tab, select the following values:

Grant Types : Resource Owner Password Credentials

Response Types : code token

On the Signing and Encryption tab, include the following setting:

ID Token Signing Algorithm : RS256

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway, replacing ig_keystore_directory:

$HOME/.openig/config/routes/rs-stateless-signed-ksss.json

▪

▪

▪

3.

1.

2.

3.

▪

4.

▪

▪

▪

4.

1.

▪

▪

▪

2.

▪

▪

3.

▪

2.

1.

2.

Linux

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 229

%appdata%\OpenIG\config\routes\rs-stateless-signed-ksss.json

Windows

Gateway guide PingGateway

230 Copyright © 2025 Ping Identity Corporation

{
 "name": "rs-stateless-signed-ksss",
 "condition" : "${find(request.uri.path, '/rs-stateless-signed-ksss')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "<ig_keystore_directory>/IG_keystore.p12",
 "storeType": "PKCS12",
 "storePasswordSecretId": "keystore.secret.id",
 "entryPasswordSecretId": "keystore.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "mappings": [
 {
 "secretId": "stateless.access.token.verification.key",
 "aliases": ["verification-key"]
 }
]
 }
 }
],
 "handler" : {
 "type" : "Chain",
 "capture" : "all",
 "config" : {
 "filters" : [{
 "name" : "OAuth2ResourceServerFilter-1",
 "type" : "OAuth2ResourceServerFilter",
 "config" : {
 "scopes" : ["myscope"],
 "requireHttps" : false,
 "accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "secretsProvider": "KeyStoreSecretStore-1",
 "issuer": "http://am.example.com:8088/openam/oauth2",
 "verificationSecretId": "stateless.access.token.verification.key"
 }
 }
 }
 }],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></
body></html>"
 }
 }
 }
 }
}

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 231

Notice the following features of the route:

The route matches requests to /rs-stateless-signed-ksss .

The keystore password is provided by the SystemAndEnvSecretStore in the heap.

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token in the header of the incoming
authorization request, with the scope myscope .

The accessTokenResolver uses a StatelessAccessTokenResolver to resolve and verify the authenticity of
the access token. The secret is provided by the KeyStoreSecretStore in the heap.

After the OAuth2ResourceServerFilter validates the access token, it creates the OAuth2Context context. For
more information, refer to OAuth2Context.

If there is no access token in a request, or if the token validation does not complete successfully, the filter
returns an HTTP error status to the user agent, and PingGateway stops processing the request, as specified
in the RFC, The OAuth 2.0 Authorization Framework: Bearer Token Usage.

The StaticResponseHandler returns the content of the access token from the context.

Test the setup for a signed access token:

Get an access token for the demo user, using the scope myscope :

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=myscope" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Display the token:

$ echo ${mytoken}

Access the route by providing the token returned in the previous step:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/rs-stateless-signed-ksss

...
Decoded access_token: {
sub=(usr!demo),
cts=OAUTH2_STATELESS_GRANT,
...

▪

▪

▪

▪

▪

▪

▪

3.

1.

2.

3.

Gateway guide PingGateway

232 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750

Validating encrypted access tokens with the StatelessAccessTokenResolver and KeyStoreSecretStore

Set up keys to encrypt access tokens

Locate the following directories for keys, keystores, and certificates, and in a terminal create variables for them:

Directory where the keystore is created: keystore_directory

AM keystore directory: am_keystore_directory

PingGateway keystore directory: ig_keystore_directory

Set up keys for AM:

Generate the encryption key:

$ keytool -genseckey \
-alias encryption-key \
-dname "CN=ig.example.com, OU=example, O=com, L=fr, ST=fr, C=fr" \
-keystore "$am_keystore_directory/AM_keystore.p12" \
-storetype PKCS12 \
-storepass "password" \
-keyalg AES \
-keysize 256

List the keys in the AM keystore:

$ keytool -list \
-v \
-keystore "$am_keystore_directory/AM_keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 1 entry
Alias name: encryption-key

Add a file called keystore.pass , with the content password :

$ cd $am_keystore_directory
$ echo -n 'password' > keystore.pass

The filename corresponds to the secret ID of the store password and entry password for the KeyStoreSecretStore.

Restart AM.

1.

◦

◦

◦

2.

1.

2.

3.

info
Make sure the password file contains only the password, with no trailing spaces or carriage returns.

Note

4.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 233

Set up keys for PingGateway:

Import encryption-key into the PingGateway keystore, with the alias decryption-key :

$ keytool -importkeystore \
-srcalias encryption-key \
-srckeystore "$am_keystore_directory/AM_keystore.p12" \
-srcstoretype PKCS12 \
-srcstorepass "password" \
-destkeystore "$ig_keystore_directory/IG_keystore.p12" \
-deststoretype PKCS12 \
-destalias decryption-key \
-deststorepass "password" \
-destkeypass "password"

List the keys in the PingGateway keystore:

$ keytool -list \
-v \
-keystore "$ig_keystore_directory/IG_keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 1 entry
Alias name: decryption-key

In the PingGateway configuration, set an environment variable for the keystore password:

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

Restart PingGateway.

Validate encrypted access tokens with the StatelessAccessTokenResolver and KeyStoreSecretStore

Set up AM:

Set up AM as described in Validate signed access tokens with the StatelessAccessTokenResolver and
KeyStoreSecretStore.

Add a mapping for the encryption keystore:

Select Secret Stores > keystoresecretstore .

Select the Mappings tab, and add a mapping with the following values:

Secret Label : am.services.oauth2.stateless.token.encryption

Alias : encryption-key

Enable token encryption on the OAuth 2.0 Authorization Provider:

Select Services > OAuth2 Provider.

3.

1.

2.

3.

4.

1.

1.

2.

1.

2.

▪

▪

3.

1.

Gateway guide PingGateway

234 Copyright © 2025 Ping Identity Corporation

On the Advanced tab, select Encrypt Client-Side Tokens.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway, replacing ig_keystore_directory:

$HOME/.openig/config/routes/rs-stateless-encrypted.json

%appdata%\OpenIG\config\routes\rs-stateless-encrypted.json

2.

2.

1.

2.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 235

{
 "name": "rs-stateless-encrypted",
 "condition": "${find(request.uri.path, '/rs-stateless-encrypted')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "<ig_keystore_directory>/IG_keystore.p12",
 "storeType": "PKCS12",
 "storePasswordSecretId": "keystore.secret.id",
 "entryPasswordSecretId": "keystore.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "mappings": [
 {
 "secretId": "stateless.access.token.decryption.key",
 "aliases": ["decryption-key"]
 }
]
 }
 }
],
 "handler": {
 "type": "Chain",
 "capture": "all",
 "config": {
 "filters": [{
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": ["myscope"],
 "requireHttps": false,
 "accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "secretsProvider": "KeyStoreSecretStore-1",
 "issuer": "http://am.example.com:8088/openam/oauth2",
 "decryptionSecretId": "stateless.access.token.decryption.key"
 }
 }
 }
 }],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></
body></html>"
 }
 }
 }
 }
}

Gateway guide PingGateway

236 Copyright © 2025 Ping Identity Corporation

Notice the following features of the route compared to rs-stateless-signed.json , used in: Validate signed
access tokens with the StatelessAccessTokenResolver and KeyStoreSecretStore:

The route matches requests to /rs-stateless-encrypted .

The OAuth2ResourceServerFilter and KeyStoreSecretStore refer to the configuration for a decryption key
instead of a verification key.

Test the setup

Get an access token for the demo user, using the scope myscope :

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=myscope" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Display the token:

$ echo ${mytoken}

Note that the token is structured as an encrypted token.

Access the route by providing the token returned in the previous step:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/rs-stateless-encrypted

...
Decoded access_token: {
sub=demo,
cts=OAUTH2_STATELESS_GRANT,
...

Validate certificate-bound access tokens

Clients can authenticate to AM through mutual TLS (mTLS) and X.509 certificates. Certificates must be self-signed or use public
key infrastructure (PKI), as described in version 12 of the draft OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound
Access Tokens.

When a client requests an access token from AM through mTLS, AM can use a confirmation key to bind the access token to the
presented client certificate. The confirmation key is the certificate thumbprint, computed as base64url-
encode(sha256(der(certificate))) . The access token is then certificate-bound. For more information, refer to Mutual TLS in
AM’s OAuth 2.0 guide.

When the client connects to PingGateway by using that certificate, PingGateway can verify that the confirmation key corresponds
to the presented certificate. This proof-of-possession interaction ensures that only the client in possession of the key
corresponding to the certificate can use the access token to access protected resources.

▪

▪

3.

1.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 237

https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/client-auth-mtls.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/client-auth-mtls.html

mTLS using standard TLS client certificate authentication

PingGateway can validate the thumbprint of certificate-bound access tokens by reading the client certificate from the TLS
connection.

For this example, the client must be connected directly to PingGateway through a TLS connection, for which PingGateway is the
TLS termination point. If TLS is terminated at a reverse proxy or load balancer before PingGateway, use the example in mTLS
Using Trusted Headers.

Client

AM
Bind client certificate to

token with confirmation key

PingGateway
Verify confirmation key

matches client certificate

Client registration

Token bound to certificate

Introspection

mTLS connection
- Client authentication
- No certificate validation
- Same client certificate presented

mTLS
mTLS

Certificate

Token bound to certificate

Token bound to certificate

Certificate

Certificate

mTLS

mTLS

Gateway guide PingGateway

238 Copyright © 2025 Ping Identity Corporation

Perform the procedures in this section to set up and test mTLS using standard TLS client certificate authentication:

To make it easy to identify and refer to secrets used in mTLS examples, create directories and environment variables:

$ export ig_keystore_directory=/path/to/ig/secrets
$ export am_keystore_directory=/path/to/am/secrets
$ export oauth2_client_keystore_directory=/path/to/client/secrets

Create keys and certificates for the example:

Create self-signed RSA key pairs for AM and the client:

$ keytool -genkeypair \
-alias openam-server \
-keyalg RSA \
-keysize 2048 \
-keystore $am_keystore_directory/keystore.p12 \
-storepass changeit \
-storetype PKCS12 \
-keypass changeit \
-validity 360 \
-dname CN=am.example.com,O=Example,C=FR

Client

Client

Authorization Server
PingAM

Authorization Server
PingAM

Resource Server
PingGateway

Resource Server
PingGateway

Obtain Access Token

1 (TLS) Request access token

2
Bind the client certificate
thumbprint to the access token

3 (TLS) Return access token

Access a Resource

4
(TLS) Send request with access token on mutual TLS connection
(client is trusted by the resource server)

5
Read client certificate from incoming
TLS connection, and compute its thumbprint

6
Read client certificate bound to token by AM,
through introspection, and find its thumbprint

7 Confirm that the two thumbprints match

8 Continue standard OAuth 2.0 flow

9 (TLS) Allow access to protected resources

1.

2.

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 239

$ keytool -genkeypair \
-alias oauth2-client \
-keyalg RSA \
-keysize 2048 \
-keystore $oauth2_client_keystore_directory/keystore.p12 \
-storepass changeit \
-storetype PKCS12 \
-keypass changeit \
-validity 360 \
-dname CN=test

Export the certificates to .pem so that the curl client can verify the identity of the AM and PingGateway servers:

$ keytool -export \
-rfc \
-alias openam-server \
-keystore $am_keystore_directory/keystore.p12 \
-storepass changeit \
-storetype PKCS12 \
-file $am_keystore_directory/openam-server.cert.pem

Certificate stored in file .../openam-server.cert.pem

Extract the certificate and client private key to .pem so that the curl command can identity itself as the client for
the HTTPS connection:

$ keytool -export \
-rfc \
-alias oauth2-client \
-keystore $oauth2_client_keystore_directory/keystore.p12 \
-storepass changeit \
-storetype PKCS12 \
-file $oauth2_client_keystore_directory/client.cert.pem

Certificate stored in file .../client.cert.pem

$ openssl pkcs12 \
-in $oauth2_client_keystore_directory/keystore.p12 \
-nocerts \
-nodes \
-passin pass:changeit \
-out $oauth2_client_keystore_directory/client.key.pem

...verified OK

Create the CACerts truststore so that AM can validate the client identity:

2.

3.

4.

Gateway guide PingGateway

240 Copyright © 2025 Ping Identity Corporation

$ keytool -import \
-noprompt \
-trustcacerts \
-file $oauth2_client_keystore_directory/client.cert.pem \
-keystore $oauth2_client_keystore_directory/cacerts.p12 \
-storepass changeit \
-storetype PKCS12 \
-alias client-cert

Certificate was added to keystore

In ig_keystore_directory, add a file called keystore.pass containing the keystore password:

$ cd $ig_keystore_directory
$ echo -n 'changeit' > keystore.pass

Configure AM:

Configure AM for TLS connections using information from Secure HTTP and LDAP connections in AM’s Security
guide.

Add a connector configuration for port 8445 to AM’s Tomcat server.xml , replacing the values for the
keystore directories with your path. If the file already contains a connector for the port, edit that connector
or replace it:

<Connector port="8445" protocol="HTTP/1.1" SSLEnabled="true" scheme="https" secure="true">
 <SSLHostConfig protocols="+TLSv1.2,-TLSv1.1,-TLSv1,-SSLv2Hello,-SSLv3"
 certificateVerification="optionalNoCA"
 truststoreFile="oauth2_client_keystore_directory/cacerts.p12"
 truststorePassword="changeit"
 truststoreType="PKCS12">
 <Certificate certificateKeystoreFile="am_keystore_directory/keystore.p12"
 certificateKeystorePassword="changeit"
 certificateKeystoreType="PKCS12"/>
 </SSLHostConfig>
</Connector>

In AM, export an environment variable for the base64-encoded value of the password (changeit) for the
cacerts.p12 truststore:

$ export PASSWORDSECRETID='Y2hhbmdlaXQ='

Restart AM, and make sure you can access it on the secure port https://am.example.com:8445/openam .

5.

3.

1.

1.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 241

https://docs.pingidentity.com/pingam/7.5/security-guide/secure-connections.html
https://docs.pingidentity.com/pingam/7.5/security-guide/secure-connections.html

Configure AM for mTLS using information from Mutual TLS in AM’s OAuth 2.0 guide.

In a the AM admin UI, select Applications > Agents > Identity Gateway, and register a PingGateway agent
with the following values:

Agent ID: ig_agent

Password: password

Token Introspection: Realm Only

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Configure an OAuth 2.0 Authorization Server:

Select Services > Add a Service > OAuth2 Provider, and add a service with the default values.

On the Advanced tab, select the following value:

Support TLS Certificate-Bound Access Tokens: enabled

Configure an OAuth 2.0 client to request access tokens:

Select Applications > OAuth 2.0 > Clients, and add a client with the following values:

Client ID: client-application

Client secret: password

Scope(s): test

On the Advanced tab, select the following values:

Grant Types: Client Credentials

The password is the only grant type used by the client in the example.

Token Endpoint Authentication Method: tls_client_auth

On the Signing and Encryption tab, set the following values:

mTLS Self-Signed Certificate: Enter the content of the X.509 certificate, client.cert.pem.

mTLS Subject DN: CN=test

Public key selector: x509

2.

1.

▪

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager
to generate secure passwords.

Important

2.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication
module in AM. This step is currently optional, but will be required when authentication chains
and modules are removed in a future release of AM.

Important

3.

1.

2.

▪

4.

1.

▪

▪

▪

2.

▪

▪

3.

▪

▪

▪

Gateway guide PingGateway

242 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/oauth2-guide/client-auth-mtls.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/client-auth-mtls.html

When this option is set, AM requires the subject DN in the client certificate to have the same
value. This ensures that the certificate is from the client, and not just any valid certificate
trusted by the trust manager.

Use Certificate-Bound Access Tokens: Enabled

Configure PingGateway for mTLS connections:

Configure PingGateway using information from Configure PingGateway for mTLS (server-side).

This example uses a self-signed certificate stored in a PEM file.

Add a SecretsTrustManager to admin.json . This example uses the following file:

$HOME/.openig/config/admin.json

%appdata%\OpenIG\config\admin.json

▪

4.

1.

2.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 243

{
 "mode": "DEVELOPMENT",
 "properties": {
 "ig_keystore_directory": "/path/to/ig/secrets",
 "oauth2_client_keystore_directory": "/path/to/client/secrets"
 },
 "connectors": [
 {
 "port": 8080
 },
 {
 "port": 8443,
 "tls": {
 "type": "ServerTlsOptions",
 "config": {
 "alpn": {
 "enabled": true
 },
 "clientAuth": "REQUEST",
 "keyManager": "SecretsKeyManager-1",
 "trustManager": "SecretsTrustManager-1"
 }
 }
 }
],
 "heap": [
 {
 "name": "SecretsPasswords",
 "type": "FileSystemSecretStore",
 "config": {
 "directory": "&{ig_keystore_directory}",
 "format": "PLAIN"
 }
 },
 {
 "name": "SecretsKeyManager-1",
 "type": "SecretsKeyManager",
 "config": {
 "signingSecretId": "key.manager.secret.id",
 "secretsProvider": "ServerIdentityStore"
 }
 },
 {
 "name": "SecretsTrustManager-1",
 "type": "SecretsTrustManager",
 "config": {
 "verificationSecretId": "trust.manager.secret.id",
 "secretsProvider": {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "&{oauth2_client_keystore_directory}/cacerts.p12",
 "storePasswordSecretId": "keystore.pass",
 "secretsProvider": "SecretsPasswords",
 "mappings": [
 {
 "secretId": "trust.manager.secret.id",
 "aliases": ["client-cert"]
 }
]
 }

Gateway guide PingGateway

244 Copyright © 2025 Ping Identity Corporation

 }
 }
 },
 {
 "name": "ServerIdentityStore",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "&{ig_keystore_directory}",
 "suffix": ".pem",
 "mappings": [{
 "secretId": "key.manager.secret.id",
 "format": {
 "type": "PemPropertyFormat"
 }
 }]
 }
 }
]
}

Replace the values of the secret directories with your directories, and then start PingGateway.

Configure PingGateway as a resource server for mTLS:

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway:

$HOME/.openig/config/routes/mtls-certificate.json

%appdata%\OpenIG\config\routes\mtls-certificate.json

3.

5.

1.

2.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 245

{
 "name": "mtls-certificate",
 "condition": "${find(request.uri.path, '/mtls-certificate')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "capture": "all",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "test"
],
 "requireHttps": false,
 "accessTokenResolver": {
 "type": "ConfirmationKeyVerifierAccessTokenResolver",
 "config": {
 "delegate": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }

Gateway guide PingGateway

246 Copyright © 2025 Ping Identity Corporation

 }
 }
 }
 }
],
 "handler": {
 "name": "StaticResponseHandler-1",
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "mTLS\n Valid token: ${contexts.oauth2.accessToken.token}\n Confirmation keys: $
{contexts.oauth2}"
 }
 }
 }
 }
}

Notice the following features of the route:

The route matches requests to /mtls-certificate .

The OAuth2ResourceServerFilter uses the ConfirmationKeyVerifierAccessTokenResolver to validate the
certificate thumbprint against the thumbprint from the resolved access token, provided by AM.

The ConfirmationKeyVerifierAccessTokenResolver then delegates token resolution to the
TokenIntrospectionAccessTokenResolver.

The providerHandler adds an authorization header to the request, containing the username and
password of the OAuth 2.0 client with the scope to examine (introspect) access tokens.

The OAuth2ResourceServerFilter checks that the resolved token has the required scopes, and injects the
token info into the context.

The StaticResponseHandler returns the content of the access token from the context.

Test the setup

Get an access token from AM, over mTLS:

$ mytoken=$(curl --request POST \
--cacert $am_keystore_directory/openam-server.cert.pem \
--cert $oauth2_client_keystore_directory/client.cert.pem \
--key $oauth2_client_keystore_directory/client.key.pem \
--header 'cache-control: no-cache' \
--header 'content-type: application/x-www-form-urlencoded' \
--data 'client_id=client-application&grant_type=client_credentials&scope=test' \
https://am.example.com:8445/openam/oauth2/access_token | jq -r .access_token)

Introspect the access token on AM:

▪

▪

▪

▪

▪

6.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 247

$ curl --request POST \
-u ig_agent:password \
--header 'content-type: application/x-www-form-urlencoded' \
--data token=${mytoken} \
http://am.example.com:8088/openam/oauth2/realms/root/introspect | jq

{
 "active": true,
 "scope": "test",
 "realm": "/",
 "client_id": "client-application",
 "user_id": "client-application",
 "token_type": "Bearer",
 "exp": 155...833,
 "sub": "(age!client-application)",
 "subname": "client-application",
 "iss": "http://am.example.com:8088/openam/oauth2",
 "cnf": {
 "x51...156": "T4u...R9Q"
 },
 "authGrantId": "dfE...2vk",
 "auditTrackingId": "e36...524"
}

The cnf property indicates the value of the confirmation code, as follows:

x5 : X509 certificate

t : thumbprint

: separator

S256 : algorithm used to hash the raw certificate bytes

Access the PingGateway route to validate the token’s confirmation thumbprint with the
ConfirmationKeyVerifierAccessTokenResolver:

$ curl --request POST \
--cacert $ig_keystore_directory/ig.example.com-certificate.pem \
--cert $oauth2_client_keystore_directory/client.cert.pem \
--key $oauth2_client_keystore_directory/client.key.pem \
--header "authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/mtls-certificate

mTLS
 Valid token: 2Bp...s_k
 Confirmation keys: {
 ...
 }

The validated token and confirmation keys are displayed.

▪

▪

▪

▪

3.

Gateway guide PingGateway

248 Copyright © 2025 Ping Identity Corporation

mTLS using trusted headers

PingGateway can validate the thumbprint of certificate-bound access tokens by reading the client certificate from a configured,
trusted HTTP header.

Use this method when TLS is terminated at a reverse proxy or load balancer before PingGateway. PingGateway cannot
authenticate the client through the TLS connection’s client certificate because:

If the connection is over TLS, the connection presents the certificate of the TLS termination point before PingGateway.

If the connection is not over TLS, the connection presents no client certificate.

If the client is connected directly to PingGateway through a TLS connection, for which PingGateway is the TLS termination point,
use the example in mTLS Using Standard TLS Client Certificate Authentication.

Configure the proxy or load balancer to:

Forward the encoded certificate to PingGateway in the trusted header. Encode the certificate in an HTTP-header
compatible format that can convey a full certificate, so that PingGateway can rebuild the certificate.

Strip the trusted header from incoming requests, and change the default header name to something an attacker can’t
guess.

Because there is a trust relationship between PingGateway and the TLS termination point, PingGateway doesn’t authenticate the
contents of the trusted header. PingGateway accepts any value in a header from a trusted TLS termination point.

Use this example when the PingGateway instance is running behind a load balancer or other ingress point. If the PingGateway
instance is running behind the TLS termination point, consider the example in mTLS Using Standard TLS Client Certificate
Authentication.

The following image illustrates the connections and certificates required by the example:

•

•

•

•

Client

AM
Bind client certificate to
token with confirmation

key

IG
Verify confirmation key

matches client certificate

Client registration

Token bound to certificate

Introspection

TLS connection
- Client authentication
- No certificate validation
- Same client certificate presented

TLSTLS

TLS

Token bound to certificate

Proxy
(Ex, NGNIX)

Certificate

Certificate

Certificate

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 249

Set up mTLS using trusted headers

The client can provide its certificate to AM using either standard TLS client certificate authentication or trusted HTTP headers. This
example passes the certificate in a trusted HTTP header. Learn more from Providing client certificates to AM in AM’s OAuth2.0
guide.

Set up the keystores, truststores, AM, and PingGateway as described in mTLS Using Standard TLS Client Certificate
Authentication.

Base64-encode the value of $oauth2_client_keystore_directory/client.cert.pem . The value is used in the final POST.

Add the following route to PingGateway:

$HOME/.openig/config/routes/mtls-header.json

Client

Client

Authorization Server
PingAM

Authorization Server
PingAM

Load Balancer
or Reverse Proxy

Load Balancer
or Reverse Proxy

Resource Server
PingGateway

Resource Server
PingGateway

Obtain Access Token

1 (TLS) Request access token

2
Bind the client certificate
thumbprint to the access token

3 (TLS) Return access token

Access a Resource

4 (TLS) Send request with access token

5
Strip the trusted header from
the request, to prevent forgery

6
Read client certificate from the
incoming TLS connection

7
Add a named header to request,
containing the client certificate

8
Forward incoming request, containing
access token and client certificate

9
Read client certificate from named HTTP
header, and compute its thumbprint

10
Read client certificate bound to token by AM,
through introspection, and find its thumbprint

11 Confirm that the two thumbprints match

12 Continue standard OAuth 2.0 flow

13 Allow access to protected resources

14 (TLS) Allow access to protected resources

1.

2.

3.

Linux

Gateway guide PingGateway

250 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/oauth2-guide/client-auth-mtls.html#provide-mtls-certs
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/client-auth-mtls.html#provide-mtls-certs

%appdata%\OpenIG\config\routes\mtls-header.json

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 251

{
 "name": "mtls-header",
 "condition": "${find(request.uri.path, '/mtls-header')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam"
 }
 }
],
 "handler": {
 "type": "Chain",
 "capture": "all",
 "config": {
 "filters": [
 {
 "name": "CertificateThumbprintFilter-1",
 "type": "CertificateThumbprintFilter",
 "config": {
 "certificate": "${pemCertificate(decodeBase64(request.headers['ssl_client_cert'][0]))}",
 "failureHandler": {
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "def response = new Response(Status.TEAPOT);",
 "response.entity = 'Failure in CertificateThumbprintFilter'",
 "return response"
]
 }
 }
 }
 },
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "test"
],
 "requireHttps": false,
 "accessTokenResolver": {
 "type": "ConfirmationKeyVerifierAccessTokenResolver",
 "config": {
 "delegate": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",

Gateway guide PingGateway

252 Copyright © 2025 Ping Identity Corporation

 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 }
 }
 }
],
 "handler": {
 "name": "StaticResponseHandler-1",
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "mTLS\n Valid token: ${contexts.oauth2.accessToken.token}\n Confirmation keys: $
{contexts.oauth2}"
 }
 }
 }
 }
}

Notice the following features of the route compared to mtls-certificate.json :

The route matches requests to /mtls-header .

The CertificateThumbprintFilter extracts a Java certificate from the trusted header, computes the SHA-256
thumbprint of that certificate, and makes the thumbprint available for the
ConfirmationKeyVerifierAccessTokenResolver.

Test the setup:

Get an access token from AM, over mTLS:

◦

◦

4.

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 253

$ mytoken=$(curl --request POST \
--cacert $am_keystore_directory/openam-server.cert.pem \
--cert $oauth2_client_keystore_directory/client.cert.pem \
--key $oauth2_client_keystore_directory/client.key.pem \
--header 'cache-control: no-cache' \
--header 'content-type: application/x-www-form-urlencoded' \
--data 'client_id=client-application&grant_type=client_credentials&scope=test' \
https://am.example.com:8445/openam/oauth2/access_token | jq -r .access_token)

Introspect the access_token on AM:

$ curl --request POST \
-u ig_agent:password \
--header 'content-type: application/x-www-form-urlencoded' \
--data token=${mytoken} \
http://am.example.com:8088/openam/oauth2/realms/root/introspect | jq

{
 "active": true,
 "scope": "test",
 "realm": "/",
 "client_id": "client-application",
 "user_id": "client-application",
 "token_type": "Bearer",
 "exp": 157...994,
 "sub": "(age!client-application)",
 "subname": "client-application",
 "iss": "http://am.example.com:8088/openam/oauth2",
 "cnf": {
 "x51...156": "1QG...Wgc"
 },
 "authGrantId": "lto...8vw",
 "auditTrackingId": "119...480"
}

The cnf property indicates the value of the confirmation code, as follows:

x5 : X509 certificate

t : thumbprint

: separator

S256 : algorithm used to hash the raw certificate bytes

Access the PingGateway route to validate the confirmation key, replacing the base64-encoded value of
$oauth2_client_keystore_directory/client.cert.pem :

2.

▪

▪

▪

▪

3.

Gateway guide PingGateway

254 Copyright © 2025 Ping Identity Corporation

$ curl --request POST \
--header "authorization:Bearer $mytoken" \
--header 'ssl_client_cert:<base64-encoded-cert>'
http://ig.example.com:8080/mtls-header

Valid token: zw5...Sj1
 Confirmation keys: {
 ...
 }

The validated token and confirmation keys are displayed.

Use the OAuth 2.0 context to log in to the sample application

This section contains an example route that retrieves scopes from a token introspection, assigns them as the PingGateway
session username and password, and uses them to log the user directly in to the sample application.

For information about the context, refer to OAuth2Context.

Before you start, set up and test the example in Validate access tokens through the introspection endpoint.

Set up AM:

Select Identities, and change the email address of the demo user to demo .

Select Scripts > OAuth2 Access Token Modification Script, and replace the default script as follows:

import org.forgerock.http.protocol.Request
import org.forgerock.http.protocol.Response
import com.iplanet.sso.SSOException
import groovy.json.JsonSlurper

def attributes = identity.getAttributes(["mail"].toSet())
accessToken.setField("mail", attributes["mail"][0])
accessToken.setField("password", "Ch4ng31t")

The AM script adds user profile information to the access token, and adds a password field with the value
Ch4ng31t .

Set up PingGateway:

Add the following route to PingGateway:

1.

1.

2.

warning
Don’t use this example in production. If the token is stateless and unencrypted, the password value is
easily accessible when you have the token.

Warning

2.

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 255

$HOME/.openig/config/routes/rs-pwreplay.json

%appdata%\OpenIG\config\routes\rs-pwreplay.json

Linux

Windows

Gateway guide PingGateway

256 Copyright © 2025 Ping Identity Corporation

{
 "name" : "rs-pwreplay",
 "baseURI" : "http://app.example.com:8081",
 "condition" : "${find(request.uri.path, '^/rs-pwreplay')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler" : {
 "type" : "Chain",
 "config" : {
 "filters" : [
 {
 "name" : "OAuth2ResourceServerFilter-1",
 "type" : "OAuth2ResourceServerFilter",
 "config" : {
 "scopes" : ["mail", "employeenumber"],
 "requireHttps" : false,
 "realm" : "OpenIG",
 "accessTokenResolver": {
 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 },
 {
 "type": "AssignmentFilter",

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 257

 "config": {
 "onRequest": [{
 "target": "${session.username}",
 "value": "${contexts.oauth2.accessToken.info.mail}"
 },
 {
 "target": "${session.password}",
 "value": "${contexts.oauth2.accessToken.info.password}"
 }
]
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${session.username}"
],
 "password": [
 "${session.password}"
]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route compared to rs-introspect.json :

The route matches requests to /rs-pwreplay .

The AssignmentFilter accesses the context, and injects the username and password into the SessionContext,
$[.labelSession] .

The StaticRequestFilter retrieves the username and password from session , and replaces the original
HTTP GET request with an HTTP POST login request that contains the credentials to authenticate.

Test the setup:

In a terminal window, use a curl command similar to the following to retrieve an access token:

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail%20employeenumber" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Validate the access token returned in the previous step:

▪

▪

▪

3.

1.

2.

Gateway guide PingGateway

258 Copyright © 2025 Ping Identity Corporation

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/rs-pwreplay

HTML for the sample application is displayed.

Cache access tokens

This section builds on the example in Validate access tokens through the introspection endpoint to cache and then revoke
access tokens.

When the access token is not cached, PingGateway calls AM to validate the access token. When the access token is cached,
PingGateway doesn’t validate the access token with AM.

When an access token is revoked on AM, the CacheAccessTokenResolver can delete the token from the cache when both of the
following conditions are true:

The notification property of AmService is enabled.

The delegate AccessTokenResolver provides the token metadata required to update the cache.

When a refresh_token is revoked on AM, all associated access tokens are automatically and immediately revoked.

Before you start, set up and test the example in Validate access tokens through the introspection endpoint.

Add the following route to PingGateway:

$HOME/.openig/config/routes/rs-introspect-cache.json

%appdata%\OpenIG\config\routes\rs-introspect-cache.json

•

•

1.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 259

{
 "name": "rs-introspect-cache",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/rs-introspect-cache$')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "http://am.example.com:8088/openam",
 "realm": "/",
 "agent" : {
 "username" : "ig_agent",
 "passwordSecretId" : "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "CacheAccessTokenResolver-1",
 "type": "CacheAccessTokenResolver",
 "config": {
 "enabled": true,
 "defaultTimeout ": "1 hour",
 "maximumTimeToCache": "1 day",
 "amService":"AmService-1",
 "delegate": {
 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"

Gateway guide PingGateway

260 Copyright © 2025 Ping Identity Corporation

 }
 }
],
 "handler": {
 "type": "Delegate",
 "capture": "all",
 "config": {
 "delegate": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></body></
html>"
 }
 }
 }
 }
}

Notice the following features of the route compared to rs-introspect.json , in Validate access tokens through the
introspection endpoint:

The OAuth2ResourceServerFilter uses a CacheAccessTokenResolver to cache the access token, and then delegate
token resolution to the TokenIntrospectionAccessTokenResolver.

The amService property in CacheAccessTokenResolver enables WebSocket notifications from AM, for events such
as token revocation.

The TokenIntrospectionAccessTokenResolver uses a ForgeRockClientHandler and a capture decorator to capture
PingGateway’s interactions with AM.

Test token caching:

In a terminal window, use a curl command similar to the following to retrieve an access token:

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail%20employeenumber" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Access the route, using the access token returned in the previous step:

◦

◦

◦

2.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 261

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/rs-introspect-cache

{
 active = true,
 scope = employeenumber mail,
 client_id = client-application,
 user_id = demo,
 token_type = Bearer,
 exp = 158...907,
 ...
}

In the route log, note that PingGateway calls AM to introspect the access token:

POST http://am.example.com:8088/openam/oauth2/realms/root/introspect HTTP/1.1

Access the route again. In the route log note that this time PingGateway doesn’t call AM, because the token is
cached.

Disable the cache and repeat the previous steps to cause PingGateway to call AM to validate the access token for
each request.

Test token revocation:

In a terminal window, use a curl command similar to the following to revoke the access token obtained in the
previous step:

$ curl --request POST \
--data "token=${mytoken}" \
--data "client_id=client-application" \
--data "client_secret=password" \
"http://am.example.com:8088/openam/oauth2/realms/root/token/revoke"

Access the route using the access token and and note that the request isn’t authorized because the token is
revoked:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/rs-introspect-cache

...
HTTP/1.1 401 Unauthorized

3.

4.

5.

3.

1.

2.

Gateway guide PingGateway

262 Copyright © 2025 Ping Identity Corporation

Use OAuth 2.0 client credentials

This example shows how a client service accesses an OAuth 2.0-protected resource by using its OAuth 2.0 client credentials.

Set up the AM as an Authorization Server:

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

Token Introspection: Realm Only

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Create an OAuth 2.0 Authorization Server:

Select Services > Add a Service > OAuth2 Provider.

Add a service with the default values.

Accessing an OAuth 2.0 protected resource, using OAuth 2.0 client credentials

IG route client-credentials.json PingGateway route oauth2-protected-resource.json

Client Service

Client Service

ScriptableHandler

ScriptableHandler

ClientCredentialsOAuth2ClientFilter

ClientCredentialsOAuth2ClientFilter

PingAM Authorization Server

PingAM Authorization Server

OAuth2ResourceServerFilter

OAuth2ResourceServerFilter

TokenIntrospectionAccessTokenResolver

TokenIntrospectionAccessTokenResolver

Resource

Resource

1 Client request

2 Rewrite request to new target

3 Send request

4
Request access token, using
client's OAuth 2.0 credentials

5 Return access token

6
Inject access token into request
as a Bearer Authorization header

7 Forward request

8 Resolve access token

9 Resolve access token

10 Send access token info

11 Send access token info

12 Forward request

13 Forward response

1.

1.

▪

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

2.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

3.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 263

Create an OAuth 2.0 client to request access tokens, using client credentials for authentication:

Select Applications > OAuth 2.0 > Clients, and add a client with the following values:

Client ID : client-service

Client secret : password

Scope(s) : client-scope

On the Advanced tab, select the following value:

Grant Types : Client Credentials

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway:

$HOME/.openig/config/routes/oauth2-protected-resource.json

%appdata%\OpenIG\config\routes\oauth2-protected-resource.json

4.

1.

▪

▪

▪

2.

▪

2.

1.

2.

3.

Linux

Windows

Gateway guide PingGateway

264 Copyright © 2025 Ping Identity Corporation

{
 "name": "oauth2-protected-resource",
 "condition": "${find(request.uri.path, '^/oauth2-protected-resource')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": ["client-scope"],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 265

 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Access Granted</h2></body></html>"
 }
 }
 }
 }
}

Notice the following features of the route:

The route matches requests to /oauth2-protected-resource .

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token in the header of the incoming
request, with the scope client-scope .

The filter uses a TokenIntrospectionAccessTokenResolver to resolve the access token. The introspect
endpoint is protected with HTTP Basic Authentication, and the providerHandler uses an
HttpBasicAuthenticationClientFilter to provide the resource server credentials.

For convenience in this test, "requireHttps" is false. In production environments, set it to true.

After the filter successfully validates the access token, it creates a new context from the Authorization
Server response, containing information about the access token.

The StaticResponseHandler returns a message that access is granted.

Add the following route to PingGateway:

$HOME/.openig/config/routes/client-credentials.json

%appdata%\OpenIG\config\routes\client-credentials.json

▪

▪

▪

▪

▪

▪

4.

Linux

Windows

Gateway guide PingGateway

266 Copyright © 2025 Ping Identity Corporation

{
 "name": "client-credentials",
 "baseURI": "http://ig.example.com:8080",
 "condition" : "${find(request.uri.path, '^/client-credentials')}",
 "heap" : [{
 "name" : "clientSecretAccessTokenExchangeHandler",
 "type" : "Chain",
 "capture" : "all",
 "config" : {
 "filters" : [{
 "type" : "ClientSecretBasicAuthenticationFilter",
 "config" : {
 "clientId" : "client-service",
 "clientSecretId" : "client.secret.id",
 "secretsProvider" : {
 "type" : "Base64EncodedSecretStore",
 "config" : {
 "secrets" : {
 "client.secret.id" : "cGFzc3dvcmQ="
 }
 }
 }
 }
 }],
 "handler" : "ForgeRockClientHandler"
 }
 }, {
 "name" : "oauth2EnabledClientHandler",
 "type" : "Chain",
 "capture" : "all",
 "config" : {
 "filters" : [{
 "type" : "ClientCredentialsOAuth2ClientFilter",
 "config" : {
 "tokenEndpoint" : "http://am.example.com:8088/openam/oauth2/access_token",
 "endpointHandler": "clientSecretAccessTokenExchangeHandler",
 "scopes" : ["client-scope"]
 }
 }],
 "handler" : "ForgeRockClientHandler"
 }
 }],
 "handler" : {
 "type" : "ScriptableHandler",
 "config" : {
 "type" : "application/x-groovy",
 "clientHandler" : "oauth2EnabledClientHandler",
 "source" : ["request.uri.path = '/oauth2-protected-resource'", "return http.send(context,
request);"]
 }
 }
}

Note the following features of the route:

The route matches requests to /client-credentials .▪

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 267

The ScriptableHandler rewrites the request to target it to /oauth2-protected-resource , and then calls the
HTTP client, that has been redefined to use the oauth2EnabledClientHandler.

The oauth2EnabledClientHandler calls the ClientCredentialsOAuth2ClientFilter to obtain an access token
from AM.

The ClientCredentialsOAuth2ClientFilter calls the clientSecretAccessTokenExchangeHandler to exchange
tokens on the authorization endpoint.

The clientSecretAccessTokenExchangeHandler calls a ClientSecretBasicAuthenticationFilter to authenticate
the client through the HTTP basic access authentication scheme, and a ForgeRockClientHandler to
propagate the request.

The route oauth2-protected-resource.json uses the AM introspection endpoint to resolve the access
token and display its contents.

Test the setup:

In your browser’s privacy or incognito mode, go to to https://ig.example.com:8443/client-credentials.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

A message shows that access is granted.

Use OAuth 2.0 resource owner password credentials

This example shows how a client service accesses an OAuth 2.0-protected resource by using resource owner password
credentials.

▪

▪

▪

▪

▪

3.

1.

2.

Accessing an OAuth 2.0 protected resource, using resource owner's credentials

IG route resource-owner.json IG route oauth2-protected-resource.json

Client Service

Client Service

ScriptableHandler

ScriptableHandler

ResourceOwnerOAuth2ClientFilter

ResourceOwnerOAuth2ClientFilter

PingAM Authorization Server

PingAM Authorization Server

OAuth2ResourceServerFilter

OAuth2ResourceServerFilter

TokenIntrospectionAccessTokenResolver

TokenIntrospectionAccessTokenResolver

Resource

Resource

1 Client request

2 Rewrite request to new target

3 Send request

4
Request access token, using resource
owner's password as credentials

5 Return access token

6
Inject access token into request
as a Bearer Authorization header

7 Forward request

8 Resolve access token

9 Resolve access token

10 Send access token info

11 Send access token info

12 Forward request

13 Forward response

Gateway guide PingGateway

268 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/client-credentials
https://ig.example.com:8443/client-credentials

Set up the AM as an Authorization Server:

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

Token Introspection: Realm Only

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Create an OAuth 2.0 Authorization Server:

Select Services > Add a Service > OAuth2 Provider.

Add a service with the default values.

Create an OAuth 2.0 client to request access tokens, using the resource owner’s password for authentication:

Select Applications > OAuth 2.0 > Clients, and add a client with the following values:

Client ID : resource-owner-client

Client secret : password

Scope(s) : client-scope

On the Advanced tab, select the following value:

Grant Types : Resource Owner Password Credentials

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

emergency_home
This procedure uses the Resource Owner Password Credentials grant type. According to information in the The OAuth
2.0 Authorization Framework, minimize use of this grant type and utilize other grant types whenever possible.

Important

1.

1.

▪

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

2.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

3.

1.

2.

4.

1.

▪

▪

▪

2.

▪

2.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 269

https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway:

$HOME/.openig/config/routes/oauth2-protected-resource.json

%appdata%\OpenIG\config\routes\oauth2-protected-resource.json

3.

Linux

Windows

Gateway guide PingGateway

270 Copyright © 2025 Ping Identity Corporation

{
 "name": "oauth2-protected-resource",
 "condition": "${find(request.uri.path, '^/oauth2-protected-resource')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": ["client-scope"],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 271

 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Access Granted</h2></body></html>"
 }
 }
 }
 }
}

Notice the following features of the route:

The route matches requests to /oauth2-protected-resource .

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token in the header of the incoming
request, with the scope client-scope .

The filter uses a TokenIntrospectionAccessTokenResolver to resolve the access token. The introspect
endpoint is protected with HTTP Basic Authentication, and the providerHandler uses an
HttpBasicAuthenticationClientFilter to provide the resource server credentials.

For convenience in this test, "requireHttps" is false. In production environments, set it to true.

After the filter successfully validates the access token, it creates a new context from the Authorization
Server response, containing information about the access token.

The StaticResponseHandler returns a message that access is granted.

Add the following route to PingGateway:

$HOME/.openig/config/routes/resource-owner.json

%appdata%\OpenIG\config\routes\resource-owner.json

▪

▪

▪

▪

▪

▪

4.

Linux

Windows

Gateway guide PingGateway

272 Copyright © 2025 Ping Identity Corporation

{
 "name": "resource-owner",
 "baseURI": "http://ig.example.com:8080",
 "condition" : "${find(request.uri.path, '^/resource-owner')}",
 "heap" : [{
 "name" : "clientSecretAccessTokenExchangeHandler",
 "type" : "Chain",
 "capture" : "all",
 "config" : {
 "filters" : [{
 "type" : "ClientSecretBasicAuthenticationFilter",
 "config" : {
 "clientId" : "resource-owner-client",
 "clientSecretId" : "client.secret.id",
 "secretsProvider" : {
 "type" : "Base64EncodedSecretStore",
 "config" : {
 "secrets" : {
 "client.secret.id" : "cGFzc3dvcmQ="
 }
 }
 }
 }
 }],
 "handler" : "ForgeRockClientHandler"
 }
 }, {
 "name" : "oauth2EnabledClientHandler",
 "type" : "Chain",
 "capture" : "all",
 "config" : {
 "filters" : [{
 "type" : "ResourceOwnerOAuth2ClientFilter",
 "config" : {
 "tokenEndpoint" : "http://am.example.com:8088/openam/oauth2/access_token",
 "endpointHandler": "clientSecretAccessTokenExchangeHandler",
 "scopes" : ["client-scope"],
 "username" : "demo",
 "passwordSecretId" : "user.password.secret.id",
 "secretsProvider" : {
 "type" : "Base64EncodedSecretStore",
 "config" : {
 "secrets" : {
 "user.password.secret.id" : "Q2g0bmczMXQ="
 }
 }
 }
 }
 }],
 "handler" : "ForgeRockClientHandler"
 }
 }],
 "handler" : {
 "type" : "ScriptableHandler",
 "config" : {
 "type" : "application/x-groovy",
 "clientHandler" : "oauth2EnabledClientHandler",

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 273

 "source" : ["request.uri.path = '/oauth2-protected-resource'", "return http.send(context,
request);"]
 }
 }
}

Note the following features of the route:

The route matches requests to /resource-owner .

The ScriptableHandler rewrites the request to target it to /oauth2-protected-resource , and then calls the
HTTP client, that has been redefined to use the oauth2EnabledClientHandler.

The oauth2EnabledClientHandler calls the ResourceOwnerOAuth2ClientFilter to obtain an access token
from AM.

The ResourceOwnerOAuth2ClientFilter calls the clientSecretAccessTokenExchangeHandler to exchange
tokens on the authorization endpoint. The demo user authenticates with their username and password.

The clientSecretAccessTokenExchangeHandler calls a ClientSecretBasicAuthenticationFilter to authenticate
the client through the HTTP basic access authentication scheme, and a ForgeRockClientHandler to
propagate the request.

The route oauth2-protected-resource.json uses the AM introspection endpoint to resolve the access
token and display its contents.

Test the setup:

In your browser’s privacy or incognito mode, go to to https://ig.example.com:8443/resource-owner.

If you see warnings that the site isn’t secure, respond to the warnings to access the site.

A message shows that access is granted.

OpenID Connect

The following sections provide an overview of how PingGateway supports OpenID Connect 1.0, and examples of to set up
PingGateway as an OpenID Connect relying party in different deployment scenarios:

About PingGateway with OpenID Connect

PingGateway supports OpenID Connect 1.0, an authentication layer built on OAuth 2.0. OpenID Connect 1.0 is a specific
implementation of OAuth 2.0, where the identity provider holds the protected resource that the third-party application wants to
access. For more information, refer to OpenID Connect.

OpenID Connect refers to the following entities:

End user : An OAuth 2.0 resource owner whose user information the application needs to access.

The end user wants to use an application through an existing identity provider account without signing up and creating
credentials for another web service.

Relying Party (RP): An OAuth 2.0 client that needs access to the end user’s protected user information.

▪

▪

▪

▪

▪

▪

3.

1.

2.

•

•

Gateway guide PingGateway

274 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/resource-owner
https://ig.example.com:8443/resource-owner
http://openid.net/developers/specs/
http://openid.net/developers/specs/

For example, an online mail application needs to know which end user is accessing the application in order to present the
correct inbox.

As another example, an online shopping site needs to know which end user is accessing the site in order to present the
right offerings, account, and shopping cart.

OpenID Provider (OP): An OAuth 2.0 Authorization Server and also resource server that holds the user information and
grants access.

The OP requires the end user to give the RP permission to access to some of its user information. Because OpenID
Connect 1.0 defines unique identification for an account (subject identifier + issuer identifier), the RP can use that
identification to bind its own user profile to a remote identity.

For the online mail application, this key could be used to access the mailboxes and related account information. For the
online shopping site, this key could be used to access the offerings, account, shopping cart and others. The key makes it
possible to serve users as if they had local accounts.

UserInfo : The protected resource that the third-party application wants to access. The information about the
authenticated end user is expressed in a standard format. The user-info endpoint is hosted on the Authorization Server
and is protected with OAuth 2.0.

When PingGateway acts as an OpenID Connect relying party, its role is to retrieve user information from the OpenID provider,
and then to inject that information into the context for use by subsequent filters and handlers.

AM as an OpenID Connect provider

This section gives an example of how to set up AM as an OpenID Connect identity provider, and PingGateway as a relying party
for browser requests to the home page of the sample application.

The following sequence diagram shows the flow of information for a request to access the home page of the sample application,
using AM as a single, preregistered OpenID Connect identity provider, and PingGateway as a relying party:

•

•

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 275

Before you start, prepare AM, PingGateway, and the sample application as described in Example installation for this guide.

Set Up AM as an OpenID Connect provider:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Create an OAuth 2.0 Authorization Server:

Select Services > Add a Service > OAuth2 Provider.

Add a service with the default values.

Create an OAuth 2.0 Client to request OAuth 2.0 access tokens:

Select Applications > OAuth 2.0 > Clients.

Add a client with the following values:

Client ID: oidc_client

Client secret: password

Redirection URIs: https://ig.example.com:8443/home/id_token/callback

Information flow for requests using AM as a single OpenID Connect identity provider

Browser

Browser

PingGateway
Relying party

PingGateway
Relying party

Configurer

Configurer

PingAM
Authorization server

PingAM
Authorization server

Sample app

Sample app

Register AM as an Authorization Server

One Authorization Server registered
before request flow starts

Registration okay

Request

Request to access sample app
(app.example.com/home/id_token)

1. Unauthenticated browser redirected to single pre-registered Authorization Server

Use client registration to
determine authorization endpoint

Request authentication
(/home/id_token/login?registration=myid&goto=...

Log in

Authorize and return access_code (/home/id_token/callback)

Automatically redirect request with access_code
(ig.example.com/home/id_token/callback)

Create session

Send access code (am.example.com/access token)

access token

Request authorization

Authorization

Request completion

Redirect the request to the original target URL
(app.example.com/home/id_token)

Redirect

Forward request with access token and user information
(app.example.com/home/id_token)

1.

1.

▪

▪

2.

1.

2.

3.

1.

2.

▪

▪

▪

Gateway guide PingGateway

276 Copyright © 2025 Ping Identity Corporation

Scope(s): openid , profile , and email

On the Advanced tab, select the following values:

Grant Types: Authorization Code

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for oidc_client , and then restart PingGateway:

$ export OIDC_SECRET_ID='cGFzc3dvcmQ='

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/07-openid.json

▪

3.

▪

2.

1.

2.

3.

Linux

Windows

4.

Linux

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 277

%appdata%\OpenIG\config\routes\07-openid.json

Windows

Gateway guide PingGateway

278 Copyright © 2025 Ping Identity Corporation

{
 "name": "07-openid",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/id_token')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AuthenticatedRegistrationHandler-1",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "ClientSecretBasicAuthenticationFilter-1",
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "oidc_client",
 "clientSecretId": "oidc.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "AuthorizationCodeOAuth2ClientFilter-1",
 "type": "AuthorizationCodeOAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/home/id_token",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": [
 "text/plain"
]
 },
 "entity": "Error in OAuth 2.0 setup."
 }
 },
 "registrations": [
 {
 "name": "oidc-user-info-client",
 "type": "ClientRegistration",
 "config": {
 "clientId": "oidc_client",
 "issuer": {
 "name": "Issuer",
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "http://am.example.com:8088/openam/oauth2/.well-known/

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 279

openid-configuration"
 }
 },
 "scopes": [
 "openid",
 "profile",
 "email"
],
 "authenticatedRegistrationHandler": "AuthenticatedRegistrationHandler-1"
 }
 }
],
 "requireHttps": false,
 "cacheExpiration": "disabled"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the PingGateway route in Studio, see OpenID Connect in Structured Editor.

Notice the following features about the route:

The route matches requests to /home/id_token .

The AuthorizationCodeOAuth2ClientFilter enables PingGateway to act as a relying party. It uses a single
client registration that is defined inline and refers to the AM server configured in AM as a single OpenID
Connect provider.

The filter has a base client endpoint of /home/id_token , which creates the following service URIs:

Requests to /home/id_token/login start the delegated authorization process.

Requests to /home/id_token/callback are expected as redirects from the OAuth 2.0 Authorization
Server (OpenID Connect provider). This is why the redirect URI in the client profile in AM is set to
https://ig.example.com:8443/home/id_token/callback .

Requests to /home/id_token/logout remove the authorization state for the end user, and redirect
to the specified URL if a goto parameter is provided.

These endpoints are implicitly reserved. Attempts to access them directly can cause undefined
errors.

For convenience in this test, "requireHttps" is false. In production environments, set it to true. So that you
see the delegated authorization process when you make a request, "requireLogin" has the default value
true .

The target for storing authorization state information is ${attributes.openid} . This is where subsequent
filters and handlers can find access tokens and user information.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/id_token.

▪

▪

▪

▪

▪

▪

▪

▪

3.

1.

Gateway guide PingGateway

280 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/id_token
https://ig.example.com:8443/home/id_token

The AM login page is displayed.

Log in to AM as user demo , password Ch4ng31t , and then allow the application to access user information.

The home page of the sample application is displayed.

Authenticate automatically to the sample application

To authenticate automatically to the sample application, change the last name of the user demo to match the password
Ch4ng31t , and add a StaticRequestFilter like the following to the end of the chain in 07-openid.json :

{
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.openid.user_info.sub}"
],
 "password": [
 "${attributes.openid.user_info.family_name}"
]
 }
 }
}

The StaticRequestFilter retrieves the username and password from the context, and replaces the original HTTP GET request with
an HTTP POST login request containing credentials.

PingOne Advanced Identity Cloud as an OpenID Connect provider

This example sets up PingOne Advanced Identity Cloud as an OpenID Connect identity provider, and PingGateway as a relying
party.

For more information about PingGateway and OpenID Connect, refer to OpenID Connect.

Before you start, prepare PingOne Advanced Identity Cloud, PingGateway, and the sample application as described in Example
installation for this guide.

Set up PingOne Advanced Identity Cloud:

Log in to the Advanced Identity Cloud admin UI as an administrator.

Make sure you are managing the alpha realm. If not, click the current realm at the top of the screen, and switch
realm.

Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a user with the following values:

Username: demo

First name: demo

Last name: user

2.

1.

1.

2.

3.

▪

▪

▪

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 281

Email Address: demo@example.com

Password: Ch4ng3!t

Go to Applications > + CustomApplication > OIDC - OpenId Connect > Web and add a web application with the
following values:

Name: oidc_client

Owners: demo user

Client Secret: password

Sign On > Sign-in URLs: https://ig.example.com:8443/home/id_token/callback

Sign On > Grant Types: Authorization Code

Sign On > Scopes: openid , profile , email

Show advanced settings > Authentication > Implied Consent: On

For more information, refer to PingOne Advanced Identity Cloud’s Application management.

Set up PingGateway:

Set an environment variable for the oidc_client password, and then restart PingGateway:

$ export OIDC_SECRET_ID='cGFzc3dvcmQ='

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

▪

▪

4.

▪

▪

▪

▪

▪

▪

▪

2.

1.

1.

Linux

Windows

Gateway guide PingGateway

282 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/app-management/applications.html
https://docs.pingidentity.com/pingoneaic/latest/app-management/applications.html

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway, replacing the value for the property amInstanceUrl :

$HOME/.openig/config/routes/oidc-idc.json

%appdata%\OpenIG\config\routes\oidc-idc.json

2.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 283

{
 "name": "oidc-idc",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/id_token')}",
 "properties": {
 "amInstanceUrl": "https://myTenant.forgeblocks.com/am"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AuthenticatedRegistrationHandler-1",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "ClientSecretBasicAuthenticationFilter-1",
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "oidc_client",
 "clientSecretId": "oidc.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "AuthorizationCodeOAuth2ClientFilter-1",
 "type": "AuthorizationCodeOAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/home/id_token",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": [
 "text/plain"
]
 },
 "entity": "Error in OAuth 2.0 setup."
 }
 },
 "registrations": [
 {
 "name": "oauth2-client",
 "type": "ClientRegistration",
 "config": {
 "clientId": "oidc_client",
 "issuer": {
 "name": "Issuer",

Gateway guide PingGateway

284 Copyright © 2025 Ping Identity Corporation

 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "&{amInstanceUrl}/oauth2/realms/alpha/.well-known/openid-
configuration"
 }
 },
 "scopes": [
 "openid",
 "profile",
 "email"
],
 "authenticatedRegistrationHandler": "AuthenticatedRegistrationHandler-1"
 }
 }
],
 "requireHttps": false,
 "cacheExpiration": "disabled"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Compared to 07-openid.json in AM as a single OpenID Connect provider, where PingAM is running locally, the
ClientRegistration wellKnownEndpoint points to PingOne Advanced Identity Cloud.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/id_token.

The PingOne Advanced Identity Cloud login page is displayed.

Log in to PingOne Advanced Identity Cloud as user demo , password Ch4ng3!t . The home page of the sample
application is displayed.

PingOne as an OpenID Connect provider

This example sets up PingOne as an OpenID Connect identity provider and PingGateway as a relying party.

Before you start, prepare PingGateway and the sample application as described in the Quick install.

Set up the PingOne environment:

Create a PingOne test environment.

Add a PingOne test user.

Create a PingOne OIDC web application.

Learn more from PingOne’s Creating a web application.

In the test environment, create a web application with the following values:

Application Name: oidc_client

Description: OIDC client

3.

1.

2.

1.

1.

2.

2.

1.

▪

▪

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 285

https://ig.example.com:8443/home/id_token
https://ig.example.com:8443/home/id_token
https://docs.pingidentity.com/pingone/getting_started_with_pingone/p1_mfa_creating_a_web_application.html
https://docs.pingidentity.com/pingone/getting_started_with_pingone/p1_mfa_creating_a_web_application.html

Application Type: OIDC Web App

In the application, select the Overview panel and click Protocol OpenID Connect.

In the Redirect URIs field, add https://ig.example.com:8443/home/id_token/callback and then save the
application.

Learn more from PingOne’s Editing an application - OIDC.

At the top-right of the page, click the slider to enable the application.

Go to the Configuration panel and make a note of the following values in the URLs drop-down list:

OIDC Discovery Endpoint

Client ID

Client Secret

The values are used in the PingGateway setup.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Base64-encode the Client Secret for the web application created in the previous step, and then set the value as an
environment variable:

▪

2.

3.

4.

5.

▪

▪

▪

3.

1.

2.

Linux

Windows

3.

Gateway guide PingGateway

286 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingone/applications/p1_edit_application_oidc.html
https://docs.pingidentity.com/pingone/applications/p1_edit_application_oidc.html

$ export OIDC_SECRET_ID='Yy5...A=='

Add the following route to PingGateway, replacing the values of the following properties with values for the web
application created in the previous step:

OIDC_Discovery_Endpoint: OIDC Discovery Endpoint

Client_ID: Client ID

$HOME/.openig/config/routes/oidc-ping.json

%appdata%\OpenIG\config\routes\oidc-ping.json

4.

▪

▪

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 287

{
 "name": "oidc-ping",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/id_token')}",
 "properties": {
 "OIDC_Discovery_Endpoint": "OIDC Discovery endpoint of the web app",
 "Client_ID": "Client ID of the web app"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AuthenticatedRegistrationHandler-1",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "ClientSecretBasicAuthenticationFilter-1",
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "&{Client_ID}",
 "clientSecretId": "oidc.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "AuthorizationCodeOAuth2ClientFilter-1",
 "type": "AuthorizationCodeOAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/home/id_token",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body>Error in OAuth 2.0 setup.
 $
{contexts.oauth2Failure.exception.message}</body></html>"
 }
 },
 "registrations": [
 {
 "name": "oauth2-client",
 "type": "ClientRegistration",
 "config": {
 "clientId": "${Client_ID}",
 "issuer": {
 "name": "PingOne",

Gateway guide PingGateway

288 Copyright © 2025 Ping Identity Corporation

 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "&{OIDC_Discovery_Endpoint}"
 }
 },
 "scopes": [
 "openid"
],
 "authenticatedRegistrationHandler": "AuthenticatedRegistrationHandler-1"
 }
 }
],
 "requireHttps": false,
 "cacheExpiration": "disabled"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Restart PingGateway.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/id_token.

The PingOne login page is displayed.

Log in to PingOne as user demo , password Ch4ng3!t .

If prompted by PingOne, change the password of the demo user.

The home page of the sample application is displayed.

Multiple OpenID Connect providers

This section gives an example of using OpenID Connect with two identity providers.

Client registrations for an AM identity provider and PingOne Advanced Identity Cloud identity provider are declared in the heap.
The Nascar page helps the user to choose an identity provider.

Set up AM as the first identity provider, as described in AM as a single OpenID Connect provider.

Set up PingOne Advanced Identity Cloud as a second identity provider, as described in PingOne Advanced Identity Cloud
as an OpenID Connect provider.

Add the following route to PingGateway, replacing the value for the property amInstanceUrl :

$HOME/.openig/config/routes/07-openid-nascar.json

5.

4.

1.

2.

3.

1.

2.

3.

Linux

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 289

https://ig.example.com:8443/home/id_token
https://ig.example.com:8443/home/id_token

%appdata%\OpenIG\config\routes\07-openid-nascar.json

Windows

Gateway guide PingGateway

290 Copyright © 2025 Ping Identity Corporation

{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AuthenticatedRegistrationHandler-1",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "ClientSecretBasicAuthenticationFilter-1",
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "oidc_client",
 "clientSecretId": "oidc.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 },
 {
 "name": "openam",
 "type": "ClientRegistration",
 "config": {
 "clientId": "oidc_client",
 "issuer": {
 "name": "am_issuer",
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "http://am.example.com:8088/openam/oauth2/.well-known/openid-configuration"
 }
 },
 "scopes": [
 "openid",
 "profile",
 "email"
],
 "authenticatedRegistrationHandler": "AuthenticatedRegistrationHandler-1"
 }
 },
 {
 "name": "idcloud",
 "type": "ClientRegistration",
 "config": {
 "clientId": "oidc_client",
 "issuer": {
 "name": "idc_issuer",
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "&{amInstanceUrl}/oauth2/realms/alpha/.well-known/openid-configuration"
 }
 },
 "scopes": [
 "openid",
 "profile",
 "email"

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 291

],
 "authenticatedRegistrationHandler": "AuthenticatedRegistrationHandler-1"
 }
 },
 {
 "name": "NascarPage",
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": [
 "<html>",
 " <body>",
 " <p><a href='/home/id_token/login?registration=oidc_client&issuer=am_issuer&goto=$
{urlEncodeQueryParameterNameOrValue('https://ig.example.com:8443/home/id_token')}'>Access Management login</
a></p>",
 " <p><a href='/home/id_token/login?registration=oidc_client&issuer=idc_issuer&goto=$
{urlEncodeQueryParameterNameOrValue('https://ig.example.com:8443/home/id_token')}'>Identity Cloud login</
p>",
 " </body>",
 "</html>"
]
 }
 }
],
 "name": "07-openid-nascar",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/id_token')}",
 "properties": {
 "amInstanceUrl": "https://myTenant.forgeblocks.com/am"
 },
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "AuthorizationCodeOAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/home/id_token",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "comment": "Trivial failure handler for debugging only",
 "status": 500,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "${contexts.oauth2Failure.error}: ${contexts.oauth2Failure.description}"
 }
 },
 "loginHandler": "NascarPage",
 "registrations": ["openam", "idcloud"],
 "requireHttps": false,
 "cacheExpiration": "disabled"
 }
 }

Gateway guide PingGateway

292 Copyright © 2025 Ping Identity Corporation

],
 "handler": "ReverseProxyHandler"
 }
 }
}

Consider the differences with 07-openid.json :

The heap objects openam and idcloud define client registrations.

The StaticResponseHandler provides links to the client registrations.

The AuthorizationCodeOAuth2ClientFilter uses a loginHandler to allow users to choose a client registration and
therefore an identity provider.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/id_token.

The Nascar page offers the choice of identity provider.

Using the following credentials, select a provider, log in, and allow the application to access user information:

AM: user demo , password Ch4ng31t .

PingOne Advanced Identity Cloud: user demo , password Ch4ng3!t

The home page of the sample application is displayed.

Discovery and dynamic registration with OpenID Connect providers

OpenID Connect defines mechanisms for discovering and dynamically registering with an identity provider that isn’t known in
advance, as specified in the following publications: OpenID Connect Discovery, OpenID Connect Dynamic Client Registration,
and OAuth 2.0 Dynamic Client Registration Protocol.

In dynamic registration, issuer and client registrations are generated dynamically. They are held in memory and can be reused,
but don’t persist when PingGateway is restarted.

This section builds on the example in AM as a single OpenID Connect provider to give an example of discovering and dynamically
registering with an identity provider that isn’t known in advance. In this example, the client sends a signed JWT to the
Authorization Server.

To facilitate the example, a WebFinger service is embedded in the sample application. In a normal deployment, the WebFinger
server is likely to be a service on the issuer’s domain.

Set up a key

Locate a directory for secrets, and go to it:

$ cd /path/to/secrets

Create a key:

◦

◦

◦

4.

1.

2.

▪

▪

1.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 293

https://ig.example.com:8443/home/id_token
https://ig.example.com:8443/home/id_token
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc7591

$ keytool -genkey \
 -alias myprivatekeyalias \
 -keyalg RSA \
 -keysize 2048 \
 -keystore keystore.p12 \
 -storepass keystore \
 -storetype PKCS12 \
 -keypass keystore \
 -validity 360 \
 -dname "CN=ig.example.com, OU=example, O=com, L=fr, ST=fr, C=fr"

Set up AM:

Set up AM as described in AM as a single OpenID Connect provider.

Select the user demo , and change the last name to Ch4ng31t . For this example, the last name must be the same as
the password.

Configure the OAuth 2.0 Authorization Server for dynamic registration:

Select Services > OAuth2 Provider.

On the Advanced tab, add the following scopes to Client Registration Scope Allowlist: openid , profile ,
email .

On the Client Dynamic Registration tab, select these settings:

Allow Open Dynamic Client Registration: Enabled

Generate Registration Access Tokens: Disabled

Configure the authentication method for the OAuth 2.0 Client:

Select Applications > OAuth 2.0 > Clients.

Select oidc_client , and on the Advanced tab, select Token Endpoint Authentication Method:
private_key_jwt .

Set up PingGateway:

In the PingGateway configuration, set an environment variable for the keystore password, and then restart
PingGateway:

$ export KEYSTORE_SECRET_ID='a2V5c3RvcmU='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

2.

1.

2.

3.

1.

2.

3.

▪

▪

4.

1.

2.

3.

1.

2.

Gateway guide PingGateway

294 Copyright © 2025 Ping Identity Corporation

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following script to PingGateway:

$HOME/.openig/scripts/groovy/discovery.groovy

%appdata%\OpenIG\scripts\groovy\discovery.groovy

Linux

Windows

3.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 295

/*
 * OIDC discovery with the sample application
 */
response = new Response(Status.OK)
response.getHeaders().put(ContentTypeHeader.NAME, "text/html");
response.entity = """
<!doctype html>
<html>
 <head>
 <title>OpenID Connect Discovery</title>
 <meta charset='UTF-8'>
 </head>
 <body>
 <form id='form' action='/discovery/login?'>
 Enter your user ID or email address:
 <input type='text' id='discovery' name='discovery'
 placeholder='demo or demo@example.com' />
 <input type='hidden' name='goto'
 value='${contexts.idpSelectionLogin.originalUri}' />
 </form>
 <script>
 // Make sure sampleAppUrl is correct for your sample app.
 window.onload = function() {
 document.getElementById('form').onsubmit = function() {
 // Fix the URL if not using the default settings.
 var sampleAppUrl = 'http://app.example.com:8081/';
 var discovery = document.getElementById('discovery');
 discovery.value = sampleAppUrl + discovery.value.split('@', 1)[0];
 };
 };
 </script>
 </body>
</html>""" as String
return response

The script transforms the input into a discovery value for PingGateway. This is not a requirement for deployment,
only a convenience for the purposes of this example. Alternatives are described in the discovery protocol
specification.

Add the following route to PingGateway, replacing /path/to/secrets/keystore.p12 with your path:

$HOME/.openig/config/routes/07-discovery.json

%appdata%\OpenIG\config\routes\07-discovery.json

4.

Linux

Windows

Gateway guide PingGateway

296 Copyright © 2025 Ping Identity Corporation

{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "SecretsProvider-1",
 "type": "SecretsProvider",
 "config": {
 "stores": [
 {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/keystore.p12",
 "mappings": [
 {
 "aliases": ["myprivatekeyalias"],
 "secretId": "private.key.jwt.signing.key"
 }
],
 "storePasswordSecretId": "keystore.secret.id",
 "storeType": "PKCS12",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
]
 }
 },
 {
 "name": "DiscoveryPage",
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "file": "discovery.groovy"
 }
 }
],
 "name": "07-discovery",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/discovery')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "DynamicallyRegisteredClient",
 "type": "AuthorizationCodeOAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/discovery",
 "requireHttps": false,
 "requireLogin": true,
 "target": "${attributes.openid}",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "comment": "Trivial failure handler for debugging only",
 "status": 500,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 297

 },
 "entity": "${contexts.oauth2Failure.error}: ${contexts.oauth2Failure.description}"
 }
 },
 "loginHandler": "DiscoveryPage",
 "discoverySecretId": "private.key.jwt.signing.key",
 "tokenEndpointAuthMethod": "private_key_jwt",
 "secretsProvider": "SecretsProvider-1",
 "metadata": {
 "client_name": "My Dynamically Registered Client",
 "redirect_uris": ["http://ig.example.com:8080/discovery/callback"],
 "scopes": ["openid", "profile", "email"]
 }
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.openid.user_info.name}"
],
 "password": [
 "${attributes.openid.user_info.family_name}"
]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Consider the differences with 07-openid.json :

The route matches requests to /discovery .

The AuthorizationCodeOAuth2ClientFilter uses DiscoveryPage as the login handler, and specifies metadata
to prepare the dynamic registration request.

DiscoveryPage uses a ScriptableHandler and script to provide the discovery parameter and goto
parameter.

If there is a match, then it can use the issuer’s registration endpoint and avoid an additional request to look
up the user’s issuer using the WebFinger protocol.

If there is no match, PingGateway uses the discovery value as the resource for a WebFinger request
using OpenID Connect Discovery protocol.

PingGateway uses the discovery parameter to find an identity provider. PingGateway extracts the domain
host and port from the value, and attempts to find a match in the supportedDomains lists for issuers
configured for the route.

When discoverySecretId is set, the tokenEndpointAuthMethod is always private_key_jwt . Clients send
a signed JWT to the Authorization Server.

▪

▪

▪

▪

▪

Gateway guide PingGateway

298 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc7033
https://www.rfc-editor.org/rfc/rfc7033

Redirects PingGateway to the end user’s browser, using the goto parameter, after the process is complete
and PingGateway has injected the OpenID Connect user information into the context.

Test the setup:

Log out of AM, and clear any cookies.

Go to http://ig.example.com:8080/discovery.

Enter the following email address: demo@example.com . The AM login page is displayed.

Log in as user demo , password Ch4ng31t , and then allow the application to access user information. The sample
application returns the user’s page.

ID token validation

This section uses an IdTokenValidationFilter to validate an ID token.

Set up AM:

Set up AM as described in Validate access tokens through the introspection endpoint.

Select Applications > OAuth 2.0 > Clients and add the additional scope openid to client-application .

Set up PingGateway:

Add the following route to PingGateway:

$HOME/.openig/config/routes/idtokenvalidation.json

%appdata%\OpenIG\config\routes\idtokenvalidation.json

4.

1.

2.

3.

4.

1.

1.

2.

2.

1.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 299

http://ig.example.com:8080/discovery
http://ig.example.com:8080/discovery

{
 "name": "idtokenvalidation",
 "condition": "${find(request.uri.path, '^/idtokenvalidation')}",
 "capture": "all",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "type": "IdTokenValidationFilter",
 "config": {
 "idToken": "<id_token_value>",
 "audience": "client-application",
 "issuer": "http://am.example.com:8088/openam/oauth2",
 "failureHandler": {
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "def response = new Response(Status.FORBIDDEN)",
 "response.headers['Content-Type'] = 'text/html; charset=utf-8'",
 "def errors = contexts.jwtValidationError.violations.collect{it.description}",
 "def display = \"<html>Can't validate id_token:
 ${contexts.jwtValidationError.jwt}
\"",
 "display <<=\"

For the following errors:
 ${errors.join(\"
\")}</html>\"",
 "response.entity=display as String",
 "return response"
]
 }
 },
 "verificationSecretId": "verify",
 "secretsProvider": {
 "type": "JwkSetSecretStore",
 "config": {
 "jwkUrl": "http://am.example.com:8088/openam/oauth2/connect/jwk_uri"
 }
 }
 }
 }],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body>Validated id_token:
 ${contexts.jwtValidation.value}</body></html>"
 }
 }
 }
 }
}

Notice the following features of the route:

The route matches requests to /idtokenvalidation .

A SecretsProvider declares a JwkSetSecretStore to validate secrets for signed JWTs. The JwkSetSecretStore
specifies a URL to a JWK set on AM that contains the signing keys.

▪

▪

Gateway guide PingGateway

300 Copyright © 2025 Ping Identity Corporation

The property verificationSecretId is configured with an arbitrary value. If this property isn’t configured,
the filter doesn’t verify the signature of tokens.

The JwkSetSecretStore specifies the URL to a JWK set on AM, that contains verification keys identified by a
kid . PingGateway validates the token signature as follows:

If the value of a kid in the JWK set matches a kid in the the signed JWT, the JwkSetSecretStore
verifies the signature.

If the JWT doesn’t have a kid , or if the JWK set doesn’t contain a key with the same value, the
JwkSetSecretStore looks for valid secrets with the same purpose as the value of
verificationSecretId .

If the filter validates the token, the StaticResponseHandler displays the token value from the context $
{contexts.jwtValidation.value} . Otherwise, the ScriptableHandler displays the token value and a list of
violations from the context ${contexts.jwtValidationError.violations}

Test the setup:

In a terminal window, use a curl command similar to the following to retrieve an id_token:

$ curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=openid" \
http://am.example.com:8088/openam/oauth2/access_token

{
 "access_token":"...",
 "scope":"openid",
 "id_token":"...",
 "token_type":"Bearer",
 "expires_in":3599
}

In the route, replace <id_token_value> with the value of the id_token returned in the previous step.

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/idtokenvalidation.

The validated token is displayed.

In the route, invalidate the token by changing the value of the audience or issuer, and then access the route again.

The value of the token, and the reasons that the token is invalid, are displayed.

Passing data along the chain

Pass profile data downstream

Retrieve user profile attributes of an AM user, and provide them in the UserProfileContext to downstream filters and handlers.
Profile attributes that are enabled in AM can be retrieved, except the roles attribute.

▪

▪

▪

▪

▪

3.

1.

2.

3.

4.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 301

https://ig.example.com:8443/idtokenvalidation
https://ig.example.com:8443/idtokenvalidation

The userProfile property of AmService is configured to retrieve employeeNumber and mail . When the property is not
configured, all available attributes in rawInfo or asJsonValue() are displayed.

Retrieve profile attributes for a user authenticated with an SSO token

In this example, the user is authenticated with AM through the SingleSignOnFilter, which stores the SSO token and its validation
information in the SsoTokenContext . The UserProfileFilter retrieves the user’s mail and employee number, as well as the
username , _id , and _rev , from that context.

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Select Services > Add a Service, and add a Validation Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/?

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway:

1.

1.

▪

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

4.

▪

▪

2.

1.

2.

3.

Gateway guide PingGateway

302 Copyright © 2025 Ping Identity Corporation

$HOME/.openig/config/routes/user-profile-sso.json

%appdata%\OpenIG\config\routes\user-profile-sso.json

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 303

{
 "name": "user-profile-sso",
 "condition": "${find(request.uri.path, '^/user-profile-sso')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "http://am.example.com:8088/openam",
 "realm": "/",
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "amHandler": "ForgeRockClientHandler"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "name": "UserProfileFilter-1",
 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.ssoToken.info.uid}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {
 "amService": "AmService-1",
 "profileAttributes": ["employeeNumber", "mail"]
 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body>username: ${contexts.userProfile.username}

rawInfo: <pre>$
{contexts.userProfile.rawInfo}</pre></body></html>"

Gateway guide PingGateway

304 Copyright © 2025 Ping Identity Corporation

 }
 }
 }
 }
}

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/user-profile-sso.

Log in to AM with username demo and password Ch4ng31t .

The UserProfileFilter retrieves the user’s profile data and stores it in the UserProfileContext. The
StaticResponseHandler displays the username and the profile data available in rawInfo :

username: demo

rawInfo:

{_id=demo, _rev=-1, mail=[demo@example.com], username=demo}

Retrieve a username from the sessionInfo context

In this example, the UserProfileFilter retrieves AM profile information for the user identified by the SessionInfoContext, at $
{contexts.amSession.username} . The SessionInfoFilter validates an SSO token without redirecting the request to an
authentication page.

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

3.

1.

2.

1.

1.

▪

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 305

https://ig.example.com:8443/user-profile-sso
https://ig.example.com:8443/user-profile-sso
mailto:demo@example.com

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway:

$HOME/.openig/config/routes/user-profile-ses-info.json

%appdata%\OpenIG\config\routes\user-profile-ses-info.json

2.

1.

2.

3.

Linux

Windows

Gateway guide PingGateway

306 Copyright © 2025 Ping Identity Corporation

{
 "name": "user-profile-ses-info",
 "condition": "${find(request.uri.path, '^/user-profile-ses-info')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "http://am.example.com:8088/openam",
 "realm": "/",
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "amHandler": "ForgeRockClientHandler"
 }
 }
],
 "handler": {
 "type": "Chain",
 "capture": "all",
 "config": {
 "filters": [
 {
 "name": "SessionInfoFilter-1",
 "type": "SessionInfoFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "name": "UserProfileFilter-1",
 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.amSession.username}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {
 "amService": "AmService-1",
 "profileAttributes": ["employeeNumber", "mail"]
 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["application/json"]
 },
 "entity": "{ \"username\": \"${contexts.userProfile.username}\", \"user_profile\": $
{contexts.userProfile.asJsonValue()} }"

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 307

 }
 }
 }
 }
}

Test the setup:

In a terminal window, use a curl command similar to the following to retrieve an access token:

$ curl --request POST \
--url http://am.example.com:8088/openam/json/realms/root/authenticate \
--header 'accept-api-version: resource=2.0' \
--header 'content-type: application/json' \
--header 'x-openam-username: demo' \
--header 'x-openam-password: Ch4ng31t' \
--data '{}'

{"tokenId":"AQI...AA*","successUrl":"/openam/console"}

Access the route, providing the path to the certificate and token ID retrieved in the previous step:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--cookie 'iPlanetDirectoryPro=tokenID' \
https://ig.example.com:8443/user-profile-ses-info | jq .

{
 "username": "demo",
 "user_profile": {
 "_id": "demo",
 "_rev": "123...456",
 "employeeNumber": ["123"],
 "mail": ["demo@example.com"],
 "username": "demo"
 }
}

iPlanetDirectoryPro is the name of the AM session cookie. For more information, refer to Find the AM session
cookie name.

The UserProfileFilter retrieves the user’s profile data and stores it in the UserProfileContext. The
StaticResponseHandler displays the username and the profile data available in asJsonValue() .

Retrieve a username from the OAuth2Context

In this example, the OAuth2ResourceServerFilter validates a request containing an OAuth 2.0 access token, using the
introspection endpoint, and injects the token into the OAuth2Context context. The UserProfileFilter retrieves AM profile
information for the user identified by this context.

Before you start, set up and test the example in Validate access tokens through the introspection endpoint.

Add the following route to PingGateway:

3.

1.

2.

1.

Gateway guide PingGateway

308 Copyright © 2025 Ping Identity Corporation

$HOME/.openig/config/routes/user-profile-oauth.json

%appdata%\OpenIG\config\routes\user-profile-oauth.json

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 309

{
 "name": "user-profile-oauth",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/user-profile-oauth')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "http://am.example.com:8088/openam",
 "realm": "/",
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "amHandler": "ForgeRockClientHandler"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }

Gateway guide PingGateway

310 Copyright © 2025 Ping Identity Corporation

 }
 }
 },
 {
 "name": "UserProfileFilter-1",
 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.oauth2.accessToken.info.sub}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {
 "amService": "AmService-1",
 "profileAttributes": ["employeeNumber", "mail"]
 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["application/json"]
 },
 "entity": "{ \"username\": \"${contexts.userProfile.username}\", \"user_profile\": $
{contexts.userProfile.asJsonValue()} }"
 }
 }
 }
 }
}

Test the setup:

In a terminal window, use a curl command similar to the following to retrieve an access token:

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail%20employeenumber" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Validate the access token returned in the previous step:

2.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 311

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/user-profile-oauth | jq .

{
 "username": "demo",
 "user_profile": {
 "_id": "demo",
 "_rev": "123...456",
 "employeeNumber": ["123"],
 "mail": ["demo@example.com"],
 "username": "demo"
 }
}

The UserProfileFilter retrieves the user’s profile data and stores it in the UserProfileContext. The
StaticResponseHandler displays the username and the profile data that is available in asJsonValue() .

Passing runtime data downstream

The following sections describe how to pass identity or other runtime information in a JWT, downstream to a protected
application:

The examples in this section use the following objects:

JwtBuilderFilter to collect runtime information and pack it into a JWT

HeaderFilter to add the information to the forwarded request

To help with development, the sample application includes a /jwt endpoint to display the JWT, verify its signature, and decrypt
the JWT.

Pass runtime data in a JWT signed with a PEM

Set up secrets

Locate a directory for secrets, and go to it:

$ cd /path/to/secrets

Generate PEM files to sign and verify the JWT:

•

•

1.

1.

2.

Gateway guide PingGateway

312 Copyright © 2025 Ping Identity Corporation

$ openssl req \
-newkey rsa:2048 \
-new \
-nodes \
-x509 \
-days 3650 \
-subj "/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout id.key.for.signing.jwt.pem \
-out id.key.for.verifying.jwt.pem

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

2.

1.

▪

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

3.

1.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 313

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway, replacing value of the property secretsDir with the directory for the PEM
file:

$HOME/.openig/config/routes/jwt-builder-sign-pem.json

%appdata%\OpenIG\config\routes\jwt-builder-sign-pem.json

Linux

Windows

4.

Linux

Windows

Gateway guide PingGateway

314 Copyright © 2025 Ping Identity Corporation

{
 "name": "jwt-builder-sign-pem",
 "condition": "${find(request.uri.path, '/jwt-builder-sign-pem')}",
 "baseURI": "http://app.example.com:8081",
 "properties": {
 "secretsDir": "/path/to/secrets"
 },
 "capture": "all",
 "heap": [
 {
 "name": "pemPropertyFormat",
 "type": "PemPropertyFormat"
 },
 {
 "name": "FileSystemSecretStore-1",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "&{secretsDir}",
 "suffix": ".pem",
 "mappings": [{
 "secretId": "id.key.for.signing.jwt",
 "format": "pemPropertyFormat"
 }]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "name": "SingleSignOnFilter",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }, {
 "name": "UserProfileFilter",
 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.ssoToken.info.uid}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 315

 "amService": "AmService-1"
 }
 }
 }
 }, {
 "name": "JwtBuilderFilter-1",
 "type": "JwtBuilderFilter",
 "config": {
 "template": {
 "name": "${contexts.userProfile.commonName}",
 "email": "${contexts.userProfile.rawInfo.mail[0]}"
 },
 "secretsProvider": "FileSystemSecretStore-1",
 "signature": {
 "secretId": "id.key.for.signing.jwt",
 "algorithm": "RS512"
 }
 }
 }, {
 "name": "HeaderFilter-1",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-openig-user": ["${contexts.jwtBuilder.value}"]
 }
 }
 }],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route matches requests to /jwt-builder-sign-pem .

The agent password for AmService is provided by a SystemAndEnvSecretStore.

If the request does not have a valid AM session cookie, the SingleSignOnFilter redirects the request to
authenticate with AM. If the request already has a valid AM session cookie, the SingleSignOnFilter passes the
request to the next filter, and stores the cookie value in an SsoTokenContext.

The UserProfileFilter reads the username from the SsoTokenContext, uses it to retrieve the user’s profile
info from AM, and places the data into the UserProfileContext.

The JwtBuilderFilter refers to the secret ID of the PEM, and uses the FileSystemSecretStore to manage the
secret.

The FileSystemSecretStore mapping refers to the secret ID of the PEM, and uses the PemPropertyFormat to
define the format.

The HeaderFilter retrieves the JWT from the JwtBuilderContext, and adds it to the header field x-openig-
user in the request, so that the sample app can display the JWT.

The ClientHandler passes the request to the sample app, which displays the JWT.

▪

▪

▪

▪

▪

▪

▪

▪

Gateway guide PingGateway

316 Copyright © 2025 Ping Identity Corporation

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/jwt-builder-sign-pem.

Log in to AM as user demo , password Ch4ng31t . The sample application displays the signed JWT along with its
header and payload.

In USE PEM FILE in the sample app, enter the path to id.key.for.verifying.jwt.pem to verify the JWT
signature.

Pass runtime data in a JWT signed with PEM then encrypted with a symmetric key

This example passes runtime data in a JWT that is signed with a PEM, and then encrypted with a symmetric key.

Set up secrets

Locate a directory for secrets, and go to it:

$ cd /path/to/secrets

From the secrets directory, generate PEM files to sign and verify the JWT:

$ openssl req \
-newkey rsa:2048 \
-new \
-nodes \
-x509 \
-days 3650 \
-subj "/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout id.key.for.signing.jwt.pem \
-out id.key.for.verifying.jwt.pem

Encrypt the PEM file used to sign the JWT:

$ openssl pkcs8 \
-topk8 \
-inform PEM \
-outform PEM \
-in id.key.for.signing.jwt.pem \
-out id.encrypted.key.for.signing.jwt.pem \
-passout pass:encryptedpassword \
-v1 PBE-SHA1-3DES

The encrypted PEM file used for signatures is id.encrypted.key.for.signing.jwt.pem . The password to decode
the file is encryptedpassword .

4.

1.

2.

3.

1.

1.

2.

3.

lightbulb_2
If encryption fails, make sure your encryption methods and ciphers are supported by the Java
Cryptography Extension.

Tip

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 317

https://ig.example.com:8443/jwt-builder-sign-pem
https://ig.example.com:8443/jwt-builder-sign-pem

Generate a symmetric key to encrypt the JWT:

$ openssl rand -base64 32 > symmetric.key.for.encrypting.jwt

Make sure you have the following keys in your secrets directory:

id.encrypted.key.for.signing.jwt.pem

id.key.for.signing.jwt.pem

id.key.for.verifying.jwt.pem

symmetric.key.for.encrypting.jwt

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

4.

5.

▪

▪

▪

▪

2.

1.

▪

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

3.

1.

2.

3.

Gateway guide PingGateway

318 Copyright © 2025 Ping Identity Corporation

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

In PingGateway, create an environment variable for the base64-encoded password to decrypt the PEM file used to
sign the JWT:

$ export ID_DECRYPTED_KEY_FOR_SIGNING_JWT='ZW5jcnlwdGVkcGFzc3dvcmQ='

Add the following route to PingGateway, replacing the value of secretsDir with your secrets directory:

$HOME/.openig/config/routes/jwtbuilder-sign-then-encrypt.json

%appdata%\OpenIG\config\routes\jwtbuilder-sign-then-encrypt.json

Linux

Windows

4.

5.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 319

{
 "name": "jwtbuilder-sign-then-encrypt",
 "condition": "${find(request.uri.path, '/jwtbuilder-sign-then-encrypt')}",
 "baseURI": "http://app.example.com:8081",
 "properties": {
 "secretsDir": "/path/to/secrets"
 },
 "capture": "all",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore",
 "type": "SystemAndEnvSecretStore",
 "config": {
 "mappings": [{
 "secretId": "id.decrypted.key.for.signing.jwt",
 "format": "BASE64"
 }]
 }
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore",
 "url": "http://am.example.com:8088/openam"
 }
 },
 {
 "name": "pemPropertyFormat",
 "type": "PemPropertyFormat",
 "config": {
 "decryptionSecretId": "id.decrypted.key.for.signing.jwt",
 "secretsProvider": "SystemAndEnvSecretStore"
 }
 },
 {
 "name": "FileSystemSecretStore-1",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "&{secretsDir}",
 "mappings": [{
 "secretId": "id.encrypted.key.for.signing.jwt.pem",
 "format": "pemPropertyFormat"
 }, {
 "secretId": "symmetric.key.for.encrypting.jwt",
 "format": {
 "type": "SecretKeyPropertyFormat",
 "config": {
 "format": "BASE64",
 "algorithm": "AES"
 }
 }
 }]
 }
 }

Gateway guide PingGateway

320 Copyright © 2025 Ping Identity Corporation

],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "name": "SingleSignOnFilter",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }, {
 "name": "UserProfileFilter",
 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.ssoToken.info.uid}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {
 "amService": "AmService-1"
 }
 }
 }
 }, {
 "name": "JwtBuilderFilter-1",
 "type": "JwtBuilderFilter",
 "config": {
 "template": {
 "name": "${contexts.userProfile.commonName}",
 "email": "${contexts.userProfile.rawInfo.mail[0]}"
 },
 "secretsProvider": "FileSystemSecretStore-1",
 "signature": {
 "secretId": "id.encrypted.key.for.signing.jwt.pem",
 "algorithm": "RS512",
 "encryption": {
 "secretId": "symmetric.key.for.encrypting.jwt",
 "algorithm": "dir",
 "method": "A128CBC-HS256"
 }
 }
 }
 }, {
 "name": "AddBuiltJwtToHeader",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-openig-user": ["${contexts.jwtBuilder.value}"]
 }
 }
 },
 {
 "name": "AddBuiltJwtAsCookie",
 "type": "HeaderFilter",
 "config": {
 "messageType": "RESPONSE",
 "add": {
 "set-cookie": ["my-jwt=${contexts.jwtBuilder.value};PATH=/"]
 }
 }

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 321

 }],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route matches requests to /jwtbuilder-sign-then-encrypt .

The SystemAndEnvSecretStore provides the PingGateway agent password and the password to decode the
PEM file for the signing keys.

The FileSystemSecretStore maps the secret IDs of the encrypted PEM file used to sign the JWT, and the
symmetric key used to encrypt the JWT.

After authentication, the UserProfileFilter reads the username from the SsoTokenContext, uses it to retrieve
the user’s profile info from AM, and places the data into the UserProfileContext.

The JwtBuilderFilter takes the username and email from the UserProfileContext, and stores them in a JWT in
the JwtBuilderContext. It uses the secrets mapped in the FileSystemSecretStore to sign then encrypt the
JWT.

The AddBuiltJwtToHeader HeaderFilter retrieves the JWT from the JwtBuilderContext, and adds it to the
header field x-openig-user in the request so that the sample app can display the JWT.

The AddBuiltJwtAsCookie HeaderFilter adds the JWT to a cookie called my-jwt so that it can be retrieved
by the JwtValidationFilter in JWT validation. The cookie is ignored in this example.

The ClientHandler passes the request to the sample app.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/jwtbuilder-sign-then-encrypt.

Log in to AM as user demo , password Ch4ng31t . The sample app displays the encrypted JWT. The payload is
concealed because the JWT is encrypted.

In the ENTER SECRET box, enter the value of symmetric.key.for.encrypting.jwt to decrypt the JWT. The signed
JWT and its payload are now displayed.

In the USE PEM FILE box, enter the path to id.key.for.verifying.jwt.pem to verify the JWT signature.

Pass runtime data in JWT encrypted with a symmetric key

Set up secrets:

Locate a directory for secrets, and go to it:

$ cd /path/to/secrets

In the secrets folder, generate an AES 256-bit key:

▪

▪

▪

▪

▪

▪

▪

▪

4.

1.

2.

3.

4.

1.

1.

2.

Gateway guide PingGateway

322 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/jwtbuilder-sign-then-encrypt
https://ig.example.com:8443/jwtbuilder-sign-then-encrypt

$ openssl rand -base64 32

loH...UFQ=

In the secrets folder, create a file called symmetric.key.for.encrypting.jwt containing the AES key:

$ echo -n 'loH...UFQ=' > symmetric.key.for.encrypting.jwt

Make sure the password file contains only the password, with no trailing spaces or carriage returns.

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

3.

2.

1.

▪

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

3.

1.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 323

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway, replacing the value of the property secretsDir with your value:

$HOME/.openig/config/routes/jwtbuilder-encrypt-symmetric.json

%appdata%\OpenIG\config\routes\jwtbuilder-encrypt-symmetric.json

Linux

Windows

4.

Linux

Windows

Gateway guide PingGateway

324 Copyright © 2025 Ping Identity Corporation

{
 "name": "jwtbuilder-encrypt-symmetric",
 "condition": "${find(request.uri.path, '/jwtbuilder-encrypt-symmetric')}",
 "baseURI": "http://app.example.com:8081",
 "properties": {
 "secretsDir": "/path/to/secrets"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam"
 }
 },
 {
 "name": "FileSystemSecretStore-1",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "&{secretsDir}",
 "mappings": [{
 "secretId": "symmetric.key.for.encrypting.jwt",
 "format": {
 "type": "SecretKeyPropertyFormat",
 "config": {
 "format": "BASE64",
 "algorithm": "AES"
 }
 }
 }]
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }, {
 "name": "UserProfileFilter-1",
 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.ssoToken.info.uid}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 325

 "amService": "AmService-1"
 }
 }
 }
 }, {
 "name": "JwtBuilderFilter-1",
 "type": "JwtBuilderFilter",
 "config": {
 "template": {
 "name": "${contexts.userProfile.commonName}",
 "email": "${contexts.userProfile.rawInfo.mail[0]}"
 },
 "secretsProvider": "FileSystemSecretStore-1",
 "encryption": {
 "secretId": "symmetric.key.for.encrypting.jwt",
 "algorithm": "dir",
 "method": "A128CBC-HS256"
 }
 }
 }, {
 "name": "HeaderFilter-1",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-openig-user": ["${contexts.jwtBuilder.value}"]
 }
 }
 }],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route matches requests to /jwtbuilder-encrypt-symmetric .

The JWT encryption key is managed by the FileSystemSecretStore in the heap, which defines the
SecretKeyPropertyFormat.

The JwtBuilderFilter encryption property refers to key in the FileSystemSecretStore.

The HeaderFilter retrieves the JWT from the JwtBuilderContext, and adds it to the header field x-openig-
user in the request, so that the sample app can display the JWT.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/jwtbuilder-encrypt-symmetric.

Log in to AM as user demo , password Ch4ng31t , or as another user. The JWT is displayed in the sample app.

In the ENTER SECRET field, enter the value of the AES 256-bit key to decrypt the JWT and display its payload.

▪

▪

▪

▪

4.

1.

2.

3.

Gateway guide PingGateway

326 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/jwtbuilder-encrypt-symmetric
https://ig.example.com:8443/jwtbuilder-encrypt-symmetric

Pass runtime data in JWT encrypted with an asymmetric key

The asymmetric key in this example is a PEM, but you can equally use a keystore.

Set up secrets:

Locate a directory for secrets, and go to it:

$ cd /path/to/secrets

Generate an encrypted PEM file:

$ openssl req \
-newkey rsa:2048 \
-new \
-nodes \
-x509 \
-days 3650 \
-subj "/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout id.key.for.encrypting.jwt.pem \
-out id.key.for.decrypting.jwt.pem

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

1.

1.

2.

2.

1.

▪

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

3.

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 327

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway, replacing value of the property secretsDir with the directory for the PEM
file:

$HOME/.openig/config/routes/jwtbuilder-encrypt-asymmetric.json

%appdata%\OpenIG\config\routes\jwtbuilder-encrypt-asymmetric.json

2.

3.

Linux

Windows

4.

Linux

Windows

Gateway guide PingGateway

328 Copyright © 2025 Ping Identity Corporation

{
 "name": "jwtbuilder-encrypt-asymmetric",
 "condition": "${find(request.uri.path, '/jwtbuilder-encrypt-asymmetric')}",
 "baseURI": "http://app.example.com:8081",
 "properties": {
 "secretsDir": "/path/to/secrets"
 },
 "capture": "all",
 "heap": [
 {
 "name": "pemPropertyFormat",
 "type": "PemPropertyFormat"
 },
 {
 "name": "FileSystemSecretStore-1",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "&{secretsDir}",
 "suffix": ".pem",
 "mappings": [{
 "secretId": "id.key.for.decrypting.jwt",
 "format": "pemPropertyFormat"
 }]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "name": "SingleSignOnFilter",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }, {
 "name": "UserProfileFilter",
 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.ssoToken.info.uid}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 329

 "amService": "AmService-1"
 }
 }
 }
 }, {
 "name": "JwtBuilderFilter-1",
 "type": "JwtBuilderFilter",
 "config": {
 "template": {
 "name": "${contexts.userProfile.commonName}",
 "email": "${contexts.userProfile.rawInfo.mail[0]}"
 },
 "secretsProvider": "FileSystemSecretStore-1",
 "encryption": {
 "secretId": "id.key.for.decrypting.jwt",
 "algorithm": "RSA-OAEP-256",
 "method": "A128CBC-HS256"
 }
 }
 }, {
 "name": "HeaderFilter-1",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-openig-user": ["${contexts.jwtBuilder.value}"]
 }
 }
 }],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route matches requests to /jwtbuilder-encrypt-asymmetric .

The JwtBuilderFilter refers to the secret ID of the PEM, and uses the FileSystemSecretStore to manage the
secret.

The FileSystemSecretStore mapping refers to the secret ID of the PEM, and uses the default
PemPropertyFormat.

The HeaderFilter retrieves the JWT from the JwtBuilderContext, and adds it to the header field x-openig-
user in the request, so that the sample app can display the JWT.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/jwtbuilder-encrypt-asymmetric.

Log in to AM as user demo , password Ch4ng31t , or as another user. The JWT is displayed in the sample app.

In the USE PEM FILE field, enter the path to id.key.for.encrypting.jwt.pem to decrypt the JWT and display its
payload.

▪

▪

▪

▪

4.

1.

2.

3.

Gateway guide PingGateway

330 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/jwtbuilder-encrypt-asymmetric
https://ig.example.com:8443/jwtbuilder-encrypt-asymmetric

SAML

PingGateway implements SAML 2.0 to validate users and log them in to protected applications.

For more information about the SAML 2.0 standard, refer to RFC 7522. The following terms are used:

Identity Provider (IDP): The service that manages the user identity, for example PingOne Advanced Identity Cloud or AM.

Service Provider (SP): The service that a user wants to access. PingGateway acts as a SAML 2.0 SP for SSO, providing an
interface to applications that don’t support SAML 2.0.

Circle of trust (CoT): An IDP and SP that participate in federation.

Fedlet: SAML configuration files.

SAML assertions

SAML assertions can be signed and encrypted. ForgeRock recommends using *SHA-256 variants (rsa-sha256 or ecdsa-sha256).

SAML assertions can contain configurable attribute values, such as user meta-information or anything else provided by the IDP.
The attributes of a SAML assertion can contain one or more values, made available as a list of strings. Even if an attribute contains
a single value, it is made available as a list of strings.

SAML configuration

PingGateway scans SAML configuration files once, the first time that a request accesses the SamlFederationFilter or
SamlFederationHandler (deprecated) after startup. Restart PingGateway after any change to the SAML configuration files.

SAML in deployments with multiple instances of PingGateway

When PingGateway acts as a SAML service provider, session information is stored in the fedlet not the session cookie. In
deployments with multiple instances of PingGateway as a SAML service provider, it is necessary to set up sticky sessions so that
requests always hit the instance where the SAML interaction was started.

For information, refer to Session state considerations in AM’s SAML v2.0 guide.

About SP-initiated SSO

SP-initiated SSO occurs when a user attempts to access a protected application directly through the SP. Because the user’s
federated identity is managed by the IDP, the SP sends a SAML authentication request to the IDP. After the IDP authenticates the
user, it provides the SP with a SAML assertion for the user.

For the SamlFederationFilter, SP-initiated SSO is the preferred to IDP-initiated SSO:

A dedicated SAML URI is not required to start SP-initiated authentication.

The HTTP session tracks the state of the user session.

The following sequence diagram shows the flow of information in SP-initiated SSO, when PingGateway acts as a SAML 2.0 SP:

•

•

•

•

•

•

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 331

https://www.rfc-editor.org/rfc/rfc7522
https://www.rfc-editor.org/rfc/rfc7522
https://docs.pingidentity.com/pingam/7.5/saml2-guide/saml2-configuration.html#saml2-and-session-state
https://docs.pingidentity.com/pingam/7.5/saml2-guide/saml2-configuration.html#saml2-and-session-state

SAML with AM as the identity provider

SAML with AM as the identity provider using unsigned/unencrypted assertions

This example set up federation using AM as the identity provider with unsigned/unencrypted assertions.

Set up the network:

Add sp.example.com to your /etc/hosts file:

127.0.0.1 localhost am.example.com ig.example.com app.example.com sp.example.com

Traffic to the application is proxied through PingGateway, using the host name sp.example.com .

Configure a Java Fedlet:

SP Initiated SSO

PingGateway

Client

Client

SamlFederationFilter

SamlFederationFilter

ReverseProxyHandler

ReverseProxyHandler

IDP

IDP

Protected resource
app.example.com

Protected resource
app.example.com

1 Make request to app.example.com

2 Logout not triggered

3 Check session

4 Trigger SAML auth

5 Redirect for SAML auth

6 Authenticate at IDP

7 Authenticate user

8 Authenticate

9 Validate authentication

10 Redirect with SAML Assertion

11 POST SAML Assertion

12 Validate SAML Assertion

13 Update session

14 Redirect to RelayState

15 Make request to app.example.com

16 Logout not triggered

17 Check session

18 Let request pass

19 Pass request on

1.

2.

Gateway guide PingGateway

332 Copyright © 2025 Ping Identity Corporation

For more information about Java Fedlets, refer to Creating and configuring the Fedlet in AM’s SAML v2.0 guide.

Copy and unzip the fedlet zip file, Fedlet-7.5.0.zip , delivered with the AM installation, into a local directory.

$ unzip $HOME/openam/Fedlet-7.5.0.zip

Archive: Fedlet-7.5.0.zip
creating: conf/
inflating: README
inflating: conf/FederationConfig.properties
inflating: conf/fedlet.cot-template
inflating: conf/idp-extended.xml-template
inflating: conf/sp-extended.xml-template
inflating: conf/sp.xml-template
inflating: fedlet.war

In each file, search and replace the following properties:

Save the files as .xml, without the -template extension, so that the directory looks like this:

info
The SAML library component validates the SP’s AssertionConsumerService Location against the incoming IDP
SAML Assertion, based on the request information, including the port. In sp.xml , always specify the port in
the Location value of AssertionConsumerService , even when using defaults of 443 or 80, as follows:

<AssertionConsumerService isDefault="true"
 index="0"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="https://sp.example.com:443/fedletapplication" />

Note

1.

2.

Replace this With this

IDP_ENTITY_ID openam

FEDLET_ENTITY_ID sp

FEDLET_PROTOCOL://FEDLET_HOST:FEDLET_PORT/

FEDLET_DEPLOY_URI

https://sp.example.com:8443/home/saml

fedletcot and FEDLET_COT Circle of Trust

sp.example.com:8443/home/saml/

fedletapplication

sp.example.com:8443/home/saml/

fedletapplication/metaAlias/sp

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 333

https://docs.pingidentity.com/pingam/7.5/saml2-guide/create-configure-fedlet.html
https://docs.pingidentity.com/pingam/7.5/saml2-guide/create-configure-fedlet.html

conf
├── FederationConfig.properties
├── fedlet.cot
├── idp-extended.xml
├── sp-extended.xml
└── sp.xml

By default, AM as an IDP uses the NameID format urn:oasis:names:tc:SAML:2.0:nameid-format:transient to
communicate about a user. For information about using a different NameID format, refer to Use a non-transient
NameID format.

Set up AM:

In the AM admin UI, select Identities, select the user demo , and change the last name to Ch4ng31t . Note that,
for this example, the last name must be the same as the password.

Select Applications > Federation > Circles of Trust, and add a circle of trust called Circle of Trust , with the
default settings.

Set up a remote service provider:

Select Applications > Federation > Entity Providers, and add a remote entity provider.

Drag in or import sp.xml created in the previous step.

Select Circles of Trust: Circle of Trust .

Set up a hosted identity provider:

Select Applications > Federation > Entity Providers, and add a hosted entity provider with the following
values:

Entity ID: openam

Entity Provider Base URL: http://am.example.com:8088/openam

Identity Provider Meta Alias: idp

Circles of Trust: Circle of Trust

Select Assertion Processing > Attribute Mapper, map the following SAML attribute keys and values, and
then save your changes:

SAML Attribute: cn , Local Attribute: cn

SAML Attribute: sn , Local Attribute: sn

In a terminal, export the XML-based metadata for the IDP:

$ curl -v \
--output idp.xml \
"http://am.example.com:8088/openam/saml2/jsp/exportmetadata.jsp?entityid=openam"

The idp.xml file is created locally.

3.

1.

2.

3.

1.

2.

3.

4.

1.

▪

▪

▪

▪

2.

▪

▪

3.

Gateway guide PingGateway

334 Copyright © 2025 Ping Identity Corporation

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Copy the edited fedlet files, and the exported idp.xml file into the PingGateway configuration, at $HOME/.openig/
SAML .

$ ls -l $HOME/.openig/SAML

FederationConfig.properties
fedlet.cot
idp-extended.xml
idp.xml
sp-extended.xml
sp.xml

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/saml-filter.json

4.

1.

2.

3.

Linux

Windows

4.

Linux

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 335

%appdata%\OpenIG\config\routes\saml-filter.json

{
 "name": "saml-filter",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SamlFilter",
 "type": "SamlFederationFilter",
 "config": {
 "assertionMapping": {
 "name": "cn",
 "surname": "sn"
 },
 "subjectMapping": "sp-subject-name",
 "redirectURI": "/home/saml-filter"
 }
 },
 {
 "name": "SetSamlHeaders",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-saml-cn": ["${toString(session.name)}"],
 "x-saml-sn": ["${toString(session.surname)}"]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route matches requests to /home .

The SamlFederationFilter extracts cn and sn from the SAML assertion, and maps them to the
SessionContext, at session.name[0] and session.surname[0] .

The HeaderFilter adds the session name and surname as headers to the request so that they are displayed
by the sample application.

Restart PingGateway.

Windows

▪

▪

▪

5.

Gateway guide PingGateway

336 Copyright © 2025 Ping Identity Corporation

Test the setup:

In your browser’s privacy or incognito mode, go to https://sp.example.com:8443/home.

Log in to AM as user demo , password Ch4ng31t . The request is redirected to the sample application.

SAML with AM as the identity provider using signed/encrypted assertions

This example set up federation using AM as the identity provider with signed/encrypted assertions.

Before you start, set up and test the example in SAML with AM as the identity provider using unsigned/unencrypted assertions.

Set up the SAML keystore:

Find the values of AM’s default SAML keypass and storepass:

$ more /path/to/am/secrets/default/.keypass
$ more /path/to/am/secrets/default/.storepass

Copy the SAML keystore from the AM configuration to PingGateway:

$ cp /path/to/am/secrets/keystores/keystore.jceks /path/to/ig/secrets/keystore.jceks

Configure the Fedlet in PingGateway:

In FederationConfig.properties , make the following changes:

Delete the following lines:

com.sun.identity.saml.xmlsig.keystore=%BASE_DIR%/security/keystores/keystore.jks

com.sun.identity.saml.xmlsig.storepass=%BASE_DIR%/.storepass

com.sun.identity.saml.xmlsig.keypass=%BASE_DIR%/.keypass

com.sun.identity.saml.xmlsig.certalias=test

com.sun.identity.saml.xmlsig.storetype=JKS

am.encryption.pwd=@AM_ENC_PWD@

Add the following line:

5.

1.

2.

lightbulb_2
If a request returns an HTTP 414 URI Too Long error, consider the information in URI Too Long error.

Tip

1.

1.

2.

warning
Legacy keystore types such as JKS and JCEKS are supported but are not secure. Consider using the
PKCS#12 keystore type.

Warning

2.

1.

1.

▪

▪

▪

▪

▪

▪

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 337

https://sp.example.com:8443/home
https://sp.example.com:8443/home

org.forgerock.openam.saml2.credential.resolver.class=org.forgerock.openig.handler.saml.Secret

sSaml2CredentialResolver

This class is responsible for resolving secrets and supplying credentials.

In sp.xml , make the following changes:

Change AuthnRequestsSigned="false" to AuthnRequestsSigned="true" .

Add the following KeyDescriptor just before </SPSSODescriptor>

 <KeyDescriptor use="signing">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#" >
 <ds:X509Data>
 <ds:X509Certificate>

 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </KeyDescriptor>
 </SPSSODescriptor>

Copy the value of the signing certificate from idp.xml to this file:

<KeyDescriptor use="signing">
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>

 MII...zA6

 </ds:X509Certificate>

This is the public key used for signing so that the IDP can verify request signatures.

Replace the remote service provider in AM:

Select Applications > Federation > Entity Providers, and remove the sp entity provider.

Drag in or import the new sp.xml updated in the previous step.

Select Circles of Trust: Circle of Trust .

Set up PingGateway

In the PingGateway configuration, set environment variables for the following secrets, and then restart
PingGateway:

lightbulb_2
Be sure to leave no space at the end of the line.

Tip

2.

1.

2.

3.

3.

1.

2.

3.

4.

1.

Gateway guide PingGateway

338 Copyright © 2025 Ping Identity Corporation

$ export KEYSTORE_SECRET_ID='a2V5c3RvcmU='
$ export SAML_KEYSTORE_STOREPASS_SECRET_ID='base64-encoded value of the SAML storepass'
$ export SAML_KEYSTORE_KEYPASS_SECRET_ID='base64-encoded value of the SAML keypass'

The passwords are retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Remove saml-filter.json from the configuration, and add the following route, replacing the path to
keystore.jceks with your path:

$HOME/.openig/config/routes/saml-filter-secure.json

%appdata%\OpenIG\config\routes\saml-filter-secure.json

2.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 339

{
 "name": "saml-filter-secure",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "KeyStoreSecretStore-1",
 "type" : "KeyStoreSecretStore",
 "config" : {
 "file" : "/path/to/ig/keystore.jceks",
 "storeType" : "jceks",
 "storePasswordSecretId" : "saml.keystore.storepass.secret.id",
 "entryPasswordSecretId" : "saml.keystore.keypass.secret.id",
 "secretsProvider" : "SystemAndEnvSecretStore-1",
 "mappings" : [{
 "secretId" : "sp.signing.sp",
 "aliases" : ["rsajwtsigningkey"]
 }, {
 "secretId" : "sp.decryption.sp",
 "aliases" : ["test"]
 }]
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SamlFilter",
 "type": "SamlFederationFilter",
 "config": {
 "assertionMapping": {
 "name": "cn",
 "surname": "sn"
 },
 "subjectMapping": "sp-subject-name",
 "redirectURI": "/home/saml-filter",
 "secretsProvider" : "KeyStoreSecretStore-1"
 }
 },
 {
 "name": "SetSamlHeaders",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-saml-cn": ["${toString(session.name)}"],
 "x-saml-sn": ["${toString(session.surname)}"]
 }
 }
 }

Gateway guide PingGateway

340 Copyright © 2025 Ping Identity Corporation

],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route compared to saml-filter.json :

The SamlFederationHandler refers to the KeyStoreSecretStore to provide the keys for the signed and
encrypted SAML assertions.

The secret IDs, sp.signing.sp and sp.decryption.sp , follow a naming convention based on the name of
the service provider, sp .

The alias for the signing key corresponds to the PEM in keystore.jceks .

Restart PingGateway.

Test the setup:

In your browser’s privacy or incognito mode, go to https://sp.example.com:8443/home.

Log in to AM as user demo , password Ch4ng31t . The request is redirected to the sample application.

SAML with PingOne as the identity provider

This example set up federation using PingOne as the identity provider with unsigned/unencrypted assertions.

Before you start, prepare PingGateway and the sample application as described in the Quick install.

Set up the PingOne environment:

Create a PingOne test environment.

Add a PingOne test user.

Set up the network:

Add sp.example.com to your /etc/hosts file:

127.0.0.1 localhost am.example.com ig.example.com app.example.com sp.example.com

Traffic to the application is proxied through PingGateway, using the host name sp.example.com .

Save the file sp.xml as the SAML service provider configuration file $HOME/.openig/SAML/sp.xml .

Create a PingOne SAML application.

▪

▪

▪

3.

5.

1.

2.

lightbulb_2
If a request returns an HTTP 414 URI Too Long error, consider the information in URI Too Long error.

Tip

1.

1.

2.

2.

3.

4.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 341

https://sp.example.com:8443/home
https://sp.example.com:8443/home

Learn more from PingOne’s Add a SAML application.

In the PingOne test environment, create a web application with the following values:

Application Name: saml_app

Description: SAML application

Application Type: SAML Application

In the application, select the Import Metadata panel, drag-in or select the SAML configuration file sp.xml , and
then save the application.

On the Attribute Mappings panel, click edit (edit) and add the following mappings:

On the Configuration panel, click edit (edit) and set the SLO BINDING’s SUBJECT NAMEID FORMAT to
urn:oasis:names:tc:SAML:2.0:nameid-format:transient .

On the Configuration panel, click Download Metadata and save the downloaded file as the identity provider
configuration file $HOME/.openig/SAML/idp.xml .

On the Configuration panel, note the Initiate Single Sign-on URL. The value is used in the PingGateway setup.

At the top-right of the page, click the slider to enable the application.

Complete the SAML configuration:

Copy the following example SAML configuration files to $HOME/.openig/SAML and edit them to match your
configuration:

Make sure that the PingGateway configuration at $HOME/.openig/SAML contains the following files.

1.

▪

▪

▪

2.

3.

saml_app PingOne

cn Given Name

sn Family Name

4.

5.

6.

7.

5.

1.

File Required changes

FederationConfig.properties None

fedlet.cot Replace idp-entityID with the value of EntityDescriptor entityID in
idp.xml .

idp-extended.xml Replace idp-entityID with the value of EntityDescriptor entityID in
idp.xml .

sp-extended.xml None

2.

Gateway guide PingGateway

342 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingone/pingone_tutorials/p1_p1tutorial_add_a_saml_app.html
https://docs.pingidentity.com/pingone/pingone_tutorials/p1_p1tutorial_add_a_saml_app.html

$ ls -l $HOME/.openig/SAML

FederationConfig.properties
fedlet.cot
idp-extended.xml
idp.xml
sp-extended.xml
sp.xml

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/saml-filter.json

6.

1.

2.

Linux

Windows

3.

Linux

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 343

%appdata%\OpenIG\config\routes\saml-filter.json

{
 "name": "saml-filter",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SamlFilter",
 "type": "SamlFederationFilter",
 "config": {
 "assertionMapping": {
 "name": "cn",
 "surname": "sn"
 },
 "subjectMapping": "sp-subject-name",
 "redirectURI": "/home/saml-filter"
 }
 },
 {
 "name": "SetSamlHeaders",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-saml-cn": ["${toString(session.name)}"],
 "x-saml-sn": ["${toString(session.surname)}"]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Restart PingGateway.

Test IDP-initiated login:

In your browser’s privacy or incognito mode, go to the URL given by the web application property Initiate Single
Sign-on URL.

The PingOne login page is displayed.

Log in to PingOne as user demo , password Ch4ng3!t .

If prompted, change the password of the demo user.

Windows

4.

7.

1.

2.

3.

Gateway guide PingGateway

344 Copyright © 2025 Ping Identity Corporation

The home page of the sample application is displayed.

Test SP-initiated login:

In your browser’s privacy or incognito mode, go to https://sp.example.com:8443/home.

Log in as user demo , password Ch4ng31t . The request is redirected to the sample application.

The home page of the sample application is displayed.

Federation using the SamlFederationHandler (deprecated)

About SP-initiated SSO with the SamlFederationHandler

SP-initiated SSO occurs when a user attempts to access a protected application directly through the SP. Because the user’s
federated identity is managed by the IDP, the SP sends a SAML authentication request to the IDP. After the IDP authenticates the
user, it provides the SP with a SAML assertion for the user.

The following sequence diagram shows the flow of information in SP-initiated SSO, when PingGateway acts as a SAML 2.0 SP:

8.

1.

2.

lightbulb_2
If a request returns an HTTP 414 URI Too Long error, consider the information in URI Too Long error.

Tip

emergency_home
The SamlFederationHandler is deprecated; use the SamlFederationFilter instead. For more information, refer to the
Deprecated section of the Release Notes.

Important

SP-Initiated SSO

Browser

Browser

PingAM
identity provider

PingAM
identity provider

PingGateway
service provider

PingGateway
service provider

Protected application

Protected application

SSO on the federation

1 HTTP GET request to the protected application

2
User not authenticated, direct
request to the SP-initiated SSO endpoint

3 Request credential, and user logs in

4
Direct request to the SP,
provide SAML assertions for the user

5 Validate the assertions, set the attributes

Application-specific password replay

6
Retrieve credentials, replace original HTTP GET
with HTTP POST containing credentials to
authenticate to the protected application

7 Return response page showing that the user has logged in

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 345

https://sp.example.com:8443/home
https://sp.example.com:8443/home
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

About IDP-initiated SSO the the SamlFederationHandler

IDP-initiated SSO occurs when a user attempts to access a protected application, using the IDP for authentication. The IDP sends
an unsolicited authentication statement to the SP.

Before IDP-initiated SSO can occur:

The user must access a link on the IDP that refers to the remote SP.

The user must authenticate to the IDP.

The IDP must be configured with links that refer to the SP.

The following sequence diagram shows the flow of information in IDP-initiated SSO when PingGateway acts as a SAML 2.0 SP:

Set up federation with unsigned/unencrypted assertions with the SamlFederationHandler

For examples of the federation configuration files, refer to Example fedlet files. To set up multiple SPs, work through this section,
and then SAML 2.0 and multiple applications.

Set up the network:

Add sp.example.com to your /etc/hosts file:

127.0.0.1 localhost am.example.com ig.example.com app.example.com sp.example.com

Traffic to the application is proxied through PingGateway, using the host name sp.example.com .

Configure a Java Fedlet:

•

•

•

IDP-Initiated SSO

Browser

Browser

PingAM
identity provider

PingAM
identity provider

PingGateway
service provider

PingGateway
service provider

Protected application

Protected application

SSO on the federation

1
HTTP GET request to the protected application
through IDP-initiated SSO endpoint

2 Request credentials, and user logs in

3
Direct the request to the SP,
provide SAML assertions for the user

4 Validate the assertions, set the attributes

Application-specific password replay

5
Retrieve credentials, replace original HTTP GET
with HTTP POST containing credentials to
authenticate to the protected application.

6 Return response page showing that the user has logged in

1.

2.

Gateway guide PingGateway

346 Copyright © 2025 Ping Identity Corporation

For more information about Java Fedlets, refer to Creating and configuring the Fedlet in AM’s SAML v2.0 guide.

Copy and unzip the fedlet zip file, Fedlet-7.5.0.zip , delivered with the AM installation, into a local directory.

$ unzip $HOME/openam/Fedlet-7.5.0.zip

Archive: Fedlet-7.5.0.zip
creating: conf/
inflating: README
inflating: conf/FederationConfig.properties
inflating: conf/fedlet.cot-template
inflating: conf/idp-extended.xml-template
inflating: conf/sp-extended.xml-template
inflating: conf/sp.xml-template
inflating: fedlet.war

In each file, search and replace the following properties:

Save the files as .xml, without the -template extension, so that the directory looks like this:

info
The SAML library component validates the SP’s AssertionConsumerService Location against the incoming IDP
SAML Assertion, based on the request information, including the port. In sp.xml , always specify the port in
the Location value of AssertionConsumerService , even when using defaults of 443 or 80, as follows:

<AssertionConsumerService isDefault="true"
 index="0"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="https://sp.example.com:443/fedletapplication" />

Note

1.

2.

Replace this With this

IDP_ENTITY_ID openam

FEDLET_ENTITY_ID sp

FEDLET_PROTOCOL://FEDLET_HOST:FEDLET_PORT/

FEDLET_DEPLOY_URI

http://sp.example.com:8080/saml

fedletcot and FEDLET_COT Circle of Trust

sp.example.com:8080/saml/fedletapplication sp.example.com:8080/saml/fedletapplication/

metaAlias/sp

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 347

https://docs.pingidentity.com/pingam/7.5/saml2-guide/create-configure-fedlet.html
https://docs.pingidentity.com/pingam/7.5/saml2-guide/create-configure-fedlet.html

conf
├── FederationConfig.properties
├── fedlet.cot
├── idp-extended.xml
├── sp-extended.xml
└── sp.xml

By default, AM as an IDP uses the NameID format urn:oasis:names:tc:SAML:2.0:nameid-format:transient to
communicate about a user. For information about using a different NameID format, refer to Use a non-transient
NameID format.

Set up AM:

In the AM admin UI, select Identities, select the user demo , and change the last name to Ch4ng31t . Note that,
for this example, the last name must be the same as the password.

Select Applications > Federation > Circles of Trust, and add a circle of trust called Circle of Trust , with the
default settings.

Set up a remote service provider:

Select Applications > Federation > Entity Providers, and add a remote entity provider.

Drag in or import sp.xml created in the previous step.

Select Circles of Trust: Circle of Trust .

Set up a hosted identity provider:

Select Applications > Federation > Entity Providers, and add a hosted entity provider with the following
values:

Entity ID: openam

Entity Provider Base URL: http://am.example.com:8088/openam

Identity Provider Meta Alias: idp

Circles of Trust: Circle of Trust

Select Assertion Processing > Attribute Mapper, map the following SAML attribute keys and values, and
then save your changes:

SAML Attribute: cn , Local Attribute: cn

SAML Attribute: sn , Local Attribute: sn

In a terminal, export the XML-based metadata for the IDP:

$ curl -v \
--output idp.xml \
"http://am.example.com:8088/openam/saml2/jsp/exportmetadata.jsp?entityid=openam"

The idp.xml file is created locally.

3.

1.

2.

3.

1.

2.

3.

4.

1.

▪

▪

▪

▪

2.

▪

▪

3.

Gateway guide PingGateway

348 Copyright © 2025 Ping Identity Corporation

Set up PingGateway:

Copy the edited fedlet files, and the exported idp.xml file into the PingGateway configuration, at $HOME/.openig/
SAML .

$ ls -l $HOME/.openig/SAML

FederationConfig.properties
fedlet.cot
idp-extended.xml
idp.xml
sp-extended.xml
sp.xml

In config.json , comment out or remove the baseURI :

{
 "handler": {
 "_baseURI": "http://app.example.com:8081",
 ...
 }
}

Requests to the SamlFederationHandler must not be rebased, because the request URI must match the endpoint in
the SAML metadata.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

4.

1.

2.

3.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 349

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/saml-handler.json

%appdata%\OpenIG\config\routes\saml-handler.json

{
 "name": "saml-handler",
 "condition": "${find(request.uri.path, '^/saml')}",
 "session": "JwtSession",
 "handler": {
 "type": "SamlFederationHandler",
 "config": {
 "useOriginalUri": true,
 "assertionMapping": {
 "username": "cn",
 "password": "sn"
 },
 "subjectMapping": "sp-subject-name",
 "redirectURI": "/home/federate"
 }
 }
}

Notice the following features of the route:

The route matches requests to /saml .

After authentication, the SamlFederationHandler extracts cn and sn from the SAML assertion, and maps
them to the SessionContext, at session.username and session.password .

4.

Linux

Windows

▪

▪

Gateway guide PingGateway

350 Copyright © 2025 Ping Identity Corporation

The handler stores the subject name as a string in the session field session.sp-subject-name , which is
named by the subjectMapping property. By default, the subject name is stored in the session field
session.subjectName .

The handler redirects the request to the /federate route.

The route uses the JwtSession implementation, meaning it stores encrypted session information in a
browser cookie. The name is a reference to the JwtSession object defined in config.json . For
information, see JwtSession.

Add the following route to PingGateway:

$HOME/.openig/config/routes/federate-handler.json

%appdata%\OpenIG\config\routes\federate-handler.json

▪

▪

▪

5.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 351

{
 "name": "federate-handler",
 "condition": "${find(request.uri.path, '^/home/federate')}",
 "session": "JwtSession",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${empty session.username}",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 302,
 "headers": {
 "Location": [
 "http://sp.example.com:8080/saml/SPInitiatedSSO?metaAlias=/sp"
]
 }
 }
 }
 },
 {
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-username": ["${session.username[0]}"],
 "x-password": ["${session.password[0]}"]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
 }
]
 }
 }
}

Notice the following features of the route:

The route matches requests to /home/federate .

If the user is not authenticated with AM, the username is not populated in the context. The DispatchHandler
then dispatches the request to the StaticResponseHandler, which redirects it to the SP-initiated SSO
endpoint.

If the credentials are in the context, or after successful authentication, the DispatchHandler dispatches the
request to the Chain.

▪

▪

Gateway guide PingGateway

352 Copyright © 2025 Ping Identity Corporation

The HeaderFilter adds headers for the first value for the username and password attributes of the SAML
assertion.

The route uses the JwtSession implementation, meaning it stores encrypted session information in a
browser cookie. The name is a reference to the JwtSession object defined in config.json . For
information, see JwtSession.

Restart PingGateway.

Test the setup:

Log out of AM, and test the setup with the following links:

IDP-initiated SSO

SP-initiated SSO

Log in to AM with username demo and password Ch4ng31t .

PingGateway returns the response page showing that the the demo user has logged in.

Set up federation with signed/encrypted assertions with the SamlFederationHandler

Set up the example in Set up federation with unsigned/unencrypted assertions with the SamlFederationHandler.

Set up the SAML keystore:

Find the values of AM’s default SAML keypass and storepass:

$ more /path/to/am/secrets/default/.keypass
$ more /path/to/am/secrets/default/.storepass

Copy the SAML keystore from the AM configuration to PingGateway:

$ cp /path/to/am/secrets/keystores/keystore.jceks /path/to/ig/secrets/keystore.jceks

▪

▪

6.

1.

1.

▪

▪

2.

lightbulb_2
For more control over the URL where the user agent is redirected, use the RelayState query string parameter in the
URL of the redirect Location header. RelayState specifies where to redirect the user when the SAML 2.0 web
browser SSO process is complete. It overrides the redirectURI set in the SamlFederationHandler.
The RelayState value must be URL-encoded. When using an expression, use a function to encode the value. For
example, use ${urlEncodeQueryParameterNameOrValue(contexts.router.originalUri)} .
In the following example, the user is finally redirected to the original URI from the request:

"headers": {
 "Location": [
 "http://ig.example.com:8080/saml/SPInitiatedSSO?RelayState=$
{urlEncodeQueryParameterNameOrValue(contexts.router.originalUri)}"
]
}

Tip

1.

2.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 353

http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp
http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp
http://ig.example.com:8080/home/federate
http://ig.example.com:8080/home/federate

Configure the Fedlet in PingGateway:

In FederationConfig.properties , make the following changes:

Delete the following lines:

com.sun.identity.saml.xmlsig.keystore=%BASE_DIR%/security/keystores/keystore.jks

com.sun.identity.saml.xmlsig.storepass=%BASE_DIR%/.storepass

com.sun.identity.saml.xmlsig.keypass=%BASE_DIR%/.keypass

com.sun.identity.saml.xmlsig.certalias=test

com.sun.identity.saml.xmlsig.storetype=JKS

am.encryption.pwd=@AM_ENC_PWD@

Add the following line:

org.forgerock.openam.saml2.credential.resolver.class=org.forgerock.openig.handler.saml.Secret

sSaml2CredentialResolver

This class is responsible for resolving secrets and supplying credentials.

In sp.xml , make the following changes:

Change AuthnRequestsSigned="false" to AuthnRequestsSigned="true" .

Add the following KeyDescriptor just before </SPSSODescriptor>

 <KeyDescriptor use="signing">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#" >
 <ds:X509Data>
 <ds:X509Certificate>

 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </KeyDescriptor>
 </SPSSODescriptor>

Copy the value of the signing certificate from idp.xml to this file:

warning
Legacy keystore types such as JKS and JCEKS are supported but are not secure. Consider using the
PKCS#12 keystore type.

Warning

3.

1.

1.

▪

▪

▪

▪

▪

▪

2.

lightbulb_2
Be sure to leave no space at the end of the line.

Tip

2.

1.

2.

3.

Gateway guide PingGateway

354 Copyright © 2025 Ping Identity Corporation

<KeyDescriptor use="signing">
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>

 MII...zA6

 </ds:X509Certificate>

This is the public key used for signing so that the IDP can verify request signatures.

Replace the remote service provider in AM:

Select Applications > Federation > Entity Providers, and remove the sp entity provider.

Drag in or import the new sp.xml updated in the previous step.

Select Circles of Trust: Circle of Trust .

Set up PingGateway:

In the PingGateway configuration, set environment variables for the following secrets, and then restart
PingGateway:

$ export KEYSTORE_SECRET_ID='a2V5c3RvcmU='
$ export SAML_KEYSTORE_STOREPASS_SECRET_ID='base64-encoded value of the SAML storepass'
$ export SAML_KEYSTORE_KEYPASS_SECRET_ID='base64-encoded value of the SAML keypass'

The passwords are retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Remove saml-handler.json from the configuration, and add the following route, replacing the path to
keystore.jceks with your path:

$HOME/.openig/config/routes/saml-handler-secure.json

%appdata%\OpenIG\config\routes\saml-handler-secure.json

4.

1.

2.

3.

5.

1.

2.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 355

{
 "name": "saml-handler-secure",
 "condition": "${find(request.uri.path, '^/saml')}",
 "session": "JwtSession",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "KeyStoreSecretStore-1",
 "type" : "KeyStoreSecretStore",
 "config" : {
 "file" : "/path/to/ig/keystore.jceks",
 "storeType" : "jceks",
 "storePasswordSecretId" : "saml.keystore.storepass.secret.id",
 "entryPasswordSecretId" : "saml.keystore.keypass.secret.id",
 "secretsProvider" : "SystemAndEnvSecretStore-1",
 "mappings" : [{
 "secretId" : "sp.signing.sp",
 "aliases" : ["rsajwtsigningkey"]
 }, {
 "secretId" : "sp.decryption.sp",
 "aliases" : ["test"]
 }]
 }
 }
],
 "handler": {
 "type": "SamlFederationHandler",
 "config": {
 "useOriginalUri": true,
 "assertionMapping": {
 "username": "cn",
 "password": "sn"
 },
 "subjectMapping": "sp-subject-name",
 "redirectURI": "/home/federate",
 "secretsProvider" : "KeyStoreSecretStore-1"
 }
 }
}

Notice the following features of the route compared to saml-handler.json :

The SamlFederationHandler refers to the KeyStoreSecretStore to provide the keys for the signed and
encrypted SAML assertions.

The secret IDs, sp.signing.sp and sp.decryption.sp , follow a naming convention based on the name of
the service provider, sp .

The alias for the signing key corresponds to the PEM in keystore.jceks .

Restart PingGateway.

▪

▪

▪

3.

Gateway guide PingGateway

356 Copyright © 2025 Ping Identity Corporation

Test the setup:

Log out of AM, and test the setup with the following links:

IDP-initiated SSO

SP-initiated SSO

Log in to AM with username demo and password Ch4ng31t .

PingGateway returns the response page showing that the the demo user has logged in.

SAML 2.0 and multiple applications with the SamlFederationHandler

The chapter extends the example in SAML to add a second service provider.

The new service provider has entity ID sp2 and runs on the host sp2.example.com . To prevent unwanted behavior, the service
providers must have different values.

Add sp2.example.com to your /etc/hosts file:

127.0.0.1 localhost am.example.com ig.example.com app.example.com sp.example.com sp2.example.com

In PingGateway, configure the service provider files for sp2 , using the files you created in Configure a Java Fedlet::

In fedlet.cot , add sp2 to the list of sun-fm-trusted-providers:

cot-name=Circle of Trust
sun-fm-cot-status=Active
sun-fm-trusted-providers=openam, sp, sp2
sun-fm-saml2-readerservice-url=
sun-fm-saml2-writerservice-url=

Copy sp.xml to sp2.xml , and copy sp-extended.xml to sp2-extended.xml .

In both files, search and replace the following strings:

entityID=sp : replace with entityID=sp2

sp.example.com : replace with sp2.example.com

metaAlias=/sp : replace with metaAlias=/sp2

/metaAlias/sp : replace with /metaAlias/sp2

Restart PingGateway.

In AM, set up a remote service provider for sp2 :

Select Applications > Federation > Entity Providers.

Drag in or import sp2.xml created in the previous step.

Select Circles of Trust: Circle of Trust .

6.

1.

▪

▪

2.

1.

2.

1.

2.

3.

▪

▪

▪

▪

4.

3.

1.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 357

http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp
http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp
http://ig.example.com:8080/home/federate
http://ig.example.com:8080/home/federate

Add the following routes to PingGateway:

$HOME/.openig/config/routes/saml-handler-sp2.json

%appdata%\OpenIG\config\routes\saml-handler-sp2.json

{
 "name": "saml-handler-sp2",
 "condition": "${find(request.uri.host, 'sp2.example.com') and find(request.uri.path, '^/saml')}",
 "handler": {
 "type": "SamlFederationHandler",
 "config": {
 "comment": "Use unique session properties for this SP.",
 "useOriginalUri": true,
 "assertionMapping": {
 "sp2Username": "cn",
 "sp2Password": "sn"
 },
 "authnContext": "sp2AuthnContext",
 "sessionIndexMapping": "sp2SessionIndex",
 "subjectMapping": "sp2SubjectName",
 "redirectURI": "/sp2"
 }
 }
}

$HOME/.openig/config/routes/federate-handler-sp2.json

%appdata%\OpenIG\config\routes\federate-handler-sp2.json

4.

Linux

Windows

Linux

Windows

Gateway guide PingGateway

358 Copyright © 2025 Ping Identity Corporation

{
 "name": "federate-handler-sp2",
 "condition": "${find(request.uri.host, 'sp2.example.com') and not find(request.uri.path, '^/saml')}",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${empty session.sp2Username}",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 302,
 "headers": {
 "Location": [
 "http://sp2.example.com:8080/saml/SPInitiatedSSO?metaAlias=/sp2"
]
 }
 }
 }
 },
 {
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-username": ["${session.sp2Username[0]}"],
 "x-password": ["${session.sp2Password[0]}"]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
 }
]
 }
 }
}

Test the setup:

Log out of AM, and test the setup with the following links:

IDP-initiated SSO

SP-initiated SSO

Log in to AM with username demo and password Ch4ng31t .

PingGateway returns the response page showing that the user has logged in.

5.

1.

▪

▪

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 359

http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp2
http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp2
http://sp2.example.com:8080/home/federate
http://sp2.example.com:8080/home/federate

Use a non-transient NameID format

By default, AM as an IDP uses the NameID format urn:oasis:names:tc:SAML:2.0:nameid-format:transient . For more
information, refer to Hosted identity provider configuration properties in AM’s SAML v2.0 guide.

When the IDP uses another NameID format, configure PingGateway to use that NameID format by editing the Fedlet
configuration file sp-extended.xml :

To use the NameID value provided by the IDP, add the following attribute:

<Attribute name="useNameIDAsSPUserID">
 <Value>true</Value>
</Attribute>

To use an attribute from the assertion, add the following attribute:

<Attribute name="autofedEnabled">
 <Value>true</Value>
</Attribute>
<Attribute name="autofedAttribute">
 <Value>sn</Value>
</Attribute>

This example uses the value in SN to identify the subject.

Although PingGateway supports the persistent NameID format, PingGateway does not store the mapping. To configure this
behavior, edit the file sp-extended.xml :

To disable attempts to persist the user mapping, add the following attribute:

<Attribute name="spDoNotWriteFederationInfo">
 <Value>true</Value>
</Attribute>

To enable attempts to persist the user mapping, add the following attribute:

<Attribute name="spDoNotWriteFederationInfo">
 <Value>false</Value>
</Attribute>

If a login request doesn’t contain a NameID format query parameter, the value is defined by the presence and content of the
NameID format list for the SP and IDP. For example, an SP-initiated login can be constructed with the binding and NameIDFormat
as a parameter, as follows:

http://fedlet.example.org:7070/fedlet/SPInitiatedSSO?binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
POST&NameIDFormat=urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified

•

•

•

•

Gateway guide PingGateway

360 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/saml2-guide/saml2-reference.html#sec-saml2-hosted-idp-configuration
https://docs.pingidentity.com/pingam/7.5/saml2-guide/saml2-reference.html#sec-saml2-hosted-idp-configuration

When the NameID format is provided in a list, it is resolved as follows:

If both the IDP and SP have a list, the first matching NameID format in the lists.

If either the IDP or SP list is empty, the first NameID format in the other list.

If neither the IDP nor SP has a list, then AM defaults to transient , and PingGateway defaults to persistent .

Example fedlet files

AM as the SAML IDP

FederationConfig.properties

The following example of $HOME/.openig/SAML/FederationConfig.properties defines the fedlet properties:

•

•

•

File Description

FederationConfig.properties Fedlet properties

fedlet.cot Circle of trust for PingGateway and the IDP

idp.xml Standard metadata for the IDP

idp-extended.xml Metadata extensions for the IDP

sp.xml Standard metadata for the PingGateway SP

sp-extended.xml Metadata extensions for the PingGateway SP

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 361

#
DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
#
Copyright (c) 2006 Sun Microsystems Inc. All Rights Reserved
#
The contents of this file are subject to the terms
of the Common Development and Distribution License
(the License). You may not use this file except in
compliance with the License.
#
You can obtain a copy of the License at
https://opensso.dev.java.net/public/CDDLv1.0.html or
opensso/legal/CDDLv1.0.txt
See the License for the specific language governing
permission and limitations under the License.
#
When distributing Covered Code, include this CDDL
Header Notice in each file and include the License file
at opensso/legal/CDDLv1.0.txt.
If applicable, add the following below the CDDL Header,
with the fields enclosed by brackets [] replaced by
your own identifying information:
"Portions Copyrighted [year] [name of copyright owner]"
#
$Id: FederationConfig.properties,v 1.21 2010/01/08 22:41:28 exu Exp $
#
Portions Copyright 2016-2024 Ping Identity Corporation.

If a component wants to use a different datastore provider than the
default one defined above, it can define a property like follows:
com.sun.identity.plugin.datastore.class.<componentName>=<provider class>

com.sun.identity.plugin.configuration.class specifies implementation for
com.sun.identity.plugin.configuration.ConfigurationInstance interface.
com.sun.identity.plugin.configuration.class=com.sun.identity.plugin.configuration.impl.FedletConfigurationImpl

Specifies implementation for
com.sun.identity.plugin.datastore.DataStoreProvider interface.
This property defines the default datastore provider.
com.sun.identity.plugin.datastore.class.default=com.sun.identity.plugin.datastore.impl.FedletDataStoreProvider

Specifies implementation for
org.forgerock.openam.federation.plugin.rooturl.RootUrlProvider interface.
This property defines the default base url provider.
com.sun.identity.plugin.root.url.class.default=org.forgerock.openam.federation.plugin.rooturl.impl.FedletRootUrlProvi
der

com.sun.identity.plugin.log.class specifies implementation for
com.sun.identity.plugin.log.Logger interface.
com.sun.identity.plugin.log.class=com.sun.identity.plugin.log.impl.FedletLogger

com.sun.identity.plugin.session.class specifies implementation for
com.sun.identity.plugin.session.SessionProvider interface.
com.sun.identity.plugin.session.class=com.sun.identity.plugin.session.impl.FedletSessionProvider

com.sun.identity.plugin.monitoring.agent.class specifies implementation for
com.sun.identity.plugin.monitoring.FedMonAgent interface.
com.sun.identity.plugin.monitoring.agent.class=com.sun.identity.plugin.monitoring.impl.FedletAgentProvider

com.sun.identity.plugin.monitoring.saml2.class specifies implementation for

Gateway guide PingGateway

362 Copyright © 2025 Ping Identity Corporation

com.sun.identity.plugin.monitoring.FedMonSAML2Svc interface.
com.sun.identity.plugin.monitoring.saml2.class=com.sun.identity.plugin.monitoring.impl.FedletMonSAML2SvcProvider

com.sun.identity.saml.xmlsig.keyprovider.class specified the implementation
class for com.sun.identity.saml.xmlsig.KeyProvider interface
com.sun.identity.saml.xmlsig.keyprovider.class=com.sun.identity.saml.xmlsig.JKSKeyProvider

com.sun.identity.saml.xmlsig.signatureprovider.class specified the
implementation class for com.sun.identity.saml.xmlsig.SignatureProvider
interface
com.sun.identity.saml.xmlsig.signatureprovider.class=com.sun.identity.saml.xmlsig.AMSignatureProvider

com.iplanet.am.server.protocol=http
com.iplanet.am.server.host=am.example.com
com.iplanet.am.server.port=8080
com.iplanet.am.services.deploymentDescriptor=/openam
com.iplanet.am.logstatus=ACTIVE

Name of the webcontainer.
Even though the servlet/JSP are web container independent,
Access/Federation Manager uses servlet 2.3 API request.setCharacterEncoding()
to decode incoming non English characters. These APIs will not work if
Access/Federation Manager is deployed on Sun Java System Web Server 6.1.
We use gx_charset mechanism to correctly decode incoming data in
Sun Java System Web Server 6.1 and S1AS7.0. Possible values
are BEA6.1, BEA 8.1, IBM5.1 or IAS7.0.
If the web container is Sun Java System Webserver, the tag is not replaced.
com.sun.identity.webcontainer=WEB_CONTAINER

Identify saml xml signature keystore file, keystore password file
key password file
com.sun.identity.saml.xmlsig.keystore=%BASE_DIR%/security/keystores/keystore.jks
com.sun.identity.saml.xmlsig.storepass=%BASE_DIR%/.storepass
com.sun.identity.saml.xmlsig.keypass=%BASE_DIR%/.keypass
com.sun.identity.saml.xmlsig.certalias=test

Type of keystore used for saml xml signature. Default is JKS.
#
com.sun.identity.saml.xmlsig.storetype=JKS

Specifies the implementation class for
com.sun.identity.saml.xmlsig.PasswordDecoder interface.
com.sun.identity.saml.xmlsig.passwordDecoder=com.sun.identity.fedlet.FedletEncodeDecode

The following key is used to specify the maximum content-length
for an HttpRequest that will be accepted by the OpenSSO
The default value is 16384 which is 16k
com.iplanet.services.comm.server.pllrequest.maxContentLength=16384

The following keys are used to configure the Debug service.
Possible values for the key 'level' are: off | error | warning | message.
The key 'directory' specifies the output directory where the debug files
will be created.
Trailing spaces are significant.
Windows: Use forward slashes "/" separate directories, not backslash "\".
Windows: Spaces in the file name are allowed for Windows.
#
com.iplanet.services.debug.level=message
com.iplanet.services.debug.directory=%BASE_DIR%%SERVER_URI%/debug

The following keys are used to configure the Stats service.
Possible values for the key 'level' are: off | file | console

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 363

Stats state 'file' will write to a file under the specified directory,
and 'console' will write into webserver log files
The key 'directory' specifies the output directory where the debug files
will be created.
Trailing spaces are significant.
Windows: Use forward slashes "/" separate directories, not backslash "\".
Windows: Spaces in the file name are allowed for Windows.
Stats interval should be atleast 5 secs to avoid CPU saturation,
the product would assume any thing less than 5 secs is 5 secs.
com.iplanet.am.stats.interval=60
com.iplanet.services.stats.state=file
com.iplanet.services.stats.directory=%BASE_DIR%/var/stats

The key that will be used to encrypt and decrypt passwords.
am.encryption.pwd=@AM_ENC_PWD@

SecureRandom Properties: The key
"com.iplanet.security.SecureRandomFactoryImpl"
specifies the factory class name for SecureRandomFactory
Available impl classes are:
com.iplanet.am.util.JSSSecureRandomFactoryImpl (uses JSS)
com.iplanet.am.util.SecureRandomFactoryImpl (pure Java)
com.iplanet.security.SecureRandomFactoryImpl=com.iplanet.am.util.SecureRandomFactoryImpl

SocketFactory properties: The key "com.iplanet.security.SSLSocketFactoryImpl"
specifies the factory class name for LDAPSocketFactory
Available classes are:
com.iplanet.services.ldap.JSSSocketFactory (uses JSS)
com.sun.identity.shared.ldap.factory.JSSESocketFactory (pure Java)
com.iplanet.security.SSLSocketFactoryImpl=com.sun.identity.shared.ldap.factory.JSSESocketFactory

Encryption: The key "com.iplanet.security.encryptor" specifies
the encrypting class implementation.
Available classes are:
com.iplanet.services.util.JCEEncryption
com.iplanet.services.util.JSSEncryption
com.iplanet.security.encryptor=com.iplanet.services.util.JCEEncryption

Determines if JSS will be added with highest priority to JCE
Set this to "true" if other JCE providers should be used for
digial signatures and encryptions.
com.sun.identity.jss.donotInstallAtHighestPriority=true

Configuration File (serverconfig.xml) Location
com.iplanet.services.configpath=@BASE_DIR@

fedlet.cot

The following example of $HOME/.openig/SAML/fedlet.cot defines a circle of trust between AM as the IDP, and PingGateway as
the SP:

cot-name=Circle of Trust
sun-fm-cot-status=Active
sun-fm-trusted-providers=openam, sp
sun-fm-saml2-readerservice-url=
sun-fm-saml2-writerservice-url=

idp.xml

Gateway guide PingGateway

364 Copyright © 2025 Ping Identity Corporation

The following example of $HOME/.openig/SAML/idp.xml defines a SAML configuration file for the AM IDP, idp :

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 365

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<EntityDescriptor entityID="openam" xmlns="urn:oasis:names:tc:SAML:2.0:metadata"
xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query" xmlns:mdattr="urn:oasis:names:tc:SAML:metadata:attribute"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:xenc11="http://www.w3.org/2009/xmlenc11#" xmlns:alg="urn:oasis:names:tc:SAML:metadata:algsupport"
xmlns:x509qry="urn:oasis:names:tc:SAML:metadata:X509:query" xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <IDPSSODescriptor protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <KeyDescriptor use="signing">
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
...
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </KeyDescriptor>
 <KeyDescriptor use="encryption">
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
...
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 <EncryptionMethod Algorithm="http://www.w3.org/2009/xmlenc11#rsa-oaep">
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <xenc11:MGF Algorithm="http://www.w3.org/2009/xmlenc11#mgf1sha256"/>
 </EncryptionMethod>
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc">
 <xenc:KeySize>128</xenc:KeySize>
 </EncryptionMethod>
 </KeyDescriptor>
 <ArtifactResolutionService index="0" Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://
am.example.com:8088/openam/ArtifactResolver/metaAlias/idp"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect" Location="http://
am.example.com:8088/openam/IDPSloRedirect/metaAlias/idp" ResponseLocation="http://am.example.com:8088/openam/
IDPSloRedirect/metaAlias/idp"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="http://
am.example.com:8088/openam/IDPSloPOST/metaAlias/idp" ResponseLocation="http://am.example.com:8088/openam/IDPSloPOST/
metaAlias/idp"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://am.example.com:
8088/openam/IDPSloSoap/metaAlias/idp"/>
 <ManageNameIDService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect" Location="http://
am.example.com:8088/openam/IDPMniRedirect/metaAlias/idp" ResponseLocation="http://am.example.com:8088/openam/
IDPMniRedirect/metaAlias/idp"/>
 <ManageNameIDService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="http://
am.example.com:8088/openam/IDPMniPOST/metaAlias/idp" ResponseLocation="http://am.example.com:8088/openam/IDPMniPOST/
metaAlias/idp"/>
 <ManageNameIDService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://am.example.com:
8088/openam/IDPMniSoap/metaAlias/idp"/>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:persistent</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:transient</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:kerberos</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName</NameIDFormat>
 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect" Location="http://
am.example.com:8088/openam/SSORedirect/metaAlias/idp"/>
 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="http://

Gateway guide PingGateway

366 Copyright © 2025 Ping Identity Corporation

am.example.com:8088/openam/SSOPOST/metaAlias/idp"/>
 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://am.example.com:
8088/openam/SSOSoap/metaAlias/idp"/>
 <NameIDMappingService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://am.example.com:
8088/openam/NIMSoap/metaAlias/idp"/>
 <AssertionIDRequestService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://
am.example.com:8088/openam/AIDReqSoap/IDPRole/metaAlias/idp"/>
 <AssertionIDRequestService Binding="urn:oasis:names:tc:SAML:2.0:bindings:URI" Location="http://
am.example.com:8088/openam/AIDReqUri/IDPRole/metaAlias/idp"/>
 </IDPSSODescriptor>
</EntityDescriptor>

idp-extended.xml

The following example of $HOME/.openig/SAML/idp-extended.xml defines an AM-specific SAML descriptor file for the IDP:

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 367

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!--
 DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

 Copyright (c) 2002-2010 Sun Microsystems Inc. All Rights Reserved

 The contents of this file are subject to the terms
 of the Common Development and Distribution License
 (the License). You may not use this file except in
 compliance with the License.

 You can obtain a copy of the License at
 https://opensso.dev.java.net/public/CDDLv1.0.html or
 opensso/legal/CDDLv1.0.txt
 See the License for the specific language governing
 permission and limitations under the License.

 When distributing Covered Code, include this CDDL
 Header Notice in each file and include the License file
 at opensso/legal/CDDLv1.0.txt.
 If applicable, add the following below the CDDL Header,
 with the fields enclosed by brackets [] replaced by
 your own identifying information:
 "Portions Copyrighted [year] [name of copyright owner]"

 Portions Copyrighted 2010-2017 Ping Identity Corporation.
-->
<EntityConfig entityID="openam" hosted="0" xmlns="urn:sun:fm:SAML:2.0:entityconfig">
 <IDPSSOConfig>
 <Attribute name="description">
 <Value/>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </IDPSSOConfig>
 <AttributeAuthorityConfig>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </AttributeAuthorityConfig>
 <XACMLPDPConfig>
 <Attribute name="wantXACMLAuthzDecisionQuerySigned">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </XACMLPDPConfig>
</EntityConfig>

sp.xml

Gateway guide PingGateway

368 Copyright © 2025 Ping Identity Corporation

The following example of $HOME/.openig/SAML/sp.xml defines a SAML configuration file for the PingGateway SP, sp .

info
The SAML library component validates the SP’s AssertionConsumerService Location against the incoming IDP SAML
Assertion, based on the request information, including the port. Always specify the port in the Location value of
AssertionConsumerService , even when using defaults of 443 or 80, as follows:

<AssertionConsumerService isDefault="true"
 index="0"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="https://sp.example.com:443/fedletapplication" />

Note

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 369

<!--
 DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

 Copyright (c) 2002-2010 Sun Microsystems Inc. All Rights Reserved

 The contents of this file are subject to the terms
 of the Common Development and Distribution License
 (the License). You may not use this file except in
 compliance with the License.

 You can obtain a copy of the License at
 https://opensso.dev.java.net/public/CDDLv1.0.html or
 opensso/legal/CDDLv1.0.txt
 See the License for the specific language governing
 permission and limitations under the License.

 When distributing Covered Code, include this CDDL
 Header Notice in each file and include the License file
 at opensso/legal/CDDLv1.0.txt.
 If applicable, add the following below the CDDL Header,
 with the fields enclosed by brackets [] replaced by
 your own identifying information:
 "Portions Copyrighted [year] [name of copyright owner]"

 Portions Copyrighted 2010-2017 Ping Identity Corporation.
-->
<EntityDescriptor entityID="sp" xmlns="urn:oasis:names:tc:SAML:2.0:metadata">
 <SPSSODescriptor AuthnRequestsSigned="false" WantAssertionsSigned="false"
protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect" Location="http://
sp.example.com:8080/saml/fedletSloRedirect" ResponseLocation="http://sp.example.com:8080/saml/fedletSloRedirect"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="http://
sp.example.com:8080/saml/fedletSloPOST" ResponseLocation="http://sp.example.com:8080/saml/fedletSloPOST"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://sp.example.com:
8080/saml/fedletSloSoap"/>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:transient</NameIDFormat>
 <AssertionConsumerService isDefault="true" index="0" Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="http://sp.example.com:8080/saml/fedletapplication/metaAlias/sp"/>
 <AssertionConsumerService index="1" Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact"
Location="http://sp.example.com:8080/saml/fedletapplication/metaAlias/sp"/>
 </SPSSODescriptor>
 <RoleDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query" xsi:type="query:AttributeQueryDescriptorType"
protocolSupportEnumeration= "urn:oasis:names:tc:SAML:2.0:protocol">
 </RoleDescriptor>
 <XACMLAuthzDecisionQueryDescriptor WantAssertionsSigned="false"
protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 </XACMLAuthzDecisionQueryDescriptor>
</EntityDescriptor>

sp-extended.xml

The following example of $HOME/.openig/SAML/sp-extended.xml defines an AM-specific SAML descriptor file for the SP:

Gateway guide PingGateway

370 Copyright © 2025 Ping Identity Corporation

<!--
 DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

 Copyright (c) 2002-2010 Sun Microsystems Inc. All Rights Reserved

 The contents of this file are subject to the terms
 of the Common Development and Distribution License
 (the License). You may not use this file except in
 compliance with the License.

 You can obtain a copy of the License at
 https://opensso.dev.java.net/public/CDDLv1.0.html or
 opensso/legal/CDDLv1.0.txt
 See the License for the specific language governing
 permission and limitations under the License.

 When distributing Covered Code, include this CDDL
 Header Notice in each file and include the License file
 at opensso/legal/CDDLv1.0.txt.
 If applicable, add the following below the CDDL Header,
 with the fields enclosed by brackets [] replaced by
 your own identifying information:
 "Portions Copyrighted [year] [name of copyright owner]"

 Portions Copyrighted 2010-2017 Ping Identity Corporation.
-->
<EntityConfig xmlns="urn:sun:fm:SAML:2.0:entityconfig" xmlns:fm="urn:sun:fm:SAML:2.0:entityconfig" hosted="1"
entityID="sp">
 <SPSSOConfig metaAlias="/sp">
 <Attribute name="description">
 <Value></Value>
 </Attribute>
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="autofedEnabled">
 <Value>false</Value>
 </Attribute>
 <Attribute name="autofedAttribute">
 <Value></Value>
 </Attribute>
 <Attribute name="transientUser">
 <Value>anonymous</Value>
 </Attribute>
 <Attribute name="spAdapter">
 <Value></Value>
 </Attribute>
 <Attribute name="spAdapterEnv">

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 371

 <Value></Value>
 </Attribute>
 <Attribute name="fedletAdapter">
 <Value></Value>
 </Attribute>
 <Attribute name="fedletAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="spAccountMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultLibrarySPAccountMapper</Value>
 </Attribute>
 <Attribute name="spAttributeMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAttributeMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAuthnContextMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextClassrefMapping">
 <Value>urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport|0|default</Value>
 </Attribute>
 <Attribute name="spAuthncontextComparisonType">
 <Value>exact</Value>
 </Attribute>
 <Attribute name="attributeMap">
 <Value>*=*</Value>
 </Attribute>
 <Attribute name="saml2AuthModuleName">
 <Value></Value>
 </Attribute>
 <Attribute name="localAuthURL">
 <Value></Value>
 </Attribute>
 <Attribute name="intermediateUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="defaultRelayState">
 <Value></Value>
 </Attribute>
 <Attribute name="appLogoutUrl">
 <Value>http://sp.example.com:8080/saml/logout</Value>
 </Attribute>
 <Attribute name="assertionTimeSkew">
 <Value>300</Value>
 </Attribute>
 <Attribute name="wantAttributeEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantPOSTResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantArtifactResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutRequestSigned">
 <Value></Value>
 </Attribute>

Gateway guide PingGateway

372 Copyright © 2025 Ping Identity Corporation

 <Attribute name="wantLogoutResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIRequestSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value></Attribute>
 <Attribute name="saeAppSecretList">
 </Attribute>
 <Attribute name="saeSPUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="saeSPLogoutUrl">
 </Attribute>
 <Attribute name="ECPRequestIDPListFinderImpl">
 <Value>com.sun.identity.saml2.plugins.ECPIDPFinder</Value>
 </Attribute>
 <Attribute name="ECPRequestIDPList">
 <Value></Value>
 </Attribute>
 <Attribute name="enableIDPProxy">
 <Value>false</Value>
 </Attribute>
 <Attribute name="idpProxyList">
 <Value></Value>
 </Attribute>
 <Attribute name="idpProxyCount">
 <Value>0</Value>
 </Attribute>
 <Attribute name="useIntroductionForIDPProxy">
 <Value>false</Value>
 </Attribute>
 </SPSSOConfig>
 <AttributeQueryConfig metaAlias="/attrQuery">
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </AttributeQueryConfig>
 <XACMLAuthzDecisionQueryConfig metaAlias="/pep">
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 373

 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="wantXACMLAuthzDecisionResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </XACMLAuthzDecisionQueryConfig>
</EntityConfig>

Gateway guide PingGateway

374 Copyright © 2025 Ping Identity Corporation

PingOne as the SAML IDP

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 375

FederationConfig.properties

Gateway guide PingGateway

376 Copyright © 2025 Ping Identity Corporation

If a component wants to use a different datastore provider than the
default one defined above, it can define a property like follows:
com.sun.identity.plugin.datastore.class.<componentName>=<provider class>

com.sun.identity.plugin.configuration.class specifies implementation for
com.sun.identity.plugin.configuration.ConfigurationInstance interface.
com.sun.identity.plugin.configuration.class=com.sun.identity.plugin.configuration.impl.FedletConfigurationImpl

Specifies implementation for
com.sun.identity.plugin.datastore.DataStoreProvider interface.
This property defines the default datastore provider.
com.sun.identity.plugin.datastore.class.default=com.sun.identity.plugin.datastore.impl.FedletDataStoreProvider

Specifies implementation for
org.forgerock.openam.federation.plugin.rooturl.RootUrlProvider interface.
This property defines the default base url provider.
com.sun.identity.plugin.root.url.class.default=org.forgerock.openam.federation.plugin.rooturl.impl.FedletRootUrlProvi
der

com.sun.identity.plugin.log.class specifies implementation for
com.sun.identity.plugin.log.Logger interface.
com.sun.identity.plugin.log.class=com.sun.identity.plugin.log.impl.FedletLogger

com.sun.identity.plugin.session.class specifies implementation for
com.sun.identity.plugin.session.SessionProvider interface.
com.sun.identity.plugin.session.class=com.sun.identity.plugin.session.impl.FedletSessionProvider

com.sun.identity.plugin.monitoring.agent.class specifies implementation for
com.sun.identity.plugin.monitoring.FedMonAgent interface.
com.sun.identity.plugin.monitoring.agent.class=com.sun.identity.plugin.monitoring.impl.FedletAgentProvider

com.sun.identity.plugin.monitoring.saml2.class specifies implementation for
com.sun.identity.plugin.monitoring.FedMonSAML2Svc interface.
com.sun.identity.plugin.monitoring.saml2.class=com.sun.identity.plugin.monitoring.impl.FedletMonSAML2SvcProvider

com.sun.identity.saml.xmlsig.keyprovider.class specified the implementation
class for com.sun.identity.saml.xmlsig.KeyProvider interface
com.sun.identity.saml.xmlsig.keyprovider.class=com.sun.identity.saml.xmlsig.JKSKeyProvider

com.sun.identity.saml.xmlsig.signatureprovider.class specified the
implementation class for com.sun.identity.saml.xmlsig.SignatureProvider
interface
com.sun.identity.saml.xmlsig.signatureprovider.class=com.sun.identity.saml.xmlsig.AMSignatureProvider

com.iplanet.am.server.protocol=http
com.iplanet.am.server.host=am.example.com
com.iplanet.am.server.port=8080
com.iplanet.am.services.deploymentDescriptor=/openam
com.iplanet.am.logstatus=ACTIVE

Name of the webcontainer.
Even though the servlet/JSP are web container independent,
Access/Federation Manager uses servlet 2.3 API request.setCharacterEncoding()
to decode incoming non English characters. These APIs will not work if
Access/Federation Manager is deployed on Sun Java System Web Server 6.1.
We use gx_charset mechanism to correctly decode incoming data in
Sun Java System Web Server 6.1 and S1AS7.0. Possible values
are BEA6.1, BEA 8.1, IBM5.1 or IAS7.0.
If the web container is Sun Java System Webserver, the tag is not replaced.
com.sun.identity.webcontainer=WEB_CONTAINER

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 377

Identify saml xml signature keystore file, keystore password file
key password file
com.sun.identity.saml.xmlsig.keystore=%BASE_DIR%/security/keystores/keystore.jks
com.sun.identity.saml.xmlsig.storepass=%BASE_DIR%/.storepass
com.sun.identity.saml.xmlsig.keypass=%BASE_DIR%/.keypass
com.sun.identity.saml.xmlsig.certalias=test

Type of keystore used for saml xml signature. Default is JKS.
#
com.sun.identity.saml.xmlsig.storetype=JKS

Specifies the implementation class for
com.sun.identity.saml.xmlsig.PasswordDecoder interface.
com.sun.identity.saml.xmlsig.passwordDecoder=com.sun.identity.fedlet.FedletEncodeDecode

The following key is used to specify the maximum content-length
for an HttpRequest that will be accepted by the OpenSSO
The default value is 16384 which is 16k
com.iplanet.services.comm.server.pllrequest.maxContentLength=16384

The following keys are used to configure the Debug service.
Possible values for the key 'level' are: off | error | warning | message.
The key 'directory' specifies the output directory where the debug files
will be created.
Trailing spaces are significant.
Windows: Use forward slashes "/" separate directories, not backslash "\".
Windows: Spaces in the file name are allowed for Windows.
#
com.iplanet.services.debug.level=message
com.iplanet.services.debug.directory=%BASE_DIR%%SERVER_URI%/debug

The following keys are used to configure the Stats service.
Possible values for the key 'level' are: off | file | console
Stats state 'file' will write to a file under the specified directory,
and 'console' will write into webserver log files
The key 'directory' specifies the output directory where the debug files
will be created.
Trailing spaces are significant.
Windows: Use forward slashes "/" separate directories, not backslash "\".
Windows: Spaces in the file name are allowed for Windows.
Stats interval should be atleast 5 secs to avoid CPU saturation,
the product would assume any thing less than 5 secs is 5 secs.
com.iplanet.am.stats.interval=60
com.iplanet.services.stats.state=file
com.iplanet.services.stats.directory=%BASE_DIR%/var/stats

The key that will be used to encrypt and decrypt passwords.
am.encryption.pwd=@AM_ENC_PWD@

SecureRandom Properties: The key
"com.iplanet.security.SecureRandomFactoryImpl"
specifies the factory class name for SecureRandomFactory
Available impl classes are:
com.iplanet.am.util.JSSSecureRandomFactoryImpl (uses JSS)
com.iplanet.am.util.SecureRandomFactoryImpl (pure Java)
com.iplanet.security.SecureRandomFactoryImpl=com.iplanet.am.util.SecureRandomFactoryImpl

SocketFactory properties: The key "com.iplanet.security.SSLSocketFactoryImpl"
specifies the factory class name for LDAPSocketFactory
Available classes are:
com.iplanet.services.ldap.JSSSocketFactory (uses JSS)

Gateway guide PingGateway

378 Copyright © 2025 Ping Identity Corporation

com.sun.identity.shared.ldap.factory.JSSESocketFactory (pure Java)
com.iplanet.security.SSLSocketFactoryImpl=com.sun.identity.shared.ldap.factory.JSSESocketFactory

Encryption: The key "com.iplanet.security.encryptor" specifies
the encrypting class implementation.
Available classes are:
com.iplanet.services.util.JCEEncryption
com.iplanet.services.util.JSSEncryption
com.iplanet.security.encryptor=com.iplanet.services.util.JCEEncryption

Determines if JSS will be added with highest priority to JCE
Set this to "true" if other JCE providers should be used for
digial signatures and encryptions.
com.sun.identity.jss.donotInstallAtHighestPriority=true

Configuration File (serverconfig.xml) Location
com.iplanet.services.configpath=@BASE_DIR@

fedlet.cot

cot-name=Circle of Trust
sun-fm-cot-status=Active
sun-fm-trusted-providers=idp-entityID, sp
sun-fm-saml2-readerservice-url=
sun-fm-saml2-writerservice-url=

idp-extended.xml

<EntityConfig entityID="idp-entityID" hosted="0" xmlns="urn:sun:fm:SAML:2.0:entityconfig">
 <IDPSSOConfig>
 <Attribute name="description">
 <Value/>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </IDPSSOConfig>
 <AttributeAuthorityConfig>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </AttributeAuthorityConfig>
 <XACMLPDPConfig>
 <Attribute name="wantXACMLAuthzDecisionQuerySigned">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </XACMLPDPConfig>
</EntityConfig>

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 379

sp.xml

<EntityDescriptor entityID="sp" xmlns="urn:oasis:names:tc:SAML:2.0:metadata">
 <SPSSODescriptor AuthnRequestsSigned="false" WantAssertionsSigned="false"
protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect" Location="https://
sp.example.com:8443/home/saml/fedletSloRedirect" ResponseLocation="https://sp.example.com:8443/home/saml/
fedletSloRedirect"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="https://
sp.example.com:8443/home/saml/fedletSloPOST" ResponseLocation="https://sp.example.com:8443/home/saml/fedletSloPOST"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="https://sp.example.com:
8443/home/saml/fedletSloSoap"/>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:transient</NameIDFormat>
 <AssertionConsumerService isDefault="true" index="0" Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="https://sp.example.com:8443/home/saml/fedletapplication"/>
 <AssertionConsumerService index="1" Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact"
Location="https://sp.example.com:8443/home/saml/fedletapplication"/>
 </SPSSODescriptor>
 <RoleDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query" xsi:type="query:AttributeQueryDescriptorType"
protocolSupportEnumeration= "urn:oasis:names:tc:SAML:2.0:protocol">
 </RoleDescriptor>
 <XACMLAuthzDecisionQueryDescriptor WantAssertionsSigned="false"
protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 </XACMLAuthzDecisionQueryDescriptor>
</EntityDescriptor>

Gateway guide PingGateway

380 Copyright © 2025 Ping Identity Corporation

sp-extended.xml

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 381

<EntityConfig xmlns="urn:sun:fm:SAML:2.0:entityconfig" xmlns:fm="urn:sun:fm:SAML:2.0:entityconfig" hosted="1"
entityID="sp">
 <SPSSOConfig metaAlias="/sp">
 <Attribute name="description">
 <Value></Value>
 </Attribute>
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="autofedEnabled">
 <Value>false</Value>
 </Attribute>
 <Attribute name="autofedAttribute">
 <Value></Value>
 </Attribute>
 <Attribute name="transientUser">
 <Value>anonymous</Value>
 </Attribute>
 <Attribute name="spAdapter">
 <Value></Value>
 </Attribute>
 <Attribute name="spAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="fedletAdapter">
 <Value></Value>
 </Attribute>
 <Attribute name="fedletAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="spAccountMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultLibrarySPAccountMapper</Value>
 </Attribute>
 <Attribute name="spAttributeMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAttributeMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAuthnContextMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextClassrefMapping">
 <Value>urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified|0|default</Value>
 </Attribute>
 <Attribute name="spAuthncontextComparisonType">
 <Value>exact</Value>
 </Attribute>
 <Attribute name="attributeMap">
 <Value>*=*</Value>
 </Attribute>

Gateway guide PingGateway

382 Copyright © 2025 Ping Identity Corporation

 <Attribute name="saml2AuthModuleName">
 <Value></Value>
 </Attribute>
 <Attribute name="localAuthURL">
 <Value></Value>
 </Attribute>
 <Attribute name="intermediateUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="defaultRelayState">
 <Value></Value>
 </Attribute>
 <Attribute name="appLogoutUrl">
 <Value>https://sp.example.com:8443/home/saml/logout</Value>
 </Attribute>
 <Attribute name="assertionTimeSkew">
 <Value>300</Value>
 </Attribute>
 <Attribute name="wantAttributeEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantPOSTResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantArtifactResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutRequestSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIRequestSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value></Attribute>
 <Attribute name="saeAppSecretList">
 </Attribute>
 <Attribute name="saeSPUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="saeSPLogoutUrl">
 </Attribute>
 <Attribute name="ECPRequestIDPListFinderImpl">
 <Value>com.sun.identity.saml2.plugins.ECPIDPFinder</Value>
 </Attribute>
 <Attribute name="ECPRequestIDPList">
 <Value></Value>
 </Attribute>
 <Attribute name="enableIDPProxy">
 <Value>false</Value>

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 383

 </Attribute>
 <Attribute name="idpProxyList">
 <Value></Value>
 </Attribute>
 <Attribute name="idpProxyCount">
 <Value>0</Value>
 </Attribute>
 <Attribute name="useIntroductionForIDPProxy">
 <Value>false</Value>
 </Attribute>
 </SPSSOConfig>
 <AttributeQueryConfig metaAlias="/attrQuery">
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </AttributeQueryConfig>
 <XACMLAuthzDecisionQueryConfig metaAlias="/pep">
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="wantXACMLAuthzDecisionResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </XACMLAuthzDecisionQueryConfig>
</EntityConfig>

Gateway guide PingGateway

384 Copyright © 2025 Ping Identity Corporation

Token transformation

Transform OpenID Connect ID tokens into SAML assertions

This chapter builds on the example in OpenID Connect to transform OpenID Connect ID tokens into SAML 2.0 assertions.

Many enterprises use existing or legacy, SAML 2.0-based SSO, but many mobile and social applications are managed by OpenID
Connect. Use the PingGateway TokenTransformationFilter to bridge the gap between OpenID Connect and SAML 2.0 frameworks.

The following figure illustrates the data flow:

A user tries to access to a protected resource.

If the user isn’t authenticated, the AuthorizationCodeOAuth2ClientFilter redirects the request to AM. After authentication,
AM asks for the user’s consent to give PingGateway access to private information.

If the user consents, AM returns an id_token to the AuthorizationCodeOAuth2ClientFilter. The filter opens the id_token JWT
and makes it available in attributes.openid .id_token and attributes.openid.id_token_claims for downstream
filters.

The TokenTransformationFilter calls the AM STS to transform the id_token into a SAML 2.0 assertion.

The STS validates the signature, decodes the payload, and verifies that the user issued the transaction. The STS then issues
a SAML assertion to PingGateway on behalf of the user.

The TokenTransformationFilter makes the result of the token transformation available to downstream handlers in the
issuedToken property of the ${contexts.sts} context.

The following sequence diagram shows a more detailed view of the flow:

OpenAM

gateway.example.com/id_tokenBrowser

STS RESTOAuth2/OIDC

Application

2

1

3 54

6

1.

2.

3.

4.

5.

6.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 385

Before you start, set up and test the example in AM as a single OpenID Connect provider.

Set up an AM Security Token Service (STS), where the subject confirmation method is Bearer. For more information about
setting up a REST STS instance, see AM’s Security Token Service (STS) guide.

Create a Bearer Module:

In the top level realm, select Authentication > Modules, and add a module with the following values:

Module name : oidc

Type : OpenID Connect id_token bearer

In the configuration page, enter the following values:

OpenID Connect validation configuration type : Client Secret

OpenID Connect validation configuration value : password

This is the password of the OAuth 2.0/OpenID Connect client.

Client secret : password

Name of OpenID Connect ID Token Issuer : http://am.example.com:8088/openam/oauth2

Audience name : oidc_client

PingGateway relying party AM identity provider

User agent

User agent

AuthorizationCodeOAuth2ClientFilter

AuthorizationCodeOAuth2ClientFilter

TokenTransformationFilter

TokenTransformationFilter

Authorization Server

Authorization Server

User info end point

User info end point

STS

STS

OpenID Connect authorization flow

1 Request to access to route.

2 Redirect for authorization.

3 Request authorization.

4
User agent
not authenticated

5 Request authentication.

6 Provide authentication.

7 Request consent to share private information with PingGateway.

8 Give consent.

9 Redirect request and include authorization code.

10 Redirect authorization code.

11 Exchange authorizationcode for access token and id_token

12 Validate id_token.

13 Use access token to get other user info.

14 Return other user info.

15
Insert user info and tokens
into the request context.

16 Display id_token

Add the token transformation
filter to the route, and access
the route again.

Token transformation code flow for authenticated user agent

17 Request to access route.

18
Session valid
so forward request.

19 Provide id_token and request transformation into SAML assertion.

20 Transform id_token.

21 Return the SAML assertion.

22 Insert SAML assertion into the dedicated context.

23 Display id_token and SAML assertion.

1.

1.

1.

▪

▪

2.

▪

▪

▪

▪

▪

Gateway guide PingGateway

386 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/sts-guide/
https://docs.pingidentity.com/pingam/7.5/sts-guide/

This is the name of the OAuth 2.0/OpenID Connect client.

List of accepted authorized parties : oidc_client

Leave all other values as default, and save your settings.

Create an instance of STS REST.

In the top level realm, select STS, and add a Rest STS instance with the following values:

Deployment URL Element : openig

This value identifies the STS instance and is used by the instance parameter in the
TokenTransformationFilter.

SAML2 Token

SAML2 issuer Id : OpenAM

Service Provider Entity Id : openig_sp

NameIdFormat : Select urn:oasis:names:tc:SAML:2.0:nameid-format:transient

OpenID Connect Token

OpenID Connect Token Provider Issuer Id : oidc

Token signature algorithm : Enter a value that is consistent with AM as a single OpenID
Connect provider, for example, HMAC SHA 256

Client Secret : password

Issued Tokens Audience : oidc_client

On the SAML 2 Token tab, add the following Attribute Mappings:

Key : userName , Value : uid

Key : password , Value : mail

Set up PingGateway:

Set an environment variable for oidc_client and ig_agent , and then restart PingGateway:

$ export OIDC_SECRET_ID='cGFzc3dvcmQ='
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

Add the following route to PingGateway:

▪

2.

1.

▪

▪

info
For STS, it isn’t necessary to create a SAML SP configuration in AM.

Note

▪

▪

▪

▪

▪

▪

▪

▪

2.

▪

▪

2.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 387

$HOME/.openig/config/routes/50-idtoken.json

%appdata%\OpenIG\config\routes\50-idtoken.json

Linux

Windows

Gateway guide PingGateway

388 Copyright © 2025 Ping Identity Corporation

{
 "name": "50-idtoken",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/id_token')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AuthenticatedRegistrationHandler-1",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "ClientSecretBasicAuthenticationFilter-1",
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "oidc_client",
 "clientSecretId": "oidc.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "AuthorizationCodeOAuth2ClientFilter-1",
 "type": "AuthorizationCodeOAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/home/id_token",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": [
 "text/plain"
]
 },
 "entity": "An error occurred during the OAuth2 setup."
 }

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 389

 },
 "registrations": [
 {
 "name": "oidc-user-info-client",
 "type": "ClientRegistration",
 "config": {
 "clientId": "oidc_client",
 "issuer": {
 "name": "Issuer",
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "http://am.example.com:8088/openam/oauth2/.well-known/
openid-configuration"
 }
 },
 "clientSecretIdUsage": "ID_TOKEN_VALIDATION_ONLY",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "clientSecretId": "oidc.secret.id",
 "scopes": [
 "openid",
 "profile",
 "email"
],
 "authenticatedRegistrationHandler": "AuthenticatedRegistrationHandler-1"
 }
 }
],
 "requireHttps": false,
 "cacheExpiration": "disabled"
 }
 },
 {
 "name": "TokenTransformationFilter-1",
 "type": "TokenTransformationFilter",
 "config": {
 "idToken": "${attributes.openid.id_token}",
 "instance": "openig",
 "amService": "AmService-1"
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "{\"id_token\":\n\"${attributes.openid.id_token}\"} \n\n\n{\"saml_assertions\":
\n\"${contexts.sts.issuedToken}\"}"
 }
 }
 }
 }
}

For information about how to set up the PingGateway route in Studio, refer to Token transformation in Structured
Editor.

Gateway guide PingGateway

390 Copyright © 2025 Ping Identity Corporation

Notice the following features of the route:

The route matches requests to /home/id_token .

The AmService in the heap is used for authentication and REST STS requests.

The AuthorizationCodeOAuth2ClientFilter enables PingGateway to act as an OpenID Connect relying party:

The client endpoint is set to /home/id_token , so the service URIs for this filter on the PingGateway
server are /home/id_token/login , /home/id_token/logout , and /home/id_token/callback .

For convenience in this test, requireHttps is false. In production environments, set it to true. So
that you see the delegated authorization process when you make a request, requireLogin is true.

The target for storing authorization state information is ${attributes.openid} . Subsequent filters
and handlers can find access tokens and user information at this target.

The ClientRegistration holds configuration provided in AM as a single OpenID Connect provider.
PingGateway uses it to connect to AM and verify the ID token signature using the client secret as the
symmetric key.

The TokenTransformationFilter transforms an id_token into a SAML assertion:

The id_token parameter defines where this filter gets the id_token created by the
AuthorizationCodeOAuth2ClientFilter .

The TokenTransformationFilter makes the result of the token transformation available to
downstream handlers in the issuedToken property of the ${contexts.sts} context.

The instance parameter must match the Deployment URL Element for the REST STS instance.

Errors that occur during token transformation cause an error response to be returned to the client
and an error message to be logged for the PingGateway administrator.

When the request succeeds, a StaticResponseHandler retrieves and displays the id_token from the target
{attributes.openid.id_token} .

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/id_token.

The AM login screen is displayed.

Log in to AM as username demo , password Ch4ng31t .

An OpenID Connect request to access private information is displayed.

Select Allow.

The id_token and SAML assertions are displayed:

{"id_token": "eyA . . ."}

{"saml_assertions": "<\"saml:Assertion xmlns:saml=\"urn:oasis:names:tc:SAML:2.0:assertion\"
Version= . . ."}

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

3.

1.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 391

https://ig.example.com:8443/home/id_token
https://ig.example.com:8443/home/id_token

OAuth 2.0 token exchange

The following sections describe how to exchange an OAuth 2.0 access token for another access token, with AM as an
Authorization Server. Other authorization providers can be used instead of AM.

Token exchange requires a subject token and provides an issued token. The subject token is the original access token, obtained
using the OAuth 2.0/OpenID Connect flow. The issued token is provided in exchange for the subject token.

The token exchange can be conducted only by an OAuth 2.0 client that "may act" on the subject token, as configured in the
authorization service.

This example is a typical scenario for token impersonation. For more information, refer to Token exchange in AM’s OAuth 2.0
guide.

The following sequence diagram shows the flow of information during token exchange between PingGateway and AM:

lightbulb_2
If a request returns an HTTP 414 URI Too Long error, consider the information in URI Too Long error.

Tip

PingAM

User

User

Bank phone app

Bank phone app

PingGateway

PingGateway

Authorization service

Authorization service

Bank transfer service

Bank transfer service

Opens app

Redirects login request

Logs in user

Returns subject token with multiple scopes

Presents online banking page

Request to transfer money

Request to transfer money, including
subject token with multiple scopes

Exchange subject token for issued token,
with only the `transfer` scope

Issued token

Request to transfer money, including issued token

Response

Response

Response

emergency_home
This procedure uses the Resource Owner Password Credentials grant type. According to information in the The OAuth
2.0 Authorization Framework, minimize use of this grant type and utilize other grant types whenever possible.

Important

Gateway guide PingGateway

392 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-token-exchange.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-token-exchange.html
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

Before you start, prepare AM, PingGateway, and the sample application as described in Example installation for this guide.

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

Token Introspection: Realm Only

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Select Services > Add a Service, and add an OAuth2 Provider service with the following values:

OAuth2 Access Token May Act Script : OAuth2 May Act Script

OAuth2 ID Token May Act Script : OAuth2 May Act Script

Select Scripts# > OAuth2 May Act Script, and replace the example script with the following script:

import org.forgerock.json.JsonValue
token.setMayAct(
 JsonValue.json(JsonValue.object(
 JsonValue.field("client_id", "serviceConfidentialClient"))))

This script adds a may_act claim to the token, indicating that the OAuth 2.0 client, serviceConfidentialClient ,
may act to exchange the subject token in the impersonation use case.

Add an OAuth 2.0 Client to request OAuth 2.0 access tokens:

Select Applications > OAuth 2.0 > Clients, and add a client with the following values:

Client ID : client-application

Client secret : password

1.

1.

▪

▪

2.

▪

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

4.

▪

▪

5.

6.

1.

▪

▪

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 393

Scope(s) : mail , employeenumber

On the Advanced tab, select Grant Types : Resource Owner Password Credentials .

Add an OAuth 2.0 client to perform the token exchange:

Select Applications > OAuth 2.0 > Clients, and add a client with the following values:

Client ID : serviceConfidentialClient

Client secret : password

Scope(s) : mail , employeenumber

On the Advanced tab, select:

Grant Types : Token Exchange

Token Endpoint Authentication Methods : client_secret_post

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set the following environment variables for the serviceConfidentialClient password:

$ export CLIENT_SECRET_ID='cGFzc3dvcmQ='

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to exchange the access token:

$HOME/.openig/config/routes/token-exchange.json

%appdata%\OpenIG\config\routes\token-exchange.json

▪

2.

7.

1.

▪

▪

▪

2.

▪

▪

2.

1.

2.

3.

4.

Linux

Windows

Gateway guide PingGateway

394 Copyright © 2025 Ping Identity Corporation

{
 "name": "token-exchange",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/token-exchange')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 },
 {
 "name": "ExchangeHandler",
 "type": "Chain",
 "capture": "all",
 "config": {
 "handler": "ForgeRockClientHandler",
 "filters": [
 {
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "serviceConfidentialClient",
 "clientSecretId": "client.secret.id",
 "secretsProvider" : "SystemAndEnvSecretStore-1"
 }
 }
]
 }
 },
 {
 "name": "ExchangeFailureHandler",
 "type": "StaticResponseHandler",
 "capture": "all",
 "config": {
 "status": 400,
 "entity": "${contexts.oauth2Failure.error}: ${contexts.oauth2Failure.description}",
 "headers": {
 "Content-Type": [
 "application/json"
]
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "oauth2TokenExchangeFilter",

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 395

 "type": "OAuth2TokenExchangeFilter",
 "config": {
 "amService": "AmService-1",
 "endpointHandler": "ExchangeHandler",
 "subjectToken": "#{request.entity.form['subject_token'][0]}",
 "scopes": ["mail"],
 "failureHandler": "ExchangeFailureHandler"
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "content-type": [
 "application/json"
]
 },
 "entity": "{\"access_token\": \"${contexts.oauth2TokenExchange.issuedToken}\",
\"issued_token_type\": \"${contexts.oauth2TokenExchange.issuedTokenType}\"}"
 }
 }
 }
 }
}

Notice the following features of the route:

The route matches requests to /token-exchange

PingGateway reads the subjectToken from the request entity.

The StaticResponseHandler returns an issued token.

Test the setup:

In a terminal window, use a curl command similar to the following to retrieve an access token, which is the subject
token:

$ subjecttoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail%20employeenumber" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token") \
&& echo $subjecttoken

hc-...c6A

Introspect the subject token at the AM introspection endpoint:

▪

▪

▪

3.

1.

2.

Gateway guide PingGateway

396 Copyright © 2025 Ping Identity Corporation

$ curl --location \
--request POST 'http://am.example.com:8088/openam/oauth2/realms/root/introspect' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode "token=${subjecttoken}" \
--data-urlencode 'client_id=client-application' \
--data-urlencode 'client_secret=password'

Decoded access_token: {
 "active": true,
 "scope": "employeenumber mail",
 "realm": "/",
 "client_id": "client-application",
 "user_id": "demo",
 "username": "demo",
 "token_type": "Bearer",
 "exp": 1626796888,
 "sub": "(usr!demo)",
 "subname": "demo",
 "iss": "http://am.example.com:8088/openam/oauth2",
 "auth_level": 0,
 "authGrantId": "W-j...E1E",
 "may_act": {
 "client_id": "serviceConfidentialClient"
 },
 "auditTrackingId": "4be...169"
}

Note that in the subject token, the client_id is client-application , and the scopes are employeenumber and
mail . The may_act claim indicates that serviceConfidentialClient is authorized to exchange this token.

Exchange the subject token for an issued token:

$ issuedtoken=$(curl \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--location \
--request POST 'https://ig.example.com:8443/token-exchange' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data "subject_token=${subjecttoken}" | jq -r ".access_token") \
&& echo $issuedtoken

F8e...Q3E

Introspect the issued token at the AM introspection endpoint:

3.

4.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 397

$ curl --location \
--request POST 'http://am.example.com:8088/openam/oauth2/realms/root/introspect' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode "token=${issuedtoken}" \
--data-urlencode 'client_id=serviceConfidentialClient' \
--data-urlencode 'client_secret=password'

{
 "active": true,
 "scope": "mail",
 "realm": "/",
 "client_id": "serviceConfidentialClient",
 "user_id": "demo",
 "username": "demo",
 "token_type": "Bearer",
 "exp": 1629200490,
 "sub": "(usr!demo)",
 "subname": "demo",
 "iss": "http://am.example.com:8088/openam/oauth2",
 "auth_level": 0,
 "authGrantId": "aYK...EPA",
 "may_act": {
 "client_id": "serviceConfidentialClient"
 },
 "auditTrackingId": "814...367"
}

Note that in the issued token, the client_id is serviceConfidentialClient , and the only the scope is mail .

Not-enforced URIs

By default, PingGateway routes protect resources (such as a websites or applications) from all requests on the route’s condition
path. Some parts of the resource, however, do not need to be protected. For example, it can be okay for unauthenticated
requests to access the welcome page of a web site, or an image or favicon.

The following sections give examples of routes that do not enforce authentication for a specific request URL or URL pattern, but
enforce authentication for other request URLs:

Implement not-enforced URIs with a SwitchFilter

Before you start:

Prepare PingGateway and the sample app as described in the Quick install

Install and configure AM on http://am.example.com:8088/openam, using the default configuration.

On your system, add the following data in a comma-separated value file:

•

•

1.

Gateway guide PingGateway

398 Copyright © 2025 Ping Identity Corporation

http://am.example.com:8088/openam
http://am.example.com:8088/openam

/tmp/userfile.txt

C:\Temp\userfile.txt

username,password,fullname,email
george,C0stanza,George Costanza,george@example.com
kramer,N3wman12,Kramer,kramer@example.com
bjensen,H1falutin,Babs Jensen,bjensen@example.com
demo,Ch4ng31t,Demo User,demo@example.com
kvaughan,B5ibery12,Kirsten Vaughan,kvaughan@example.com
scarter,S9rain12,Sam Carter,scarter@example.com

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL
Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway
agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Linux

Windows

2.

1.

▪

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password
manager to generate secure passwords.

Important

3.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated
authentication module in AM. This step is currently optional, but will be required when
authentication chains and modules are removed in a future release of AM.

Important

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 399

Set up PingGateway:

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static
resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path,
'^/.*\\\\.ico$') or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

$HOME/.openig/config/routes/not-enforced-switch.json

3.

1.

2.

Linux

Windows

3.

Linux

Gateway guide PingGateway

400 Copyright © 2025 Ping Identity Corporation

%appdata%\OpenIG\config\routes\not-enforced-switch.json

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 401

{
 "properties": {
 "notEnforcedPathPatterns": "^/home|^/favicon.ico|^/css"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "name": "not-enforced-switch",
 "condition": "${find(request.uri.path, '^/')}",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SwitchFilter-1",
 "type": "SwitchFilter",
 "config": {
 "onRequest": [{
 "condition": "${find(request.uri.path, '&{notEnforcedPathPatterns}')}",
 "handler": "ReverseProxyHandler"
 }]
 }
 },
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${true}",
 "credentials": {
 "type": "FileAttributesFilter",
 "config": {
 "file": "/tmp/userfile.txt",
 "key": "email",
 "value": "${contexts.ssoToken.info.uid}@example.com",
 "target": "${attributes.credentials}"
 }
 },
 "request": {
 "method": "POST",

Gateway guide PingGateway

402 Copyright © 2025 Ping Identity Corporation

 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.credentials.username}"
],
 "password": [
 "${attributes.credentials.password}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route condition is / , so the route matches all requests.

The SwitchFilter passes requests on the path ^/home , ^/favicon.ico , and ^/css directly to
the ReverseProxyHandler. All other requests continue the along the chain to the
SingleSignOnFilter.

If the request does not have a valid AM session cookie, the SingleSignOnFilter redirects the
request to AM for authentication. The SingleSignOnFilter stores the cookie value in an
SsoTokenContext .

Because the PasswordReplayFilter detects that the response is a login page, it uses the
FileAttributesFilter to replay the password, and logs the request into the sample application.

Test the setup:

If you are logged in to AM, log out and clear any cookies.

Access the route on the not-enforced URL http://ig.example.com:8080/home. The home page of
the sample app is displayed without authentication.

Access the route on the enforced URL http://ig.example.com:8080/profile. The SingleSignOnFilter
redirects the request to AM for authentication.

Log in to AM as user demo , password Ch4ng31t . The PasswordReplayFilter replays the credentials
for the demo user. The request is passed to the sample app’s profile page for the demo user.

Implement not-enforced URIs with a DispatchHandler

To use a DispatchHandler for not-enforced URIs, replace the route in Implement not-enforced URIs with a SwitchFilter with the
following route. If the request is on the path ^/home , ^/favicon.ico , or ^/css , the DispatchHandler sends it directly to the
ReverseProxyHandler, without authentication. It passes all other requests into the Chain for authentication.

▪

▪

▪

▪

4.

1.

2.

3.

4.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 403

http://ig.example.com:8080/home
http://ig.example.com:8080/home
http://ig.example.com:8080/profile
http://ig.example.com:8080/profile

{
 "properties": {
 "notEnforcedPathPatterns": "^/home|^/favicon.ico|^/css"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "name": "not-enforced-dispatch",
 "condition": "${find(request.uri.path, '^/')}",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${find(request.uri.path, '&{notEnforcedPathPatterns}')}",
 "handler": "ReverseProxyHandler"
 },
 {
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${true}",
 "credentials": {
 "type": "FileAttributesFilter",
 "config": {
 "file": "/tmp/userfile.txt",
 "key": "email",
 "value": "${contexts.ssoToken.info.uid}@example.com",
 "target": "${attributes.credentials}"
 }
 },
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",

Gateway guide PingGateway

404 Copyright © 2025 Ping Identity Corporation

 "form": {
 "username": [
 "${attributes.credentials.username}"
],
 "password": [
 "${attributes.credentials.password}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
 }
]
 }
 }
}

POST data preservation

The DataPreservationFilter triggers POST data preservation when an unauthenticated client posts HTML form data to a protected
resource.

When an authentication redirect is triggered, the filter stores the data in the HTTP session, and redirects the client for
authentication. After authentication, the filter generates an empty self-submitting form POST to emulate the original POST. It then
replays the stored data into the request before passing it along the chain.

The data can be any POST content, such as HTML form data or a file upload.

Consider the following points for POST data preservation:

The size of the POST data is important because the data is stored in the HTTP session.

Stateless sessions store form content in encrypted JWT session cookies. To prevent requests from being rejected because
the HTTP headers are too long, configure connectors:maxTotalHeadersSize in admin.json.

Sticky sessions may be required for deployments with stateful sessions, and multiple PingGateway instances.

The following image shows a simplified data flow for POST data preservation:

•

•

•

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 405

1. An unauthenticated client requests a POST to a protected resource.

2. The DataPreservationFilter tags the the request with a unique identifier, and passes it along the chain. The next filter should be
an authentication filter such as a SingleSignOnFilter.

3. The next filter triggers the authentication, and includes a goto URL tagged with the unique identifier from the previous step.

4-5. The DataPreservationFilter stores the POST data in the HTTP session, and redirects the request for authentication. The POST
data is identified by the unique identifier.

6-7. The client authenticates with AM, and AM provides an authentication response to the goto URL.

8. The authenticated client sends a GET request containing the unique identifier.

9-10. The DataPreservationFilter validates the unique identifier, and generates a self-posting form response for the client.

The presence of the unique identifier in the goto URL ensures that requests at the URL can be individually identified. Additionally,
it is more difficult to hijack user data, because there is little chance of guessing the code within the login window.

If the identifier is not validated, PingGateway denies the request.

11. The client resends the POST request, including the identifier.

12-13. The DataPreservationFilter updates the request with the POST data, and sends it along the chain.

PingGateway

Client

Client

DataPreservationFilter

DataPreservationFilter

SingleSignOnFilter

SingleSignOnFilter

PingAM

PingAM

Protected resource
app.example.com

Protected resource
app.example.com

1 POST data to app.example.com

2
Tag POST request with a unique identifier,
and pass to next filter

3
Trigger authentication with a goto URL
tagged with the unique identifier

4
Store POST data in HTTP session
using unique identifier

5 Redirect for authentication

6 Request authentication

7 Respond with redirect to goto URL

8 GET request containing unique identifier

9
Process request and generate
self-posting form response

10 Self-posting form response

11 POST request containing unique identifier

12
Process and update request
with stored POST data

13 Send POST request

14 Delete stored POST data
If the request fails to reach this point,
the filter deletes the stored POST data when:
- the lifetime has expired, and
- a new set of POST data is captured.

15 Send POST request

Gateway guide PingGateway

406 Copyright © 2025 Ping Identity Corporation

Preserve POST data during CDSSO

Before you start, set up and test the example in Cross-domain single sign-on. This example extends that example.

In PingGateway, replace cdsso.json with the following route:

$HOME/.openig/config/routes/pdp.json

%appdata%\OpenIG\config\routes\pdp.json

1.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 407

{
 "name": "pdp",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/cdsso')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "http://am.example.com:8088/openam",
 "realm": "/",
 "agent": {
 "username": "ig_agent_cdsso",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "sessionCache": {
 "enabled": false
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "DataPreservationFilter",
 "type": "DataPreservationFilter"
 },
 {
 "name": "CrossDomainSingleSignOnFilter-1",
 "type": "CrossDomainSingleSignOnFilter",
 "config": {
 "redirectEndpoint": "/home/cdsso/redirect",
 "authCookie": {
 "path": "/home",
 "name": "ig-token-cookie"
 },
 "amService": "AmService-1",
 "logoutExpression": "${find(request.uri.query, 'logOff=true')}",
 "defaultLogoutLandingPage": "/form"
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": [
 "text/html; charset=UTF-8"
]
 },
 "entity": [
 "<html>",

Gateway guide PingGateway

408 Copyright © 2025 Ping Identity Corporation

 " <body>",
 " <h1>Request Information</h1>",
 " <p>Request method: #{request.method}",
 " <p>Request URI: #{request.uri}",
 " <p>Query string: #{request.queryParams}",
 " <p>Form: #{request.entity.form}",
 " <p>Content length: #{request.headers['Content-Length'][0]}",
 " <p>Content type: #{request.headers['Content-Type'][0]}",
 " </body>",
 "</html>"
]
 }
 }
 }
 }
}

Notice the following differences compared to cdsso.json :

A DataPreservationFilter is positioned in front of the CrossDomainSingleSignOnFilter to manage POST data
preservation before authentication.

The ReverseProxyHandler is replaced by a StaticResponseHandler, which displays the POST data provided in the
request.

Add the following route to PingGateway:

$HOME/.openig/config/routes/form.json

%appdata%\OpenIG\config\routes\pdp.json

◦

◦

2.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 409

{
 "condition": "${request.uri.path == '/form'}",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity" : [
 "<html>",
 " <body>",
 " <h1>Test page : POST Data Preservation containing visible and hidden form elements</h1>",
 " <form id='testingPDP' enctype='application/x-www-form-urlencoded' name='test_form' action='/home/
cdsso/pdp.info?foo=bar&baz=pdp' method='post'>",
 " <input name='email' value='user@example.com' size='60'>",
 " <input type='hidden' name='phone' value='555-123-456'/>",
 " <input type='hidden' name='manager' value='Bob'/>",
 " <input type='hidden' name='dept' value='Engineering'/>",
 " <input type='submit' value='Press to demo form posting' id='form_post_button'/>",
 " </form>",
 " </body>",
 "</html>"
]
 }
 }
}

Notice the following features of the route:

The route matches requests to /home/form .

The StaticResponseHandler includes the following entity to present visible and hidden form elements from the
original request:

◦

◦

Gateway guide PingGateway

410 Copyright © 2025 Ping Identity Corporation

<!DOCTYPE html>
<html>
 <body>
 <h1>Test page : POST Data Preservation containing visible and hidden form elements</h1>
 <form
 id='testingPDP'
 enctype='application/x-www-form-urlencoded'
 name='test_form'
 action='/home/cdsso/pdp.info?foo=bar&baz=pdp'
 method='post'>
 <input
 name='email'
 value='user@example.com'
 size='60'>
 <input
 type='hidden'
 name='phone'
 value='555-123-456'/>
 <input
 type='hidden'
 name='manager'
 value='Bob'/>
 <input
 type='hidden'
 name='dept'
 value='Engineering'/>
 <input
 type='submit'
 value='Press to demo form posting'
 id='form_post_button'/>
 </form>
 </body>
</html>

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.ext.com:8443/form.

The script in the StaticResponseHandler entity of form.json creates a button to demonstrate form posting.

Press the button, and log in to AM as user demo , password Ch4ng31t .

When you have authenticated, the script presents the POST data from the original request.

CSRF protection

In a Cross Site Request Forgery (CSRF) attack, a user unknowingly executes a malicious request on a website where they’re
authenticated. A CSRF attack usually includes a link or script in a web page. When a user accesses the link or script, the page
executes an HTTP request on the site where the user is authenticated.

CSRF attacks interact with HTTP requests as follows:

CSRF attacks can execute POST, PUT, and DELETE requests on the targeted server. For example, a CSRF attack can transfer
funds out of a bank account or change a user’s password.

3.

1.

2.

•

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 411

https://ig.ext.com:8443/form
https://ig.ext.com:8443/form

Because of same-origin policy, CSRF attacks cannot access any response from the targeted server.

When PingGateway processes POST, PUT, and DELETE requests, it checks a custom HTTP header in the request. If a CSRF token
isn’t present in the header or not valid, PingGateway rejects the request and returns a valid CSRF token in the response.

Rogue websites that attempt CSRF attacks operate in a different website domain to the targeted website. Because of same-origin
policy, rogue websites can’t access a response from the targeted website, and can’t, therefore, access the response or CSRF
token.

The following example shows the data flow when an authenticated user sends a POST request to an application protected against
CSRF:

The following example shows the data flow when an authenticated user sends a POST request from a rogue site to an application
protected against CSRF:

•

Flow of requests from authenticated user to application protected against CSRF

Client

Client

PingGateway

PingGateway

legitimate.example.com

legitimate.example.com

Post request without CSRF token

POST
Headers: session cookie

Validate CSRF token as hash of session cookie
CSRF token not present or not valid

HTTP 403 Forbidden
Headers: X-CSRF-TOKEN

Re-post request with CSRF token

POST
Headers: session cookie, X-CSRF-TOKEN

Validate CSRF token as hash of session cookie
CSRF token validated

POST
Headers: session cookie

Content

Content

Gateway guide PingGateway

412 Copyright © 2025 Ping Identity Corporation

Set up SSO, so that AM authenticates users to the sample app through PingGateway:

Set up AM and PingGateway as described in Authenticate with SSO through the default authentication service.

Remove the condition in sso.json , so that the route matches all requests:

"condition": "${find(request.uri.path, '^/home/sso')}"

Test the setup without CSRF protection:

Go to https://ig.example.com:8443/bank/index, and log in to the Sample App Bank through AM, as user demo ,
password Ch4ng31t .

Send a bank transfer of $10 to Bob, and note that the transfer is successful.

Go to http://localhost:8081/bank/attack-autosubmit to simulate a CSRF attack.

When you access this page, a hidden HTML form is automatically submitted to transfer $1000 to the rogue user,
using the PingGateway session cookie to authenticate to the bank.

In the bank transaction history, note that $1000 is debited.

Test the setup with CSRF protection:

In PingGateway, replace sso.json with the following route:

Flow of requests from rogue site to application protected against CSRF

Malicious User

Malicious User

Client

Client

PingGateway

PingGateway

legitimate.example.com

legitimate.example.com

rogue.example.com

rogue.example.com

Checkout rogue.example.com

GET rogue.example.com

Malicious code
POST with form to change data
Headers: session cookie (auto added)

Validate CSRF token as hash
of session cookieCSRF token not present or not valid

Content: HTTP 403/Forbidden
Header: CSRF token

1.

1.

2.

2.

1.

2.

3.

lightbulb_2
In deployments that use a different protocol, hostname, or port for PingGateway, append the igUrl
parameter, as follows:

http://localhost:8081/bank/attack-autosubmit?igUrl=protocol://hostname:port

Tip

3.

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 413

https://ig.example.com:8443/bank/index
https://ig.example.com:8443/bank/index
http://localhost:8081/bank/attack-autosubmit
http://localhost:8081/bank/attack-autosubmit

{
 "name": "Csrf",
 "baseURI": "http://app.example.com:8081",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 },
 {
 "name": "FailureHandler-1",
 "type": "StaticResponseHandler",
 "config": {
 "status": 403,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "Request forbidden"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "name": "CsrfFilter-1",
 "type": "CsrfFilter",
 "config": {
 "cookieName": "iPlanetDirectoryPro",
 "failureHandler": "FailureHandler-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Gateway guide PingGateway

414 Copyright © 2025 Ping Identity Corporation

Notice the following features of the route compared to sso.json :

The CsrfFilter checks the AM session cookie for the X-CSRF-Token header. If a CSRF token isn’t present in
the header or not valid, the filter rejects the request and provides a valid CSRF token in the header.

Go to https://ig.example.com:8443/bank/index, and send a bank transfer of $10 to Alice.

Because there is no CSRF token, PingGateway responds with an HTTP 403, and provides the token.

Send the transfer again, and note that because the CSRF token is provided the transfer is successful.

Go to http://localhost:8081/bank/attack-autosubmit to automatically send a rogue transfer.

Because there is no CSRF token, PingGateway rejects the request and provides the CSRF token. However, because
the rogue site is in a different domain to ig.example.com it can’t access the CSRF token.

Throttling

To protect applications from being overused by clients, use a throttling filter to limit how many requests can be made in a defined
time. The maximum number of requests that are allowed in a defined time is called the throttling rate. The following sections
describe how to set up simple, mapped, and scriptable throttling filters:

About throttling

The throttling filter uses the token bucket algorithm, allowing some unevenness or bursts in the request flow. The following
image shows how PingGateway manages requests for a throttling rate of 10 requests/10 seconds:

At 7 seconds, 2 requests have previously passed when there is a burst of 9 requests. PingGateway allows 8 requests, but
disregards the 9th because the throttling rate for the 10-second throttling period has been reached.

▪

2.

3.

4.

lightbulb_2
In deployments that use a different protocol, hostname, or port for PingGateway, append the igUrl
parameter, as follows:

http://localhost:8081/bank/attack-autosubmit?igUrl=protocol://hostname:port

Tip

Seconds

1

req1 req2

R
eq

u
ests

2

req11

3

req12

req13

4 5

req14

8 9 107

req16

6

req15

11 12 13 14 17

req17

18

req18

191615 20

req3

req4

req5

req6

req7

req8

req9

req10

req19

req20

req21

X
X

req22
req23

req24X

X
req25

•

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 415

https://ig.example.com:8443/bank/index
https://ig.example.com:8443/bank/index
http://localhost:8081/bank/attack-autosubmit
http://localhost:8081/bank/attack-autosubmit

At 8 and 9 seconds, although 10 requests have already passed in the 10-second throttling period, PingGateway allows 1
request each second.

At 17 seconds, 4 requests have passed in the previous 10-second throttling period, and PingGateway allows another burst
of 6 requests.

When the throttling rate is reached, PingGateway issues an HTTP status code 429 Too Many Requests and a Retry-After
header like the following, where the value is the number of seconds to wait before trying the request again:

GET https://ig.example.com:8443/home/throttle-scriptable HTTP/2
. . .

HTTP/2 429 Too Many Requests
Retry-After: 10

Configure simple throttling

This section describes how to configure a simple throttling filter that applies a throttling rate of 6 requests/10 seconds. When an
application is protected by this throttling filter, no more than 6 requests, irrespective of their origin, can access the sample
application in a 10 second period.

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway:

$HOME/.openig/config/routes/00-throttle-simple.json

%appdata%\OpenIG\config\routes\00-throttle-simple.json

•

•

All requests Throttled requests
User

Sample applicationPingGateway

Throttling rate
6 req/10 sec

1.

2.

Linux

Windows

Gateway guide PingGateway

416 Copyright © 2025 Ping Identity Corporation

{
 "name": "00-throttle-simple",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/throttle-simple')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ThrottlingFilter",
 "name": "ThrottlingFilter-1",
 "config": {
 "requestGroupingPolicy": "",
 "rate": {
 "numberOfRequests": 6,
 "duration": "10 s"
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the PingGateway route in Studio, refer to Simple throttling filter in Structured Editor.

Notice the following features of the route:

The route matches requests to /home/throttle-simple .

The ThrottlingFilter contains a request grouping policy that is blank. This means that all requests are in the same
group.

The rate defines the number of requests allowed to access the sample application in a given time.

Test the setup:

In a terminal window, use a curl command similar to the route in a loop:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
https://ig.example.com:8443/home/throttle-simple/\[01-10\] \
> /tmp/throttle-simple.txt 2>&1

Search the output file for the result:

$ grep "< HTTP/2" /tmp/throttle-simple.txt | sort | uniq -c

6 < HTTP/2 200 OK
4 < HTTP/2 429 Too Many Requests

◦

◦

◦

3.

1.

2.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 417

Notice that the first six requests returned a success response, and the following four requests returned an HTTP
429 Too Many Requests . This result demonstrates that the throttling filter has allowed only six requests to access
the application, and has blocked the other requests.

Configure mapped throttling

This section describes how to configure a mapped throttling policy, where the grouping policy defines criteria to group requests,
and the rate policy defines the criteria by which rates are mapped.

The following image illustrates how different throttling rates can be applied to users.

The following image illustrates how each user with a gold status has a throttling rate of 6 requests/10 seconds, and each user
with a silver status has 3 requests/10 seconds. The bronze status is not mapped to a throttling rate, and so a user with the
bronze status has the default rate.

Before you start, set up and test the example in Validate access tokens through the introspection endpoint.

In the AM console, select Scripts > OAuth2 Access Token Modification Script, and replace the default script as follows:

import org.forgerock.http.protocol.Request
import org.forgerock.http.protocol.Response

def attributes = identity.getAttributes(["mail", "employeeNumber"].toSet())
accessToken.setField("mail", attributes["mail"][0])
def mail = attributes['mail'][0]
if (mail.endsWith('@example.com')) {
 status = "gold"
} else if (mail.endsWith('@other.com')) {
 status = "silver"
} else {
 status = "bronze"
}
accessToken.setField("status", status)

The AM script adds user profile information to the access token, and defines the content of the users status field
according to the email domain.

Add the following route to PingGateway:

Requests Throttled requests
User 1

gold status

User 2
gold status

User 3
silver status

User 4
bronze status

Sample applicationPingGateway

Throttling rate
3 req/10 sec

Throttling rate
6 req/10 sec

Default throttling
rate 1 req/10 sec

Throttling rate
6 req/10 sec

1.

2.

Gateway guide PingGateway

418 Copyright © 2025 Ping Identity Corporation

$HOME/.openig/config/routes/00-throttle-mapped.json

%appdata%\OpenIG\config\routes\00-throttle-mapped.json

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 419

{
 "name": "00-throttle-mapped",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/throttle-mapped')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }

Gateway guide PingGateway

420 Copyright © 2025 Ping Identity Corporation

 },
 {
 "name": "ThrottlingFilter-1",
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${contexts.oauth2.accessToken.info.mail}",
 "throttlingRatePolicy": {
 "name": "MappedPolicy",
 "type": "MappedThrottlingPolicy",
 "config": {
 "throttlingRateMapper": "${contexts.oauth2.accessToken.info.status}",
 "throttlingRatesMapping": {
 "gold": {
 "numberOfRequests": 6,
 "duration": "10 s"
 },
 "silver": {
 "numberOfRequests": 3,
 "duration": "10 s"
 },
 "bronze": {
 "numberOfRequests": 1,
 "duration": "10 s"
 }
 },
 "defaultRate": {
 "numberOfRequests": 1,
 "duration": "10 s"
 }
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the PingGateway route in Studio, refer to Mapped throttling filter in Structured
Editor.

Notice the following features of the route:

The route matches requests to /home/throttle-mapped .

The OAuth2ResourceServerFilter validates requests with the AccessTokenResolver, and makes it available for
downstream components in the oauth2 context.

The ThrottlingFilter bases the request grouping policy on the AM user’s email. The throttling rate is applied
independently to each email address.

The throttling rate is mapped to the AM user’s status , which is defined by the email domain, in the AM script.

Test the setup:

In a terminal window, use a curl command similar to this to retrieve an access token:

◦

◦

◦

3.

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 421

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail%20employeenumber" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Using the access token, access the route multiple times. The following example accesses the route 10 times and
writes the output to a file:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/home/throttle-mapped/\[01-10\] \
> /tmp/throttle-mapped.txt 2>&1

Search the output file for the result:

$ grep "< HTTP/2" /tmp/throttle-mapped.txt | sort | uniq -c

6 < HTTP/2 200
4 < HTTP/2 429

Notice that with a gold status, the user can access the route 6 times in 10 seconds.

In AM, change the demo user’s email to demo@other.com , and then run the last two steps again to find how the
access is reduced.

Considerations for dynamic throttling

The following image illustrates what can happen when the throttling rate defined by throttlingRateMapping changes frequently
or quickly:

2.

3.

4.

Gateway guide PingGateway

422 Copyright © 2025 Ping Identity Corporation

In the image, the user starts out with a gold status. In a two second period, the users sends five requests, is downgraded to
silver, sends four requests, is upgraded back to gold , and then sends three more requests.

After making five requests with a gold status, the user has almost reached their throttling rate. When his status is downgraded
to silver, those requests are disregarded and the full throttling rate for silver is applied. The user can now make three more
requests even though they have nearly reached their throttling rate with a gold status.

After making three requests with a silver status, the user has reached their throttling rate. When the user makes a fourth
request, the request is refused.

The user is now upgraded back to gold and can now make six more requests even though they had reached his throttling rate
with a silver status.

When you configure requestGroupingPolicy and throttlingRateMapper , bear in mind what happens when the throttling rate
defined by the throttlingRateMapper is changed.

Configure scriptable throttling

This section builds on the example in Configure mapped throttling. It creates a scriptable throttling filter, where the script applies
a throttling rate of 6 requests/10 seconds to requests from gold status users. For all other requests, the script returns null , and
applies the default rate of 1 request/10 seconds.

Before you start, set up and test the example in Configure mapped throttling.

Add the following route to PingGateway:

$HOME/.openig/config/routes/00-throttle-scriptable.json

2 sec

0 sec

Sample applicationPingGateway
Throttled
requests

User
gold status

Throttling rate
6 req/10 sec

Throttling rate
6 req/10 sec

Throttling rate
3 req/10 sec

User
sliver status

X

Request 1
Request 2
Request 3
Request 4
Request 5

Request 6

Request 7

Request 10

Request 12

Request 8
Request 9

User
gold status Request 11

1.

Linux

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 423

%appdata%\OpenIG\config\routes\00-throttle-scriptable.json

Windows

Gateway guide PingGateway

424 Copyright © 2025 Ping Identity Corporation

{
 "name": "00-throttle-scriptable",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/throttle-scriptable')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 425

 },
 {
 "name": "ThrottlingFilter-1",
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${contexts.oauth2.accessToken.info.mail}",
 "throttlingRatePolicy": {
 "type": "DefaultRateThrottlingPolicy",
 "config": {
 "delegateThrottlingRatePolicy": {
 "name": "ScriptedPolicy",
 "type": "ScriptableThrottlingPolicy",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "if (contexts.oauth2.accessToken.info.status == status) {",
 " return new ThrottlingRate(rate, duration)",
 "} else {",
 " return null",
 "}"
],
 "args": {
 "status": "gold",
 "rate": 6,
 "duration": "10 seconds"
 }
 }
 },
 "defaultRate": {
 "numberOfRequests": 1,
 "duration": "10 s"
 }
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the PingGateway route in Studio, refer to Scriptable throttling filter in Structured
Editor.

Notice the following features of the route, compared to path] 00-throttle-mapped.json :

The route matches requests to /home/throttle-scriptable .

The DefaultRateThrottlingPolicy delegates the management of throttling to the ScriptableThrottlingPolicy.

The script applies a throttling rate to requests from users with gold status. For all other requests, the script returns
null and the default rate is applied.

Test the setup:

In a terminal window, use a curl command similar to this to retrieve an access token:

◦

◦

◦

2.

1.

Gateway guide PingGateway

426 Copyright © 2025 Ping Identity Corporation

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail%20employeenumber" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Using the access token, access the route multiple times. The following example accesses the route 10 times and
writes the output to a file:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/home/throttle-scriptable/\[01-10\] \
> /tmp/throttle-script.txt 2>&1

Search the output file for the result:

$ grep "< HTTP/2" /tmp/throttle-script.txt | sort | uniq -c

6 < HTTP/2 200
4 < HTTP/2 429

Notice that with a gold status, the user can access the route 6 times in 10 seconds.

In AM, change the user’s email to demo@other.com , and then run the last two steps again to find how the access is
reduced.

URI fragments in redirect

URI fragments are optional last parts of a URL for a document, typically used to identify or navigate to a particular part of the
document. The fragment part follows the URL after a hash # , for example
https://www.rfc-editor.org/rfc/rfc1234#section5 .

When an unauthenticated user requests a resource that includes a URI fragment, the user agent sends the URI but doesn’t send
the fragment. The fragment is lost during the authentication flow.

PingGateway provides a FragmentFilter to track the fragment part of a URI when a request triggers a login redirect.

The FragmentFilter doesn’t handle multiple fragment captures in parallel. If a fragment capture is in progress while PingGateway
performs another login redirect, a second fragment capture process isn’t triggered and the fragment is lost.

When a browser request loads a favicon, it can cause the fragment part of a URI to be lost. Prevent problems by serving static
resources with a separate route. As an example, use the route in Serve static resources.

The following image shows the flow of information when the FragmentFilter is included in the SSO authentication flow:

2.

3.

4.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 427

1-2. An unauthenticated client requests access to a fragment URL.

3. The FragmentFilter adds the AuthRedirectContext, so that downstream filters can mark the response as redirected.

4-5. The SingleSignOnFilter adds to the context to notify upstream filters that a redirect is pending, and redirects the request for
authentication.

6-7. The FragmentFilter is notified by the context that a redirect is pending, and returns a new response object containing the
response cookies, an autosubmit HTML form, and Javascript.

8. The user agent runs the Javascript or displays the form’s submit button for the user to click on. This operation POSTs a form
request back to a fragment endpoint URI, containing the following parts:

Request URI path (/profile)

Captured fragment (#fragment)

Login URI (http://am.example.com/login?goto=…)

9. The FragmentFilter creates the fragment cookie.

10-12. The client authenticates with AM.

13. The FragmentFilter intercepts the request because it contains a fragment cookie, and its URI matches the original request URI.

The filter redirects the client to the original request URI containing the fragment. The fragment cookie then expires.

User Agent PingGateway

Client

Client

Browser

Browser

FragmentFilter

FragmentFilter

SSOFilter

SSOFilter

PingAM

PingAM

Sample App

Sample App

Request for a fragment URI

1
GET
http://app.example.com/profile#fragment

2
GET
http://app.example.com/profile

Capture and store fragment

3 AuthRedirectContext

4
AuthRedirectContext
.notifyImpendingIgRedirect()

5 Redirect to http://app.example.com/login

6
AuthRedirectContext
.impendingIgRedirectNotified()

7 Auto submit form to get the fragment

8 Submit the form containing the fragment

9 Add fragment cookie

Authenticate

10
Redirect to
http://am.example.com/login?goto=...
include fragment cookie

11 Authentication

12
Redirect to
http://app.example.com/profile

Add fragment to the final redirect

13
GET http://app.example.com/profile
include fragment cookie

14
REDIRECT to
http://app.example.com/profile#fragment

15
GET
http://app.example.com/profile

16
GET
http://app.example.com/profile

17 GET http://app.example.com/profile

18 Response

19 Response

20 Response

•

•

•

Gateway guide PingGateway

428 Copyright © 2025 Ping Identity Corporation

14-19. The client follows the final redirect to the original request URI containing the fragment, and the sample app returns the
response.

This procedure shows how to persist a URI fragment in an SSO authentication. Before you start, set up and test the example in
Authenticate with SSO through the default authentication service.

In PingGateway, replace sso.json with the following route:

$HOME/.openig/config/routes/fragment.json

%appdata%\OpenIG\config\routes\fragment.json

1.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 429

{
 "name": "fragment",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/sso')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "FragmentFilter-1",
 "type": "FragmentFilter",
 "config": {
 "fragmentCaptureEndpoint": "/home/sso"
 }
 },
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following feature of the route compared to sso.json :

The FragmentFilter captures the fragment form data from the route condition endpoint.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/sso#fragment.

The SingleSignOnFilter redirects the request to AM for authentication.

Log in to AM as user demo , password Ch4ng31t .

◦

2.

1.

2.

Gateway guide PingGateway

430 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/sso#fragment
https://ig.example.com:8443/home/sso#fragment

The SingleSignOnFilter passes the request to sample application, which returns the home page. Note that the URL
of the page has preserved the fragment: https://ig.example.com:8443/home/sso?_ig=true#fragment

Remove the FragmentFilter from the route and test the route again.

Note that this time the URL of the page hasn’t preserved the fragment.

JWT validation

The following examples show how to use the JwtValidationFilter to validate signed and encrypted JWT.

The JwtValidationFilter can access JWTs in the request, provided in a header, query parameter, form parameter, cookie, or other
way. If an upstream filter makes the JWT available in the request’s attributes context, the JwtValidationFilter can access the JWT
through the context, for example, at ${attributes.jwtToValidate} .

For convenience, the JWT in this example is provided by the JwtBuilderFilter, and passed to the JwtValidationFilter in a cookie.

The following figure shows the flow of information in the example:

Before you start, set up and test the example in Pass runtime data in a JWT signed with PEM then encrypted with a symmetric
key.

Add a second route to PingGateway, replacing value of the property secretsDir with the directory for the PEM files:

3.

PingGateway
Client

Application

Client
Application

Authorization Server
PingAM

Authorization Server
PingAM

SingleSignOnFilter

SingleSignOnFilter

UserProfileFilter

UserProfileFilter

JwtBuilderFilter

JwtBuilderFilter

HeaderFilter

HeaderFilter

JwtValidationFilter

JwtValidationFilter

Authenticate

1 Authentication request

2 SSO token

Build JWT

3 Request with SSO token

4
Grab token from request
header

5 Request token information

6 Token information

7 Validate that token is active

8
Retrieve the user
profile attributes

9 Token

10
Convert token to signed
and encrypted JWT

11 JWT

12 Put JWT into a cookie

Validate JWT

13 Retrieve cookie

14
Unpack JWT and
check claims

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 431

$HOME/.openig/config/routes/jwt-validate.json

%appdata%\OpenIG\config\routes\jwt-validate.json

Linux

Windows

Gateway guide PingGateway

432 Copyright © 2025 Ping Identity Corporation

{
 "name": "jwt-validate",
 "condition": "${find(request.uri.path, '^/jwt-validate')}",
 "properties": {
 "secretsDir": "path/to/secrets"
 },
 "capture": "all",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore",
 "type": "SystemAndEnvSecretStore",
 "config": {
 "mappings": [{
 "secretId": "id.decrypted.key.for.signing.jwt",
 "format": "BASE64"
 }]
 }
 },
 {
 "name": "pemPropertyFormat",
 "type": "PemPropertyFormat",
 "config": {
 "decryptionSecretId": "id.decrypted.key.for.signing.jwt",
 "secretsProvider": "SystemAndEnvSecretStore"
 }
 },
 {
 "name": "FileSystemSecretStore-1",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "&{secretsDir}",
 "mappings": [{
 "secretId": "id.encrypted.key.for.signing.jwt.pem",
 "format": "pemPropertyFormat"
 }, {
 "secretId": "symmetric.key.for.encrypting.jwt",
 "format": {
 "type": "SecretKeyPropertyFormat",
 "config": {
 "format": "BASE64",
 "algorithm": "AES"
 }
 }
 }]
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "type": "JwtValidationFilter",
 "config": {
 "jwt": "${request.cookies['my-jwt'][0].value}",
 "secretsProvider": "FileSystemSecretStore-1",
 "decryptionSecretId": "symmetric.key.for.encrypting.jwt",
 "customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 433

 "type": "application/x-groovy",
 "source": [
 "builder.claim('name', JsonValue::asString, isEqualTo('demo'))",
 "builder.claim('email', JsonValue::asString, isEqualTo('demo@example.com'));"
]
 }
 },
 "failureHandler": {
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "def response = new Response(Status.FORBIDDEN)",
 "response.headers['Content-Type'] = 'text/html; charset=utf-8'",
 "def errors = contexts.jwtValidationError.violations.collect{it.description}",
 "def display = \"<html>Can't validate JWT:
 ${contexts.jwtValidationError.jwt} \"",
 "display <<=\"

For the following errors:
 ${errors.join(\"
\")}</html>\"",
 "response.entity=display as String",
 "return response"
]
 }
 }
 }
 }],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": [
 "<html>",
 " <h2>Validated JWT:</h2>",
 " <p>${contexts.jwtValidation.value}</p>",
 " <h2>JWT payload:</h2>",
 " <p>${contexts.jwtValidation.info}</p>",
 "</html>"
]
 }
 }
 }
 }
}

Notice the following features of the route:

The route matches requests to /jwt-validate .

The JwtValidationFilter takes the value of the JWT from my-jwt .

The SystemAndEnvSecretStore, PemPropertyFormat, and FileSystemSecretStore objects in the heap are the same
as those in the route to create the JWT. The JwtValidationFilter uses the same objects to validate the JWT.

The JwtBuilderFilter customizer requires that the JWT claims match name:demo and email:demo@example.com .

If the JWT is validated, the StaticResponseHandler displays the validated value. Otherwise, the FailureHandler
displays the reason for the failed validation.

◦

◦

◦

◦

◦

Gateway guide PingGateway

434 Copyright © 2025 Ping Identity Corporation

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/jwtbuilder-sign-then-encrypt to
build a JWT.

Log in to AM as user demo , password Ch4ng31t . The sample application displays the signed JWT.

Go to https://ig.example.com:8443/jwt-validate to validate the JWT. The validated JWT and its payload are
displayed.

Test the setup again, but log in to AM as a different user, or change the email address of the demo user in AM. The
JWT isn’t validated, and an error is displayed.

WebSocket traffic

When a user agent requests an upgrade from HTTP or HTTPS to the WebSocket protocol, PingGateway detects the request and
performs an HTTP handshake request between the user agent and the protected application.

If the handshake is successful, PingGateway upgrades the connection and provides a dedicated tunnel to route WebSocket traffic
between the user agent and the protected application. PingGateway does not intercept messages to or from the WebSocket
server.

The tunnel remains open until it is closed by the user agent or protected application. When the user agent closes the tunnel, the
connection between PingGateway and the protected application is automatically closed.

The following sequence diagram shows the flow of information when PingGateway proxies WebSocket traffic:

2.

1.

2.

3.

4.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 435

https://ig.example.com:8443/jwtbuilder-sign-then-encrypt
https://ig.example.com:8443/jwtbuilder-sign-then-encrypt
https://ig.example.com:8443/jwt-validate
https://ig.example.com:8443/jwt-validate

To configure PingGateway to proxy WebSocket traffic, configure the websocket property of ReverseProxyHandler. By default,
PingGateway does not proxy WebSocket traffic.

Proxy WebSocket traffic

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

WebSocket client

WebSocket client

PingGateway

PingGateway

WebSocket server

WebSocket server

Perform handshake and create tunnel

WebSocket handshake request

HTTP filtering
(for example, execute IG filters for authentication)

WebSocket handshake request

Creation of WebSocket tunnel

WebSocket handshake response

Upgrade Client-PingGateway connection from
HTTP to WebSocket protocol

WebSocket handshake response

Send message

WebSocket frame

Push through tunnel

WebSocket frame

Receive message

WebSocket frame

Push through tunnel

WebSocket frame

1.

1.

▪

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

Gateway guide PingGateway

436 Copyright © 2025 Ping Identity Corporation

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway:

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

2.

1.

2.

3.

Linux

Windows

4.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 437

$HOME/.openig/config/routes/websocket.json

%appdata%\OpenIG\config\routes\websocket.json

Linux

Windows

Gateway guide PingGateway

438 Copyright © 2025 Ping Identity Corporation

{
 "name": "websocket",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/websocket')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 },
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "config": {
 "websocket": {
 "enabled": true,
 "vertx": {
 "maxFrameSize": 200000000,
 "maxMessageSize": 200000000,
 "tryUsePerMessageCompression": true
 }
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the route in Studio, refer to Proxy for WebSocket traffic in Structured Editor.

For more detail on Vert.x options for WebSocket connections, refer to HttpClientOptions.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 439

https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/http/HttpClientOptions.html
https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/http/HttpClientOptions.html

Notice the following features of the route:

The route matches requests to /websocket , the endpoint on the sample app that exposes a WebSocket
server.

The SingleSignOnFilter redirects unauthenticated requests to AM for authentication.

The ReverserProxyHandler enables PingGateway to proxy WebSocket traffic. After PingGateway upgrades
the HTTP connection to the WebSocket protocol, the ReverserProxyHandler passes the messages to the
WebSocket server.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/websocket.

Log in to AM as user demo , password Ch4ng31t .

AM authenticates the user, creates an SSO token, and redirects the request back to the original URI, with the token
in a cookie.

The request then passes to the ReverseProxyHandler, which routes the request to the HTML page /websocket/
index.html of the sample app. The page initiates the HTTP handshake for connecting to the WebSocket
endpoint /websocket/echo .

Enter text on the WebSocket echo screen and note that the text is echoed back.

UMA support

PingGateway includes support for User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization specifications.

About PingGateway as an UMA resource server

The following figure shows an UMA environment, with PingGateway protecting a resource, and AM acting as an Authorization
Server. For information about UMA, refer to AM’s User-Managed Access (UMA) 2.0 guide.

▪

▪

▪

3.

1.

2.

3.

Gateway guide PingGateway

440 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/websocket
https://ig.example.com:8443/websocket
https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-08.html
https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-08.html
https://docs.pingidentity.com/pingam/7.5/uma-guide/index.html
https://docs.pingidentity.com/pingam/7.5/uma-guide/index.html

The following figure shows the data flow when the resource owner registers a resource with AM, and sets up a share using a
Protection API Token (PAT):

The following figure shows the data flow when the client accesses the resource, using a Requesting Party Token (RPT):

Control

AuthorizeAccess

Manage

Protect

UMA Grant

Protection
A

PI
(re

q
u
ire

s
PA

T)

Requesting Party Token

Protection API Access Token

Protected Resource
(requires RPT)

Resource Owner

ForgeRock
Identity Gateway
Resource Server

ForgeRock
Access Management
Authorization Server

Requesting
Party

Client

Redirect to Auth Server

(on behalf of Requesting Party)

Resource Owner (RO)

Resource Owner (RO)

PingGateway
Resource Server (RS)

PingGateway
Resource Server (RS)

PingAM
Authorization Server (AS)

PingAM
Authorization Server (AS)

1 Authentication, authorization, consent, with scope "uma_protection"

2 Protection API token (PAT)

3
Create a share, including the PAT and a
pattern to define resources included in the share

4
Registers resource on Authz Server at
Resource Registration endpoint

5
URL to a page where RO can define the policies
for the share

6
Configure policy conditions after registering
the resource

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 441

For information about CORS support, refer to Configure CORS support in AM’s Security guide. This procedure describes how to
modify the AM configuration to allow cross-site access.

Limitations of PingGateway as an UMA resource server

When using PingGateway as an UMA resource server, note the following points:

PingGateway depends on the resource owner for the PAT.

When a PAT expires, no refresh token is available to PingGateway. The resource owner must repeat the entire share
process with a new PAT in order to authorize access to protected resources. The resource owner should delete the old
resource and create a new one.

Data about PATs and shared resources is held in memory.

PingGateway has no mechanism for persisting the data across restarts. When PingGateway stops and starts again, the
resource owner must repeat the entire share process.

UMA client applications for sharing and accessing protected resources must deal with UMA error conditions and
PingGateway error conditions.

By default, the REST API to manage share objects exposed by PingGateway is protected only by CORS.

When matching protected resource paths with share patterns, PingGateway takes the longest match.

For example, if resource owner Alice shares /photos/.* with Bob, and /photos/vacation.png with Charlie, and then
Bob attempts to access /photos/vacation.png , PingGateway applies the sharing permissions for Charlie, not Bob. As a
result, Bob can be denied access.

Client
(On Behalf of Requesting Party)

Client
(On Behalf of Requesting Party)

PingGateway
Resource Server (RS)

PingGateway
Resource Server (RS)

PingAM
Authorization Server (AS)

PingAM
Authorization Server (AS)

1 Request access to a shared resource

2
Find resource set in the shares configured
for the request

3
Request a permission ticket for the
resource being accessed

4 Permission ticket

5
HTTP 401 Unauthorized Response, including
permission ticket and URL of UMA Authz Server

6 Authenticate with OpenID Connect

7 id_token

8 Request an RPT, including permission ticket and id_token

9 RPT

10 Request access to a shared resource, with the RPT

11 Introspect the RPT

12 Permissions associated with the RPT

alt [If requesting party authorized for resource]

13 Return the resource

[If requesting party not authorized for resource]

14 HTTP 401 Unauthorized Response, including permission ticket and URL of UMA Authz Server

•

•

•

•

•

Gateway guide PingGateway

442 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/security-guide/enable-cors-support.html
https://docs.pingidentity.com/pingam/7.5/security-guide/enable-cors-support.html

Set up the UMA example

This section describes tasks to set up AM as an Authorization Server:

Enabling cross-origin resource sharing (CORS) support in AM

Configuring AM as an Authorization Server

Registering UMA client profiles with AM

Setting up a resource owner (Alice) and requesting party (Bob)

Before you start, prepare AM, PingGateway, and the sample application as described in Example installation for this guide.

If you use different settings for the sample application, refer to Edit the example to match custom settings.

Set up AM:

Find the name of the AM session cookie at the /json/serverinfo/* endpoint. This procedure assumes that you
are using the default AM session cookie, iPlanetDirectoryPro .

Create an OAuth 2.0 Authorization Server:

Select Services > Add a Service > OAuth2 Provider.

Add a service with the default values.

Configure an UMA Authorization Server:

Select Services > Add a Service > UMA Provider.

Add a service with the default values.

Add an OAuth 2.0 client for UMA protection:

Select Applications > OAuth 2.0 > Clients.

Add a client with these values:

Client ID : OpenIG

Client secret : password

Scope : uma_protection

•

•

•

•

error
The settings in this section are suggestions for this tutorial. They are not intended as instructions for setting up AM
CORS support on a server in production.
If you need to accept all origins, by allowing the use of Access-Control-Allowed-Origin=* , do not allow Content-
Type headers. Allowing the use of both types of headers exposes AM to cross-site request forgery (CSRF) attacks.

Caution

emergency_home
This procedure uses the Resource Owner Password Credentials grant type. According to information in the The OAuth
2.0 Authorization Framework, minimize use of this grant type and utilize other grant types whenever possible.

Important

1.

1.

2.

1.

2.

3.

1.

2.

4.

1.

2.

▪

▪

▪

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 443

https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

On the Advanced tab, select the following option:

Grant Types : Resource Owner Password Credentials

Add an OAuth 2.0 client for accessing protected resources:

Select Applications > OAuth 2.0 > Clients.

Add a client with these values:

Client ID : UmaClient

Client secret : password

Scope : openid

On the Advanced tab, select the following option:

Grant Types : Resource Owner Password Credentials and UMA

Select Identities, and add an identity for a resource owner, with the following values:

ID : alice

Password : UMAexamp1e

Email Address : alice@example.com

Select Identities, and add an identity for a requesting party, with the following values:

ID : bob

Password : UMAexamp1e

Email Address : bob@example.com

Enable the CORS filter on AM:

In a terminal window, retrieve an SSO token from AM:

$ mytoken=$(curl --request POST \
--header "Accept-API-Version: resource=2.1" \
--header "X-OpenAM-Username: amadmin" \
--header "X-OpenAM-Password: password" \
--header "Content-Type: application/json" \
--data "{}" \
http://am.example.com:8088/openam/json/authenticate | jq -r ".tokenId")

Using the token retrieved in the previous step, enable the CORS filter on AM, by using the use the /global-
config/services/CorsService REST endpoint:

3.

▪

5.

1.

2.

▪

▪

▪

3.

▪

6.

▪

▪

▪

7.

▪

▪

▪

8.

1.

2.

Gateway guide PingGateway

444 Copyright © 2025 Ping Identity Corporation

$ curl \
 --request PUT \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: $mytoken" http://am.example.com:8088/openam/json/global-config/
services/CorsService/configuration/CorsService \
 --data '{
 "acceptedMethods": [
 "POST",
 "GET",
 "PUT",
 "DELETE",
 "PATCH",
 "OPTIONS"
],
 "acceptedOrigins": [
 "http://app.example.com:8081",
 "http://ig.example.com:8080",
 "http://am.example.com:8088/openam"
],
 "allowCredentials": true,
 "acceptedHeaders": [
 "Authorization",
 "Content-Type",
 "iPlanetDirectoryPro",
 "X-OpenAM-Username",
 "X-OpenAM-Password",
 "Accept",
 "Accept-Encoding",
 "Connection",
 "Content-Length",
 "Host",
 "Origin",
 "User-Agent",
 "Accept-Language",
 "Referer",
 "Dnt",
 "Accept-Api-Version",
 "If-None-Match",
 "Cookie",
 "X-Requested-With",
 "Cache-Control",
 "X-Password",
 "X-Username",
 "X-NoSession"
],
 "exposedHeaders": [
 "Access-Control-Allow-Origin",
 "Access-Control-Allow-Credentials",
 "Set-Cookie",
 "WWW-Authenticate"
],
 "maxAge": 600,
 "enabled": true,
 "allowCredentials": true
 }'

A CORS configuration is diplayed.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 445

Set up PingGateway as an UMA resource server:

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following ClientHandler and ApiProtectionFilter to the heap in your admin.json configuration and restart
PingGateway:

lightbulb_2
To delete the CORS configuration and create another, first run the following command:

$ curl \
 --request DELETE \
 --header "X-Requested-With: XMLHttpRequest" \
 --header "iPlanetDirectoryPro: $mytoken" \
 http://am.example.com:8088/openam/json/global-config/services/CorsService/
CorsService/configuration/CorsService

Tip

2.

1.

Linux

Windows

2.

Gateway guide PingGateway

446 Copyright © 2025 Ping Identity Corporation

{
 "prefix": "openig",
 "connectors": [
 { "port" : 8080 }
],
 "heap": [
 {
 "name": "ClientHandler",
 "type": "ClientHandler"
 },
 {
 "name": "ApiProtectionFilter",
 "type": "CorsFilter",
 "config": {
 "policies": [
 {
 "acceptedOrigins": ["http://app.example.com:8081"],
 "acceptedMethods": ["GET", "POST", "DELETE"],
 "acceptedHeaders": ["Content-Type"]
 }
]
 }
 }
]
}

Notice the following feature:

The default ApiProtectionFilter is overridden by the CorsFilter, which allows requests from the origin
http://app.example.com:8081 .

Add the following route to PingGateway:

$HOME/.openig/config/routes/00-uma.json

%appdata%\OpenIG\config\routes\00-uma.json

▪

3.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 447

{
 "name": "00-uma",
 "condition": "${request.uri.host == 'app.example.com'}",
 "heap": [
 {
 "name": "UmaService",
 "type": "UmaService",
 "config": {
 "protectionApiHandler": "ClientHandler",
 "wellKnownEndpoint": "http://am.example.com:8088/openam/uma/.well-known/uma2-configuration",
 "resources": [
 {
 "comment": "Protects all resources matching the following pattern.",
 "pattern": ".*",
 "actions": [
 {
 "scopes": [
 "#read"
],
 "condition": "${request.method == 'GET'}"
 },
 {
 "scopes": [
 "#create"
],
 "condition": "${request.method == 'POST'}"
 }
]
 }
]
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "CorsFilter",
 "config": {
 "policies": [
 {
 "acceptedOrigins": ["http://app.example.com:8081"],
 "acceptedMethods": ["GET"],
 "acceptedHeaders": ["Authorization"],
 "exposedHeaders": ["WWW-Authenticate"],
 "allowCredentials": true
 }
]
 }
 },
 {
 "type": "UmaFilter",
 "config": {
 "protectionApiHandler": "ClientHandler",
 "umaService": "UmaService"
 }
 }

Gateway guide PingGateway

448 Copyright © 2025 Ping Identity Corporation

],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route matches requests from app.example.com .

The UmaService describes the resources that a resource owner can share, using AM as the Authorization
Server. It provides a REST API to manage sharing of resource sets.

The CorsFilter defines the policy for cross-origin requests, listing the methods and headers that the request
can use, the headers that are exposed to the frontend JavaScript code, and whether the request can use
credentials.

The UmaFilter manages requesting party access to protected resources, using the UmaService. Protected
resources are on the sample application, which responds to requests on port 8081.

Test the setup:

In your browser’s privacy or incognito mode, go to http://app.example.com:8081/uma/.

Share resources:

Select Alice shares resources.

On Alice’s page, select Share with Bob. The following items are displayed:

The PAT that Alice receives from AM.

The metadata for the resource set that Alice registers through PingGateway.

The result of Alice authenticating with AM in order to create a policy.

The successful result when Alice configures the authorization policy attached to the shared resource.

If the step fails, run the following command to get an access token for Alice:

$ curl -X POST \
-H "Cache-Control: no-cache" \
-H "Content-Type: application/x-www-form-urlencoded" \
-d
'grant_type=password&scope=uma_protection&username=alice&password=UMAexamp1e&client_id=Op
enIG&client_secret=password' \
http://am.example.com:8088/openam/oauth2/access_token

If you fail to get an access token, check that AM is configured as described in this procedure. If you
continue to have problems, make sure that your PingGateway configuration matches that shown
when you are running the test on http://app.example.com:8081/uma/.

Access resources:

Go back to the first page, and select Bob accesses resources.

▪

▪

▪

▪

3.

1.

2.

1.

2.

▪

▪

▪

▪

3.

1.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 449

http://app.example.com:8081/uma/
http://app.example.com:8081/uma/

On Bob’s page, select Get Alice’s resources. The following items are displayed:

The WWW-Authenticate Header.

The OpenID Connect Token that Bob gets to obtain the RPT.

The RPT that Bob gets in order to request the resource again.

The final response containing the body of the resource.

Edit the example to match custom settings

If you use a configuration that is different to that described in this chapter, consider the following tasks to adjust the sample to
your configuration:

Unpack the UMA files from the sample application described in Use the sample application to temporary folder:

$ mkdir /tmp/uma
$ cd /tmp/uma
$ jar -xvf /path/to/PingGateway-sample-application-2024.6.0-jar-with-dependencies.jar webroot-uma

created: webroot-uma/
inflated: webroot-uma/bob.html
inflated: webroot-uma/common.js
inflated: webroot-uma/alice.html
inflated: webroot-uma/index.html
inflated: webroot-uma/style.css

Edit the configuration in common.js , alice.html , and bob.html to match your settings.

Repack the UMA sample client files and then restart the sample application:

$ jar -uvf /path/to/PingGateway-sample-application-2024.6.0-jar-with-dependencies.jar webroot-uma

adding: webroot-uma/(in = 0) (out= 0)(stored 0%)
adding: webroot-uma/bob.html(in = 26458) (out= 17273)(deflated 34%)
adding: webroot-uma/common.js(in = 3652) (out= 1071)(deflated 70%)
adding: webroot-uma/alice.html(in = 27775) (out= 17512)(deflated 36%)
adding: webroot-uma/index.html(in = 22046) (out= 16060)(deflated 27%)
adding: webroot-uma/style.css(in = 811) (out= 416)(deflated 48%)
updated module-info: module-info.class

If necessary, adjust the CORS settings for AM.

Understand the UMA API with an API descriptor

The UMA share endpoint serves API descriptors at runtime. When you retrieve an API descriptor for the endpoint, a JSON that
describes the API for the endpoint is returned.

You can use the API descriptor with a tool such as Swagger UI to generate a web page that helps you to view and test the
endpoint. For information, refer to API descriptors.

2.

▪

▪

▪

▪

1.

2.

3.

4.

Gateway guide PingGateway

450 Copyright © 2025 Ping Identity Corporation

http://swagger.io/swagger-ui/
http://swagger.io/swagger-ui/

PingGateway as a microgateway

This section describes how to use the ForgeRock Token Validation Microservice to resolve and cache OAuth 2.0 access tokens
when protecting API resources. The section is based on the example in Introspecting stateful access tokens, in the Token
Validation Microservice’s User guide.

For information about the architecture, refer to PingGateway as a microgateway. The following figure illustrates the flow of
information when a client requests access to a protected microservice, providing a stateful access token as credentials:

Before you start, download and run the sample application as described in Use the sample application. The sample application
acts as Microservice A.

Set up the example in Introspect stateful access tokens, in the Token Validation Microservice’s User guide.

In AM, edit the microservice client to add a scope to access the protected microservice:

Select Applications > OAuth 2.0 > Clients.

Select microservice-client , and add the scope microservice-A .

Add the following route to PingGateway:

$HOME/.openig/config/routes/mgw.json

%appdata%\OpenIG\config\routes\mgw.json

Protected Microservice

Microservice Client

Microservice Client

Microgateway

Microgateway

Microservice A

Microservice A

Token Validation Microservice

Token Validation Microservice

Authorization Server

Authorization Server

1
Request resource from protected microservice,
providing stateful access token as credentials

2 Request token validation

3 Token validation

4 Send introspection result

5 Send introspection result

6
Use the introspection result to
decide whether to allow client access

7 Send resource

8 Send resource

1.

2.

1.

2.

3.

Linux

Windows

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 451

https://backstage.forgerock.com/docs/tvm/user-guide/index.html
https://backstage.forgerock.com/docs/tvm/user-guide/index.html
https://backstage.forgerock.com/docs/tvm/user-guide/index.html
https://backstage.forgerock.com/docs/tvm/user-guide/index.html

{
 "properties": {
 "introspectOAuth2Endpoint": "http://mstokval.example.com:9090"
 },
 "capture": "all",
 "name": "mgw",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/mgw')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "requireHttps": false,
 "accessTokenResolver": {
 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "endpoint": "&{introspectOAuth2Endpoint}/introspect",
 "providerHandler": "ForgeRockClientHandler"
 }
 },
 "scopes": ["microservice-A"]
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

The route matches requests to PingGateway on http://ig.example.com:8080/home/mgw , and rebases them to the
sample application, on http://app.example.com:8081 .

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token in the header of the incoming authorization
request, with the scope microservice-A .

If the filter successfully validates the access token, the ReverseProxyHandler passes the request to the sample
application.

Test the setup:

With AM, PingGateway, the Token Validation Microservice, and the sample application running, get an access token
from AM, using the scope microservice-A :

◦

◦

◦

4.

1.

Gateway guide PingGateway

452 Copyright © 2025 Ping Identity Corporation

$ mytoken=$(curl -s \
--request POST \
--url http://am.example.com:8088/openam/oauth2/access_token \
--user microservice-client:password \
--data grant_type=client_credentials \
--data scope=microservice-A --silent | jq -r .access_token)

View the access token:

$ echo $mytoken

Call PingGateway to access microservice A:

$ curl -v --header "Authorization: Bearer ${mytoken}" http://ig.example.com:8080/home/mgw

The home page of the sample application is displayed.

2.

3.

PingGateway Gateway guide

Copyright © 2025 Ping Identity Corporation 453

PingOne Advanced Identity Cloud

This guide provides examples of how to use PingGateway with PingOne Advanced Identity Cloud for Single Sign-On and API
Security. It is for PingOne Advanced Identity Cloud evaluators, administrators, and architects.

Example installation for this guide

Unless otherwise stated, the examples in this guide assume the following installation:

PingGateway installed on http://ig.example.com:8080 , as described in the Install .

Sample application installed on http://app.example.com:8081 , as described in Use the sample application.

An PingOne Advanced Identity Cloud tenant with the default configuration, as described in the PingOne Advanced Identity
Cloud documentation.

When using PingOne Advanced Identity Cloud, you need to know the value of the following properties:

The root URL of your PingOne Advanced Identity Cloud tenant. For example, https://myTenant.forgeblocks.com .

The URL of the PingAM component of PingOne Advanced Identity Cloud is the root URL of your PingOne Advanced Identity
Cloud tenant followed by /am . For example, https://myTenant.forgeblocks.com/am .

The realm where you work. The examples in this document use alpha .

Prefix each realm in the hierarchy with the realms keyword. For example, /realms/root/realms/alpha .

If you use a different configuration, substitute in the procedures accordingly.

Authenticate a PingGateway agent to PingOne Advanced Identity Cloud

This section describes how to create a journey to authenticate an PingGateway agent to PingOne Advanced Identity Cloud. The
journey has the following requirements:

It must be called Agent

Its nodes must pass the agent credentials to the Agent Data Store Decision node.

When you define a journey in PingOne Advanced Identity Cloud, that same journey is used for all instances of PingGateway, Java
agent, and Web agent. Consider this point if you change the journey configuration.

Log in to the Advanced Identity Cloud admin UI as an administrator.

Click Journeys > New Journey.

•

•

•

•

•

emergency_home
PingGateway agents are automatically authenticated to PingOne Advanced Identity Cloud by a non-configurable
authentication module. Authentication chains and modules are deprecated in PingOne Advanced Identity Cloud and
replaced by journeys.
You can now authenticate PingGateway agents to PingOne Advanced Identity Cloud with a journey. The procedure is
currently optional, but will be required when authentication chains and modules are removed in a future release of
PingOne Advanced Identity Cloud.
For more information, refer to PingOne Advanced Identity Cloud’s Journeys.

Important

•

•

1.

2.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 455

https://docs.pingidentity.com/pingoneaic/latest/home.html
https://docs.pingidentity.com/pingoneaic/latest/home.html
https://docs.pingidentity.com/pingoneaic/latest/home.html
https://docs.pingidentity.com/pingoneaic/latest/realms/journeys.html
https://docs.pingidentity.com/pingoneaic/latest/realms/journeys.html

Add a journey with the following information and click Create journey:

Name: Agent

Identity Object: The user or device to authenticate.

(Optional) Description: Authenticate a PingGateway agent to PingOne Advanced Identity Cloud

The journey designer is displayed, with the Start entry point connected to the Failure exit point, and a Success node.

Using the Filter nodes bar, find and then drag the following nodes from the Components panel into the designer area:

Zero Page Login Collector node to check whether the agent credentials are provided in the incoming
authentication request, and use their values in the following nodes.

This node is required for compatibility with Java agent and Web agent.

Page node to collect the agent credentials if they are not provided in the incoming authentication request, and
use their values in the following nodes.

Agent Data Store Decision node to verify the agent credentials match the registered PingGateway agent profile.

Drag the following nodes from the Components panel into the Page node:

Platform Username node to prompt the user to enter their username.

Platform Password node to prompt the user to enter their password.

Connect the nodes as follows and save the journey:

Register a PingGateway agent in PingOne Advanced Identity Cloud

This procedure registers an agent that acts on behalf of PingGateway.

Log in to the Advanced Identity Cloud admin UI as an administrator.

3.

◦

◦

◦

4.

◦

◦

◦

emergency_home
Many nodes can be configured in the panel on the right side of the page. Unless otherwise stated, do not
configure the nodes, and use only the default values.

Important

5.

◦

◦

6.

1.

PingOne Advanced Identity Cloud PingGateway

456 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-zero-page-login-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-zero-page-login-collector.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-page.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-agent-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-agent-data-store-decision.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-username.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-password.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-platform-password.html

Click verified_user Gateways & Agents > New Gateway/Agent > Identity Gateway > Next, and add an agent profile:

ID: agent-name

Password: agent-password

Redirect URLs: URL for CDSSO

Click Save Profile > Done. The agent profile page is displayed.

Click open_in_new Native Consoles > Access Management and make the following optional changes in the AM admin UI.

Set up a demo user in PingOne Advanced Identity Cloud

This procedure sets up a demo user in the alpha realm.

Log in to the Advanced Identity Cloud admin UI as an administrator.

Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a user with the following values:

Username: demo

First name: demo

Last name: user

2.

◦

◦

◦

emergency_home
Use secure passwords in a production environment. Consider using a password manager to generate secure
passwords.

Important

3.

4.

Change Action

Store the agent password in AM’s
secret service.

Set a Secret Label Identifier, and configure a mapping to the corresponding
secret. If AM finds a matching secret in a secret store, it uses that secret
instead of the agent password configured in Step 2.
The secret label has the format am.application.agents.identifier.secret ,
where identifier is the Secret Label Identifier.
The Secret Label Identifier can contain only characters a-z , A-Z , 0-9 , and
periods (.). It can’t start or end with a period.
Note the following points:

Set a Secret Label Identifier that clearly identifies the agent.
If you update or delete the Secret Label Identifier, AM updates or
deletes the corresponding mapping for the previous identifier provided
no other agent shares the mapping.
When you rotate a secret, update the corresponding mapping.

Direct login to a custom URL instead
of the default AM login page.

Configure Login URL Template for CDSSO.

Apply a different introspection scope. Click Token Introspection and select a scope from the drop-down list.

◦

◦

◦

1.

2.

◦

◦

◦

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 457

https://docs.pingidentity.com/pingam/7.5/security-guide/secret-mapping.html
https://docs.pingidentity.com/pingam/7.5/security-guide/secret-mapping.html

Email Address: demo@example.com

Password: Ch4ng3!t

Recommendations

Use PingGateway with PingOne Advanced Identity Cloud as you would with any other service.

During updates, individual PingOne Advanced Identity Cloud tenant servers go offline temporarily. PingGateway can
receive HTTP 502 Bad Gateway responses for some requests during the update.

In your ClientHandler and ReverseProxyHandler configurations, configure PingGateway to retry operations when this
occurs:

"retries": {
 "enabled": true,
 "condition": "${response.status.code == 502}"
}

Update PingGateway to use the latest version you can to benefit from fixes and improvements.

About PingGateway and PingOne Advanced Identity Cloud

PingOne Advanced Identity Cloud simplifies the consumption of ForgeRock as an Identity Platform. However, many organizations
have business web applications and APIs deployed across multiple clouds, or on-premise.

PingGateway facilitates non-intrusive integration of your web applications and APIs with PingOne Advanced Identity Cloud, for
SSO and API Security. The following image illustrates how PingGateway bridges your business to PingOne Advanced Identity
Cloud:

◦

◦

•

•

PingOne Advanced Identity Cloud PingGateway

458 Copyright © 2025 Ping Identity Corporation

Learn more about PingOne Advanced Identity Cloud from the PingOne Advanced Identity Cloud documentation.

OAuth 2.0

This example sets up OAuth 2.0, using the standard introspection endpoint, where PingOne Advanced Identity Cloud is the
Authorization Server and PingGateway is the resource server.

For more information about PingGateway as an OAuth 2.0 resource server, refer to Validate access tokens through the
introspection endpoint.

Before you start, prepare PingOne Advanced Identity Cloud, PingGateway, and the sample application as described in Example
installation for this guide.

Set up PingOne Advanced Identity Cloud:

Log in to the Advanced Identity Cloud admin UI as an administrator.

Make sure you are managing the alpha realm. If not, click the current realm at the top of the screen, and switch
realm.

Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a user with the following values:

Username: demo

First name: demo

emergency_home
This procedure uses the Resource Owner Password Credentials grant type. According to information in the The OAuth
2.0 Authorization Framework, minimize use of this grant type and utilize other grant types whenever possible.

Important

1.

1.

2.

3.

▪

▪

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 459

https://docs.pingidentity.com/pingoneaic/latest/home.html
https://docs.pingidentity.com/pingoneaic/latest/home.html
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

Go to Applications > + CustomApplication > OIDC - OpenId Connect > Web and add a web application with the
following values:

Name: oauth2-client

Owners: demo user

Client Secret: password

Sign On > Grant Types: Authorization Code , Resource owner Password Credentials

Sign On > Scopes: mail

For more information, refer to PingOne Advanced Identity Cloud’s Application management.

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in PingOne
Advanced Identity Cloud:

ID: ig_agent

Password: password

(Optional) Authenticate a PingGateway agent to PingOne Advanced Identity Cloud.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway, replacing the value for the property amInstanceUrl :

▪

▪

▪

4.

▪

▪

▪

▪

▪

5.

▪

▪

6.

emergency_home
PingGateway agents are automatically authenticated to PingOne Advanced Identity Cloud by a
deprecated authentication module in PingOne Advanced Identity Cloud. This step is currently optional,
but will be required when authentication chains and modules are removed in a future release of
PingOne Advanced Identity Cloud.

Important

2.

1.

2.

3.

PingOne Advanced Identity Cloud PingGateway

460 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/app-management/applications.html
https://docs.pingidentity.com/pingoneaic/latest/app-management/applications.html

$HOME/.openig/config/routes/oauth2rs-idc.json

%appdata%\OpenIG\config\routes\oauth2rs-idc.json

Linux

Windows

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 461

{
 "name": "oauth2rs-idc",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/oauth2rs-idc')}",
 "properties": {
 "amInstanceUrl": "https://myTenant.forgeblocks.com/am"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "&{amInstanceUrl}",
 "realm": "/alpha",
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }

PingOne Advanced Identity Cloud PingGateway

462 Copyright © 2025 Ping Identity Corporation

 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></
body></html>"
 }
 }
 }
 }
}

Notice the following features of the route compared to rs-introspect.json in Validate access tokens through
the introspection endpoint, where a local PingAM instance is the Authorization Server:

The AmService URL points to PingAM in PingOne Advanced Identity Cloud.

The AmService realm points to the realm where you have configured your web application and the
PingGateway agent.

Test the setup:

In a terminal, export an environment variable for the URL of PingAM in PingOne Advanced Identity Cloud:

$ export amInstanceUrl='myAmInstanceUrl'

Use a curl command similar to the following to retrieve an access token:

$ mytoken=$(curl -s \
--user "oauth2-client:password" \
--data 'grant_type=password&username=demo&password=Ch4ng3!t&scope=mail' \
$amInstanceUrl/oauth2/realms/alpha/access_token | jq -r ".access_token")

Validate the access token returned in the previous step:

▪

▪

3.

1.

2.

3.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 463

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/oauth2rs-idc

{
 active = true,
 scope = mail,
 realm = /alpha,
 client_id = oauth2-client,
 ...
}

PingOne Advanced Identity Cloud as an OpenID Connect provider

This example sets up PingOne Advanced Identity Cloud as an OpenID Connect identity provider, and PingGateway as a relying
party.

For more information about PingGateway and OpenID Connect, refer to OpenID Connect.

Before you start, prepare PingOne Advanced Identity Cloud, PingGateway, and the sample application as described in Example
installation for this guide.

Set up PingOne Advanced Identity Cloud:

Log in to the Advanced Identity Cloud admin UI as an administrator.

Make sure you are managing the alpha realm. If not, click the current realm at the top of the screen, and switch
realm.

Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a user with the following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

Go to Applications > + CustomApplication > OIDC - OpenId Connect > Web and add a web application with the
following values:

Name: oidc_client

Owners: demo user

Client Secret: password

Sign On > Sign-in URLs: https://ig.example.com:8443/home/id_token/callback

Sign On > Grant Types: Authorization Code

1.

1.

2.

3.

▪

▪

▪

▪

▪

4.

▪

▪

▪

▪

▪

PingOne Advanced Identity Cloud PingGateway

464 Copyright © 2025 Ping Identity Corporation

Sign On > Scopes: openid , profile , email

Show advanced settings > Authentication > Implied Consent: On

For more information, refer to PingOne Advanced Identity Cloud’s Application management.

Set up PingGateway:

Set an environment variable for the oidc_client password, and then restart PingGateway:

$ export OIDC_SECRET_ID='cGFzc3dvcmQ='

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway, replacing the value for the property amInstanceUrl :

$HOME/.openig/config/routes/oidc-idc.json

▪

▪

2.

1.

1.

Linux

Windows

2.

Linux

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 465

https://docs.pingidentity.com/pingoneaic/latest/app-management/applications.html
https://docs.pingidentity.com/pingoneaic/latest/app-management/applications.html

%appdata%\OpenIG\config\routes\oidc-idc.json

Windows

PingOne Advanced Identity Cloud PingGateway

466 Copyright © 2025 Ping Identity Corporation

{
 "name": "oidc-idc",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/id_token')}",
 "properties": {
 "amInstanceUrl": "https://myTenant.forgeblocks.com/am"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AuthenticatedRegistrationHandler-1",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "ClientSecretBasicAuthenticationFilter-1",
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "oidc_client",
 "clientSecretId": "oidc.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "AuthorizationCodeOAuth2ClientFilter-1",
 "type": "AuthorizationCodeOAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/home/id_token",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": [
 "text/plain"
]
 },
 "entity": "Error in OAuth 2.0 setup."
 }
 },
 "registrations": [
 {
 "name": "oauth2-client",
 "type": "ClientRegistration",
 "config": {
 "clientId": "oidc_client",
 "issuer": {
 "name": "Issuer",

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 467

 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "&{amInstanceUrl}/oauth2/realms/alpha/.well-known/openid-
configuration"
 }
 },
 "scopes": [
 "openid",
 "profile",
 "email"
],
 "authenticatedRegistrationHandler": "AuthenticatedRegistrationHandler-1"
 }
 }
],
 "requireHttps": false,
 "cacheExpiration": "disabled"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Compared to 07-openid.json in AM as a single OpenID Connect provider, where PingAM is running locally, the
ClientRegistration wellKnownEndpoint points to PingOne Advanced Identity Cloud.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/id_token.

The PingOne Advanced Identity Cloud login page is displayed.

Log in to PingOne Advanced Identity Cloud as user demo , password Ch4ng3!t . The home page of the sample
application is displayed.

Cross-domain single sign-on

For organizations relying on AM’s session and policy services with SSO, consider cross-Domain Single Sign-On (CDSSO) as an
alternative to SSO through OpenID Connect.

This example sets up PingOne Advanced Identity Cloud as an SSO authentication server for requests processed by PingGateway.
For more information about about PingGateway and CDSSO, refer to Authenticate with CDSSO.

Before you start, prepare PingOne Advanced Identity Cloud, PingGateway, and the sample application as described in Example
installation for this guide.

Set up PingOne Advanced Identity Cloud:

Log in to the Advanced Identity Cloud admin UI as an administrator.

Make sure you are managing the alpha realm. If not, click the current realm at the top of the screen, and switch
realm.

3.

1.

2.

1.

1.

2.

PingOne Advanced Identity Cloud PingGateway

468 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/id_token
https://ig.example.com:8443/home/id_token

Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a user with the following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in PingOne
Advanced Identity Cloud:

ID: ig_agent

Password: password

Redirect URLs: https://ig.ext.com:8443/home/cdsso/redirect

(Optional) Authenticate a PingGateway agent to PingOne Advanced Identity Cloud.

Add a Validation Service:

In PingOne Advanced Identity Cloud, select open_in_new Native Consoles > Access Management. The AM admin UI is
displayed.

Select Services, and add a validation service with the following Valid goto URL Resources:

https://ig.ext.com:8443/*

https://ig.ext.com:8443/*?*

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following session configuration to admin.json , to ensure that the browser passes the session cookie in
the form-POST to the redirect endpoint (step 6 of Information flow during CDSSO):

3.

▪

▪

▪

▪

▪

4.

▪

▪

▪

5.

emergency_home
PingGateway agents are automatically authenticated to PingOne Advanced Identity Cloud by a
deprecated authentication module in PingOne Advanced Identity Cloud. This step is currently optional,
but will be required when authentication chains and modules are removed in a future release of
PingOne Advanced Identity Cloud.

Important

6.

1.

2.

▪

▪

2.

1.

2.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 469

{
 "connectors": […],

"session": {
 "cookie": {
 "sameSite": "none",
 "secure": true
 }
 },
 "heap": […]
}

This step is required for the following reasons:

When sameSite is strict or lax , the browser does not send the session cookie, which contains the
nonce used in validation. If PingGateway doesn’t find the nonce, it assumes that the authentication failed.

When secure is false , the browser is likely to reject the session cookie.

For more information, refer to admin.json.

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

▪

▪

3.

4.

Linux

Windows

PingOne Advanced Identity Cloud PingGateway

470 Copyright © 2025 Ping Identity Corporation

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway, and correct the value for the property amInstanceUrl :

$HOME/.openig/config/routes/cdsso-idc.json

%appdata%\OpenIG\config\routes\cdsso-idc.json

5.

Linux

Windows

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 471

{
 "name": "cdsso-idc",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/cdsso')}",
 "properties": {
 "amInstanceUrl": "https://myTenant.forgeblocks.com/am"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "&{amInstanceUrl}",
 "realm": "/alpha",
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "sessionCache": {
 "enabled": false
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "CrossDomainSingleSignOnFilter-1",
 "type": "CrossDomainSingleSignOnFilter",
 "config": {
 "redirectEndpoint": "/home/cdsso/redirect",
 "authCookie": {
 "path": "/home",
 "name": "ig-token-cookie"
 },
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route compared to cdsso.json in CDSSO for PingGateway in standalone
mode, where PingAM is running locally:

The AmService URL points to PingAM in PingOne Advanced Identity Cloud.

The AmService realm points to the realm where you configure your PingGateway agent.

▪

▪

PingOne Advanced Identity Cloud PingGateway

472 Copyright © 2025 Ping Identity Corporation

Restart PingGateway.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.ext.com:8443/home/cdsso.

The PingOne Advanced Identity Cloud login page is displayed.

Log in to PingOne Advanced Identity Cloud as user demo , password Ch4ng3!t .

PingAM calls /home/cdsso/redirect , and includes the CDSSO token. The CrossDomainSingleSignOnFilter passes
the request to sample app.

Password replay

Password replay brings SSO to legacy web applications without the need to edit, upgrade, or recode them.

Use PingGateway with an appropriate PingOne Advanced Identity Cloud journey to capture and replay username password
credentials. PingGateway and PingOne Advanced Identity Cloud share a secret key to encrypt and decrypt the password and keep
it safe.

When running AM in a self-hosted deployment, also refer to Password replay from AM.

Request flow

Figure 1. Password replay sequence diagram

PingGateway intercepts the browser’s HTTP GET request.

PingGateway redirects the user to the appropriate PingOne Advanced Identity Cloud journey for authentication.

PingOne Advanced Identity Cloud authenticates the user and stores the encrypted password in a JWT.

6.

3.

1.

2.

Browser

Browser

PingGateway

PingGateway

Advanced Identity Cloud

Advanced Identity Cloud

Sample app

Sample app

1
Send an HTTP GET request to
https://ig.example.com:8443/replay

2
User not authenticated:
Redirect to Advanced Identity Cloud for authentication

3 Authenticate and capture credentials in Advanced Identity Cloud journey

4 Redirect the browser back to the protected application

5 Follow redirect, with JWT

6 Request username from user _id

7 Return username

8
User authenticated:
Get the username and the decrypted password

9 Replace the request with an HTTP POST of the credentials to the login page

10 Validate credentials

11 Return response page showing the user is logged in

12 Return the response page showing the user is logged in

•

•

•

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 473

https://ig.ext.com:8443/home/cdsso
https://ig.ext.com:8443/home/cdsso

PingOne Advanced Identity Cloud redirects the browser back to the protected application with the JWT.

PingGateway intercepts the browser’s HTTP GET request again:

The user is authenticated.

PingGateway gets the password from the JWT and decrypts it.

PingGateway gets the username from PingOne Advanced Identity Cloud based on the user _id .

PingGateway replaces the request with an HTTP POST to the application, taking the credentials from the context.

The sample application validates the credentials from the HTTP POST request.

The sample application responds with the user’s profile page.

PingGateway passes the response from the sample application to the browser.

Tasks

Before you start

Make sure you can access the PingOne Advanced Identity Cloud tenant as an administrator.

Choose the realm to use in the PingOne Advanced Identity Cloud tenant.

The following tasks use the alpha realm.

Prepare hostnames for PingGateway and the sample application.

The following tasks use ig.example.com for PingGateway and app.example.com for the sample application.

Task 1: Run the sample application

Download the sample application.

Open a command-line window and start the sample application:

$ java -jar PingGateway-sample-application-2024.6.0-jar-with-dependencies.jar

The sample application runs in the foreground until you stop it.

Check you can access the sample application by browsing http://app.example.com:8081/login.

The sample application displays a login screen.

Task 2: Install PingGateway

This task installs PingGateway, but doesn’t configure it for password replay yet.

Download and unpack PingGateway.

Configure PingGateway for HTTPS.

Set a top-level session field in admin.json alongside the heap and connections :

•

•

◦

◦

◦

•

•

•

•

•

•

•

1.

2.

3.

1.

2.

3.

PingOne Advanced Identity Cloud PingGateway

474 Copyright © 2025 Ping Identity Corporation

http://app.example.com:8081/login
http://app.example.com:8081/login

"session": {
 "cookie": {
 "sameSite": "none",
 "secure": true
 }
 }

PingOne Advanced Identity Cloud prompts the browser to send a session cookie on successful authentication.

When sameSite is strict or lax , the browser does not send the session cookie with the nonce used in
validation. If PingGateway doesn’t find the nonce, it assumes that the authentication failed.

When secure is false , the browser is likely to reject the session cookie.

Add a base configuration file.

Comment captures in the handler to avoid flooding the PingGateway log, "_capture": "all" .

Configure static routes for use with the sample application.

Check you can access the sample application through PingGateway by browsing https://ig.example.com:8443/static.

You might have used a self-signed certificate for the PingGateway HTTPS configuration. If your browser doesn’t recognize
the PingGateway certificate and flags it as a security risk, choose to continue.

PingGateway displays a basic profile page for the demo user.

PingGateway now has the configuration required as a basis on which to build password replay.

Task 3: Register PingGateway with PingOne Advanced Identity Cloud

If you have not yet registered PingGateway with PingOne Advanced Identity Cloud, follow these steps:

Configure an Agent journey PingGateway uses to authenticate with PingOne Advanced Identity Cloud.

Register a profile for PingGateway.

◦

◦

4.

5.

6.

1.

2.

Field Value Description

ID ig-agent The PingGateway username when connecting
to the AmService in PingOne Advanced
Identity Cloud.

Password password The PingGateway password when connecting
to the AmService in PingOne Advanced
Identity Cloud.
In production tenants, use a strong
password.

Redirect URLs https://ig.example.com:8443/replay/

redirect

The PingGateway endpoint to process the
encrypted JWT from PingOne Advanced
Identity Cloud.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 475

https://ig.example.com:8443/static
https://ig.example.com:8443/static

PingOne Advanced Identity Cloud is now ready for PingGateway to connect. You will share the credentials with PingGateway in
Task 6: Configure PingGateway.

Task 4: Prepare a shared secret

PingGateway and PingOne Advanced Identity Cloud share a secret symmetric key to encrypt and decrypt the password.

Generate a random AES 256-bit key to use as a shared secret.

How you generate the secret key is up to you; for example:

$ openssl rand -base64 32
YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd5eHowMTIzNDU=

Keep the secret safe.

Store the shared secret key as an ESV in PingOne Advanced Identity Cloud.

Log in to the Advanced Identity Cloud admin UI as an administrator and go to Tenant Settings > Global Settings
> Environment Secrets & Variables.

Click Variables > + Add Variable.

In the Add a Variable modal window, enter the following settings:

Click Save to create the variable.

PingOne Advanced Identity Cloud can now access the secret through the esv.ig.shared.secret system property. You
will share the secret with PingGateway in Task 6: Configure PingGateway.

Task 5: Prepare PingOne Advanced Identity Cloud

Update the PingOne Advanced Identity Cloud validation service for PingGateway, create a script to capture the password, and a
journey to use the script.

Log in to the Advanced Identity Cloud admin UI as an administrator and go to open_in_new Native Consoles > Access Management,
select Services, and the following Valid goto URL Resources to the Validation Service:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Go to Scripts > Auth Scripts, click + New Script and create a Journey Decision Node script with the Legacy engine named
Password replay and the following JavaScript content.

1.

2.

1.

2.

3.

Field Value Description

Name esv-ig-shared-secret The ESV name for the secret.

Value YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd5eHowM

TIzNDU=

The base64-encoded random AES 256-bit
key.

4.

1.

◦

◦

2.

PingOne Advanced Identity Cloud PingGateway

476 Copyright © 2025 Ping Identity Corporation

The script adds a JWT encrypted with the shared secret key to the session:

var fr = JavaImporter(
 org.forgerock.openam.auth.node.api.Action,
 org.forgerock.openam.auth.node.api,
 javax.security.auth.callback.TextOutputCallback,
 org.forgerock.json.jose.builders.JwtBuilderFactory,
 org.forgerock.json.jose.jwt.JwtClaimsSet,
 org.forgerock.json.jose.jwe.JweAlgorithm,
 org.forgerock.json.jose.jwe.EncryptionMethod,
 javax.crypto.spec.SecretKeySpec,
 org.forgerock.secrets.SecretBuilder,
 org.forgerock.util.encode.Base64
);

var NodeOutcome = {
 ERROR: 'false',
 SUCCESS: 'true'
};

var config = {
 encryptionKey: systemEnv.getProperty("esv.ig.shared.secret")
};

function getKey () {
 logger.message("encKey: " + config.encryptionKey)
 return new fr.SecretKeySpec(fr.Base64.decode(config.encryptionKey), 'AES');
}

function buildJwt (claims) {
 logger.message('Building response JWT');
 var encryptionKey = getKey();
 var jwtClaims = new fr.JwtClaimsSet;
 jwtClaims.setClaims(claims);
 var jwt = new fr.JwtBuilderFactory()
 .jwe(encryptionKey)
 .headers()
 .alg(fr.JweAlgorithm.DIRECT)
 .enc(fr.EncryptionMethod.A128CBC_HS256)
 .done()
 .claims(jwtClaims)
 .build();
 return jwt;
}

try {
 password=nodeState.get("password").asString()
 var registrationClaims = { password: password };
 passwordJwt = buildJwt(registrationClaims);
 action = fr.Action.goTo(NodeOutcome.SUCCESS).putSessionProperty("sunIdentityUserPassword",
passwordJwt).build();
} catch (e) {
 logger.error('ERROR ' + e);
 action = fr.Action.send(new fr.TextOutputCallback(fr.TextOutputCallback.ERROR, e.toString())).build();
}

You can download the script as password-replay.js.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 477

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/password-replay.js
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/password-replay.js

Go to Journeys, click + New Journey, and create a journey named Password replay whose Identity Object is managed/
alpha_user .

Configure and save the journey with the nodes shown in this screenshot:

The Page node presents a page with input fields to prompt for the username and password.

The Platform Username node collects and injects the userName into the shared node state.

The Platform Password node collects and injects the password into the shared node state.

The Data Store Decision node uses the username and password to determine whether authentication is successful.

The Scripted Decision node references your script and has the same outcomes: true and false .

The Increment Login Count node updates the login count on successful authentication.

In your browser’s privacy or incognito mode, go to the new journey and log in with the credentials of a known user in the
alpha realm.

PingOne Advanced Identity Cloud authenticates you and displays the user profile page.

You can now configure PingGateway to use the journey to capture the password.

Task 6: Configure PingGateway

The password replay configuration includes the PingGateway password to connect to PingOne Advanced Identity Cloud, the
shared secret, and a route.

Set an environment variable locally on the computer running PingGateway to access the agent password:

The base64-encoded PingGateway agent "password":
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

PingGateway retrieves the password with a SystemAndEnvSecretStore, which requires it to be base64-encoded.

The password must match the agent profile password you set in PingOne Advanced Identity Cloud. PingGateway uses the
password to connect to PingOne Advanced Identity Cloud.

Set an environment variable locally on the computer running PingGateway to access the shared secret key:

3.

4.

◦

▪

▪

◦

◦

◦

5.

1.

2.

PingOne Advanced Identity Cloud PingGateway

478 Copyright © 2025 Ping Identity Corporation

The base64-encoded shared secret key:
$ export AES_KEY='YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd5eHowMTIzNDU='

PingGateway retrieves the shared secret with a SystemAndEnvSecretStore, which requires it to be base64-encoded.

The shared secret key must match the secret key you stored in the PingOne Advanced Identity Cloud ESV. PingOne
Advanced Identity Cloud uses the secret key to encrypt the password to replay. PingGateway uses the secret key to
decrypt the password to replay.

Add a route for password replay.

$HOME/.openig/config/routes/04-replay-aic.json

%appdata%\OpenIG\config\routes\04-replay-aic.json

3.

Linux

Windows

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 479

{
 "name": "04-replay",
 "condition": "${find(request.uri.path, '^/replay')}",
 "properties": {
 "amInstanceUrl": "https://myTenant.forgeblocks.com/am/"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore",
 "config": {
 "mappings": [
 {
 "secretId": "aes.key",
 "format": {
 "type": "SecretKeyPropertyFormat",
 "config": {
 "format": "BASE64",
 "algorithm": "AES"
 }
 }
 }
]
 }
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "&{amInstanceUrl}",
 "realm": "/alpha",
 "agent": {
 "username": "ig-agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1"
 },
 "sessionCache": {
 "enabled": false
 }
 },
 {
 "name": "CapturedUserPasswordFilter-1",
 "type": "CapturedUserPasswordFilter",
 "config": {
 "ssoToken": "${contexts.ssoToken.value}",
 "keySecretId": "aes.key",
 "keyType": "AES",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "amService": "AmService-1"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "CrossDomainSingleSignOnFilter-1",
 "type": "CrossDomainSingleSignOnFilter",

PingOne Advanced Identity Cloud PingGateway

480 Copyright © 2025 Ping Identity Corporation

 "config": {
 "redirectEndpoint": "/replay/redirect",
 "authCookie": {
 "path": "/replay",
 "name": "ig-token-cookie"
 },
 "amService": "AmService-1",
 "authenticationService": "Password replay"
 }
 },
 {
 "name": "UserProfileFilter-1",
 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.ssoToken.info.uid}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {
 "amService": "AmService-1",
 "profileAttributes": [
 "username"
]
 }
 }
 }
 },
 {
 "name": "PasswordReplayFilter-1",
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${true}",
 "credentials": "CapturedUserPasswordFilter-1",
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${contexts.userProfile.username}"
],
 "password": [
 "${contexts.capturedPassword.value}"
]
 }
 }
 },
 "capture": [
 "all"
]
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

You can download the route as 04-replay.json.

The route:

Matches requests whose path starts with /replay .◦

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 481

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/04-replay.json
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/04-replay.json

Sets an amInstanceUrl property to the access management service in PingOne Advanced Identity Cloud.

Update the URL to target your tenant.

Loads the aes.key secret key from the local AES_KEY environment variable.

Connects to PingOne Advanced Identity Cloud as ig-agent with the agent.secret.id password from the local
AGENT_SECRET_ID environment variable.

Extracts the captured password from the SSO token context and decrypts it with the aes.key secret key.

Uses a CrossDomainSingleSignOnFilter to redirect to the PingOne Advanced Identity Cloud Password replay
journey for authentication, getting the authentication information from the ig-token-cookie .

Queries the access management service in PingOne Advanced Identity Cloud to retrieve the username for logging
in.

You can retrieve other profile attributes with the UserProfileFilter, such as the email address or first and last
names. The sample application expects the username in this example, so the route gets the username.

Logs in to the sample application with the username and password.

Returns the result to the browser.

In production, remove "capture": ["all"] from the PasswordReplayFilter to avoid recording credentials in the logs.

Restart PingGateway to read the secrets from the environment and load the new route.

In the PingGateway output, make sure the route loaded successfully with no errors or warnings: @system - Loaded the
route with id '04-replay-aic' registered with the name '04-replay-aic' .

Task 7: Create a test user in PingOne Advanced Identity Cloud

The sample application validates the credentials for password replay. It must recognize the username and password you use.

The sample application has built-in username-password combinations. The username and password credentials shown in the
following steps are one of the built-in pairs.

In your browser’s privacy or incognito mode, go to the default login journey for the realm you’re using.

For example, https://myTenant.forgeblocks.com/am/XUI/?realm=/alpha#/ .

Click the Create an account link and enter the following settings in the Sign Up page:

◦

◦

◦

◦

◦

◦

◦

◦

4.

1.

2.

Field Value

Username wolkig

First name Wilhelm

Last name Wolkig

Email Address wolkig@example.com

Password Geh3imnis!

PingOne Advanced Identity Cloud PingGateway

482 Copyright © 2025 Ping Identity Corporation

Click Next to complete account creation and view the user profile.

Sign out.

Validation

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/replay/.

PingGateway redirects to the PingOne Advanced Identity Cloud journey.

Log in as user wolkig with password Geh3imnis! .

PingGateway successfully replays the credentials against the sample application. The sample application displays its user
profile page:

Review the PingGateway output.

On success, the output displays the credentials and the profile page:

Field Value

Select a security question What’s your favorite color?

Answer Red

3.

4.

1.

2.

3.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 483

https://ig.example.com:8443/replay/
https://ig.example.com:8443/replay/

...INFO o.f.o.d.c.C.c.PasswordReplayFilter-1 @04-replay-aic -

[CONTINUED]--- (filtered-request) exchangeId:<id> - transactionId:<id> --->

[CONTINUED]POST http://app.example.com:8081/login HTTP/1.1
[CONTINUED]Content-Length: 37
[CONTINUED]Content-Type: application/x-www-form-urlencoded

[CONTINUED]password=Geh3imnis%21&username=wolkig

...INFO o.f.o.d.c.C.c.PasswordReplayFilter-1 @04-replay-aic -

[CONTINUED]<--- (response) exchangeId:<id> - transactionId:<id> ---

[CONTINUED]HTTP/1.1 200 OK
...

[CONTINUED]<!DOCTYPE html>
...

You have successfully demonstrated password replay with PingGateway and PingOne Advanced Identity Cloud.

If password replay fails, consider the outcome of the HTTP POST from PingGateway to the sample application:

HTTP 401 Unauthorized

PingGateway is not replaying the credentials.

Review the PingGateway output to determine whether the username or password is missing when PingGateway replays
the credentials.

If the password is missing, make sure PingGateway and PingOne Advanced Identity Cloud share the same AES secret key.

HTTP 403 Forbidden

PingGateway is not replaying the right credentials.

Make sure you’re using a username-password combination known to the sample application.

Policy enforcement

The following procedure gives an example of how to request and enforce policy decisions from PingOne Advanced Identity Cloud.

Enforce a simple policy

Before you start, set up and test the example in Cross-domain single sign-on.

Set up PingOne Advanced Identity Cloud:

In the Advanced Identity Cloud admin UI, select open_in_new Native Consoles > Access Management. The AM admin UI is
displayed.

1.

1.

PingOne Advanced Identity Cloud PingGateway

484 Copyright © 2025 Ping Identity Corporation

Select Authorization > Policy Sets > New Policy Set, and add a policy set with the following values:

Id : PEP-CDSSO

Resource Types : URL

In the new policy set, add a policy with the following values:

Name : CDSSO

Resource Type : URL

Resource pattern : *://*:*/*

Resource value : http://app.example.com:8081/home/cdsso

This policy protects the home page of the sample application.

On the Actions tab, add an action to allow HTTP GET .

On the Subjects tab, remove any default subject conditions, add a subject condition for all Authenticated Users .

Set up PingGateway:

Replace cdsso-idc.json with the following route, and correct the value for the property amInstanceUrl:

$HOME/.openig/config/routes/pep-cdsso-idc.json

%appdata%\OpenIG\config\routes\pep-cdsso-idc.json

2.

▪

▪

3.

▪

▪

▪

▪

4.

5.

2.

1.

Linux

Windows

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 485

{
 "name": "pep-cdsso-idc",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/cdsso')}",
 "properties": {
 "amInstanceUrl": "https://myTenant.forgeblocks.com/am"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "&{amInstanceUrl}",
 "realm": "/alpha",
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "sessionCache": {
 "enabled": false
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "CrossDomainSingleSignOnFilter-1",
 "type": "CrossDomainSingleSignOnFilter",
 "config": {
 "redirectEndpoint": "/home/cdsso/redirect",
 "authCookie": {
 "path": "/home",
 "name": "ig-token-cookie"
 },
 "amService": "AmService-1"
 }
 },
 {
 "name": "PolicyEnforcementFilter-1",
 "type": "PolicyEnforcementFilter",
 "config": {
 "application": "PEP-CDSSO",
 "ssoTokenSubject": "${contexts.cdsso.token}",
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

PingOne Advanced Identity Cloud PingGateway

486 Copyright © 2025 Ping Identity Corporation

Note the following feature of the route compared to cdsso-idc.json :

The CrossDomainSingleSignOnFilter is followed by a PolicyEnforcementFilter to enforce the policy PEP-
CDSSO .

Test the setup:

Go to https://ig.ext.com:8443/home/cdsso.

If you have warnings that the site is not secure respond to the warnings to access the site.

PingGateway redirects you to PingOne Advanced Identity Cloud for authentication.

Log in to PingOne Advanced Identity Cloud as user demo , password Ch4ng3!t .

PingOne Advanced Identity Cloud redirects you back to the request URL, and PingGateway requests a policy
decision. PingOne Advanced Identity Cloud returns a policy decision that grants access to the sample application.

Step up authorization for a transaction

Before you start, set up and test the example in Enforce a simple policy.

In the Advanced Identity Cloud admin UI, select code Scripts > Auth Scripts > New Script > Journey Decision Node > Next,
and add a default Journey Decision Node Script script called TxTestPassword :

/*
 - Data made available by nodes that have already executed are available in the sharedState variable.
 - The script should set outcome to either "true" or "false".
 */

var givenPassword = nodeState.get("password").asString()

if (givenPassword.equals("7890")) {
 outcome = "true"
} else {
 outcome = "false"
}

Configure a journey:

Click account_tree Journeys and add a journey with the following configuration:

Name: Tx01_Tree

Identity Object: Alpha realm users

The journey canvas is displayed.

In Nodes > Basic Authentication, drag a Password Collector node onto the canvas.

In Nodes > Utilities, drag a Scripted decision node onto the canvas.

Configure the scripted decision node as follows:

Script: select TxTestPassword

▪

3.

1.

2.

1.

2.

1.

▪

▪

2.

3.

4.

▪

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 487

https://ig.ext.com:8443/home/cdsso
https://ig.ext.com:8443/home/cdsso

Outcomes: enter true and false

Connect the nodes as shown:

For information about configuring trees, refer to PingOne Advanced Identity Cloud Docs

Edit the authorization policy:

In the Advanced Identity Cloud admin UI, select open_in_new Native Consoles > Access Management. The AM admin UI is
displayed.

Select Authorization > Policy Sets > PEP-CDSSO, and add the following environment condition to the CDSSO
policy:

All of

Type: Transaction

Script name: Authenticate to tree

Strategy Specifier: Tx01_Tree

Test the setup:

In a browser, go to https://ig.ext.com:8443/home/cdsso.

If you have not previously authenticated to PingOne Advanced Identity Cloud, the CrossDomainSingleSignOnFilter
redirects the request to PingOne Advanced Identity Cloud for authentication.

Log in to PingOne Advanced Identity Cloud as user demo , password Ch4ng3!t .

Enter the password 7890 required by the script TxTestPassword .

▪

5.

3.

1.

2.

▪

▪

▪

▪

4.

1.

2.

3.

PingOne Advanced Identity Cloud PingGateway

488 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/home.html
https://docs.pingidentity.com/pingoneaic/latest/home.html
https://ig.ext.com:8443/home/cdsso
https://ig.ext.com:8443/home/cdsso

PingOne Advanced Identity Cloud redirects you back to the request URL, and PingGateway requests a policy
decision. PingOne Advanced Identity Cloud returns a policy decision based on the authentication journey.

PingOne Protect integration

Use PingOne Protect risk evaluations with web applications protected by PingGateway. PingGateway routes requests based on
the level of risk PingOne Protect associates with them.

Risk management

PingOne Protect monitors end-user requests and generates a risk score of low, medium, or high based on the user’s activity and
device context. You configure and fine-tune risk policies and train risk models prior to using PingGateway with PingOne Protect.
Learn more in Threat Protection using PingOne Protect.

You configure PingGateway routes to react to risk scores from PingOne Protect dynamically. For example, if the risk score is
medium, PingGateway can direct the user to complete additional verification. If the risk score is high, PingGateway can deny
access to the resource instead.

The following sequence diagram shows the PingGateway configuration objects involved in a risk management flow:

The PingOneProtectEvaluationFilter calls PingOne Protect.

It populates the PingOneProtectEvaluationContext based on the response.

The PingOneProtectThreatLevelRoutingHandler dispatches the request based on its risk level.

After prompting the user to complete additional actions following a risk evaluation, the PingOneProtectFeedbackFilter
records information about the outcome and can override the risk level in the session context.

emergency_home
This capability is available in Technology preview. It isn’t yet supported, may be functionally incomplete, and is
subject to change without notice.

Important

•

•

•

•

info
At present, PingGateway doesn’t send the result to PingOne Protect.

Note

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 489

https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pingone/threat_protection_using_pingone_protect/p1_protect_overview.html
https://docs.pingidentity.com/pingone/threat_protection_using_pingone_protect/p1_protect_overview.html

The initial request enters a Chain configured for risk evaluation with PingOne Protect.

The PingOneProtectEvaluationFilter includes data about the request in an API call to PingOne Protect.

PingOne Protect provides a risk evaluation response.

The PingOneProtectEvaluationFilter populates the PingOneProtectEvaluationContext with the risk level based on the
evaluation response and passes control to the PingOneProtectThreatLevelRoutingHandler.

-10. The PingOneProtectThreatLevelRoutingHandler dispatches the request based on the risk level. The downstream
handler returns a response to the initial request that is appropriate for the risk level. The downstream handlers can
prompt additional actions to verify the user’s identity.

Although not shown in the sequence diagram, when a MEDIUM risk level leads to additional authentication steps, a
PingOneProtectFeedbackFilter included in the process records the outcome.

PingGateway runs at the outer edge of your systems, the place where all inbound traffic first arrives and all outbound traffic
leaves, just inside the network infrastructure.

PingGateway is well-placed to capture signals about the traffic and its risk profile.

Example: protect against session degradation

Session degradation arises when a valid user session gets used in unexpected ways, increasing the risk the session has been
hijacked or otherwise compromised. Session degradation is why we can’t let users stay signed in forever unless we can
authenticate them again.

Together, PingGateway and PingOne Protect help you automate fine-grained risk evaluation, avoiding the distraction of additional
authentication steps unless they’re required for a risky request. Users stay signed in with their current session, which they
experience as a keep me signed in feature. You nevertheless protect their assets from hijacking without needing constantly to
verify their identity.

This example demonstrates risk management where the principal already has a valid session. The example does not demonstrate
how to configure PingOne Protect.

When PingOne Protect returns a risk evaluation, PingGateway responds based on the risk level. This example demonstrates the
following responses:

Chain

Browser

Browser

PingOneProtectEvaluationFilter

PingOneProtectEvaluationFilter

PingOneProtectThreatLevelRoutingHandler

PingOneProtectThreatLevelRoutingHandler

Low-risk handler

Low-risk handler

Medium-risk handler

Medium-risk handler

High-risk handler

High-risk handler

PingOne Protect

PingOne Protect

1 Initial request

2 Risk evaluation request

3 Risk evaluation response with risk level

4 Populate PingOneProtectEvaluationContext with risk level

alt ["Risk level: HIGH"]

5 Dispatch high-risk request

6 Deny access and take additional action

["Risk level: MEDIUM"]

7 Dispatch medium-risk request

8 Initiate additional authentication process

["Risk level: LOW"]

9 Dispatch low-risk request

10 Response

1.

2.

3.

4.

5.

PingOne Advanced Identity Cloud PingGateway

490 Copyright © 2025 Ping Identity Corporation

High risk

Deny access to the requested resource.

Although not shown in this brief example, you could route the request to a honeypot.

Medium risk

Prompt the user to re-authenticate to verify their identity.

The user can perform step up or transactional authentication at this point.

Low risk

Let the request pass through unchanged.

Before you start

Configure PingOne Protect. Learn more in Threat Protection using PingOne Protect.

Implement CDSSO with PingOne Advanced Identity Cloud or CDSSO for self-managed AM. This example opts for CDSSO
with PingOne Advanced Identity Cloud, so adapt the configuration as necessary when using self-managed AM.

For additional protection with medium-risk requests, implement Step up authorization for a transaction.

Verify you can successfully authenticate with CDSSO to the sample application.

Configure PingGateway

What follows extends the CDSSO route to protect against session degradation:

Sign on to the PingOne environment with PingOne Protect as an administrator and add an application for PingGateway.

Use the following hints regarding non-default configuration settings:

In the PingOne environment, find and record the values of the following settings:

•

•

•

•

1.

Setting Value

Application Name PingGateway

Application Type Worker

Application profile > Roles Environment Admin
Identity Data Admin

2.

Property Description

Environment UUID This is <env-uuid> in other property examples.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 491

https://docs.pingidentity.com/pingone/threat_protection_using_pingone_protect/p1_protect_overview.html
https://docs.pingidentity.com/pingone/threat_protection_using_pingone_protect/p1_protect_overview.html

Set an environment variable for the PingGateway client secret.

PingGateway uses a SystemAndEnvSecretStore to retrieve the client secret, so you must base64-encode the value you
found in the PingOne application profile:

$ export CLIENT_SECRET_ID='<base-64-encoded-client-secret>'

Restart PingGateway to load the environment variable.

Update the CDSSO route to add risk management:

Property Description

Evaluation endpoint For risk evaluation requests.
Example: https://api.pingone.eu/v1/environments/
<env-uuid>/riskEvaluations

PingGateway client ID PingGateway credentials to access PingOne as the
application you registered.

PingGateway client secret

Policy set UUID The PingOne Protect policy for risk evaluation requests.

Token endpoint For PingGateway to get an access token.
Example: https://auth.pingone.eu/<env-uuid>/as/
token

3.

4.

5.

PingOne Advanced Identity Cloud PingGateway

492 Copyright © 2025 Ping Identity Corporation

{
 "name": "risk",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/cdsso')}",
 "properties": {
 "amInstanceUrl": "https://myTenant.forgeblocks.com/am",
 "clientId": "my-application-client-id",
 "evaluationEndpoint": "https://api.pingone.eu/v1/environments/my-environment-id/riskEvaluations",
 "policySetId": "my-policy-set-id",
 "tokenEndpoint": "https://auth.pingone.eu/my-environment-id/as/token"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "&{amInstanceUrl}",
 "realm": "/alpha",
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "sessionCache": {
 "enabled": false
 }
 }
 },
 {
 "name": "ClientCredentialsOAuth2ClientFilter-1",
 "type": "ClientCredentialsOAuth2ClientFilter",
 "config": {
 "tokenEndpoint": "&{tokenEndpoint}",
 "scopes": [
 "openid",
 "profile"
],
 "endpointHandler": {
 "name": "AccessTokenHandler",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "&{clientId}",
 "clientSecretId": "client.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 },

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 493

 {
 "name": "EvaluationEndpointHandler",
 "type": "Chain",
 "config": {
 "filters": [
 "ClientCredentialsOAuth2ClientFilter-1"
],
 "handler": "ForgeRockClientHandler"
 }
 },
 {
 "name": "FailureHandler",
 "type": "StaticResponseHandler",
 "config": {
 "status": 403,
 "headers": {
 "Content-Type": [
 "text/plain; charset=UTF-8"
]
 },
 "entity": "HTTP 403 Forbidden"
 }
 },
 {
 "name": "StepUpHandler",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "PolicyEnforcementFilter-1",
 "type": "PolicyEnforcementFilter",
 "config": {
 "application": "PEP-CDSSO",
 "ssoTokenSubject": "${contexts.cdsso.token}",
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "CrossDomainSingleSignOnFilter-1",
 "type": "CrossDomainSingleSignOnFilter",
 "config": {
 "redirectEndpoint": "/home/cdsso/redirect",
 "authCookie": {
 "path": "/home",
 "name": "ig-token-cookie"
 },
 "amService": "AmService-1"
 }
 },
 {
 "name": "PingOneProtectEvaluationFilter-1",
 "type": "PingOneProtectEvaluationFilter",
 "config": {

PingOne Advanced Identity Cloud PingGateway

494 Copyright © 2025 Ping Identity Corporation

 "evaluationEndpoint": "&{evaluationEndpoint}",
 "endpointHandler": "EvaluationEndpointHandler",
 "policySet": "&{policySetId}",
 "userId": "${contexts.cdsso.claimsSet.getClaim('subname')}",
 "nonEvaluatedUrls" : "${find(request.uri.path, '/home/cdsso/redirect')}"
 }
 }
],
 "handler": {
 "name": "PingOneProtectThreatLevelRoutingHandler-1",
 "type": "PingOneProtectThreatLevelRoutingHandler",
 "config": {
 "levels": [
 {
 "level": "LOW",
 "handler": "ReverseProxyHandler"
 },
 {
 "level": "MEDIUM",
 "handler": "StepUpHandler"
 },
 {
 "level": "HIGH",
 "handler": "FailureHandler"
 }
],
 "fallbackHandler": "FailureHandler"
 }
 }
 }
 }
}

Notice the following features of the updated route:

The route properties use the settings you collected from the PingOne environment.

Replace the placeholders in the route properties with the settings you collected.

The heap has an evaluation endpoint handler to get an access token for risk evaluation requests.

The PingOneProtectEvaluationFilter uses the evaluation endpoint handler to make the risk evaluation request and
populate the PingOneProtectEvaluationContext (implicit in the configuration).

The PingOneProtectThreatLevelRoutingHandler uses the context to route the request based on the risk level:

Low-risk requests pass through unchanged.

Medium-risk requests use step up authorization for the request.

High-risk requests and requests where the PingOneProtectEvaluationFilter failed to update the context get
denied.

Verify the route

In your browser’s privacy or incognito mode, go to https://ig.ext.com:8443/home/cdsso.

PingOne Advanced Identity Cloud displays the login page.

◦

◦

◦

◦

▪

▪

▪

1.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 495

https://ig.ext.com:8443/home/cdsso
https://ig.ext.com:8443/home/cdsso

Log in to PingOne Advanced Identity Cloud as user demo , password Ch4ng3!t .

After authentication, PingGateway gets an access token and uses it to make a risk evaluation request. The
PingOneProtectThreatLevelRoutingHandler routes the result:

Low-risk requests go directly to the sample app.

Medium-risk requests prompt the user for the authorization passcode 7890 .

PingGateway denies access to other requests.

You’ve successfully demonstrated risk management to prevent session degradation. Adapt the route to the specifics of your use
case.

Pass runtime data downstream in a JWT

This example sets up PingOne Advanced Identity Cloud as an identity provider, to pass identity or other runtime information
downstream, in a JWT signed with a PEM.

For more information about using runtime data, refer to Passing data along the chain. To help with development, the sample
application includes a /jwt endpoint to display the JWT, verify its signature, and decrypt it.

Before you start, prepare PingOne Advanced Identity Cloud, PingGateway, and the sample application as described in Example
installation for this guide.

Set up secrets:

Locate a directory for secrets, and go to it:

$ cd /path/to/secrets

Create the following secret key and certificate pair as PEM files:

$ openssl req \
-newkey rsa:2048 \
-new \
-nodes \
-x509 \
-days 3650 \
-subj "/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout ig.example.com-key.pem \
-out ig.example.com-certificate.pem

Two PEM files are created, one for the secret key, and another for the associated certificate.

Map the key and certificate to the same secret ID in PingGateway:

$ cat ig.example.com-key.pem ig.example.com-certificate.pem > key.manager.secret.id.pem

2.

◦

◦

◦

1.

1.

2.

3.

PingOne Advanced Identity Cloud PingGateway

496 Copyright © 2025 Ping Identity Corporation

Generate PEM files to sign and verify the JWT:

$ openssl req \
-newkey rsa:2048 \
-new \
-nodes \
-x509 \
-days 3650 \
-subj "/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout id.key.for.signing.jwt.pem \
-out id.key.for.verifying.jwt.pem

Make sure the following files have been added to your secrets directory:

id.key.for.signing.jwt.pem

id.key.for.verifying.jwt.pem

key.manager.secret.id.pem

ig.example.com-certificate.pem

ig.example.com-key.pem

Set up PingOne Advanced Identity Cloud:

Log in to the Advanced Identity Cloud admin UI as an administrator.

Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a user with the following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in PingOne
Advanced Identity Cloud:

ID: ig_agent_jwt

Password: password

Redirect URLs: https://ig.example.com:8443/jwt/redirect

(Optional) Authenticate a PingGateway agent to PingOne Advanced Identity Cloud.

4.

5.

▪

▪

▪

▪

▪

2.

1.

2.

▪

▪

▪

▪

▪

3.

▪

▪

▪

4.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 497

Add a Validation Service:

In PingOne Advanced Identity Cloud, select open_in_new Native Consoles > Access Management. The AM admin UI is
displayed.

Select Services, and add a validation service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Set up PingGateway:

Set up TLS by adding the following file to PingGateway, replacing the value for the property secretsDir :

$HOME/.openig/config/admin.json

%appdata%\OpenIG\config\admin.json

emergency_home
PingGateway agents are automatically authenticated to PingOne Advanced Identity Cloud by a
deprecated authentication module in PingOne Advanced Identity Cloud. This step is currently optional,
but will be required when authentication chains and modules are removed in a future release of
PingOne Advanced Identity Cloud.

Important

5.

1.

2.

▪

▪

3.

1.

Linux

Windows

PingOne Advanced Identity Cloud PingGateway

498 Copyright © 2025 Ping Identity Corporation

{
 "mode": "DEVELOPMENT",
 "properties": {
 "secretsDir": "/path/to/secrets"
 },
 "connectors": [
 {
 "port": 8080
 },
 {
 "port": 8443,
 "tls": "ServerTlsOptions-1"
 }
],
 "session": {
 "cookie": {
 "sameSite": "none",
 "secure": true
 }
 },
 "heap": [
 {
 "name": "ServerTlsOptions-1",
 "type": "ServerTlsOptions",
 "config": {
 "keyManager": {
 "type": "SecretsKeyManager",
 "config": {
 "signingSecretId": "key.manager.secret.id",
 "secretsProvider": "ServerIdentityStore"
 }
 }
 }
 },
 {
 "name": "ServerIdentityStore",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "&{secretsDir}",
 "suffix": ".pem",
 "mappings": [{
 "secretId": "key.manager.secret.id",
 "format": {
 "type": "PemPropertyFormat"
 }
 }]
 }
 }
]
}

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

2.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 499

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following route to PingGateway to serve the sample application .css and other static resources:

$HOME/.openig/config/routes/00-static-resources.json

%appdata%\OpenIG\config\routes\00-static-resources.json

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$')
or matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Add the following route to PingGateway, replacing the value for the properties secretsDir and amInstanceUrl :

$HOME/.openig/config/routes/jwt-idc.json

%appdata%\OpenIG\config\routes\jwt-idc.json

3.

Linux

Windows

4.

Linux

Windows

PingOne Advanced Identity Cloud PingGateway

500 Copyright © 2025 Ping Identity Corporation

{
 "name": "jwt-idc",
 "condition": "${find(request.uri.path, '/jwt')}",
 "baseURI": "http://app.example.com:8081",
 "properties": {
 "secretsDir": "/path/to/secrets",
 "amInstanceUrl": "https://myTenant.forgeblocks.com/am"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "&{amInstanceUrl}",
 "realm": "/alpha",
 "agent": {
 "username": "ig_agent_jwt",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "sessionCache": {
 "enabled": false
 }
 }
 },
 {
 "name": "pemPropertyFormat",
 "type": "PemPropertyFormat"
 },
 {
 "name": "FileSystemSecretStore-1",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "PLAIN",
 "directory": "&{secretsDir}",
 "suffix": ".pem",
 "mappings": [{
 "secretId": "id.key.for.signing.jwt",
 "format": "pemPropertyFormat"
 }]
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "CrossDomainSingleSignOnFilter-1",
 "type": "CrossDomainSingleSignOnFilter",
 "config": {
 "redirectEndpoint": "/jwt/redirect",
 "authCookie": {
 "path": "/jwt",
 "name": "ig-token-cookie"
 },

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 501

 "amService": "AmService-1"
 }
 },
 {
 "name": "UserProfileFilter",
 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.ssoToken.info.uid}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {
 "amService": "AmService-1"
 }
 }
 }
 },
 {
 "name": "JwtBuilderFilter-1",
 "type": "JwtBuilderFilter",
 "config": {
 "template": {
 "name": "${contexts.userProfile.commonName}",
 "email": "${contexts.userProfile.rawInfo.mail[0]}"
 },
 "secretsProvider": "FileSystemSecretStore-1",
 "signature": {
 "secretId": "id.key.for.signing.jwt",
 "algorithm": "RS512"
 }
 }
 },
 {
 "name": "HeaderFilter-1",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-openig-user": ["${contexts.jwtBuilder.value}"]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Test the setup:

Go to https://ig.example.com:8443/jwt.

If you receive warnings that the site is not secure, respond to the warnings to access the site. The PingOne
Advanced Identity Cloud login page is displayed.

Log in to PingOne Advanced Identity Cloud as user demo , password Ch4ng3!t . The sample app displays the signed
JWT along with its header and payload.

In USE PEM FILE , enter the absolute path to id.key.for.verifying.jwt.pem to verify the JWT signature.

4.

1.

2.

3.

PingOne Advanced Identity Cloud PingGateway

502 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/jwt
https://ig.example.com:8443/jwt

Secure the OAuth 2.0 access token endpoint

This section uses a GrantSwapJwtAssertionOAuth2ClientFilter to transform requests for OAuth 2.0 access tokens into secure JWT
bearer grant type requests. It propagates the transformed requests to PingOne Advanced Identity Cloud to obtain an access
token.

Use GrantSwapJwtAssertionOAuth2ClientFilter to increase the security of less-secure grant-type requests, such as Client
credentials grant requests or Resource owner password credentials grant requests.

The following figure shows the flow of information for a grant swap:

Before you start, prepare PingOne Advanced Identity Cloud, PingGateway, and the sample application as described in Example
installation for this guide.

Set up PingOne Advanced Identity Cloud:

Log in to the Advanced Identity Cloud admin UI as an administrator.

error
The GrantSwapJwtAssertionOAuth2ClientFilter obtains access tokens from the /oauth2/access_token endpoint. To
prevent unwanted or malicious access to the endpoint, make sure only a well-defined set of clients can use this filter.
Consider the following options to secure access to the GrantSwapJwtAssertionOAuth2ClientFilter:

Deploy PingGateway on a trusted network.
Use mutual TLS (mTLS) and X.509 certificates for authentication between clients and PingGateway. For more
information, refer to OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens.
Configure an AllowOnlyFilter in front of the GrantSwapJwtAssertionOAuth2ClientFilter to control access within
a route.
Define restrictive Route conditions to allow access only for expected grant-type requests. For example, define
a route condition that requires a specific client ID, grant-type, or scope.
Configure a ScriptableFilter in front of the GrantSwapJwtAssertionOAuth2ClientFilter to validate requests.

Caution

•
•

•

•

•

PingGateway route Advanced Identity Cloud

Client

Client

Route condition

Route condition

GrantSwapJwtAssertionOAuth2ClientFilter

GrantSwapJwtAssertionOAuth2ClientFilter

Next Filter or Handler

Next Filter or Handler

am/oauth2/access_token endpoint

am/oauth2/access_token endpoint

Client credentials grant-type request

Request satisfies Route condition

Client credentials grant-type request

Transform into JWT bearer grant-type request

Use issuer, audience, and subject to build JWT

Sign JWT

Check mandatory fields

Set JWT expiry

JWT bearer grant-type request with JWT

Access token

Access token

1.

1.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 503

https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-jwt-bearer-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-jwt-bearer-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-jwt-bearer-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-client-cred-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-client-cred-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-client-cred-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-ropc-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-ropc-grant.html
https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://tools.ietf.org/html/draft-ietf-oauth-mtls

Create a service account with the following values, as described in Create a new service account:

Name: myServiceAccount

Scopes: fr:idm:* All Identity Management APIs

The service account ID is displayed and you are prompted to download the private key. The public key is
held in PingOne Advanced Identity Cloud.

For more information, refer to Service accounts.

Make a note of the service account ID and download the private key to your secrets directory.

Rename the key to match the regex format (\.[a-zA-Z0-9])* . For example, rename
myServiceAccount_privateKey.jwk to privateKey.jwk .

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway:

$HOME/.openig/config/routes/grant-swap.json

%appdata%\OpenIG\config\routes\grant-swap.json

2.

▪

▪

3.

4.

2.

1.

2.

Linux

Windows

PingOne Advanced Identity Cloud PingGateway

504 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingoneaic/latest/tenants/service-accounts.html#create_a_new_service_account
https://docs.pingidentity.com/pingoneaic/latest/tenants/service-accounts.html#create_a_new_service_account
https://docs.pingidentity.com/pingoneaic/latest/tenants/service-accounts.html
https://docs.pingidentity.com/pingoneaic/latest/tenants/service-accounts.html

{
 "name" : "grant-swap",
 "properties": {
 "idcInstanceUrl": "https://myTenant.forgeblocks.com",
 "issuer": "service-account-id",
 "secretsDir": "path-to-secrets",
 "privateKeyFilename": "privateKey.jwk"
 },
 "condition" : "#{find(request.uri.path, '^/am/oauth2/access_token') &&
request.entity.form['grant_type'][0] == 'client_credentials'}",
 "baseURI" : "&{idcInstanceUrl}:443/",
 "heap" : [{
 "name": "JwkPropertyFormat-01",
 "type": "JwkPropertyFormat"
 },
 {
 "name": "FileSystemSecretStore-01",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "JwkPropertyFormat-01",
 "directory": "&{secretsDir}",
 "mappings": [{
 "secretId": "&{privateKeyFilename}",
 "format": "JwkPropertyFormat-01"
 }
]
 }
 }
],
 "handler" : {
 "type" : "Chain",
 "capture" : "all",
 "config" : {
 "filters" : [
 {
 "name" : "GrantSwapJwtAssertionOAuth2ClientFilter-01",
 "description": "access /access_token endpoint with jwt-bearer-profile",
 "type" : "GrantSwapJwtAssertionOAuth2ClientFilter",
 "capture" : "all",
 "config" : {
 "clientId" : "service-account",
 "assertion" : {
 "issuer" : "&{issuer}",
 "audience" : "&{idcInstanceUrl}/am/oauth2/access_token",
 "subject" : "&{issuer}",
 "expiryTime": "2 minutes"
 },
 "signature": {
 "secretId": "&{privateKeyFilename}",
 "includeKeyId": false
 },
 "secretsProvider": "FileSystemSecretStore-01",
 "scopes" : {
 "type": "RequestFormResourceAccess"
 }
 }
 }

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 505

],
 "handler" : "ForgeRockClientHandler"
 }
 }
}

In the route, replace the values for the following properties with your values:

idcInstanceUrl : The root URL of your PingOne Advanced Identity Cloud tenant.

issuer : The ID of the service account created in PingOne Advanced Identity Cloud

secretsDir : The directory containing the downloaded private key

privateKeyFilename : The filename of the downloaded private key

Notice the following features of the route:

The condition intercepts only client_credentials grant-type requests on the path /am/oauth2/
access_token . A more secure condition can be set on the client ID.

Requests are rebased to the PingOne Advanced Identity Cloud URL.

A FileSystemSecretStore loads the private-key JWK used to sign the JWT.

The GrantSwapJwtAssertionOAuth2ClientFilter:

Requires the core JWT claims issuer , subject , audience , and expiryTime .

Uses RequestFormResourceAccess to extract scopes from the inbound request for inclusion in the
JWT-assertion grant-type request propagated to AM.

Signs the JWT with the JWK provided by the service account.

The GrantSwapJwtAssertionOAuth2ClientFilter clientId refers to the OAuth 2.0 client ID created by AM.
The value must be service-account .

Add the following route to PingGateway to return a standard OAuth 2.0 error response if the request fails the route
condition:

$HOME/.openig/config/routes/zz-returns-invalid-request.json

%appdata%\OpenIG\config\routes\zz-returns-invalid-request.json

3.

▪

▪

▪

▪

4.

▪

▪

▪

▪

▪

▪

▪

▪

5.

Linux

Windows

PingOne Advanced Identity Cloud PingGateway

506 Copyright © 2025 Ping Identity Corporation

{
 "name" : "zz-returns-invalid-request",
 "handler" : {
 "type" : "StaticResponseHandler",
 "capture" : "all",
 "config" : {
 "status": 400,
 "headers": {"Content-Type": ["application/json; charset=UTF-8"]},
 "entity": "{\"error\": \"Invalid_request\", \"error_description\": \"Invalid request\"}"
 }
 }
}

Test the setup by accessing the route with a curl command similar to this:

$ curl \
 --cacert /path/to/secrets/ig.example.com-certificate.pem \
 --location \
 --request POST 'https://ig.example.com:8443/am/oauth2/access_token' \
 --header 'Content-Type: application/x-www-form-urlencoded' \
 --data-urlencode 'client_id=myServiceAccount' \
 --data-urlencode 'grant_type=client_credentials' \
 --data-urlencode 'scope=fr:idm:*'

{"access_token":"eyJ...","scope":"fr:idm:*","token_type":"Bearer","expires_in":899}

The command makes a client_credentials grant-type request on the path /am/oauth2/access_token , supplying the
client ID and scopes. PingGateway transforms the request into a JWT-assertion grant-type request and propagates it to
PingOne Advanced Identity Cloud.

Because the service account in PingOne Advanced Identity Cloud supports the requested scope, the
GrantSwapJwtAssertionOAuth2ClientFilter returns an access token.

3.

PingGateway PingOne Advanced Identity Cloud

Copyright © 2025 Ping Identity Corporation 507

Studio

This guide gives an overview of how to use Studio to design and develop routes to protect applications.

Start with Studio

PingGateway Studio is a user interface to help you build and deploy your PingGateway configuration. There are two ways to
create routes in Studio:

With the structured editor (deprecated) to build simple routes by using predefined menus and templates. The structured
editor presents valid options and default values as you add filters, decorators, and other objects to your configuration.

With the FreeForm Designer to design complex, multi-branched routes. Drag handlers and filters from a side bar onto the
canvas to begin designing the route. The FreeForm Designer helps you to visualize the chain, and track the path of
requests, responses, and contexts.

After installation, PingGateway is by default in production mode. The /routes endpoint is not exposed or accessible, and Studio
is effectively disabled. To access Studio, switch to development mode. For example, add the following configuration to
admin.json , and restart PingGateway:

{
 "mode": "DEVELOPMENT",
 "connectors": [
 { "port" : 8080 }
]
}

For additional details, refer to Operating modes.

If you provide a custom config.json , include a main router named _router . If a custom config.json is not provided,
PingGateway includes this router by default.

When PingGateway is installed and running in development mode, as described in Quick install, access Studio on http://
ig.example.com:8080/openig/studio. The Routes screen is displayed:

•

•

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 509

http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

During PingGateway upgrade, routes that were previously created in Studio are automatically transferred to the new version of
PingGateway. Where possible, PingGateway replaces deprecated settings with the newer evolved setting. If PingGateway needs
additional information to upgrade the route, the route status becomes Compatibility update required. Select the route, and
provide the requested information.

Upgrade from an earlier version of Studio

From PingGateway 2024.3, Studio manages the migration of deprecated objects for routes created and managed in earlier
versions of Studio.

PingGateway doesn’t manage migration for the following:

Routes in Studio editor mode

Custom filters in routes

Migration for routes containing secrets

PingGateway automatically:

Updates the route to use SecretsProvider and SecretIds

Removes references to the password

You must manually create the required SecretsProvider in config.json and create its referenced secrets.

Migration for routes containing Splunk or ElasticSearch audit event handlers

PingGateway automatically deletes the Splunk or ElasticSearch audit event handlers from the route.

Create and edit routes with Structured Editor (deprecated)

This section describes basic tasks for creating and deploying routes in the structured editor of Studio.

Creating simple routes

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio, and select + Create a route.

Select Structured to use the structured editor.

emergency_home
SecretsProviders can’t be configured in Studio. Documentation examples generated with Studio might refer to
SecretsProviders that must be configured separately in config.json.

Important

•

•

◦

◦

emergency_home
The structured editor of Studio is deprecated. For more information, refer to the Deprecated section of the Release
Notes.

Important

1.

1.

2.

Studio PingGateway

510 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

Enter the URL of the application you want to protect, followed by a path condition to access the route. For example, enter
http://app.example.com:8081/my-basic-route .

The route is created, and menus to add configuration objects to the route are displayed.

On the top-right of the screen, select and Display to review the route.

A route similar to this is displayed, where the path condition is used for the route name:

{
 "name": "my-basic-route",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/my-basic-route')}",
 "handler": "ReverseProxyHandler"
}

Change the basic settings of a route

In Studio, select ROUTES, and then select a route with the icon.

On the top-right of the screen select Route settings.

Using the on-screen hints for guidance, change the name, condition, or other features of the route, and save the changes.

On the top-right of the screen, select and Display to review the route.

Adding configuration to a route

After creating a route in the structured editor, you can add filters, decorators, scripts, and other configuration to the route.

Add other configuration to a route

In Studio, select ROUTES, and then select a route with the icon.

Select one of the configuration options, and follow the on-screen hints to select configuration settings.

For routes to test with the examples in the Gateway guide, refer to Example routes created with Structured Editor
(deprecated).

Add other filters to a route

Use this procedure to add any filter type to the configuration.

In Studio, select ROUTES, and then select a route with the icon.

Select Other filters > + New filter > Other filter.

In Create filter, select a filter type from the list, enter a name, and optionally enter a configuration for the filter.

2.

3.

1.

2.

3.

4.

1.

2.

1.

2.

3.

info
Studio checks that the JSON is valid, but doesn’t check that the configuration of the filter is valid. If the filter
configuration isn’t valid, when you deploy the route it fails to load.

Note

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 511

When you save, the filter is added to the list of other filters but is not added to the configuration.

Enable the filter to add it to the configuration.

If you disable the filter again, it is removed from the route’s chain but the configuration is saved. Simply enable the filter
again to add it back in the chain.

Managing the route chain

The Chain view lists the filters in the order that they appear in the configuration.

Some filters have a natural position in the chain. For example, so that an authenticated user is given the correct permissions, an
authentication filter must come before an authorization filter. Similarly, so that an authorization token is transformed, an
authorization filter always comes before a token transformation filter.

Other filters have a flexible position in the chain. For example, an AssignmentFilter can be used before a request is handled or
after a response is handled.

When the position of a filter is fixed, it is automatically placed in the correct position in the chain; you cannot change the position.
When the position of a filter is flexible, the icon is displayed, and you can drag the filter into a different position in the chain.

Select Chain to view and manage the filters in the chain as follows:

When the icon is displayed, drag a filter up or down the chain.

select to edit a filter.

Select Realm Settings to disable and remove a filter from the chain.

For information about chains, refer to Chain.

Deploy and undeploy routes

Deploy a Route

In Studio, select ROUTES, and then select a route created with the structured editor (with the icon).

On the top-right of the screen, select and Display to review the route.

If the route is okay, select Deploy to push the route to the PingGateway configuration.

If the route deploys successfully, Deployed is displayed, and the Deploy button is greyed out.

Check the $HOME/.openig/config/routes folder in your PingGateway configuration to see that the route is there.

By default, routes are loaded automatically into the PingGateway configuration. You don’t need to stop and restart
PingGateway. For more information, refer to Prevent the reload of routes.

Check the system log to confirm that the route was loaded successfully into the configuration. For information about logs,
refer to Manage logs.

4.

•

•

•

1.

2.

3.

emergency_home
If the route configuration is not valid, or if a service that the route relies on, such as an AM service, is not
available, the route fails to deploy.

Important

4.

5.

Studio PingGateway

512 Copyright © 2025 Ping Identity Corporation

Undeploy a Route

In Studio, select ROUTES and then select a route with the status Deployed.

On the top-right of the screen, select and Undeploy, and then confirm your request.

The route is removed from the PingGateway configuration. On the Studio screen, the route status Deployed is no
longer displayed, and the Deploy option is active again.

Create and edit routes with Freeform Designer

The following sections describe how to create a simple route in the FreeForm Designer of Studio, and then add configuration to
the route. For examples of routes created with the FreeForm Designer that can be tested with the examples in the Gateway guide,
refer to Example routes created with Freeform Designer.

Create a simple route

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Freeform to use the FreeForm Designer.

Select Basic to create a route from a blank template.

Enter a URL for the application you want to protect, followed by a path condition to access the route. For example, enter
http://app.example.com:8081/my-basic-route .

The route is displayed on the Flow tab of the canvas.

On the top-right of the screen, select and Display to review the route.

1.

2.

1.

1.

2.

2.

3.

4.

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 513

{
 "name": "my-basic-route",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/my-basic-route')}",
 "handler": "ReverseProxyHandler",
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler"
 },
 {
 "type": "BaseUriDecorator",
 "name": "baseUri"
 },
 {
 "type": "TimerDecorator",
 "name": "timer",
 "config": {
 "timeUnit": "ms"
 }
 },
 {
 "type": "CaptureDecorator",
 "name": "capture",
 "config": {
 "captureEntity": false,
 "captureContext": false,
 "maxEntityLength": 524288
 }
 }
]
}

Change the basic settings of a route

Using the route created in Create a simple route, on the top-right of the screen select Route settings.

Using the on-screen hints for guidance, change the name, condition, or other features of the route, and save the changes.

On the top-right of the screen, select and Display to review the route.

Add objects to a route heap

Using the route created in Create a simple route, select All Objects > Create Object.

In Node Type, select an object type from the drop down list. For example, create an AmService object, using the following
values:

Name: AmService-1

URI: http://am.example.com:8088/openam/

Agent:

Agent: ig-agent

1.

2.

3.

1.

2.

◦

◦

◦

▪

Studio PingGateway

514 Copyright © 2025 Ping Identity Corporation

Password: password

When you save, the object is added to route heap but is not used in the route.

On the top-right of the screen, select and Display to review the route.

Add configuration to a route

Using the route created in Create a simple route, select the Flow tab, and delete the connector between Start and
ReverseProxyHandler.

Drag a Chain from the side bar onto the canvas, and then drag a SingleSignOnFilter into the chain.

In the menu for the SingleSignOnFilter, enter the name of the AmService object you created in Add objects to a route
heap, AmService-1 . The filter uses the object previously defined in the heap.

Connect Start to Chain-1, and Chain-1 to ReverseProxyHandler.

On the top-right of the screen, select and Display to review the route.

Decorate objects in the route

Using the route created in Create a simple route, select the All Objects tab.

A list of objects in the route is displayed. By default, all available decorators are included in the route heap, but they do not
decorate any objects.

For the ReverseProxyHandler or filter, select , select the Decorations tab, and then enable one or more of the
decorators.

On the top-right of the screen, select and Display to review the route.

Edit and import routes

The following sections describe basic tasks for Edit and import routes in Studio:

Edit routes in editor mode

After creating a route in Studio, you can edit it by using the options offered in Studio, or by switching to editor mode and using
the JSON editor.

Routes created only in the menus of structured editor have the icon . Routes created only in the menus of FreeForm Designer
have the icon . Imported routes and routes edited in editor mode have the icon { }.

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

1.

2.

3.

4.

5.

1.

2.

3.

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 515

In Studio, select ROUTES, and then select a route created with the structured editor (with the icon).

Edit the route in Studio or manually:

To edit in Studio, select options offered in Studio.

To edit manually, select and Editor mode, and use the JSON editor to edit the route.

If the route status is Deployed, it changes to Changes pending.

Deploy the route as described in Deploying and undeploying routes.

Import routes into Studio

When you import a route into Studio, it is imported in editor mode. You can use the JSON editor to manually edit the route, but
can’t use the full Studio interface to add or edit filters.

Routes created only in the menus of structured editor have the icon . Routes created only in the menus of FreeForm Designer
have the icon . Imported routes and routes edited in editor mode have the icon { }.

In Studio, select ROUTES and then Import a route.

Click in the window to import a route, or drag a route from your filesystem.

If the route has a name property, the name is automatically used for the Name and ID fields in Studio.

If necessary, make the following changes, and then select Import:

If the Name and ID fields are empty, enter a unique name and ID for the route.

If the Name and ID fields are outlined in red, the route name or ID already exists in Studio. Change the name and
ID to be unique.

If an error message is displayed, the route is not valid JSON. Fix the route and then try again to import it.

The route is added to the list of routes on the ROUTES page.

Deploy the route as described in Deploying and undeploying routes.

View and search for routes in your configuration

All of the routes that exist in your backend configuration are displayed on the ROUTES page, including imported routes and
routes created outside of Studio.

To search for a route, select ROUTES, and type part of the route name in the search box. Matching routes are displayed as you
enter the search criteria.

emergency_home
When you go into editor mode, you can use the JSON editor to manually edit the route, but can no longer use the full
Studio interface to add to or edit the configuration.

Important

1.

2.

◦

◦

3.

1.

2.

3.

◦

◦

◦

4.

Studio PingGateway

516 Copyright © 2025 Ping Identity Corporation

Restrict access to Studio

When PingGateway is running in development mode, by default the Studio endpoint is open and accessible. To allow only specific
users to access Studio, configure a StudioProtectionFilter with a SingleSignOnFilter or CrossDomainSingleSignOnFilter.

The following example uses a SingleSignOnFilter to require users to authenticate with AM before they can access Studio, and
protects the request from Cross Site Request Forgery (CSRF) attacks.

Set up AM:

Select Services > Add a Service and add a Validation Service with the following Valid goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

Register a PingGateway agent with the following values, as described in Register a PingGateway agent in AM:

Agent ID: ig_agent

Password: password

(Optional) Authenticate the agent to AM as described in Authenticate a PingGateway agent to AM.

Set up PingGateway:

Set an environment variable for the PingGateway agent password, and then restart PingGateway:

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

Add the following admin.json configuration to PingGateway:

1.

1.

▪

▪

2.

▪

▪

emergency_home
Use secure passwords in a production environment. Consider using a password manager to
generate secure passwords.

Important

3.

emergency_home
PingGateway agents are automatically authenticated to AM by a deprecated authentication module in
AM. This step is currently optional, but will be required when authentication chains and modules are
removed in a future release of AM.

Important

2.

1.

2.

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 517

{
 "prefix": "openig",
 "mode": "DEVELOPMENT",
 "properties": {
 "SsoTokenCookieOrHeader": "iPlanetDirectoryPro"
 },
 "connectors": [
 {
 "port": 8080
 },
 {
 "port": 8443
 }
],
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent" : {
 "username" : "ig_agent",
 "passwordSecretId" : "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/",
 "ssoTokenHeader": "&{SsoTokenCookieOrHeader}"
 }
 },
 {
 "name": "StudioProtectionFilter",
 "type": "ChainOfFilters",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "type": "CsrfFilter",
 "config": {
 "cookieName": "&{SsoTokenCookieOrHeader}",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 403,
 "headers": {
 "Content-Type": [
 "text/plain"
]
 },
 "entity": "Request forbidden"
 }
 }
 }

Studio PingGateway

518 Copyright © 2025 Ping Identity Corporation

 }
]
 }
 }
]
}

Notice the following features of the configuration:

The prefix sets the base of the administrative route to the default value /openig . The Studio endpoint is
therefore /openig/studio .

The mode is development , so by default the Studio endpoint is open and unfiltered.

The properties object sets a configuration parameter for the value of the SSO token cookie or header,
which is used in AmService and CorsFilter.

The AmService uses the PingGateway agent in AM for authentication.

The agent password for AmService is provided by a SystemAndEnvSecretStore in the heap.

The StudioProtectionFilter calls the SingleSignOnFilter to redirect unauthenticated requests to AM, and uses
the CsrfFilter to protect requests from CSRF attacks. For more information, refer to SingleSignOnFilter and
CsrfFilter.

Restart PingGateway to take into account the changes to admin.json .

Test the setup:

If you are logged in to AM, log out and clear any cookies.

Go to http://ig.example.com:8080/openig/studio. The SingleSignOnFilter redirects the request to AM for
authentication.

Log in to AM with user demo , password Ch4ng31t . The Studio Routes screen is displayed.

Example routes created with Structured Editor (deprecated)

The following sections give examples of how to set up some of the routes used in the Gateway guide by using the structured
editor of Studio.

▪

▪

▪

▪

▪

3.

3.

1.

2.

3.

emergency_home
The structured editor of Studio is deprecated. For more information, refer to the Deprecated section of the Release
Notes.

Important

emergency_home
SecretsProviders can’t be configured in Studio. Documentation examples generated with Studio might refer to
SecretsProviders that must be configured separately in config.json.

Important

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 519

http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

Single sign-on in Structured Editor

This section describes how to set up SSO in the structured editor of Studio. For more information about setting up SSO, refer to
Authentication.

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Structured to use the structured editor.

Select Advanced options on the right, and create a route with the following options:

Base URI: http://app.example.com:8081

Condition: Path: /home/sso-studio

Name : sso-studio

Configure authentication:

Select Authentication.

Select Single Sign-On, and enter the following information:

AM service : Configure an AM service to use for authentication:

URI: http://am.example.com:8088/openam

Secrets Provider: SystemAndEnvSecretStore-1

Agent :

Username : ig_agent

Password Secret ID : password.secret.id

Leave all other values as default.

On the top-right of the screen, select and Display to review the route.

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Policy enforcement in Structured Editor

This section describes how to set up PingGateway as a policy enforcement point in the structured editor of Studio. For more
information about setting up policy enforcement, refer to Enforce policy decisions from AM.

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Structured to use the structured editor.

1.

1.

2.

2.

◦

◦

◦

3.

1.

2.

▪

▪

▪

▪

▪

▪

4.

5.

1.

1.

2.

Studio PingGateway

520 Copyright © 2025 Ping Identity Corporation

Select Advanced options on the right, and create a route with the following options:

Base URI: http://app.example.com:8081

Condition: Path: /home/pep-sso

Name : pep-sso

The structured editor is displayed.

Configure authentication:

Select Authentication.

Select Single Sign-On, and enter the following information:

AM service : Configure an AM service to use for authentication:

URI: http://am.example.com:8088/openam

Secrets Provider: SystemAndEnvSecretStore-1

Agent : The credentials of the agent you created in AM.

Username : ig_agent

Password Secret ID : password.secret.id

Leave all other values as default.

Configure a PolicyEnforcementFilter:

Select Authorization.

Select AM Policy Enforcement, and then select the following options:

Access Management configuration:

AM service : http://am.example.com:8088/openam (/) .

Access Management policies:

Policy set : PEP-SSO

AM SSO token : ${contexts.ssoToken.value}

Leave all other values as default.

On the top-right of the screen, select and Display to review the route.

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

2.

◦

◦

◦

3.

1.

2.

▪

▪

▪

▪

▪

▪

4.

1.

2.

▪

▪

▪

▪

▪

5.

6.

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 521

Policy enforcement for CDSSO in Structured Editor

This section describes how to set up PingGateway as a policy enforcement point for CDSSO in the structured editor of Studio. For
more information about how to set up SSO, refer to Enforce AM Policy decisions in different domains.

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Structured to use the structured editor.

Select Advanced options on the right, and create a route with the following options:

Base URI: http://app.example.com:8081

Condition: Path: /home/pep-cdsso

Name : pep-cdsso

Configure authentication:

Select Authentication.

Select Cross-Domain Single Sign-On, and enter the following information:

AM service :

URI: http://am.example.com:8088/openam

Secrets Provider: SystemAndEnvSecretStore-1

Agent : The credentials of the agent you created in AM.

Username : ig_agent_cdsso

Password Secret ID : password.secret.id

Redirect endpoint : /home/pep-cdsso/redirect

Authentication cookie :

Path : /home

Leave all other values as default.

Configure a PolicyEnforcementFilter:

Select Authorization.

Select AM Policy Enforcement, and select the following options to reflect the configuration of the PingGateway
agent in AM:

Access Management configuration:

AM service : http://am.example.com:8088/openam (/) .

1.

1.

2.

2.

◦

◦

◦

3.

1.

2.

▪

▪

▪

▪

▪

▪

▪

▪

▪

4.

1.

2.

▪

▪

Studio PingGateway

522 Copyright © 2025 Ping Identity Corporation

Access Management policies:

Policy set : PEP-CDSSO

AM SSO token ID : ${contexts.cdsso.token}

Leave all other values as default.

On the top-right of the screen, select and Display to review the route.

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Token validation using the introspection endpoint in Structured Editor

This section sets up PingGateway as an OAuth 2.0 resource server, using the introspection endpoint, in the structured editor of
Studio.

Set up AM as described in Validate access tokens through the introspection endpoint. In addition, create an OAuth 2.0
Client authorized to introspect tokens, with the following values:

Client ID : resource-server

Client secret password

Scope(s) : am-introspect-all-tokens

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Structured to use the structured editor.

Create a route with the following option:

Application URL: http://app.example.com:8081/rs-introspect-se

Configure authorization:

Select Authorization > OAuth 2.0 Resource Server, and then select the following options:

Token resolver configuration:

Access token resolver: OAuth 2.0 introspection endpoint

Introspection endpoint URI: http://am.example.com:8088/openam/oauth2/introspect

Client name and Client secret : resource-server and password

This is the name and password of the OAuth 2.0 client with the scope to examine (introspect) tokens,
configured in AM.

Scope configuration:

Evaluate scopes: Statically

Scopes: mail , employeenumber

▪

▪

▪

5.

6.

1.

◦

◦

◦

2.

1.

2.

3.

▪

3.

1.

▪

▪

▪

▪

▪

▪

▪

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 523

OAuth 2.0 Authorization settings:

Require HTTPS: Deselect this option

Enable cache: Deselect this option

Leave all other values as default.

Add a StaticResponseHandler:

On the top-right of the screen, select and Editor mode to switch into editor mode.

Replace the last ReverseProxyHandler in the route with the following StaticResponseHandler, and then save the
route:

"handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></body></
html>"
 }
}

On the top-right of the screen, select and Display to review the route.

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

OpenID Connect in Structured Editor

This section describes how to set up PingGateway as an OpenID Connect relying party in the structured editor of Studio. For more
information, refer to AM as a single OpenID Connect provider.

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Structured to use the structured editor.

Select Advanced options on the right, and create a route with the following options:

Base URI: http://app.example.com:8081

Condition: Path: /home/id_token

▪

▪

▪

4.

1.

warning
After switching to Editor mode, you cannot go back. You will be able to use the JSON file editor to
manually edit the route, but will no longer be able use the full Studio interface to add or edit filters.

Warning

2.

5.

6.

1.

1.

2.

2.

◦

◦

Studio PingGateway

524 Copyright © 2025 Ping Identity Corporation

Name: 07-openid

Configure authentication:

Select Authentication.

Select OpenID Connect, and then select the following options:

Client Filter:

Client Endpoint: /home/id_token

Require HTTPS: Deselect this option

Client Registration:

Client ID: oidc_client

Client secret: password

Scopes: openid , profile , and email

Basic authentication: Select this option

Issuer:

Well-known Endpoint: http://am.example.com:8088/openam/oauth2/.well-known/openid-
configuration

Leave all other values as default.

On the top-right of the screen, select and Display to review the route.

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Token transformation in Structured Editor

This section describes how to set up token transformation in the structured editor of Studio. For more information about setting
up token transformation, refer to Transform OpenID Connect ID tokens into SAML assertions.

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Structured to use the structured editor.

Select Advanced options on the right, and create a route with the following options:

Base URI: http://app.example.com:8081

Condition: Path: /home/id_token

Name : 50-idtoken

◦

3.

1.

2.

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

4.

5.

1.

1.

2.

2.

◦

◦

◦

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 525

Configure authentication:

Select Authentication.

Select OpenID Connect, and enter the following information:

Client Filter :

Client Endpoint: /home/id_token

Require HTTPS: Deselect this option

Client Registration :

Client ID : oidc_client

Client secret : password

Scopes: openid , profile , and email

Basic authentication: Select this option

Issuer :

Well-known endpoint: http://am.example.com:8088/openam/oauth2/.well-known/openid-
configuration

Leave all other values as default, and save your settings.

Set up token transformation:

Select and enable Token transformation.

Enter the following information:

AM service : Configure an AM service to use for authentication and REST STS requests.

URI: http://am.example.com:8088/openam

Secrets Provider: SystemAndEnvSecretStore-1

Agent : The credentials of the agent you created in AM.

Username : ig_agent

Password Secret ID : password.secret.id

Username : oidc_client

Password : password

id_token : ${attributes.openid.id_token}

Instance : openig

Add a StaticResponseHandler:

On the top-right of the screen, select and Editor mode to switch into editor mode.

3.

1.

2.

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

4.

1.

2.

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

5.

1.

Studio PingGateway

526 Copyright © 2025 Ping Identity Corporation

Replace the last ReverseProxyHandler in the route with the following StaticResponseHandler, and then save the
route:

"handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "{\"id_token\":\n\"${attributes.openid.id_token}\"} \n\n\n{\"saml_assertions\":\n\"$
{contexts.sts.issuedToken}\"}"
 }
}

On the top-right of the screen, select and Display to review the route.

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Simple throttling filter in Structured Editor

This section describes how to set up a simple throttling filter in the structured editor of Studio. For more information about how
to set up throttling, refer to Configure simple throttling.

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Structured to use the structured editor.

Select Advanced options on the right, and create a route with the following options:

Base URI: http://app.example.com:8081

Condition: Path: /home/throttle-simple

Name : 00-throttle-simple

Select and enable Throttling.

In GROUPING POLICY, apply the rate to a single group.

All requests are grouped together, and the default throttling rate is applied to the group. By default, no more than 100
requests can access the sample application each second.

In RATE POLICY, select Fixed, and allow 6 requests each 10 seconds.

On the top-right of the screen, select and Display to review the route.

warning
After switching to Editor mode, you cannot go back. You will be able to use the JSON file editor to
manually edit the route, but will no longer be able use the full Studio interface to add or edit filters.

Warning

2.

6.

7.

1.

1.

2.

2.

◦

◦

◦

3.

4.

5.

6.

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 527

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Mapped throttling filter in Structured Editor

This section describes how to set up a mapped throttling filter in the structured editor of Studio. For more information about how
to set up throttling, refer to Configure mapped throttling.

Set up AM as described in Validate access tokens through the introspection endpoint. In addition, create an OAuth 2.0
Client authorized to introspect tokens, with the following values:

Client ID : resource-server

Client secret password

Scope(s) : am-introspect-all-tokens

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Structured to use the structured editor.

Select Advanced options on the right, and create a route with the following options:

Base URI: http://app.example.com:8081

Condition: Path: /home/throttle-mapped-se

Name : 00-throttle-mapped-se

Configure authorization:

Select Authorization > OAuth 2.0 Resource Server, and then select the following options:

Token resolver configuration:

Access token resolver: OAuth 2.0 introspection endpoint

Introspection endpoint URI: http://am.example.com:8088/openam/oauth2/introspect

Client name and Client secret : resource-server and password

This is the name and password of the OAuth 2.0 client with the scope to examine (introspect) tokens,
configured in AM.

Scope configuration:

Evaluate scopes: Statically

Scopes: mail , employeenumber

OAuth 2.0 Authorization settings:

Require HTTPS: Deselect this option

Enable cache: Deselect this option

7.

1.

◦

◦

◦

2.

1.

2.

3.

◦

◦

◦

4.

1.

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

Studio PingGateway

528 Copyright © 2025 Ping Identity Corporation

Leave all other values as default.

Configure throttling:

Select and enable Throttling.

Set up the grouping policy:

In GROUPING POLICY, apply the rate to independent groups of requests.

Requests are split into different groups according to criteria, and the throttling rate is applied to each group.

Select to group requests by custom criteria.

Enter ${contexts.oauth2.accessToken.info.mail} as the custom expression. This expression defines the
subject in the OAuth2Context.

Set up the rate policy:

In RATE POLICY, select Mapped.

Select to map requests by custom criteria.

Enter the custom expression ${contexts.oauth2.accessToken.info.status} .

In Default Rate, select Edit and change default rate to 1 request each 10 seconds.

In Mapped Rates, add the following rate for gold status:

Match Value : gold

Number of requests : 6

Period : 10 seconds

Add a different rate for silver status:

Match Value : silver

Number of requests : 3

Period : 10 seconds

Add a different rate for bronze status:

Match Value : bronze

Number of requests : 1

Period : 10 seconds

Save the rate policy.

Select Chain, and change the order of the filters so that Throttling comes after Authorization.

On the top-right of the screen, select and Display to review the route.

Select Deploy to push the route to the PingGateway configuration.

5.

1.

2.

1.

2.

3.

1.

2.

3.

4.

5.

▪

▪

▪

6.

▪

▪

▪

7.

▪

▪

▪

8.

6.

7.

8.

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 529

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Scriptable throttling filter in Structured Editor

This section describes how to set up a scriptable throttling filter in the structured editor of Studio. For more information about
how to set up throttling, refer to Configure scriptable throttling.

Set up AM as described in Validate access tokens through the introspection endpoint. In addition, create an OAuth 2.0
Client authorized to introspect tokens, with the following values:

Client ID: resource-server

Client secret: password

Scope(s): am-introspect-all-tokens

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Structured to use the structured editor.

Select Advanced options on the right, and create a route with the following options:

Base URI: http://app.example.com:8081

Condition: Path: /home/throttle-scriptable-se

Name: 00-throttle-scriptable-se

Configure authorization:

Select Authorization > OAuth 2.0 Resource Server, and then select the following options:

Token resolver configuration:

Access token resolver: OAuth 2.0 introspection endpoint

Introspection endpoint URI: http://am.example.com:8088/openam/oauth2/introspect

Client name and Client secret : resource-server and password

This is the name and password of the OAuth 2.0 client with the scope to examine (introspect) tokens,
configured in AM.

Scope configuration:

Evaluate scopes: Statically

Scopes: mail , employeenumber

OAuth 2.0 Authorization settings:

Require HTTPS: Deselect this option

Enable cache: Deselect this option

Leave all other values as default.

1.

◦

◦

◦

2.

1.

2.

3.

◦

◦

◦

4.

1.

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

Studio PingGateway

530 Copyright © 2025 Ping Identity Corporation

Configure throttling:

Select and enable Throttling.

Set up the grouping policy:

In GROUPING POLICY, apply the rate to independent groups of requests.

Requests are split into different groups according to criteria, and the throttling rate is applied to each group.

Select to group requests by custom criteria.

Enter ${contexts.oauth2.accessToken.info.mail} as the custom expression.

Set up the rate policy:

In RATE POLICY, select Scripted.

Select to create a new script, and name it X-User-Status . So that you can easily identify the script, use a
name that describes the content of the script.

Add the following argument/value pairs:

argument: status , value: gold

argument: rate , value: 6

argument: duration , value: 10 seconds

Replace the default script with the content of a valid Groovy script. For example, enter the
following script:

if (contexts.oauth2.accessToken.info.status == status) {
 return new ThrottlingRate(rate, duration)
} else {
 return null
}

Alternatively, skip the step to define arguments, and add the following script instead:

if (contexts.oauth2.accessToken.info.status == 'gold') {
 return new ThrottlingRate(6, '10 seconds')
} else {
 return null
}

Enable the default rate, and set it to 1 request each 10 seconds.

Save the rate policy. The script is added to the list of reference scripts available to use in scriptable throttling
filters.

5.

1.

2.

1.

2.

3.

3.

1.

2.

3.

▪

▪

▪

▪

info
Studio does not check the validity of the Groovy script.

Note

4.

5.

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 531

Select Chain, and change the order of the filters so that Throttling comes after Authorization.

On the top-right of the screen, select and Display to review the route.

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Proxy for websocket traffic in Structured Editor

This section describes how to set up PingGateway to proxy WebSocket traffic, in the structured editor of Studio. For more
information about how to set up proxying for WebSocket traffic, refer to WebSocket traffic.

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Structured to use the structured editor.

Select Advanced options on the right, and create a route with the following options:

Base URI: http://app.example.com:8081

Condition: Path: /websocket-se

Name : websocket-se

Enable WebSocket: Select this option

Select Authentication.

Select Single Sign-On, and enter the following information:

AM service : Configure an AM service to use for authentication:

URI: http://am.example.com:8088/openam

Secrets Provider: SystemAndEnvSecretStore-1

Agent :

Username : ig_agent

Password Secret ID : password.secret.id

Leave all other values as default.

On the top-right of the screen, select and Display to review the route.

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Example routes created with Freeform Designer

The following sections give examples of how to use the templates provided by the FreeForm Designer:

6.

7.

8.

1.

1.

2.

2.

◦

◦

◦

◦

1.

2.

▪

▪

▪

▪

▪

▪

3.

4.

Studio PingGateway

532 Copyright © 2025 Ping Identity Corporation

Use a basic template in FreeForm Designer

This section describes how to use a basic template in FreeForm Designer to set up SSO. For more information about setting up
and testing SSO, refer to Authentication.

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Freeform to use the FreeForm Designer.

Select Basic to create a route from a blank template.

Select Advanced options on the right, and create a route with the following options:

Base URI: http://app.example.com:8081

Condition: Path: /home/sso-ff

Name: sso-ff

The route is displayed on the Flow tab of the canvas. Select the All Objects tab to view a list of objects in the
route.

Double-click on any object to review or edit it. After double-clicking on an object, select the Decorations tab to
decorate it.

Configure authentication with a SingleSignOnFilter:

In the Flow tab, delete the connector between Start and ReverseProxyHandler.

From the side bar, drag a Chain onto the canvas, and then drag a SingleSignOnFilter into the chain.

In the Edit SingleSignOnFilter page, click +, and create an AM service, with the following values:

URI: http://am.example.com:8088/openam

Secrets Provider: SystemAndEnvSecretStore-1

Agent:

Username: ig_agent

Password Secret ID : agent.secret.id

Connect Start to Chain-1, and Chain-1 to ReverseProxyHandler.

On the top-right of the screen, select and Display to review the route.

emergency_home
SecretsProviders can’t be configured in Studio. Documentation examples generated with Studio might refer to
SecretsProviders that must be configured separately in config.json.

Important

1.

1.

2.

2.

3.

◦

◦

◦

4.

1.

2.

3.

▪

▪

▪

▪

▪

4.

5.

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 533

{
 "name": "sso-ff",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/sso-ff')}",
 "handler": "Chain-1",
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler"
 },
 {
 "type": "BaseUriDecorator",
 "name": "baseUri"
 },
 {
 "type": "TimerDecorator",
 "name": "timer",
 "config": {
 "timeUnit": "ms"
 }
 },
 {
 "type": "CaptureDecorator",
 "name": "capture",
 "config": {
 "captureEntity": false,
 "captureContext": false,
 "maxEntityLength": 524288
 }
 },
 {
 "name": "Chain-1",
 "type": "Chain",
 "config": {
 "handler": "ReverseProxyHandler",
 "filters": [
 "SingleSignOnFilter-1"
]
 }
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "http://am.example.com:8088/openam",
 "realm": "/",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "sessionCache": {
 "enabled": false
 }
 }
 },
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {

Studio PingGateway

534 Copyright © 2025 Ping Identity Corporation

 "amService": "AmService-1"
 }
 }
]
}

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Protect a web app with Freeform Designer

This section describes how to use FreeForm Designer to protect a web app, using AM for single sign-on and policy enforcement.

The generated route contains a chain of objects to authenticate the user, enforce an AM authorization policy, retrieve the user’s
profile, insert it into the request, and, finally, forward the request to the web app.

Before you start, set up AM as described in Enforce policy decisions from AM.

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Freeform to use the FreeForm Designer.

Select Web SSO to use the template for protecting web apps.

Select Advanced options on the right, and create a route with the following options:

Base URI : http://app.example.com:8081

Condition: Path : /home/pep-sso-ff

Name : pep-sso-ff

AM Configuration :

URI : http://am.example.com:8088/openam

Secrets Provider: SystemAndEnvSecretStore-1

Username : ig_agent

Password Secret ID : agent.secret.id

The route is displayed on the Flow tab of the canvas. Select the All Objects tab to view a list of objects
in the route.

Double-click on any object to review or edit it. After double-clicking on an object, select the Decorations tab
to decorate it.

On the Flow tab, double-click the Policy Enforcement object, and add a policy set with the following values:

Policy set : PEP-SSO

AM SSO token : ${contexts.ssoToken.value}

6.

1.

1.

2.

2.

3.

◦

◦

◦

◦

▪

▪

▪

▪

4.

◦

◦

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 535

Leave all other values as default.

On the top-right of the screen, select and Display to review the route.5.

Studio PingGateway

536 Copyright © 2025 Ping Identity Corporation

{
 "name": "pep-sso-ff",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/pep-sso-ff')}",
 "handler": "Chain",
 "heap": [
 {
 "name": "Chain",
 "type": "Chain",
 "config": {
 "handler": "ReverseProxyHandler",
 "filters": [
 "SSO",
 "Policy Enforcement",
 "GetEmail",
 "InjectEmail"
]
 }
 },
 {
 "name": "SSO",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService"
 }
 },
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler"
 },
 {
 "name": "AmService",
 "type": "AmService",
 "config": {
 "url": "http://am.example.com:8088/openam",
 "realm": "/",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "sessionCache": {
 "enabled": false
 }
 }
 },
 {
 "name": "Policy Enforcement",
 "type": "PolicyEnforcementFilter",
 "config": {
 "amService": "AmService",
 "ssoTokenSubject": "${contexts.ssoToken.value}",
 "cache": {
 "enabled": false
 },
 "application": "PEP-SSO"
 }
 },
 {
 "name": "GetEmail",

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 537

 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.ssoToken.info.uid}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {
 "amService": "AmService"
 }
 }
 }
 },
 {
 "name": "InjectEmail",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "Email": [
 "${contexts.userProfile.username}"
]
 }
 }
 },
 {
 "type": "BaseUriDecorator",
 "name": "baseUri"
 },
 {
 "type": "TimerDecorator",
 "name": "timer",
 "config": {
 "timeUnit": "ms"
 }
 },
 {
 "type": "CaptureDecorator",
 "name": "capture",
 "config": {
 "captureEntity": false,
 "captureContext": false,
 "maxEntityLength": 524288
 }
 }
]
}

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Protect an API with Freeform Designer

This section describes how to use FreeForm Designer to protect APIs, using AM as an OAuth 2.0 Authorization Server.

The generated route contains a chain of objects to authenticate the user, throttle the rate of requests to the API, and, finally,
forward the request to the sample app.

6.

Studio PingGateway

538 Copyright © 2025 Ping Identity Corporation

Before you start, set up AM as described in Validate access tokens through the introspection endpoint. In addition, create an
OAuth 2.0 Client authorized to introspect tokens, with the following values:

Client ID : resource-server

Client secret : password

Scope(s) : am-introspect-all-tokens

In PingGateway Studio, create a route:

Go to http://ig.example.com:8080/openig/studio , and then select + Create a route.

Select Freeform to use the FreeForm Designer.

Select API Security.

Select Advanced options on the right, and create a route with the following options:

Base URI : http://app.example.com:8081

Condition: Path : /home/rs-introspect-ff

Name : rs-introspect-ff

AM Configuration :

URI : http://am.example.com:8088/openam

Secrets Provider: SystemAndEnvSecretStore-1

Username : ig_agent

Password Secret ID : agent.secret.id

Scopes : mail , employeenumber

The route is displayed on the Flow tab of the canvas.

Notice that the Start, Chain, and ReverseProxyHandler objects are connected by solid lines, but other
objects, such as Authenticate to Am Chain, are connected by a fading line. Objects connected by a fading
line are used by other objects in the route.

Select the All Objects tab to view a list of objects in the route. Double-click on any object to review or edit
it. After double-clicking on an object, select the Decorations tab to decorate it.

On the Flow tab, double-click the OAuth2RS object, and edit it as follows:

Require HTTPS : Deselect this option

Realm : OpenIG

Leave the other values as they are.

On the top-right of the screen, select and Display to review the route.

•

•

•

1.

1.

2.

2.

3.

◦

◦

◦

◦

▪

▪

▪

▪

▪

4.

◦

◦

5.

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 539

{
 "name": "rs-introspect-ff",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/rs-introspect-ff')}",
 "handler": "Chain",
 "properties": {
 "amSecretsProvider": "SystemAndEnvSecretStore-1",
 "amUsername": "ig_agent",
 "amPasswordSecretId": "agent.secret.id"
 },
 "heap": [
 {
 "name": "ClientHandler",
 "type": "ClientHandler"
 },
 {
 "name": "Chain",
 "type": "Chain",
 "config": {
 "handler": "ReverseProxyHandler",
 "filters": [
 "OAuth2RS",
 "Throttling"
]
 }
 },
 {
 "type": "OAuth2ResourceServerFilter",
 "name": "OAuth2RS",
 "config": {
 "requireHttps": false,
 "realm": "OpenIG",
 "scopes": [
 "mail",
 "employeenumber"
],
 "accessTokenResolver": "TokenIntrospectionAccessTokenResolver"
 }
 },
 {
 "type": "TokenIntrospectionAccessTokenResolver",
 "name": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService",
 "providerHandler": "Authenticate to AM Chain"
 }
 },
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler"
 },
 {
 "name": "AmService",
 "type": "AmService",
 "config": {
 "url": "http://am.example.com:8088/openam",
 "realm": "/",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "agent": {
 "username": "ig_agent",

Studio PingGateway

540 Copyright © 2025 Ping Identity Corporation

 "passwordSecretId": "agent.secret.id"
 },
 "sessionCache": {
 "enabled": false
 }
 }
 },
 {
 "name": "Authenticate to AM Chain",
 "type": "Chain",
 "config": {
 "handler": "ClientHandler",
 "filters": [
 "Authenticate to AM Filter"
]
 }
 },
 {
 "name": "Authenticate to AM Filter",
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "password.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 },
 {
 "name": "Throttling",
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupPolicy": "${contexts.oauth2.info.sub}",
 "rate": {
 "numberOfRequests": 60,
 "duration": "60 s"
 }
 }
 },
 {
 "type": "BaseUriDecorator",
 "name": "baseUri"
 },
 {
 "type": "TimerDecorator",
 "name": "timer",
 "config": {
 "timeUnit": "ms"
 }
 },
 {
 "type": "CaptureDecorator",
 "name": "capture",
 "config": {
 "captureEntity": false,
 "captureContext": false,
 "maxEntityLength": 524288
 }
 }
]
}

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 541

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Test the setup:

In a terminal window, use a curl command similar to the following to retrieve an access token:

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=mail%20employeenumber" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Validate the access token returned in the previous step:

$ curl -v http://ig.example.com:8080/home/rs-introspect-ff --header "Authorization: Bearer ${mytoken}"

The HTML of the sample application is returned.

Summary of tasks, route status, and icons

The following tables summarize the basic tasks that you can do in Studio, and summarizes the icons and status displayed in
Studio:

6.

7.

1.

2.

Task reference

To do this Do this

Create a new route Select ROUTES, + Create a route.

Select a route Select ROUTES, and then select a route to view.

Display the config of a selected route Select a route, and then select and Display.

Deploy a selected route Select a route, and then select Deploy.

Undeploy a selected route Select a deployed route, and then select and Undeploy.

Change the basic config of a route Select a route, and then select Route settings. Edit the
route and save the changes.

Studio PingGateway

542 Copyright © 2025 Ping Identity Corporation

Route status

Status Description Action

 Undeployed The route is saved in Studio but is not
deployed to the backend.

Deploy the route. The status changes to
 Deployed.

 Deployed The route is saved in Studio and
deployed to the backend.

None. The route has the same
configuration in Studio and the
backend.

 Changes pending The route has been deployed and then
subsequently changed in Studio.

Deploy the route. The status changes to
 Deployed.

 Out of sync The route has been deployed and then
subsequently changed in the backend,
or in both Studio and the backend.

Select Deploy. A message informs
you that a different version of the route
is deployed in the backend. Select an
option:

 Deploy: The version in Studio
overwrites the backend.
 Import a route: The version
in the backend overwrites
Studio.

When you import a route into Studio
you go into editor mode. You can use
the JSON editor to manually edit the
route, but can no longer use the full
Studio interface to add or edit filters.

 Compatibility update required The route was created in Studio in an
earlier version of PingGateway. Some
information is needed to complete the
upgrade.

Enter the information as prompted, and
then select Deploy to deploy the
route.

•

•

Icons

Icon Mode Description

Structured editor The route was created and edited using
the menus and options of structured
editor.

{ }
Editor mode The route was imported into Studio, or

was created in Studio and then edited
in editor mode.

PingGateway Studio

Copyright © 2025 Ping Identity Corporation 543

Icon Mode Description

Freeform designer The route was created on the canvas of
FreeForm Designer.

Studio PingGateway

544 Copyright © 2025 Ping Identity Corporation

Maintenance

This guide describes tasks and configurations you might repeat throughout the life cycle of a deployment in your organization. It
is for people who maintain PingGateway services for their organization.

Audit the deployment

The following sections describe how to set up auditing for your deployment. For information about how to include user ID in audit
logs, refer to Recording User ID in Audit Events.

For information about the audit framework and each event handler, refer to Audit framework.

Record access audit events in CSV

This section describes how to record access audit events in a CSV file, using tamper-evident logging. For information about the
CSV audit event handler, refer to CsvAuditEventHandler.

Before you start, prepare PingGateway and the sample application as described in the Quick install.

Set up secrets for tamper-evident logging:

Locate a directory for secrets, and go to it:

$ cd /path/to/secrets

Generate a key pair in the keystore.

The CSV event handler expects a JCEKS-type keystore with a key alias of signature for the signing key, where the
key is generated with the RSA key algorithm and the SHA256withRSA signature algorithm:

$ keytool \
 -genkeypair \
 -keyalg RSA \
 -sigalg SHA256withRSA \
 -alias "signature" \
 -dname "CN=ig.example.com,O=Example Corp,C=FR" \
 -keystore audit-keystore \
 -storetype JCEKS \
 -storepass password \
 -keypass password

emergency_home
The CSV handler does not sanitize messages when writing to CSV log files.
Do not open CSV logs in spreadsheets or other applications that treat data as code.

Important

1.

1.

2.

info
Because keytool converts all characters in its key aliases to lowercase, use only lowercase in alias
definitions of a keystore.

Note

Maintenance PingGateway

546 Copyright © 2025 Ping Identity Corporation

Generate a secret key in the keystore.

The CSV event handler expects a JCEKS-type keystore with a key alias of csv-key-2 for the symmetric key, where
the key is generated with the HmacSHA256 key algorithm and 256-bit key size:

$ keytool \
 -genseckey \
 -keyalg HmacSHA256 \
 -keysize 256 \
 -alias "password" \
 -keystore audit-keystore \
 -storetype JCEKS \
 -storepass password \
 -keypass password

Verify the content of the keystore:

$ keytool \
 -list \
 -keystore audit-keystore \
 -storetype JCEKS \
 -storepass password

Keystore type: JCEKS
Keystore provider: SunJCE

Your keystore contains 2 entries

password, ... SecretKeyEntry,
signature, ... PrivateKeyEntry,
Certificate fingerprint (SHA1): 4D:...:D1

Set up PingGateway

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway, replacing /path/to/secrets/audit-keystore with your path:

$HOME/.openig/config/routes/30-csv.json

%appdata%\OpenIG\config\routes\30-csv.json

3.

4.

2.

1.

2.

Linux

Windows

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 547

{
 "name": "30-csv",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/csv-audit')}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "config": {
 "name": "csv",
 "logDirectory": "/tmp/logs",
 "security": {
 "enabled": "true",
 "filename": "/path/to/secrets/audit-keystore",
 "password": "password",
 "signatureInterval": "1 day"
 },
 "topics": [
 "access"
]
 }
 }
],
 "config": { }
 }
 }
],
 "auditService": "AuditService",
 "handler": "ForgeRockClientHandler"
}

The route calls an audit service configuration for publishing log messages to the CSV file, /tmp/logs/access.csv .

When a request matches audit , audit events are logged to the CSV file.

The route uses the ForgeRockClientHandler as its handler, to send the X-ForgeRock-TransactionId header
with its requests to external services.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/csv-audit.

The home page of the sample application is displayed, and the file /tmp/logs/tamper-evident-access.csv is
updated.

3.

1.

Maintenance PingGateway

548 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/csv-audit
https://ig.example.com:8443/home/csv-audit

Record access audit events with a JMS audit event handler

For information about configuring the JMS event handler, refer to JmsAuditEventHandler.

Before you start, prepare PingGateway as described in the Quick install.

Download the following files:

ActiveMQ binary. PingGateway is tested with ActiveMQ Classic 5.15.11.

ActiveMQ Client. Use a version that corresponds to your ActiveMQ version.

Apache Geronimo J2EE management bundle.

hawtbuf-1.11 JAR.

Add the files to the configuration:

Create the directory $HOME/.openig/extra , where $HOME/.openig is the instance directory, and add .jar files to
the directory.

Create a consumer that subscribes to the audit topic.

From the ActiveMQ installation directory, run the following command:

$./bin/activemq consumer --destination topic://audit

Set up PingGateway

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway:

$HOME/.openig/config/routes/30-jms.json

emergency_home
This procedure is an example of how to record access audit events with a JMS audit event handler configured to use
the ActiveMQ message broker. This example is not tested on all configurations, and can be more or less relevant to
your configuration.

Important

1.

◦

◦

◦

◦

2.

◦

3.

4.

1.

2.

Linux

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 549

https://activemq.apache.org/components/classic/download/
https://activemq.apache.org/components/classic/download/
https://repository.apache.org/content/repositories/releases/org/apache/activemq/activemq-client
https://repository.apache.org/content/repositories/releases/org/apache/activemq/activemq-client
https://repo1.maven.org/maven2/org/apache/geronimo/specs/geronimo-j2ee-management_1.1_spec/1.0.1/
https://repo1.maven.org/maven2/org/apache/geronimo/specs/geronimo-j2ee-management_1.1_spec/1.0.1/
https://repo1.maven.org/maven2/org/fusesource/hawtbuf/hawtbuf/1.11/
https://repo1.maven.org/maven2/org/fusesource/hawtbuf/hawtbuf/1.11/

%appdata%\OpenIG\config\routes\30-jms.json

{
 "name": "30-jms",
 "MyCapture" : "all",
 "baseURI": "http://app.example.com:8081",
 "condition" : "${request.uri.path == '/activemq_event_handler'}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers" : [
 {
 "class" : "org.forgerock.audit.handlers.jms.JmsAuditEventHandler",
 "config" : {
 "name" : "jms",
 "topics": ["access"],
 "deliveryMode" : "NON_PERSISTENT",
 "sessionMode" : "AUTO",
 "jndi" : {
 "contextProperties" : {
 "java.naming.factory.initial" :
"org.apache.activemq.jndi.ActiveMQInitialContextFactory",
 "java.naming.provider.url" : "tcp://am.example.com:61616",
 "topic.audit" : "audit"
 },
 "topicName" : "audit",
 "connectionFactoryName" : "ConnectionFactory"
 }
 }
 }
],
 "config" : { }
 }
 }
],
 "auditService": "AuditService",
 "handler" : {
 "type" : "StaticResponseHandler",
 "config" : {
 "status" : 200,
 "headers" : {
 "Content-Type" : ["text/plain; charset=UTF-8"]
 },
 "entity" : "Message from audited route"
 }
 }
}

Windows

Maintenance PingGateway

550 Copyright © 2025 Ping Identity Corporation

When a request matches the /activemq_event_handler route, this configuration publishes JMS messages
containing audit event data to an ActiveMQ managed JMS topic, and the StaticResponseHandler displays a
message.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/activemq_event_handler.

Depending on how ActiveMQ is configured, audit events are displayed on the ActiveMQ console or written to file.

Record access audit events with a JSON audit event handler

This section describes how to record access audit events with a JSON audit event handler. For information about configuring the
JSON event handler, refer to JsonAuditEventHandler.

Set up PingGateway

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway:

$HOME/.openig/config/routes/30-json.json

%appdata%\OpenIG\config\routes\30-json.json

5.

1.

1.

1.

2.

Linux

Windows

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 551

https://ig.example.com:8443/activemq_event_handler
https://ig.example.com:8443/activemq_event_handler

{
 "name": "30-json",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/json-audit')}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config": {
 "name": "json",
 "logDirectory": "/tmp/logs",
 "topics": [
 "access"
],
 "rotationRetentionCheckInterval": "1 minute",
 "buffering": {
 "maxSize": 100000,
 "writeInterval": "100 ms"
 }
 }
 }
]
 }
 }
],
 "auditService": "AuditService",
 "handler": "ReverseProxyHandler"
}

Notice the following features of the route:

The route calls an audit service configuration for publishing log messages to the JSON file, /tmp/audit/
access.audit.json . When a request matches /home/json-audit , a single line per audit event is logged to
the JSON file.

The route uses the ForgeRockClientHandler as its handler, to send the X-ForgeRock-TransactionId
header with its requests to external services.

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/json-audit.

The home page of the sample application is displayed and the file /tmp/logs/access.audit.json is created or
updated with a message. The following example message is formatted for easy reading, but it is produced as a
single line for each event:

▪

▪

2.

1.

Maintenance PingGateway

552 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/json-audit
https://ig.example.com:8443/home/json-audit

{
 "_id": "830...-41",
 "timestamp": "2019-...540Z",
 "eventName": "OPENIG-HTTP-ACCESS",
 "transactionId": "830...-40",
 "client": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 51666
 },
 "server": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 8080
 },
 "http": {
 "request": {
 "secure": false,
 "method": "GET",
 "path": "http://ig.example.com:8080/home/json-audit",
 "headers": {
 "accept": ["text/html,application/xhtml+xml,application/xml;q=0.9,/;q=0.8"],
 "host": ["ig.example.com:8080"],
 "user-agent": ["Mozilla/5.0 ... Firefox/66.0"]
 }
 }
 },
 "response": {
 "status": "SUCCESSFUL",
 "statusCode": "200",
 "elapsedTime": 212,
 "elapsedTimeUnits": "MILLISECONDS"
 },
 "ig": {
 "exchangeId": "b3f...-29",
 "routeId": "30-json",
 "routeName": "30-json"
 }
}

Record access audit events to standard output

This section describes how to record access audit events to standard output. For more information about the event handler, refer
to JsonStdoutAuditEventHandler.

Before you start, prepare PingGateway and the sample application as described in the Quick install.

Set up PingGateway

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway:

1.

1.

2.

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 553

$HOME/.openig/config/routes/30-jsonstdout.json

%appdata%\OpenIG\config\routes\30-jsonstdout.json

{
 "name": "30-jsonstdout",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/jsonstdout-audit')}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "config": {
 "name": "jsonstdout",
 "elasticsearchCompatible": false,
 "topics": [
 "access"
]
 }
 }
],
 "config": {}
 }
 }
],
 "auditService": "AuditService",
 "handler": "ReverseProxyHandler"
}

Notice the following features of the route:

The route matches requests to /home/jsonstdout-audit .

The route calls the audit service configuration for publishing access log messages to standard output. When
a request matches /home/jsonstdout-audit , a single line per audit event is logged.

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/jsonstdout-audit.

The home page of the sample application is displayed, and a message like this is published to standard output:

Linux

Windows

▪

▪

2.

Maintenance PingGateway

554 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/jsonstdout-audit
https://ig.example.com:8443/home/jsonstdout-audit

{
 "_id": "830...-61",
 "timestamp": "2019-...89Z",
 "eventName": "OPENIG-HTTP-ACCESS",
 "transactionId": "830...-60",
 "client": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 51876
 },
 "server": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 8080
 },
 "http": {
 "request": {
 "secure": false,
 "method": "GET",
 "path": "http://ig.example.com:8080/home/jsonstdout-audit",
 "headers": {
 "accept": ["text/html,application/xhtml+xml,application/xml;q=0.9,/;q=0.8"],
 "host": ["ig.example.com:8080"],
 "user-agent": ["Mozilla/5.0 ... Firefox/66.0"]
 }
 }
 },
 "response": {
 "status": "SUCCESSFUL",
 "statusCode": "200",
 "elapsedTime": 10,
 "elapsedTimeUnits": "MILLISECONDS"
 },
 "ig": {
 "exchangeId": "b3f...-41",
 "routeId": "30-jsonstdout",
 "routeName": "30-jsonstdout"
 },
 "source": "audit",
 "topic": "access",
 "level": "INFO"
}

Trust transaction IDs from other products

Each audit event is identified by a unique transaction ID that can be communicated across products and recorded for each local
event. By using the transaction ID, requests can be tracked as they traverse the platform, making it easier to monitor activity and
to enrich reports.

The X-ForgeRock-TransactionId header is automatically set in all outgoing HTTP calls from one ForgeRock product to another.
Customers can also set this header themselves from their own applications or scripts that call into the Ping Identity Platform.

To reduce the risk of malicious attacks, by default PingGateway does not trust transaction ID headers from client applications.

If you trust the transaction IDs sent by your client applications, consider setting Java system property
org.forgerock.http.TrustTransactionHeader to true .

Add the following system property in env.sh :

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 555

Specify a JVM option
TX_HEADER_OPT="-Dorg.forgerock.http.TrustTransactionHeader=true"

Include it into the JAVA_OPTS environment variable
export JAVA_OPTS="${TX_HEADER_OPT}"

All incoming X-ForgeRock-TransactionId headers are trusted, and monitoring or reporting systems that consume the logs can
allow requests to be correlated as they traverse multiple servers.

Safelist audit event fields for the logs

To prevent logging of sensitive data for an audit event, the Common Audit Framework uses a safelist to specify which audit event
fields appear in the logs.

By default, only safelisted audit event fields are included in the logs. For information about how to include non-safelisted audit
event fields, or exclude safelisted audit event fields, refer to Including or excluding audit event fields in logs.

Audit event fields use JSON pointer notation, and are taken from the JSON schema for the audit event content. The following
event fields are safelisted:

/_id

/timestamp

/eventName

/transactionId

/trackingIds

/userId

/client

/server

/ig/exchangeId

/ig/routeId

/ig/routeName

/http/request/secure

/http/request/method

/http/request/path

/http/request/headers/accept

/http/request/headers/accept-api-version

/http/request/headers/content-type

/http/request/headers/host

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Maintenance PingGateway

556 Copyright © 2025 Ping Identity Corporation

/http/request/headers/user-agent

/http/request/headers/x-forwarded-for

/http/request/headers/x-forwarded-host

/http/request/headers/x-forwarded-port

/http/request/headers/x-forwarded-proto

/http/request/headers/x-original-uri

/http/request/headers/x-real-ip

/http/request/headers/x-request-id

/http/request/headers/x-requested-with

/http/request/headers/x-scheme

/request

/response

Include or exclude audit event fields in logs

The safelist is designed to prevent logging of sensitive data for audit events by specifying which audit event fields appear in the
logs. You can add or remove messages from the logs as follows:

To include audit event fields in logs that are not safelisted, configure the includeIf property of AuditService.

To exclude safelisted audit event fields from the logs, configure the excludeIf property of AuditService. For an example,
refer to Exclude safelisted audit event fields from logs.

Exclude safelisted audit event fields from logs

Before you start, set up and test the example in Recording access audit events in JSON. Note the audit event fields in the log file
access.audit.json .

Replace 30-json.json with the following route:

$HOME/.openig/config/routes/30-json-excludeif.json

•

•

•

•

•

•

•

•

•

•

•

•

•

emergency_home
Before you include non-safelisted audit event fields in the logs, consider the impact on security. Including some
headers, query parameters, or cookies in the logs could cause credentials or tokens to be logged, and allow
anyone with access to the logs to impersonate the holder of these credentials or tokens.

Important

•

1.

Linux

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 557

%appdata%\OpenIG\config\routes\30-json-excludeif.json

{
 "name": "30-json-excludeif",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/json-audit-excludeif$')}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "config": {
 "filterPolicies": {
 "field": {
 "excludeIf": [
 "/access/http/request/headers/host",
 "/access/http/request/path",
 "/access/server",
 "/access/response"
]
 }
 }
 },
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config": {
 "name": "json",
 "logDirectory": "/tmp/logs",
 "topics": [
 "access"
],
 "rotationRetentionCheckInterval": "1 minute",
 "buffering": {
 "maxSize": 100000,
 "writeInterval": "100 ms"
 }
 }
 }
]
 }
 }
],
 "auditService": "AuditService",
 "handler": "ReverseProxyHandler"
}

Notice that the AuditService is configured with an excludeIf property to exclude audit event fields from the logs.

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/json-audit-excludeif.

The home page of the sample application is displayed and the file /tmp/logs/access.audit.json is updated:

Windows

2.

Maintenance PingGateway

558 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/json-audit-excludeif
https://ig.example.com:8443/home/json-audit-excludeif

{
 "_id": "830...-41",
 "timestamp": "2019-...540Z",
 "eventName": "OPENIG-HTTP-ACCESS",
 "transactionId": "830...-40",
 "client": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 51666
 },
 "http": {
 "request": {
 "secure": false,
 "method": "GET",
 "headers": {
 "accept": ["text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"],
 "user-agent": ["Mozilla/5.0 ... Firefox/66.0"]
 }
 }
 },
 "ig": {
 "exchangeId": "b3f...-56",
 "routeId": "30-json-excludeif",
 "routeName": "30-json-excludeif"
 }
}

Compare the audit event fields in access.audit.json with those produced in Recording access audit events in JSON, and
note that the audit event fields specified by the excludeIf property no longer appear in the logs.

Record user ID in audit events

The following sections provide examples of how to capture the AM user ID in audit logs.

Sample scripts are available in the openig-samples.jar file, to capture the user ID after SSO, CDSSO, OpenID, or SAML
authentication. The scripts inject the user ID into the RequestAuditContext so that it is available when the audit event is written.

Using the notes in the sample scripts, adapt the script for your deployment. For example, configure which user_info field to
capture in the audit event.

The audit service in these examples use a JsonStdoutAuditEventHandler, which writes audit events to standard output, but can be
any other audit service.

Record user ID in audit logs after SSO authentication

Before you start, set up and test the example in Authenticating with SSO.

Add the following script to PingGateway:

$HOME/.openig/scripts/groovy/InjectUserIdSso.groovy

3.

1.

Linux

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 559

%appdata%\OpenIG\scripts\groovy\InjectUserIdSso.groovy

Windows

Maintenance PingGateway

560 Copyright © 2025 Ping Identity Corporation

package scripts.groovy

import org.forgerock.openig.openam.SsoTokenContext
import org.forgerock.services.context.RequestAuditContext

/**
 * Sample ScriptableFilter implementation to capture the user id from the session
 * and inject it into the RequestAuditContext for later use when the audit event
 * is written.
 *
 * This ScriptableFilter should be added in the filter chain at whatever point the
 * desired user id is available - e.g. on the session after SSO.
 *
 * "handler": {
 * "type": "Chain",
 * "config": {
 * "filters": [{
 * "name": "SingleSignOnFilter-1",
 * "type": "SingleSignOnFilter",
 * "config": {
 * "amService": "AmService-1"
 * }
 * }, {
 * "type" : "ScriptableFilter",
 * "config" : {
 * "file" : "InjectUserIdSso.groovy",
 * "type": "application/x-groovy"
 * }
 * }
 *],
 * "handler" : "ReverseProxyHandler",
 * }
 *
 * When using the SSO/ CDSSO flow then the SsoTokenContext is guaranteed to exist and
 * be populated if there was no error. The RequestAuditContext is also guaranteed to
 * be available. Note also that if the SessionInfoFilter is present in the route then
 * a SessionInfoContext would be available in the context chain and could be queried
 * for user info.
 *
 * Implementors may decide which user id field to capture in the audit event:
 * - The sessionInfo universalId - 'universalId' - is always available as
 * provided by AM and resembles -
 * e.g. "id=bonnie,ou=user,o=myrealm,ou=services,dc=openam,dc=forgerock,dc=org".
 * - The sessionInfo username - mapped to 'username') resembles - e.g. "bonnie".
 * Field 'username' should be preferred to 'uid', which also points to 'username'.
 *
 * Additional error handling may be required.
 *
 * @see RequestAuditContext
 * @see SsoTokenContext
 * @see org.forgerock.openig.openam.SessionInfoContext
 */

def requestAuditContext = context.asContext(RequestAuditContext.class)
def ssoTokenContext = context.asContext(SsoTokenContext.class)

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 561

// The sessionInfo 'universalId' is always available, though 'username' may be unknown
requestAuditContext.setUserId(ssoTokenContext.universalId)

// Propagate the request to the next filter/ handler in the chain
next.handle(context, request)

The script captures the user ID after SSO or CDSSO authentication, and injects it into the RequestAuditContext so that it is
available when the audit event is written.

Replace sso.json with the following route:

$HOME/.openig/config/routes/audit-sso.json

%appdata%\OpenIG\config\routes\audit-sso.json

2.

Linux

Windows

Maintenance PingGateway

562 Copyright © 2025 Ping Identity Corporation

{
 "name": "audit-sso",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/audit-sso$')}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "config": {
 "name": "jsonstdout",
 "elasticsearchCompatible": false,
 "topics": [
 "access"
]
 }
 }
],
 "config": {}
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "auditService": "AuditService",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "type" : "ScriptableFilter",
 "config" : {
 "file" : "InjectUserIdSso.groovy",
 "type": "application/x-groovy"
 }
 }

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 563

],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route compared to sso.json :

The route matches requests to /home/audit-sso .

An audit service is included to publish access log messages to standard output.

The chain includes a scriptable filter that refers to InjectUserIdSso.groovy .

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/audit-sso. The
SingleSignOnFilter redirects the request to AM for authentication.

Log in to AM as user demo , password Ch4ng31t , and then allow the application to access user information.

The profile page of the sample application is displayed. The script captures the user ID from the session, and the
audit service includes it with the audit event.

Search the standard output for a message like this, containing the user ID:

◦

◦

◦

3.

1.

2.

3.

Maintenance PingGateway

564 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/audit-sso
https://ig.example.com:8443/home/audit-sso

{
 "_id": "23a...-23",
 "timestamp": "...",
 "eventName": "OPENIG-HTTP-ACCESS",
 "transactionId": "23a...-22",
 "userId": "id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "client": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 57843
 },
 "server": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 8080
 },
 "http": {
 "request": {
 "secure": false,
 "method": "GET",
 "path": "http://ig.example.com/home/audit-sso",
 "headers": {
 "accept": ["text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,/;q=0.8"],
 "host": ["ig.example.com:8080"],
 "user-agent": [...]
 }
 }
 },
 "response": {
 "status": "SUCCESSFUL",
 "statusCode": "200",
 "elapsedTime": 276,
 "elapsedTimeUnits": "MILLISECONDS"
 },
 "ig": {
 "exchangeId": "1dc...-26",
 "routeId": "audit-sso",
 "routeName": "audit-sso"
 },
 "source": "audit",
 "topic": "access",
 "level": "INFO"
}

Record user ID in audit logs after OpenID connect authentication

Before you start, set up and test the example in AM as a single OpenID Connect provider.

Set up the script:

Add the following example script to PingGateway:

$HOME/.openig/scripts/groovy/InjectUserIdOpenId.groovy

1.

1.

Linux

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 565

%appdata%\OpenIG\scripts\groovy\InjectUserIdOpenId.groovy

Windows

Maintenance PingGateway

566 Copyright © 2025 Ping Identity Corporation

package scripts.groovy

import org.forgerock.services.context.AttributesContext
import org.forgerock.services.context.RequestAuditContext

/**
 * Sample script implementation supporting user id injection in an OpenId scenario.
 * This sample captures the user id and injects it into the RequestAuditContext for
 * later use when the audit event is written.
 *
 * This ScriptableFilter should be added in the filter chain at whatever point the
 * desired user id is available - e.g. after OpenId client authentication (in the
 * OAuth2 authentication filter chain) - as follows:
 *
 * "handler" : {
 * "type" : "Chain",
 * "config" : {
 * "filters" : [{
 * "type" : "OAuth2ClientFilter",
 * "config" : {
 * ...
 * "target" : "${attributes.target}",
 * "registrations" : ["ClientRegistrationWithOpenIdScope"],
 * }
 * }, {
 * "type" : "ScriptableFilter",
 * "config" : {
 * "file" : "InjectUserIdOpenId.groovy",
 * "type": "application/x-groovy"
 * }
 * }],
 * "handler" : "display-user-info-groovy-handler"
 * }
 * }
 *
 * The ClientRegistration associated with the above OAuth2ClientFilter config will
 * require the 'openid' scope. The OAuth2SessionContext is guaranteed to exist and
 * be populated on successful authentication. The userinfo will then be populated
 * according to the OAuth2ClientFilter OpenId 'target' configuration (e.g. in this
 * sample, on the AttributesContext). The 'target' referenced will be populated
 * with a 'user_info' JSON value containing the userinfo. It should be noted that
 * the OAuth2ClientFilter 'target' config is a config-time expression, and cannot
 * be used in a ScriptableFilter to read runtime data. The RequestAuditContext is
 * also guaranteed to be available.
 *
 * Implementors may decide which 'user_info' field to capture in the audit event:
 * - The userinfo 'sub' field is the user's "complex" ID marked with a type - e.g.
 * "(usr!bonnie)".
 * - The userinfo 'subName' field is the user's username (or resource name) - e.g.
 * "bonnie".
 * - To capture the universalId (consistent with the session info universalId),
 * it is necessary to configure AM to provide it as a claim in the id-token. To
 * do this, edit the OIDC Claims Script to include the following line just prior
 * to the UserInfoClaims creation:
 * computedClaims["universalId"] = identity.universalId
 * - This will include 'universalId' in the userinfo which we can use with audit
 * e.g. "id=bonnie,ou=user,o=myrealm,ou=services,dc=openam,dc=forgerock,dc=org"
 *
 * Additional error handling may be required.
 *

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 567

 * @see RequestAuditContext
 * @see AttributesContext
 */

def requestAuditContext = context.asContext(RequestAuditContext.class)
def attributesContext = context.asContext(AttributesContext.class)

// The OAuth2ClientFilter captures userinfo based on its 'target' configuration.
// In this sample 'target' is configured as the AttributesContext with key "target".
// We can query this for 'user_info' values: 'sub', 'subName' or anything else
// made available via the OIDC Claims Script (see above).
def oauth2UserInfo = attributesContext.getAttributes().get("target")
requestAuditContext.setUserId(oauth2UserInfo.get("user_info").get("sub"))

// Propagate the request to the next filter/ handler in the chain
next.handle(context, request)

The script captures the user ID from the AuthorizationCodeOAuth2ClientFilter target object, by default at $
{attributes.openid} , and injects it into the RequestAuditContext so that it is available when the audit event is
written.

Edit the script to get the attributes from the openid target:

Replace attributesContext.getAttributes().get("target")

with attributesContext.getAttributes().get("openid") .

Replace 07-openid.json with the following route:

$HOME/.openig/config/routes/audit-oidc.json

%appdata%\OpenIG\config\routes\audit-oidc.json

2.

2.

Linux

Windows

Maintenance PingGateway

568 Copyright © 2025 Ping Identity Corporation

{
 "name": "audit-oidc",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/id_token')}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "config": {
 "name": "jsonstdout",
 "elasticsearchCompatible": false,
 "topics": [
 "access"
]
 }
 }
],
 "config": {}
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 }
],
 "auditService": "AuditService",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "AuthorizationCodeOAuth2ClientFilter-1",
 "type": "AuthorizationCodeOAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/home/id_token",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": [
 "text/plain"
]
 },
 "entity": "Error in OAuth 2.0 setup."
 }
 },
 "registrations": [
 {
 "name": "oidc-user-info-client",
 "type": "ClientRegistration",
 "config": {
 "clientId": "oidc_client",
 "clientSecretId": "oidc.secret.id",
 "issuer": {
 "name": "Issuer",

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 569

 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "http://am.example.com:8088/openam/oauth2/.well-known/openid-
configuration"
 }
 },
 "scopes": [
 "openid",
 "profile",
 "email"
],
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "tokenEndpointAuthMethod": "client_secret_basic"
 }
 }
],
 "requireHttps": false,
 "cacheExpiration": "disabled"
 }
 },
 {
 "type" : "ScriptableFilter",
 "config" : {
 "file" : "InjectUserIdOpenId.groovy",
 "type": "application/x-groovy"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route compared to 07-openid.json :

An audit service is included to publish access log messages to standard output.

The chain includes a scriptable filter that refers to InjectUserIdOpenId.groovy .

Test the setup:

In your browser’s privacy or incognito mode, go to https://ig.example.com:8443/home/id_token. The AM login
page is displayed.

Log in to AM as user demo , password Ch4ng31t , and then allow the application to access user information.

The home page of the sample application is displayed. The script captures the user ID from the openid target, and
the audit service includes it with the audit event.

Search the standard output for a message like this, containing the user ID:

◦

◦

3.

1.

2.

3.

Maintenance PingGateway

570 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/home/id_token
https://ig.example.com:8443/home/id_token

{
 "_id": "b64...-25",
 "timestamp": "2021...",
 "eventName": "OPENIG-HTTP-ACCESS",
 "transactionId": "b64...-24",
 "userId": "(usr!demo)",
 "client": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 64443
 },
 "server": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 8080
 },
 "http": {
 "request": {
 "secure": false,
 "method": "GET",
 "path": "http://ig.example.com:8080/home/id_token",
 "headers": {
 "accept": ["text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,/;q=0.8"],
 "host": ["ig.example.com:8080"],
 "user-agent": [...]
 }
 }
 },
 "response": {
 "status": "SUCCESSFUL",
 "statusCode": "200",
 "elapsedTime": 199,
 "elapsedTimeUnits": "MILLISECONDS"
 },
 "ig": {
 "exchangeId": "1dc...-26",
 "routeId": "audit-oidc",
 "routeName": "audit-oidc"
 },
 "source": "audit",
 "topic": "access",
 "level": "INFO"
}

Record user ID in audit logs after SAML authentication

Before you start, set up and test the example in SAML.

Set up the script:

Add the following example script to PingGateway:

emergency_home
This example uses the deprecated SamlFederationHandler. The SamlFederationHandler is replaced by the
SamlFederationFilter and will be removed in a future release.

Important

1.

1.

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 571

$HOME/.openig/scripts/groovy/InjectUserIdSaml.groovy

%appdata%\OpenIG\scripts\groovy\InjectUserIdSaml.groovy

Linux

Windows

Maintenance PingGateway

572 Copyright © 2025 Ping Identity Corporation

package scripts.groovy

import org.forgerock.http.session.SessionContext
import org.forgerock.services.context.RequestAuditContext

/**
 * Sample ScriptableFilter implementation to capture the user id obtained from a
 * SAML assertion. The IG SamlFederationHandler captures this and locates it on
 * the SessionContext with the key as the configured SAML 2 user id key. We then
 * take this and inject it into the RequestAuditContext for later use when the
 * audit event is written.
 *
 * This ScriptableFilter should be added in the filter chain together with the
 * SamlFederationHandler, as follows. Note that the InjectUserIdSaml.groovy script
 * operates on the response, injecting the userId as captured by the handler.
 *
 * {
 * "condition" : "${matches(request.uri.path,'^/api/saml')}",
 * "handler" : {
 * "type" : "Chain",
 * "config" : {
 * "filters" : [{
 * "type" : "ScriptableFilter",
 * "config" : {
 * "file" : "InjectUserIdSaml.groovy",
 * "type": "application/x-groovy"
 * }
 * }],
 * "handler" : {
 * "name" : "saml_handler_SPOne",
 * "type" : "SamlFederationHandler",
 * "config" : {
 * "assertionMapping" : {
 * "SPOne_userName" : "uid",
 * "SPOne_password" : "mail"
 * },
 * "redirectURI" : "/api/home",
 * "logoutURI" : "http://openig.example.com:8082/api/after_logout",
 * "subjectMapping" : "SubjectName_SPOne",
 * "authnContext" : "AuthnContext_SPOne",
 * "sessionIndexMapping" : "SessionIndex_SPOne"
 * }
 * }
 * }
 * }
 * }
 *
 * The SessionContext and RequestAuditContext are guaranteed to be available and the
 * SessionContext will have been populated with userinfo on successful authentication.
 *
 * Implementors may decide which user id field to capture in the audit event:
 * - This should be based on SAML attribute mappings and/ or the subject mapping (if
 * transient names are not used).
 * - Other attributes are available, such as 'uid' and 'userName', though it must be
 * noted that there is an expectation that the IDP makes available the user id.
 * - In this sample, 'SPOne_userName' maps to the 'uid'.
 *
 * Additional error handling may be required.
 *
 * @see RequestAuditContext

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 573

 * @see SessionContext
 */

// Propagate the request to the next filter/ handler in the chain
next.handle(context, request)
 .then({ response ->
 def requestAuditContext = context.asContext(RequestAuditContext.class)
 def sessionContext = context.asContext(SessionContext.class)

 // Inject the user id as captured by the SamlFederationHandler
 requestAuditContext.setUserId(sessionContext.getSession().get("SPOne_userName"))
 return response
 })

The script captures the user ID from the SessionContext subject or attribute mappings, provided by the
SamlFederationHandler from the inbound assertions. It injects the user ID into the RequestAuditContext so that it
is available when the audit event is written.

Replace get("SPOne_userName")) with get("username")) .

The script captures the user ID from the assertionMapping username , which is mapped in the route to cn .

Replace saml.json with the following route:

$HOME/.openig/config/routes/audit-saml.json

%appdata%\OpenIG\config\routes\audit-saml.json

2.

2.

Linux

Windows

Maintenance PingGateway

574 Copyright © 2025 Ping Identity Corporation

{
 "name": "audit-saml",
 "condition": "${find(request.uri.path, '^/saml')}",
 "session": "JwtSession",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "config": {
 "name": "jsonstdout",
 "elasticsearchCompatible": false,
 "topics": [
 "access"
]
 }
 }
],
 "config": {}
 }
 }
],
 "auditService": "AuditService",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type" : "ScriptableFilter",
 "config" : {
 "file" : "InjectUserIdSaml.groovy",
 "type": "application/x-groovy"
 }
 }
],
 "handler": {
 "type": "SamlFederationHandler",
 "config": {
 "useOriginalUri": true,
 "assertionMapping": {
 "username": "cn",
 "password": "sn"
 },
 "subjectMapping": "sp-subject-name",
 "redirectURI": "/home/federate"
 }
 }
 }
 }
}

Notice the following features of the route compared to saml.json :

An audit service is included to publish access log messages to standard output.

The main Handler is a Chain, that includes a scriptable filter to refer to InjectUserIdSaml.groovy .

◦

◦

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 575

The script uses the assertionMapping username to capture the user ID.

Test the setup:

In your browser’s privacy or incognito mode, go to IDP-initiated SSO.

Log in to AM with username demo and password Ch4ng31t .

PingGateway returns the response page showing that the the demo user has logged in. The script captures the
user ID from the session, and the audit service includes it with the audit event.

Search the standard output for a message like this, containing the user ID:

{
 "_id": "82f...-14",
 "timestamp": "2021-...",
 "eventName": "OPENIG-HTTP-ACCESS",
 "transactionId": "82f...-13",
 "userId": "demo",
 "client": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 60655
 },
 "server": {
 "ip": "0:0:0:0:0:0:0:1",
 "port": 8080
 },
 "http": {
 "request": {
 "secure": false,
 "method": "POST",
 "path": "http://sp.example.com:8080/saml/fedletapplication/metaAlias/sp",
 "headers": {
 "accept": ["text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,/;q=0.8"],
 "content-type": ["application/x-www-form-urlencoded"],
 "host": ["sp.example.com:8080"],
 "user-agent": [...]
 }
 }
 },
 "response": {
 "status": "SUCCESSFUL",
 "statusCode": "302",
 "elapsedTime": 2112,
 "elapsedTimeUnits": "MILLISECONDS"
 },
 "ig": {
 "exchangeId": "1dc...-26",
 "routeId": "audit-saml",
 "routeName": "audit-saml"
 },
 "source": "audit",
 "topic": "access",
 "level": "INFO"
}

◦

3.

1.

2.

3.

Maintenance PingGateway

576 Copyright © 2025 Ping Identity Corporation

http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp
http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp

Monitor services

The following sections describe how to set up and maintain monitoring in your deployment, to ensure appropriate performance
and service availability:

Access the monitoring endpoints

All ForgeRock products automatically expose a monitoring endpoint to expose metrics in a standard Prometheus format, and as a
JSON format monitoring resource.

In PingGateway, metrics are available for each router, subrouter, and route in the configuration. When a TimerDecorator is
configured, timer metrics are also available.

Learn more about PingGateway monitoring endpoints and available metrics in Monitoring.

Monitor at the Prometheus Scrape Endpoint

All ForgeRock products automatically expose a monitoring endpoint where Prometheus can scrape metrics, in a standard
Prometheus format.

When PingGateway is set up as described in the Quick install, the Prometheus Scrape Endpoint is available at the following
endpoints:

http://ig.example.com:8080/openig/metrics/prometheus/0.0.4

http://ig.example.com:8080/openig/metrics/prometheus (deprecated)

By default, no special setup or configuration is required to access metrics at these endpoints. The following example queries the
Prometheus Scrape Endpoint for a route.

Tools such as Grafana are available to create customized charts and graphs based on the information collected by Prometheus.
For more information on installing and running Grafana, refer to the Grafana website.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Add the following route to PingGateway:

$HOME/.openig/config/routes/myroute1.json

info
Prometheus metric names are deprecated and expected to be replaced with names ending in _total. The information
provided by the metric is not deprecated. Other Prometheus metrics are not affected.

Note

•

•

1.

1.

2.

Linux

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 577

http://ig.example.com:8080/openig/metrics/prometheus/0.0.4
http://ig.example.com:8080/openig/metrics/prometheus/0.0.4
http://ig.example.com:8080/openig/metrics/prometheus
http://ig.example.com:8080/openig/metrics/prometheus
https://grafana.com
https://grafana.com

%appdata%\OpenIG\config\routes\myroute1.json

{
 "name": "myroute1",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "Hello world, from myroute1!"
 }
 },
 "condition": "${find(request.uri.path, '^/myroute1')}"
}

The route contains a StaticResponseHandler to display a simple message.

Test the setup:

Access the route a few times, on https://ig.example.com:8443/myroute1.

Query the Prometheus Scrape Endpoint:

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
https://ig.example.com:8443/openig/metrics/prometheus/0.0.4

Metrics for myroute1 and _router are displayed.

Vert.x monitoring is enabled by default to provide additional metrics for HTTP, TCP, and the internal component
pool. The metrics provide low-level information about requests and responses, such as the number of bytes,
duration, and the number of concurrent requests.

Monitor the Common REST Monitoring Endpoint (deprecated)

All ForgeRock products expose a monitoring endpoint where metrics are exposed as a JSON format monitoring resource.

When PingGateway is set up as described in Quick install, the Common REST Monitoring Endpoint is available at https://
ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true

By default, no special setup or configuration is required to access metrics at this endpoint. The following example queries the
Common REST Monitoring Endpoint for a route, and restricts the query to specific metrics only.

Windows

2.

1.

2.

Maintenance PingGateway

578 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/myroute1
https://ig.example.com:8443/myroute1
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true

Before you start, prepare PingGateway as described in the Quick install.

Set up PingGateway and some example routes, as described in the first few steps of Monitor the Prometheus Scrape
Endpoint.

Query the Common REST Monitoring Endpoint:

$ curl "https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true"

Metrics for myroute1 and _router are displayed:

1.

2.

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 579

{
 "result" : [{
 "_id" : "gateway._router.deployed-routes",
 "value" : 1.0,
 "_type" : "gauge"
}, {
 "_id" : "gateway._router.route.default.request",
 "count" : 204,
 "_type" : "counter"
}, {
 "_id" : "gateway._router.route.default.request.active",
 "value" : 0.0,
 "_type" : "gauge"
}, {

 . . .

 _id" : "gateway._router.route.myroute1.response.status.unknown",
 "count" : 0,
 "_type" : "counter"
}, {
 "_id" : "gateway._router.route.myroute1.response.time",
 "count" : 204,
 "max" : 0.420135,
 "mean" : 0.08624678327176545,
 "min" : 0.045079999999999995,
 "p50" : 0.070241,
 "p75" : 0.096049,
 "p95" : 0.178534,
 "p98" : 0.227217,
 "p99" : 0.242554,
 "p999" : 0.420135,
 "stddev" : 0.046611762381930474,
 "m15_rate" : 0.2004491450567003,
 "m1_rate" : 2.8726563452698075,
 "m5_rate" : 0.5974045160056258,
 "mean_rate" : 0.010877725092634833,
 "duration_units" : "milliseconds",
 "rate_units" : "calls/second",
 "total" : 17.721825,
 "_type" : "timer"
}],
 "resultCount" : 11,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "EXACT",
 "totalPagedResults" : 11,
 "remainingPagedResults" : -1
}

Vert.x monitoring is enabled by default to provide additional metrics for HTTP, TCP, and the internal component pool. The
metrics provide low-level information about requests and responses, such as the number of bytes, duration, the number
of concurrent requests, and so on.

Change the query to access metrics only for myroute1 : https://ig.example.com:8443/openig/metrics/api?
_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+"gateway._router.route.myroute1".

Note that metric for the router, "_id" : "gateway._router.deployed-routes" , is no longer displayed.

3.

Maintenance PingGateway

580 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+%22gateway._router.route.myroute1"
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+%22gateway._router.route.myroute1"
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+%22gateway._router.route.myroute1"

Monitor Vert.x metrics

Vert.x monitoring is enabled by default to provide metrics for HTTP, TCP, and the internal component pool. The metrics provide
low-level information about requests and responses, such as the number of bytes, duration, the number of concurrent requests,
and so on.

To disable Vert.x monitoring, add the following lines to admin.json , and restart PingGateway:

{
 "vertx": {
 "metricsEnabled": false
 }
}

For more information, refer to AdminHttpApplication (admin.json).

Protect monitoring endpoints

By default, no special credentials or privileges are required for read-access to the Prometheus Scrape Endpoint and Common
REST Monitoring Endpoint.

To protect the monitoring endpoints, add an admin.json file to your configuration, with a filter declared in the heap and named
MetricsProtectionFilter . The following procedure gives an example of how to manage access to the monitoring endpoints.

Set up the procedure in Monitor at the Prometheus Scrape Endpoint, query the Prometheus Scrape Endpoint, and note
that metrics for myroute1 and _router are displayed:

$ curl -v "https://ig.example.com:8443/openig/metrics/prometheus"

Add the following script to the PingGateway configuration:

$HOME/.openig/scripts/groovy/BasicAuthResourceServerFilter.groovy

info
Vert.x metric names are deprecated and expected to be replaced with names ending in _total. The information
provided by the metric is not deprecated. Other Prometheus metrics are not affected.

Note

1.

2.

Linux

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 581

%appdata%\OpenIG\scripts\groovy\BasicAuthResourceServerFilter.groovy

/*
 * This script is a simple implementation of HTTP basic access authentication on
 * server side.
 * It expects the following arguments:
 * - realm: the realm to display when the user agent prompts for
 * username and password if none were provided.
 * - username: the expected username
 * - passwordSecretId: the secretId to find the password
 * - secretsProvider: the SecretsProvider to query for the password
*/
import static org.forgerock.util.promise.Promises.newResultPromise;

import java.nio.charset.Charset;
import org.forgerock.util.encode.Base64;
import org.forgerock.secrets.Purpose;
import org.forgerock.secrets.GenericSecret;

String authorizationHeader = request.getHeaders().getFirst("Authorization");
if (authorizationHeader == null) {
 // No credentials provided, return 401 Unauthorized
 Response response = new Response(Status.UNAUTHORIZED);
 response.getHeaders().put("WWW-Authenticate", "Basic realm=\"" + realm + "\"");
 return newResultPromise(response);
}

return secretsProvider.getNamed(Purpose.PASSWORD, passwordSecretId)
 .thenAsync(password -> {
 // Build basic authentication string -> username:password
 StringBuilder basicAuthString = new StringBuilder(username).append(":");
 password.revealAsUtf8{ p -> basicAuthString.append(new String(p).trim()) };
 String expectedAuthorization = "Basic " +
Base64.encode(basicAuthString.toString().getBytes(Charset.defaultCharset()));
 // Incorrect credentials provided, return 403 forbidden
 if (!expectedAuthorization.equals(authorizationHeader)) {
 return newResultPromise(new Response(Status.FORBIDDEN));
 }
 // Correct credentials provided, continue.
 return next.handle(context, request);
 },
 noSuchSecretException -> { throw new RuntimeException(noSuchSecretException); });

The script is a simple implementation of the HTTP basic access authentication scheme. For information about scripting
filters and handlers, refer to Extend.

Add the following heap configuration for MetricsProtectionFilter to admin.json :

Windows

3.

Maintenance PingGateway

582 Copyright © 2025 Ping Identity Corporation

{
 ...,
 "heap": [
 {
 "name": "ClientHandler",
 "type": "ClientHandler"
 },
 {
 "name": "mySecretsProvider",
 "type": "Base64EncodedSecretStore",
 "config": {
 "secrets": {
 "password.secret.id": "cGFzc3dvcmQ="
 }
 }
 },
 {
 "name": "MetricsProtectionFilter",
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "BasicAuthResourceServerFilter.groovy",
 "args": {
 "realm": "/",
 "username": "myUsername",
 "passwordSecretId": "password.secret.id",
 "secretsProvider": "${heap['mySecretsProvider']}"
 }
 }
 }
],
 ...
}

Notice the following features of the configuration:

The MetricsProtectionFilter uses the script to protect the monitoring endpoint.

The MetricsProtectionFilter requires the username myUsername , and a password provided by the SecretsProvider
in the heap.

Restart PingGateway.

Query the Prometheus Scrape Endpoint without providing credentials, and note that an HTTP 401 Unauthorized is
returned:

$ curl -v "https://ig.example.com:8443/openig/metrics/prometheus"

Query the Prometheus Scrape Endpoint by providing correct credentials, and note that metrics are displayed:

$ curl -v "https://ig.example.com:8443/openig/metrics/prometheus" -u myUsername:password

◦

◦

4.

5.

6.

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 583

Query the Prometheus Scrape Endpoint by providing incorrect credentials`, and note that an HTTP 403 Forbidden is
returned:

$ curl -v "https://ig.example.com:8443/openig/metrics/prometheus" -u myUsername:wrong-password

Manage sessions

For information about PingGateway sessions, refer to Sessions. Change PingGateway session properties in the following ways:

Manage logs

Log messages in PingGateway and third-party dependencies are recorded using the Logback implementation of the Simple
Logging Facade for Java (SLF4J) API. The following log levels are supported: TRACE , DEBUG , INFO , WARN , ERROR , ALL , and OFF .
For a full description of the options for logging, refer to the Logback website.

7.

Mode To change the session properties

Stateless sessions Configure the JwtSession object in the route that processes a request, or in its
ascending configuration.
For example, define the cookie property to configure the PingGateway session
name.

{
 "name": "JwtSession",
 "type": "JwtSession",
 "config": {
 "cookie": {
 "name": "MY_SESSIONID"
 }
 }
}

Stateful sessions Change the session property in admin.json , and restart PingGateway.
For example, add the following lines to admin.json to configure the PingGateway
session name:

"session": {
 "cookie": {
 "name": "MY_SESSIONID"
 }
 }

Maintenance PingGateway

584 Copyright © 2025 Ping Identity Corporation

http://logback.qos.ch/index.html
http://logback.qos.ch/index.html

Default logging behavior

By default, log messages are recorded with the following configuration:

When PingGateway starts, log messages for PingGateway and third-party dependencies, such as the ForgeRock Common
Audit framework, are displayed on the console and written to $HOME/.openig/logs/route-system.log , where
$HOME/.openig is the instance directory.

When a capture point for the default CaptureDecorator is defined in a route, for example, when "capture: "all" is set
as a top-level attribute of the JSON, log messages for requests and responses passing through the route are written to a
log file in $HOME/.openig/logs .

When no capture point is defined in a route, only exceptions thrown during request or response processing are logged.

For more information, refer to Capturing log messages for routes and CaptureDecorator.

By default, log messages with the level INFO or higher are recorded, with the titles and the top line of the stack trace.
Messages on the console are highlighted with a color related to their log level.

The content and format of logs in PingGateway is defined by the reference logback.xml delivered with PingGateway. This file
defines the following configuration items for logs:

A root logger to set the overall log level, and to write all log messages to the SIFT and STDOUT appenders.

A STDOUT appender to define the format of log messages on the console.

A SIFT appender to separate log messages according to the key routeId , to define when log files are rolled, and to
define the format of log messages in the file.

An exception logger, called LogAttachedExceptionFilter , to write log messages for exceptions attached to responses.

•

•

•

•

•

•

•

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 585

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

 <!--
 Prevent log flow attacks, by limiting repeated log messages.

 Configuration properties:
 * AllowedRepetitions (int): Threshold above which repeated messages are no longer logged.
 * CacheSize (int): When CacheSize is reached, remove the oldest entry.
 -->
 <!--<turboFilter class="ch.qos.logback.classic.turbo.DuplicateMessageFilter" />-->

 <!-- Allow configuration of JUL loggers within this file, without performance impact -->
 <contextListener class="ch.qos.logback.classic.jul.LevelChangePropagator" />

 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <withJansi>true</withJansi>
 <encoder>
 <pattern>%nopex[%thread] %highlight(%-5level) %boldWhite(%logger{35}) @%mdc{routeId:-system} -
%replace(%message){'([\r\n])(.)', '$1[CONTINUED]$2'}%n%highlight(%replace(%rootException{short}){'(^|[\r\n])(.)',
'$1[CONTINUED]$2'})</pattern>
 </encoder>
 </appender>

 <appender name="SIFT" class="ch.qos.logback.classic.sift.SiftingAppender">
 <discriminator>
 <key>routeId</key>
 <defaultValue>system</defaultValue>
 </discriminator>
 <sift>
 <!-- Create a separate log file for each <key> -->
 <appender name="FILE-${routeId}" class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>${instance.dir}/logs/route-${routeId}.log</file>

 <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
 <!-- Rotate files daily -->
 <fileNamePattern>${instance.dir}/logs/route-${routeId}-%d{yyyy-MM-dd}.%i.log</fileNamePattern>

 <!-- each file should be at most 100MB, keep 30 days worth of history, but at most 3GB -->
 <maxFileSize>100MB</maxFileSize>
 <maxHistory>30</maxHistory>
 <totalSizeCap>3GB</totalSizeCap>
 </rollingPolicy>

 <encoder>
 <pattern>%nopex%date{"yyyy-MM-dd'T'HH:mm:ss,SSSXXX", UTC} | %-5level | %thread | %logger{20} |
@%mdc{routeId:-system} | %replace(%message%n%xException){'([\r\n])(.)', '$1[CONTINUED]$2'}</pattern>
 </encoder>
 </appender>
 </sift>
 </appender>

 <!-- Disable logs of exceptions attached to responses by defining 'level' to OFF -->
 <logger name="org.forgerock.openig.filter.LogAttachedExceptionFilter" level="INHERITED" />

 <root level="${ROOT_LOG_LEVEL:-INFO}">
 <appender-ref ref="SIFT" />
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

Maintenance PingGateway

586 Copyright © 2025 Ping Identity Corporation

Using a custom Logback file

To change the logging behavior, create a new logback file at $HOME/.openig/config/logback.xml , and restart PingGateway. The
custom Logback file overrides the default configuration.

To take into account edits to logback.xml , stop and restart PingGateway, or edit the configuration parameter to add a scan
and an interval:

<configuration scan="true" scanPeriod="5 seconds">

The logback.xml file is scanned after both of the following criteria are met:

The specified number of logging operations have occurred, where the default is 16.

The scanPeriod has elapsed.

If the custom logback.xml contains errors, messages like these are displayed on the console but log messages are not recorded:

14:38:59,667 |-ERROR in ch.qos.logback.core.joran.spi.Interpreter@20:72 …
14:38:59,690 |-ERROR in ch.qos.logback.core.joran.action.AppenderRefAction …

Change the global log level

The global log level is set by default to INFO by the following line of the default logback.xml :

<root level="${ROOT_LOG_LEVEL:-INFO}">

The log level set in logback.xml supercedes the log level set by environment variables. When the global log level is not set in
logback.xml , set the global log level.

To persist the log level for all future PingGateway instances:

Add an environment variable in $HOME/.openig/bin/env.sh , where $HOME/.openig is the instance directory:

export ROOT_LOG_LEVEL=DEBUG

Alternatively, add a system property in $HOME/.openig/bin/env.sh , where $HOME/.openig is the instance
directory:

export JAVA_OPTS="-DROOT_LOG_LEVEL=DEBUG"

If both an environment variable and system property is set, the system property takes precedence.

To persist the log level for PingGateway instances launched from the same shell, add an environment variable in the shell
before you start PingGateway:

•

•

•

◦

◦

•

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 587

$ export ROOT_LOG_LEVEL=DEBUG
$ /path/to/identity-gateway-2024.6.0/bin/start.sh $HOME/.openig

C:\set ROOT_LOG_LEVEL=DEBUG
C:\path\to\identity-gateway-2024.6.0\bin\start.bat %appdata%\OpenIG

To persist the log level for a single PingGateway instance:

$ export ROOT_LOG_LEVEL=DEBUG /path/to/identity-gateway-2024.6.0/bin/start.sh $HOME/.openig

C:\set ROOT_LOG_LEVEL=DEBUG
C:\path\to\identity-gateway-2024.6.0\bin\start.bat %appdata%\OpenIG

Change the log level for different object types

To change the log level for a single object type without changing it for the rest of the configuration, edit logback.xml to add a
logger defined by the fully qualified class name or package name of the object, and set its log level.

The following line in logback.xml sets the ClientHandler log level to ERROR , but does not change the log level of other classes or
packages:

<logger name="org.forgerock.openig.handler.ClientHandler" level="ERROR" />

To facilitate debugging, in logback.xml add loggers defined by the fully qualified package name or class name of the object. For
example, add loggers for the following feature:

Linux

Windows

•

Linux

Windows

Maintenance PingGateway

588 Copyright © 2025 Ping Identity Corporation

Change the character set and format of log messages

By default, logs use the system default character set where PingGateway is running.

Feature Logger

OAuth 2.0 client authentication:

AuthorizationCodeOAuth2ClientFilter
ClientCredentialsOAuth2ClientFilter
ResourceOwnerOAuth2ClientFilter

org.forgerock.secrets.oauth2

Expression resolution org.forgerock.openig.el

org.forgerock.openig.resolver

WebSocket notifications org.forgerock.openig.tools.notifications.ws

Session management with JwtSession org.forgerock.openig.jwt

OAuth 2.0 and OpenID Connect and token resolution and
validation

org.forgerock.openig.filter.oauth2

AM policies, SSO, CDSSO, and user profiles org.forgerock.openig.openam

org.forgerock.openig.tools

SAML org.forgerock.openig.handler.saml

UMA org.forgerock.openig.uma

WebSocket tunnelling org.forgerock.openig.websocket

Secret resolution org.forgerock.secrets.propertyresolver

org.forgerock.secrets.jwkset

org.forgerock.secrets.keystore

org.forgerock.secrets.oauth2

org.forgerock.openig.secrets.Base64EncodedSecretStor

e

AllowOnlyFilter org.forgerock.openig.filter.allow.AllowOnlyFilter.<fi

lter_name>

Condition of a route org.forgerock.openig.handler.router.RouterHandler

Header field size io.vertx.core.http.impl.HttpServerImpl

•
•
•

lightbulb_2
If your logs might contain characters that are not in your system character set, edit logback.xml to change the
encoder part of the SIFT appender.

Tip

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 589

The following lines add the date to log messages, and change the character set:

<encoder>
 <pattern>%d{yyyyMMdd-HH:mm:ss} | %-5level | %thread | %logger{20} | %message%n%xException</pattern>
 <charset>UTF-8</charset>
</encoder>

For more information about what information you can include in the logs, and its format, refer to PatternLayoutEncoder and
Layouts in the Logback documentation.

Log in scripts

The logger object provides access to a unique SLF4J logger instance for scripts. Events are logged as defined in by a dedicated
logger in logback.xml , and are included in the logs with the name of with the scriptable object.

To log events for scripts:

Add logger objects to the script to enable logging at different levels. For example, add some of the following logger objects:

logger.error("ERROR")
logger.warn("WARN")
logger.info("INFO")
logger.debug("DEBUG")
logger.trace("TRACE")

Add a logger to logback.xml to reference the scriptable object and set the log level. The logger is defined by the type and
name of the scriptable object that references the script, as follows:

ScriptableFilter: org.forgerock.openig.filter.ScriptableFilter.filter_name

ScriptableHandler: org.forgerock.openig.handler.ScriptableHandler.handler_name

ScriptableThrottlingPolicy:
org.forgerock.openig.filter.throttling.ScriptableThrottlingPolicy.throttling_policy_name

ScriptableAccessTokenResolver:
org.forgerock.openig.filter.oauth2.ScriptableAccessTokenResolver.access_token_resolver_name

For example, the following logger logs trace-level messages for a ScriptableFilter named cors_filter :

<logger name="org.forgerock.openig.filter.ScriptableFilter.cors_filter" level="TRACE" />

The resulting messages in the logs contain the name of the scriptable object:

14:54:38:307 | TRACE | http-nio-8080-exec-6 | o.f.o.f.S.cors_filter | TRACE

•

•

◦

◦

◦

◦

Maintenance PingGateway

590 Copyright © 2025 Ping Identity Corporation

https://logback.qos.ch/manual/encoders.html#PatternLayoutEncoder
https://logback.qos.ch/manual/encoders.html#PatternLayoutEncoder
https://logback.qos.ch/manual/layouts.html
https://logback.qos.ch/manual/layouts.html
https://www.slf4j.org/api/org/slf4j/Logger.html
https://www.slf4j.org/api/org/slf4j/Logger.html

Log the BaseUriDecorator

During setup and configuration, it can be helpful to display log messages from the BaseUriDecorator. To record a log message
each time a request URI is rebased , edit logback.xml to add a logger defined by the fully qualified class name of the
BaseUriDecorator appended by the name of the baseURI decorator:

<logger name="org.forgerock.openig.decoration.baseuri.BaseUriDecorator.baseURI" level="TRACE" />

Each time a request URI is rebased, a log message similar to this is created:

12:27:40| TRACE | http-nio-8080-exec-3 | o.f.o.d.b.B.b.{Router}/handler| Rebasing request to http://app.example.com:
8081

Stop exception logging

To stop recording log messages for exceptions, edit logback.xml to set the level to OFF :

<logger name="org.forgerock.openig.filter.LogAttachedExceptionFilter" level="OFF" />

Capture the context or entity of messages for routes

To capture the context or entity of inbound and outbound messages for a route, or for an individual handler or filter in the route,
configure a CaptureDecorator. Captured information is written to SLF4J logs.

For more information about the decorator configuration, refer to CaptureDecorator.

Studio provides an easy way to capture messages while developing your configuration. The following image illustrates the capture
points where you can log messages on a route:

emergency_home
During debugging, consider using a CaptureDecorator to capture the entity and context of requests and responses.
However, increased logging consumes resources, such as disk space, and can cause performance issues. In
production, reduce logging by disabling the CaptureDecorator properties captureEntity and captureContext , or
setting maxEntityLength .

Important

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 591

Figure 1. Capturing log messages for routes
Capture messages on a route in Studio

In Studio, select ROUTES, and then select a route with the icon.

On the left side of the screen, select Capture, and then select capture options. You can capture the body and context of
messages passing to and from the user agent, the protected application, and the Ping Identity Platform.

Select Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is there.

Access the route, and then check $HOME/.openig/logs for a log file named by the route, where $HOME/.openig is the
instance directory. The log file should contain the messages defined by your capture configuration.

Limit repetitive log messages

To keep log files clean and readable, and to prevent log flow attacks, limit the number of repeat log messages. Add a custom
logback.xml with a DuplicateMessageFilter . This filter detects duplicate messages, and after the specified number of
repetitions, drops repeated messages.

The following example allows 5 repetitions of a log message, and holds the last 10 repeated messages in the cache:

<turboFilter class="ch.qos.logback.classic.turbo.DuplicateMessageFilter" allowedRepetitions="5" CacheSize="10" />

The DuplicateMessageFilter has the following limitations:

Filters out all duplicate messages. It does not filter per logger, or logger instance, or logger name.

Detects repetition of raw messages, meaning that the following example messages are considered as repetition:

logger.debug("Hello {}.", name0);
logger.debug("Hello {}.", name1);

Inbound requests

ForgeRockIdentityPlatform

Useragent
Protected
application

ForgeRockIdentityGateway
Inbound responses

Outbound requests

Outbound responses

ForgeRock Identity Platform requests ForgeRock Identity Platform responses

1.

2.

3.

4.

•

•

Maintenance PingGateway

592 Copyright © 2025 Ping Identity Corporation

Doesn’t limit the lifespan of the cache. After the specified number of repetitions is reached, the repeated log messages
never appear again, even if they’re frequently hit.

Tune performance

Tune deployments in the following steps:

Consider the issues that impact the performance of a deployment. See Define requirements and constraints.

Tune and test the downstream servers and applications:

Tune the downstream web container and JVM to achieve performance targets.

Test downstream servers and applications in a pre-production environment, under the expected load, and with
common use cases.

Increase hardware resources as required, and then re-tune the deployment.

Define requirements and constraints

When you consider performance requirements, bear in mind the following points:

The capabilities and limitations of downstream services or applications on your performance goals.

The increase in response time due to the extra network hop and processing, when PingGateway is inserted as a proxy in
front of a service or application.

The constraint that downstream limitations and response times place on PingGateway.

Service level objectives

A service level objective (SLO) is a target that you can measure quantitatively. Where possible, define SLOs to set out what
performance your users expect. Even if your first version of an SLO consists of guesses, it is a first step towards creating a clear
set of measurable goals for your performance tuning.

When you define SLOs, bear in mind that PingGateway can depend on external resources that can impact performance, such as
AM’s response time for token validation, policy evaluation, and so on. Consider measuring remote interactions to take
dependencies into account.

Consider defining SLOs for the following metrics of a route:

Average response time for a route.

The response time is the time to process and forward a request, and then receive, process, and forward the response
from the protected application.

The average response time can range from less than a millisecond, for a low latency connection on the same network, to
however long it takes your network to deliver the response.

Distribution of response times for a route.

Because applications set timeouts based on worst case scenarios, the distribution of response times can be more
important than the average response time.

•

1.

2.

1.

2.

3.

•

•

•

•

•

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 593

Peak throughput.

The maximum rate at which requests can be processed at peak times. Because applications are limited by their peak
throughput, this SLO is arguably more important than an SLO for average throughput.

Average throughput.

The average rate at which requests are processed.

Metrics are returned at the monitoring endpoints. For information about monitoring endpoints, refer to Monitoring. For
examples of how to set up monitoring in PingGateway, refer to Monitor services.

Available resources

With your defined SLOs, inventory the server, networks, storage, people, and other resources. Estimate whether it is possible to
meet the requirements, with the resources at hand.

Benchmarks

Before you can improve the performance of your deployment, establish an accurate benchmark of its current performance.
Consider creating a deployment scenario that you can control, measure, and reproduce.

For information about running Ping Identity Platform benchmark tests, refer to the ForgeOps documentation on benchmarks.
Adapt the scenarios as necessary for your PingGateway deployment.

Tune PingGateway

Consider the following recommendations for improving performance, throughput, and response times. Adjust the tuning to your
system workload and available resources, and then test suggestions before rolling them out into production.

Logs

Log messages in PingGateway and third-party dependencies are recorded using the Logback implementation of the Simple
Logging Facade for Java (SLF4J) API. By default, logging level is INFO.

To reduce the number of log messages, consider setting the logging level to error . For information, refer to Manage logs.

Buffering message content

PingGateway creates a TemporaryStorage object to buffer content during processing. For information about this object and its
default values, refer to TemporaryStorage.

Messages bigger than the buffer size are written to disk, consuming I/O resources and reducing throughput.

The default size of the buffer is 64 KB. If the number of concurrent messages in your application is generally bigger than the
default, consider allocating more heap memory or changing the initial or maximum size of the buffer.

To change the values, add a TemporaryStorage object named TemporaryStorage , and use non-default values.

Caches

When caches are enabled, PingGateway can reuse cached information without making additional or repeated queries for the
information. This gives the advantage of higher system performance, but the disadvantage of lower trust in results.

•

•

Maintenance PingGateway

594 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/forgeops/7.5/how-to/benchmark/overview.html
https://docs.pingidentity.com/forgeops/7.5/how-to/benchmark/overview.html

When caches are disabled, PingGateway must query a data store each time it needs data. This gives the disadvantage of lower
system performance, and the advantage of higher trust in results.

All caches provide similar configuration properties for timeout, defining the duration to cache entries. When the timeout is lower,
the cache is evicted more frequently, and consequently, the performance is lower but the trust in results is higher.

When you configure caches in PingGateway, make choices to balance your required performance with your security needs.

Learn more about PingGateway caches in Caches.

WebSocket notifications

By default, PingGateway receives WebSocket notifications from AM for the following events:

When a user logs out of AM, or when the AM session is modified, closed, or times out. PingGateway can use WebSocket
notifications to evict entries from the session cache. For an example of setting up session cache eviction, refer to Session
cache eviction.

When AM creates, deletes, or changes a policy decision. PingGateway can use WebSocket notifications to evict entries
from the policy cache. For an example of setting up policy cache eviction, refer to Using WebSocket notifications to evict
the policy cache.

When PingGateway automatically renews a WebSocket connection to AM. To configure WebSocket renewal, refer to the
notifications.renewalDelay property of AmService.

If the WebSocket connection is lost, during that time the WebSocket is not connected, PingGateway behaves as follows:

Responds to session service calls with an empty SessionInfo result.

When the SingleSignOn filter recieves an empty SessionInfo call, it concludes that the user is not logged in, and triggers a
login redirect.

Responds to policy evaluations with a deny policy result.

By default, PingGateway waits for five seconds before trying to re-establish the WebSocket connection. If it can’t re-establish the
connection, it keeps trying every five seconds.

To disable WebSocket notifications, or change any of the parameters, configure the notifications property in AmService. For
information, refer to AmService.

Tune the ClientHandler/ReverseProxyHandler

The ClientHandler/ReverseProxyHandler communicates as a client to a downstream third-party service or protected application.
The performance of the communication is determined by the following parameters:

The number of available connections to the downstream service or application.

The connection timeout, which is the maximum time to connect to a server-side socket before timing out and abandoning
the connection attempt.

The socket timeout, which is the maximum time a request can take before a response is received after which the request
is deemed to have failed.

Configure PingGateway in conjunction with PingGateway’s first-class Vert.x configuration, and the vertx property of
admin.json . For more information, refer to AdminHttpApplication (admin.json).

•

•

•

•

•

•

•

•

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 595

Vert.x options for tuning

Object Vert.x Option Description

PingGateway (first-class) gatewayUnits The number of deployed Vert.x Verticles. This
setting is effectively the number of cores that
PingGateway operates across, or in other words,
the number of available threads.
Each instance operates on the same port on its own
event-loop thread.
Default: Number of available cores. (This is the
optimal value.)

root.vertx eventLoopPoolSize The size of the pool available to service Verticles for
event-loop threads.
To guarantee that a single thread handles all I/O
events for a single request or response,
PingGateway deploys a Verticle onto each event
loop.
Configure eventLoopPoolSize to be greater than
or equal to gatewayUnits .
Default: 2 * number of available cores.
For more information, refer to Reactor and Multi-
Reactor.

root.connectors.<connector>.vertx acceptBacklog The maximum number of connections to queue
before refusing requests.
Default: 1024

sendBufferSize The TCP connection send buffer size.
Set this property according to the available RAM
and required number of concurrent connections.
Default: Use the Java TCP send buffer size default
settings that Java inherits from the operating
system.

receiveBufferSize The TCP receive buffer size.
Set this property according to the available RAM
and required number of concurrent connections.
Default: Use the Java TCP receive buffer size default
settings that Java inherits from the operating
system.

maxHeaderSize Set this property when HTTP headers manage large
values (such as JWT).
Default: 8 KB (8,192 bytes)

Maintenance PingGateway

596 Copyright © 2025 Ping Identity Corporation

https://vertx.io/docs/vertx-core/java/#_reactor_and_multi_reactor
https://vertx.io/docs/vertx-core/java/#_reactor_and_multi_reactor
https://vertx.io/docs/vertx-core/java/#_reactor_and_multi_reactor

Set the maximum number of file descriptors and processes per user

Each PingGateway instance in your environment should have access to at least 65,536 file descriptors to handle multiple client
connections.

Ensure that every PingGateway instance is allocated enough file descriptors. For example, use the ulimit -n command to check
the limits for a particular user:

$ su - iguser
$ ulimit -n

It may also be necessary to increase the number of processes available to the user running the PingGateway processes.

For example, use the ulimit -u command to check the process limits for a user:

$ su - iguser
$ ulimit -u

Refer to your operating system’s documentation for instructions on how to display and increase the file descriptors or process
limits for the operating system and for a given user.

Vert.x options for troubleshooting performance

Object Vert.x Option Description

root.vertx blockedThreadCheckInterval and
blockedThreadCheckIntervalUnit

The interval at which Vert.x checks for blocked threads and
logs a warning.
Default: 1 second

maxEventLoopExecuteTime and
maxEventLoopExecuteTimeUnit

The maximum execution time before Vert.x logs a warning.
Default: 2 seconds

warningExceptionTime and
warningExceptionTimeUnit

The threshold at which warning logs are accompanied by a
stack trace to identify cause.
Default: 5 seconds

logActivity Whether to log network activity.
Default: false

emergency_home
Before increasing the file descriptors for the PingGateway instance, ensure that the total amount of file descriptors
configured for the operating system is higher than 65,536.
If the PingGateway instance uses all of the file descriptors, the operating system will run out of file descriptors. This
may prevent other services from working, including those required for logging in the system.

Important

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 597

Tune PingGateway’s JVM

Start tuning the JVM with default values, and monitor the execution, paying particular attention to memory consumption, and GC
collection time and frequency. Incrementally adjust the configuration, and retest to find the best settings for memory and
garbage collection.

Make sure there is enough memory to accommodate the peak number of required connections, and make sure timeouts in
PingGateway and its container support latency in downstream servers and applications.

PingGateway makes low memory demands, and consumes mostly YoungGen memory. However, using caches, or proxying large
resources, increases the consumption of OldGen memory. For information about how to optimize JVM memory, refer to the
Oracle documentation.

Consider these points when choosing a JVM:

Find out which version of the JVM is available. More recent JVMs usually contain performance improvements, especially for
garbage collection.

Choose a 64-bit JVM if you need to maximize available memory.

Consider these points when choosing a GC:

Test GCs in realistic scenarios, and load them into a pre-production environment.

Choose a GC that is adapted to your requirements and limitations. Consider comparing the Garbage-First Collector (G1) and
Parallel GC in typical business use cases.

The G1 is targeted for multi-processor environments with large memories. It provides good overall performance without
the need for additional options. The G1 is designed to reduce garbage collection, through low-GC latency. It is largely self-
tuning, with an adaptive optimization algorithm.

The Parallel GC aims to improve garbage collection by following a high-throughput strategy, but it requires more full
garbage collections.

Learn more in Best practice for JVM Tuning with G1 GC.

Rotate keys

The following sections give an overview of how to manage rotation of encryption keys and signing keys, and include examples for
key rotation based on use cases from the Gateway guide.

About key rotation

Key rotation is the process of generating a new version of a key, assigning that version as the active key to encrypt or sign new
messages, or as a valid key to decrypt or validate messages, and then deprovisioning the old key.

Why and when to rotate keys

Regular key rotation is a security consideration that is sometimes required for internal business compliance. Regularly rotate keys
to:

Limit the amount of data protected by a single key.

•

•

•

•

•

Maintenance PingGateway

598 Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/article/best-practice-for-jvm-tuning-with-g1-gc
https://support.pingidentity.com/s/article/best-practice-for-jvm-tuning-with-g1-gc

Reduce dependence on specific keys, making it easier to migrate to stronger algorithms.

Prepare for when a key is compromised. The first time you try key rotation shouldn’t be during a real-time recovery.

Key revocation is a type of key rotation, done exceptionally if you suspect that a key has been compromised. To decide when to
revoke a key, consider the following points:

If limited use of the old keys can be tolerated, provision the new keys and then deprovision the old keys. Messages
produced before the new keys are provisioned are impacted.

If use of the old keys cannot be tolerated, deprovision the old keys before you provision the new keys. The system is
unusable until new keys are provisioned.

Steps for rotating symmetric keys

The following steps outline key rotation and revocation for symmetric keys managed by a KeyStoreSecretStore. For an example,
refer to Rotate keys in a shared JWT session.

Using OpenSSL, Keytool, or another key creation mechanism, create the new symmetric key. The keystore should contain
the old key and the new key.

Provision the new key.

In the mappings property of KeyStoreSecretStore, add the alias for the new key after the alias for the old key. The
new key is now valid. Because the old key is the first key in the list, it is the active key.

Move the new key to be the first key in the list. The new key is now the active key.

Deprovision the old key.

To ensure that no messages or users are impacted, wait until messages encrypted or signed with the old key are out of the
system before you deprovision the old key.

In the mappings property of KeyStoreSecretStore, delete the alias for the old key. The old key can no longer be
used.

Using OpenSSL, Keytool, or another key creation mechanism, delete the old symmetric key.

Steps for rotating asymmetric keys

The following steps outline the process for key rotation and revocation for asymmetric keys managed by a KeyStoreSecretStore or
HsmSecretStore. For an example, refer to Rotate keys for stateless access tokens signed with a KeyStoreSecretStore.

Create new asymmetric keys for signing and encryption, using OpenSSL, Keytool, or another key creation mechanism.

Provision the message consumer with the private portion of the new encryption key, and the public portion of the new
signing key.

The message consumer can now decrypt and verify messages with the old key and the new key.

Provision the message producer, with the public portion of the new encryption key, and the private portion of the signing
key. The message producer starts encrypting and signing messages with the new key, and stops using the old key.

Deprovision the message consumer with the private portion of the old encryption key, and the public portion of the old
signing key. The message consumer can no longer decrypt and verify messages with the old key.

•

•

•

•

1.

2.

1.

2.

3.

1.

2.

1.

2.

3.

4.

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 599

To ensure that no messages or users are impacted, wait until messages encrypted or signed with the corresponding old
key are out of the system before you deprovision the old key.

Deprovision the message producer, with the public portion of the old encryption key, and the private portion of old signing
key.

Key rotation for keys in a JWK set

When keys are provided by a JWK Set from AM, the key rotation is transparent to PingGateway. AM generates a key ID (kid) for
each key it exposes at the jwk_uri . For more information, refer to Mapping and rotating secrets in AM’s Security guide.

When PingGateway processes a request with a JWT containing a kid , PingGateway uses the kid to identify the key in the JWK
Set. If the kid is available at the jwk_uri on AM, PingGateway processes the request. Otherwise, PingGateway tries all
compatible secrets from the JWK Set. If none of the secrets work, the JWT is rejected.

Rotate keys for stateless access tokens signed with a KeyStoreSecretStore

This example extends the example in Validate signed access tokens with the StatelessAccessTokenResolver and
KeyStoreSecretStore to rotate the keys that sign an access token and verify the signature.

Rotate Keys For Stateless Access Tokens Signed With a KeyStoreSecretStore

Before you start, set up and test the example in Validate signed access tokens with the StatelessAccessTokenResolver and
KeyStoreSecretStore.

Set up the new keys:

Generate a new private key called signature-key-new , and a corresponding public certificate called
x509certificate-new.pem :

$ openssl req -x509 \
-newkey rsa:2048 \
-nodes \
-subj "/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout keystore_directory/signature-key-new.key \
-out keystore_directory/x509certificate-new.pem \
-days 365

... writing new private key to 'keystore_directory/signature-key-new.key'

Convert the private key and certificate files into a new PKCS#12 keystore file:

$ openssl pkcs12 \
-export \
-in keystore_directory/x509certificate-new.pem \
-inkey keystore_directory/signature-key-new.key \
-out keystore_directory/keystore-new.p12 \
-passout pass:password \
-name signature-key-new

List the keys in the new keystore:

5.

1.

1.

2.

3.

Maintenance PingGateway

600 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/security-guide/secret-mapping.html
https://docs.pingidentity.com/pingam/7.5/security-guide/secret-mapping.html

$ keytool -list \
-keystore "keystore_directory/keystore-new.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 1 entry
Alias name: signature-key-new

Import the new keystore into keystore.p12 , so that keystore.p12 contains both keys:

$ keytool -importkeystore
-srckeystore keystore_directory/keystore-new.p12
-srcstoretype pkcs12
-srcstorepass password
-destkeystore keystore_directory/keystore.p12
-deststoretype pkcs12
-deststorepass password

Entry for alias signature-key-new successfully imported ...

List the keys in keystore.p12 , to make sure it contains the new and old keys:

$ keytool -list \
-keystore "keystore_directory/keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 2 entries
Alias name: signature-key
Alias name: signature-key-new

Set up AM:

Copy the updated keystore to AM:

Copy keystore.p12 to AM:

$ cp keystore_directory/keystore.p12 am_keystore_directory/AM_keystore.p12

List the keys in the updated AM keystore:

4.

5.

2.

1.

1.

2.

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 601

$ keytool -list \
-keystore "am_keystore_directory/AM_keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 2 entries
Alias name: signature-key
Alias name: signature-key-new

Restart AM to update the keystore cache.

Update the KeyStoreSecretStore on AM:

In AM, select Secret Stores > keystoresecretstore.

Select the Mappings tab, and in am.services.oauth2.stateless .signing.RSA add the alias signature-
key-new .

The mapping now contains two aliases, but the alias signature-key is still the active alias. AM still uses
signature-key to sign tokens.

Drag signature-key-new above signature-key .

AM now uses signature-key-new to sign tokens.

Set up PingGateway:

Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS (server-side).

Import the public certificate to the PingGateway keystore, with the alias verification-key-new :

$ keytool -import \
-trustcacerts \
-rfc \
-alias verification-key-new \
-file "keystore_directory/x509certificate-new.pem" \
-keystore "ig_keystore_directory/IG_keystore.p12" \
-storetype PKCS12 \
-storepass "password"

...
Trust this certificate? [no]: yes
Certificate was added to keystore

List the keys in the PingGateway keystore:

3.

2.

1.

2.

3.

3.

1.

2.

3.

Maintenance PingGateway

602 Copyright © 2025 Ping Identity Corporation

$ keytool -list \
-keystore "ig_keystore_directory/IG_keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 2 entries
Alias name: verification-key
Alias name: verification-key-new

In rs-stateless-signed-ksss.json , edit the KeyStoreSecretStore mapping with the new verification key:

"mappings": [
 {
 "secretId": "stateless.access.token.verification.key",
 "aliases": ["verification-key", "verification-key-new"]
 }
]

If the Router scanInterval is disabled, restart PingGateway to reload the route.

PingGateway can now check the authenticity of access tokens signed with verification-key , the old key, and
verification-key-new , the new key. However, AM signs with the old key.

Test the setup:

Get an access token for the demo user, using the scope myscope :

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=myscope" \
http://am.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

Display the token:

$ echo ${mytoken}

Access the route by providing the token returned in the previous step:

4.

4.

1.

2.

3.

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 603

$ curl -v \
--cacert /path/to/secrets/ig.example.com-certificate.pem \
--header "Authorization: Bearer ${mytoken}" \
https://ig.example.com:8443/rs-stateless-signed-ksss

...
Decoded access_token: {
sub=demo,
cts=OAUTH2_STATELESS_GRANT,
...

Deprovision Old Keys

Remove signature-key from the AM keystore:

Delete the key from the keystore:

$ keytool -delete \
-keystore "am_keystore_directory/AM_keystore.p12" \
-storepass "password" \
-alias signature-key

List the keys in the AM keystore to make sure signature-key is removed:

$ keytool -list \
-keystore "am_keystore_directory/AM_keystore-new.p12" \
-storepass "password" \
-storetype PKCS12

Restart AM.

Remove verification-key from the PingGateway keystore:

Delete the key from the keystore:

$ keytool -delete \
-keystore "ig_keystore_directory/IG_keystore.p12" \
-storepass "password" \
-alias verification-key

List the keys in the PingGateway keystore to make sure that verification-key is removed:

$ keytool -list \
-keystore "ig_keystore_directory/IG_keystore.p12" \
-storepass "password" \
-storetype PKCS12

1.

1.

2.

3.

2.

1.

2.

Maintenance PingGateway

604 Copyright © 2025 Ping Identity Corporation

In AM, delete the mapping for signature-key from keystoresecretstore .

In PingGateway, delete the mapping for verification-key from the route rs-stateless-signed-ksss.json . If the
Router scanInterval is disabled, restart PingGateway to reload the route.

Rotate keys in a shared JWT session

This section builds on the example in Share JWT session between multiple instances of PingGateway to rotate a key used in a
shared JWT session.

When a JWT session is shared between multiple instances of PingGateway, the instances are able to share the session information
for load balancing and failover.

Before you start, set up the example in Set up shared secrets for multiple instances of PingGateway, where three instances of
PingGateway share a JwtSession and use the same authenticated encryption key. Instance 1 acts as a load balancer, and
generates a session. Instances 2 and 3 access the session information.

Test the setup with the existing key, symmetric-key :

Access instance 1 to generate a session:

$ curl -v http://ig.example.com:8001/log-in-and-generate-session

GET /log-in-and-generate-session HTTP/1.1
...

HTTP/1.1 200 OK
Content-Length: 84
Set-Cookie: IG=eyJ...HyI; Path=/; Domain=.example.com; HttpOnly
...
Sam Carter logged IN. (JWT session generated)

Using the JWT cookie returned in the previous step, access instance 2:

$ curl -v http://ig.example.com:8001/webapp/browsing?one --header "cookie:IG=<JWT cookie>"

GET /webapp/browsing?one HTTP/1.1
...
cookie: IG=eyJ...QHyI
...
HTTP/1.1 200 OK
...
Hello, Sam Carter !! (instance2)

Note that instance 2 can access the session info.

Using the JWT cookie again, access instance 3:

3.

4.

1.

1.

2.

3.

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 605

$ curl -v http://ig.example.com:8001/webapp/browsing?two --header "Cookie:IG=<JWT cookie>"

GET /webapp/browsing?two HTTP/1.1
...
cookie: IG=eyJ...QHyI
...
HTTP/1.1 200 OK
...
Hello, Sam Carter !! (instance3)

Note that instance 3 can access the session info.

Commission a new key:

Generate a new encryption key, called symmetric-key-new , in the existing keystore:

$ keytool \
-genseckey \
-alias symmetric-key-new
-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \
-storepass password \
-storetype PKCS12 \
-keyalg HmacSHA512 \
-keysize 512

Make sure the keystore contains the old key and the new key:

$ keytool \
-list \
-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \
-storepass password \
-storetype PKCS12

...
Your keystore contains 2 entries
symmetric-key, ...
symmetric-key-new ...

Add the key alias to instance1-loadbalancer.json , instance2-retrieve-session-username.json , and
instance3-retrieve-session-username.json , for each PingGateway instance, as follows:

"mappings": [{
 "secretId": "jwtsession.encryption.secret.id",
 "aliases": ["symmetric-key", "symmetric-key-new"]
}]

If the Router scanInterval is disabled, restart PingGateway to reload the route.

The active key is symmetric-key , and the valid key is symmetric-key-new .

2.

1.

2.

3.

Maintenance PingGateway

606 Copyright © 2025 Ping Identity Corporation

Test the setup again, as described in step 1, and make sure instances 2 and 3 can still access the session
information.

Make the new key the active key for generating sessions:

In instance1-loadbalancer.json , change the order of the keys to make symmetric-key-new the active key, and
symmetric-key the valid key:

"mappings": [{
 "secretId": "jwtsession.encryption.secret.id",
 "aliases": ["symmetric-key-new", "symmetric-key"]
}]

Don’t change instance2-retrieve-session-username.json or instance3-retrieve-session-username.json .

Test the setup again, as described in step 1, and make sure instances 2 and 3 can still access the session
information.

Instance 1 creates the session using the new active key, symmetric-key-new .

Because symmetric-key-new is declared as a valid key in instances 2 and 3, the instances can still access the
session. It isn’t necessary to make symmetric-key-new the active key.

Decommission the old key:

Remove the old key from all of the routes, as follows:

"mappings": [{
 "secretId": "jwtsession.encryption.secret.id",
 "aliases": ["symmetric-key-new"]
}]

Key symmetric-key-new is the only key in the routes.

Remove the old key, symmetric-key , from the keystore:

Delete symmetric-key :

$ keytool \
-delete \
-alias symmetric-key \
-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \
-storepass password \
-storetype PKCS12 \
-keypass password

Make sure the keystore contains only symmetric-key-new :

4.

3.

1.

2.

4.

1.

2.

1.

2.

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 607

$ keytool \
-list \
-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \
-storepass password \
-storetype PKCS12

...
Your keystore contains 1 entry
symmetric-key-new ...

Test the setup again, as described in step 1, and make sure instances 2 and 3 can still access the session
information.

Troubleshoot

ForgeRock provides support services, professional services, training through ForgeRock University, and partner services to help
you set up and maintain your deployments.

Getting support

Ping Identity provides support services, professional services, training, and partner services to assist you in setting up and
maintaining your deployments. For a general overview of these services, see https://www.pingidentity.com.

Ping Identity has staff members around the globe who support our international customers and partners. For details on Ping
Identity’s support offering, visit https://www.pingidentity.com/support.

Ping Identity publishes comprehensive documentation online:

The Ping Identity Knowledge Base offers a large and increasing number of up-to-date, practical articles that help you
deploy and manage Ping Identity Platform software.

While many articles are visible to everyone, Ping Identity customers have access to much more, including advanced
information for customers using Ping Identity Platform software in a mission-critical capacity.

Ping Identity product documentation, such as this document, aims to be technically accurate and complete with respect to
the software documented. It is visible to everyone and covers all product features and examples of how to use them.

Getting info about the problem

When trying to solve a problem, save time by asking the following questions:

How do you reproduce the problem?

What behavior do you expect, and what behavior do you have?

When did the problem start occurring?

Are their circumstances in which the problem does not occur?

Is the problem permanent, intermittent, getting better, getting worse, or staying the same?

3.

•

•

•

•

•

•

•

Maintenance PingGateway

608 Copyright © 2025 Ping Identity Corporation

https://www.pingidentity.com
https://www.pingidentity.com
https://www.pingidentity.com/support
https://www.pingidentity.com/support
https://support.pingidentity.com/s/knowledge-base
https://support.pingidentity.com/s/knowledge-base

If you contact ForgeRock for help, include the following information with your request:

The product version and build information. This information is included in the logs when PingGateway starts up. If
PingGateway is running in development mode, and set up as described in the Quick install, access the information at
http://ig.example.com:8080/openig/api/info or https://ig.example.com:8443/openig/api/info.

Description of the problem, including when the problem occurs and its impact on your operation.

Steps you took to reproduce the problem.

Relevant access and error logs, stack traces, and core dumps.

Description of the environment, including the following information:

Machine type

Operating system and version

Web server or container and version

Java version

Patches or other software that might affect the problem

Start up

If PingGateway doesn’t restart or load routes after a first startup, search route-system.log for lines containing Error while
starting… or Unable to start … and use the error message to debug the issue.

If PingGateway shuts down without using the stop.sh or stop.bat script, the PID file isn’t removed and PingGateway can’t
restart. This can happen when you use the PingGateway service to stop or restart PingGateway, or when PingGateway is deployed
in Docker.

Remove the PID file or change the configuration as described in Allow startup when there is an existing PID file.

Resources

By default, AM 5 and later writes cookies to the fully qualified domain name of the server; for example, am.example.com .
Therefore, a host-based cookie, rather than a domain-based cookie, is set.

Consequently, after authentication through PingAM, requests can be redirected to PingAM instead of to the resource.

To resolve this issue, add a cookie domain to the PingAM configuration. For example, in the AM admin UI, go to Configure >
Global Services > Platform, and add the domain example.com .

When the sample application is used with PingGateway in the documentation examples, the sample application must serve static
resources, such as the .css. Add the following route to the PingGateway configuration:

•

•

•

•

•

◦

◦

◦

◦

◦

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 609

https://ig.example.com:8443/openig/api/info
https://ig.example.com:8443/openig/api/info

{
 "name" : "00-static-resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${find(request.uri.path,'^/css') or matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or
matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",
 "handler": "ReverseProxyHandler"
}

Define an entity for the response, as in the following example:

{
 "name": "AccessDeniedHandler",
 "type": "StaticResponseHandler",
 "config": {
 "status": 403,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><p>User does not have permission</p></body></html>"
 }
}

Routes

Symptom

The following errors are in ${route-system.log}:

... | ERROR | main | o.f.o.h.r.RouterHandler | no handler to dispatch to

08:22:54:974 | ERROR | http-... | o.f.o.h.DispatchHandler | no handler to dispatch to for URI 'http://
ig.example.com/demo'

Cause

PingGateway is not configured to handle the incoming request or the request to the specified URI:

"no handler to dispatch to": the router cannot find a route that accepts the incoming request. This error happens
when none of the route conditions match the incoming request and there is no default route.

"no handler to dispatch to for URI": the router cannot find a route that can handle the request to the specified URI
because none of the route conditions match the request path (URI).

Solution

If the errors occur during the startup, they are safe to ignore. If the errors occur after the startup, do the following:

Identify why the request matched none of the Route conditions, and adapt the conditions. For examples, refer to
Example conditions and requests.

•

•

•

Maintenance PingGateway

610 Copyright © 2025 Ping Identity Corporation

Add a default handler to the Router.

Add a default route for when no condition is met.

If you have the following error, you have specified "handler": "Router2" in config.json or in the route, but no handler
configuration object named Router2 exists:

org.forgerock.json.fluent.JsonValueException: /handler:
 object Router2 not found in heap
 at org.forgerock.openig.heap.HeapImpl.resolve(HeapImpl.java:351)
 at org.forgerock.openig.heap.HeapImpl.resolve(HeapImpl.java:334)
 at org.forgerock.openig.heap.HeapImpl.getHandler(HeapImpl.java:538)

Make sure you have added an entry for the handler, and that you have correctly spelled its name.

When the JSON for a route is not valid, PingGateway does not load the route. Instead, a description of the error appears in the
log.

Use a JSON editor or JSON validation tool such as JSONLint to make sure your JSON is valid.

PingGateway loads all configurations at startup, and, by default, periodically reloads changed route configurations.

If you make changes to a route that result in an invalid configuration, PingGateway logs errors, but it keeps the previous, correct
configuration, and continues to use the old route.

PingGateway only uses the new configuration after you save a valid version or when you restart PingGateway.

Of course, if you restart PingGateway with an invalid route configuration, then PingGateway tries to load the invalid route at
startup and logs an error. In that case, if there is no default handler to accept any incoming request for the invalid route, then you
have an error, No handler to dispatch to .

PingGateway returns an exception if it loads a route for which it can’t resolve a requirement. For example, when you load a route
that uses an AmService object, the object must be available in the AM configuration.

If you add routes to a configuration when the environment is not ready, rename the route to prevent PingGateway from loading
it. For example, rename a route as follows:

$ mv $HOME/.openig/config/routes/03-sql.json $HOME/.openig/config/routes/03-sql.inactive

If necessary, restart PingGateway to reload the configuration. When you have configured the environment, change the file
extension back to .json .

Studio

Studio deploys and undeploys routes through a main router named _router , which is the name of the main router in the default
configuration. If you use a custom config.json , make sure it contains a main router named _router .

For information about creating routes in Studio, refer to the Studio guide.

•

•

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 611

http://jsonlint.com/
http://jsonlint.com/

Timeout errors

Problem: After a request is sent to PingGateway, PingGateway seems to hang. An HTTP 502 Bad Gateway error is produced, and
the PingGateway log is flushed with SocketTimeoutException warnings.

Possible cause: The baseURI configuration is missing or causes the request to return to PingGateway, so PingGateway can’t
produce a response to the request.

Possible solution: Configure the baseURI to use a different host and port to PingGateway.

Other problems

Make sure the user running PingGateway can read the flat file. Remember that values include spaces and tabs between the
separator, so make sure the values are not padded with spaces.

The following error can be encountered when using an AssignmentFilter as described in AssignmentFilter and setting a string
value for one of the headers.

HTTP ERROR 500
 Problem accessing /myURL . Reason:
 java.lang.String cannot be cast to java.util.List
 Caused by:
 java.lang.ClassCastException: java.lang.String cannot be cast to java.util.List

All headers are stored in lists so the header must be addressed with a subscript. For example, rather than trying to set
request.headers['Location'] for a redirect in the response object, you should instead set request.headers['Location'][0] .
A header without a subscript leads to the error above.

When a request is longer than 4096 bytes, it can cause an HTTP 414 URI Too Long response.

The default limit for request length is set by the Vert.x configuration DEFAULT_MAX_INITIAL_LINE_LENGTH . This default acts on the
connectors property of admin.json.

When working with requests constructed with parameters and query strings, such as for SAML or token transformation, where
the request can become long consider setting the Vert.x property getMaxInitialLineLength to increase the limit.

The following example configuration in admin.json increases the request length limit to 9999 bytes:

"connectors": [
 {
 "vertx": {
 "maxInitialLineLength": 9999,
 ...
 }
 }
]

The following log message indicates that the client or server side has disconnected and PingGateway has ignored the event.

Maintenance PingGateway

612 Copyright © 2025 Ping Identity Corporation

[vert.x-eventloop-thread-2] DEBUG ... @system - Connection error. Ignored.
[CONTINUED]java.nio.channels.ClosedChannelException: null

This type of error occurs when a network component closes the connection. This can occur when:

A load balancer or firewall terminates or times out connections

Third-party network changes prevent successful connections

Increase logging to provide more information, as described in Manage logs.

•

•

PingGateway Maintenance

Copyright © 2025 Ping Identity Corporation 613

Security

Use this guide to reduce risk and mitigate threats to PingGateway security.

Access

The following sections describe how to prevent unwanted access to your deployment, and reduce the amount of non-essential
information that it provides.

Threats

Understand and address security threats.

Operating systems

Secure your operating systems.

Connections

Secure network connections.

Access

Remove non-essential access and features,
update patches, and manage cookies.

Keys and Secrets

Manage keys and secrets.

Audit Trails

Audit events in your deployment.

PingGateway Security

Copyright © 2025 Ping Identity Corporation 615

Use a PingGateway service account

Install and run PingGateway from a dedicated service account. This is optional when evaluating PingGateway, but essential in
production installations. For more information, refer to Create a PingGateway service account.

Remove non-essential access

Make sure only authorized people can access your servers and applications through the appropriate network, using the
appropriate ports, and by presenting strong-enough credentials.

Apply the principle of least privilege to PingGateway logs and configuration directories. For more information, refer to
Configuration location.

Make sure that users connect to systems through the latest versions of TLS, and audit system access periodically.

Restrict access to your monitoring data by protecting the Prometheus Scrape Endpoint and Common REST Monitoring Endpoint
(deprecated). Learn more from Protecting the monitoring endpoints.

Prevent PingGateway from scanning for changes to routes. For information, see scanInterval in Router.

Disable administration endpoints and Studio by setting the PingGateway run mode to production . For information, refer to
Operating modes.

Remove non-essential features

The more features you have turned on, the greater the attack surface. If something isn’t used, uninstall it, disable it, or protect
access to it.

Update patches

Prevent the exploitation of security vulnerabilities by using up-to-date versions of PingGateway and third-party software.

Review and follow the Ping Identity security advisories.

Follow similar lists from all of your vendors.

Manage sessions

Expire PingOne Advanced Identity Cloud and AM sessions

To minimize the time an attacker can attack an active session, set expiration timeouts for every PingOne Advanced Identity Cloud
and AM session. Set timeouts according to context of the deployment, balancing security and usability so that the user can
complete operations without the session frequently expiring.

For more information, refer to OWASP’s Session Management Cheat Sheet.

Set a maximum session lifetime and idle time in PingOne Advanced Identity Cloud:

In the Advanced Identity Cloud admin UI, select open_in_new Native Consoles > Access Management.

In the AM admin UI, select Services > Add a Service and add a Session service.

•

•

Security PingGateway

616 Copyright © 2025 Ping Identity Corporation

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-expiration
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#session-expiration

Specify the following properties in minutes:

Maximum Session Time

Maximum Idle Time

Set a maximum session lifetime and idle time in PingAM:

In the AM admin UI, select Services > Add a Service and add a Session service.

Specify the following properties in minutes:

Maximum Session Time

Maximum Idle Time

Validate the signature of PingOne Advanced Identity Cloud and AM session cookies

Always configure verificationSecretId in the CrossDomainSingleSignOnFilter.

When verificationSecretId is not configured, PingGateway does not verify the signature of AM session tokens, increasing the
risk of CDSSO token tampering.

Manage cookies

Increase the security of cookies genrated by PingGateway or the protected application in the following ways:

Change the default name of cookies to prevent them from being easily associated with an application.

Create cookies with the secure flag to ensure that browsers cannot transmit the cookie over non-SSL.

When cookies have the secure flag, the first hop of the connection between the user agent and protected application
must be secure (over HTTPs); subsequent hops do not have to be secure. In this example, the first hop from the user
agent to NGINX is secure, the subsequent hop to PingGateway is not secure:

User agent -> NGINX (https://acme.com) -> PingGateway (http://gateway:8080)-> protected application (https://
internal.app:8081)

Create cookies with the httpOnly flag, to ensure that the cookie cannot be accessed through client-side scripts, and to
mitigate any cross-site scripting attacks.

Cookies are httpOnly by default in admin.json , JwtSession, CrossDomainSingleSignOnFilter, and FragmentFilter.

Set the samesite attribute of cookies to STRICT or LAX . For more information, refer to SameSite cookies.

Set a timeout for cookies, to strike a good compromise between security and usability.

Harden a PingGateway configuration by configuring the following objects:

For stateful sessions, configure the session.cookie property in admin.json.

For stateless sessions, configure the cookie property of JwtSession.

For authentication results, configure the authCookie property of CrossDomainSingleSignOnFilter.

•

◦

◦

•

•

◦

◦

•

•

•

•

•

•

•

•

PingGateway Security

Copyright © 2025 Ping Identity Corporation 617

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

For the fragment part of a URI when a request triggers a login redirect, configure the cookie property of FragmentFilter.

Threats

The following sections describe some of the possible threats to PingGateway, which you can mitigate by following the instructions
in this guide.

Out-of-date software

Prevent the exploitation of security vulnerabilities by using up-to-date versions of PingGateway and third-party software.

Review and follow the Ping Identity security advisories.

Follow similar lists from all of your vendors.

Reconnaissance

The initial phase of an attack sequence is often reconnaissance. Limit the amount of information available to attackers during
reconnaissance, as follows:

Avoid using words that help to identify PingGateway in error messages, such as those produced by the entity in a
StaticResponseHandler. For information, see StaticResponseHandler.

Use the lowest level of logging necessary. For example, consider logging at the ERROR or WARNING level, instead of TRACE
or MESSAGE . For information, refer to Changing the global log level.

Cross-site scripting

When using a StaticResponseHandler, secure responses from cross-site scripting attacks, as follows:

Sanitize any external input, such as the request, before incorporating it in the response.

Specify Content-Type in the headers property of StaticResponseHandler when an entity is used. (Required by default,
from PingGateway 7.)

Set the response header X-Content-Type-Options: nosniff to prevent the user agent from interpreting the response
entity as a different content type. (Set by default, from PingGateway 7.)

Set a restrictive value in the Cache-Control response header. For example, setting Cache-Control: private indicates
that all or part of the response message is intended for a single user and MUST NOT be cached by a shared cache.

Compromised passwords

Despite efforts to improve how people manage passwords, users have more passwords than ever before, and many use weak
passwords. You are strongly encouraged to use a password manager to generate secure passwords. You can use identity and
access management services to avoid password proliferation, and you can ensure the safety of passwords that you cannot
eliminate.

•

•

•

•

•

•

•

Security PingGateway

618 Copyright © 2025 Ping Identity Corporation

Manage passwords for server administration securely. Passwords supplied to PingGateway can be provided in files, through
environment variables, or as system property values. Choose the approach that is most appropriate and secure for your
deployment.

Misconfiguration

Misconfiguration can arise from bad or mistaken configuration decisions, and from poor change management. Depending on the
configuration error, features can stop working in obvious or subtle ways, and potentially introduce security vulnerabilities.

The following behaviour can be caused by misconfiguration:

Routes fail to load, or succeed in loading but cause unexpected behaviour.

For example, if a configuration change prevents the server from making HTTPS connections, many applications can no
longer connect, and the problem is detected immediately. However, if a configuration change allows insecure TLS protocol
versions or cipher suites for HTTPS connections, some applications negotiate insecure TLS, but appear to continue to work
properly.

Access policy is not correctly enforced.

Incorrect parameters for secure connections and incorrect Access Control Instructions (ACI) can lead to overly permissive
access to data, and potentially to a security breach.

The server fails to restart.

Although failure to start a server is not directly a threat to security, it can affect service availability.

To guard against bad configuration decisions, implement good change management:

For all enabled features, document why they are enabled and what your configuration choices mean. This implies a review
of configuration settings, including default settings that you accept.

Validate configuration decisions with thorough testing.

Maintain a record of your configurations and the changes applied.

For example, use a filtered audit log. Use version control software for any configuration scripts and to record changes to
configuration files.

Maintain a record of external changes to the system, such as changes to operating system configuration, and updates to
software, such as the JVM that introduces security changes.

Unauthorized access

Data theft can occur when access policies are too permissive, and when the credentials to gain access are too easily cracked. It
can also occur when the data is not protected, when administrative roles are too permissive, and when administrative credentials
are poorly managed.

Poor risk management

Threats can arise when plans fail to account for outside risks. To mitigate risk, develop appropriate answers to at least the
following questions:

What happens when a server or an entire data center becomes unavailable?

•

•

•

•

•

•

•

•

PingGateway Security

Copyright © 2025 Ping Identity Corporation 619

How do you remedy a serious security issue in the service, either in the PingGateway software or the connected systems?

How do you validate mitigation plans and remedial actions?

How do client applications work when the PingGateway offline?

If client applications require always-on services, how do your operations ensure high availability, even when a server goes
offline?

For critical services, test expected operation and disaster recovery operation.

Operating systems

When you deploy PingGateway, familiarize yourself with the recommendations for the host operating systems that you use. For
comprehensive information about securing operating systems, refer to the CIS Benchmark documentation.

System updates

Over the lifetime of a deployment, the operating system might be subject to vulnerabilities. Some vulnerabilities require system
upgrades, whereas others require only configuration changes. All updates require proactive planning and careful testing.

For the operating systems used in production, put a plan in place for avoiding and resolving security issues. The plan should
answer the following questions:

How does your organization become aware of system security issues early?

This could involve following bug reports, mailing lists, forums, and other sources of information.

How do you test security fixes, including configuration changes, patches, service packs, and system updates?

Validate the changes first in development, then in one or more test environments, then in production in the same way you
would validate other changes to the deployment.

How do you roll out solutions for security issues?

In some cases, fixes might involve both changes to the service, and specific actions by those who use the service.

What must you communicate about security issues?

How must you respond to security issues?

Software providers often do not communicate what they know about a vulnerability until they have a way to mitigate or fix the
problem. Once they do communicate about security issues, the information is likely to become public knowledge quickly. Make
sure you can expedite resolution of security issues.

To resolve security issues quickly, make sure you are ready to validate any changes that must be made. When you validate a
change, check that the fix resolves the security issue. Validate that the system and PingGateway software continue to function as
expected in all the ways they are used.

System audits

System audit logs make it possible to uncover system-level security policy violations that are not recorded in PingGateway, such
as unauthorized access to PingGateway files. Such violations are not recorded in PingGateway logs or monitoring information.

•

•

•

•

•

•

•

•

Security PingGateway

620 Copyright © 2025 Ping Identity Corporation

https://downloads.cisecurity.org/#/
https://downloads.cisecurity.org/#/

Also consider how to prevent or at least detect tampering. A malicious user violating security policy is likely to try to remove
evidence of how security was compromised.

Unused features

By default, operating systems include many features, accounts, and services that PingGateway software does not require. Each
optional feature, account, and service on the system brings a risk of additional vulnerabilities. To reduce the surface of attack,
enable only required features, system accounts, and services. Disable or remove those that are not needed for the deployment.

The features needed to run and manage PingGateway software securely include the following:

A Java runtime environment, required to run PingGateway software.

Software to secure access to service management tools; in particular, when administrators access the system remotely.

Software to secure access for remote transfer of software updates, backup files, and log files.

Software to manage system-level authentication, authorization, and accounts.

Firewall software, intrusion-detection/intrusion-prevention software.

Software to allow auditing access to the system.

System update software to allow updates that you have validated previously.

If required for the deployment, system access management software such as SELinux.

Any other software that is clearly indispensable to the deployment.

Consider the minimal installation options for your operating system, and the options to turn off features.

Consider configuration options for system hardening to further limit access even to required services.

For each account used to run a necessary service, limit the access granted to the account to what is required. This reduces the
risk that a vulnerability in access to one account affects multiple services across the system.

Make sure you validate the operating system behavior every time you deploy new or changed software. When preparing the
deployment and when testing changes, maintain a full operating system with PingGateway software that is not used for any
publicly available services, but only for troubleshooting problems that might stem from the system being too minimally
configured.

Network connections

Protect network traffic by using HTTPS where possible, and secure communications during stateless sessions by signing and/or
encrypting JWTs. For information about configuring PingGateway for HTTPS client-side and HTTPS server-side, refer to the
Installation guide.

•

•

•

•

•

•

•

•

•

PingGateway Security

Copyright © 2025 Ping Identity Corporation 621

Recommendations for incoming connections (from clients to PingGateway).

Protocol Recommendations

HTTP HTTP connections that are not protected by SSL/TLS use cleartext messages. When
you permit insecure connections, you cannot prevent client applications from
sending sensitive data. For example, a client could send unprotected credentials in
an HTTP Authorization header. Even if the server were to reject the request, the
credentials would already be leaked to any eavesdroppers.
Always use HTTPS for connections up to a load-balancer or proxy in front of the
web application or server.

HTTPS Follow industry-standard TLS recommendations for Security/Server Side TLS.
Use a secure version of TLS/SSL to connect to TLS-protected endpoints with HTTP
connection handlers, such as ClientHandler and ReverseProxyHandler. TLS
protocols below 1.2 aren’t considered secure.
Some client applications require a higher level of trust, such as clients with
additional privileges or access. Client application deployers might find it easier to
manage public keys as credentials than to manage user name/password
credentials. Client applications can use SSL client authentication.
When using PingGateway REST to LDAP gateway, use HTTPS to protect client
connections.

JMX Secure JMX access with the SSL/TLS-related properties, such as use-ssl and
others.

SSH PingGateway administration tools can connect securely.
Administrators should use SSH when changing the PingGateway configuration or
binaries.
The user account for running PingGateway should not be the same user account
for connecting remotely.
Secure Copy (SCP) uses SSH to transfer files securely. SCP is an appropriate
protocol for copying backup data, for example.

Recommendations for outgoing connections (from PingGateway to another service.)

Client Recommendations

Common Audit event handlers Configure ForgeRock Common Audit event handlers to use HTTPS when connecting
to external log services.

OAuth 2.0-based HTTP authorization
mechanisms

HTTP authorization can be based on OAuth 2.0, where PingGateway servers act as
resource servers, and make requests to resolve OAuth 2.0 tokens.
Use HTTPS to protect the connections to OAuth2ResourceServerFilter and
AuthorizationCodeOAuth2ClientFilter. For information, refer to
OAuth2ResourceServerFilter and AuthorizationCodeOAuth2ClientFilter.

Security PingGateway

622 Copyright © 2025 Ping Identity Corporation

https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS

Message-level security

Server protocols such as HTTP and JMX rely on TLS to protect connections. To enforce secure communication, configure TLS as
follows:

HTTPS server-side: Configure admin.json, Configure PingGateway for TLS (server-side).

HTTPS client-side: Configure trust managers and key managers, as described in Configure PingGateway for TLS (client-
side).

When negotiating connection security, the server and client must use a common security protocol and cipher suite. In
ClientTlsOptions and ServerTlsOptions, define lists of security protocols and cipher suites. For security, use the most recent
protocols and ciphers that the client supports. Clients with older TLS implementations might not support the most recent
protocols and ciphers.

Keys and secrets

PingGateway uses cryptographic keys for encryption, signing, and securing network connections, and passwords. The following
sections describe how to secure keys and secrets in your deployment.

About secrets

PingGateway uses the Commons Secrets API to manage secrets, such as passwords and cryptographic keys.

Repositories of secrets are managed through secret stores, provided to the configuration by the SecretsProvider object or
secrets object.

Learn more from:

Secrets

SecretsProvider

Secret types

PingGateway uses the following secret types:

GenericSecret

An opaque blob of bytes, such as a password or API key, without any metadata.

A GenericSecret cannot be used to perform cryptographic operations.

CryptoKey

A secret that contains either a private or shared key, and/or a public certificate. A CryptoKey contains the secret material
itself and its metadata; for example, the associated algorithm or key type.

This secret type can be used for cryptographic operations. For example:

A Base64EncodedSecretStore can only serve secrets of the GenericSecret type.

•

•

•

•

•

PingGateway Security

Copyright © 2025 Ping Identity Corporation 623

An HsmSecretStore can only server secrets of the CryptoKey type.

A FileSystemSecretStore can serve secrets of both types.

Secret terminology

PingGateway uses the following terms to describe secrets:

Secret ID

A label to indicate the purpose of a secret. A secret ID is generally associated with one or more aliases of a key in a
keystore or HSM.

Stable ID

A label to identify a secret. The stable ID corresponds to the following values in each type of secret store:

Base64EncodedSecretStore: The value of secret-id in the "secret-id": "string" pair.

FileSystemSecretStore: The filename of a file in the specified directory, without the prefix/suffix defined in the store
configuration.

HsmSecretStore: The value of an alias in a secret-id / aliases mapping.

JwkSetSecretStore: The value of the kid of a JWK stored in a JwkSetSecretStore.

KeyStoreSecretStore: The value of an alias in a secret-id / aliases mapping.

SystemAndEnvSecretStore: The name of a system property or environment. variable

Valid secret

A secret whose purpose matches the secret ID and any purpose constraints. Constraints can include requirements for the
following:

Secret type, such as signing key or encryption key

Cryptographic algorithm, such as Diffie-Hellman and RSA

Signature algorithm, such as ES256 and ES384

Constraints are defined when the secret is generated, and cannot be added after.

Named secret

A valid secret that a secret store can find by using a secret ID and stable ID.

Active secret

A valid secrets that’s considered eligible at the time of use. The way that the active secret is chosen is determined by the
type of secret store. For more information, refer to Secrets,

About keys and certificates

The examples in this documentation use self-signed certificates, but your deployment is likely to use certificates issued by a
certificate authority (CA certificates).

•

•

•

•

•

•

•

•

•

•

•

Security PingGateway

624 Copyright © 2025 Ping Identity Corporation

The way to obtain CA certificates depends on the certificate authority that you are using, and is not described in this document.
As an example, refer to Let’s Encrypt.

Integrate CA certificates by using secret stores:

For PEM files, use a FileSystemSecretStore and PemPropertyFormat

For PKCS12 keystores, use a KeyStoreSecretStore

For examples, refer to Serve the same certificate for TLS connections to all server names.

Note the following points about using secrets:

When PingGateway starts up, it listens for HTTPS connections, using the ServerTlsOptions configuration in admin.json .
The keys and certificates are fetched at startup.

Keys and certificates must be present at startup.

If keys or certificates change, you must to restart PingGateway.

When the autoRefresh property of FileSystemSecretStore or KeyStoreSecretStore is enabled, the secret store is
automatically reloaded when the filesystem or keystore is changed.

For information about secret stores provided in PingGateway, refer to Secrets.

Validate the signature of signed tokens

PingGateway validates the signature of signed tokens as described here.

Named secret resolution

If a JWT contains a kid , PingGateway queries the secret stores declared in secretsProvider or secrets to find a named secret,
identified by a secret ID and stable ID.

If a named secret is found, PingGateway then uses the named secret to try to validate the signature. If the named secret can’t
validate the signature, the token is considered as invalid.

If a named secret isn’t found, PingGateway tries valid secret resolution.

Valid secret resolution

PingGateway uses the value of verificationSecretId as the secret ID, and queries the declared secret stores to find all secrets
that match the provided secret ID.

All matching secrets are returned as valid secrets, in the order that the secret stores are declared, and for KeyStoreSecretStore
and HsmSecretStore, in the order defined by the mappings.

PingGateway tries to verify the signature with each valid secret, starting with the first valid secret, and stopping when it succeeds.

If no valid secrets are returned, or if none of the valid secrets can verify the signature, the token is considered as invalid.

For examples where a StatelessAccessTokenResolver uses a secret store to validate the signature of signed tokens, refer to the
example sections of JwkSetSecretStore and KeyStoreSecretStore.

•

•

•

•

•

•

PingGateway Security

Copyright © 2025 Ping Identity Corporation 625

https://letsencrypt.org/getting-started.html
https://letsencrypt.org/getting-started.html

Using multiple secret stores in a configuration

When multiple secrets stores are provided in a configuration, the secrets stores are queried in the following order:

Locally in the route, starting with the first secret store in the list, up to the last.

In ascending parent routes, starting with the first secret store in each list, up to the last.

In config.json , starting with the first secret store in the list, up to the last.

If a secrets store is not configured in config.json , the secret is queried in a default SystemAndEnvSecretStore, and a
base64-encoded value is expected.

If a secret is not resolved, an error is produced.

Secrets stores defined in admin.json can be accessed only by heap objects in admin.json .

Algorithms for elliptic curve digital signatures

When the Elliptic Curve Digital Signature Algorithm (ECDSA) is used for signing, and both of the following conditions are met, JWTs
are signed with a deterministic ECDSA:

Bouncy Castle is installed.

The system property org.forgerock.secrets.preferDeterministicEcdsa is true , which is its default value.

Otherwise, when ECDSA is used for signing, JWTs are signed with a non-deterministic ECDSA.

A non-deterministic ECDSA signature can be verified by the equivalent deterministic algorithm.

For information about deterministic ECDSA, refer to RFC 6979. For information about Bouncy Castle, refer to The Legion of the
Bouncy Castle.

Update cryptography

Different algorithms and methods are discovered and tested over time, and communities of experts decide which are the most
secure for different uses. Use up-to-date cryptographic methods and algorithms to generate keys.

Use strong keys

Small keys are easily compromised. Use at least the recommended key size.

In JVM, the default ephemeral Diffie-Hellman (DH) key size is 1024 bits. To support stronger ephemeral DH keys, and protect
against weak keys, consider setting the following system property to increase the DH key size:
jdk.tls.ephemeralDHKeySize=2048 .

For more information, refer to Customizing size of ephemeral Diffie-Hellman keys

•

•

•

•

•

•

•

warning
Legacy keystore types such as JKS and JCEKS are supported but are not secure. Consider using the PKCS#12 keystore
type.

Warning

Security PingGateway

626 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc6979
https://www.rfc-editor.org/rfc/rfc6979
https://www.bouncycastle.org
https://www.bouncycastle.org
https://www.bouncycastle.org
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#customizing_dh_keys
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#customizing_dh_keys

Rotate keys

Rotate keys regularly to:

Limit the amount of data protected by a single key.

Reduce dependence on specific keys, making it easier to migrate to stronger algorithms.

Prepare for when a key is compromised. The first time you try key rotation shouldn’t be during a real-time recovery.

Conform to internal business compliance requirements.

For more information, refer to Rotate keys.

Audits and logs

Audit trails

Audits in PingGateway record access to a route. Audit logs in operating systems detect system login attempts and changes to the
software.

The PingGateway audit logging service adheres to the log structure common across the Ping Identity Platform. For information,
refer to Audit the deployment.

Prevent logging of sensitive data for audit events by excluding fields from the audit logs. For information, refer to Including or
excluding audit event fields in logs.

Log files

Logs in PingGateway contain informational, error, and warning events, to troubleshoot and debug transactions and events that
take place within the PingGateway instance.

Protect logs from unauthorised access, and make sure they contain a minimum of sensitive or personally identifiable information
that could be used in attacks.

When using a CaptureDecorator, mask captured header and attribute values to avoid disclosing information, such as token values
or passwords. For information, refer to CaptureDecorator.

Limit the number of repeat log messages to prevent log flow attacks, by adding a custom logback.xml with a
DuplicateMessageFilter . For information, refer to Limit repetitive log messages.

•

•

•

•

PingGateway Security

Copyright © 2025 Ping Identity Corporation 627

Reference

This guide describes configuration options for PingGateway. It is for PingGateway designers, developers, and administrators.

For API specifications, refer to the appropriate Javadoc.

The examples in this guide use some of the following third-party tools:

curl : https://curl.haxx.se

HTTPie : https://httpie.org

jq : https://stedolan.github.io/jq/

keytool : https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html

Reserved routes

By default, PingGateway reserves all paths starting with /openig for administrative use, and only local client applications can
access resources exposed under /openig .

PingGateway uses an ApiProtectionFilter to protect reserved routes. By default, the ApiProtectionFilter allows access to reserved
routes only from the loopback address. To override this behavior, declare a custom ApiProtectionFilter in the top-level heap. For
an example, refer to the CORS filter described in Set up the UMA example.

For information about how to change the base for administrative routes, refer to Change the base location.

Reserved field names

PingGateway reserves all configuration field names that contain only alphanumeric characters.

If you must define your own field names, for example, in custom decorators, use names with dots, . , or dashes, - . Examples
include my-decorator and com.example.myDecorator .

Field value conventions

PingGateway configuration uses JSON notation.

This reference uses the following terms when referring to values of configuration object fields:

array

JSON array.

boolean

Either true or false .

certificate

java.security.cert.Certificate instance.

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 629

https://curl.haxx.se
https://curl.haxx.se
https://httpie.org
https://httpie.org
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html
http://json.org
http://json.org
http://json.org
http://json.org

configuration token

Configuration tokens introduce variables into the server configuration. They can take values from Java system properties,
environment variables, JSON and Java properties files held in specified directories, and from properties configured in
routes. For more information, refer to JSON Evaluation.

duration

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds . Durations are not
case sensitive, and negative durations are not supported. The following units can be used in durations:

indefinite , infinity , undefined , unlimited : unlimited duration

zero , disabled : zero-length duration

days , day , d : days

hours , hour , h : hours

minutes , minute , min , m : minutes

seconds , second , sec , s : seconds

milliseconds , millisecond , millisec , millis , milli , ms : milliseconds

microseconds , microsecond , microsec , micros , micro , us , µs : microseconds

nanoseconds , nanosecond , nanosec , nanos , nano , ns : nanoseconds

enumeration

A collections of constants.

expression

See Expressions.

configuration expression

Expression evaluated at configuration time, when routes are loaded. See Configuration Expressions.

runtime expression

Expression evaluated at runtime, for each request and response. See Runtime Expressions.

instant

An instantaneous point on the timeline, as a Java type. For more information, see Class Instant.

JsonValue

An object (JsonObject), an array (JsonArray), a number (JsonNumber), a string (JsonString), true (JsonValue.TRUE), false
(JsonValue.FALSE), or null (JsonValue.NULL).

•

•

•

•

•

•

•

•

•

Reference PingGateway

630 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/time/Duration.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/time/Duration.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Instant.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Instant.html

lvalue-expression

Expression yielding an object whose value is to be set.

Properties whose format is lvalue-expression cannot consume streamed content. They must be written with $ instead
of # .

map

An object that maps keys to values. Keys must be unique, and can map to at most one value.

number

JSON number.

object

JSON object where the content depends on the object’s type.

pattern

A regular expression according to the rules for the Java Pattern class.

pattern-template

Template for referencing capturing groups in a pattern by using $n , where n is the index number of the capturing group
starting from zero.

For example, if the pattern is \w+\s*=\s*(\w)+ , the pattern-template is $1 , and the text to match is key = value , the
pattern-template yields value .

reference

References an object in the following ways:

An inline configuration object, where the name is optional.

A configuration expression that is a string or contains variable elements that evaluate to a string, where the string
is the name of an object declared in the heap.

For example, the following temporaryStorage object takes the value of the system property storage.ref , which
must a be string equivalent to the name of an object defined in the heap:

{
 "temporaryStorage": "${system['storage.ref']}"
}

secret-id

String that references a secret managed by the ForgeRock Commons Secrets API, as described in Secrets.

The secret ID must conform to the following regex pattern: Pattern.compile("(\\.[a-zA-Z0-9])*");

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 631

http://json.org
http://json.org
http://json.org
http://json.org
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

string

JSON string.

url

String representation for a resource available via the Internet. For more information, refer to Uniform Resource Locators
(URL).

About Common REST

Common REST is a common REST API framework. It provides Ping Identity Platform software common ways to access web
resources and collections of resources. Adapt the examples in this section to your resources and deployment.

Common REST resources

Servers generally return JSON-format resources, though resource formats can depend on the implementation.

Resources in collections can be found by their unique identifiers (IDs). IDs are exposed in the resource URIs. For example, if a
server has a user collection under /users , then you can access a user at /users/user-id . The ID is also the value of the _id
field of the resource.

Resources are versioned using revision numbers. A revision is specified in the resource’s _rev field. Revisions make it possible to
figure out whether to apply changes without resource locking and without distributed transactions.

Common REST verbs

The Common REST APIs use the following verbs, sometimes referred to collectively as CRUDPAQ . For details and HTTP-based
examples of each, follow the links to the sections for each verb.

Create

Add a new resource.

This verb maps to HTTP PUT or HTTP POST.

For details, see Create.

Read

Retrieve a single resource.

This verb maps to HTTP GET.

For details, see Read.

info
This page describes the full Common REST framework. Some platform component products do not implement all
Common REST behaviors exactly as described. For details, refer to the product-specific examples and reference
information.

Note

Reference PingGateway

632 Copyright © 2025 Ping Identity Corporation

http://json.org
http://json.org
https://www.ietf.org/rfc/rfc1738.txt
https://www.ietf.org/rfc/rfc1738.txt
https://www.ietf.org/rfc/rfc1738.txt

Update

Replace an existing resource.

This verb maps to HTTP PUT.

For details, see Update.

Delete

Remove an existing resource.

This verb maps to HTTP DELETE.

For details, see Delete.

Patch

Modify part of an existing resource.

This verb maps to HTTP PATCH.

For details, see Patch.

Action

Perform a predefined action.

This verb maps to HTTP POST.

For details, see Action.

Query

Search a collection of resources.

This verb maps to HTTP GET.

For details, see Query.

Common REST parameters

Common REST reserved query string parameter names start with an underscore, _ . Reserved query string parameters include,
but are not limited to, the following names:

_action

_api

_crestapi

_fields

_mimeType

_pageSize

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 633

_pagedResultsCookie

_pagedResultsOffset

_prettyPrint

_queryExpression

_queryFilter

_queryId

_sortKeys

_totalPagedResultsPolicy

Continue reading for details about how to use each parameter.

Common REST extension points

The action verb is the main vehicle for extensions. For example, to create a new user with HTTP POST rather than HTTP PUT, you
might use /users?_action=create . A server can define additional actions. For example, /tasks/1?_action=cancel .

A server can define stored queries to call by ID. For example, /groups?_queryId=hasDeletedMembers . Stored queries can call for
additional parameters. The parameters are also passed in the query string. Which parameters are valid depends on the stored
query.

Common REST headers

Accept-API-Version

Common REST APIs use the Accept-API-Version header to specify protocol and resource versions:

Accept-API-Version: protocol=version,resource=version

protocol

The version reflects changes in the Common REST protocol, such as common method parameters and headers specified
by the protocol itself, or the input or response conventions it prescribes.

For example, protocol version 2.2 introduced the _countOnly parameter.

resource

The version reflects changes in the resource implementation, including JSON representation of resources, input
parameters required, and incompatible behavior changes.

For example, the version changes when errorMessage changes to message in a JSON response.

Whether this header is required depends on the product and API you make the request to.

•

•

•

•

•

•

•

•

info
Some parameter values are not safe for URLs, so URL-encode parameter values as necessary.

Note

Reference PingGateway

634 Copyright © 2025 Ping Identity Corporation

X-ForgeRock-TransactionId

Common REST APIs use the X-ForgeRock-TransactionId header to track related requests through Ping Identity Platform.

X-ForgeRock-TransactionId: transactionID

The transactionID consists of a unique identifier for the transaction optionally followed by a sequence number for the individual
request.

This header is optional. In self-managed deployments, you configure products to trust transaction IDs and let them propagate for
audit purposes.

Common REST API documentation

Common REST APIs often depend at least in part on runtime configuration. Many Common REST endpoints therefore serve API
descriptors at runtime. An API descriptor documents the actual API as it is configured.

Use the following query string parameters to retrieve API descriptors:

_api

Serves an API descriptor that complies with the OpenAPI specification.

This API descriptor represents the API accessible over HTTP. It is suitable for use with popular tools such as Swagger UI.

_crestapi

Serves a native Common REST API descriptor.

This API descriptor provides a compact representation that is not dependent on the transport protocol. It requires a client
that understands Common REST, as it omits many Common REST defaults.

To publish OpenAPI documentation

In production systems, developers expect stable, well-documented APIs. Rather than retrieving API descriptors at runtime
through Common REST, prepare final versions, and publish them alongside the software in production.

Use the OpenAPI-compliant descriptors to provide API reference documentation for your developers:

Configure the software to produce production-ready APIs.

In other words, configure the software as for production so that the APIs match exactly.

Retrieve the OpenAPI-compliant descriptor.

The following command saves the descriptor to a file. :

$ curl -o <filename>.json <endpoint>?_api

info
Consider limiting access to API descriptors in production environments in order to avoid unnecessary traffic.
To provide documentation in production environments, see To publish OpenAPI documentation instead.

Note

1.

2.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 635

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
http://swagger.io/swagger-ui/
http://swagger.io/swagger-ui/

If necessary, edit the descriptor.

For example, add security definitions to describe the API protection.

Publish the descriptor using a tool such as Swagger UI.

Create

There are two ways to create a resource, HTTP POST or HTTP PUT.

To create a resource using POST, perform an HTTP POST with the query string parameter _action=create , and the JSON
resource as a payload. Accept a JSON response. The server creates the identifier if not specified:

POST /users?_action=create HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
{ JSON resource }

To create a resource using PUT, perform an HTTP PUT including the case-sensitive identifier for the resource in the URL path, and
the JSON resource as a payload. Use the If-None-Match: * header. Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-None-Match: *
{ JSON resource }

The _id and content of the resource depend on the server implementation. The server is not required to use the _id that the
client provides. The server response to the request indicates the resource location as the value of the Location header.

If you include the If-None-Match header, you must use If-None-Match: * . In this case, the request creates the object if it does
not exist, and fails if the object does exist. If you include any value other If-None-Match: * , the server returns an HTTP 400 Bad
Request error. For example, creating an object with If-None-Match: revision returns a bad request error.

If you do not include If-None-Match: * , the request creates the object if it does not exist, and updates the object if it does exist.

Parameters

_fields=field[,field…]

Return only the specified fields in the body of the response.

info
The endpoint must be a valid endpoint. For example:

$ curl -o myapi.json https://am.example.com:8443/am/json/realms/root/authenticate?_api

Note

3.

4.

Reference PingGateway

636 Copyright © 2025 Ping Identity Corporation

https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-ui

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_prettyPrint=true

Format the body of the response.

Read

To retrieve a single resource, perform an HTTP GET on the resource by its case-sensitive identifier (_id), and accept a JSON
response:

GET /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_mimeType=mime-type

Some resources have fields whose values are multi-media resources, such as a profile photo.

If the feature is enabled for the endpoint, you can read a single field that is a multi-media resource by specifying the field
and mime-type.

In this case, the content type of the field value returned matches the mime-type that you specify, and the body of the
response is the multi-media resource.

Do not use the Accept header in this case. For example, Accept: image/png does not work. Use the _mimeType query
string parameter instead.

_prettyPrint=true

Format the body of the response.

Update

To update a resource, perform an HTTP PUT including the case-sensitive identifier (_id) as the final element of the path to the
resource, and the JSON resource as the payload. Use the If-Match: _rev header to check that you are actually updating the
version you modified. Use If-Match: * if the version does not matter. Accept a JSON response:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 637

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON resource }

When updating a resource, include all the attributes to retain. Omitting an attribute in the resource amounts to deleting the
attribute unless it is not under the control of your application. Attributes not under the control of your application include private
and read-only attributes. In addition, virtual attributes and relationship references might not be under the control of your
application.

Parameters

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_prettyPrint=true

Format the body of the response.

Delete

To delete a single resource, perform an HTTP DELETE by its case-sensitive identifier (_id) and accept a JSON response:

DELETE /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

info
Product-specific implementations may differ. Not all products use the payload to replace the state of the resource in
its entirety. For example, attributes that are omitted from the request payload to AM will not be deleted. Instead, you
need to specify the attribute and set the value to an empty array to delete the attribute from the resource.
For more information, see the product-specific examples and reference information.

Note

Reference PingGateway

638 Copyright © 2025 Ping Identity Corporation

If the field is left blank, the server returns all default values.

_prettyPrint=true

Format the body of the response.

Patch

To patch a resource, send an HTTP PATCH request with the following parameters:

operation

field

value

from (optional with copy and move operations)

You can include these parameters in the payload for a PATCH request, or in a JSON PATCH file. If successful, you’ll see a JSON
response similar to the following:

PATCH /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON array of patch operations }

PATCH operations apply to three types of targets:

single-valued, such as an object, string, boolean, or number.

list semantics array, where the elements are ordered, and duplicates are allowed.

set semantics array, where the elements are not ordered, and duplicates are not allowed.

Common REST PATCH supports multiple operations :

Patch operation: add

The add operation ensures that the target field contains the value provided, creating parent fields as necessary.

If the target field is single-valued, then the value you include in the PATCH replaces the value of the target. A single-valued field is
an object , string , boolean , or number .

An add operation has different results on two standard types of arrays:

List semantic arrays: you can run any of these add operations on that type of array:

If you add an array of values, the PATCH operation appends it to the existing list of values.

If you add a single value, specify an ordinal element in the target array, or use the {-} special index to add that
value to the end of the list.

•

•

•

•

•

•

•

•

◦

◦

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 639

Set semantic arrays: The value included in the patch is merged with the existing set of values. Any duplicates within the
array are removed.

As an example, start with the following list semantic array resource:

{
 "fruits" : ["orange", "apple"]
}

The following add operation includes the pineapple to the end of the list of fruits, as indicated by the - at the end of the fruits
array.

{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : "pineapple"
}

The following is the resulting resource:

{
 "fruits" : ["orange", "apple", "pineapple"]
}

You can add only one array element one at a time, as per the corresponding JSON Patch specification. If you add an array of
elements, for example:

{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : ["pineapple", "mango"]
}

The resulting resource would have the following invalid JSON structure:

{
 "fruits" : ["orange", "apple", ["pineapple", "mango"]]
}

Patch operation: copy

The copy operation takes one or more existing values from the source field. It then adds those same values on the target field.
Once the values are known, it is equivalent to performing an add operation on the target field.

The following copy operation takes the value from a field named mail , and then runs a replace operation on the target field,
another_mail .

•

Reference PingGateway

640 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc6902.html#appendix-A.16
https://www.rfc-editor.org/rfc/rfc6902.html#appendix-A.16

[
 {
 "operation":"copy",
 "from":"mail",
 "field":"another_mail"
 }
]

If the source and target field values are arrays, the result depends on whether the array has list semantics or set semantics, as
described in Patch operation: add.

Patch operation: increment

The increment operation changes the value or values of the target field by the amount you specify. The value that you include
must be one number, and may be positive or negative. The value of the target field must accept numbers. The following
increment operation adds 1000 to the target value of /user/payment .

[
 {
 "operation" : "increment",
 "field" : "/user/payment",
 "value" : "1000"
 }
]

Since the value of the increment is a single number, arrays do not apply.

Patch operation: move

The move operation removes existing values on the source field. It then adds those same values on the target field. This is
equivalent to a remove operation on the source, followed by an add operation with the same values, on the target.

The following move operation is equivalent to a remove operation on the source field, surname , followed by a replace
operation on the target field value, lastName . If the target field does not exist, it is created:

[
 {
 "operation":"move",
 "from":"surname",
 "field":"lastName"
 }
]

To apply a move operation on an array, you need a compatible single-value, list semantic array, or set semantic array on both the
source and the target. For details, see the criteria described in Patch operation: add.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 641

Patch operation: remove

The remove operation ensures that the target field no longer contains the value provided. If the remove operation does not
include a value, the operation removes the field. The following remove deletes the value of the phoneNumber , along with the
field.

[
 {
 "operation" : "remove",
 "field" : "phoneNumber"
 }
]

If the object has more than one phoneNumber , those values are stored as an array.

A remove operation has different results on two standard types of arrays:

List semantic arrays: A remove operation deletes the specified element in the array. For example, the following operation
removes the first phone number, based on its array index (zero-based):

[
 {
 "operation" : "remove",
 "field" : "/phoneNumber/0"
 }
]

Set semantic arrays: The list of values included in a patch are removed from the existing array.

Patch operation: replace

The replace operation removes any existing value(s) of the targeted field, and replaces them with the provided value(s). It is
essentially equivalent to a remove followed by a add operation. If the arrays are used, the criteria is based on Patch operation:
add. However, indexed updates are not allowed, even when the target is an array.

The following replace operation removes the existing telephoneNumber value for the user, and then adds the new value of +1
408 555 9999 .

[
 {
 "operation" : "replace",
 "field" : "/telephoneNumber",
 "value" : "+1 408 555 9999"
 }
]

A PATCH replace operation on a list semantic array works as a PATCH remove operation. The following example demonstrates
how the effect of both operations. Start with the following resource:

•

•

Reference PingGateway

642 Copyright © 2025 Ping Identity Corporation

{
 "fruits" : ["apple", "orange", "kiwi", "lime"],
}

Apply the following operations on that resource:

[
 {
 "operation" : "remove",
 "field" : "/fruits/0",
 "value" : ""
 },
 {
 "operation" : "replace",
 "field" : "/fruits/1",
 "value" : "pineapple"
 }
]

The PATCH operations are applied sequentially. The remove operation removes the first member of that resource, based on its
array index, (fruits/0), with the following result:

[
 {
 "fruits" : ["orange", "kiwi", "lime"],
 }
]

The second PATCH operation, a replace , is applied on the second member (fruits/1) of the intermediate resource, with the
following result:

[
 {
 "fruits" : ["orange", "pineapple", "lime"],
 }
]

Patch operation: transform

The transform operation changes the value of a field based on a script, or some other data transformation command. The
following transform operation takes the value from the field named /objects , and applies the something.js script as shown:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 643

[
 {
 "operation" : "transform",
 "field" : "/objects",
 "value" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "something.js"
 }
 }
 }
]

Patch operation limitations

Some HTTP client libraries do not support the HTTP PATCH operation. Make sure that the library you use supports HTTP PATCH
before using this REST operation.

For example, the Java Development Kit HTTP client does not support PATCH as a valid HTTP method. Instead, the method
HttpURLConnection.setRequestMethod("PATCH") throws ProtocolException .

Parameters

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_prettyPrint=true

Format the body of the response.

Action

Actions are a means of extending Common REST APIs and are defined by the resource provider, so the actions you can use
depend on the implementation.

The standard action indicated by _action=create is described in Create.

Parameters

In addition to these parameters, specific action implementations have their own parameters:

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

Reference PingGateway

644 Copyright © 2025 Ping Identity Corporation

_prettyPrint=true

Format the body of the response.

Query

To query a resource collection (or resource container), perform an HTTP GET, and accept a JSON response, including either a
_queryExpression , _queryFilter , or _queryId parameter. The parameters cannot be used together:

GET /users?_queryFilter=true HTTP/1.1
Host: example.com
Accept: application/json

The server returns the result as a JSON object including a "results" array, and other fields that depend on the parameters.

Parameters

_countOnly=true

Return a count of query results without returning the resources.

This parameter requires protocol version 2.2 or later.

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_queryFilter=filter-expression

Query filters request that the server return entries that match the filter expression. You must URL-escape the filter
expression.

The string representation is summarized as follows. Continue reading for additional explanation:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 645

Expr = OrExpr
OrExpr = AndExpr ('or' AndExpr) *
AndExpr = NotExpr ('and' NotExpr) *
NotExpr = '!' PrimaryExpr | PrimaryExpr
PrimaryExpr = '(' Expr ')' | ComparisonExpr | PresenceExpr | LiteralExpr
ComparisonExpr = Pointer OpName JsonValue
PresenceExpr = Pointer 'pr'
LiteralExpr = 'true' | 'false'
Pointer = JSON pointer
OpName = 'eq' | # equal to
 'co' | # contains
 'sw' | # starts with
 'lt' | # less than
 'le' | # less than or equal to
 'gt' | # greater than
 'ge' | # greater than or equal to
 STRING # extended operator
JsonValue = NUMBER | BOOLEAN | '"' UTF8STRING '"'
STRING = ASCII string not containing white-space
UTF8STRING = UTF-8 string possibly containing white-space

JsonValue components of filter expressions follow RFC 7159: The JavaScript Object Notation (JSON) Data Interchange
Format. In particular, as described in section 7 of the RFC, the escape character in strings is the backslash character. For
example, to match the identifier test\ , use _id eq 'test\\' . In the JSON resource, the \ is escaped the same way:
"_id":"test\\" .

When using a query filter in a URL, the filter expression is part of a query string parameter. A query string parameter must
be URL encoded, as described in RFC 3986: Uniform Resource Identifier (URI): Generic Syntax. For example, white
space, double quotes ("), parentheses, and exclamation characters must be URL encoded in HTTP query strings. The
following rules apply to URL query components:

query = *(pchar / "/" / "?")
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
pct-encoded = "%" HEXDIG HEXDIG
sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

ALPHA , DIGIT , and HEXDIG are core rules of RFC 5234: Augmented BNF for Syntax Specifications:

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

As a result, a backslash escape character in a JsonValue component is percent-encoded in the URL query string parameter
as %5C . To encode the query filter expression _id eq 'test\\' , use _id+eq+'test%5C%5C' , for example.

A simple filter expression can represent a comparison, presence, or a literal value.

For comparison expressions, use json-pointer comparator json-value , where the comparator is one of the following:

Reference PingGateway

646 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/rfc/rfc5234.html

eq (equals)
co (contains)
sw (starts with)
lt (less than)
le (less than or equal to)
gt (greater than)
ge (greater than or equal to)

For presence, use json-pointer pr to match resources where the JSON pointer is present, and the value it points to is
not null .

Literal values include true (match anything) and false (match nothing).

Complex expressions employ and , or , and ! (not), with parentheses, (expression) , to group expressions.

_queryId=identifier

Specify a query by its identifier.

Specific queries can take their own query string parameter arguments, which depend on the implementation.

_pagedResultsCookie=string

The string is an opaque cookie used by the server to keep track of the position in the search results. The server returns the
cookie in the JSON response as the value of pagedResultsCookie .

In the request _pageSize must also be set and non-zero. You receive the cookie value from the provider on the first
request, and then supply the cookie value in subsequent requests until the server returns a null cookie, meaning the
final page of results has been returned.

The _pagedResultsCookie parameter is supported when used with the _queryFilter parameter. The
_pagedResultsCookie parameter is not guaranteed to work with the _queryExpression or _queryId parameters.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be used together.

_pagedResultsOffset=integer

When _pageSize is non-zero, use this as an index in the result set indicating the first page to return.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be used together.

_pageSize=integer

Return query results in pages of this size. After the initial request, use _pagedResultsCookie or _pageResultsOffset to
page through the results.

_prettyPrint=true

Format the body of the response.

_totalPagedResultsPolicy=string

When a _pageSize is specified, and non-zero, the server calculates the "totalPagedResults" , in accordance with the
totalPagedResultsPolicy , and provides the value as part of the response.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 647

The "totalPagedResults" is either an estimate of the total number of paged results
(_totalPagedResultsPolicy=ESTIMATE), or the exact total result count (_totalPagedResultsPolicy=EXACT). If no count
policy is specified in the query, or if _totalPagedResultsPolicy=NONE , result counting is disabled, and the server returns
value of -1 for "totalPagedResults" .

_sortKeys=(|-)__field__[,(|-)field…]

Sort the resources returned based on the specified field(s), either in + (ascending, default) order, or in - (descending)
order.

Because ascending order is the default, including the `` character in the query is unnecessary. If you do include
the `` character, it must be URL-encoded as %2B , for example:

http://localhost:8080/api/users?_queryFilter=true&_sortKeys=%2Bname/givenName

The _sortKeys parameter is not supported for predefined queries (_queryId).

HTTP status codes

When working with a Common REST API over HTTP, client applications should expect at least these HTTP status codes. Not all
servers necessarily return all status codes identified here:

200 OK

The request was successful and a resource returned, depending on the request.

201 Created

The request succeeded and the resource was created.

204 No Content

The action request succeeded, and there was no content to return.

304 Not Modified

The read request included an If-None-Match header, and the value of the header matched the revision value of the
resource.

400 Bad Request

The request was malformed.

401 Unauthorized

The request requires user authentication.

403 Forbidden

Access was forbidden during an operation on a resource.

Reference PingGateway

648 Copyright © 2025 Ping Identity Corporation

404 Not Found

The specified resource could not be found, perhaps because it does not exist.

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

406 Not Acceptable

The request contains parameters that are not acceptable, such as a resource or protocol version that is not available.

409 Conflict

The request would have resulted in a conflict with the current state of the resource.

410 Gone

The requested resource is no longer available, and will not become available again. This can happen when resources
expire for example.

412 Precondition Failed

The resource’s current version does not match the version provided.

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the requested method.

428 Precondition Required

The resource requires a version, but no version was supplied in the request.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

501 Not Implemented

The resource does not support the functionality required to fulfill the request.

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been disabled, for example.

Required configuration

AdminHttpApplication (admin.json)

The AdminHttpApplication serves requests on the administrative route, such as the creation of routes and the collection of
monitoring information. The administrative route and its subroutes are reserved for administration endpoints.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 649

The configuration is loaded from a JSON-encoded file, expected at $HOME/.openig/config/admin.json . Objects configured in
admin.json cannot be used by config.json or any PingGateway routes.

Default objects

PingGateway provides default objects in admin.json . To override a default object, configure an object with the same name in
admin.json .

Configure default objects in admin.json and config.json separately. An object configured in admin.json with the same name
as an object configured in config.json isn’t the same object.

AuditService

Records no audit events. The default AuditService is NoOpAuditService . Learn more from NoOpAuditService.

CaptureDecorator

Captures requests and response messages. The default CaptureDecorator is named capture , and uses the default
settings given in CaptureDecorator.

When a capture point for the default CaptureDecorator is defined in a route, for example, when "capture: "all" is set
as a top-level attribute of the JSON, log messages for requests and responses passing through the route are written to a
log file in $HOME/.openig/logs .

When no capture point is defined in a route, only exceptions thrown during request or response processing are logged.

By default, request and response contexts and entities are not captured. Do one of the following to capture information:

Override the default capture decorator declaration, and set captureEntity to true .

Declare another CaptureDecorator object with an appropriate configuration and use it at your capture points.

The capture decorator logs information about the HTTP request and response messages, along with their respective
headers.

ClientHandler

Communicates with third-party services. Learn more from ClientHandler.

ForgeRockClientHandler

Sends Common Audit transaction IDs when communicating with protected applications. The default
ForgeRockClientHandler is a Chain, composed of a TransactionIdOutboundFilter and a ClientHandler.

IssuerRepository

A repository of Issuers declared in the heap. To overwrite the default issuer, configure a local IssuerRepository with the
name IssuerRepository . To create a new IssuerRepository containing a subset of Issuers, configure a local
IssuerRepository with a different name.

ProxyOptions

A proxy to which a ClientHandler or ReverseProxyHandler can submit requests, and an AmService can submit Websocket
notifications. For more information, refer to ProxyOptions.

•

•

Reference PingGateway

650 Copyright © 2025 Ping Identity Corporation

ReverseProxyHandler

Communicates with third-party services. For more information, refer to ReverseProxyHandler.

ScheduledExecutorService

Specifies the number of threads in a pool.

SecretsService (deprecated)

Manages a store of secrets from files, system properties, and environment variables, by using Commons Secrets API. The
default SecretsService is a SystemAndEnvSecretStore with the default configuration. For more information, refer to
Secrets.

TemporaryStorage

Manages temporary buffers. For more information, refer to TemporaryStorage.

TimerDecorator

Records time spent within filters and handlers. The default TimerDecorator is named timer . For more information, refer
to TimerDecorator.

TransactionIdOutboundFilter

Inserts the ID of a transaction into the header of a request.

Provided objects

PingGateway creates the following objects when a filter with the name of the object is declared in admin.json :

"ApiProtectionFilter"

A filter to protect administrative APIs on reserved routes. By default, only the loopback address can access reserved
routes.

For an example that uses an ApiProtectionFilter, refer to Set up the UMA example. For information about reserved routes,
refer to Reserved routes.

"MetricsProtectionFilter"

A filter to protect the monitoring endpoints.

By default, the Prometheus Scrape Endpoint and Common REST Monitoring Endpoint (deprecated) are open and
accessible; no special credentials or privileges are required to access the monitoring endpoints.

For an example that uses a MetricsProtectionFilter, refer to Protect monitoring endpoints.

"StudioProtectionFilter"

A filter to protect the Studio endpoint when PingGateway is running in development mode.

When PingGateway is running in development mode, by default the Studio endpoint is open and accessible.

For an example that uses a StudioProtectionFilter, refer to Restrict access to Studio.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 651

Usage

{
 "heap": [object, ...],
 "connectors": [object, ...],
 "vertx": object,
 "gatewayUnits": configuration expression<number>,
 "mode": configuration expression<enumeration>,
 "prefix": configuration expression<string>,
 "properties": object,
 "temporaryDirectory": configuration expression<string>,
 "temporaryStorage": TemporaryStorage reference,
 "pidFileMode": configuration expression<enumeration>,
 "preserveOriginalQueryString": configuration expression<boolean>,
 "session": object,
 "streamingEnabled": configuration expression<boolean>,
 "serveDeprecatedPrometheusEndpoint": configuration expression<boolean>
}

Properties

"heap": array of objects, optional

The heap object configuration, described in Heap objects.

"connectors": array of objects, required

Server port configuration, when PingGateway is acting server-side.

{
 "connectors" : [
 {
 "port": [configuration expression<number>, ...],
 "tls": ServerTlsOptions reference,
 "vertx": object,
 "maxTotalHeadersSize": configuration expression<integer>
 },
 {
 ...
 }
]
}

port: array of configuration expression<numbers>, required

One or more ports on which PingGateway is connected. When more than one port is defined, PingGateway is
connected to each port.

info
When an application sends requests to PingGateway or requests services from PingGateway, PingGateway is
server-side. PingGateway is acting as a server of the application, and the application is acting as a client.

Note

Reference PingGateway

652 Copyright © 2025 Ping Identity Corporation

tls: ServerTlsOptions reference, optional

Configure options for connections to TLS-protected endpoints, based on ServerTlsOptions. Define the object inline
or in the heap.

Default: Connections to TLS-protected endpoints are not configured.

vertx: object, optional

Vert.x-specific configuration for this connector when PingGateway is acting server-side. When PingGateway is acting
client-side, configure the vertx property of ClientHandler or ReverseProxyHandler.

Vert.x options are described in HttpServerOptions.

For properties where PingGateway provides its own first-class configuration, Vert.x configuration options are
disallowed, and the PingGateway configuration option takes precedence over Vert.x options configured in vertx .
Vert.x values are evaluated as configuration expressions.

The following Vert.x configuration options are disallowed server-side:

port

useAlpn

ssl

enabledCipherSuites

enabledSecureTransportProtocols

jdkSslEngineOptions

keyStoreOptions

openSslEngineOptions

pemKeyCertOptions

pemTrustOptions

pfxKeyCertOptions

pfxTrustOptions

trustStoreOptions

clientAuth

The following Vert.x configuration options are deprecated server-side:

maxHeaderSize

initialSettings:maxHeaderListSize

Use connectors:maxTotalHeadersSize instead of vertx.maxHeaderSize or
vertx.initialSettings.maxHeaderListSize .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 653

https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/http/HttpServerOptions.html
https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/http/HttpServerOptions.html

The following example configures connectors on ports 8080 and 8443 when PingGateway is acting server-side.
When PingGateway is acting client-side, configure the vertx property of ClientHandler or ReverseProxyHandler:

{
 "connectors": [{
 "port": 8080,
 "vertx": {
 "maxWebSocketFrameSize": 128000,
 "maxWebSocketMessageSize": 256000,
 "compressionLevel": 4
 }
 },
 {
 "port": 8443,
 "tls": "ServerTlsOptions-1"
 }]
}

maxTotalHeadersSize: integer, optional

The maximum size in bytes of the sum of all request headers. When the request headers exceed this limit,
PingGateway returns an HTTP 431 error.

Default: 8 192 bytes

The following example configures HTTP/2 connections on port 7070 when PingGateway is acting server-side. The
configuration allows PingGateway to accept HTTP/2 requests with large headers. When PingGateway is acting
client-side, configure the vertx property of ClientHandler or ReverseProxyHandler:

{
 "connectors": [
 {
 "port": 7070,
 "maxTotalHeadersSize": 16384
 }
]
}

vertx: object, optional

Vert.x-specific configuration used to more finely-tune Vert.x instances. Vert.x values are evaluated as configuration
expressions.

Use the Vert.x options described in VertxOptions, with the following exceptions:

metricsOptions : Not used

metricsEnabled : Enable Vertx metrics. Default: true .

For an example, refer to Monitoring Services.

PingGateway proxies all WebSocket subprotocols by default. To proxy specific WebSocket subprotocols only, list them as
follows:

•

•

Reference PingGateway

654 Copyright © 2025 Ping Identity Corporation

https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/VertxOptions.html
https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/VertxOptions.html

"vertx": {
 "webSocketSubProtocols": ["v1.notifications.forgerock.org", ...]
}

"gatewayUnits": configuration expression<number>, optional

The number of parallel instances of PingGateway to bind to an event loop. All instances listen on the same ports.

Default: The number of cores available to the JVM.

mode: configuration expression<enumeration>, optional

Set the PingGateway mode to development or production . The value is not case-sensitive.

If mode is not set, the provided configuration token ig.run.mode can be resolved at startup to define the run mode.

For more information, refer to Operating modes.

Default: production

"prefix": configuration expression<string>, optional

The base of the route for administration requests. This route and its subroutes are reserved for administration endpoints.

Default: openig

"properties": object, optional

Configuration parameters declared as property variables for use in the configuration. See also Route properties.

Default: Null

"temporaryDirectory": configuration expression<string>, optional

Directory containing temporary storage files.

Set this property to store temporary files in a different directory, for example:

{
 "temporaryDirectory": "/path/to/my-temporary-directory"
}

Default: $HOME/.openig/tmp (on Windows, %appdata%\OpenIG\tmp)

"temporaryStorage": TemporaryStorage reference, optional

The TemporaryStorage object to buffer content during processing.

Provide the name of a TemporaryStorage object defined in the heap or an inline TemporaryStorage configuration object.

Incoming requests use the temporary storage buffer as follows:

Used only when streamingEnabled is false .•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 655

The request is loaded into the PingGateway storage defined in temporaryStorage , before it enters the chain.

If the content length of the request is more than the buffer limit, PingGateway returns an HTTP 413 Payload Too
Large .

Default: Use the heap object named TemporaryStorage. Otherwise, use an internally-created TemporaryStorage object
named TemporaryStorage that uses default settings for a TemporaryStorage object.

"pidFileMode": configuration expression<enumeration>, optional

Mode to allow or disallow startup if there is an existing PID file. Use one of the following values:

fail : Startup fails if there is an existing PID file.

override : Startup is allowed if there is an existing PID file. PingGateway removes the existing PID file and creates a
new one during startup.

Default: fail

"preserveOriginalQueryString": configuration expression<boolean>, optional

Process query strings in URLs, by applying or not applying a decode/encode process to the whole query string.

The following characters are disallowed in query string URL components: " , { , } , < , > , (space), and | . For more
information about which query strings characters require encoding, refer to Uniform Resource Identifier (URI): Generic
Syntax.

true : Preserve query strings as they are presented.

Select this option if the query string must not change during processing, for example, in signature verification.

If a query string contains a disallowed character, the request produces a 400 Bad Request .

false : Tolerate disallowed characters in query string URL components, by applying a decode/encode process to
the whole query string.

Select this option when a user agent or client produces query searches with disallowed characters. PingGateway
transparently encodes the disallowed characters before forwarding requests to the protected application.

Characters in query strings are transformed as follows:

Allowed characters are not changed. For example, sep=a is not changed.

Percent-encoded values are re-encoded when the decoded value is an allowed character. For example,
sep=%27 is changed to sep=' , because ' is an allowed character.

Percent-encoded values are not changed when the decoded value is a disallowed character. For example,
sep=%22 is not changed, because " is a disallowed character.

Disallowed characters are encoded. For example, sep=" , is changed to sep=%22 , because " is a disallowed
character.

Default: false

"session": object, optional

Configures stateful sessions for PingGateway. For information about PingGateway sessions, refer to Sessions.

•

•

•

•

•

•

◦

◦

◦

◦

Reference PingGateway

656 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986

{
 "session": {
 "cookie": {
 "name": configuration expression<string>,
 "httpOnly": configuration expression<boolean>,
 "path": configuration expression<string>,
 "sameSite": configuration expression<enumeration>,
 "secure": configuration expression<boolean>,
 },
 "timeout": configuration expression<duration>
 }
}

"cookie": object, optional

The configuration of the cookie used to store the stateful session.

Default: The session cookie is treated as a host-based cookie.

"name": configuration expression<string>, optional

The session cookie name.

Default: IG_SESSIONID

"httpOnly": configuration expression<boolean>, optional

Flag to mitigate the risk of client-side scripts accessing protected session cookies.

Default: true

"path": configuration expression<string>, optional

The path protected by the session.

Set a path only if the user agent is able to re-emit session cookies on the path. For example, to re-emit a
session cookie on the path /home/cdsso , the user agent must be able to access that path on its next hop.

Default: / .

"sameSite": configuration expression<enumeration>, optional

Options to manage the circumstance in which the session cookie is sent to the server. The following values
are listed in order of strictness, with most strict first:

STRICT : Send the session cookie only if the request was initiated from the session cookie domain.
Not case-sensitive. Use this value to reduce the risk of cross-site request forgery (CSRF) attacks.

LAX : Send the session cookie only with GET requests in a first-party context, where the URL in the
address bar matches the session cookie domain. Not case-sensitive. Use this value to reduce the risk
of cross-site request forgery (CSRF) attacks.

NONE : Send the session cookie whenever a request is made to the session cookie domain. With this
setting, consider setting secure to true to prevent browsers from rejecting the session cookie. For
more information, refer to SameSite cookies

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 657

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

Default: LAX

"secure": configuration expression<boolean>, optional

Flag to limit the scope of the session cookie to secure channels.

Set this flag only if the user agent is able to re-emit session cookies over HTTPS on its next hop. For
example, to re-emit a session cookie with the secure flag, the user agent must be connected to its next hop
by HTTPS.

Default: false

"timeout": configuration expression<duration>, optional

The duration after which idle sessions are automatically timed out.

The value must be above zero, and no greater than 3650 days (approximately 10 years). PingGateway truncates the
duration of longer values to 3650 days.

Default: 30 minutes

"streamingEnabled": configuration expression<boolean>, optional

A flag to manage content:

true : PingGateway streams the content of HTTP requests and responses. The content is available for processing
bit-by-bit, as soon as it is received.

false : PingGateway buffers the content of HTTP requests and responses into the storage defined in
temporaryStorage . The content is available for processing only after it has all been received.

When this property is true , consider the following requirements to prevent PingGateway from blocking an executing
thread to wait for streamed content:

Write runtime expressions that consume streamed content with # instead of $. For more information, refer to
runtime expression.

In scripts and Java extensions, never use a Promise blocking method, such as get() , getOrThrow() , or
getOrThrowUninterruptibly() to obtain the response. For more information, refer to Scripts.

info
For CDSSO, set "sameSite":"none" and "secure":"true". For security reasons, many browsers
require the connection used by the browser to be secure (HTTPS) for "sameSite":"none".
Therefore, if the connection used by the browser is not secure (HTTP), the browser might not
supply cookies with "sameSite":"none". For more information, refer to Authenticate with
CDSSO.

Note

info
For CDSSO, set "sameSite":"none" and "secure":"true". For security reasons, many browsers
require the connection used by the browser to be secure (HTTPS) for "sameSite":"none".
Therefore, if the connection used by the browser is not secure (HTTP), the browser might not
supply cookies with "sameSite":"none". For more information, refer to Authenticate with
CDSSO.

Note

•

•

•

•

Reference PingGateway

658 Copyright © 2025 Ping Identity Corporation

Default: false

"serveDeprecatedPrometheusEndpoint": configuration expression<boolean>, optional

A flag to enable or disable the deprecated Prometheus metrics endpoint:

false : Disable the deprecated Prometheus Scrape Endpoint

true : Enable the deprecated Prometheus Scrape Endpoint

Default: true

Example configuration files

Default configuration

When your configuration does not include an admin.json file, the following admin.json is provided by default:

{
 "prefix": "openig",
 "connectors": [
 { "port" : 8080 }
]
}

Overriding the default ApiProtectionFilter

The following example shows an admin.json file configured to override the default ApiProtectionFilter that protects the
reserved administrative route. This example is used in Set up the UMA example.

info
When streamingEnabled=true and a CaptureDecorator with captureEntity=true decorates a component, the
decorator interrupts streaming for the captured request or response until the whole entity is captured.

Note

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 659

{
 "prefix": "openig",
 "connectors": [
 { "port" : 8080 }
],
 "heap": [
 {
 "name": "ClientHandler",
 "type": "ClientHandler"
 },
 {
 "name": "ApiProtectionFilter",
 "type": "CorsFilter",
 "config": {
 "policies": [
 {
 "acceptedOrigins": ["http://app.example.com:8081"],
 "acceptedMethods": ["GET", "POST", "DELETE"],
 "acceptedHeaders": ["Content-Type"]
 }
]
 }
 }
]
}

More information

org.forgerock.openig.http.AdminHttpApplication

GatewayHttpApplication (config.json)

The GatewayHttpApplication is the entry point for all incoming gateway requests. It is responsible for initializing a heap of objects,
described in Heap objects, and providing the main Handler that receives all the incoming requests.

The configuration is loaded from a JSON-encoded file, expected by default at $HOME/.openig/config/config.json . Objects
configured in config.json can be used by config.json and any PingGateway route. They cannot be used by admin.json .

If you provide a config.json , the PingGateway configuration is loaded from that file. If there is no file, the default configuration
is loaded. For the default configuration, and the example config.json used in many of the examples in the documentation,
refer to the Examples section of this page.

Routes endpoint

The endpoint is defined by the presence and content of config.json , as follows:

When config.json is not provided, the routes endpoint includes the name of the main router in the default
configuration, _router .

When config.json is provided with an unnamed main router, the routes endpoint includes the main router name
router-handler .

When config.json is provided with a named main router, the routes endpoint includes the provided name or the
transformed, URL-friendly name.

•

•

•

Reference PingGateway

660 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/http/AdminHttpApplication.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/http/AdminHttpApplication.html

Studio deploys and undeploys routes through a main router named _router , which is the name of the main router in the default
configuration. If you use a custom config.json , make sure it contains a main router named _router .

Default objects

PingGateway creates objects by default in config.json . To override a default object, configure an object with the same name in
config.json .

Configure default objects in config.json and admin.json separately. An object configured in config.json with the same
name as an object configured in admin.json is not the same object.

BaseUriDecorator

A decorator to override the scheme, host, and port of the existing request URI. The default BaseUriDecorator is named
baseURI . For more information, refer to BaseUriDecorator.

AuditService

Records no audit events. The default AuditService is NoOpAuditService . Learn more from NoOpAuditService.

CaptureDecorator

Captures requests and response messages. The default CaptureDecorator is named capture , and uses the default
settings given in CaptureDecorator.

When a capture point for the default CaptureDecorator is defined in a route, for example, when "capture: "all" is set
as a top-level attribute of the JSON, log messages for requests and responses passing through the route are written to a
log file in $HOME/.openig/logs .

When no capture point is defined in a route, only exceptions thrown during request or response processing are logged.

By default, request and response contexts and entities are not captured. Do one of the following to capture information:

Override the default capture decorator declaration, and set captureEntity to true .

Declare another CaptureDecorator object with an appropriate configuration and use it at your capture points.

The capture decorator logs information about the HTTP request and response messages, along with their respective
headers.

ClientHandler

Communicates with third-party services. Learn more from ClientHandler.

ForgeRockClientHandler

Sends Common Audit transaction IDs when communicating with protected applications. The default
ForgeRockClientHandler is a Chain, composed of a TransactionIdOutboundFilter and a ClientHandler.

IssuerRepository

A repository of Issuers declared in the heap. To overwrite the default issuer, configure a local IssuerRepository with the
name IssuerRepository . To create a new IssuerRepository containing a subset of Issuers, configure a local
IssuerRepository with a different name.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 661

ProxyOptions

A proxy to which a ClientHandler or ReverseProxyHandler can submit requests, and an AmService can submit Websocket
notifications. For more information, refer to ProxyOptions.

ReverseProxyHandler

Communicates with third-party services. For more information, refer to ReverseProxyHandler.

ScheduledExecutorService

Specifies the number of threads in a pool.

SecretsService (deprecated)

Manages a store of secrets from files, system properties, and environment variables, by using Commons Secrets API. The
default SecretsService is a SystemAndEnvSecretStore with the default configuration. For more information, refer to
Secrets.

TemporaryStorage

Manages temporary buffers. For more information, refer to TemporaryStorage.

TimerDecorator

Records time spent within filters and handlers. The default TimerDecorator is named timer . For more information, refer
to TimerDecorator.

TransactionIdOutboundFilter

Inserts the ID of a transaction into the header of a request.

Sessions

When the heap is configured with a JwtSession object named Session , the object is used as the default session producer.
Stateless sessions are created for all requests.

When a JwtSession is not configured for a request, session information is stored in the PingGateway cookie, called by default
IG_SESSIONID .

For more information, refer to Sessions and JwtSession.

Usage

{
 "handler": Handler reference,
 "heap": [object, ...],
 "properties": object,
 "temporaryStorage": TemporaryStorage reference
}

Reference PingGateway

662 Copyright © 2025 Ping Identity Corporation

Properties

"handler": Handler reference, required

The Handler to which PingGateway dispaches requests.

Provide the name of a Handler object defined in the heap or an inline Handler configuration object.

"heap": array of objects, optional

The heap object configuration, described in Heap objects.

"properties": object, optional

Configuration parameters declared as property variables for use in the configuration. See also Route properties.

Default: Null

"temporaryStorage": TemporaryStorage reference, optional

The TemporaryStorage object to buffer content during processing.

Provide the name of a TemporaryStorage object defined in the heap or an inline TemporaryStorage configuration object.

Incoming requests use the temporary storage buffer as follows:

Used only when streamingEnabled is false .

The request is loaded into the PingGateway storage defined in temporaryStorage , before it enters the chain.

If the content length of the request is more than the buffer limit, PingGateway returns an HTTP 413 Payload Too
Large .

Default: Use the heap object named TemporaryStorage. Otherwise, use an internally-created TemporaryStorage object
named TemporaryStorage that uses default settings for a TemporaryStorage object.

Example configuration files

Default configuration

When your configuration does not include a config.json file, the following configuration is provided by default.

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 663

{
 "heap": [
 {
 "name": "_router",
 "type": "Router",
 "config": {
 "scanInterval": "&{ig.router.scan.interval|10 seconds}",
 "defaultHandler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${request.method == 'GET' and request.uri.path == '/'}",
 "handler": {
 "type": "WelcomeHandler"
 }
 },
 {
 "condition": "${request.uri.path == '/'}",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 405,
 "reason": "Method Not Allowed"
 }
 }
 },
 {
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 404,
 "reason": "Not Found"
 }
 }
 }
]
 }
 }
 }
 }
],
 "handler": "_router"
}

Notice the following features of the default configuration:

The handler contains a main router named _router . When PingGateway receives an incoming request, _router routes
the request to the first route in the configuration whose condition is satisfied.

If the request doesn’t satisfy the condition of any route, it is routed to the defaultHandler. If the request is to access the
PingGateway welcome page, PingGateway dispatches the request. Otherwise, PingGateway returns an HTTP status 404
(Resource not found), because the requested resource does not exist.

Example config.json used in the documentation

The following example of config.json is used in many of the examples in the documentation:

•

•

Reference PingGateway

664 Copyright © 2025 Ping Identity Corporation

{
 "handler": {
 "type": "Router",
 "name": "_router",
 "baseURI": "http://app.example.com:8081",
 "capture": "all"
 },
 "heap": [
 {
 "name": "JwtSession",
 "type": "JwtSession"
 },
 {
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true,
 "_captureContext": true
 }
 }
]
}

Notice the following features of the file:

The handler contains a main router named _router . When PingGateway receives an incoming request, _router routes
the request to the first route in the configuration whose condition is satisfied.

The baseURI changes the request URI to point the request to the sample application.

The capture captures the body of the HTTP request and response.

The JwtSession object in the heap can be used in routes to store the session information as JSON Web Tokens (JWT) in a
cookie. For more information, refer to JwtSession.

More information

org.forgerock.openig.http.GatewayHttpApplication

Heap objects

An array of objects created and initialized by heaplet objects. Learn more about the configuration in Inline and heap objects.

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 665

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/http/GatewayHttpApplication.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/http/GatewayHttpApplication.html

Usage

{
 "heap": [
 {
 "name": string,
 "type": string,
 "config": {
 type-specific configuration
 }
 }
]
}

Properties

"name": string, required

A unique name for an object in the heap.

Routes and other configurations must refer to heap objects by their name property.

"type": string, required

The class name of the heap object.

"config": object, required unless all the fields are optional and the configuration uses only default settings

The configuration of the heap object. The object configuration must conform to the object class.

More information

org.forgerock.openig.heap.Heap

Configuration settings

Filters, handlers, and other objects whose configuration settings are defined by strings, integers, or booleans, can alternatively be
defined by expressions that match the expected type.

For information about expressions, refer to Expressions.

System properties

The following properties are supported in PingGateway. Their names have a special meaning in PingGateway, and they should be
used only for their stated purpose:

ig.instance.dir, IG_INSTANCE_DIR

The full path to the directory containing configuration and data for the PingGateway instance.

Default: Linux, $HOME/.openig ; Windows, %appdata%\OpenIG

For information about how to use a different location, refer to Configuration location.

Reference PingGateway

666 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/heap/Heap.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/heap/Heap.html

org.forgerock.json.jose.jwe.compression.max.decompressed.size.bytes

The maximum size in bytes to which a compressed JWT can be decompressed.

Default: 32 KBytes

org.forgerock.secrets.preferDeterministicEcdsa

When this property is true , and the following conditions are met, JWTs are signed with a deterministic Elliptic Curve
Digital Signature Algorithm (ECDSA):

ECDSA is used for signing

Bouncy Castle is installed

Default: true

org.forgerock.http.TrustTransactionHeader

When this property is true , all incoming X-ForgeRock-TransactionId headers are trusted. Monitoring or reporting
systems that consume the logs can allow requests to be correlated as they traverse multiple servers.

Default: false

org.forgerock.http.util.ignoreFormParamDecodingError

When this property is true , form encoding errors caused by invalid characters are ignored, and encoded values are used
instead.

Default: false

org.forgerock.json.jose.jwe.compression.max.decompressed.size.bytes

The maximum size in bytes to which a compressed JWT can be decompressed.

Default: 32 KBytes

Handlers

Handler objects process a request and context, and return a response. The way the response is created depends on the type of
handler.

Chain

Dispatches a request and context to an ordered list of filters, and then finally to a handler.

Filters process the incoming request and context, pass it on to the next filter, and then to the handler. After the handler produces
a response, the filters process the outgoing response and context as it makes its way to the client. Note that the same filter can
process both the incoming request and the outgoing response but most filters do one or the other.

A Chain can be placed in a configuration anywhere that a handler can be placed.

Unlike ChainOfFilters, Chain finishes by dispatching the request to a handler. For more information, refer to ChainOfFilters.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 667

Usage

{
 "name": string,
 "type": "Chain",
 "config": {
 "filters": [Filter reference, ...],
 "handler": Handler reference
 }
}

Properties

"filters": array of Filter references, required

An array of names of filter objects defined in the heap, and inline filter configuration objects.

The chain dispatches the request to these filters in the order they appear in the array.

See also Filters.

"handler": Handler reference, required

The Handler to which the Chain dispatches the request after it has traversed the specified filters.

Provide the name of a Handler object defined in the heap or an inline Handler configuration object.

Example

{
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": ["LoginFilter"],
 "handler": "ReverseProxyHandler"
 }
}

More information

org.forgerock.openig.filter.ChainHandlerHeaplet

ClientHandler

Sends requests to third-party services that are accessible through HTTP, and reconstructs the response from the received bytes.
A third-party service is one that PingGateway calls for data, such as an HTTP API or AM, or one to which PingGateway submits
data. When PingGateway relays a request to a third-party service, PingGateway is acting as a client of the service. PingGateway is
client-side.

Consider the following comparison of the ClientHandler and ReverseProxyHandler:

Reference PingGateway

668 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ChainHandlerHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ChainHandlerHeaplet.html

When uploading or downloading large files, prevent timeout issues by increasing the value of soTimeout , and using a streaming
mode, as follows:

Configure the streamingEnabled property of AdminHttpApplication.

Usage

{
 "name": string,
 "type": "ClientHandler",
 "config": {
 "vertx": object,
 "connections": configuration expression<number>,
 "waitQueueSize": configuration expression<number>,
 "soTimeout": configuration expression<duration>,
 "connectionTimeout": configuration expression<duration>,
 "protocolVersion": configuration expression<enumeration>,
 "http2PriorKnowledge": configuration expression<boolean>,
 "proxyOptions": ProxyOptions reference,
 "temporaryStorage": TemporaryStorage reference,
 "tls": ClientTlsOptions reference,
 "retries": object,
 "circuitBreaker": object,
 "hostnameVerifier": configuration expression<enumeration>, //deprecated
 "proxy": Server reference, //deprecated
 "systemProxy": boolean //deprecated
 }
}

* Legacy; no longer supported

Properties

"vertx": object, optional

Vert.x-specific configuration for the handler when PingGateway is client-side. When PingGateway is acting server-side,
configure the connectors:vertx property of admin.json.

ClientHandler ReverseProxyHandler

Use this handler to … Send requests to third-party services accessed
within a route. The service can be AM or an
HTTP API. The service can be an HTTP endpoint,
such as AM, IDM, PingOne Advanced Identity
Cloud, or any custom HTTP API.

Send requests to the final service accessed by a
route. The service can be the final downstream
application.

If the service does not
respond in time, this
handler …

Propagates the error through the Promise flow.
If the error is not handled within the route, for
example, by a FailureHandler, the handler
returns a 500 Internal Server Error
response.

Stops processing the request, and returns a 502
Bad Gateway response.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 669

Vert.x options are described in HttpClientOptions.

The vertx object is read as a map, and values are evaluated as configuration expressions.

For properties where PingGateway provides its own first-class configuration, Vert.x configuration options are disallowed,
and the PingGateway configuration option takes precedence over Vert.x options configured in vertx . The following Vert.x
configuration options are disallowed client-side:

alpnVersions

connectTimeout

enabledCipherSuites

enabledSecureTransportProtocols

http2ClearTextUpgrade

idleTimeout

idleTimeoutUnit

keyCertOptions

keyStoreOptions

maxWaitQueueSize

pemKeyCertOptions

pemTrustOptions

pfxKeyCertOptions

pfxTrustOptions

port

protocolVersion

proxyOptions

ssl

trustOptions

trustStoreOptions

useAlpn

verifyHost

info
When PingGateway sends requests to a proxied application or requests services from a third-party application,
PingGateway is client-side. PingGateway is acting as a client of the application, and the application is acting as a
server.

Note

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Reference PingGateway

670 Copyright © 2025 Ping Identity Corporation

https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/http/HttpClientOptions.html
https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/http/HttpClientOptions.html

The following example configures the Vert.x configuration when PingGateway is acting client-side. When PingGateway is
acting server-side, configure the connectors:vertx property of admin.json :

{
 "vertx": {
 "maxWebSocketFrameSize": 128000,
 "maxWebSocketMessageSize": 256000,
 "compressionLevel": 4,
 "maxHeaderSize": 16384
 }
}

The following example configures HTTP/2 connections when PingGateway is acting client-side. The configuration allows
PingGateway to make HTTP/2 requests with large headers. When PingGateway is acting server-side, configure the
connectors:vertx property of admin.json :

{
 "vertx": {
 "initialSettings": {
 "maxHeaderListSize": 16384
 }
 }
}

"connections": configuration expression<number>, optional

The maximum number of concurrent HTTP connections in the client connection pool.

For information about the interaction between this property and waitQueueSize , see the description of waitQueueSize .

Default: 64

“waitQueueSize”: configuration expression<number>, optional

The maximum number of outbound requests allowed to queue when no downstream connections are available.
Outbound requests received when the queue is full are rejected.

Use this property to limit memory use when there is a backlog of outbound requests, for example, when the protected
application or third-party service is slow.

Configure waitQueueSize as follows:

Not set (default): The wait queue is calculated as the square of connections .

If connections is not configured, then its default of 64 is used, giving the waitQueueSize of 4096 .

If the square of connections exceeds the maximum integer value for the Java JVM, the maximum integer
value for the Java JVM is used.

-1 : The wait queue is unlimited. Requests received when there are no available connections are queued without
limit.

0 : There is no wait queue. Requests received when there are no available connections are rejected.

•

◦

◦

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 671

A value that is less than the square of connections :

When the configuration is loaded, the configured value is used. PingGateway generates a warning that the
waitQueueSize is too small for the connections size, and recommends a different value.

A value where waitQueueSize plus connections exceeds the maximum integer value for the Java JVM:

When the configuration is loaded, the waitQueueSize is reduced to the maximum integer value for the Java JVM
minus the value of connections . PingGateway generates a warning.

Consider the following example configuration of connections and waitQueueSize :

{
 "handler" : {
 "name" : "proxy-handler",
 "type" : "ReverseProxyHandler",
 "MyCapture" : "all",
 "config": {
 "soTimeout": "10 seconds",
 "connectionTimeout": "10 seconds",
 "connections": 64,
 "waitQueueSize": 100
 }
 },
 "baseURI" : "http://app.example.com:8080",
 "condition" : "${find(request.uri.path, '/')}"
}

PingGateway can propagate the request to the sample application using 64 connections. When the connections are
consumed, up to 100 subsequent requests are queued until a connection is freed. Effectively PingGateway can
accommodate 164 requests, although user concurrency delay means more may be handled. Requests received when the
waitQueue is full are rejected.

Default: Not set

"connectionTimeout": configuration expression<duration>, optional

Time to wait to establish a connection, expressed as a duration

Default: 10 seconds

"protocolVersion": configuration expression<enumeration>, optional

The version of HTTP protocol to use when processing requests:

HTTP/2 :

For HTTP, process requests using HTTP/1.1.

For HTTPS, process requests using HTTP/2.

HTTP/1.1 :

For HTTP and HTTPS, process requests using HTTP/1.1.

•

•

•

◦

◦

•

◦

Reference PingGateway

672 Copyright © 2025 Ping Identity Corporation

Not set:

For HTTP, process requests using HTTP/1.1.

For HTTPS with alpn enabled in ClientTlsOptions, process requests using HTTP/1.1, with an HTTP/2
upgrade request. If the targeted server can use HTTP/2, the client uses HTTP/2.

For HTTPS with alpn disabled in ClientTlsOptions, process requests using HTTP/1.1, without an HTTP/2
upgrade request.

Note that alpn is enabled by default in ClientTlsOptions.

Default: Not set

"http2PriorKnowledge": configuration expression<boolean>, optional

A flag for whether the client should have prior knowledge that the server supports HTTP/2. This property is for cleartext
(non-TLS requests) only, and is used only when protocolVersion is HTTP/2.

false : The client checks whether the server supports HTTP/2 by sending an HTTP/1.1 request to upgrade the
connection to HTTP/2:

If the server supports HTTP/2, the server upgrades the connection to HTTP/2, and subsequent requests are
processed over HTTP/2.

If the server does not support HTTP/2, the connection is not upgraded, and subsequent requests are
processed over HTTP/1.

true : The client does not check that the server supports HTTP/2. The client sends HTTP/2 requests to the server,
assuming that the server supports HTTP/2.

Default: false

"proxyOptions": ProxyOptions reference, optional

A proxy server to which requests can be submitted. Use this property to relay requests to other parts of the network. For
example, use it to submit requests from an internal network to the internet.

Provide the name of a ProxyOptions object defined in the heap or an inline configuration.

Default: A heap object named ProxyOptions .

"soTimeout": configuration expression<duration>, optional

Socket timeout, after which stalled connections are destroyed, expressed as a duration.

•

◦

◦

info
In HTTP/1.1 request messages, a Host header is required to specify the host and port number of the requested
resource. In HTTP/2 request messages, the Host header is not available.
In scripts or custom extensions that use HTTP/2, use UriRouterContext.originalUri.host or
UriRouterContext.originalUri.port in requests.

Note

•

◦

◦

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 673

Default: 10 seconds

"temporaryStorage": TemporaryStorage reference, optional

The TemporaryStorage object to buffer the request and response, when the streamingEnabled property of admin.json is
false .

Default: A heap object named TemporaryStorage .

tls: ClientTlsOptions reference, optional

Configure options for connections to TLS-protected endpoints, based on ClientTlsOptions. Define the object inline or in
the heap.

Default: Connections to TLS-protected endpoints are not configured.

"retries": object, optional

Enable and configure retry for requests.

During the execution of a request to a remote server, if a runtime exception occurs, or a condition is met, PingGateway
waits for a delay, and then schedules a new execution of the request. PingGateway tries until the allowed number of
retries is reached or the execution succeeds.

A warning-level entry is logged if all retry attempts fail; a debug-level entry is logged if a retry succeeds.

"retries": {
 "enabled": configuration expression<boolean>,
 "condition": runtime expression<boolean>,
 "executor": ScheduledExecutorService reference,
 "count": configuration expression<number>,
 "delay": configuration expression<duration>,
 }
}

"enabled": configuration expression<boolean>, optional

Enable retries.

Default: true

"condition": runtine expression<boolean>, optional

An inline PingGateway expression to define a condition based on the response, such as an error code.

lightbulb_2
If SocketTimeoutException errors occur in the logs when you try to upload or download large files, consider
increasing soTimeout.

Tip

emergency_home
Use of a TlsOptions reference is deprecated; use ClientTlsOptions instead. For more information, refer to the
Deprecated section of the Release Notes.

Important

Reference PingGateway

674 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

The condition is evaluated as follows:

If true , PingGateway retries the request until the value in count is reached.

If false , PingGateway retries the request only if a runtime exception occurs, until the value in count is
reached.

Default: ${false}

"executor": ScheduledExecutorService reference, optional

The ScheduledExecutorService to use for scheduling delayed execution of the request.

Default: ScheduledExecutorService

See also ScheduledExecutorService.

"count": configuration expression<number>, optional

The maximum number of retries to perform. After this threshold is passed and if the request is still not successful,
then the ClientHandler propagates the failure.

Retries caused by any runtime exception or triggered condition are included in the count.

Default: 5

"delay": _configuration expression<duration>, optional

The time to wait before retrying the request.

After a failure to send the request, if the number of retries is below the threshold, a new attempt is scheduled with
the executor service after this delay.

Default: 10 seconds

The following example configures a retry when a downstream component returns a 502 Bad Gateway response code:

"retries": {
 "enabled": true,
 "condition": "${response.status.code == 502}"
}

The following example configures the handler to retry the request only once, after a 1-minute delay:

{
 "retries": {
 "count": 1,
 "delay": "1 minute"
 }
}

The following example configures the handler to retry the request at most 20 times, every second:

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 675

{
 "retries": {
 "count": 20,
 "delay": "1 second"
 }
}

The following example configures the handler to retry the request 5 times, every 10 seconds (default values), with a
dedicated executor:

{
 "retries": {
 "executor": {
 "type": "ScheduledExecutorService",
 "config": {
 "corePoolSize": 20
 }
 }
 }
}

"circuitBreaker": object, optional

Enable and configure a circuit breaker to trip when the number of failures exceeds a configured threshold. Calls to
downstream services are stopped, and a runtime exception is returned. The circuit breaker is reset after the configured
delay.

{
 "circuitBreaker": {
 "enabled": configuration expression<boolean>,
 "maxFailures": configuration expression<integer>,
 "openDuration": configuration expression<duration>,
 "openHandler": Handler reference,
 "slidingCounter": object,
 "executor": ScheduledExecutorService reference
 }
}

"enabled": configuration expression<boolean>, optional

A flag to enable the circuit breaker.

Default: true

"maxFailures": configuration expression<number>, required

The maximum number of failed requests allowed in the window given by size , before the circuit breaker trips.
The value must be greater than zero.

Reference PingGateway

676 Copyright © 2025 Ping Identity Corporation

"openDuration": configuration expression<duration>, required

The duration for which the circuit stays open after the circuit breaker trips. The executor schedules the circuit to
be closed after this duration.

"openHandler": Handler reference, optional

The Handler to call when the circuit is open.

Default: A handler that throws a RuntimeException with a "circuit-breaker open" message.

"slidingCounter": object, optional

A sliding window error counter. The circuit breaker trips when the number of failed requests in the number of
requests given by size reaches maxFailures .

The following image illustrates how the sliding window counts failed requests:

{
 "slidingCounter": {
 "size": configuration expression<number>
 }
}

emergency_home
When retries is set, the circuit breaker does not count retried requests as failures. Bear this in mind
when you set maxFailures .
In the following example, a request can fail and then be retried three times. If it fails the third retry, the
request has failed four times, but the circuit breaker counts only one failure.

{
 "retries": {
 "count": 3,
 "delay": "1 second"
 }
}

Important

Request pass or fail✅ ❌ ✅ ❌ ✅ ✅ ✅ ✅ ❌ ❌ ❌ ✅ ✅ ❌ ❌ ✅ ✅ ❌ ✅ ❌

slidingCounter.size: 10
Failure count: 6

slidingCounter.size: 10
Failure count: 5

slidingCounter.size: 10
Failure count: 4

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 677

"size": configuration expression<number>, required

The size of the sliding window in which to count errors.

The value of size must be greater than zero, and greater than the value of maxFailures , otherwise an
exception is thrown.

"executor": ScheduledExecutorService reference, optional

A ScheduledExecutorService to schedule closure of the circuit after the duration given by openDuration .

Default: The default ScheduledExecutorService in the heap

"hostnameVerifier": configuration expression<enumeration>, optional

The way to handle hostname verification for outgoing SSL connections. Use one of the following values:

ALLOW_ALL : Allow a certificate issued by a trusted CA for any hostname or domain to be accepted for a connection
to any domain.

This setting allows a certificate issued for one company to be accepted as a valid certificate for another company.
To prevent the compromise of TLS connections, use this setting in development mode only. In production, use
STRICT .

STRICT : Match the hostname either as the value of the the first CN, or any of the subject-alt names.

A wildcard can occur in the CN, and in any of the subject-alt names. Wildcards match one domain level, so
*.example.com matches www.example.com but not some.host.example.com .

Default: STRICT

"proxy": Server reference, optional

A proxy server to which requests can be submitted. Use this property to relay requests to other parts of the network. For
example, use it to submit requests from an internal network to the internet.

If both proxy and systemProxy are defined, proxy takes precedence.

"proxy" : {
 "uri": configuration expression<uri string>,
 "username": configuration expression<string>,
 "passwordSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference
}

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

•

•

emergency_home
This property is deprecated; use proxyOptions instead. For more information, refer to the Deprecated

section of the Release Notes.

Important

Reference PingGateway

678 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

"uri": configuration expression<uri string>, required

URI of a server to use as a proxy for outgoing requests.

The result of the expression must be a string that represents a valid URI, but is not a real java.net.URI object.

"username": configuration expression<string>, required if the proxy requires authentication

Username to access the proxy server.

"passwordSecretId": configuration expression<secret-id>, required if the proxy requires
authentication

The secret ID of the password to access the proxy server.

This secret ID must point to a GenericSecret.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the proxy’s password.

"systemProxy": boolean, optional

Submit outgoing requests to a system-defined proxy, set by the following system properties or their HTTPS equivalents:

http.proxyHost , the host name of the proxy server.

http.proxyPort , the port number of the proxy server. The default is 80 .

http.nonProxyHosts , a list of hosts that should be reached directly, bypassing the proxy.

This property can’t be used with a proxy that requires a username and password. Use the property proxy instead.

If both proxy and systemProxy are defined, proxy takes precedence.

For more information, refer to Java Networking and Proxies.

Default: False.

"keyManager": Key manager reference(s), optional

The key manager(s) that handle(s) this client’s keys and certificates.

The value of this field can be a single reference, or an array of references.

Provide either the name(s) of key manager object(s) defined in the heap, or specify the configuration object(s) inline.

emergency_home
This property is deprecated; use proxyOptions instead. For more information, refer to the Deprecated

section of the Release Notes.

Important

•

•

•

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 679

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/doc-files/net-properties.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/doc-files/net-properties.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

You can specify either a single key manager, as in "keyManager": "MyKeyManager" , or an array of key managers, as in
"keyManager": ["FirstKeyManager", "SecondKeyManager"] .

If you do not configure a key manager, then the client cannot present a certificate, and so cannot play the client role in
mutual authentication.

"sslCipherSuites": array of strings, optional

Array of cipher suite names, used to restrict the cipher suites allowed when negotiating transport layer security for an
HTTPS connection.

For information about the available cipher suite names, refer to the documentation for the Java virtual machine (JVM)
where you run PingGateway. For Oracle Java, refer to the list of JSSE Cipher Suite Names.

Default: Allow any cipher suite supported by the JVM.

"sslContextAlgorithm": string, optional

The SSLContext algorithm name, as listed in the table of SSLContext Algorithms for the Java Virtual Machine used by
PingGateway.

Default: TLS

"sslEnabledProtocols": array of strings, optional

Array of protocol names, used to restrict the protocols allowed when negotiating transport layer security for an HTTPS
connection.

Default: Allow any protocol supported by the JVM.

"trustManager": Trust manager reference(s), optional

The trust managers that handle(s) peers' public key certificates.

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

Reference PingGateway

680 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#jsse-cipher-suite-names
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#jsse-cipher-suite-names
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

The value of this field can be a single reference, or an array of references.

Provide either the name(s) of trust manager object(s) defined in the heap, or specify the configuration object(s) inline.

You can specify either a single trust manager, as in "trustManager": "MyTrustManager" , or an array of trust managers,
as in "trustManager": ["FirstTrustManager", "SecondTrustManager"] .

If you do not configure a trust manager, then the client uses only the default Java truststore. The default Java truststore
depends on the Java environment. For example, $JAVA_HOME/lib/security/cacerts .

More information

org.forgerock.openig.handler.ClientHandlerHeaplet

DispatchHandler

When a request is handled, the first condition in the list of conditions is evaluated. If the condition expression yields true , the
request is dispatched to the associated handler with no further processing. Otherwise, the next condition in the list is evaluated.

Usage

{
 "name": string,
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": runtime expression<boolean>,
 "handler": Handler reference,
 "baseURI": runtime expression<url>,
 }, ...
]
 }
}

Properties

"bindings": array of objects, required

One or more condition and handler bindings.

"condition": runtime expression<boolean>, optional

A flag to indicate that a condition is met. The condition can be based on the request, context, or PingGateway
runtime environment, such as system properties or environment variables.

Conditions are defined using PingGateway expressions, as described in Expressions, and are evaluated as follows:

true : The request is dispatched to the associated handler.

false : The next condition in the list is evaluated.

For examples, refer to Example conditions and requests.

Default: ${true}

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 681

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/ClientHandlerHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/ClientHandlerHeaplet.html

"handler": Handler reference, required

The Handler to which PingGateway dispaches the request if the associated condition yields true .

Provide the name of a Handler object defined in the heap or an inline Handler configuration object.

"baseURI": runtime expression<url>,optional

A base URI that overrides the existing request URI. Only scheme, host, and port are used in the supplied URI.

The result of the expression must be a string that represents a valid URI, but is not a real java.net.URI object. For
example, it would be incorrect to use ${request.uri} , which is not a String but a MutableUri.

In the following example, the binding condition looks up the hostname of the request. If it finds a match, the value
is used for the baseURI . Otherwise, the default value is used:

{
 "properties": {
 "uris": {
 "app1.example.com": {
 "baseURI": "http://backend1:8080/"
 },
 "app2.example.com": {
 "baseURI": "http://backend2:8080/"
 },
 "default": {
 "baseURI": "http://backend3:8080/"
 }
 }
 },
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${not empty uris[contexts.router.originalUri.host]}",
 "baseURI": "${uris[contexts.router.originalUri.host].baseURI}",
 "handler": "ReverseProxyHandler"
 },
 {
 "baseURI": "${uris['default'].baseURI}",
 "handler": "ReverseProxyHandler"
 }
]
 }
 }
}

Default: No change to the base URI

Example

For an example that uses a DispatchHandler, refer to Implement not-enforced URIs with a DispatchHandler

Reference PingGateway

682 Copyright © 2025 Ping Identity Corporation

More information

org.forgerock.openig.handler.DispatchHandler

Expressions

ForgeRockClientHandler

The ForgeRockClientHandler is a Handler available by default on the heap that chains a default ClientHandler with a
TransactionIdOutboundFilter.

This Handler supports ForgeRock audit by supporting the initiation or propagation of audit information from PingGateway to the
audit framework. For more information, see AuditService.

The following default ForgeRockClientHandler is available as a default object on the heap, and can be referenced by the name
ForgeRockClientHandler.

{
 "name": "ForgeRockClientHandler",
 "type": "Chain",
 "config": {
 "filters": ["TransactionIdOutboundFilter"],
 "handler": "ClientHandler"
 }
}

Example

For an example that uses ForgeRockClientHandler to log interactions between PingGateway and AM, see Decorating
PingGateway’s interactions with AM.

More information

org.forgerock.openig.heap.Keys

IdentityAssertionHandler

Use in an PingOne Advanced Identity Cloud authentication journey with the IdentityAssertionNode node. The node is available in
PingOne Advanced Identity Cloud and from AM 7.5. Learn more from PingOne Advanced Identity Cloud’s Identity Assertion node
 and AM’s Identity Assertion node.

This handler replaces IdentityAssertionHandlerTechPreview designed for the Gateway Communication node described in
PingOne Advanced Identity Cloud’s Gateway Communication overview.

The following image shows the flow of information when an Identity Assertion node authenticates internal accesses:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 683

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/DispatchHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/DispatchHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/heap/Keys.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/heap/Keys.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/latest/cloud/auth-node-gateway-comm.html
https://docs.pingidentity.com/auth-node-ref/latest/cloud/auth-node-gateway-comm.html

As part of an PingOne Advanced Identity Cloud journey, the IdentityAssertionHandler uses an identityAssertionPlugin to manage
local authentication as follows:

The PingOne Advanced Identity Cloud authentication journey redirects a user to PingGateway for local authentication,
providing an identity request JWT.

PingGateway validates the identity request JWT.

The identityAssertionPlugin accesses the IdentityRequestJwtContext generated from the identity request JWT. It then
performs local processing and returns the principal and identity claims in an identity assertion JWT.

PingGateway redirects the user back to PingOne Advanced Identity Cloud authentication journey, providing the identity
assertion JWT. If an exception prevents PingGateway from returning a valid identity assertion JWT, PingGateway returns an
HTTP 500.

The following table lists the claims contained in identity request JWT and identity assertion JWT:

Advanced Identity Cloud or PingAM PingGateway

Browser Authentication journey IdentityAssertionNode
Authentication filter such as

CrossDomainSingleSignOnFilter IdentityAssertionHandler

1 Unauthenticated request

2 Redirect to AM authentication journey

3 Follow redirect

4 Execute node

5
Generate and encrypt an
identity request JWT

6 Redirect callback with identity request JWT

7 Follow redirect

8 Decrypt and validate the identity request JWT

9 Extract the nonce and redirect URL

10 IdentityRequestJwtContext IdentityAssertionPlugin

11
Authenticate the request
Produce identity claims

alt [Success]

12 Return claims and assertions

[Failure]

13 Return error assertion

14
Build result in encrypted
identity assertion JWT

15 Redirect browser to the authentication journey with the resulting identity assertion JWT

16 Follow redirect

17
Decrypt and validate the identity
assertion JWT, including the nonce

18
Store claims in the journey's
shared state

alt [Success]

19
Continue on journey's
success outcome

[Failure]

20
Continue on journey's
failure outcome

1.

2.

3.

4.

Claim Description Identity request JWT Identity assertion JWT
(succesful plugin
processing)

Identity assertion JWT
(plugin processing
error)

iss Issuer

Reference PingGateway

684 Copyright © 2025 Ping Identity Corporation

Usage

{
 "name": string,
 "type": "IdentityAssertionHandler",
 "config": {
 "identityAssertionPlugin": IdentityAssertionPlugin reference,
 "selfIdentifier": configuration expression<string>,
 "peerIdentifier": configuration expression<string>,
 "encryptionSecretId": configuration expression<secret-id>,
 "secretsProvider": Secrets Provider reference,
 "expiry": configuration expression<duration>,
 "skewAllowance": configuration expression<duration>
 }
}

Claim Description Identity request JWT Identity assertion JWT
(succesful plugin
processing)

Identity assertion JWT
(plugin processing
error)

aud Audience

iat Issued at

exp Expiration time

nonce Unique ID generated by the
IdentityGatewayAssertionNode
and returned in the identity
assertion JWT

redirect URL on which to send the
identity assertion JWT

version JWT version; only v1 is
supported

data Map of claims items that can
be required by a plugin

Optional

principa

l

The user for whom the identity
assertion JWT is issued

identity Map of additional identity
claims returned by the plugin

error Error message of the plugin
processing failure

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 685

"identityAssertionPlugin": configuration expression<string>, required

An implementation of org.forgerock.openig.assertion.plugin.IdentityAssertionPlugin.

This plugin is called after the IdentityAssertionHandler validates the identity request JWT from PingOne Advanced Identity
Cloud. The handler then passes the IdentityRequestJwtContext in the context chain to the plugin.

For an out-of-the-box plugin to support use-cases that aren’t already provisioned by a PingGateway plugin, refer to
ScriptableIdentityAssertionPlugin.

"selfIdentifier": configuration expression<string>, required

An identifier to validate that this PingGateway instance is the correct audience for the identity request from PingOne
Advanced Identity Cloud.

This identifier is the value of:

aud claim in the identity request JWT

iss claim in the identity assertion JWT

Can’t be null.

"peerIdentifier": configuration expression<string>, required

An identifier to validate that the expected PingOne Advanced Identity Cloud tenant issued the identity request.

This identifier is the value of the:

iss claim in the identity request JWT

aud claim in the identity assertion JWT

Can’t be null.

"encryptionSecretId": configuration expression<secret-id>, required

The secret ID for the secret to decrypt the identity request JWT and encrypt the returned identity assertion JWT. The secret
ID must point to a CryptoKey. Decryption and encryption is with AES GCM using a 256-bit key.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to resolve encrytion and decryption keys.

"expiry": _configuration expression<duration>, optional

The expiry time of the identity assertion JWT.

Default: 30 seconds

"skewAllowance": configuration expression<duration>, optional

The duration to add to the validity period of a JWT to allow for clock skew between different servers.

A skewAllowance of 2 minutes affects the validity period as follows:

A JWT with an iat of 12:00 is valid from 11:58 on the PingGateway clock.

•

•

•

•

•

Reference PingGateway

686 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/IdentityAssertionPlugin.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/IdentityAssertionPlugin.html

A JWT with an exp 13:00 is expired after 13:02 on the PingGateway clock.

Default: To support a zero-trust policy, the skew allowance is by default zero .

Example

The following route is an Identity Assertion service route for use with the IdentityAssertionNode.

Learn about how to set up the example in PingOne Advanced Identity Cloud’s Identity Assertion node and AM’s Identity
Assertion node.

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 687

https://docs.pingidentity.com/auth-node-ref/latest/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/latest/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-identity-assertion-node.html
https://docs.pingidentity.com/auth-node-ref/7.5/auth-node-identity-assertion-node.html

{
 "name": "IdentityAssertion",
 "condition": "${find(request.uri.path, '^/idassert')}",
 "properties": {
 "amIdcPeer": "myTenant.forgeblocks.com"
 },
 "handler": "IdentityAssertionHandler-1",
 "heap": [
 {
 "name": "IdentityAssertionHandler-1",
 "type": "IdentityAssertionHandler",
 "config": {
 "identityAssertionPlugin": "BasicAuthScriptablePlugin",
 "selfIdentifier": "https://ig.ext.com:8443",
 "peerIdentifier": "&{amIdcPeer}",
 "secretsProvider": [
 "secrets-pem"
],
 "encryptionSecretId": "idassert"
 }
 },
 {
 "name": "BasicAuthScriptablePlugin",
 "type": "ScriptableIdentityAssertionPlugin",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "import org.forgerock.openig.assertion.IdentityAssertionClaims",
 "import org.forgerock.openig.assertion.plugin.IdentityAssertionPluginException",
 "logger.info('Running ScriptableIdentityAssertionPlugin')",
 "return new IdentityAssertionClaims('demo')"
]
 }
 },
 {
 "name": "pemPropertyFormat",
 "type": "PemPropertyFormat"
 },
 {
 "name": "secrets-pem",
 "type": "FileSystemSecretStore",
 "config": {
 "directory": "&{ig.instance.dir}/secrets/igfs",
 "suffix": ".pem",
 "format": "pemPropertyFormat",
 "mappings": [
 {
 "secretId": "idassert",
 "format": "pemPropertyFormat"
 }
]
 }
 }
]
}

More information

org.forgerock.openig.assertion.plugin.IdentityAssertionPlugin

Reference PingGateway

688 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/IdentityAssertionPlugin.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/IdentityAssertionPlugin.html

IdentityAssertionHandlerTechPreview

Use in an PingOne Advanced Identity Cloud authentication journey with the Gateway Communication node. described in PingOne
Advanced Identity Cloud’s Gateway Communication overview.

The IdentityAssertionHandlerTechPreview sets up an IdentityAssertionPluginTechPreview to manage local processing, such as
authentication. The Handler then calls the plugin at runtime for each request.

An PingOne Advanced Identity Cloud authentication journey does the following:

Redirects users to PingGateway for local authentication.

After local authentication, provides an identity assertion and redirects users back to the PingOne Advanced Identity Cloud
authentication journey.

The PingOne Advanced Identity Cloud authentication journey provides:

A cryptographically-secure random value in a nonce to validate the identity assertion.

A returnUri to redirect the user back to PingOne Advanced Identity Cloud to continue the authentication journey.

Exceptions during local processing cause a redirect with an assertion JWT containing an assertionError claim. Exceptions that
prevent the return of a valid assertion, such as an invalid incoming JWT or key error, cause an HTTP 500.

Usage

{
 "name": string,
 "type": "IdentityAssertionHandlerTechPreview",
 "config": {
 "identityAssertionPlugin": IdentityAssertionPluginTechPreview reference,
 "selfIdentifier": configuration expression<string>,
 "peerIdentifier": configuration expression<string>,
 "expire": configuration expression<duration>,
 "secretsProvider": Secrets Provider reference,
 "verificationSecretId": configuration expression<secret-id>,
 "decryptionSecretId": configuration expression<secret-id>,
 "skewAllowance": configuration expression<duration>,
 "signature": object
 }
}

"identityAssertionPlugin": configuration expression<string>, required

An implementation of org.forgerock.openig.handler.assertion.IdentityAssertionPluginTechPreview.

An out-of-the box implementation is available in ScriptableIdentityAssertionPluginTechPreview.

emergency_home
The IdentityAssertionHandlerTechPreview, ScriptableIdentityAssertionPluginTechPreview, and
IdentityAssertionPluginTechPreview are available in Technology preview. They aren’t yet supported, may be
functionally incomplete, and are subject to change without notice.

Important

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 689

https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/auth-node-ref/latest/cloud/auth-node-gateway-comm.html
https://docs.pingidentity.com/auth-node-ref/latest/cloud/auth-node-gateway-comm.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionPluginTechPreview.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionPluginTechPreview.html

"selfIdentifier": configuration expression<string>, required

An identifier to validate that this PingGateway instance is the right audience for the incoming JWT from PingOne Advanced
Identity Cloud. The same identifier is used for the iss claim of the outgoing JWT sent to PingOne Advanced Identity Cloud.

Can’t be null.

"peerIdentifier": configuration expression<string>, required

An identifier to validate that the incoming JWT is from the expected peer. The same identifier is used for the aud claim in
the outgoing JWT sent to PingOne Advanced Identity Cloud.

Can’t be null.

"expire": duration, optional

The expiry time of the outgoing JWT sent to PingOne Advanced Identity Cloud.

Default: 30 seconds

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for cryptographic keys.

"verificationSecretId": configuration expression<secret-id>, required

The secret ID for the secret to validate the signature of the incoming JWT. The secret ID must point to a CryptoKey.

"decryptionSecretId": configuration expression<secret-id>, optional

The secret ID for the secret to decrypt the incoming JWT. The secret ID must point to a CryptoKey.

When this property isn’t set, PingGateway treats the incoming JWT as signed but not encrypted.

Default: Not set.

"skewAllowance": configuration expression<duration>, optional

The duration to add to the validity period of a JWT to allow for clock skew between different servers.

A skewAllowance of 2 minutes affects the validity period as follows:

A JWT with an iat of 12:00 is valid from 11:58 on the PingGateway clock.

A JWT with an exp 13:00 is expired after 13:02 on the PingGateway clock.

Default: To support a zero-trust policy, the skew allowance is by default zero .

"signature": object, required

A JWT signature to validate the authenticity of claims or data for the outgoing JWT.

•

•

Reference PingGateway

690 Copyright © 2025 Ping Identity Corporation

{
 "signature": {
 "secretId": configuration expression<secret-id>,
 "algorithm": configuration expression<string>,
 "encryption": object
 }
}

"secretId": secret-id, required

The secret ID of the signing key. The secret ID must point to a CryptoKey.

"algorithm": configuration expression<string>, optional

The signing algorithm.

Default: RS256

"encryption": object, required

Configuration to encrypt the JWT.

{
 "encryption": {
 "secretId": configuration expression<secret-id>,
 "algorithm": configuration expression<string>,
 "method": configuration expression<string>
 }
}

"secretId": secret-id, required

The secret ID of the encryption key. The secret ID must point to a CryptoKey.

"algorithm": configuration expression<string>, required

The encryption algorithm. Use an algorithm from the List of JWS Algorithms.

"method": configuration expression<string>, required

The encryption method. Use a method from the List of JWE Algorithms.

Example

The following example route is for a PingOne Advanced Identity Cloud authentication journey that uses a Gateway
Communication node.

For information about the identityAssertionPlugin object, refer to the example in
ScriptableIdentityAssertionPluginTechPreview.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 691

https://tools.ietf.org/html/rfc7518#section-3
https://tools.ietf.org/html/rfc7518#section-3
https://tools.ietf.org/html/rfc7518#section-4.1
https://tools.ietf.org/html/rfc7518#section-4.1
https://docs.pingidentity.com/auth-node-ref/latest/cloud/auth-node-gateway-comm.html
https://docs.pingidentity.com/auth-node-ref/latest/cloud/auth-node-gateway-comm.html
https://docs.pingidentity.com/auth-node-ref/latest/cloud/auth-node-gateway-comm.html

{
 "type": "IdentityAssertionHandlerTechPreview",
 "config": {
 "identityAssertionPlugin": "BasicAuthScriptablePlugin",
 "selfIdentifier": "identity-gateway",
 "peerIdentifier": "gateway-communication-node",
 "secretsProvider": [
 "IG-Decrypt",
 "Node-Verify",
 "IG-Sign",
 "Node-Encrypt"
],
 "verificationSecretId": "id.key.for.verifying.incoming.jwt",
 "decryptionSecretId": "id.key.for.decrypting.incoming.jwt",
 "signature": {
 "secretId": "id.key.for.signing.assertion.jwt",
 "algorithm": "RS256",
 "encryption": {
 "secretId": "id.key.for.encrypting.assertion.jwt",
 "algorithm": "RSA-OAEP-256",
 "method": "A256GCM"
 }
 }
 }
}

More information

org.forgerock.openig.handler.assertion.IdentityAssertionPluginTechPreview.

JwkSetHandler

Expose cryptographic keys as a JWK set. Use this handler to reuse exposed keys for their assigned purpose in a downstream
application.

Consider the following limitations:

When the public key isn’t available, the corresponding private key can’t be exposed.

Keys in secure storage, such as a Hardware Security Module (HSM) or remote server, can’t be exposed.

For a description of how secrets are managed, refer to About secrets.

For information about JWKs and JWK Sets, refer to JSON Web Key (JWK).

•

error
You are not recommended to expose private keys as a JWK.

Caution

•

Reference PingGateway

692 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionPluginTechPreview.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionPluginTechPreview.html
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517

Usage

{
 "name": string,
 "type": "JwkSetHandler",
 "config": {
 "secretsProvider": SecretsProvider reference,
 "purposes": [object, ...],
 "exposePrivateSecrets": configuration expression<boolean>
 }
}

"secretsProvider": SecretsProvider reference, required

The SecretsProvider containing secrets to expose in the JwkSet.

"purposes": array of objects, required

One or more purposes for the JwkSet key.

{
 "purposes": [
 {
 "secretId": configuration expression<secret-id>,
 "keyUsage": configuration expression<enumeration>
 },
 ...
]
}

"secretId": configuration expression<secret-id>, required

The secret ID of the key to be exposed in the JwkSet.

This secret ID must point to a CryptoKey.

"keyUsage": configuration expression<enumeration>, required

The allowed use of the key:

AGREE_KEY : Export the private key used in the key agreement protocol, for example, Diffie-Hellman.

ENCRYPT : Export the public key used to encrypt data.

DECRYPT : Export the private key used to decrypt data.

SIGN : Export the private key used to sign data.

VERIFY : Export the public key used to verify signature data.

WRAP_KEY : Export the public key used to encrypt (wrap) other keys.

UNWRAP_KEY : Export the private key used to decrypt (unwrap) other keys.

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 693

exposePrivateSecrets: configuration expression<boolean>, optional

A flag indicating whether to publish private keys in a JWK set. As a security safeguard, this property is false by default to
prevent the accidental exposure of private keys.

true : Publish both public and private keys in the JWK set false : Publish only public keys in the JWK set

Default: false

Examples

This example uses a JwkSetHandler to expose a signing key used by the JwtBuilderFilter:

Set an environment variable for the base64-encoded secret to sign the JWT:

$ export SIGNING_KEY_SECRET_ID='cGFzc3dvcmQ='

Add the following route to PingGateway:

$HOME/.openig/config/routes/jwksethandler.json

%appdata%\OpenIG\config\routes\jwksethandler.json

1.

2.

Linux

Windows

Reference PingGateway

694 Copyright © 2025 Ping Identity Corporation

{
 "name": "jwksethandler",
 "condition": "${find(request.uri.path, '/jwksethandler')}",
 "heap": [
 {
 "name": "SecretKeyPropertyFormat-1",
 "type": "SecretKeyPropertyFormat",
 "config": {
 "format": "BASE64",
 "algorithm": "AES"
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore",
 "config": {
 "mappings": [{
 "secretId": "signing.key.secret.id",
 "format": "SecretKeyPropertyFormat-1"
 }]
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "JwtBuilderFilter-1",
 "type": "JwtBuilderFilter",
 "config": {
 "template": {
 "name": "${contexts.userProfile.commonName}",
 "email": "${contexts.userProfile.rawInfo.mail[0]}"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "signature": {
 "secretId": "signing.key.secret.id",
 "algorithm": "HS256"
 }
 }
 }
],
 "handler": {
 "type": "JwkSetHandler",
 "config": {
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "purposes": [{
 "secretId": "signing.key.secret.id",
 "keyUsage": "SIGN"
 }]
 }
 }
 }
 }
}

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 695

Notice the following features of the route:

The route matches requests to /jwksethandler .

The JWT signing key is managed by the SysEnvStoreSecretStore in the heap, which refers to the
SecretKeyPropertyFormat for the secret’s format.

The JwtBuilderFilter signature property refers to the JWT signing key in the SysEnvStoreSecretStore.

The JwkSetHandler refers to the JWT signing key.

Go to http://ig.example.com:8080/jwksethandler.

The signing key is displayed as an array, as follows:

{
 "keys": [
 {
 "k": "cGFzc3dvcmQ",
 "kid": "signing.key.secret.id",
 "kty": "oct",
 "use": "sig"
 }
]
}

The JWK set secret is ULR base64-encoded. Although the secret is set with the value cGFzc3dvcmQ= , the value
cGFzc3dvcmQ is exposed.

More information

org.forgerock.openig.handler.JwkSetHandler

PingOneProtectThreatLevelRoutingHandler

Uses a PingOneProtectEvaluationContext representing a risk evaluation to route the inbound request according to the risk level.

You use a PingOneProtectEvaluationFilter to make a risk assessment request to PingOne Protect. The filter records the evaluation
in a PingOneProtectEvaluationContext object. The PingOneProtectThreatLevelRoutingHandler acts on the risk level set in the
context.

If the risk level is not recognized, PingGateway routes the request to the configured "fallbackHandler" .

After completing additional actions to verify the identity of a user following a risk evaluation, record the outcome using a
PingOneProtectFeedbackFilter.

◦

◦

◦

◦

3.

emergency_home
The PingOneProtectThreatLevelRoutingHandler is available in Technology preview. It isn’t yet supported, may be
functionally incomplete, and is subject to change without notice.

Important

Reference PingGateway

696 Copyright © 2025 Ping Identity Corporation

http://ig.example.com:8080/jwksethandler
http://ig.example.com:8080/jwksethandler
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/JwkSetHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/JwkSetHandler.html
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability

Usage

{
 "name": string,
 "type": "PingOneProtectThreatLevelRoutingHandler",
 "config": {
 "levels": [{
 "level": configuration expression<string>,
 "handler": Handler reference
 }]
 "fallbackHandler": Handler reference
 }
}

Configuration

"levels": array of objects, required

One or more objects, each mapping a risk level to a handler.

"level": configuration expression<string>, required

The risk level; one of:

LOW

MEDIUM

HIGH

"handler": Handler reference, required

The handler responsible for requests with the corresponding risk level.

"fallbackHandler": Handler reference, optional

The handler to use when the risk level doesn’t match any of the configured "level" settings.

Default: Return an HTTP 403 Forbidden response.

Example

The following example sends low-risk requests straight through, medium-risk requests to another handler for additional
processing, and high-risk requests to another handler to deny access and take additional action:

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 697

{
 "name": "PingOneProtectThreatLevelRoutingHandler-1",
 "type": "PingOneProtectThreatLevelRoutingHandler",
 "config": {
 "levels": [{
 "level": "LOW",
 "handler": "passthroughHandler"
 }, {
 "level": "MEDIUM",
 "handler": "mediumRiskHandler"
 }, {
 "level": "HIGH",
 "handler": "highRiskHandler"
 }],
 "fallbackHandler": "fallbackHandler"
 }
}

More information

org.forgerock.openig.ping.protect.PingOneProtectThreatLevelRoutingHandler

ResourceHandler

Serves static content from a directory.

Usage

{
 "name": string,
 "type": "ResourceHandler",
 "config": {
 "directories": [configuration expression<string>, ...],
 "basePath": configuration expression<string>,
 "welcomePages": [configuration expression<string>, ...],
 "temporaryStorage": TemporaryStorage reference
 }
}

Properties

"directories": array of configuration expression<strings>, required

A list of one or more directories in which to search for static content.

When multiple directories are specified in an array, the directories are searched in the listed order.

"basePath": _configuration expression<string>, required if the route is not /

The base path of the incoming request for static content.

To specify no base path, leave this property out of the configuration, or specify it as "basePath": "" or
"basePath": "/" .

Reference PingGateway

698 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/ping/protect/PingOneProtectThreatLevelRoutingHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/ping/protect/PingOneProtectThreatLevelRoutingHandler.html

Default: "" .

"welcomePages": array of configuration expression<strings>, optional

A set of static content to serve from one of the specified directories when no specific resource is requested.

When multiple sets of static content are specified in an array, the sets are searched for in the listed order. The first set that
is found is used.

Default: Empty

"temporaryStorage": TemporaryStorage reference, optional

A TemporaryStorage object for the static content.

Default: TemporaryStorage heap object

Example

The following example serves requests to http://ig.example.com:8080 with the static file index.html from /path/to/static/
pages/ :

{
 "name": "StaticWebsite",
 "type": "ResourceHandler",
 "config": {
 "directories": ["/path/to/static/pages"],
 "welcomePages": ["index.html"]
 }
}

When the basePath is /website , the example serves requests to http://ig.example.com:8080/website :

{
 "name": "StaticWebsite",
 "type": "ResourceHandler",
 "config": {
 "directories": ["/path/to/static/pages"],
 "basePath": "/website",
 "welcomePages": ["index.html"]
 }
}

More information

org.forgerock.openig.handler.resources.ResourceHandler

org.forgerock.http.protocol.Entity

ReverseProxyHandler

Proxy requests to protected applications. When PingGateway relays the request to the protected application, PingGateway is
acting as a client of the application. PingGateway is client-side.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 699

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/resources/ResourceHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/resources/ResourceHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Entity.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Entity.html

Consider the following comparison of the ClientHandler and ReverseProxyHandler:

When uploading or downloading large files, prevent timeout issues by increasing the value of soTimeout , and using a streaming
mode, as follows:

Configure the streamingEnabled property of AdminHttpApplication.

Usage

{
 "name": string,
 "type": "ReverseProxyHandler",
 "config": {
 "vertx": object,
 "connections": configuration expression<number>,
 "waitQueueSize": configuration expression<number>,
 "soTimeout": configuration expression<duration>,
 "connectionTimeout": configuration expression<duration>,
 "protocolVersion": configuration expression<enumeration>,
 "http2PriorKnowledge": configuration expression<boolean>,
 "proxyOptions": ProxyOptions reference,
 "temporaryStorage": TemporaryStorage reference,
 "tls": ClientTlsOptions reference,
 "retries": object,
 "circuitBreaker": object,
 "websocket": object,
 "hostnameVerifier": configuration expression<enumeration>, //deprecated
 "proxy": Server reference, //deprecated
 "systemProxy": boolean //deprecated
 }
}

* Legacy; no longer supported

ClientHandler ReverseProxyHandler

Use this handler to … Send requests to third-party services accessed
within a route. The service can be AM or an
HTTP API. The service can be an HTTP endpoint,
such as AM, IDM, PingOne Advanced Identity
Cloud, or any custom HTTP API.

Send requests to the final service accessed by a
route. The service can be the final downstream
application.

If the service does not
respond in time, this
handler …

Propagates the error through the Promise flow.
If the error is not handled within the route, for
example, by a FailureHandler, the handler
returns a 500 Internal Server Error
response.

Stops processing the request, and returns a 502
Bad Gateway response.

Reference PingGateway

700 Copyright © 2025 Ping Identity Corporation

Properties

"vertx": object, optional

Vert.x-specific configuration for the handler, where PingGateway does not provide its own first-class configuration. Vert.x
options are described in HttpClientOptions.

The vertx object is read as a map, and values are evaluated as configuration expressions.

For properties where PingGateway provides its own first-class configuration, Vert.x configuration options are disallowed,
and the PingGateway configuration option takes precedence over Vert.x options configured in vertx . The following Vert.x
configuration options are disallowed client-side:

alpnVersions

connectTimeout

enabledCipherSuites

enabledSecureTransportProtocols

http2ClearTextUpgrade

idleTimeout

idleTimeoutUnit

keyCertOptions

keyStoreOptions

maxWaitQueueSize

pemKeyCertOptions

pemTrustOptions

pfxKeyCertOptions

pfxTrustOptions

port

protocolVersion

proxyOptions

ssl

trustOptions

trustStoreOptions

useAlpn

verifyHost

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 701

https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/http/HttpClientOptions.html
https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/http/HttpClientOptions.html

The following example configures the Vert.x configuration when PingGateway is acting client-side. When PingGateway is
acting server-side, configure the connectors:vertx property of admin.json :

{
 "vertx": {
 "maxWebSocketFrameSize": 128000,
 "maxWebSocketMessageSize": 256000,
 "compressionLevel": 4,
 "maxHeaderSize": 16384
 }
}

The following example configures HTTP/2 connections when PingGateway is acting client-side. The configuration allows
PingGateway to make HTTP/2 requests with large headers. When PingGateway is acting server-side, configure the
connectors:vertx property of admin.json :

{
 "vertx": {
 "initialSettings": {
 "maxHeaderListSize": 16384
 }
 }
}

"connections": configuration expression<number>, optional

The maximum number of concurrent HTTP connections in the client connection pool.

For information about the interaction between this property and waitQueueSize , see the description of waitQueueSize .

Default: 64

“waitQueueSize”: configuration expression<number>, optional

The maximum number of outbound requests allowed to queue when no downstream connections are available.
Outbound requests received when the queue is full are rejected.

Use this property to limit memory use when there is a backlog of outbound requests, for example, when the protected
application or third-party service is slow.

Configure waitQueueSize as follows:

Not set (default): The wait queue is calculated as the square of connections .

If connections is not configured, then its default of 64 is used, giving the waitQueueSize of 4096 .

If the square of connections exceeds the maximum integer value for the Java JVM, the maximum integer
value for the Java JVM is used.

-1 : The wait queue is unlimited. Requests received when there are no available connections are queued without
limit.

0 : There is no wait queue. Requests received when there are no available connections are rejected.

•

◦

◦

•

•

Reference PingGateway

702 Copyright © 2025 Ping Identity Corporation

A value that is less than the square of connections :

When the configuration is loaded, the configured value is used. PingGateway generates a warning that the
waitQueueSize is too small for the connections size, and recommends a different value.

A value where waitQueueSize plus connections exceeds the maximum integer value for the Java JVM:

When the configuration is loaded, the waitQueueSize is reduced to the maximum integer value for the Java JVM
minus the value of connections . PingGateway generates a warning.

Consider the following example configuration of connections and waitQueueSize :

{
 "handler" : {
 "name" : "proxy-handler",
 "type" : "ReverseProxyHandler",
 "MyCapture" : "all",
 "config": {
 "soTimeout": "10 seconds",
 "connectionTimeout": "10 seconds",
 "connections": 64,
 "waitQueueSize": 100
 }
 },
 "baseURI" : "http://app.example.com:8080",
 "condition" : "${find(request.uri.path, '/')}"
}

PingGateway can propagate the request to the sample application using 64 connections. When the connections are
consumed, up to 100 subsequent requests are queued until a connection is freed. Effectively PingGateway can
accommodate 164 requests, although user concurrency delay means more may be handled. Requests received when the
waitQueue is full are rejected.

Default: Not set

"connectionTimeout": configuration expression<duration>, optional

Time to wait to establish a connection, expressed as a duration

Default: 10 seconds

"protocolVersion": configuration expression<enumeration>, optional

The version of HTTP protocol to use when processing requests:

HTTP/2 :

For HTTP, process requests using HTTP/1.1.

For HTTPS, process requests using HTTP/2.

HTTP/1.1 :

For HTTP and HTTPS, process requests using HTTP/1.1.

•

•

•

◦

◦

•

◦

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 703

Not set:

For HTTP, process requests using HTTP/1.1.

For HTTPS with alpn enabled in ClientTlsOptions, process requests using HTTP/1.1, with an HTTP/2
upgrade request. If the targeted server can use HTTP/2, the client uses HTTP/2.

For HTTPS with alpn disabled in ClientTlsOptions, process requests using HTTP/1.1, without an HTTP/2
upgrade request.

Note that alpn is enabled by default in ClientTlsOptions.

Default: Not set

"http2PriorKnowledge": configuration expression<boolean>, optional

A flag for whether the client should have prior knowledge that the server supports HTTP/2. This property is for cleartext
(non-TLS requests) only, and is used only when protocolVersion is HTTP/2.

false : The client checks whether the server supports HTTP/2 by sending an HTTP/1.1 request to upgrade the
connection to HTTP/2:

If the server supports HTTP/2, the server upgrades the connection to HTTP/2, and subsequent requests are
processed over HTTP/2.

If the server does not support HTTP/2, the connection is not upgraded, and subsequent requests are
processed over HTTP/1.

true : The client does not check that the server supports HTTP/2. The client sends HTTP/2 requests to the server,
assuming that the server supports HTTP/2.

Default: false

"proxyOptions": ProxyOptions reference, optional

A proxy server to which requests can be submitted. Use this property to relay requests to other parts of the network. For
example, use it to submit requests from an internal network to the internet.

Provide the name of a ProxyOptions object defined in the heap or an inline configuration.

Default: A heap object named ProxyOptions .

"soTimeout": configuration expression<duration>, optional

Socket timeout, after which stalled connections are destroyed, expressed as a duration.

•

◦

◦

info
In HTTP/1.1 request messages, a Host header is required to specify the host and port number of the requested
resource. In HTTP/2 request messages, the Host header is not available.
In scripts or custom extensions that use HTTP/2, use UriRouterContext.originalUri.host or
UriRouterContext.originalUri.port in requests.

Note

•

◦

◦

•

Reference PingGateway

704 Copyright © 2025 Ping Identity Corporation

Default: 10 seconds

"temporaryStorage": TemporaryStorage reference, optional

The TemporaryStorage object to buffer the request and response, when the streamingEnabled property of admin.json is
false .

Default: A heap object named TemporaryStorage .

tls: ClientTlsOptions reference, optional

Configure options for connections to TLS-protected endpoints, based on ClientTlsOptions. Define the object inline or in
the heap.

Default: Connections to TLS-protected endpoints are not configured.

"retries": object, optional

Enable and configure retry for requests.

During the execution of a request to a remote server, if a runtime exception occurs, or a condition is met, PingGateway
waits for a delay, and then schedules a new execution of the request. PingGateway tries until the allowed number of
retries is reached or the execution succeeds.

A warning-level entry is logged if all retry attempts fail; a debug-level entry is logged if a retry succeeds.

"retries": {
 "enabled": configuration expression<boolean>,
 "condition": runtime expression<boolean>,
 "executor": ScheduledExecutorService reference,
 "count": configuration expression<number>,
 "delay": configuration expression<duration>,
 }
}

"enabled": configuration expression<boolean>, optional

Enable retries.

Default: true

"condition": runtine expression<boolean>, optional

An inline PingGateway expression to define a condition based on the response, such as an error code.

lightbulb_2
If SocketTimeoutException errors occur in the logs when you try to upload or download large files, consider
increasing soTimeout.

Tip

emergency_home
Use of a TlsOptions reference is deprecated; use ClientTlsOptions instead. For more information, refer to the
Deprecated section of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 705

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

The condition is evaluated as follows:

If true , PingGateway retries the request until the value in count is reached.

If false , PingGateway retries the request only if a runtime exception occurs, until the value in count is
reached.

Default: ${false}

"executor": ScheduledExecutorService reference, optional

The ScheduledExecutorService to use for scheduling delayed execution of the request.

Default: ScheduledExecutorService

See also ScheduledExecutorService.

"count": configuration expression<number>, optional

The maximum number of retries to perform. After this threshold is passed and if the request is still not successful,
then the ClientHandler propagates the failure.

Retries caused by any runtime exception or triggered condition are included in the count.

Default: 5

"delay": _configuration expression<duration>, optional

The time to wait before retrying the request.

After a failure to send the request, if the number of retries is below the threshold, a new attempt is scheduled with
the executor service after this delay.

Default: 10 seconds

The following example configures a retry when a downstream component returns a 502 Bad Gateway response code:

"retries": {
 "enabled": true,
 "condition": "${response.status.code == 502}"
}

The following example configures the handler to retry the request only once, after a 1-minute delay:

{
 "retries": {
 "count": 1,
 "delay": "1 minute"
 }
}

The following example configures the handler to retry the request at most 20 times, every second:

•

•

Reference PingGateway

706 Copyright © 2025 Ping Identity Corporation

{
 "retries": {
 "count": 20,
 "delay": "1 second"
 }
}

The following example configures the handler to retry the request 5 times, every 10 seconds (default values), with a
dedicated executor:

{
 "retries": {
 "executor": {
 "type": "ScheduledExecutorService",
 "config": {
 "corePoolSize": 20
 }
 }
 }
}

"circuitBreaker": object, optional

Enable and configure a circuit breaker to trip when the number of failures exceeds a configured threshold. Calls to
downstream services are stopped, and a runtime exception is returned. The circuit breaker is reset after the configured
delay.

{
 "circuitBreaker": {
 "enabled": configuration expression<boolean>,
 "maxFailures": configuration expression<integer>,
 "openDuration": configuration expression<duration>,
 "openHandler": Handler reference,
 "slidingCounter": object,
 "executor": ScheduledExecutorService reference
 }
}

"enabled": configuration expression<boolean>, optional

A flag to enable the circuit breaker.

Default: true

"maxFailures": configuration expression<number>, required

The maximum number of failed requests allowed in the window given by size , before the circuit breaker trips.
The value must be greater than zero.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 707

"openDuration": configuration expression<duration>, required

The duration for which the circuit stays open after the circuit breaker trips. The executor schedules the circuit to
be closed after this duration.

"openHandler": Handler reference, optional

The Handler to call when the circuit is open.

Default: A handler that throws a RuntimeException with a "circuit-breaker open" message.

"slidingCounter": object, optional

A sliding window error counter. The circuit breaker trips when the number of failed requests in the number of
requests given by size reaches maxFailures .

The following image illustrates how the sliding window counts failed requests:

{
 "slidingCounter": {
 "size": configuration expression<number>
 }
}

emergency_home
When retries is set, the circuit breaker does not count retried requests as failures. Bear this in mind
when you set maxFailures .
In the following example, a request can fail and then be retried three times. If it fails the third retry, the
request has failed four times, but the circuit breaker counts only one failure.

{
 "retries": {
 "count": 3,
 "delay": "1 second"
 }
}

Important

Request pass or fail✅ ❌ ✅ ❌ ✅ ✅ ✅ ✅ ❌ ❌ ❌ ✅ ✅ ❌ ❌ ✅ ✅ ❌ ✅ ❌

slidingCounter.size: 10
Failure count: 6

slidingCounter.size: 10
Failure count: 5

slidingCounter.size: 10
Failure count: 4

Reference PingGateway

708 Copyright © 2025 Ping Identity Corporation

"size": configuration expression<number>, required

The size of the sliding window in which to count errors.

The value of size must be greater than zero, and greater than the value of maxFailures , otherwise an
exception is thrown.

"executor": ScheduledExecutorService reference, optional

A ScheduledExecutorService to schedule closure of the circuit after the duration given by openDuration .

Default: The default ScheduledExecutorService in the heap

"websocket": object, optional

Object to configure upgrade from HTTP or HTTPS protocol to WebSocket protocol.

Every key/value of the websocket object is evaluated as a configuration expression.

List the subprotocols that are proxied by PingGateway in the vertx property of AdminHttpApplication (admin.json). For
more information and an example of proxying WebSocket traffic, refer to WebSocket traffic

{
 "websocket": {
 "enabled": configuration expression<boolean>,
 "connectionTimeout": configuration expression<duration>,
 "soTimeout": configuration expression<duration>,
 "numberOfSelectors": configuration expression<number>,
 "tls": ClientTlsOptions reference,
 "proxyOptions": ProxyOptions reference,
 "vertx": object
 }
}

For more information, refer to The WebSocket Protocol.

"enabled": configuration expression<boolean>,optional

Enable upgrade from HTTP protocol and HTTPS protocol to WebSocket protocol.

Default: false

"connectionTimeout": configuration expression<duration>, optional

The maximum time allowed to establish a WebSocket connection.

Default: The value of handler’s main connectionTimeout .

"soTimeout": configuration expression<duration>, optional

The time after which stalled connections are destroyed.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 709

https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455

Default: The value of handler’s main soTimeout .

"numberOfSelectors": configuration expression<number>, optional

The maximum number of worker threads.

In deployments with a high number of simultaneous connections, consider increasing the value of this property.

Default: 2

"tls": ClientTlsOptions reference, optional

Configure options for connections to TLS-protected endpoints, based on a ClientTlsOptions configuration. Define a
ClientTlsOptions object inline or in the heap.

Default: Use ClientTlsOptions defined for the handler

"proxyOptions": ProxyOptions reference, optional

A proxy server to which requests can be submitted. Use this property to relay requests to other parts of the
network. For example, use it to submit requests from an internal network to the internet.

Provide the name of a ProxyOptions object defined in the heap or an inline configuration.

Default: A heap object named ProxyOptions .

"vertx": object, optional

Vert.x-specific configuration for the WebSocket connection, where PingGateway does not provide its own first-class
configuration. Vert.x options are described in HttpClientOptions.

For properties where PingGateway provides its own first-class configuration, Vert.x configuration options are
disallowed, and the PingGateway configuration option takes precedence over Vert.x options configured in vertx .
The following Vert.x configuration options are disallowed client-side:

alpnVersions

connectTimeout

enabledCipherSuites

enabledSecureTransportProtocols

http2ClearTextUpgrade

idleTimeout

idleTimeoutUnit

keyCertOptions

keyStoreOptions

lightbulb_2
If there can be long delays between messages, consider increasing this value. Alternatively, keep the
connection active by using WebSocket ping messages in your application.

Tip

•

•

•

•

•

•

•

•

•

Reference PingGateway

710 Copyright © 2025 Ping Identity Corporation

https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/http/HttpClientOptions.html
https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/http/HttpClientOptions.html

maxWaitQueueSize

pemKeyCertOptions

pemTrustOptions

pfxKeyCertOptions

pfxTrustOptions

port

protocolVersion

proxyOptions

ssl

trustOptions

trustStoreOptions

useAlpn

verifyHost

The following example configures the Vert.x configuration when PingGateway is acting client-side. When
PingGateway is acting server-side, configure the connectors:vertx property of admin.json :

{
 "vertx": {
 "maxWebSocketFrameSize": 128000,
 "maxWebSocketMessageSize": 256000,
 "compressionLevel": 4,
 "maxHeaderSize": 16384
 }
}

The following example configures HTTP/2 connections when PingGateway is acting client-side. The configuration
allows PingGateway to make HTTP/2 requests with large headers. When PingGateway is acting server-side,
configure the connectors:vertx property of admin.json :

{
 "vertx": {
 "initialSettings": {
 "maxHeaderListSize": 16384
 }
 }
}

The following default vertx configuration provided by this handler overrides the Vert.x defaults:

tryUsePerFrameCompression = true

tryUsePerMessageCompression = true

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 711

"hostnameVerifier": configuration expression<enumeration>, optional

The way to handle hostname verification for outgoing SSL connections. Use one of the following values:

ALLOW_ALL : Allow a certificate issued by a trusted CA for any hostname or domain to be accepted for a connection
to any domain.

This setting allows a certificate issued for one company to be accepted as a valid certificate for another company.
To prevent the compromise of TLS connections, use this setting in development mode only. In production, use
STRICT .

STRICT : Match the hostname either as the value of the the first CN, or any of the subject-alt names.

A wildcard can occur in the CN, and in any of the subject-alt names. Wildcards match one domain level, so
*.example.com matches www.example.com but not some.host.example.com .

Default: STRICT

"proxy": Server reference, optional

A proxy server to which requests can be submitted. Use this property to relay requests to other parts of the network. For
example, use it to submit requests from an internal network to the internet.

If both proxy and systemProxy are defined, proxy takes precedence.

"proxy" : {
 "uri": configuration expression<uri string>,
 "username": configuration expression<string>,
 "passwordSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference
}

"uri": configuration expression<uri string>, required

URI of a server to use as a proxy for outgoing requests.

The result of the expression must be a string that represents a valid URI, but is not a real java.net.URI object.

username: configuration expression<string>, required if the proxy requires authentication

Username to access the proxy server.

emergency_home
This property is deprecated; use the ClientTlsOptions property hostnameVerifier instead.
If a ReverseProxyHandler includes the deprecated "hostnameVerifier": "ALLOW_ALL" configuration, it takes
precedence, and deprecation warnings are written to the logs.
For more information, refer to the Deprecated section of the Release Notes.

Important

•

•

emergency_home
This property is deprecated; use proxyOptions instead. For more information, refer to the Deprecated

section of the Release Notes.

Important

Reference PingGateway

712 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

"passwordSecretId": configuration expression<secret-id>, required if the proxy requires
authentication

The secret ID of the password to access the proxy server.

This secret ID must point to a GenericSecret.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the proxy’s password.

"systemProxy": boolean, optional

Submit outgoing requests to a system-defined proxy, set by the following system properties or their HTTPS equivalents:

http.proxyHost , the host name of the proxy server.

http.proxyPort , the port number of the proxy server. The default is 80 .

http.nonProxyHosts , a list of hosts that should be reached directly, bypassing the proxy.

This property can’t be used with a proxy that requires a username and password. Use the property proxy instead.

If both proxy and systemProxy are defined, proxy takes precedence.

For more information, refer to Java Networking and Proxies.

Default: False.

"keyManager": Key manager reference(s), optional

The key manager(s) that handle(s) this client’s keys and certificates.

The value of this field can be a single reference, or an array of references.

Provide either the name(s) of key manager object(s) defined in the heap, or specify the configuration object(s) inline.

You can specify either a single key manager, as in "keyManager": "MyKeyManager" , or an array of key managers, as in
"keyManager": ["FirstKeyManager", "SecondKeyManager"] .

If you do not configure a key manager, then the client cannot present a certificate, and so cannot play the client role in
mutual authentication.

emergency_home
This property is deprecated; use proxyOptions instead. For more information, refer to the Deprecated

section of the Release Notes.

Important

•

•

•

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 713

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/doc-files/net-properties.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/doc-files/net-properties.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

"sslCipherSuites": array of strings, optional

Array of cipher suite names, used to restrict the cipher suites allowed when negotiating transport layer security for an
HTTPS connection.

For information about the available cipher suite names, refer to the documentation for the Java virtual machine (JVM)
where you run PingGateway. For Oracle Java, refer to the list of JSSE Cipher Suite Names.

Default: Allow any cipher suite supported by the JVM.

"sslContextAlgorithm": string, optional

Default: TLS

"sslEnabledProtocols": array of strings, optional

Array of protocol names, used to restrict the protocols allowed when negotiating transport layer security for an HTTPS
connection.

Default: Allow any protocol supported by the JVM.

"trustManager": Trust manager reference(s), optional

The trust managers that handle(s) peers' public key certificates.

The value of this field can be a single reference, or an array of references.

Provide either the name(s) of TrustManager object(s) defined in the heap, or specify the configuration object(s) inline.

You can specify either a single trust manager, as in "trustManager": "MyTrustManager" , or an array of trust managers,
as in "trustManager": ["FirstTrustManager", "SecondTrustManager"] .

If you do not configure a trust manager, then the client uses only the default Java truststore. The default Java truststore
depends on the Java environment. For example, $JAVA_HOME/lib/security/cacerts .

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

emergency_home
This property is deprecated; use the tls property instead to configure ClientTlsOptions. For more information,
refer to the Deprecated section of the Release Notes.

Important

Reference PingGateway

714 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#jsse-cipher-suite-names
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#jsse-cipher-suite-names
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

More information

org.forgerock.openig.handler.ReverseProxyHandlerHeaplet

Route

Routes are JSON-encoded configuration files that you add to PingGateway to manage requests. You can add routes in the
following ways:

Manually into the filesystem.

Through Common REST commands. For information, refer to Routes and Common REST.

Through Studio. For information, refer to the Studio guide.

Routes handle requests and their context, and then hand off any request they accept to a Handler.

When a route has a condition, it handles only requests that meet the condition. When a route has no condition, it handles any
request.

Routes inherit settings from their parent configuration. This means that you can configure global objects in the config.json
heap, for example, and then reference the objects by name in any other PingGateway configuration.

Learn about Route metrics:

Route metrics at the Prometheus Scrape Endpoint

Route metrics at the Common REST Monitoring Endpoint (deprecated)

Usage

{
 "handler": Handler reference,
 "heap": [object, ...],
 "condition": runtime expression<boolean>,
 "name": string,
 "session": AsyncSessionManager reference,
 "auditService": AuditService reference,
 "globalDecorators": map,
 "decorator name": Decorator object
}

(*)Deprecated

Properties

"handler": Handler reference, required

The Handler to which PingGateway dispaches requests.

Provide the name of a Handler object defined in the heap or an inline Handler configuration object.

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 715

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/ReverseProxyHandlerHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/ReverseProxyHandlerHeaplet.html

"heap": array of objects, optional

Heap object configuration for objects local to this route.

Objects referenced but not defined here are inherited from the parent.

You can omit an empty array. If you only have one object in the heap, you can inline it as the handler value.

See also Heap objects.

"condition": runtime expression<boolean>, optional

A condition based on the request, context, or PingGateway runtime environment, such as system properties or
environment variables.

true : The request is dispatched to the route.

false : The condition for the next route in the configuration is evaluated.

No condition: the request is dispatched unconditionally to the route.

An external request can never match a condition that uses the reserved administrative route. Therefore, routes that use
these conditions are effectively ignored. For example, if /openig is the administrative route, a route with the following
condition is ignored: ${find(request.uri.path, '^/openig/my/path')} .

Default: ${true}

For example conditions and requests that match them, refer to Example.

"name": string, optional

Route name.

The Router uses the name property to order the routes in the configuration. If the route does not have a name property,
the Router uses the route ID.

The route ID is managed as follows:

When you add a route manually to the routes folder, the route ID is the value of the _id field. If there is no _id
field, the route ID is the filename of the added route.

When you add a route through the Common REST endpoint, the route ID is the value of the mandatory _id field.

When you add a route through Studio, you can edit the default route ID.

CAUTION: The filename of a route cannot be default.json . The route name property or route ID cannot be
default .

•

•

•

lightbulb_2
For debugging, log the routes for which PingGateway evaluates a condition, and the route that matches a
condition. Add the following line to a custom $HOME/.openig/config/logback.xml , and restart PingGateway:

<logger name="org.forgerock.openig.handler.router.RouterHandler" level="trace" />

For information, refer to Manage logs.

Tip

•

•

•

Reference PingGateway

716 Copyright © 2025 Ping Identity Corporation

Default: route ID

"session": AsyncSessionManager reference. reference, optional

Stateless session implementation for this route. Define an AuthenticatedEncryptedJwtSessionManager object inline or in
the heap.

When a request enters the route, PingGateway builds a new session object for the route. The session content is available
to the route’s downstream handlers and filters. Session content available in the ascending configuration (a parent route or
config.json) is not available in the new session.

When the response exits the route, the session content is serialized as a secure JWT that is encrypted and signed, and the
resulting JWT string is placed in a cookie. Session information set inside the route is no longer available. The session
references the previous session object.

Default: Do not change the session storage implementation.

For more information, refer to AsyncSessionManager, and Sessions.

"auditService": AuditService reference, optional

An audit service for the route. Provide either the name of an AuditService object defined in the heap or an inline
AuditService configuration object.

Default: No auditing of a configuration. The NoOpAuditService provides an empty audit service to the top-level heap and
its child routes.

"globalDecorators": map, optional

A map of one or more data pairs with the format Map<String, JsonValue> , where:

The key is a decorator name

The value is a decorator configuration, passed as is to the decorator

The following format is required:

{
 "globalDecorators": {
 "decorator name": "decoration configuration",
 ...
 }
}

All compatible objects in a route are decorated with the mapped decorator value. For more information, refer to
Decorators.

In the following example, the property decorates all compatible objects in the route with a capture and timer decorator:

"globalDecorators": {
 "capture": "all",
 "timer": true
}

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 717

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/session/AsyncSessionManager.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/session/AsyncSessionManager.html

Default: Empty

"decorator name": Decorator object, optional

Decorate the main handler of this route with a decorator referred to by the decorator name, and provide the
configuration as described in Decorators.

Default: No decoration.

Example

The following table gives examples of route conditions and matching requests.

Condition Requests that meet the condition

"${true}"

All requests, because this expression always evaluates to
true .

"${find(request.uri.path, '^/login')}"

http://app.example.com/login , . . .

"${request.uri.host == 'api.example.com'}"

http://api.example.com/ , https://api.example.com/
home , http://api.example.com:8080/home , . . .

"${find(contexts.client.remoteAddress,
'127.0.0.1')}"

http://localhost:8080/keygen , http://127.0.0.1:8080/
keygen , . . .
Where /keygen is not mandatory and could be anything
else.

"${find(request.uri.query, 'demo=simple')}"

http://ig.example.com:8080/login?demo=simple , . . .
For information about URI query, refer to query in URI.

"${request.uri.scheme == 'http'}"

http://ig.example.com:8080 , . . .

"${find(request.uri.path, '^/dispatch') or
find(request.uri.path, '^/mylogin')}"

http://ig.example.com:8080/dispatch , http://
ig.example.com:8080/mylogin , . . .

"${request.uri.host == 'sp1.example.com' and not
find(request.uri.path, '^/saml')}"

http://sp1.example.com:8080/ ,
http://sp1.example.com/mypath , . . .
Not http://sp1.example.com:8080/saml , http://
sp1.example.com/saml , . . .

Reference PingGateway

718 Copyright © 2025 Ping Identity Corporation

Router

A Handler that performs the following tasks:

Defines the routes directory and loads routes into the configuration.

Depending on the scanning interval, periodically scans the routes directory and updates the PingGateway configuration
when routes are added, removed, or changed. The router updates the PingGateway configuration without needing to
restart PingGateway or access the route.

Manages an internal list of routes, where routes are ordered lexicographically by route name. If a route is not named, then
the route ID is used instead. For more information, refer to Route.

Routes requests to the first route in the internal list of routes, whose condition is satisfied.

Because the list of routes is ordered lexicographically by route name, name your routes with this in mind:

If a request satisfies the condition of more than one route, it is routed to the first route in the list whose condition
is met.

Condition Requests that meet the condition

"condition": "${find (request.uri.path,
'&{uriPath}')}"

http://ig.example.com:8080/hello , when the following
property is configured:

{
 "properties": {
 "uriPath": "hello"
 }
}

For information about including properties in the
configuration, refer to Route properties.

"condition": "${request.headers['X-Forwarded-Host']
[0] == 'service.example.com'}"

Requests with the header X-Forwarded-Host , whose first
value is service.example.com .

"condition": "#{find(request.uri.path, '^/openam/
oauth2/access_token') &&
request.entity.form['client_id'][0] == 'client-
service'}"

Requests where an OAuth 2.0 client named client-service
issues the original access token request.

"condition": "#{find(request.uri.path, '^/openam/
oauth2/access_token') &&
request.entity.form['grant_type'][0] ==
'client_credentials'}"

Requests using the client credentials grant-type.

•

•

•

•

◦

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 719

Even if the request matches a later route in the list, it might never reach that route.

If a request does not satisfy the condition of any route, it is routed to the default handler if one is configured.

The router does not have to know about specific routes in advance - you can configure the router first and then add routes while
PingGateway is running.

Learn about Router metrics:

Router metrics at the Prometheus Scrape Endpoint

Router metrics at the Common REST Monitoring Endpoint (deprecated)

Usage

{
 "name": string,
 "type": "Router",
 "config": {
 "defaultHandler": Handler reference,
 "directory": configuration expression<string>,
 "scanInterval": configuration expression<duration>
 }
}

An alternative value for type is RouterHandler.

Properties

"defaultHandler": Handler reference, optional

Handler to use when a request does not satisfy the condition of any route.

Provide either the name of a handler object defined in the heap or an inline handler configuration object.

Default: If no default route is set either here or in the route configurations, PingGateway aborts the request with an
internal error.

See also Handlers.

"directory": configuration expression<string>, optional

Directory from which to load route configuration files. This must reference an existing directory PingGateway can read.

Default: The default directory for route configuration files, at $HOME/.openig (on Windows, %appdata%\OpenIG).

With the following example, route configuration files are loaded from /path/to/safe/routes instead of from the default
directory:

◦

emergency_home
Studio deploys and undeploys routes through a main router named _router , which is the name of the main router in
the default configuration. If you use a custom config.json , make sure it contains a main router named _router .

Important

•

•

Reference PingGateway

720 Copyright © 2025 Ping Identity Corporation

{
 "type": "Router",
 "config": {
 "directory": "/path/to/safe/routes"
 }
}

An infinite route-loading sequence is triggered when a router starts a route that, directly or indirectly, starts another
router, which then loads route configuration files from the same directory.

See also Expressions.

"scanInterval": configuration expression<duration>, optional

Time interval at which PingGateway scans the specified directory for changes to routes. When a route is added, removed,
or changed, the router updates the PingGateway configuration without needing to restart PingGateway or access the
route.

When an integer is used for the scanInterval , the time unit is seconds.

To load routes at startup only, and prevent changes to the configuration if the routes are changed, set the scan interval to
disabled .

Default: 10 seconds

Example

The following config.json file configures a Router:

emergency_home
If you define multiple routers, configure directory so that the routers load route configuration files from
different directories.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 721

{
 "handler": {
 "type": "Router",
 "name": "_router",
 "baseURI": "http://app.example.com:8081",
 "capture": "all"
 },
 "heap": [
 {
 "name": "JwtSession",
 "type": "JwtSession"
 },
 {
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true,
 "_captureContext": true
 }
 }
]
}

All requests pass with the default settings to the Router. The Router scans $HOME/.openig/config/routes at startup, and
rescans the directory every 10 seconds. If routes have been added, deleted, or changed, the router applies the changes.

The main router and any subrouters build the monitoring endpoints. For information about monitoring endpoints, refer to
Monitoring endpoints.

More information

org.forgerock.openig.handler.router.RouterHandler

SamlFederationHandler (deprecated)

A handler to play the role of SAML 2.0 Service Provider (SP).

Consider the following requirements for SamlFederationHandler:

This handler does not support filtering; do not use it as the handler for a chain, which can include filters.

Do not use this handler when its use depends on something in the response. The response can be handled independently
of PingGateway, and can be null when control returns to PingGateway. For example, do not use this handler in a
SequenceHandler where the postcondition depends on the response.

Requests to the SamlFederationHandler must not be rebased, because the request URI must match the endpoint in the
SAML metadata.

SAML in deployments with multiple instances of PingGateway

emergency_home
This handler is deprecated; use the SamlFederationFilter instead.

Important

•

•

•

Reference PingGateway

722 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/router/RouterHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/router/RouterHandler.html

When PingGateway acts as a SAML service provider, session information is stored in the fedlet not the session cookie. In
deployments with multiple instances of PingGateway as a SAML service provider, it is necessary to set up sticky sessions so that
requests always hit the instance where the SAML interaction was started.

For information, refer to Session state considerations in AM’s SAML v2.0 guide.

Usage

{
 "name": string,
 "type": "SamlFederationHandler",
 "config": {
 "assertionMapping": map or configuration expression<map>,
 "redirectURI": configuration expression<url>,
 "secretsProvider": SecretsProvider reference,
 "assertionConsumerEndpoint": configuration expression<url>,
 "authnContext": configuration expression<string>,
 "authnContextDelimiter": configuration expression<string>,
 "logoutURI": configuration expression<url>,
 "sessionIndexMapping": configuration expression<string>,
 "singleLogoutEndpoint": configuration expression<url>,
 "singleLogoutEndpointSoap": configuration expression<url>,
 "SPinitiatedSLOEndpoint": configuration expression<url>,
 "SPinitiatedSSOEndpoint": configuration expression<url>,
 "useOriginalUri": configuration expression<boolean>,
 "subjectMapping": configuration expression<string>
 }
}

Properties

"assertionMapping": map or configuration expression<map>, required

A map with the format Map<String, String> , where:

Key: Session name, localName

Value: SAML assertion name, incomingName , or a configuration expression that evaluates to the name

The following formats are allowed:

{
 "assertionMapping": {
 "string": "configuration expression<string>",
 ...
 }
}

{
 "assertionMapping": "configuration expression<map>"
}

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 723

https://docs.pingidentity.com/pingam/7.5/saml2-guide/saml2-configuration.html#saml2-and-session-state
https://docs.pingidentity.com/pingam/7.5/saml2-guide/saml2-configuration.html#saml2-and-session-state

In the following example, the session names username and password are mapped to SAML assertion names mail and
mailPassword :

{
 "assertionMapping": {
 "username": "mail",
 "password": "mailPassword"
 }
}

If an incoming SAML assertion contains the following statement:

mail = demo@example.com
mailPassword = demopassword

Then the following values are set in the session:

username[0] = demo@example.com
password[0] = demopassword

For this to work, edit the <Attribute name="attributeMap"> element in the SP extended metadata file, $HOME/.openig/
SAML/sp-extended.xml , so that it matches the assertion mapping configured in the SAML 2.0 Identity Provider (IDP)
metadata.

Because the dot character (.) serves as a query separator in expressions, do not use dot characters in the localName.

To prevent different handlers from overwriting each others' data, use unique localName settings when protecting multiple
service providers.

"redirectURI": configuration expression<url>, required

The page that the filter used to HTTP POST a login form recognizes as the login page for the protected application.

This is how PingGateway and the Federation component work together to provide SSO. When PingGateway detects the
login page of the protected application, it redirects to the Federation component. Once the Federation handler validates
the SAML exchanges with the IDP, and sets the required session attributes, it redirects back to the login page of the
protected application. This allows the filter used to HTTP POST a login form to finish the job by creating a login form to
post to the application based on the credentials retrieved from the session attributes.

"secretsProvider": SecretsProvider reference, optional

The SecretsProvider to query for keys when AM provides signed or encrypted SAML assertions.

+ When this property isn’t set, the keys are provided by direct keystore look-ups based on entries in the SP extended
metadata file, sp-extended.xml .

+ Default: Empty.

"assertionConsumerEndpoint": configuration expression<string>, optional

Default: fedletapplication (same as the Fedlet)

If you modify this attribute, change the metadata to match.

Reference PingGateway

724 Copyright © 2025 Ping Identity Corporation

"authnContext": configuration expression<string>, optional

Name of the session field to hold the value of the authentication context. Because the dot character (.) serves as a query
separator in expressions, do not use dot characters in the field name.

Use this setting when protecting multiple service providers, as the different configurations must not map their data into
the same fields of session . Otherwise different handlers can overwrite each others' data.

As an example, if you set "authnContext": "myAuthnContext" , then PingGateway sets session.myAuthnContext to the
authentication context specified in the assertion. When the authentication context is password over protected transport,
then this results in the session containing "myAuthnContext": "urn:oasis:names:tc:SAML:
2.0:ac:classes:PasswordProtectedTransport" .

Default: map to session.authnContext

"authnContextDelimiter": configuration expression<string>, optional

The authentication context delimiter used when there are multiple authentication contexts in the assertion.

Default: |

"logoutURI": configuration expression<string>, optional

Set this to the URI to visit after the user is logged out of the protected application.

You only need to set this if the application uses the single logout feature of the Identity Provider.

"sessionIndexMapping": configuration expression<string>, optional

Name of the session field to hold the value of the session index. Because the dot character (.) serves as a query
separator in expressions, do not use dot characters in the field name.

Use this setting when protecting multiple service providers, as the different configurations must not map their data into
the same fields of session . Otherwise different handlers can overwrite each others' data.

As an example, if you set "sessionIndexMapping": "mySessionIndex" , then PingGateway sets
session.mySessionIndex to the session index specified in the assertion. This results in the session containing something
like "mySessionIndex": "s24ccbbffe2bfd761c32d42e1b7a9f60ea618f9801" .

Default: map to session.sessionIndex

"singleLogoutEndpoint": configuration expression<string>, optional

Default: fedletSLORedirect (same as the Fedlet)

If you modify this attribute, change the metadata to match.

"singleLogoutEndpointSoap": configuration expression<string>, optional

Default: fedletSloSoap (same as the Fedlet)

If you modify this attribute, change the metadata to match.

"SPinitiatedSLOEndpoint": configuration expression<string>, optional

Default: SPInitiatedSLO

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 725

If you modify this attribute, change the metadata to match.

"SPinitiatedSSOEndpoint": configuration expression<string>, optional

Default: SPInitiatedSSO

If you modify this attribute, change the metadata to match.

"useOriginalUri": configuration expression<boolean>, optional

When true , use the original URI instead of a rebased URI when validating RelayState and Assertion Consumer Location
URLs. Use this property if a baseUri decorator is used in the route or in config.json .

Default: false

"subjectMapping": configuration expression<string>, optional

Name of the session field to hold the value of the subject name. Because the dot character (.) serves as a query
separator in expressions, do not use dot characters in the field name.

Use this setting when protecting multiple service providers, as the different configurations must not map their data into
the same fields of session . Otherwise different handlers can overwrite each others' data.

As an example, if you set "subjectMapping": "mySubjectName" , then PingGateway sets session.mySubjectName to the
subject name specified in the assertion. If the subject name is an opaque identifier, then this results in the session
containing something like "mySubjectName": "vtOk+APj1s9Rr4yCka6V9pGUuzuL" .

Default: map to session.subjectName

Example

For an example of how to set up PingGateway as a SAML service provider, refer to SAML.

In the following example, PingGateway receives a SAML 2.0 assertion from the IDP, and then logs the user in to the protected
application using the username and password from the assertion:

{
 "name": "SamlFederationHandler",
 "type": "SamlFederationHandler",
 "config": {
 "assertionMapping": {
 "username": "mail",
 "password": "mailPassword"
 },
 "redirectURI": "/login",
 "logoutURI": "/logout"
 }
}

ScriptableHandler

Creates a response to a request by executing a script.

Scripts must return either a Promise<Response, NeverThrowsException> or a Response.

Reference PingGateway

726 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html

This section describes the usage of ScriptableHandler. For information about script properties, available global objects, and
automatically imported classes, see Scripts.

Usage

{
 "name": string,
 "type": "ScriptableHandler",
 "config": {
 "type": configuration expression<string>,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both
 "args": map,
 "clientHandler": Handler reference
 }
}

Properties

For information about properties for ScriptableHandler, refer to Scripts.

More information

org.forgerock.openig.handler.ScriptableHandler

SequenceHandler

Processes a request through a sequence of handlers and post conditions, as follows:

A request is treated by handler1 , and then postcondition1 is evaluated.

If postcondition1 is true, the request is then treated by handler2 , and so on.

{
 "handler": handler1,
 "postcondition": expression1
},
{
 "handler": handler2,
 "postcondition": expression2
},
...

Use this handler for multi-request processing, such as retrieving a form, extracting form content (for example, a nonce), and then
submitting it in a subsequent request.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 727

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/ScriptableHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/ScriptableHandler.html

Usage

{
 "name": string,
 "type": "SequenceHandler",
 "config": {
 "bindings": [
 {
 "handler": Handler reference,
 "postcondition": runtime expression<boolean>
 }
]
 }
}

Properties

"bindings": array of objects, required

A list of handler and postcondition bindings.

"handler": Handler reference, required

The handler to dispatch the request to when it is the first handler in the bindings, or for subsequent handlers when their
previous postcondition yields true .

Provide the name of a Handler object defined in the heap or an inline Handler configuration object.

"postcondition": runtime expression<boolean>, optional

A flag to indicate that a post condition is met:

true : The request is dispatched to the next handler in bindings .

false : The sequence stops.

Postconditions are defined using PingGateway expressions, as described in Expressions.

Default: ${true}

More information

org.forgerock.openig.handler.SequenceHandler

StaticResponseHandler

Creates a response to a request statically, or based on something in the context.

•

•

Reference PingGateway

728 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/SequenceHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/SequenceHandler.html

Usage

{
 "name": string,
 "type": "StaticResponseHandler",
 "config": {
 "status": configuration expression<number>,
 "reason": configuration expression<string>,
 "headers": {
 configuration expression<string>: [runtime expression<string>, ...], ...
 },
 "trailers": {
 configuration expression<string>: [runtime expression<string>, ...], ...
 },
 "entity": runtime expression<string> or [runtime expression<string>, ...]
 }
}

Properties

"status": Status object

The response status. For more information, refer to Status.

"reason": configuration expression<string>, optional

Used only for custom HTTP status codes. For more information, refer to Response Status Codes and Status Code
Registry.

"headers": map, optional

One or more headers to set for a response, with the format name: [value, …] , where:

name is a configuration expression<string> for a header name. If multiple expressions resolve to the same final
string, name has multiple values.

value one or more a runtime expression<strings> for header values.

When the property entity is used, set a Content-Type header with the correct content type value. The following
example sets the content type of a message entity in the response:

"headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
}

The following example is used in federate-handler.json to redirect the original URI from the request:

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 729

https://datatracker.ietf.org/doc/html/rfc7231#section-6
https://datatracker.ietf.org/doc/html/rfc7231#section-6
https://datatracker.ietf.org/doc/html/rfc7231#section-8.2
https://datatracker.ietf.org/doc/html/rfc7231#section-8.2
https://datatracker.ietf.org/doc/html/rfc7231#section-8.2

"headers": {
 "Location": [
 "http://sp.example.com:8080/saml/SPInitiatedSSO"
]
}

Default: Empty

"trailers": map, optional

One or more trailers to set for a response, with the format name: [value, …] , where:

name is a configuration expression<string> for a trailer name. If multiple expressions resolve to the same string,
name has multiple values.

The following trailer names are not allowed:

Message framing headers (for example, Transfer-Encoding and Content-Length)

Routing headers (for example, Host)

Request modifiers (for example, controls and conditionals such as Cache-Control , Max-Forwards , and TE)

Authentication headers (for example, Authorization and Set-Cookie)

Content-Encoding

Content-Type

Content-Range

Trailer

value is one or more runtime expression<strings> for trailer values.

Default: Empty

"entity": runtime expression<string> or array of runtime expression<string>, optional

The message entity body to include in a response.

If a Content-Type header is present, the entity must conform to the header and set the content length header
automatically.

Methods are provided for accessing the entity as byte, string, or JSON content. For information, refer to Entity.

Default: Empty

•

◦

◦

◦

◦

◦

◦

◦

◦

•

emergency_home
Attackers during reconnaissance can use response messages to identify information about a deployment. For
security, limit the amount of information in messages, and avoid using words that help identify PingGateway.

Important

Reference PingGateway

730 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Entity.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Entity.html

Example

{
 "name": "ErrorHandler",
 "type":"StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><h2>Epic #FAIL</h2></html>"
 }
}

{
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "content-type": ["text/html"]
 },
 "entity": [
 "<html>",
 " <body>",
 " <h1>Request Details</h1>",
 " <p>The path was: ${request.uri.path}<p>",
 " <p>The query params were: ${toString(request.queryParams)}</p>",
 " <p>The headers were: ${toString(request.headers.entrySet())}<p>",
 " </body>",
 "</html>"
]
 }
 }
}

More information

org.forgerock.openig.handler.StaticResponseHandler

Filters

Filter objects intercept requests and responses during processing, and change them as follows:

Leave the request, response, and contexts unchanged. For example, the filter can simply can log the context as it passes
through the filter.

In the request flow, change any aspect of the request (such as the URL, headers, or entity), or replace the request with a
new Request object.

In the response flow, change any aspect of the response (such as the status, headers, or entity), or return a new Response
instance

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 731

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/StaticResponseHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/StaticResponseHandler.html

AllowOnlyFilter

Authorizes a request to continue processing if it satisfies at least one of the configured rules. Otherwise, passes the request to
the FailureHandler or returns an HTTP 401 Unauthorized, with an empty response body.

This filter manages requests from the last request sender, otherwise called the request from the last hop, or the request from a direct
client.

For debugging, configure the AllowOnlyFilter name , and add the following logger to logback.xml , replacing filter_name with the
name:

org.forgerock.openig.filter.allow.AllowOnlyFilter.filter_name

For more information, see Manage logs.

Usage

{
 "name": string,
 "type": "AllowOnlyFilter",
 "config": {
 "rules": [object, ...],
 "failureHandler": Handler reference
 }
}

Properties

"rules": array of objects, required

An array of one or more rules configuration objects to specify criteria for the request.

When more than one rules configuration object is included in the array, the request must match at least one of the
configuration objects.

When more than one property is specified in the rules configuration (for example, from and destination) the request
must match criteria for each property.

{
 "rules": [
 {
 "name": configuration expression<string>,
 "from": [object, ...],
 "destination": [object, ...],
 "when": configuration expression<boolean>
 },
 ...
]
}

Reference PingGateway

732 Copyright © 2025 Ping Identity Corporation

"name": configuration expression<string>, optional

A name for the rules configuration. When logging is configured for the AllowOnlyFilter, the rule name appears in
the logs.

"from": array of objects, required

An array of one or more from configuration objects to specify criteria about the last request sender (the direct
client).

When more than one from configuration object is included in the array, the last request sender must match at
least one of the configuration objects.

When both ip and certificate properties are included in the configuration, the last request sender must match
criteria for both properties.

"from": [
 {
 "ip": {
 "list": [configuration expression<string>, ...],
 "resolver": runtime expression<string>
 },
 "certificate" : {
 "subjectDNs" : Pattern[]
 }
 },
 ...
]

"ip": object, optional

Criteria about the IP address of the last request sender.

"list": array of configuration expression<strings>, required:

An array of IP addresses or IP address ranges, using IPv4 or IPv6, and CIDR notation. The following
example includes different formats:

"list": ["127.0.0.1", "::1", "192.168.0.0/16", "1234::/16"]

The IP address of the last request sender must match at least one of the specified IP addresses or IP
address ranges.

"resolver": runtime expression<string>, optional:

An expression that returns an IP address as a string. The following example returns an IP
address from the first item in X-Forwarded-For :

"resolver": "${request.headers['X-Forwarded-For'][0]}"

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 733

Default: Resolve the IP address from the following items, in the following order:

If there is a Forwarded header, use the IP address of the last hop.

Otherwise, if there is an X-Forwarded-For header, use the IP address of the last hop.

Otherwise, use the IP address of the connection.

"certificate": array of objects, optional

An array of certificate configuration objects that specify criteria about the certificate of the last request
sender.

"subjectDNs": array of patterns, required:

An array of patterns to represent the expected distinguished name of the certificate subject, the
subjectDN . The subjectDN of the last request sender must match at least one of the patterns.

"destination": array of objects, optional

An array of destination configuration objects to specify criteria about the request destination.

When more than one destination configuration object is included in the array, the request destination must
match at least one of the configuration objects.

When more than one property is specified in the destination configuration, for example hosts and ports , the
request destination must match criteria for each property.

"destination": [
 {
 "hosts": [pattern, ...],
 "ports": [configuration expression<string>, ...],
 "methods": [configuration expression<string>, ...],
 "paths": [pattern, ...]
 },
 ...
]

"hosts": array of patterns, optional

An array of case-insensitive patterns to match the request.host attribute. Patterns are matched with the
Java Pattern class.

When this property is configured, the request destination must match at least one host pattern in the array.

Default: Any host is allowed.

"ports": array of configuration expression<strings>, optional

An array of strings to match the request.port attribute. Specify values in the array as follows:

Array of single ports, for example ["80", "90"] .

Array of port ranges, for example ["100:200"] .

Array of single ports and port ranges, for example ["80", "90", "100:200"] .

1.

2.

3.

•

•

•

Reference PingGateway

734 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

When this property is configured, the destination port must match at least one entry in the array.

Default: Any port is allowed.

"methods": array of configuration expression<strings>, optional

An array of HTTP methods to match the request.method attribute.

When this property is configured, the request method must match at least one method in the array.

Default: Any method is allowed.

"paths": array of patterns, optional

An array of case-sensitive patterns to match the request.url_path attribute. Patterns are matched with the
Java Pattern class.

When this property is configured, the destination path must match at least one path in the array.

Default: Any path is allowed.

"when": runtime expression<boolean>, optional

A flag to indicate that the request meets a condition. When true , the request is allowed.

The following condition is met when the first value of h1 is 1 :

"when": "${request.headers['h1'][0] == '1'}"

Default: ${true}

"failureHandler": Handler reference, optional

Handler to treat the request if none of the declared rules are satisfied.

Provide either the name of a Handler object defined in the heap or an inline Handler configuration object.

Default: HTTP 401 Unauthorized, with an empty response body.

See also Handlers.

Examples

In the following example, a request is authorized if the last request sender satisfies either of the following conditions:

Certificate subjectDN matches .*CN=test$ or CN=me , and the IP address is in the range 1.2.3.0/24.

IP address is 123.43.56.8.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 735

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

"from": [
 {
 "certificate": {
 "subjectDNs": [".*CN=test$", "CN=me"]
 },
 "ip": {
 "list": ["1.2.3.0/24"]
 }
 },
 {
 "ip": {
 "list": ["123.43.56.8"]
 }
 },
]

In the following example, a request is authorized if the request destination satisfies all of the following conditions:

The host is myhost1.com or www.myhost1.com

The port is 80 .

The method is POST or GET

The path matches /user/* .

"destination": [
 {
 "hosts": ["myhost1.com", "www.myhost1.com"],
 "ports": ["80"],
 "methods": ["POST", "GET"],
 "paths": ["/user/*"]
 }
]

The following example authorizes a request to continue processing if the requests meets the conditions set by either rule1 or
rule2 :

•

•

•

•

Reference PingGateway

736 Copyright © 2025 Ping Identity Corporation

{
 "type": "AllowOnlyFilter",
 "config": {
 "rules": [
 {
 "name": "rule1",
 "from": [
 {
 "certificate": {
 "subjectDNs": [".*CN=test$", "CN=me"]
 },
 "ip": {
 "list": ["1.2.3.0/24"]
 }
 }
],
 "destination": [
 {
 "hosts": ["myhost1.com", "www.myhost1.com"],
 "ports": ["80"],
 "methods": ["POST", "GET"],
 "paths": ["/user/*"]
 }
],
 "when": "${request.headers['h1'][0] == '1'}"
 },
 {
 "name":"rule2",
 "when": "${request.headers['h1'][0] == '2'}"
 }
]
 }
}

More information

org.forgerock.openig.filter.allow.AllowOnlyFilter

AmSessionIdleTimeoutFilter

Forces the revocation of AM sessions that have been idle for a specified duration. The AmSessionIdleTimeoutFilter issues an
authenticated and encrypted JWT to track activity on the AM session and conveys it within a persistent cookie.

To help honor timeout, the persistent cookie is configured to expire at the same time as the tracking token. Without a persistent
cookie, the browser is more likely to clear the side-car cookie and PingGateway is more likely to consider the session as timed out.

The tracking token contains the following parts:

The time when the user was last active

A hash of the AM session cookie, used to bind the tracking token to the AM session cookie

The idle timeout

Multiple filter instances can share the same tracking token, for example, in a clustered PingGateway configuration, or when a
federation of applications protected by authentication filters need to have a flexible idle timeout strategy.

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 737

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/allow/AllowOnlyFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/allow/AllowOnlyFilter.html

AmSessionIdleTimeoutFilter requires the following configuration:

In AM, client-side sessions must be enabled for the realm in which the tracking token operates. See Configure client-side
sessions in AM’s Sessions Guide.

In AM, client-side session denylisting must be enabled. See Configure client-side session denylisting in AM’s Sessions
Guide.

The AmSessionIdleTimeoutFilter must be placed in a route before a filter that uses the AM session token, such as a
SingleSignOnFilter or PolicyEnforcementFilter.

In production environments, and when multiple AmSessionIdleTimeoutFilters use the same tracking token, the encryption
must not rely on the default configuration. It must be configured identically on each filter that uses the tracking token.

The following image shows the flow of information when an AmSessionIdleTimeoutFilter sits in front of a
CrossDomainSingleSignOnFilter, to manage AM session timeout.

[1-5] When the AmSessionIdleTimeoutFilter receives an unauthenticated request, it passes the request along the chain, and the
CrossDomainSingleSignOnFilter manages authentication.

[6-8] When the AmSessionIdleTimeoutFilter receives an authenticated request, it checks that the AM session token is valid, and
then passes the request along the chain.

•

•

•

•

Idle timeout for PingAM sessions

PingGateway

Browser

Browser

PingAM

PingAM

AmSessionIdleTimeoutFilter

AmSessionIdleTimeoutFilter

CrossDomainSingleSignOnFilter

CrossDomainSingleSignOnFilter

Web application

Web application

Unauthenticated request

1 Request to access web app (no AM session cookie, no tracking cookie)

2 Pass the request along the chain

3 Redirect browser to AM for authentication

4 Authentication

5 Redirect with AM session cookie

First authenticated request

6 Request with AM session cookie (no tracking cookie)

7 Confirm AM session is valid

8 Pass the request along the chain

other filters and handlers treat the request

9 Response

10

Issue tracking token with:
-hash of AM session token
-current timestamp
-idle timeout of current filter

11
Place tracking token in persistent
tracking cookie

12 Pass the response with the tracking cookie

Subsequent authenticated request

13 Request with AM session cookie and tracking cookie

14 Confirm AM session is valid

15
Check that tracking token hash
is bound to the AM session

16
Select the idleTimeout based on
the idleTimeoutUpdate strategy

Check for AM session timeout

alt [Session timed out]

17 Force AM to kill the idle session

18 Pass the request along the chain

19 Redirect browser to AM for authentication

20 Expire the tracking cookie

21 Pass the response with the expired tracking cookie

[Session not timed out]

22 Pass the request along the chain

other filters and handlers treat the request

23 Response

24
Update tracking token with:
-current timestamp
-timeout according to the idleTimeoutUpdate

25
Place tracking token in persistent
tracking cookie

26 Pass the response with the tracking cookie

Reference PingGateway

738 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/sessions-guide/impl-client-based-sessions.html#proc-configure-client-based-sessions
https://docs.pingidentity.com/pingam/7.5/sessions-guide/impl-client-based-sessions.html#proc-configure-client-based-sessions
https://docs.pingidentity.com/pingam/7.5/sessions-guide/impl-client-based-sessions.html#proc-configure-client-based-sessions
https://docs.pingidentity.com/pingam/7.5/sessions-guide/session-state-session-termination.html#session-state-configure-denylist
https://docs.pingidentity.com/pingam/7.5/sessions-guide/session-state-session-termination.html#session-state-configure-denylist

[9-10] If the AM session was valid, the AmSessionIdleTimeoutFilter issues a tracking token on the response flow, containing the
following information:

Hash of the AM session token

Current timestamp

Idle timeout of the current filter

If the AM session was not valid, the AmSessionIdleTimeoutFilter does nothing on the response flow.

[11-12] The AmSessionIdleTimeoutFilter places the tracking token in persistent tracking cookie, and sends it with the response, to
be used in the next request.

[13-15] When the same or another AmSessionIdleTimeoutFilter receives an authenticated request with a tracking token, it checks
that the AM session token is valid, and checks that tracking token hash is bound to the AM session.

[16] Depending on the strategy set by idleTimeoutUpdate , the AmSessionIdleTimeoutFilter selects the value for idleTimeout
from the tracking token (set by the AmSessionIdleTimeoutFilter in a previous request) or from its own value of idleTimeout (if
this is a different instance of AmSessionIdleTimeoutFilter).

The AmSessionIdleTimeoutFilter checks for AM session timeout. If the last activity time plus the idle timeout is before the current
time, the session has timed out. For example, a session with the following values has timed out:

last activity time: 15h30 today

idle timeout: 5 mins

current time: 15h40

[17-21] The AM session has timed out, so the AmSessionIdleTimeoutFilter does the following:

Forces AM to revoke the session.

Passes the request along the chain.

Expires the tracking cookie on the response flow, and sends it with the response.

[22-26] The session has not timed out, so the AmSessionIdleTimeoutFilter does the following:

Passes the request along the chain.

Updates the tracking token on the response flow, with the current timestamp and the value for idleTimeOut , using the
same value for that was selected in step 16.

Places the tracking token in a persistent tracking cookie, and sends it with the response, to be used in the next request.

•

•

•

•

•

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 739

Usage

{
 "name": string,
 "type": "AmSessionIdleTimeoutFilter",
 "config": {
 "amService": AmService reference,
 "idleTimeout": configuration expression<duration>,
 "sessionToken": runtime expression<string>,
 "removeAmSessionFilter": Filter reference,
 "idleTimeoutUpdate": configuration expression<enumeration>,
 "secretsProvider": SecretsProvider reference,
 "encryptionSecretId": configuration expression<secret-id>,
 "encryptionMethod": configuration expression<string>,
 "cookie": object
 }
}

Properties

"amService": AmService reference, required

The AmService that refers to the AM instance that issue tracked session token.

"idleTimeout": configuration expression<duration>, required

The time a session can be inactive before it is considered as idle.

When an AmSessionIdleTimeoutFilter creates the tracking token, the token’s value for idleTimeout is set by this property.
When a different AmSessionIdleTimeoutFilter accesses the same tracking token, depending on the strategy set by
idleTimeoutUpdate , the token’s value for idleTimeout can be updated by the second AmSessionIdleTimeoutFilter.

"sessionToken": runtime expression<string>, optional

The location of the AM session token in the request. The following example accesses the first value of the request cookie
iPlanetDirectoryPro :

"sessionToken": "${request.cookies['iPlanetDirectoryPro'][0].value}"

For more information, refer to Find the AM session cookie name.

Default: ${request.cookies['<cookie name defined in the referenced AmService>'][0].value}

"removeAmSessionFilter": Filter reference, optional

A filter to remove the AM session details from the request when the session is no longer valid.

This helps in load-balanced AM deployments with client-side sessions where AM servers are not necessarily in sync
regarding expired client-side sessions. Set this to a custom filter if the AM session token is not in the AM session cookie.

Default: a filter that removes the AM session token based on the AM session cookie name.

Reference PingGateway

740 Copyright © 2025 Ping Identity Corporation

idleTimeoutUpdate: configuration expression<enumeration>, required

When multiple AmSessionIdleTimeoutFilters use the same tracking token, this property selects whether to use the
idleTimeout from this filter or from the tracking token.

Use one of the following values:

NEVER : Use the idle timeout from the tracking token, and ignore the idle timeout from this filter.

ALWAYS : Use the idle timeout from this filter, and ignore the idle timeout from the tracking token.

INCREASE_ONLY : Compare the idle timeout from this filter and the tracking token, and use the longest value.

DECREASE_ONLY : Compare the idle timeout from this filter and the tracking token, and use the shortest value.

Default: ALWAYS

"secretsProvider": SecretsProvider reference, optional

The SecretsProvider to query for secrets to encrypt the tracking token.

"encryptionSecretId": configuration expression<secret-id>, optional

The secret ID of the encryption key used to encrypt the tracking cookie.

This secret ID must point to a CryptoKey`.

In production environments, and when multiple AmSessionIdleTimeoutFilters use the same tracking cookie, the
encryption must not rely on the default configuration. It must be configured identically on each filter that uses the cookie.

Authenticated encryption is achieved with a symmetric encryption key. Therefore, the secret must refer to a symmetric
key.

For more information, refer to RFC 5116.

Default: When no secretsProvider is provided, PingGateway generates a random symmetric key for authenticated
encryption.

"encryptionMethod": configuration expression<string>, optional

The algorithm to use for authenticated encryption. For information about allowed encryption algorithms, refer to RFC
7518: "enc" (Encryption Algorithm) Header Parameter Values for JWE.

Default: A256GCM

"cookie": object, optional

Configuration of the activity tracking cookie.

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 741

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1

{
 "name": configuration expression<string>,
 "domain": configuration expression<string>,
 "httpOnly": configuration expression<boolean>,
 "path": configuration expression<string>,
 "sameSite": configuration expression<enumeration>,
 "secure": configuration expression<boolean>
}

"name": configuration expression<string>, optional

The cookie name.

Default: x-ig-activity-tracker

"domain": configuration expression<string>, optional

Domain to which the cookie applies.

Default: The fully qualified hostname of the PingGateway host.

"httpOnly": configuration expression<boolean>, optional

Flag to mitigate the risk of client-side scripts accessing protected cookies.

Default: true

"path": configuration expression<string>, optional

Path to apply to the cookie.

Default: /

"sameSite": configuration expression<enumeration>, optional

Options to manage the circumstances in which a cookie is sent to the server. Use one of the following values to
reduce the risk of CSRF attacks:

STRICT : Send the cookie only if the request was initiated from the cookie domain. Not case-sensitive. Use
this value to reduce the risk of cross-site request forgery (CSRF) attacks.

LAX : Send the cookie only with GET requests in a first-party context, where the URL in the address bar
matches the cookie domain. Not case-sensitive. Use this value to reduce the risk of cross-site request
forgery (CSRF) attacks.

NONE : Send the cookie whenever a request is made to the cookie domain. With this setting, consider setting
secure to true to prevent browsers from rejecting the cookie. For more information, refer to SameSite
cookies.

Default: Null

"secure": configuration expression<boolean>, optional

Flag to limit the scope of the cookie to secure channels.

•

•

•

Reference PingGateway

742 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

Default: false

Example

{
 "type": "AmSessionIdleTimeoutFilter",
 "config": {
 "sessionToken": "${request.cookies['iPlanetDirectoryPro'][0].value}",
 "amService": "AmService",
 "idleTimeout": "1 minute",
 "idleTimeoutUpdate": "ALWAYS",
 "cookie": {
 "name": "x-ig-activity-tracker",
 "domain": null,
 "path": "/",
 "secure": false,
 "httpOnly": true,
 "sameSite": null
 },
 "secretsProvider": "secrets-provider-ref",
 "encryptionMethod": "A256GCM",
 "encryptionSecretId": "crypto.key.secret.id"
 }
}

More information

org.forgerock.openig.openam.session.AmSessionIdleTimeoutFilter

AssignmentFilter

Verifies that a specified condition is met. If the condition is met or if no condition is specified, the value is assigned to the target.
Values can be assigned before the request is handled and after the response is handled.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 743

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/session/AmSessionIdleTimeoutFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/session/AmSessionIdleTimeoutFilter.html

Usage

{
 "name": string,
 "type": "AssignmentFilter",
 "config": {
 "onRequest": [
 {
 "condition": runtime expression<boolean>,
 "target": lvalue-expression,
 "value": runtime expression
 }, ...
],
 "onResponse": [
 {
 "condition": runtime expression<boolean>,
 "target": lvalue-expression,
 "value": runtime expression
 }, ...
]
 }
}

Properties

"onRequest": array of objects, optional

Defines a list of assignment bindings to evaluate before the request is handled.

"onResponse": array of objects, optional

Defines a list of assignment bindings to evaluate after the response is handled.

"condition": runtime expression<boolean>, optional

If the expression evaluates true , the value is assigned to the target.

Default: ${true}

"target": <lvalue-expression>, required

Expression that yields the target object whose value is to be set.

"value": runtime expression<object> , optional

The value to be set in the target. The value can be a string, information from the context, or even a whole map of
information.

Examples

Add info to a session

The following example assigns a value to a session. Add the filter to a route to prevent PingGateway from clearing up empty
JWTSession cookies:

Reference PingGateway

744 Copyright © 2025 Ping Identity Corporation

{
 "type": "AssignmentFilter",
 "config": {
 "onRequest": [{
 "target": "${session.authUsername}",
 "value": "I am root"
 }]
 }
}

Capture and store login credentials

The following example captures credentials and stores them in the PingGateway session during a login request. Notice that the
credentials are captured on the request but are not marked as valid until the response returns a positive 302. The credentials
could then be used to log a user in to a different application:

{
 "name": "PortalLoginCaptureFilter",
 "type": "AssignmentFilter",
 "config": {
 "onRequest": [
 {
 "target": "${session.authUsername}",
 "value": "${request.queryParams['username'][0]}"
 },
 {
 "target": "${session.authPassword}",
 "value": "${request.queryParams['password'][0]}"
 },
 {
 "comment": "Authentication has not yet been confirmed.",
 "target": "${session.authConfirmed}",
 "value": "${false}"
 }
],
 "onResponse": [
 {
 "condition": "${response.status.code == 302}",
 "target": "${session.authConfirmed}",
 "value": "${true}"
 }
]
 }
}

More information

org.forgerock.openig.filter.AssignmentFilter

AuthorizationCodeOAuth2ClientFilter

Uses OAuth 2.0 delegated authorization to authenticate end users. The filter can act as an OpenID Connect relying party or as an
OAuth 2.0 client.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 745

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/AssignmentFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/AssignmentFilter.html

AuthorizationCodeOAuth2ClientFilter performs the following tasks:

Allows the user to select an Authorization Server from one or more static client registrations or by discovery and dynamic
registration.

In static client registration, Authorization Servers are provided by Issuer, and registrations are provided by
ClientRegistration.

Redirects the user through the authentication and authorization steps of an OAuth 2.0 authorization code grant, which
results in the Authorization Server returning an access token to the filter.

When an authorization grant succeeds, injects the access token data into a configurable target in the context so that
subsequent filters and handlers can access the access token. Subsequent requests can use the access token without
authenticating again.

When an authorization grant fails, the filter injects information about the failure into the OAuth2FailureContext, which is
provided to the failureHandler object.

Service URIs

Service URIs are constructed from the clientEndpoint , as follows:

clientEndpoint/login/?discovery=user-input&goto=url

Discover and register dynamically with the end user’s OpenID Provider or with the client registration endpoint as
described in RFC 7591, using the value of user-input.

After successful registration, redirect the end user to the provider for authentication and authorization consent. Then
redirect the user agent back to the callback client endpoint, and then the goto URI.

The goto URL must use the same scheme, host, and port as the original URI, or be a relative URI (just the path). Otherwise,
the request fails with an error.

To redirect a request to a site that does not meet the goto URL criteria, change the original URI by using a
ForwardedRequestFilter.

clientEndpoint/login?registration=clientId&issuer=issuerName&goto=url

Redirect the end user for authorization with a registration defined by the ClientRegistration properties clientId and
issuerName .

The provider corresponding to the registration then authenticates the end user and obtains authorization consent before
redirecting the user agent back to the callback client endpoint.

If successful, the filter saves the authorization state in the session and redirects the user agent to the goto URL.

The goto URL must use the same scheme, host, and port as the original URI, or be a relative URI (just the path). Otherwise,
the request fails with an error.

To redirect a request to a site that does not meet the goto URL criteria, change the original URI by using a
ForwardedRequestFilter.

clientEndpoint/logout?goto=url

Remove the authorization state for the end user, and redirect the request to the goto URL.

•

•

•

•

Reference PingGateway

746 Copyright © 2025 Ping Identity Corporation

The goto URL must use the same scheme, host, and port as the original URI, or be a relative URI (just the path). Otherwise,
the request fails with an error.

To redirect a request to a site that does not meet the goto URL criteria, change the original URI by using a
ForwardedRequestFilter.

If no goto URL is specified in the request, use defaultLogoutGoto .

clientEndpoint/callback

Handle the callback from the OAuth 2.0 Authorization Server occuring as part of the authorization process.

If the callback is handled successfully, the filter saves the authorization state in the context at the specified target location
and redirects to the URL provided to the login endpoint during login.

Other request URIs

Restore the authorization state in the specified target location, and call the next filter or handler in the chain.

Usage

{
 "name": string,
 "type": "AuthorizationCodeOAuth2ClientFilter",
 "config": {
 "clientEndpoint": runtime expression<uri string>,
 "failureHandler": Handler reference,
 "loginHandler": Handler reference,
 "registrations": [ClientRegistration reference, ...],
 "metadata": object,
 "cacheExpiration": configuration expression<duration>,
 "executor": ScheduledExecutorService reference,
 "target": lvalue-expression,
 "defaultLoginGoto": runtime expression<url>,
 "defaultLogoutGoto": runtime expression<url>,
 "requireHttps": configuration expression<boolean>,
 "requireLogin": configuration expression<boolean>,
 "revokeOauth2TokenOnLogout": configuration expression<boolean>,
 "openIdEndSessionOnLogout": configuration expression<boolean>,
 "prompt": configuration expression<string>,
 "issuerRepository": Issuer repository reference,
 "discoveryHandler": Handler reference,
 "discoverySecretId": configuration expression<secret-id>,
 "tokenEndpointAuthMethod": configuration expression<enumeration>,
 "tokenEndpointAuthSigningAlg": configuration expression<string>,
 "oAuth2SessionKey": configuration expression<string>,
 "secretsProvider": SecretsProvider reference
 }
}

Properties

"clientEndpoint": runtime expression<url>, required

The URI to the client endpoint.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 747

So that routes can accept redirects from the Authorization Server to the callback endpoint, the clientEndpoint must be
the same as the route condition or a sub path of the route condition. For example:

The same as the route condition:

"condition": "${find(request.uri.path, '^/discovery')}"

"clientEndpoint": "/discovery"

As a sub path of the route condition:

"condition": "${find(request.uri.path, '^/home/id_token')}"

"clientEndpoint": "/home/id_token/sub-path"

Service URIs are constructed from the clientEndpoint . For example, when clientEndpoint is openid , the
service URIs are /openid/login , /openid/logout , and /openid/callback . These endpoints are implicitly
reserved, and attempts to access them directly can cause undefined errors.

The result of the expression must be a string that represents a valid URI, but is not a real java.net.URI object. For
example, it would be incorrect to use ${request.uri} , which is not a String but a MutableUri.

See also Expressions.

"failureHandler": Handler reference, required

An inline handler configuration object, or the name of a handler object defined in the heap.

When the OAuth 2.0 Resource Server denies access to a resource, the failure handler can be invoked only if the error
response contains a WWW-Authenticate header (meaning that there was a problem with the OAuth 2.0 exchange). All
other responses are forwarded to the user agent without invoking the failure handler.

If the value of the WWW-Authenticate header is invalid_token , the AuthorizationCodeOAuth2ClientFilter tries to refresh
the access token:

If the token is refreshed, the AuthorizationCodeOAuth2ClientFilter tries again to access the protected resource.

If the token is not refreshed, or if the second attempt to access the protected resource fails, the
AuthorizationCodeOAuth2ClientFilter invokes the failure handler.

Consider configuring the handler to access information in OAuth2FailureContext.

"loginHandler": Handler reference, required if there are zero or multiple client registrations, optional if
there is one client registration

The handler to invoke when the user must select a registered identity provider for login. When registrations contains
only one client registration, this handler is optional but is displayed if specified.

Provide the name of a Handler object defined in the heap or an inline handler configuration object.

•

•

•

•

Reference PingGateway

748 Copyright © 2025 Ping Identity Corporation

When you use loginHandler in AuthorizationCodeOAuth2ClientFilter, retrieve the original target URI for the request from
one of the following contexts:

originalUri in IdpSelectionLoginContext

originalUri in UriRouterContext (deprecated)

request.uri (deprecated)

"registrations": array of ClientRegistration references optional

List of client registrations to authenticate PingGateway to the Authorization Server.

The value represents a static client registration with an Authorization Server, as described in ClientRegistration.

"metadata": <object>, required for dynamic client registration and ignored otherwise

The values of the object are evaluated as configuration expression<strings>.

This object holds client metadata as described in OpenID Connect Dynamic Client Registration 1.0, and optionally a list
of scopes. See that document for additional details and a full list of fields.

This object can also hold client metadata as described in RFC 7591, OAuth 2.0 Dynamic Client Registration Protocol. See
that RFC for additional details.

The following partial list of metadata fields is not exhaustive, but includes metadata that is useful with AM as OpenID
Provider:

"redirect_uris": array of configuration expression<url>, required

The array of redirection URIs to use when dynamically registering this client.

One of the registered values must match the clientEndpoint .

"client_name": configuration expression<string>, optional

Name of the client to present to the end user.

"scope": _configuration expression<string>, optional

Space-separated string of scopes to request of the OpenID Provider, for example:

"scope": "openid profile"

This property is available for dynamic client registration with AM, or with Authorization Servers that support RFC
7591, OAuth 2.0 Dynamic Client Registration Protocol

"cacheExpiration": configuration expression<duration>, optional

Duration for which to cache user-info resources.

PingGateway lazily fetches user info from the OpenID provider. In other words, PingGateway only fetches the information
when a downstream Filter or Handler uses the user info. Caching allows PingGateway to avoid repeated calls to OpenID
providers when reusing the information over a short period.

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 749

https://openid.net/specs/openid-connect-registration-1_0.html#ClientMetadata
https://openid.net/specs/openid-connect-registration-1_0.html#ClientMetadata
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc7591

Default: 10 minutes

Set this to disabled or zero to disable caching. When caching is disabled, user info is still lazily fetched.

"executor": ScheduledExecutorService reference, optional

A ScheduledExecutorService to schedule the execution of tasks, such as the eviction of entries in the OpenID Connect user
information cache.

Default: ScheduledExecutorService

"target": lvalue-expression, optional

An expression that yields the target object. Downstream filters and handlers can use data in the target to enrich the
existing request or create a new request.

When the target is openid , the following information can be provided in ${attributes.openid} :

access_token : Value of the OAuth 2.0 access token

scope : Scopes associated with the OAuth 2.0 access token

token_type : Authentication token type; for example, Bearer

expires_in : Number of milliseconds until the OAuth 2.0 access token expires

id_token : Value of the OpenID Connect token

id_token_claims : Claims used in the OpenID Connect token

client_endpoint : URL to the client endpoint

client_registration : Client ID of the OAuth 2.0 client that enables PingGateway to communicate as an OAuth
2.0 client with an authorization server

user_info : Profile attributes of an authenticated user; for example, sub , name , family_name

Data is provided to the target as follows:

If the authorization process completes successfully, the AuthorizationCodeOAuth2ClientFilter injects the
authorization state data into the target. In the following example, a downstream StaticRequestFilter retrieves the
username and password from the target to log the user in to the sample application.

•

•

•

•

•

•

•

•

•

•

Reference PingGateway

750 Copyright © 2025 Ping Identity Corporation

{
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.openid.user_info.sub}"
],
 "password": [
 "${attributes.openid.user_info.family_name}"
]
 }
 }
}

For information about setting up this example, refer to Authenticate Automatically to the Sample Application.

If the failure handler is invoked, the target can be populated with information such as the exception, client
registration, and error, as described in "failureHandler" in this reference page.

Default: ${attributes.openid}

See also Expressions.

"defaultLoginGoto": runtime expression<url>,optional

After successful authentication and authorization, if the user accesses the clientEndpoint/login endpoint without
providing a landing page URL in the goto parameter, the request is redirected to this URI.

The goto URL must use the same scheme, host, and port as the original URI, or be a relative URI (just the path). Otherwise,
the request fails with an error.

To redirect a request to a site that does not meet the goto URL criteria, change the original URI by using a
ForwardedRequestFilter.

The result of the expression must be a string that represents a valid URI, but is not a real java.net.URI object. For
example, it would be incorrect to use ${request.uri} , which is not a String but a MutableUri.

Default: return an empty page.

"defaultLogoutGoto": runtime expression<url>,optional

If the user accesses the clientEndpoint/logout endpoint without providing a goto URL, the request is redirected to this
URI.

The goto URL must use the same scheme, host, and port as the original URI, or be a relative URI (just the path). Otherwise,
the request fails with an error.

To redirect a request to a site that does not meet the goto URL criteria, change the original URI by using a
ForwardedRequestFilter.

The result of the expression must be a string that represents a valid URI, but is not a real java.net.URI object. For
example, it would be incorrect to use ${request.uri} , which is not a String but a MutableUri.

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 751

Default: return an empty page.

"requireHttps": configuration expression<boolean>, optional

Whether to require that original target URI of the request uses the HTTPS scheme.

If the received request doesn’t use HTTPS, it is rejected.

Default: true.

"requireLogin": configuration expression<boolean>, optional

Whether to require authentication for all incoming requests.

Default: true.

"revokeOauth2TokenOnLogout": configuration expression<boolean>, optional

When true , call the revocationEndpoint defined in Issuer to revoke the access token or refresh token issued by the
Authorization Server during login.

If this property is false or if revocationEndpoint in Issuer isn’t defined, PingGateway doesn’t revoke the tokens.

Processing errors generate warnings in the logs but don’t break the logout flow.

Default: false .

"openIdEndSessionOnLogout": configuration expression<boolean>, optional

When true , redirect the user to the endSessionEndpoint defined in Issuer to log the user out of the Authorization
Server. Use this properties to initiate logout from an OpenID Connect resource provider.

If this property is false or if endSessionEndpoint in Issuer isn’t defined, PingGateway doesn’t redirect the user to log the
user out of the authorization server.

If the user accesses the endSessionEndpoint endpoint without providing a goto URL, PingGateway redirects the request
to the defaultLogoutGoto .

For more information, refer to OpenID Connect Session Management.

Default: false

"prompt": configuration expression<string>, optional

A space-separated, case-sensitive list of strings that indicate whether to prompt the end user for authentication and
consent. Use in OIDC flows only.

Refer to the Authorization Server documentation for information about supported prompt values. For example, refer to
prompt in PingOne Advanced Identity Cloud’s OAuth 2.0 guide or prompt in AM’s OAuth 2.0 guide.

PingGateway provides the following values:

none : Don’t display authentication or consent pages. Don’t use this value in the same list as login , consent , or
select_account .

login : Prompt the end user to reauthenticate even if they have a valid session on the Authorization Server.

•

•

Reference PingGateway

752 Copyright © 2025 Ping Identity Corporation

https://openid.net/specs/openid-connect-session-1_0-10.html
https://openid.net/specs/openid-connect-session-1_0-10.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://docs.pingidentity.com/pingoneaic/latest/am-oauth2/oauth2-parameters.html#prompt
https://docs.pingidentity.com/pingoneaic/latest/am-oauth2/oauth2-parameters.html#prompt
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-parameters.html#prompt
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-parameters.html#prompt

consent : Prompt the end user to consent before returning information to the Client, even if they have already
consented in the session.

select_account : Prompt the end user to select a user account.

Example: Prompt the end user to reauthenticate

"prompt": "login"

Example: Prompt the end user to reauthenticate and consent

"prompt": "login consent"

"issuerRepository": Issuer repository reference, optional

A repository of OAuth 2.0 issuers, built from discovered issuers and the PingGateway configuration.

Provide the name of an IssuerRepository object defined in the heap.

Default: Look up an issuer repository named IssuerRepository in the heap. If none is explicitly defined, then a default
one named IssuerRepository is created in the current route.

See also IssuerRepository.

"discoveryHandler": Handler reference, optional

Use this property for discovery and dynamic registration of OpenID Connect clients.

Provide either the name of a Handler object defined in the heap or an inline Handler configuration object. Usually, set this
to the name of a ClientHandler configured in the heap or a chain that ends in a ClientHandler.

Default: The default ClientHandler.

See also Handlers, ClientHandler.

"discoverySecretId": configuration expression<secret-id>, required for discovery and dynamic registration

Use this property for discovery and dynamic registration of OAuth 2.0 clients.

This secret ID must point to a CryptoKey.

Specifies the secret ID of the secret used to sign a JWT before the JWT is sent to the Authorization Server.

If discoverySecretId is used, then the tokenEndpointAuthMethod is always private_key_jwt .

"tokenEndpointAuthMethod": configuration expression<enumeration>, optional

Use this property for discovery and dynamic registration of OAuth 2.0 clients.

The authentication method with which a client authenticates to the authorization server or OpenID provider at the token
endpoint. For information about client authentication methods, refer to OpenID Client Authentication. The following
client authentication methods are allowed:

client_secret_basic : Clients that have received a client_secret value from the Authorization Server
authenticate with the Authorization Server by using HTTP basic access authentication, as in the following example:

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 753

http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

POST /oauth2/token HTTP/1.1
Host: as.example.com
Authorization: Basic
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=...

client_secret_post : Clients that have received a client_secret value from the Authorization Server
authenticate with the Authorization Server by including the client credentials in the request body, as in the
following example:

POST /oauth2/token HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&;
client_id=...&
client_secret=...&
code=...

private_key_jwt : Clients send a signed JSON Web Token (JWT) to the Authorization Server. PingGateway builds
and signs the JWT, and prepares the request as in the following example:

POST /token HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=...&
client_id=<clientregistration_id>&
client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer&
client_assertion=PHNhbWxwOl ... ZT

If the Authorization Server doesn’t support private_key_jwt , a dynamic registration falls back on the method
returned by the Authorization Server, for example, client_secret_basic or client_secret_post .

If tokenEndpointAuthSigningAlg is not configured, the RS256 signing algorithm is used for private_key_jwt .

Consider these points for identity providers:

Some providers accept more than one authentication method.

If a provider strictly enforces how the client must authenticate, align the authentication method with the
provider.

If a provider doesn’t support the authentication method, the provider sends an HTTP 400 Bad Request
response with an invalid_client error message, according to RFC 6749: Error Response.

If the authentication method is invalid, the provider sends an IllegalArgumentException .

•

•

◦

◦

◦

◦

Reference PingGateway

754 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2

Default: If discoverySecretId is used, then the tokenEndpointAuthMethod is always private_key_jwt . Otherwise, it is
client_secret_basic .

"tokenEndpointAuthSigningAlg": configuration expression<string>, optional

The JSON Web Algorithm (JWA) used to sign the JWT that is used to authenticate the client at the token endpoint. The
property is used when private_key_jwt is used for authentication.

If the Authorization Server sends a notification to use a different algorithm to sign the JWT, that algorithm is used.

Default: If discoverySecretId is used, then the tokenEndpointAuthSigningAlg is RS256 . Otherwise, it is not used.

"oAuth2SessionKey": configuration expression<string>, optional

A key to identify an OAuth 2.0 session. The key can be any character string.

To share the same OAuth 2.O session when a user accesses different applications protected by PingGateway, use the
same key in each filter.

Default: The complete client endpoint URI. AuthorizationCodeOAuth2ClientFilters do not share OAuth 2.O sessions.

"secretsProvider": SecretsProvider reference, required if discoverySecretId is used

The SecretsProvider to query for passwords and cryptographic keys.

Examples

Refer to the following sections:

AM as a single OpenID Connect provider

Use multiple OpenID Connect providers

Discover and dynamically register with OpenID Connect providers

More information

org.forgerock.openig.filter.oauth2.client.OAuth2ClientFilter

Issuer

ClientRegistration

The OAuth 2.0 Authorization Framework

The OAuth 2.0 Authorization Framework: Bearer Token Usage

OpenID Connect site, in particular the list of standard OpenID Connect 1.0 scope values.

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 755

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/OAuth2ClientFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/OAuth2ClientFilter.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750
http://openid.net/connect
http://openid.net/connect
https://openid.net/specs/openid-connect-basic-1_0.html#Scopes
https://openid.net/specs/openid-connect-basic-1_0.html#Scopes

CapturedUserPasswordFilter

Makes an AM password available to PingGateway in the following steps:

Checks for the presence of the SessionInfoContext context, at ${contexts.amSession} .

If the context isn’t present, or if sunIdentityUserPassword is null , the CapturedUserPasswordFilter collects
session info and properties from AM.

If the context is present and sunIdentityUserPassword is not null , the CapturedUserPasswordFilter uses that
value for the password.

The CapturedUserPasswordFilter decrypts the password and stores it in the CapturedUserPasswordContext, at $
{contexts.capturedPassword} .

Usage

{
 "name": string,
 "type": "CapturedUserPasswordFilter",
 "config": {
 "amService": AmService reference,
 "keySecretId": configuration expression<secret-id>,
 "keyType": configuration expression<string>,
 "secretsProvider": SecretsProvider reference,
 "ssoToken": runtime expression<string>
 }
}

Properties

"amService": AmService reference, required

The AmService heap object to use for the password. See also, AmService.

"keySecretId": configuration expression<secret-id>, required

The secret ID for the key required decrypt the AM password.

This secret ID must point to a CryptoKey` that matches the algorithm in "keyType" .

•

◦

◦

•

info
In PingOne Advanced Identity Cloud and from AM 7.5, the password capture and replay feature can optionally
manage the replay password through AM’s secret service. The secret label for the replay password must be
am.authentication.replaypassword.key .
For backward compatibility, if a secret isn’t defined, is empty, or can’t be resolved, AM manages the replay password
through the AM system property am.authentication.replaypassword.key .

Note

emergency_home
Although secrets of type GenericSecret are accepted, their usage is deprecated in this filter. For more
information, refer to the Deprecated section of the Release Notes.

Important

Reference PingGateway

756 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

"keyType": configuration expression<enumeration>, required

Algorithm to decrypt the AM password. Use one of the following values:

AES AES for JWT-based AES_128_CBC_HMAC_SHA_256 encryption. For more information, refer to
AES_128_CBC_HMAC_SHA_256 in the IETF JSON Web Algorithms.

DES for DES/ECB/NoPadding

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for secrets to decrypt the user password.

"ssoToken": runtime expression<string>, required

Location of the AM SSO token.

Default: ${request.cookiesAmService-ssoTokenHeader'][0].value} , where AmService-ssoTokenHeader is the name
of the header or cookie where the AmService expects to find SSO tokens.

Examples

The following example route is used to get login credentials from AM in Authenticate with credentials from AM.

•

•

emergency_home
This value is deprecated, and considered unsecure. For more information, refer to the Deprecated

section of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 757

https://www.rfc-editor.org/rfc/rfc7518#section-5.2.3
https://www.rfc-editor.org/rfc/rfc7518#section-5.2.3
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

{
 "name": "04-replay",
 "condition": "${find(request.uri.path, '^/replay')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore",
 "config": {
 "mappings": [
 {
 "secretId": "aes.key",
 "format": {
 "type": "SecretKeyPropertyFormat",
 "config": {
 "format": "BASE64",
 "algorithm": "AES"
 }
 }
 }
]
 }
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 },
 {
 "name": "CapturedUserPasswordFilter",
 "type": "CapturedUserPasswordFilter",
 "config": {
 "ssoToken": "${contexts.ssoToken.value}",
 "keySecretId": "aes.key",
 "keyType": "AES",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "amService": "AmService-1"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${true}",

Reference PingGateway

758 Copyright © 2025 Ping Identity Corporation

 "credentials": "CapturedUserPasswordFilter",
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${contexts.ssoToken.info.uid}"
],
 "password": [
 "${contexts.capturedPassword.value}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

More information

org.forgerock.openig.openam.CapturedUserPasswordFilter

org.forgerock.openig.openam.CapturedUserPasswordContext

CapturedUserPasswordContext

SessionInfoFilter

CertificateThumbprintFilter

Extracts a Java certificate from a trusted header or from a TLS connection, computes the SHA-256 thumbprint of that certificate,
and makes the thumbprint available for the ConfirmationKeyVerifierAccessTokenResolver. Use this filter to enable verification of
certificate-bound access tokens.

CertificateThumbprintFilter computes and makes available the SHA-256 thumbprint of a client certificate as follows:

Evaluates a runtime expression and yields a java.security.cert.Certificate

Hashes the certificate using SHA-256

Base64url-encodes the result

Stores the result in the contexts chain

The runtime expression can access or build a client certificate from any information present at runtime, such as a PEM in a
header, or a pre-built certificate.

Use CertificateThumbprintFilter with ConfirmationKeyVerifierAccessTokenResolver when the PingGateway instance is behind the
TLS termination point, for example, when PingGateway is running behind a load balancer or other ingress point.

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 759

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CapturedUserPasswordFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CapturedUserPasswordFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CapturedUserPasswordContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CapturedUserPasswordContext.html

Usage

{
 "name": string,
 "type": "CertificateThumbprintFilter",
 "config": {
 "certificate": runtime expression<certificate>,
 "failureHandler": Handler reference,
 }
}

Properties

"certificate": runtime expression<certificate>, required

An EL expression which, when evaluated, yields an instance of a java.security.cert.Certificate .

Use the following Functions in the expression to define hash, decoding, and certificate format:

digestSha256 , to calculate the SHA-256 hash of the certificate.

decodeBase64url , to decode an incoming base64url-encoded string.

pemCertificate , to convert a PEM representation string into a certificate.

See Examples.

"failureHandler": Handler reference, optional

Handler to treat the request on failure.

Provide an inline handler configuration object or the name of a handler object declared in the heap. See also Handlers.

Default: HTTP 403 Forbidden, the request stops being executed.

Examples

The following example uses the certificate associated with the incoming HTTP connection:

{
 "name": "CertificateThumbprintFilter-1",
 "type": "CertificateThumbprintFilter",
 "config": {
 "certificate": "${contexts.client.certificates[0]}"
 }
}

The following example is adapted for a deployment with NGINX as the TLS termination, where NGINX fronts PingGateway. NGINX
provides the client certificate associated with its own incoming connection in the x-ssl-client-cert header. The certificate is
encoded as PEM, and then url-encoded:

•

•

•

Reference PingGateway

760 Copyright © 2025 Ping Identity Corporation

{
 "name": "CertificateThumbprintFilter-2",
 "type": "CertificateThumbprintFilter",
 "config": {
 "certificate": "${pemCertificate(urlDecode(request.headers['x-ssl-client-cert'][0]))}"
 }
}

More information

org.forgerock.openig.filter.oauth2.cnf.CertificateThumbprintFilter

CircuitBreakerFilter

Monitors failures. When the number of failures reaches a configured failure threshold, the circuit breaker trips, and the circuit is
considered open. Calls to downstream filters are stopped, and a runtime exception is returned.

After a configured delay, the circuit breaker is reset, and is the circuit considered closed. Calls to downstream filters are restored.

Usage

{
 "name": string,
 "type": "CircuitBreakerFilter",
 "config": {
 "maxFailures": configuration expression<integer>,
 "openDuration": configuration expression<duration>,
 "openHandler": Handler reference,
 "slidingCounter": object,
 "executor": ScheduledExecutorService reference
 }
}

Properties

"maxFailures": configuration expression<number>, required

The maximum number of failed requests allowed in the window given by size , before the circuit breaker trips. The value
must be greater than zero.

"openDuration": configuration expression<duration>, required

The duration for which the circuit stays open after the circuit breaker trips. The executor schedules the circuit to be
closed after this duration.

"openHandler": Handler reference, optional

The Handler to call when the circuit is open.

Default: A handler that throws a RuntimeException with a "circuit-breaker open" message.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 761

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/cnf/CertificateThumbprintFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/cnf/CertificateThumbprintFilter.html

"slidingCounter": object, optional

A sliding window error counter. The circuit breaker trips when the number of failed requests in the number of requests
given by size reaches maxFailures .

The following image illustrates how the sliding window counts failed requests:

{
 "slidingCounter": {
 "size": configuration expression<number>
 }
}

"size": configuration expression<number>, required

The size of the sliding window in which to count errors.

The value of size must be greater than zero, and greater than the value of maxFailures , otherwise an exception
is thrown.

"executor": ScheduledExecutorService reference, optional

A ScheduledExecutorService to schedule closure of the circuit after the duration given by openDuration .

Default: The default ScheduledExecutorService in the heap

Example

In the following example, the circuit breaker opens after 11 failures in the previous 100 requests, throwing a runtime exception
with a "circuit-breaker open" message. The default ScheduledExecutorService in the heap closes the circuit-breaker after 10
seconds.

Request pass or fail✅ ❌ ✅ ❌ ✅ ✅ ✅ ✅ ❌ ❌ ❌ ✅ ✅ ❌ ❌ ✅ ✅ ❌ ✅ ❌

slidingCounter.size: 10
Failure count: 6

slidingCounter.size: 10
Failure count: 5

slidingCounter.size: 10
Failure count: 4

Reference PingGateway

762 Copyright © 2025 Ping Identity Corporation

{
 "type": "CircuitBreakerFilter",
 "config": {
 "maxFailures": 10,
 "openDuration": "10 seconds",
 "openHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "Too many failures; circuit opened to protect downstream services."
 }
 },
 "slidingCounter": {
 "size": 100
 }
 }
}

More information

org.forgerock.openig.filter.circuitbreaker.CircuitBreakerFilter

ClientCredentialsOAuth2ClientFilter

Authenticates OAuth 2.0 clients by using the client’s OAuth 2.0 credentials to obtain an access token from an Authorization
Server, and injecting the access token into the inbound request as a Bearer Authorization header. The access token is valid for the
configured scopes.

The ClientCredentialsOAuth2ClientFilter obtains the client’s access token by using the client_credentials grant type. Client
authentication is provided by the endpointHandler property, which uses a client authentication filter, such as
ClientSecretBasicAuthenticationFilter. The filter refreshes the access token as required.

Use the ClientCredentialsOAuth2ClientFilter in a service-to-service context, where services need to access resources protected by
OAuth 2.0.

Usage

{
 "name": string,
 "type": "ClientCredentialsOAuth2ClientFilter",
 "config": {
 "secretsProvider": SecretsProvider reference,
 "tokenEndpoint": configuration expression<url>,
 "scopes": [configuration expression<string>, ...],
 "endpointHandler": Handler reference,
 "clientId": configuration expression<sting>, //deprecated
 "clientSecretId": configuration expression<secret-id>, //deprecated
 "handler": Handler reference //deprecated
 }
}

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 763

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/circuitbreaker/CircuitBreakerFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/circuitbreaker/CircuitBreakerFilter.html

Properties

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

"tokenEndpoint": configuration expression<url>, required

The URL to the Authorization Server’s OAuth 2.0 token endpoint.

"scopes": array of configuration expression<strings>, optional

Array of scope strings to request from the Authorization Server.

Default: Empty, request no scopes.

"endpointHandler": Handler reference, optional

The Handler to exchange tokens on the authorization endpoint.

Configure this property as a Chain, using one of the following client authentication filters:

ClientSecretBasicAuthenticationFilter

ClientSecretPostAuthenticationFilter

PrivateKeyJwtClientAuthenticationFilter

{
 "name": "myHandler",
 "type": "Chain",
 "config": {
 "handler": "ForgeRockClientHandler",
 "filters": [
 {
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "myConfidentialClient",
 "clientSecretId": "my.client.secret.id",
 "secretsProvider" : "mySystemAndEnvSecretStore",
 }
 }
]
 }
}

Default: ForgeRockClientHandler

"clientId": configuration expression<string>, required

•

•

•

emergency_home
This property is deprecated. Use endpointHandler instead. For more information, refer to the Deprecated

section of the Release Notes.

Important

Reference PingGateway

764 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

The ID of the OAuth 2.0 client registered with the Authorization Server.

If you use the deprecated properties, provide clientId , clientSecretId to obtain the client secret, which authenticates
using the client_secret_basic method.

"clientSecretId": configuration expression<secret-id>, required

The ID to use when querying the secretsProvider for the client secret.

This secret ID must point to a GenericSecret.

"handler": Handler reference or inline Handler declaration, optional

The Handler to use to access the Authorization Server’s OAuth 2.0 token endpoint. Provide either the name of a handler
object defined in the heap or specify a handler object inline.

Default: ClientHandler

Examples

For an example, refer to Using OAuth 2.0 client credentials.

More information

org.forgerock.openig.filter.oauth2.client.ClientCredentialsOAuth2ClientFilterHeaplet

org.forgerock.openig.filter.oauth2.OAuth2ResourceServerFilterHeaplet

OAuth2ResourceServerFilter

The OAuth 2.0 Authorization Framework

The OAuth 2.0 Authorization Framework: Bearer Token Usage

ClientSecretBasicAuthenticationFilter

Supports client authentication with the method client_secret_basic . Clients that have received a client_secret value from
the Authorization Server authenticate through the HTTP basic access authentication scheme, as in the following example:

emergency_home
This property is deprecated. Use endpointHandler instead. For more information, refer to the Deprecated

section of the Release Notes.

Important

emergency_home
This property is deprecated. Use endpointHandler instead. For more information, refer to the Deprecated

section of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 765

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/ClientCredentialsOAuth2ClientFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/ClientCredentialsOAuth2ClientFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2ResourceServerFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2ResourceServerFilterHeaplet.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750

POST /oauth2/token HTTP/1.1
Host: as.example.com
Authorization: Basic
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=...

Use this filter with an endpoint Handler that requires client_secret_basic authentication. For example, endpointHandler in
the OAuth2TokenExchangeFilter or ClientCredentialsOAuth2ClientFilter.

Usage

{
 "name": string,
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": configuration expression<string>,
 "clientSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference
 }
}

Configuration

"clientId": configuration expression<string>, required

The OAuth 2.0 client ID to use for authentication.

"clientSecretId": configuration expression<secret-id>, required

The OAuth 2.0 client secret to use for authentication.

This secret ID must point to a GenericSecret.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

Reference PingGateway

766 Copyright © 2025 Ping Identity Corporation

Example

{
 "name": "ExchangeHandler",
 "type": "Chain",
 "config": {
 "handler": "ForgeRockClientHandler",
 "filters": [
 {
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "serviceConfidentialClient",
 "clientSecretId": "client.secret.id",
 "secretsProvider" : "SystemAndEnvSecretStore-1"
 }
 }
]
 }
}

ClientSecretPostAuthenticationFilter

Supports client authentication with the method client_secret_post . Clients that have received a client_secret value from
the Authorization Server authenticate by including the client credentials in the request body, as in the following example:

POST /oauth2/token HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&;
client_id=...&
client_secret=...&
code=...

Use this filter with an endpoint Handler that requires client_secret_post authentication. For example, endpointHandler in
the OAuth2TokenExchangeFilter or ClientCredentialsOAuth2ClientFilter.

Usage

{
 "name": string,
 "type": "ClientSecretPostAuthenticationFilter",
 "config": {
 "clientId": configuration expression<string>,
 "clientSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference
 }
}

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 767

Configuration

"clientId": configuration expression<string>, required

The OAuth 2.0 client ID to use for authentication.

"clientSecretId": configuration expression<secret-id>, required

The OAuth 2.0 client secret to use for authentication.

This secret ID must point to a GenericSecret.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

ConditionalFilter

Verifies that a specified condition is met. If the condition is met, the request is dispatched to a delegate Filter. Otherwise, the
delegate Filter is skipped.

Use ConditionalFilter to easily use or skip a Filter depending on whether a condition is met. To easily use or skip a set of
Filters, use a ChainOfFilters as the delegate Filter and define a set of Filters. For information, refer to ChainOfFilters.

Usage

{
 "name": string,
 "type": "ConditionalFilter",
 "config": {
 "condition": runtime expression<boolean>,
 "delegate": Filter reference
 }
}

Properties

"condition": runtime expression<boolean>, required

If the expression evaluates to true , the request is dispatched to the delegate Filter. Otherwise the delegate Filter is
skipped.

"delegate": Filter reference, required

Filter to treat the request when the condition expression evaluates as true .

See also Filters.

Example

The following example tests whether a request finishes with .js or .jpg :

Reference PingGateway

768 Copyright © 2025 Ping Identity Corporation

{
 "type": "Chain",
 "config": {
 "filters": [{
 "type": "ConditionalFilter",
 "config": {
 "condition": "${not (find(request.uri.path, '.js$') or find(request.uri.path, '.jpg$'))}",
 "delegate": "mySingleSignOnFilter"
 }
 }],
 "handler": "ReverseProxyHandler"
 }
}

If the request is to access a .js file or .jpg file, it skips the delegate SingleSignOnFilter filter declared in the heap, and passes
straight to the ReverseProxyHandler.

If the request is to access another type of resource, it must pass through the delegate SingleSignOnFilter for authentication with
AM before it can pass to the ReverseProxyHandler.

More information

org.forgerock.openig.filter.ConditionalFilter

ConditionEnforcementFilter

Verifies that a specified condition is met. If the condition is met, the request continues to be executed. Otherwise, the request is
referred to a failure handler, or PingGateway returns 403 Forbidden and the request is stopped.

Usage

{
 "name": string,
 "type": "ConditionEnforcementFilter",
 "config": {
 "condition": runtime expression<boolean>,
 "failureHandler": Handler reference
 }
}

Properties

"condition": runtime expression<boolean>, required

If the expression evaluates to true , the request continues to be executed.

"failureHandler": Handler reference, optional

Handler to treat the request if the condition expression evaluates as false .

Provide an inline handler configuration object or the name of a handler object declared in the heap. See also Handlers.

Default: HTTP 403 Forbidden, the request stops being executed.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 769

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ConditionalFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ConditionalFilter.html

Example

The following example tests whether a request contains a session username. If it does, the request continues to be executed.
Otherwise, the request is dispatched to the ConditionFailedHandler failure handler.

{
 "name": "UsernameEnforcementFilter",
 "type": "ConditionEnforcementFilter",
 "config": {
 "condition": "${not empty (session.username)}",
 "failureHandler": "ConditionFailedHandler"
 }
}

More information

org.forgerock.openig.filter.ConditionEnforcementFilter

ChainOfFilters

Dispatches a request to an ordered list of filters. Use this filter to assemble a list of filters into a single filter that you can then use
in different places in the configuration.

A ChainOfFilters can be placed in a configuration anywhere that a filter can be placed.

Unlike Chain , ChainOfFilters does not finish by dispatching the request to a handler. For more information, refer to Chain.

Usage

{
 "name": string,
 "type": "ChainOfFilters",
 "config": {
 "filters": [Filter reference, ...]
 }
}

Properties

"filters": array of Filter references, required

An array of names of filter objects defined in the heap, and inline filter configuration objects.

The chain dispatches the request to these filters in the order they appear in the array.

See also Filters.

Reference PingGateway

770 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ConditionEnforcementFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ConditionEnforcementFilter.html

Example

{
 "name": "MyChainOfFilters",
 "type": "ChainOfFilters",
 "config": {
 "filters": ["Filter1", "Filter2"]
 }
}

More information

org.forgerock.openig.filter.ChainFilterHeaplet

CookieFilter

Manages, suppresses, and relays cookies for stateful sessions. This filter is not currently compatible with stateless sessions.

Usage

{
 "name": string,
 "type": "CookieFilter",
 "config": {
 "managed": [configuration expression<string>, ...],
 "suppressed": [configuration expression<string>, ...],
 "relayed": [configuration expression<string>, ...],
 "defaultAction": configuration expression<enumeration>
 }
}

Properties

"managed": array of configuration expression<strings>, optional

A list of the names of cookies to be managed.

PingGateway stores cookies from the protected application in the session and manages them as follows:

Requests with a Cookie header: PingGateway removes managed cookies so that protected applications cannot see
them.

Responses with a Set-Cookie header: PingGateway removes managed cookies and keeps a copy of them.
PingGateway then adds the managed cookies in a Cookie header to future requests that traverse the CookieFilter.

"suppressed": array of configuration expression<strings>, optional

A list of the names of cookies to be suppressed.

PingGateway removes cookies from the request and response. Use this option to hide domain cookies, such as the AM
session cookie, that are used by PingGateway but are not usually used by protected applications.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 771

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ChainFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ChainFilterHeaplet.html

"relayed": array of configuration expression<strings>, optional

A list of the names of cookies to be relayed.

PingGateway transmits cookies freely from the user agent to the remote server, and vice versa.

"defaultAction": configuration expression<enumeration>, optional

Action to perform for cookies that do not appear in one of the above lists. Set to MANAGE , SUPPRESS , or RELAY .

If a cookie appears in more than one of the above lists, it is treated in the following order of precedence: managed ,
suppressed , relayed . For example, if a cookie is in both the managed and relayed lists, the cookie is managed.

Default: "MANAGE" .

More information

org.forgerock.openig.filter.CookieFilter

CorsFilter

Configures policies for cross-origin resource sharing (CORS), to allow cross-domain requests from user agents.

Usage

{
 "name": string,
 "type": "CorsFilter",
 "config": {
 "policies": [object, ...],
 "failureHandler": Handler reference
 }
}

Properties

"policies": array of objects, required

One or more policies to apply to the request. A policy is selected when the origin of the request matches the accepted
origins of the policy.

When multiple policies are declared, they are tried in the order that they are declared, and the first matching policy is
selected.

Reference PingGateway

772 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/CookieFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/CookieFilter.html

{
 "acceptedOrigins": [configuration expression<url>, ...] or "*",
 "acceptedMethods": [configuration expression<string>, ...] or "*",
 "acceptedHeaders": [configuration expression<string>, ...] or "*",
 "exposedHeaders": [configuration expression<string>, ...],
 "maxAge": configuration expression<duration>,
 "allowCredentials": configuration expression<boolean>,
 "origins": [configuration expression<url>, ...] or "*" //deprecated
}

"acceptedOrigins": array of configuration expression<urls> or "*", required

A comma-separated list of origins, to match the origin of the CORS request. Alternatively, use * to allow requests
from any URL.

If the request origin is not in the list of accepted origins, the failure handler is invoked or an HTTP 403 Forbidden is
returned, and the request stops being executed.

Origins are URLs with a scheme, hostname, and optionally a port number, for example, http://www.example.com .
If a port number is not defined, origins with no port number or with the default port number (80 for HTTP, 443 for
HTTPS) are accepted.

Examples:

{
 "acceptedOrigins": [
 "http://www.example.com",
 "https://example.org:8433"
]
}

{
 "acceptedOrigins": "*"
}

"acceptedMethods": array of configuration expression<strings> or "*", optional

A comma-separated list of case-sensitive HTTP method names that are allowed when making CORS requests.
Alternatively, use * to allow requests with any method.

In preflight requests, browsers use the Access-Control-Request-Method header to let the server know which
HTTP method might be used in the actual request.

If all requested methods are allowed, the requested methods are returned in the preflight response, in the
Access-Control-Allow-Methods header.

If any requested method is not allowed, the Access-Control-Allow-Methods header is omitted. The failure
handler is not invoked, but the user agent interprets the preflight response as a CORS failure.

Examples:

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 773

{
 "acceptedMethods": [
 "GET",
 "POST",
 "PUT",
 "MyCustomMethod"
]
}

{
 "acceptedMethods": "*"
}

Default: All methods are rejected.

"acceptedHeaders": array of configuration expression<strings> or "*", optional

A comma-separated list of case-insensitive request header names that are allowed when making CORS requests.
Alternatively, use * to allow requests with any header.

In preflight requests, browsers use the Access-Control-Request-Headers header to let the server know which
HTTP headers might be used in the actual request.

If all requested headers are allowed, the requested headers are returned in the preflight response, in the
Access-Control-Allow-Headers header.

If any requested header is not allowed, the Access-Control-Allow-Headers header is omitted. The failure
handler is not invoked, but the user agent interprets the preflight response as a CORS failure.

Examples:

{
 "acceptedHeaders": [
 "iPlanetDirectoryPro",
 "X-OpenAM-Username",
 "X-OpenAM-Password",
 "Accept-API-Version",
 "Content-Type",
 "If-Match",
 "If-None-Match"
]
}

{
 "acceptedHeaders": "*"
}

Default: All requested headers are rejected.

•

•

Reference PingGateway

774 Copyright © 2025 Ping Identity Corporation

"exposedHeaders": list of configuration expression<string>, optional

A comma-separated list of case-insensitive response header names that are returned in the Access-Control-
Expose-Headers header.

Only headers in this list, safe headers, and the following simple response headers are exposed to frontend
JavaScript code:

Cache-Control

Content-Language

Expires

Last-Modified

Pragma

Content-Type

Example:

{
 "exposedHeaders": [
 "Access-Control-Allow-Origin",
 "Access-Control-Allow-Credentials",
 "Set-Cookie"
]
}

Default: No headers are exposed.

"maxAge": configuration expression<duration>, optional

The maximum duration for which a browser is allowed to cache a preflight response. The value is included in the
Access-Control-Max-Age header of preflight responses.

When this maxAge is greater than the browser’s maximum internal value, the browser value takes precedence.

Default: 5 seconds

"allowCredentials": configuration expression<boolean>, optional

A flag to allow requests that use credentials, such as cookies, authorization headers, or TLS client certificates.

Set to true to set the Access-Control-Allow-Credentials header to true , and allow browsers to expose the
response to frontend JavaScript code.

Default: False

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 775

"origins": list of configuration expression<url> or "*", required

A comma-separated list of origins, to match the origin of the CORS request. Alternatively, use * to allow requests
from any URL.

Origins are URLs with a scheme, hostname, and optionally a port number, for example, http://www.example.com .
If a port number is not defined, origins with no port number or with the default port number (80 for HTTP, 443 for
HTTPS) are accepted.

"failureHandler": Handler reference, optional

Handler invoked during the preflight request, when the request origin does not match any of the acceptedOrigins
defined in policies .

The failure handler is not invoked when requested headers or requested methods are not allowed.

Provide an inline handler configuration object or the name of a handler object declared in the heap. See also Handlers.

Default: HTTP 403 Forbidden, the request stops being executed.

More information

org.forgerock.http.filter.cors.CorsFilter

https://fetch.spec.whatwg.org/#http-cors-protocol

CrossDomainSingleSignOnFilter

When PingGateway and AM are running in the same domain, the SingleSignOnFilter can be used for SSO. When PingGateway and
AM are running in different domains, AM cookies aren’t visible to PingGateway because of the same-origin policy. The
CrossDomainSingleSignOnFilter provides a mechanism to push tokens issued by AM to PingGateway running in a different
domain.

When this filter processes a request, it injects the CDSSO token, the session user ID, and the full claims set into the CdSsoContext.
If an error occurs during authentication, information is captured in the CdSsoFailureContext.

For an example of how to configure CDSSO and information about the CDSSO data flow, refer to Cross-domain single sign-on.

WebSocket notifications for sessions

When WebSocket notifications are set up for sessions, PingGateway receives a notification from AM when a user logs out of AM,
or when the AM session is modified, closed, or times out. PingGateway then evicts entries that are related to the event from the
sessionCache .

For information about setting up WebSocket notifications, using them to clear the session cache, and including them in the server
logs, refer to WebSocket notifications.

emergency_home
This property is deprecated; use acceptedOrigins instead. For more information, refer to the
Deprecated section of the Release Notes.

Important

Reference PingGateway

776 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/filter/cors/CorsFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/filter/cors/CorsFilter.html
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cors-protocol

Usage

{
 "name": string,
 "type": "CrossDomainSingleSignOnFilter",
 "config": {
 "amService": AmService reference,
 "redirectEndpoint": configuration expression<url>,
 "authenticationService": configuration expression<string>,
 "authCookie": object,
 "redirectionMarker": object,
 "defaultLogoutLandingPage": configuration expression<url>,
 "logoutExpression": runtime expression<boolean>,
 "failureHandler": Handler reference,
 "verificationSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference
 }
}

Properties

"amService": AmService reference, required

The AmService heap object to use. See AmService.

"redirectEndpoint": configuration expression<url>, required

The URI to which AM redirects the browser with the authentication token or an authentication error. The filter checks that
the authentication was initiated by PingGateway.

Configure this URI to be the same as that in AM.

To make sure the redirect is routed back to the CrossDomainSingleSignOnFilter, include the endpoint in the route
condition in one of the following ways:

As a sub-path of the condition path.

For example, use the following route condition with the following endpoint:

"condition": "${find(request.uri.path, '^/home/cdsso')}"

"redirectEndpoint": "/home/cdsso/callback"

To match the route condition.

For example, use the following route condition with the following endpoint:

"condition": "${find(request.uri.path, '^/home/cdsso')}"

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 777

"redirectEndpoint": "/home/cdsso"

With this route condition, all POST requests on the condition path are treated as AM CDSSO callbacks. Any POST
requests that aren’t the result of an AM CDSSO callback will fail.

As a specific path that is not related to the condition path.

To make sure the redirect is routed back to this filter, include the redirectEndpoint as a path in the filter condition.

For example, use the following route condition with the following endpoint:

"condition": "${find(request.uri.path, '^/home/cdsso/redirect') || find(request.uri.path, '^/ig/
cdssoRedirectUri')}"

"redirectEndpoint": "/ig/cdssoRedirectUri"

"authenticationService": configuration expression<string>,optional

The name of an AM authentication tree or authentication chain to use for authentication.

Default: AM’s default authentication tree.

For more information about authentication trees and chains, refer to Authentication nodes and trees and
Authentication modules and chains in AM’s Authentication and SSO guide.

"authCookie": object, optional

The configuration of the cookie used to store the authentication.

{
 "name": configuration expression<string>,
 "domain": configuration expression<string>,
 "httpOnly": configuration expression<boolean>,
 "path": configuration expression<string>,
 "sameSite": configuration expression<enumeration>,
 "secure": configuration expression<boolean>
}

"name": configuration expression<string>, optional

Name of the cookie containing the authentication token from AM.

For security, change the default name of cookies.

Default: ig-token-cookie

•

info
Use only authentication trees with PingOne Advanced Identity Cloud. Authentication modules and chains aren’t
supported.

Note

Reference PingGateway

778 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-trees.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-trees.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-modules-and-chains.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-modules-and-chains.html

"domain": configuration expression<string>, optional

Domain to which the cookie applies.

Set a domain only if the user agent is able to re-emit cookies on that domain on its next hop. For example, to re-
emit a cookie on the domain example.com , the user agent must be able to access that domain on its next hop.

Default: The fully qualified hostname of the user agent’s next hop.

"httpOnly": configuration expression<boolean>, optional

Flag to mitigate the risk of client-side scripts accessing protected cookies.

Default: true

"path": configuration expression<string>, optional

Path protected by this authentication.

Set a path only if the user agent is able to re-emit cookies on the path. For example, to re-emit a cookie on the
path /home/cdsso , the user agent must be able to access that path on its next hop.

Default: The path of the request that got the Set-Cookie in its response.

"sameSite": configuration expression<enumeration>, optional

Options to manage the circumstances in which a cookie is sent to the server. Use one of the following values to
reduce the risk of CSRF attacks:

STRICT : Send the cookie only if the request was initiated from the cookie domain. Not case-sensitive.

Use this value to reduce the risk of cross-site request forgery (CSRF) attacks.

LAX : Send the cookie only with GET requests in a first-party context, where the URL in the address bar
matches the cookie domain. Not case-sensitive.

Use this value to reduce the risk of cross-site request forgery (CSRF) attacks.

NONE : Send the cookie whenever a request is made to the cookie domain. Not case-sensitive.

With this setting, consider setting secure to true to prevent browsers from rejecting the cookie. For more
information, refer to SameSite cookies.

Default: LAX

"secure": configuration expression<boolean>, optional

Flag to limit the scope of the cookie to secure channels.

•

•

•

info
For CDSSO, set "sameSite":"none" and "secure":"true". For security reasons, many browsers require the
connection used by the browser to be secure (HTTPS) for "sameSite":"none". Therefore, if the connection
used by the browser is not secure (HTTP), the browser might not supply cookies with "sameSite":"none". For
more information, refer to Authenticate with CDSSO.

Note

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 779

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

Set this flag only if the user agent is able to re-emit cookies over HTTPS on its next hop. For example, to re-emit a
cookie with the secure flag, the user agent must be connected to its next hop by HTTPS.

Default: false

"redirectionMarker": configuration expression<object>, optional

A redirect marker for the CDSSO flow. If the marker is present in the CDSSO flow, the request isn’t redirected for
authentication.

This feature is on by default to prevent redirect loops when the session cookie isn’t present in the CDSSO flow. The cookie
can be absent from the flow if it doesn’t include PingGateway’s domain.

"redirectionMarker": {
 "enabled": configuration expression<boolean>,
 "name": configuration expression<string>
}

"enabled": configuration expression<boolean>, optional

true : When the session is empty or invalid, PingGateway checks the request goto query parameter for the
presence of the redirection marker:

If the redirection marker is present, PingGateway fails the request.

If the redirection marker isn’t present, PingGateway redirects the user agent for login.

false: PingGateway never checks the request goto query parameter for the presence of a redirection
marker.

Default: true

"name": configuration expression<string>, optional

The name of the redirection marker query parameter to use when enabled is true .

Default: _ig

"defaultLogoutLandingPage": configuration expression<url>, optional

The URL to which a request is redirected if logoutExpression is evaluated as true.

If this property is not an absolute URL, the request is redirected to the PingGateway domain name.

This parameter is effective only when logoutExpression is specified.

Default: None, processing continues.

"logoutExpression": runtime expression<boolean>, optional

A flag to indicate whether a request initiates logout processing before reaching the protected application.

false : The request does not initiate logout processing:

If a valid AM session is found, the request is forwarded to the protected application.

•

◦

◦

•

•

◦

Reference PingGateway

780 Copyright © 2025 Ping Identity Corporation

If a valid AM session is not found, the request triggers login.

true : The request initiates logout processing:

If a valid AM session is found, the session is revoked and the request is forwarded as follows:

If defaultLogoutLandingPage is defined, the request is forwarded to the specified logout page.

If defaultLogoutLandingPage is not defined, the request is forwarded to the protected application
without any other validation.

If a valid session is not found, the request is forwarded to the protected application without any other
validation.

Default: ${false}

"failureHandler": Handler reference, optional

Handler to treat the request if an error occurs during authentication.

If an error occurs during authentication, a CdSsoFailureContext is populated with details of the error and any associated
Throwable . This is available to the failure handler so that it can respond appropriately.

Be aware that the failure handler does not itself play a role in user authentication. It is only invoked if there is a problem
that prevents user authentication from taking place.

A number of circumstances may cause the failure handler to be invoked, including:

The redirect endpoint is invalid.

The redirect endpoint is invoked without a valid CDSSO token.

◦

•

◦

▪

▪

◦

emergency_home
To prevent unwanted access to the protected application, use logoutExpression with extreme caution as
follows:

Define a defaultLogoutLandingPage .
If you don’t define a defaultLogoutLandingPage , specify logoutExpression to resolve to true only
for requests that target dedicated logout pages of the protected application.

Consider the following examples when a defaultLogoutLandingPage is not configured:
This expression resolves to true only for requests with /app/logout in their path:

"logoutExpression": ${startsWith(request.uri.rawPath, '/app/logout')}

When a request matches the expression, the AM session is revoked and the request is forwarded to
the /app/logout page.
This expression resolves to true for all requests that contain logOff=true in their query parameters:

"logoutExpression": ${find(request.uri.query, 'logOff=true')}

When a request matches the expression, the AM session is revoked and the request is forwarded to the
protected application without any other validation. In this example, an attacker can bypass
PingGateway’s security mechanisms by simply adding ?logOff=true to a request.

Important

•
•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 781

The redirect endpoint is invoked inappropriately.

An error was reported by AM during authentication.

If no failure handler is configured, the default failure handler is used.

See also Handlers.

Default: HTTP 200 OK. The response entity contains details of the error.

"verificationSecretId": configuration expression<secret-id>, required if PingGateway can’t discover and
use a JWK set specified by `amservice`

The secret ID for the secret to verify the signature of AM session tokens. This secret ID must point to a CryptoKey.

PingGateway verifies the token as follows:

If verificationSecretId is NOT set, PingGateway validates the JWT against the JWKs provided by the AM service.
There is no fallback.

If verificationSecretId is set with a secretsProvider , PingGateway validates the JWT signature with a named
or valid secrets strategy:

First, PingGateway uses a secret obtained with the secret ID:

For JWK sets, the secret ID should map to a kid of one of the JWKs.

For keystores, the secret ID should map to an alias of one of the keys associated with the secret ID.

If PingGateway finds no named secrets, it tries with all valid secrets mapped to the secret ID.

Learn more from Validate the signature of signed tokens and Secrets.

"secretsProvider": SecretsProvider reference, required when verificationSecretId is set

The SecretsProvider to query for passwords and cryptographic keys.

Example

For an example that uses the CrossDomainSingleSignOnFilter, refer to Cross-domain single sign-on (CDSSO).

More information

org.forgerock.openig.openam.CrossDomainSingleSignOnFilter

CdSsoContext

CdSsoFailureContext

SsoTokenContext

CsrfFilter

Prevent Cross Site Request Forgery (CSRF) attacks when using cookie-based authentication, as follows:

When a session is created or updated for a client, generate a CSRF token as a hash of the session cookie.

•

•

•

•

◦

▪

▪

◦

•

Reference PingGateway

782 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CrossDomainSingleSignOnFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CrossDomainSingleSignOnFilter.html

Send the token in a response header to the client, and require the client to provide that header in subsequent requests.

In subsequent requests, compare the provided token to the generated token.

If the token is not provided or can’t be validated, reject the request and return a valid CSRF token transparently in the
response header.

Rogue websites that attempt CSRF attacks operate in a different website domain to the targeted website. Because of
same-origin policy, rogue websites can’t access a response from the targeted website, and cannot, therefore, access the
CSRF token.

Usage

{
 "name": string,
 "type": "CsrfFilter",
 "config": {
 "cookieName": configuration expression<string>,
 "headerName": configuration expression<string>,
 "excludeSafeMethods": configuration expression<boolean>,
 "failureHandler": Handler reference
 }
}

Properties

"cookieName": configuration expression<string>, required

The name of the HTTP session cookie used to store the session ID. For example, use the following cookie names for the
following processes:

SSO with the SingleSignOnFilter: Use the name of the AM session cookie. For more information, refer to Find the
AM session cookie name.

CDSSO with the CrossDomainSingleSignOnFilter: Use the name configured in authCookie.name .

OpenID Connect with the AuthorizationCodeOAuth2ClientFilter: Use the name of the PingGateway HTTP session
cookie (default, IG_SESSIONID). For information about the PingGateway session cookie, refer to admin.json.

SAML: Use the name of the PingGateway HTTP session cookie (default, IG_SESSIONID). For information about the
PingGateway session cookie, refer to admin.json.

"headerName": configuration expression<string>, optional

The name of the header that carries the CSRF token. The same header is used to create and verify the token.

Default: X-CSRF-Token

"excludeSafeMethods": configuration expression<boolean>, optional

Whether to exclude GET, HEAD, and OPTION methods from CSRF testing. In most cases, these methods are assumed as
safe from CSRF.

Default: true

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 783

"failureHandler": Handler reference, optional

Handler to treat the request if the CSRF the token is not provided or can’t be validated. Provide an inline handler
declaration, or the name of a handler object defined in the heap.

Although PingGateway returns the CSRF token transparently in the response header, this handler cannot access the CSRF
token.

Default: Handler that generates HTTP 403 Forbidden .

Example

For an example of how to harden protection against CSRF attacks, see CSRF protection.

{
 "name": "CsrfFilter-1",
 "type": "CsrfFilter",
 "config": {
 "cookieName": "openig-jwt-session",
 "headerName": "X-CSRF-Token",
 "excludeSafeMethods": true
 }
}

More information

org.forgerock.openig.filter.CsrfFilterHeaplet

DataPreservationFilter

The DataPreservationFilter triggers POST data preservation when an unauthenticated client posts HTML form data to a protected
resource.

When an authentication redirect is triggered, the filter stores the data in the HTTP session, and redirects the client for
authentication. After authentication, the filter generates an empty self-submitting form POST to emulate the original POST. It then
replays the stored data into the request before passing it along the chain.

The data can be any POST content, such as HTML form data or a file upload.

For more information, refer to POST data preservation.

Usage

{
 "type": "DataPreservationFilter",
 "config": {
 "noJavaScriptMessage": configuration expression<string>,
 "maxContentLength": configuration expression<positive integer>,
 "lifetime": configuration expression<duration>
 }
}

Reference PingGateway

784 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/CsrfFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/CsrfFilterHeaplet.html

Properties

"noJavaScriptMessage": configuration expression<string>, optional

JavaScript is used to replay the preserved data from the original POST that triggered the login redirect. This property
configures a message to display if the user-agent does not support JavaScript.

Default: Javascript is disabled in your browser, click on this button to replay the preserved original
request

"maxContentLength": configuration expression<positive integer>, optional

The maximum number of bytes of POST data the filter can preserve. The size is taken from the Content-Length header.

Default: 4096

"lifetime": configuration expression<duration>, optional

The maximum time that the filter can store POST data in an HTTP session.

The filter deletes stored POST data when the following events occur:

The lifetime has expired.

The POST data preservation process from an earlier request hasn’t completed.

A new request arrives that triggers a new POST data preservation process.

Stored POST data is also deleted when the session expires.

Default: 5 minutes

Example

For an example of use, refer to POST data preservation.

More information

org.forgerock.openig.filter.DataPreservationFilter

AuthRedirectContext

DateHeaderFilter

Inserts the server date in an HTTP Date header on the response, if the Date header is not present.

Usage

{
 "type": "DateHeaderFilter"
}

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 785

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Length
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Length
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/DataPreservationFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/DataPreservationFilter.html

Properties

There are no configuration properties for this filter.

Example

The following example includes a DateHeaderFilter in a chain:

{
 "condition": "...",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 ...
 },
 {
 "type": "DateHeaderFilter"
 }
],
 "handler": {
 "name": "StaticResponseHandler-1",
 ...
 }
 }
 }
}

More information

For information about Date format, see RFC 7231 - Date.

This filter is also available to support Financial-Grade API, for information, see Financial-grade API Security Profile 1.0 - Part 1:
Baseline

org.forgerock.openig.filter.DateHeaderFilter

EncryptedPrivateKeyJwtClientAuthenticationFilter

Supports client authentication with the private_key_jwt client-assertion, using a signed and encrypted JWT.

Clients send a signed and encrypted JWT to the Authorization Server. PingGateway builds, signs and encrypts the JWT, and
prepares the request as in the following example:

POST /token HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=...&
client_id=<clientregistration_id>&
client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer&
client_assertion=PHNhbWxwOl ... ZT

Reference PingGateway

786 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.2
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.2
https://openid.net/specs/openid-financial-api-part-1-1_0.html
https://openid.net/specs/openid-financial-api-part-1-1_0.html
https://openid.net/specs/openid-financial-api-part-1-1_0.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/DateHeaderFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/DateHeaderFilter.html

Use this filter with an endpoint Handler that requires authentication with the private_key_jwt client-assertion, using an
encrypted JWT. For example, the endpointHandler handler in the OAuth2TokenExchangeFilter.

Usage

{
 "name": string,
 "type": "EncryptedPrivateKeyJwtClientAuthenticationFilter",
 "config": {
 "encryptionAlgorithm": configuration expression<enumeration>,
 "encryptionMethod": configuration expression<string>,
 "encryptionSecretId": configuration expression<secret-id>,
 "clientId": configuration expression<string>,
 "tokenEndpoint": configuration expression<url>,
 "secretsProvider": SecretsProvider reference,
 "signingSecretId": configuration expression<string>,
 "signingAlgorithm": configuration expression<string>,
 "jwtExpirationTimeout": configuration expression<duration>,
 "claims": map or configuration expression<map>
 }
}

Configuration

"encryptionAlgorithm": configuration expression<string>, required

The algorithm name used for encryption and decryption. Use algorithm names from Java Security Standard Algorithm
Names.

"encryptionMethod": configuration expression<string>, optional

The algorithm method to use for encryption. Use algorithms from RFC 7518, section-5.1.

"encryptionSecretId": configuration expression<secret-id>, required

The secret-id of the keys used to encrypt the JWT.

This secret ID must point to a CryptoKey.

"clientId": configuration expression<string>, required

The client_id obtained when registering with the Authorization Server.

"tokenEndpoint": configuration expression<url>, required

The URL to the Authorization Server’s OAuth 2.0 token endpoint.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

"signingSecretId": configuration expression<string>, required

Reference to the keys used to sign the JWT.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 787

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#algorithmparameters-algorithms
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#algorithmparameters-algorithms
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#algorithmparameters-algorithms
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1

This secret ID must point to a CryptoKey.

"signingAlgorithm": configuration expression<string>, optional

The JSON Web Algorithm (JWA) used to sign the JWT, such as:

RS256 : RSA using SHA-256

ES256 : ECDSA with SHA-256 and NIST standard P-256 elliptic curve

ES384 : ECDSA with SHA-384 and NIST standard P-384 elliptic curve

ES512 : ECDSA with SHA-512 and NIST standard P-521 elliptic curve

Default: RS256

"jwtExpirationTimeout": configuration expression<duration>, optional

The duration for which the JWT is valid.

Default: 1 minute

"claims": map or configuration expression<map>, optional

A map of one or more data pairs with the format Map<String, Object> , where:

The key is the name of a claim used in authentication

The value is the value of the claim, or a configuration expression that evaluates to the value

The following formats are allowed:

{
 "args": {
 "string": "configuration expression<string>",
 ...
 }
}

{
 "args": "configuration expression<map>"
}

Default: Empty

EntityExtractFilter

Extracts regular expression patterns from a message entity, and stores their values in a target object. Use this object in
password replay, to find a login path or extract a nonce.

If the message type is REQUEST , the pattern is extracted before the request is handled. If the message type is RESPONSE , the
pattern is extracted out of the response body.

•

•

•

•

•

•

Reference PingGateway

788 Copyright © 2025 Ping Identity Corporation

Each pattern can have an associated template, which is applied to its match result.

For information, see Patterns.

Usage

{
 "name": string,
 "type": "EntityExtractFilter",
 "config": {
 "messageType": configuration expression<enumeration>,
 "charset": configuration expression<string>,
 "target": lvalue-expression,
 "bindings": [
 {
 "key": configuration expression<string>,
 "pattern": pattern,
 "template": pattern
 }, ...
]
 }
}

Properties

"messageType": configuration expression<enumeration>, required

The message type to extract patterns from.

Must be REQUEST or RESPONSE .

"charset": configuration expression<string>, optional

Overrides the character set encoding specified in message.

Default: The message encoding is used.

"target": <lvalue-expression>, required

Expression that yields the target object that contains the extraction results.

The bindings determine what type of object is stored in the target location.

The object stored in the target location is a Map<String, String>. You can then access its content with ${target.key} or
${target['key']} .

See also Expressions.

"key": configuration expression<string>, required

Name of the element in the target object to contain an extraction result.

"pattern": pattern, required

The regular expression pattern to find in the entity.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 789

See also Patterns.

"template": pattern-template, optional

The template to apply to the pattern, and store in the named target element.

Default: store the match result itself.

See also Patterns.

Examples

Extracts a nonce from the response, which is typically a login page, and sets its value in the attributes context to be used by the
downstream filter posting the login form. The nonce value would be accessed using the following expression: $
{attributes.extract.wpLoginToken} .

The pattern finds all matches in the HTTP body of the form wpLogintokenvalue="abc" . Setting the template to $1 assigns the
value abc to attributes.extract.wpLoginToken :

{
 "name": "WikiNoncePageExtract",
 "type": "EntityExtractFilter",
 "config": {
 "messageType": "response",
 "target": "${attributes.extract}",
 "bindings": [
 {
 "key": "wpLoginToken",
 "pattern": "wpLoginToken\"\\s.*value=\"(.*)\"",
 "template": "$1"
 }
]
 }
}

The following example reads the response looking for the AM login page. When found, it sets isLoginPage = true to be used in
a SwitchFilter to post the login credentials:

{
 "name": "FindLoginPage",
 "type": "EntityExtractFilter",
 "config": {
 "messageType": "response",
 "target": "${attributes.extract}",
 "bindings": [
 {
 "key": "isLoginPage",
 "pattern": "OpenAM\s\(Login\)",
 "template": "true"
 }
]
 }
}

Reference PingGateway

790 Copyright © 2025 Ping Identity Corporation

More information

org.forgerock.openig.filter.EntityExtractFilter

FapiInteractionIdFilter

Tracks the interaction ID of requests, according to the Financial-grade API (FAPI) WG, as follows:

If a FAPI header is provided in a client request, includes the interaction ID in the x-fapi-interaction-id property of the
response header.

If a FAPI header is not provided in the request, includes a new Universally Unique Identifier (UUID) in the x-fapi-
interaction-id property of the response header.

Adds the value of x-fapi-interaction-id to the log.

Usage

{
 "name": string,
 "type": "FapiInteractionIdFilter"
}

Properties

There are no configuration properties for this filter.

Example

The following example, based on Validate Certificate-Bound Access Tokens, adds a FapiInteractionIdFilter to the end of the chain:

{
 "name": "mtls",
 "condition": "${find(request.uri.path, '/mtls')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "name": "OAuth2ResourceServerFilter-1",
 ...
 },
 {
 "type": "FapiInteractionIdFilter"
 }
],
 "handler": {
 "name": "StaticResponseHandler-1",
 ...
 }
 }
 }
}

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 791

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/EntityExtractFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/EntityExtractFilter.html
https://openid.net/wg/fapi/
https://openid.net/wg/fapi/

More information

org.forgerock.openig.filter.finance.FapiInteractionIdFilter

Financial-grade API - Part 1: Read-Only API Security Profile

FragmentFilter

Tracks the fragment part of a URI when a request triggers a login redirect, as follows:

Before authentication, the filter captures the URI fragment information and stores it in a cookie.

After authentication, when the request is issued again to the original URI, the filter redirects the browser to the original
URI, including any URI fragment.

The full fragment capture process is described in URI fragments in redirect.

The FragmentFilter doesn’t handle multiple fragment captures in parallel. If a fragment capture is in progress while PingGateway
performs another login redirect, a second fragment capture process isn’t triggered and the fragment is lost.

When a browser request loads a favicon, it can cause the fragment part of a URI to be lost. Prevent problems by serving static
resources with a separate route. As an example, use the route in Serve static resources.

Use this filter with SingleSignOnFilter, CrossDomainSingleSignOnFilter, AuthorizationCodeOAuth2ClientFilter, and
PolicyEnforcementFilter. This filter is not required for SAML because the final redirect is done with a DispatchHandler and a
StaticResponseFilter.

Usage

{
 "name": string,
 "type": "FragmentFilter",
 "config": {
 "fragmentCaptureEndpoint": configuration expression<string>,
 "noJavaScriptMessage": configuration expression<string>,
 "cookie": object
 }
}

"fragmentCaptureEndpoint": configuration expression<string>, required

The PingGateway endpoint used to capture the fragment form data.

Configure the endpoint to match the condition of the route in which the filter is used.

"noJavaScriptMessage": configuration expression<string>, optional

A message to display on the fragment form when JavaScript is not enabled.

Default: No message

"cookie": object, optional

The configuration of the cookie used to store the fragment information.

•

•

Reference PingGateway

792 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/finance/FapiInteractionIdFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/finance/FapiInteractionIdFilter.html
https://openid.net/specs/openid-financial-api-part-1.html#protected-resources-provisions
https://openid.net/specs/openid-financial-api-part-1.html#protected-resources-provisions

{
 "name": configuration expression<string>,
 "domain": configuration expression<string>,
 "httpOnly": configuration expression<boolean>,
 "path": configuration expression<string>,
 "sameSite": configuration expression<enumeration>,
 "secure": configuration expression<boolean>,
 "maxAge": configuration expression<duration>
}

"name": configuration expression<string>, optional

Cookie name.

Default: ig-fragment-cookie

"domain": configuration expression<string>, optional

Domain to which the cookie applies.

Default: The fully qualified hostname of the PingGateway host.

"httpOnly": configuration expression<boolean>, optional

Flag to mitigate the risk of client-side scripts accessing protected cookies.

Default: true

"path": configuration expression<string>, optional

Path to apply to the cookie.

Default: /

"sameSite": configuration expression<enumeration>, optional

Options to manage the circumstances in which a cookie is sent to the server. Use one of the following values to
reduce the risk of CSRF attacks:

STRICT : Send the cookie only if the request was initiated from the cookie domain. Not case-sensitive.

Use this value to reduce the risk of cross-site request forgery (CSRF) attacks.

LAX : Send the cookie only with GET requests in a first-party context, where the URL in the address bar
matches the cookie domain. Not case-sensitive.

Use this value to reduce the risk of cross-site request forgery (CSRF) attacks.

NONE : Send the cookie whenever a request is made to the cookie domain. Not case-sensitive.

With this setting, consider setting secure to true to prevent browsers from rejecting the cookie. For more
information, refer to SameSite cookies.

Default: LAX

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 793

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

"secure": configuration expression<boolean>, optional

Flag to limit the scope of the cookie to secure channels.

Default: false

"maxAge": configuration expression<duration>, optional

The maximum duration for which the FragmentFilter cookie can be valid.

When this maxAge is greater than the browser’s maximum internal value, the browser value takes precedence.

Default: 1 hour

Example

For an example of how the FragmentFilter is used in an SSO flow, refer to URI fragments in redirect.

More information

org.forgerock.openig.filter.FragmentFilter

URI Fragment

RFC 3986: Fragment

AuthRedirectContext

FileAttributesFilter

Retrieves and exposes a record from a delimiter-separated file. Lookup of the record is performed using a specified key , whose
value is derived from an expression. The resulting record is exposed in an object whose location is specified by the target
expression. If a matching record cannot be found, then the resulting object is empty.

The retrieval of the record is performed lazily; it does not occur until the first attempt to access a value in the target . This defers
the overhead of file operations and text processing until a value is first required. This also means that the value expression is not
evaluated until the object is first accessed.

Usage

{
 "name": string,
 "type": "FileAttributesFilter",
 "config": {
 "file": configuration expression<string>,
 "charset": configuration expression<string>,
 "separator": configuration expression<enumeration>,
 "header": configuration expression<boolean>,
 "fields": [configuration expression<string>, ...],
 "target": lvalue-expression,
 "key": configuration expression<string>,
 "value": runtime expression<string>
 }
}

Reference PingGateway

794 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/FragmentFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/FragmentFilter.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Identifying_resources_on_the_Web#Syntax_of_Uniform_Resource_Identifiers_URIs
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Identifying_resources_on_the_Web#Syntax_of_Uniform_Resource_Identifiers_URIs
https://www.rfc-editor.org/rfc/rfc3986#section-3.5
https://www.rfc-editor.org/rfc/rfc3986#section-3.5

For an example, refer to Password replay from a file.

Properties

"file": configuration expression<string>, required

The file containing the record to be read.

"charset": configuration expression<string>, optional

The character set in which the file is encoded.

Default: "UTF-8" .

"separator": configuration expression<enumeration>, optional

The separator character, which is one of the following:

COLON

Unix-style colon-separated values, with backslash as the escape character.

COMMA

Comma-separated values, with support for quoted literal strings.

TAB

Tab-separated values, with support for quoted literal strings.

Default: COMMA

"header": configuration expression<boolean>,optional

A flag to treat the first row of the file as a header row.

When the first row of the file is treated as a header row, the data in that row is disregarded and cannot be returned by a
lookup operation.

Default: true .

"fields": array of configuration expression<strings>, optional

A list of keys in the order they appear in a record.

If fields is not set, the keys are assigned automatically by the column numbers of the file.

"target": <lvalue-expression>, required

Expression that yields the target object to contain the record.

The target object is a Map<String, String> , where the fields are the keys. For example, if the target is $
{attributes.file} and the record has a username field and a password field mentioned in the fields list, Then you can
access the user name as ${attributes.file.username} and the password as ${attributes.file.password} .

See also Expressions.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 795

"key": configuration expression<string>, required

The key used for the lookup operation.

"value": runtime expression<string>, required

The value to be looked-up in the file.

See also Expressions.

More information

org.forgerock.openig.filter.FileAttributesFilter

ForwardedRequestFilter

Rebase the request URI to a computed scheme, host name, and port.

Use this filter to configure redirects when a request is forwarded by an upstream application such as a TLS offloader.

Usage

{
 "name": string,
 "type": "ForwardedRequestFilter",
 "config": {
 "scheme": runtime expression<string>,
 "host": runtime expression<string>,
 "port": runtime expression<number>
 }
}

Properties

At least one of scheme , host , or port must be configured.

"scheme": runtime expression<string>, optional

The scheme to which the request is rebased, for example, https .

Default: Not rebased to a different scheme

"host": runtime expression<string>, optional

The host to which the request is rebased.

Default: Not rebased to a different host

"port": runtime expression<number>, optional

The port to which the request is rebased.

Default: Not rebased to a different port

Reference PingGateway

796 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/FileAttributesFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/FileAttributesFilter.html

Example

In the following configuration, PingGateway runs behind an AWS load balancer, to perform a login page redirect to an
authentication party, using the original URI requested by the client.

PingGateway can access the URI used by the load balancer to reach PingGateway, but can’t access the original request URI.

The load balancer breaks the original request URI into the following headers, and adds them to the incoming request:

X-Forwarded-Proto : Scheme

X-Forwarded-Port : Port

Host : Original host name, and possibly the port.

{
 "type": "ForwardedRequestFilter",
 "config": {
 "scheme": "${request.headers['X-Forwarded-Proto'][0]}",
 "host": "${split(request.headers['Host'][0], ':')[0]}",
 "port": "${integer(request.headers['X-Forwarded-Port'][0])}"
 }
}

More information

org.forgerock.openig.filter.ForwardedRequestFilter

GrantSwapJwtAssertionOAuth2ClientFilter

Transforms requests for OAuth 2.0 access tokens into secure JWT bearer grant type requests. Propagates transformed
requests to PingOne Advanced Identity Cloud or AM to obtain an access token.

Use this filter with PingOne Advanced Identity Cloud or AM to increase the security of less-secure grant-type requests, such as
Client credentials grant requests or Resource owner password credentials grant requests.

For an example that uses GrantSwapJwtAssertionOAuth2ClientFilter, refer to Secure the OAuth 2.0 access token endpoint.

•

•

•

error
The GrantSwapJwtAssertionOAuth2ClientFilter obtains access tokens from the /oauth2/access_token endpoint. To
prevent unwanted or malicious access to the endpoint, make sure only a well-defined set of clients can use this filter.
Consider the following options to secure access to the GrantSwapJwtAssertionOAuth2ClientFilter:

Deploy PingGateway on a trusted network.
Use mutual TLS (mTLS) and X.509 certificates for authentication between clients and PingGateway. For more
information, refer to OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens.
Configure an AllowOnlyFilter in front of the GrantSwapJwtAssertionOAuth2ClientFilter to control access within
a route.
Define restrictive Route conditions to allow access only for expected grant-type requests. For example, define
a route condition that requires a specific client ID, grant-type, or scope.
Configure a ScriptableFilter in front of the GrantSwapJwtAssertionOAuth2ClientFilter to validate requests.

Caution

•
•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 797

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ForwardedRequestFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ForwardedRequestFilter.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-jwt-bearer-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-jwt-bearer-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-client-cred-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-client-cred-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-ropc-grant.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-ropc-grant.html
https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://tools.ietf.org/html/draft-ietf-oauth-mtls

Usage

{
 "name": string,
 "type": "GrantSwapJwtAssertionOAuth2ClientFilter",
 "config": {
 "clientId": configuration expression<string>,
 "scopes": [runtime expression<string>, ...] or ResourceAccess reference,
 "assertion": object,
 "secretsProvider": SecretsProvider reference,
 "signature": object,
 "encryption": object,
 "failureHandler": Handler reference
 }
}

Properties

"clientId": configuration expression<string>, optional

The OAuth 2.0 client ID to use for authentication.

"scopes": array of runtime expression<strings> or ResourceAccess <reference>, required

A list of one or more scopes required by the OAuth 2.0 access token. Provide the scopes as strings or through a
ResourceAccess such as a RequestFormResourceAccess or ScriptableResourceAccess:

Array of runtime expression<strings>, required if a ResourceAccess isn’t used

A string, array of strings, runtime expression<string>, or array of runtime expression<string> to represent one or
more scopes.

RequestFormResourceAccess <reference>

A ResourceAccess that transfers scopes from the inbound request to a JWT bearer grant-type request.

In the following example request, the ResourceAccess extracts scopes from the request:

$ POST 'http://openig.example.com:8081/am/oauth2/access_token'
header 'Content-Type: application/x-www-form-urlencoded'
urlencoded form-data 'grant_type=client_credentials'
urlencoded form-data 'client_id=service-account'
urlencoded form-data 'scope=fr:idm:*'

Default: Empty

ScriptableResourceAccess <reference>

A script that evaluates each request dynamically and returns the scopes that the request needs to access the
protected resource. The script must return a Set<String> .

For information about the properties of ScriptableResourceAccess, refer to Scripts.

Reference PingGateway

798 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/ResourceAccess.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/ResourceAccess.html

{
 "name": string,
 "type": "ScriptableResourceAccess",
 "config": {
 "type": configuration expression<string>,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both.
 "args": object,
 "clientHandler": Handler reference
 }
}

Default: Empty

"assertion": object, required

The JWT claims. The GrantSwapJwtAssertionOAuth2ClientFilter checks that all mandatory fields are present and sets the
JWT expiry. The filter doesn’t check the fields in otherClaims .

{
 "assertion": {
 "issuer": runtime expression<string>,
 "subject": runtime expression<string>,
 "audience": runtime expression<string>,
 "expiryTime": runtime expression<duration>,
 "otherClaims": map<string, runtime expression<string>>
 }
}

"issuer": string, required

The JWT iss claim. Can’t be null.

"subject": string, required

The JWT sub claim. Can’t be null.

"audience": string, required

The JWT aud claim. Can’t be null.

"expiryTime": duration, required

The JWT exp claim. Can’t be zero or unlimited .

Default: 2 minutes

"otherClaims": map or map, optional

A map of additional JWT claims with the format Map<String, RuntimeExpression<String>> , where:

Key: Claim name

Value: Claim value

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 799

Use the following format:

{
 "otherClaims": {
 "string": "runtime expression<string>",
 ...
 }
}

The filter doesn’t check otherClaims in the JWT.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

"signature": _object, "signature" and/or "encryption" is required

A JWT signature to validate the authenticity of claims and data.

{
 "signature": {
 "secretId": configuration expression<secret-id>,
 "includeKeyId": configuration expression<boolean>
 }
}

"secretId": configuration expression<secret-id>, required if signature is used

The secret ID of the key to sign the JWT. The secret ID must point to a CryptoKey.

"includeKeyId": configuration expression<boolean>, optional

A flag to include the ID of the signature key in the JWT header:

true : Include the flag

false : Don’t include the flag

Default: true

"encryption": object, "signature" and/or "encryption" is required

Configuration to encrypt the JWT.

This property take precedence over GrantSwapJwtAssertionOAuth2ClientFilter.signature .

•

•

Reference PingGateway

800 Copyright © 2025 Ping Identity Corporation

{
 "encryption": {
 "secretId": secret-id,
 "algorithm": configuration expression<string>,
 "method": configuration expression<enumeration>
 }
}

"secretId": secret-id, optional

The secret ID of the key used to encrypt the JWT. The value is mapped to key aliases in KeyStoreSecretStore.

This secret ID must point to a CryptoKey.

"algorithm": configuration expression<string>, required

The algorithm used to encrypt the JWT.

For information about available algorithms, refer to RFC 7518: "alg" (Algorithm) Header Parameter Values for JWE
.

"method": configuration expression<enumeration>, required

The method used to encrypt the JWT.

For information about available methods, refer to RFC 7518: "enc" (Encryption Algorithm) Header Parameter
Values for JWE.

"failureHandler": Handler <reference>, optional

Handler to manage a failed request.

Provide an inline handler configuration object or the name of a handler object declared in the heap.

Default: 500 Internal Server Error , the request stops being executed.

Example

For an example that uses GrantSwapJwtAssertionOAuth2ClientFilter, refer to Secure the OAuth 2.0 access token endpoint.

More information

org.forgerock.openig.filter.oauth2.client.GrantSwapJwtAssertionOAuth2ClientFilter

HeaderFilter

Removes headers from and adds headers to request and response messages. Headers are added to any existing headers in the
message. To replace a header, remove the header and then add it again.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 801

https://www.rfc-editor.org/rfc/rfc7518#section-4.1
https://www.rfc-editor.org/rfc/rfc7518#section-4.1
https://www.rfc-editor.org/rfc/rfc7518#section-4.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/GrantSwapJwtAssertionOAuth2ClientFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/GrantSwapJwtAssertionOAuth2ClientFilter.html

Usage

{
 "name": string,
 "type": "HeaderFilter",
 "config": {
 "messageType": configuration expression<enumeration>,
 "remove": [configuration expression<string>, ...],
 "add": {
 string: [runtime expression<string>, ...], ...
 }
 }
}

Properties

`"messageType": configuration expression<enumeration>, required

The type of message for which to filter headers. Must be either "REQUEST" or "RESPONSE" .

"remove": array of configuration expression<strings>, optional

The names of header fields to remove from the message.

"add": object, optional

One or more headers to add to a request, with the format name: [value, …] , where:

name is a string for a header name.

value is a runtime expression that resolves to one or more header values.

Examples

Replace host header on an incoming request

The following example replaces the host header on the incoming request with the value myhost.com :

{
 "name": "ReplaceHostFilter",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "remove": ["host"],
 "add": {
 "host": ["myhost.com"]
 }
 }
}

Add a header to a response

The following example adds a Set-Cookie header to the response:

•

•

Reference PingGateway

802 Copyright © 2025 Ping Identity Corporation

{
 "name": "SetCookieFilter",
 "type": "HeaderFilter",
 "config": {
 "messageType": "RESPONSE",
 "add": {
 "Set-Cookie": ["mysession=12345"]
 }
 }
}

Add headers to a request

The following example adds the headers custom1 and custom2 to the request:

{
 "name": "SetCustomHeaders",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "custom1": ["12345", "6789"],
 "custom2": ["abcd"]
 }
 }
}

Add a token value to a response

The following example adds the value of session’s policy enforcement token to the pef_sso_token header in the response:

{
 "type": "HeaderFilter",
 "config": {
 "messageType": "RESPONSE",
 "add": {
 "pef_sso_token": ["${session.pef_token}"]
 }
 }
}

Add headers and logging results

The following example adds a message to the request and response as it passes through the Chain, and the capture on the
ReverseProxyHandler logs the result. With PingGateway and the sample application set up as described in the Quick install,
access this route on http://ig.example.com:8080/home/chain.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 803

http://ig.example.com:8080/home/chain
http://ig.example.com:8080/home/chain

{
 "condition": "${find(request.uri.path, '^/home/chain')}",
 "handler": {
 "type": "Chain",
 "comment": "Base configuration defines the capture decorator",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "comment": "Add a header to all requests",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "MyHeaderFilter_request": [
 "Added by HeaderFilter to request"
]
 }
 }
 },
 {
 "type": "HeaderFilter",
 "comment": "Add a header to all responses",
 "config": {
 "messageType": "RESPONSE",
 "add": {
 "MyHeaderFilter_response": [
 "Added by HeaderFilter to response"
]
 }
 }
 }
],
 "handler": {
 "type": "ReverseProxyHandler",
 "comment": "Log request, pass it to the sample app, log response",
 "capture": "all",
 "baseURI": "http://app.example.com:8081"
 }
 }
 }
}

The chain receives the request and context and processes it as follows:

The first HeaderFilter adds a header to the incoming request.

The second HeaderFilter manages responses not requests, so it simply passes the request and context to the handler.

The ReverseProxyHandler captures (logs) the request.

The ReverseProxyHandler forwards the transformed request to the protected application.

The protected application passes a response to the ReverseProxyHandler .

The ReverseProxyHandler captures (logs) the response.

The second HeaderFilter adds a header added to the response.

•

•

•

•

•

•

•

Reference PingGateway

804 Copyright © 2025 Ping Identity Corporation

The first HeaderFilter is configured to manage requests, not responses, so it simply passes the response back to
PingGateway.

The following example lists some of the HTTP requests and responses captured as they flow through the chain. You can search
the log files for MyHeaderFilter_request and MyHeaderFilter_response .

Original request from user-agent
GET http://ig.example.com:8080/home/chain HTTP/1.1
Accept: /
Host: ig.example.com:8080

Add a header to the request (inside PingGateway) and direct it to the protected application
GET http://app.example.com:8081/home/chain HTTP/1.1
Accept: /
Host: ig.example.com:8080
MyHeaderFilter_request: Added by HeaderFilter to request

Return the response to the user-agent
HTTP/1.1 200 OK
Content-Length: 1809
Content-Type: text/html; charset=ISO-8859-1

Add a header to the response (inside PingGateway)
HTTP/1.1 200 OK
Content-Length: 1809
MyHeaderFilter_response: Added by HeaderFilter to response

More information

org.forgerock.openig.filter.HeaderFilter

HttpBasicAuthenticationClientFilter

Authenticates clients according to the HTTP basic access authentication scheme.

HTTP basic access authentication is a simple challenge and response mechanism, where a server requests credentials from a
client, and the client passes them to the server in an Authorization header. The credentials are base-64 encoded. To protect
them, use SSL encryption for the connections between the server and client. For more information, refer to RFC 2617.

Use HttpBasicAuthenticationClientFilter in a service-to-service context, where services need to access resources protected by
HTTP basic access authentication.

•

lightbulb_2
Compare the purpose of this filter with that of the following filters:

ClientCredentialsOAuth2ClientFilter, which authenticates clients by their OAuth 2.0 credentials to obtain an
access token from an Authorization Server.
ClientSecretBasicAuthenticationFilter, which fulfils the same role of transforming OAuth 2.0 credentials to an
Authorization header, but is more strict for OAuth 2.0 requirements.

Tip

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 805

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/HeaderFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/HeaderFilter.html
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt

Usage

{
 "name": string,
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": configuration expression<string>,
 "passwordSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference,
 "urlEncodeCredentials": configuration expression<boolean>
 }
}

Properties

"username": configuration expression<string>, required

The username of the client to authenticate.

"passwordSecretId": configuration expression<string>, required

The secret ID required to obtain the client password.

This secret ID must point to a GenericSecret.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the passwordSecretId .

"urlEncodeCredentials": configuration expression<boolean>, optional

Set to true to URL-encoded credentials before base64-encoding them.

Default: false

Example

The following example shows the flow of information when a client service accesses a resource protected by HTTP basic access
authentication:

Reference PingGateway

806 Copyright © 2025 Ping Identity Corporation

Set Up the Example

Add the following script to the PingGateway configuration:

$HOME/.openig/scripts/groovy/BasicAuthResourceServerFilter.groovy

%appdata%\OpenIG\scripts\groovy\BasicAuthResourceServerFilter.groovy

PingGateway route http-basic-access.json PingGateway route http-basic-protected-resource.json

Client Service

Client Service

ScriptableHandler

ScriptableHandler

HttpBasicAuthenticationClientFilter

HttpBasicAuthenticationClientFilter

BasicAuthResourceServerFilter.groovy

BasicAuthResourceServerFilter.groovy

Resource

Resource

1 Client request

2 Rewrite request to new target

3 Forward request

4 Process client credentials

5 Send request

6
Compare provided credentials
with the expected ones

7 Forward request

8 Forward response

1.

Linux

Windows

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 807

/*
 * This script is a simple implementation of HTTP basic access authentication on
 * server side.
 * It expects the following arguments:
 * - realm: the realm to display when the user agent prompts for
 * username and password if none were provided.
 * - username: the expected username
 * - passwordSecretId: the secretId to find the password
 * - secretsProvider: the SecretsProvider to query for the password
*/
import static org.forgerock.util.promise.Promises.newResultPromise;

import java.nio.charset.Charset;
import org.forgerock.util.encode.Base64;
import org.forgerock.secrets.Purpose;
import org.forgerock.secrets.GenericSecret;

String authorizationHeader = request.getHeaders().getFirst("Authorization");
if (authorizationHeader == null) {
 // No credentials provided, return 401 Unauthorized
 Response response = new Response(Status.UNAUTHORIZED);
 response.getHeaders().put("WWW-Authenticate", "Basic realm=\"" + realm + "\"");
 return newResultPromise(response);
}

return secretsProvider.getNamed(Purpose.PASSWORD, passwordSecretId)
 .thenAsync(password -> {
 // Build basic authentication string -> username:password
 StringBuilder basicAuthString = new StringBuilder(username).append(":");
 password.revealAsUtf8{ p -> basicAuthString.append(new String(p).trim()) };
 String expectedAuthorization = "Basic " +
Base64.encode(basicAuthString.toString().getBytes(Charset.defaultCharset()));
 // Incorrect credentials provided, return 403 forbidden
 if (!expectedAuthorization.equals(authorizationHeader)) {
 return newResultPromise(new Response(Status.FORBIDDEN));
 }
 // Correct credentials provided, continue.
 return next.handle(context, request);
 },
 noSuchSecretException -> { throw new RuntimeException(noSuchSecretException); });

The script is a simple implementation of the HTTP basic access authentication scheme. For information about scripting
filters and handlers, refer to Extend.

Add the following route to PingGateway:

$HOME/.openig/config/routes/http-basic-access.json

2.

Linux

Reference PingGateway

808 Copyright © 2025 Ping Identity Corporation

%appdata%\OpenIG\config\routes\http-basic-access.json

{
 "name": "http-basic-access",
 "baseURI": "http://ig.example.com:8080",
 "condition" : "${find(request.uri.path, '^/http-basic-access')}",
 "heap": [
 {
 "name": "httpBasicAuthEnabledClientHandler",
 "type": "Chain",
 "capture": "all",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "myclient",
 "passwordSecretId": "password.secret.id",
 "secretsProvider": {
 "type": "Base64EncodedSecretStore",
 "config": {
 "secrets": {
 "password.secret.id": "cGFzc3dvcmQ="
 }
 }
 }
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
],
 "handler": {
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "clientHandler": "httpBasicAuthEnabledClientHandler",
 "source": [
 "request.uri.path = '/http-basic-protected-resource'",
 "return http.send(context, request);"
]
 }
 }
}

Note the following features of the route:

The route matches requests to /http-basic-access .

The ScriptableHandler rewrites the request to target it to /http-basic-protected-resource , and then calls the
HTTP client, that has been redefined to use the httpBasicAuthEnabledClientHandler.

Windows

◦

◦

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 809

The httpBasicAuthEnabledClientHandler calls the HttpBasicAuthenticationClientFilter to authenticate the client,
using the client’s credentials.

Add the following route to PingGateway:

$HOME/.openig/config/routes/http-basic-protected-resource.json

%appdata%\OpenIG\config\routes\http-basic-protected-resource.json

◦

3.

Linux

Windows

Reference PingGateway

810 Copyright © 2025 Ping Identity Corporation

{
 "heap": [
 {
 "name": "mySecretsProvider",
 "type": "Base64EncodedSecretStore",
 "config": {
 "secrets": {
 "password.secret.id": "cGFzc3dvcmQ="
 }
 }
 }
],
 "name": "http-basic-protected-resource",
 "condition": "${find(request.uri.path, '^/http-basic-protected-resource')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "HttpBasicAuthResourceServerFilter",
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "BasicAuthResourceServerFilter.groovy",
 "args": {
 "realm": "IG Protected Area",
 "username": "myclient",
 "passwordSecretId": "password.secret.id",
 "secretsProvider": "${heap['mySecretsProvider']}"

 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><h2>Access Granted</h2></body></html>"
 }
 }
 }
 }
}

Notice the following features of the route:

The route matches requests to /http-basic-protected-resource .

The ScriptableFilter provides a script to implement a simple HTTP basic access authentication scheme, that
compares the provided credentials with the expected credentials.

When the client is authenticated, the StaticResponseHandler returns a message that access is granted.

Access the route on http://ig.example.com:8080/http-basic-access.

◦

◦

◦

4.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 811

http://ig.example.com:8080/http-basic-access
http://ig.example.com:8080/http-basic-access

Because the expected credentials were provided in the request, a message shows that access is granted.

HttpBasicAuthFilter

Authenticate clients by providing the client credentials as a basic authorization header in the request. The credentials are base64-
encoded.

This filter performs HTTP basic access authentication, described in RFC 2617.

Use this filter primarily for password replay scenarios, where the password is stored externally in clear text.

If challenged for authentication via a 401 Unauthorized status code by the server, this filter retries the request with credentials
attached. After an HTTP authentication challenge is issued from the remote server, all subsequent requests to that remote server
that pass through the filter include the user credentials.

If authentication fails (including the case where no credentials are yielded from expressions), then processing is diverted to the
specified authentication failure handler.

Usage

{
 "name": string,
 "type": "HttpBasicAuthFilter",
 "config": {
 "username": runtime expression<string>,
 "password": runtime expression<string>,
 "failureHandler": Handler reference,
 "cacheHeader": configuration expression<boolean>
 }
}

Properties

"username": runtime expression<string>, required

The username to supply during authentication.

See also Expressions.

"password": runtime expression<string>, required

The password to supply during authentication.

See also Expressions.

"failureHandler": Handler reference, required

Dispatch to this Handler if authentication fails.

Provide either the name of a Handler object defined in the heap or an inline Handler configuration object.

See also Handlers.

Reference PingGateway

812 Copyright © 2025 Ping Identity Corporation

http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt

"cacheHeader": configuration expression<boolean>,optional

Whether or not to cache credentials in the session after the first successful authentication, and then replay those
credentials for subsequent authentications in the same session.

With "cacheHeader": false , the filter generates the header for each request. This is useful, for example, when users
change their passwords during a browser session.

Default: true

Example

{
 "name": "MyAuthenticator",
 "type": "HttpBasicAuthFilter",
 "config": {
 "username": "demo",
 "password": "password",
 "failureHandler": "AuthFailureHandler",
 "cacheHeader": false
 }
}

More information

org.forgerock.openig.filter.HttpBasicAuthFilter

IdTokenValidationFilter

Validates an ID token by checking the standard claims, aud , exp , and iat . If specified in the configuration, this filter also checks
the ID token issuer and signature.

This filter passes data into the context as follows:

If the JWT is validated, the request continues down the chain. The data is provided in the JwtValidationContext.

If the JWT is not validated, data is provided in the JwtValidationErrorContext.

If a failure handler is configured, the request passes to the failure handler. Otherwise, an HTTP 403 Forbidden is returned.

The iat claim is required, and the iat minus the skewAllowance must be before the current time on the PingGateway clock.
For information, see OpenID Connect Core 1.0 incorporating errata set 1.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 813

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/HttpBasicAuthFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/HttpBasicAuthFilter.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

Usage

{
 "name": string,
 "type": "IdTokenValidationFilter",
 "config": {
 "idToken": runtime expression<string>,
 "audience": configuration expression<string>,
 "issuer": configuration expression<string>,
 "skewAllowance": configuration expression<duration>,
 "verificationSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference,
 "customizer": JwtValidatorCustomizer reference,
 "failureHandler": Handler reference
 }
}

Properties

"idToken": runtime expression<string>, required

The ID token as an expression representing the JWT or signed JWT in the request. Cannot be null.

"audience": configuration expression<string>, required

One aud claim to check on the JWT. Cannot be null.

"issuer": configuration expression<string>, optional

One iss claim to check on the JWT. Can be null.

"skewAllowance": configuration expression<duration>, optional

The duration to add to the validity period of a JWT to allow for clock skew between different servers.

A skewAllowance of 2 minutes affects the validity period as follows:

A JWT with an iat of 12:00 is valid from 11:58 on the PingGateway clock.

A JWT with an exp 13:00 is expired after 13:02 on the PingGateway clock.

Default: To support a zero-trust policy, the skew allowance is by default zero .

"verificationSecretId": configuration expression<secret-id>, required to verify the signature of signed
tokens

The secret ID for the secret to verify the signature of signed tokens.

This secret ID must point to a CryptoKey.

If configured, the token must be signed. If not configured, PingGateway does not verify the signature.

For information about how signatures are validated, refer to Validate the signature of signed tokens. For information
about how each type of secret store resolves named secrets, refer to Secrets.

•

•

Reference PingGateway

814 Copyright © 2025 Ping Identity Corporation

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

"customizer": JwtValidatorCustomizer reference, optional

A set of validation constraints for JWT claims and sub-claims. These constraints are in addition to internally-defined
constraints, such as aud , iss , exp , and iat . If a claim isn’t validated against a constraint, the JWT isn’t validated.

The customizer doesn’t override existing constraints. Defining a new constraint on an already constrained claim has an
impact only if the new constraint is more restrictive.

JwtValidatorCustomizer provides a ScriptableJwtValidatorCustomizer to enrich a builder object by using its methods. Get
more information about the following items:

The builder object, at Available Objects.

Transformer methods, to enrich the builder object, at org.forgerock.openig.util.JsonValues.

Constraints, at org.forgerock.openig.tools.jwt.validation.Constraints.

Other properties for ScriptableJwtValidatorCustomizer, at Scripts.

The following examples provide checks:

Check that the value of the claim greaterThan5 is greater than 5

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "builder.claim('/greaterThan5', JsonValue::asInteger, isGreaterThan(5))"
]
 }
}

Check that the value of the claim sub is george

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "builder.claim('subname', JsonValue::asString, isEqualTo('george'))"
]
 }
}

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 815

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/util/JsonValues.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/util/JsonValues.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/Constraints.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/Constraints.html

Check that the value of the custom sub-claim is ForgeRock

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "builder.claim('customclaim/subclaim', JsonValue::asString, isEqualTo('ForgeRock'));"
]
 }
}

Check the value of multiple claims

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "builder.claim('aud', listOf(JsonValue::asString), contains('My App'))",
 " .claim('iat', instant(), isInThePast())",
 " .claim('exp', instant(), isInTheFuture());",
 "builder.claim('iss', JsonValue::asString, isEqualTo('ForgeRock AM'));"
]
 }
}

Check that the value of val1 is greater than val2

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": ["builder.claim('/val1', JsonValue::asInteger, isGreaterThan(claim('/
val2').asInteger()))"]
 }
}

Check that the value of val1 is greater than val2, when both are YYYY-MM-DD dates

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "Function<JsonValue, java.time.LocalDate, Exception> asDate() {",
 " return (jsonValue) -> java.time.LocalDate.parse(jsonValue.asString());",
 "}",
 "builder.claim('claim1', asDate(), isGreaterThan(claim('claim2').as(asDate())));"
]
 }
}

Reference PingGateway

816 Copyright © 2025 Ping Identity Corporation

Check that the claim issuer matches the regex pattern

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": ["builder.claim('iss', JsonValue::asString, find(~/.*am\.example\.(com|org)/))"]
 }
}

Default: Claims aren’t validated

"failureHandler": Handler reference, optional

Handler to treat the request on failure.

Provide an inline handler configuration object or the name of a handler object declared in the heap. See also Handlers.

Default: HTTP 403 Forbidden, the request stops being executed.

Example

Find an example of how the IdTokenValidationFilter is used in ID token validation.

More information

org.forgerock.openig.filter.oauth2.client.IdTokenValidationFilterHeaplet

org.forgerock.openig.filter.jwt.JwtValidationContext

org.forgerock.openig.filter.jwt.JwtValidationErrorContext

OpenID Connect Core 1.0 incorporating errata set 1

JwtBuilderFilter

Collects data at runtime, packs it in a JSON Web Token (JWT), and places the resulting JWT into the JwtBuilderContext.

Configure JwtBuilderFilter to create a signed JWT, a signed then encrypted JWT, or an encrypted JTW:

Sign the JWT so that an application can validate the authenticity of the claims/data. The JWT can be signed with a shared
secret or private key, and verified with a shared secret or corresponding public key.

Encrypt the JWT to reduce the risk of a data breach.

For a flexible way to pass identity or other runtime information to the protected application, use this filter with a HeaderFilter.

To enable downstream filters and handlers to verify signed and/or encrypted JWTs built by this filter, use this filter with a
JwkSetHandler.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 817

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/IdTokenValidationFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/IdTokenValidationFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationErrorContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationErrorContext.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

Usage

{
 "name": string,
 "type": "JwtBuilderFilter",
 "config": {
 "template": map or runtime expression<map>,
 "secretsProvider": SecretsProvider reference,
 "signature": object,
 "encryption": object
 }
}

Properties

"template": map or runtime expression<map>, required

A map of one or more data pairs with the format Map<String, Object> , where:

The key is the name of a data field

The value is a data object, or a runtime expression that evaluates to a data object

The following formats are allowed:

{
 "template": {
 "string": "runtime expression<object>",
 ...
 }
}

{
 "template": "runtime expression<map>"
}

In the following example, the property is a map whose values are runtime expressions that evaluate to objects in the
context:

{
 "template": {
 "name": "${contexts.userProfile.commonName}",
 "email": "${contexts.userProfile.rawInfo.mail[0]}",
 "address": "${contexts.userProfile.rawInfo.postalAddress[0]}",
 "phone": "${contexts.userProfile.rawInfo.telephoneNumber[0]}"
 }
}

In the following example, the property is a runtime expression that evaluates to a map with the format Map<String,
Object> :

•

•

Reference PingGateway

818 Copyright © 2025 Ping Identity Corporation

{
 "template": "${contexts.attributes}"
}

Use the now dynamic binding to dynamically set the value of an attribute that represents time. For example, set the value
of attributes to a defined time after the expressions are evaluated, as follows:

{
 "name": "JwtBuilderFilter-1",
 "type": "JwtBuilderFilter",
 "config": {
 "template": {
 "iat": "${now.epochSeconds}",
 "nbf": "${now.plusSeconds(10).epochSeconds}",
 "exp": "${now.plusSeconds(20).epochSeconds}"
 },
 "secretsProvider": "FileSystemSecretStore-1",
 "signature": {
 "secretId": "id.key.for.signing.jwt",
 "algorithm": "RS512"
 }
 }
}

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for JWT signing or encryption keys.

"signature": object, "signature" and/or "encryption" is required

A JWT signature to allow the authenticity of the claims/data to be validated. A signed JWT can be encrypted.

JwtBuilderFilter.encryption takes precedence over this property.

{
 "signature": {
 "secretId": configuration expression<secret-id>,
 "includeKeyId": configuration expression<secret-id>,
 "algorithm": configuration expression<string>,
 "encryption": object
 }
}

"secretId": configuration expression<secret-id>, required if signature is used

The secret ID of the key to sign the JWT.

This secret ID must point to a CryptoKey.

"includeKeyId": configuration expression<boolean>, optional

When true , include the ID of the signature key in the JWT header.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 819

Default: true

"algorithm": configuration expression<string>, optional

The algorithm to sign the JWT.

The following algorithms are supported but not necessarily tested in PingGateway:

Algorithms described in RFC 7518: Cryptographic Algorithms for Digital Signatures and MACs.

For RSASSA-PSS, you must install Bouncy Castle. For information, refer to The Legion of the Bouncy Castle
.

From PingGateway 6.1, Ed25519 described in CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in
JSON Object Signing and Encryption (JOSE).

Default: RS256

"encryption": object, optional

Configuration to encrypt the JWT signature.

{
 "encryption": {
 "secretId": configuration expression<secret-id>,
 "algorithm": configuration expression<string>,
 "method": configuration expression<string>
 }
}

"secretId": configuration expression<secret-id>, optional

The secret ID of the key used to encrypt the JWT signature. The value is mapped to key aliases in
KeyStoreSecretStore.

This secret ID must point to a CryptoKey.

"algorithm": configuration expression<string>, required

The algorithm used to encrypt the JWT signature.

For information about available algorithms, refer to RFC 7518: "alg" (Algorithm) Header Parameter Values
for JWE.

"method": configuration expression<string>, required

The method used to encrypt the JWT signature.

For information about available methods, refer to RFC 7518: "enc" (Encryption Algorithm) Header
Parameter Values for JWE.

"encryption": object, "signature" and/or "encryption" is required

Configuration to encrypt the JWT.

•

•

Reference PingGateway

820 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc7518#section-3
https://www.rfc-editor.org/rfc/rfc7518#section-3
https://www.bouncycastle.org
https://www.bouncycastle.org
https://www.bouncycastle.org
https://www.rfc-editor.org/rfc/rfc8037
https://www.rfc-editor.org/rfc/rfc8037
https://www.rfc-editor.org/rfc/rfc8037
https://www.rfc-editor.org/rfc/rfc7518#section-4.1
https://www.rfc-editor.org/rfc/rfc7518#section-4.1
https://www.rfc-editor.org/rfc/rfc7518#section-4.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1

This property take precedence over JwtBuilderFilter.signature .

{
 "encryption": {
 "secretId": secret-id,
 "algorithm": configuration expression<string>,
 "method": configuration expression<enumeration>
 }
}

"secretId": secret-id, optional

The secret ID of the key used to encrypt the JWT. The value is mapped to key aliases in KeyStoreSecretStore.

This secret ID must point to a CryptoKey.

"algorithm": configuration expression<string>, required

The algorithm used to encrypt the JWT.

For information about available algorithms, refer to RFC 7518: "alg" (Algorithm) Header Parameter Values for JWE
.

"method": configuration expression<enumeration>, required

The method used to encrypt the JWT.

For information about available methods, refer to RFC 7518: "enc" (Encryption Algorithm) Header Parameter
Values for JWE.

Examples

For examples, refer to Passing data along the chain

More information

org.forgerock.openig.filter.JwtBuilderFilter

org.forgerock.openig.filter.JwtBuilderContext

JwtValidationFilter

Validates an unsigned, signed, encrypted, or signed and encrypted JWT. The order of signing and encryption isn’t important; a JWT
can be signed and then encrypted, or encrypted and then signed.

If the JWT is validated, the request continues down the chain and data is provided in the JwtValidationContext.

If the JWT isn’t validated, data is provided in the JwtValidationErrorContext. If a failure handler is configured, the request passes
to the failure handler. Otherwise, an HTTP 403 Forbidden is returned.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 821

https://www.rfc-editor.org/rfc/rfc7518#section-4.1
https://www.rfc-editor.org/rfc/rfc7518#section-4.1
https://www.rfc-editor.org/rfc/rfc7518#section-4.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/JwtBuilderFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/JwtBuilderFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/JwtBuilderContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/JwtBuilderContext.html

Usage

{
 "name": string,
 "type": "JwtValidationFilter",
 "config": {
 "jwt": runtime expression<string>,
 "verificationSecretId": configuration expression<secret-id>,
 "decryptionSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference,
 "skewAllowance": configuration expression<duration>,
 "customizer": JwtValidatorCustomizer reference,
 "failureHandler": Handler reference
 }
}

Properties

"jwt": runtime expression<string>, required

The value of the JWT in the request. Cannot be null.

"verificationSecretId": configuration expression<secret-id>, required to verify the signature of signed
tokens

The secret ID for the secret to verify the signature of signed tokens.

This secret ID must point to a CryptoKey.

If configured, the token must be signed. If not configured, PingGateway does not verify the signature.

For information about how signatures are validated, refer to Validate the signature of signed tokens. For information
about how each type of secret store resolves named secrets, refer to Secrets.

"decryptionSecretId": configuration expression<secret-id>, required if AM secures access tokens with
encryption

The secret ID for the secret to verify the encryption of tokens.

This secret ID must point to a CryptoKey.

If configured, the token must be encrypted. If not configured, PingGateway doesn’t verify the encryption.

For information about how each type of secret store resolves named secrets, see Secrets.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

"customizer": JwtValidatorCustomizer reference, optional

A set of validation constraints for JWT claims and sub-claims. These constraints are in addition to internally-defined
constraints, such as aud , iss , exp , and iat . If a claim isn’t validated against a constraint, the JWT isn’t validated.

Reference PingGateway

822 Copyright © 2025 Ping Identity Corporation

The customizer doesn’t override existing constraints. Defining a new constraint on an already constrained claim has an
impact only if the new constraint is more restrictive.

JwtValidatorCustomizer provides a ScriptableJwtValidatorCustomizer to enrich a builder object by using its methods. Get
more information about the following items:

The builder object, at Available Objects.

Transformer methods, to enrich the builder object, at org.forgerock.openig.util.JsonValues.

Constraints, at org.forgerock.openig.tools.jwt.validation.Constraints.

Other properties for ScriptableJwtValidatorCustomizer, at Scripts.

The following examples provide checks:

Check that the value of the claim greaterThan5 is greater than 5

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "builder.claim('/greaterThan5', JsonValue::asInteger, isGreaterThan(5))"
]
 }
}

Check that the value of the claim sub is george

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "builder.claim('subname', JsonValue::asString, isEqualTo('george'))"
]
 }
}

Check that the value of the custom sub-claim is ForgeRock

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "builder.claim('customclaim/subclaim', JsonValue::asString, isEqualTo('ForgeRock'));"
]
 }
}

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 823

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/util/JsonValues.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/util/JsonValues.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/Constraints.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/Constraints.html

Check the value of multiple claims

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "builder.claim('aud', listOf(JsonValue::asString), contains('My App'))",
 " .claim('iat', instant(), isInThePast())",
 " .claim('exp', instant(), isInTheFuture());",
 "builder.claim('iss', JsonValue::asString, isEqualTo('ForgeRock AM'));"
]
 }
}

Check that the value of val1 is greater than val2

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": ["builder.claim('/val1', JsonValue::asInteger, isGreaterThan(claim('/
val2').asInteger()))"]
 }
}

Check that the value of val1 is greater than val2, when both are YYYY-MM-DD dates

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "Function<JsonValue, java.time.LocalDate, Exception> asDate() {",
 " return (jsonValue) -> java.time.LocalDate.parse(jsonValue.asString());",
 "}",
 "builder.claim('claim1', asDate(), isGreaterThan(claim('claim2').as(asDate())));"
]
 }
}

Check that the claim issuer matches the regex pattern

"customizer": {
 "type": "ScriptableJwtValidatorCustomizer",
 "config": {
 "type": "application/x-groovy",
 "source": ["builder.claim('iss', JsonValue::asString, find(~/.*am\.example\.(com|org)/))"]
 }
}

Default: Claims aren’t validated

Reference PingGateway

824 Copyright © 2025 Ping Identity Corporation

"skewAllowance": configuration expression<duration>, optional

The duration to add to the validity period of a JWT to allow for clock skew between different servers.

A skewAllowance of 2 minutes affects the validity period as follows:

A JWT with an iat of 12:00 is valid from 11:58 on the PingGateway clock.

A JWT with an exp 13:00 is expired after 13:02 on the PingGateway clock.

Default: To support a zero-trust policy, the skew allowance is by default zero .

"failureHandler": Handler reference, optional

Handler to treat the request on failure.

Provide an inline handler configuration object or the name of a handler object declared in the heap. See also Handlers.

Default: HTTP 403 Forbidden, the request stops being executed.

Example

For an example of using JwtValidationFilter, refer to JWT validation.

More information

org.forgerock.openig.filter.jwt.JwtValidationFilter

org.forgerock.openig.filter.jwt.JwtValidationContext

org.forgerock.openig.filter.jwt.JwtValidationErrorContext

OpenID Connect Core 1.0 incorporating errata set 1

LocationHeaderFilter

For a response that generates a redirect to the proxied application, this filter rewrites the Location header on the response to
redirect the user to PingGateway.

Usage

{
 "name": string,
 "type": "LocationHeaderFilter",
 "config": {
 "baseURI": runtime expression<url>
 }
}

An alternative value for type is RedirectFilter.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 825

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationErrorContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationErrorContext.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

Properties

"baseURI": runtime expression<url>,optional

The base URI of the PingGateway instance. This is used to rewrite the Location header on the response.

The result of the expression must be a string that represents a valid URI, but is not a real java.net.URI object. For
example, it would be incorrect to use ${request.uri} , which is not a String but a MutableUri.

Default: Redirect to the original URI specified in the request.

See also Expressions.

Example

In the following example, PingGateway listens on https://ig.example.com:443 and the application it protects listens on
http://app.example.com:8081 . The filter rewrites redirects that would normally take the user to locations under http://
app.example.com:8081 to go instead to locations under https://ig.example.com:443 .

{
 "name": "LocationRewriter",
 "type": "LocationHeaderFilter",
 "config": {
 "baseURI": "https://ig.example.com:443/"
 }
}

More information

org.forgerock.openig.filter.LocationHeaderFilter

OAuth2ClientFilter

In PingGateway 7.2, this filter was renamed to AuthorizationCodeOAuth2ClientFilter.

For backward compatibility, the name OAuth2ClientFilter can still be used in routes in this release. However, to prevent problems
in future releases, update your configuration as soon as possible.

OAuth2ResourceServerFilter

Validates a request containing an OAuth 2.0 access token. The filter expects an OAuth 2.0 token from the HTTP Authorization
header of the request, such as the following example header, where the OAuth 2.0 access token is 1fc…ec9 :

Authorization: Bearer 1fc...ec9

The filter performs the following tasks:

Extracts the access token from the request header.

Uses the configured access token resolver to resolve the access token against an Authorization Server, and validate the
token claims.

•

•

Reference PingGateway

826 Copyright © 2025 Ping Identity Corporation

https://ig.example.com:443
https://ig.example.com:443
https://ig.example.com:443
https://ig.example.com:443
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/LocationHeaderFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/LocationHeaderFilter.html

Checks that the token has the scopes required by the filter configuration.

Injects the access token info into the OAuth2Context.

The following errors can occur during access token validation:

Usage

{
 "name": string,
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "accessTokenResolver": AccessTokenResolver reference,
 "cache": object,
 "executor": Executor service reference,
 "requireHttps": configuration expression<boolean>,
 "realm": configuration expression<string>,
 "scopes": [runtime expression<string>, ...] or ScriptableResourceAccess reference
 }
}

An alternative value for type is OAuth2RSFilter.

Properties

"accessTokenResolver": AccessTokenResolver reference, required

Resolves an access token against an Authorization Server. Configure one of the following access token resolvers:

TokenIntrospectionAccessTokenResolver

StatelessAccessTokenResolver

ConfirmationKeyVerifierAccessTokenResolver

ScriptableAccessTokenResolver

•

•

Error Response from the filter to the user agent

Combination of the filter configuration and access token
result in an invalid request to the Authorization Server.

HTTP 400 Bad Request

There is no access token in the request header. HTTP 401 Unauthorized WWW-Authenticate: Bearer

realm="PingGateway"

The access token isn’t valid, for example, because it has
expired.

HTTP 401 Unauthorized

The access token doesn’t have all of the scopes required in
the OAuth2ResourceServerFilter configuration.

HTTP 403 Forbidden

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 827

To decorate an AccessTokenResolver, add the decoration at the accessTokenResolver level. The following example uses
the default timer decorator to record the time that a TokenIntrospectionAccessTokenResolver takes to process a request:

{
 "accessTokenResolver": {
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 ...
 },
 "timer": true
 }
}

"cache": object, optional

Configuration of caching for OAuth 2.0 access tokens. By default, access tokens are not cached. For an alternative way of
caching of OAuth 2.0 access tokens, configure CacheAccessTokenResolver.

When an access token is cached, PingGateway can reuse the token information without repeatedly asking the
Authorization Server to verify the access token. When caching is disabled, PingGateway must ask the Authorization Server
to verify the access token for each request.

When an access_token is revoked on AM, the CacheAccessTokenResolver can delete the token from the cache when both
of the following conditions are true:

The notification property of AmService is enabled.

The delegate AccessTokenResolver provides the token metadata required to update the cache.

When a refresh_token is revoked on AM, all associated access tokens are automatically and immediately revoked.

"cache": {
 "enabled": configuration expression<boolean>,
 "defaultTimeout": configuration expression<duration>,
 "maxTimeout": configuration expression<duration>,
 "amService": AmService reference,
 "onNotificationDisconnection": configuration expression<enumeration>
}

enabled: configuration expression<boolean>, optional

Enable or disable caching.

Default: false

defaultTimeout: configuration expression<duration>, optional

The duration for which to cache an OAuth 2.0 access token if it doesn’t provide a valid expiry value.

If an access token provides an expiry value that falls before the current time plus the maxTimeout , PingGateway
uses the token expiry value.

The following example caches access tokens for these times:

One hour, if the access token doesn’t provide a valid expiry value.

•

•

•

Reference PingGateway

828 Copyright © 2025 Ping Identity Corporation

The duration specified by the token expiry value, when the token expiry value is shorter than one day.

One day, when the token expiry value is longer than one day.

"cache": {
 "enabled": true,
 "defaultTimeout": "1 hour",
 "maxTimeout": "1 day"
}

Default: 1 minute

maxTimeout: configuration expression<duration>, optional

The maximum duration for which to cache OAuth 2.0 access tokens.

If an access token provides an expiry value that falls after the current time plus the maxTimeout , PingGateway uses
the maxTimeout .

The duration cannot be zero or unlimited .

"amService": AmService reference, optional

The AmService to use for the WebSocket notification service. To evict revoked access tokens from the cache, enable
the notifications property of AmService.

onNotificationDisconnection: configuration expression<enumeration>, optional

An amService must be configured for this property to have effect.

The strategy to manage the cache when the WebSocket notification service is disconnected, and PingGateway
receives no notifications for AM events. If the cache is not cleared it can become outdated, and PingGateway can
allow requests on revoked sessions or tokens.

Cached entries that expire naturally while the notification service is disconnected are removed from the cache.

Use one of the following values:

NEVER_CLEAR

When the notification service is disconnected:

Continue to use the existing cache.

Deny access for requests that are not cached, but do not update the cache with these
requests.

When the notification service is reconnected:

Continue to use the existing cache.

Query AM for incoming requests that are not found in the cache, and update the cache with
these requests.

•

•

•

◦

▪

▪

◦

▪

▪

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 829

CLEAR_ON_DISCONNECT

When the notification service is disconnected:

Clear the cache.

Deny access to all requests, but do not update the cache with these requests.

When the notification service is reconnected:

Query AM for all requests that are not found in the cache. (Because the cache was cleared,
the cache is empty after reconnection.)

Update the cache with these requests.

CLEAR_ON_RECONNECT

When the notification service is disconnected:

Continue to use the existing cache.

Deny access for requests that are not cached, but do not update the cache with these
requests.

When the notification service is reconnected:

Query AM for all requests that are not found in the cache. (Because the cache was cleared,
the cache is empty after reconnection.)

Update the cache with these requests.

Default: CLEAR_ON_DISCONNECT

"executor": Executor service reference, optional

An executor service to schedule the execution of tasks, such as the eviction of entries in the access token cache.

Default: ScheduledExecutorService

See also ScheduledExecutorService.

"requireHttps": configuration expression<boolean>, optional

Whether to require that original target URI of the request uses the HTTPS scheme.

If the received request doesn’t use HTTPS, it is rejected.

Default: true.

"realm": configuration expression<string>, optional

HTTP authentication realm to include in the WWW-Authenticate response header field when returning an HTTP 401
Unauthorized status to a user agent that need to authenticate.

Default: OpenIG

•

◦

▪

▪

◦

▪

▪

•

◦

▪

▪

◦

▪

▪

Reference PingGateway

830 Copyright © 2025 Ping Identity Corporation

"scopes": array of runtime expression<strings> or ResourceAccess <reference>, required

A list of one or more scopes required by the OAuth 2.0 access token. Provide the scopes as strings or through a
ResourceAccess such as a ScriptableResourceAccess:

Array of runtime expression<strings>, required if a ResourceAccess isn’t used

A string, array of strings, runtime expression<string>, or array of runtime expression<string> to represent one or
more scopes.

ScriptableResourceAccess <reference>

A script that evaluates each request dynamically and returns the scopes that the request needs to access the
protected resource. The script must return a Set<String> .

For information about the properties of ScriptableResourceAccess, refer to Scripts.

{
 "name": string,
 "type": "ScriptableResourceAccess",
 "config": {
 "type": configuration expression<string>,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both.
 "args": object,
 "clientHandler": Handler reference
 }
}

Default: Empty

Examples

For examples using OAuth2ResourceServerFilter, see Act as an OAuth 2.0 resource server.

More information

org.forgerock.openig.filter.oauth2.OAuth2ResourceServerFilterHeaplet

org.forgerock.http.oauth2.OAuth2Context

org.forgerock.http.oauth2.AccessTokenInfo

OAuth2Context

ConfirmationKeyVerifierAccessTokenResolver

TokenIntrospectionAccessTokenResolver

StatelessAccessTokenResolver

ScriptableAccessTokenResolver

The OAuth 2.0 Authorization Framework

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 831

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/ResourceAccess.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/ResourceAccess.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2ResourceServerFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2ResourceServerFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/OAuth2Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/OAuth2Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/AccessTokenInfo.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/AccessTokenInfo.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749

The OAuth 2.0 Authorization Framework: Bearer Token Usage

OAuth2TokenExchangeFilter

Identifies a client’s access token or ID token (a subject token), and communicates with an authorization service, such as AM, to
exchange it for a new token (an issued token):

When the OAuth2TokenExchangeFilter succesfully exchanges a token, it injects the issued token and its scopes into the
OAuth2TokenExchangeContext.

When the OAuth2TokenExchangeFilter fails to exchange a token, it injects information about the failure into the
OAuth2FailureContext, which is provided to the failureHandler .

The scopes for issued token can be restricted or expanded by the authorization services:

Restricted when the token scopes are a subset of those available to the subject token.

Expanded when they have scopes that are not included in the subject token.

Use this filter in the impersonation use case. For more information, refer to Token Exchange in AM’s OAuth 2.0 guide.

Usage

{
 "name": string,
 "type": "OAuth2TokenExchangeFilter",
 "config": {
 "subjectToken": runtime expression<string>,
 "amService": AmService reference,
 "endpoint": configuration expression<url>,
 "subjectTokenType": configuration expression<string>,
 "requestedTokenType": configuration expression<string>,
 "scopes": [runtime expression<string>, ...] or ScriptableResourceAccess reference,
 "resource": configuration expression<url>,
 "audience": configuration expression<string>,
 "endpointHandler": Handler reference,
 "failureHandler": Handler reference
 }
}

Configuration

"subjectToken": runtime expression<string>, required

The location of the subject token in the inbound request.

"amService": AmService reference, required if endpoint is not configured

The AmService to use as the authorization service.

Configure either 'amService' or 'endpoint'. If both are configured, 'amService' takes precedence.

"endpoint": configuration expression<url>, required if amService is not configured

The URI for the authorization service.

•

•

•

•

Reference PingGateway

832 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-token-exchange.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-token-exchange.html

Configure either 'amService' or 'endpoint'. If both are configured, 'amService' takes precedence.

"subjectTokenType": configuration expression<string>, optional

The subject token type.

Default: URN_ACCESS_TOKEN

"requestedTokenType": configuration expression<string>, optional

The type of token being requested.

Default: URN_ACCESS_TOKEN

"scopes": array of runtime expression<strings> or ResourceAccess <reference>, required

A list of one or more scopes required by the OAuth 2.0 access token. Provide the scopes as strings or through a
ResourceAccess such as a ScriptableResourceAccess:

Array of runtime expression<strings>, required if a ResourceAccess isn’t used

A string, array of strings, runtime expression<string>, or array of runtime expression<string> to represent one or
more scopes.

ScriptableResourceAccess <reference>

A script that evaluates each request dynamically and returns the scopes that the request needs to access the
protected resource. The script must return a Set<String> .

For information about the properties of ScriptableResourceAccess, refer to Scripts.

{
 "name": string,
 "type": "ScriptableResourceAccess",
 "config": {
 "type": configuration expression<string>,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both.
 "args": object,
 "clientHandler": Handler reference
 }
}

Default: Empty

"resource": configuration expression<url>, optional

The target service URI where the issued token is intended to be used.

"audience": configuration expression<url>, optional

The target service name where the token is intended to be used.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 833

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/ResourceAccess.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/ResourceAccess.html

"endpointHandler": Handler reference, optional

The handler to exchange tokens on the authorization endpoint.

Configure this property as a Chain, using one of the following filters for client authentication:

ClientSecretBasicAuthenticationFilter

ClientSecretPostAuthenticationFilter

EncryptedPrivateKeyJwtClientAuthenticationFilter

PrivateKeyJwtClientAuthenticationFilter

{
 "name": "EndpointHandler",
 "type": "Chain",
 "config": {
 "handler": "ForgeRockClientHandler",
 "filters": [
 {
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "serviceConfidentialClient",
 "clientSecretId": "client.secret.id",
 "secretsProvider" : "SystemAndEnvSecretStore-1",
 }
 }
]
 }
}

Default: ForgeRockClientHandler

"failureHandler": Handler <reference>, optional

Handler to manage a failed request.

Provide an inline handler configuration object or the name of a handler object declared in the heap. The handler can
access information in the OAuth2FailureContext.

Default: 500 Internal Server Error , the request stops being executed.

Example

For an example of how this filter is used, refer to Token exchange.

More information

org.forgerock.http.oauth2.OAuth2TokenExchangeFilter

OAuth2TokenExchangeContext

OAuth2FailureContext

The OAuth 2.0 Authorization Framework

•

•

•

•

Reference PingGateway

834 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2TokenExchangeFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2TokenExchangeFilter.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749

PasswordReplayFilter

Extracts credentials from AM and replays them to a login page or to the next filter or handler in the chain. The
PasswordReplayFilter does not retry failed authentication attempts.

Usage

{
 "name": string,
 "type": "PasswordReplayFilter",
 "config": {
 "request": object,
 "loginPage": runtime expression<boolean>,
 "loginPageContentMarker": pattern,
 "credentials": Filter reference,
 "loginPageExtractions": [object, ...]
 }
}

Properties

"request": <object>, required

The HTTP request message that replays the credentials.

{
 "request": object,
 "method": config expression<string>,
 "uri": runtime expression<string>,
 "version": configuration expression<string>,
 "entity": runtime expression<string>,
 "headers": map,
 "form": map
}

For information about the properties of `request`refer to Request.

The JSON object of request is the config content of a StaticRequestFilter.

"loginPage": runtime expression<boolean>, required unless loginPageContentMarker is defined

true : Direct the request to a login page, extract credentials, and replay them.

false : Pass the request unchanged to the next filter or handler in the chain.

emergency_home
The PasswordReplayFilter filter uses the AM Post Authentication Plugin
com.sun.identity.authentication.spi.JwtReplayPassword . The plugin is triggered for AM authentication chains
but not currently for AM authentication trees.
Don’t use the PasswordReplayFilter with AM authentication trees.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 835

The following example expression resolves to true when the request is an HTTP GET, and the request URI path is /
login :

${find(request.uri.path, '/login') and (request.method == 'GET')}

"loginPageContentMarker": pattern, required unless loginPage is defined

A pattern that matches when a response entity is a login page.

For an example route that uses this property, refer to Login form with password replay and cookie filters.

See also Patterns.

"credentials": Filter reference, optional

Filter that injects credentials, making them available for replay. Consider using a FileAttributesFilter or an
SqlAttributesFilter .

When this is not specified, credentials must be made available to the request by other means.

See also Filters.

"loginPageExtractions": array of <objects>, optional

Objects to extract values from the login page entity.

{
 "loginPageExtractions": [
 {
 "name": string,
 "pattern": pattern
 },
 ...
]
}

For an example route that uses this property, refer to Login which requires a hidden value from the login page.

The extract configuration array is a series of configuration objects. To extract multiple values, use multiple extract
configuration objects. Each object has the following fields:

"name": string, required

Name of the field where the extracted value is put.

The names are mapped into attributes.extracted .

For example, if the name is nonce , the value can be obtained with the expression $
{attributes.extracted.nonce} .

The name isLoginPage is reserved to hold a boolean that indicates whether the response entity is a login page.

Reference PingGateway

836 Copyright © 2025 Ping Identity Corporation

"pattern": pattern, required

The regular expression pattern to find in the entity.

The pattern must contain one capturing group. (If it contains more than one, only the value matching the first
group is placed into attributes.extracted .)

For example, suppose the login page entity contains a nonce required to authenticate, and the nonce in the page
looks like nonce='n-0S6_WzA2Mj' . To extract n-0S6_WzA2Mj , set "pattern": " nonce='(.*)'" .

Example

The following example authenticates requests using static credentials when the request URI path is /login . This
PasswordReplayFilter example does not include any mechanism for remembering when authentication has already been
successful, it simply replays the authentication every time that the request URI path is /login :

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${request.uri.path == '/login'}",
 "request": {
 "method": "POST",
 "uri": "https://www.example.com:8444/login",
 "form": {
 "username": [
 "MY_USERNAME"
],
 "password": [
 "MY_PASSWORD"
]
 }
 }
 }
 }],
 "handler": "ReverseProxyHandler"
 }
 }
}

For additional examples, refer to Configuration templates, and the Javadoc for the PasswordReplayFilter class.

More information

org.forgerock.openig.filter.PasswordReplayFilterHeaplet

PingOneApiAccessManagementFilter

Use the PingOneApiAccessManagementFilter with PingOne’s API Access Management, where the PingOne API moderates
requests and responses as follows:

Allows requests, optionally instructing PingGateway to edit the requests.•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 837

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/PasswordReplayFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/PasswordReplayFilterHeaplet.html

Rejects requests, instructing PingGateway on how to respond to the client, for example, with an HTTP 403 and a custom
message.

Instructs PingGateway to update responses from the backend. For example, the instructions can be to remove content
from the response body or to add or remove headers.

The filter sends the following elements to the PingOne API for the request:

Client IP address

Client port

HTTP method used

URL targeted

HTTP version used

HTTP headers

HTTP content (when includeBody = true and the content is JSON)

The filter sends the following elements to the PingOne API for the response:

Original URL queried

Original method called

HTTP status code

HTTP status message

HTTP version

HTTP headers

HTTP content (when includeBody = true and the content is JSON)

Usage

{
 "name": string,
 "type": "PingOneApiAccessManagementFilter",
 "config": {
 "gatewayServiceUri": configuration expression<url>,
 "secretsProvider": SecretsProvider reference,
 "gatewayCredentialSecretId": configuration expression<secret-id>,
 "includeBody": configuration expression<boolean>,
 "sidebandHandler": Handler reference
 }
}

Configuration

"gatewayServiceUri": configuration expression<url>, required

The URL of the API gateway in the PingOne API.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Reference PingGateway

838 Copyright © 2025 Ping Identity Corporation

To find the URL, go to your PingOne Authorize environment, select Authorization > API gateways, and note the value of
the > Service URL.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the credential to access the PingOne API.

"gatewayCredentialSecretId": configuration expression<secret-id>, required

The secret ID of the PingOne API credential.

The secret ID must point to a GenericSecret in the secretsProvider .

To add the credential, go to your PingOne Authorize environment, select Authorization > API gateways, and select your
gateway.

"includeBody": configuration expression<boolean>, optional

A flag to include the body of requests and responses sent from PingGateway to the PingOne API.

Default: true

"sidebandHandler": Handler reference, optional

An HTTP client handler to use to contact the PingOne API.

The handler sends requests and responses to the Ping Sideband API. It then processes Ping Sideband API decisions to
accept, reject, or rewrite requests and responses.

Default: ForgeRockClientHandler

More information

org.forgerock.openig.ping.PingOneApiAccessManagementFilter

PingOneProtectEvaluationFilter

Passes data to PingOne Protect and gets a risk evaluation for an incoming request.

info
PingGateway includes the body only when the body is in JSON format.

Note

info
Including the body in every request and response can impact the HTTP exchange latency.

Note

emergency_home
The PingOneProtectEvaluationFilter is available in Technology preview. It isn’t yet supported, may be functionally
incomplete, and is subject to change without notice.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 839

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/ping/PingOneApiAccessManagementFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/ping/PingOneApiAccessManagementFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability

PingGateway makes a risk evaluation request to PingOne Protect. The PingOne Protect response returns a risk evaluation
including the following items PingGateway retains in the evaluation context:

Risk level (LOW , MEDIUM , or HIGH)

Risk score, a single aggregated numerical value

The PingOneProtectEvaluationFilter records the evaluation in a PingOneProtectEvaluationContext object. Configure a
PingOneProtectThreatLevelRoutingHandler to act on the risk level set in the context. As an alternative, use a DispatchHandler to
act on the risk score.

Usage

{
 "name": string,
 "type": "PingOneProtectEvaluationFilter",
 "config": {
 "evaluationEndpoint": configuration expression<url>,
 "endpointHandler": Handler reference,
 "failureHandler": Handler reference,
 "userId": runtime expression<string>,
 "policySet": configuration expression<string>,
 "lowRiskEvaluationThrottlePeriod": configuration expression<duration>,
 "nonEvaluatedUrls": configuration expression<boolean>
 }
}

Configuration

"evaluationEndpoint": configuration expression<url>, required

The PingOne Protect evaluation endpoint URI.

"endpointHandler": Handler reference, optional

The handler to make requests to the evaluationEndpoint .

Default: ForgeRockClientHandler

"failureHandler": Handler reference, optional

The handler to make requests to the evaluationEndpoint .

Default: Return an HTTP 403 Forbidden response; if the request to the evaluationEndpoint fails, PingGateway denies
access by default.

"userId": runtime expression<string>, optional

An expression setting the user identifier, if available; for example, if the user has already authenticated in the route.

PingGateway raises an error if the expression resolves to null .

Default: A UUID that remains the same for the lifetime of the session

•

•

Reference PingGateway

840 Copyright © 2025 Ping Identity Corporation

"policySet": configuration expression<string>, optional

The PingOne Protect policy set to use.

Default: The default policy set for the evaluation service

"lowRiskEvaluationThrottlePeriod": configuration expression<duration>, optional

When PingOne Protect returns a low risk level for an incoming request, PingGateway waits until this period expires before
making another risk evaluation request for the same session.

Set this to zero to make a risk evaluation request for every incoming request.

Default: 2 minutes

"nonEvaluatedUrls": configuration expression<boolean>, optional

A boolean conditional expression matching request URLs to exclude from risk evaluation.

Default: false (evaluate risk for all request URLs)

Example

The following example prepares PingGateway to make requests to PingOne Protect for risk evaluation. It doesn’t request risk
evaluation for CDSSO redirect requests to /home/cdsso/redirect . The route properties envHost and envId and the policy set
identifier depend on your PingOne Protect deployment:

{
 "name" : "PingOneProtectEvaluationFilter-1",
 "type" : "PingOneProtectEvaluationFilter",
 "config" : {
 "evaluationEndpoint" : "https://&{envHost}/v1/environments/&{envId}/riskEvaluations",
 "evaluationEndpointHandler" : "EvaluationEndpointHandler",
 "policySet": "47447388-fa5a-40f7-b3f1-24fbbbbc30",
 "userId" : "${contexts.cdsso.claimsSet.subject}",
 "nonEvaluatedUrls" : "${find(request.uri.path, '/home/cdsso/redirect')}"
 }
}

More information

org.forgerock.openig.ping.protect.PingOneProtectEvaluationFilter

PingOneProtectFeedbackFilter

Provides a feedback mechanism for actions completed following risk evaluation with PingOne Protect.

info
At present, PingGateway doesn’t send the result to PingOne Protect.

Note

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 841

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/ping/protect/PingOneProtectEvaluationFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/ping/protect/PingOneProtectEvaluationFilter.html

Usage

{
 "name": string,
 "type": "PingOneProtectFeedbackFilter",
 "config": {
 "completionStatus": configuration expression<enumeration>,
 "postSuccessSessionStateRiskLevel": configuration expression<string>
 }
}

Configuration

"completionStatus": configuration expression<enumeration>, optional

A string indicating the result of actions completed as a result of a previous risk evaluation; one of:

FAILED

Failed to verify the user’s identity.

SUCCESS

Successfully verified the user’s identity.

Default: FAILED

"postSuccessSessionStateRiskLevel": configuration expression<string>, optional

A string to override the risk level managed in the session state based on the outcome of post-evaluation actions.

PingGateway uses this during the "lowRiskEvaluationThrottlePeriod" defined in the PingOneProtectEvaluationFilter
for the route to decide whether to make a risk evaluation request to PingOne Protect for the next incoming request.

One of:

LOW

MEDIUM

HIGH

Default: do not override the risk level in the session state.

PolicyEnforcementFilter

Requests and enforces policy decisions from AM. For more information, refer to PingGateway’s Policy enforcement and AM’s
Authorization guide.

emergency_home
The PingOneProtectFeedbackFilter is available in Technology preview. It isn’t yet supported, may be functionally
incomplete, and is subject to change without notice.

Important

•

•

•

Reference PingGateway

842 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pingam/7.5/authorization-guide/
https://docs.pingidentity.com/pingam/7.5/authorization-guide/

Attributes and advices are stored in the policyDecision context. For information, refer to PolicyDecisionContext.

When the PolicyEnforcementFilter is preceded by a SingleSignOnFilter or CrossDomainSingleSignOnFilter in a Chain, it can
respond to the following advice types from AM:

AuthLevel : The minimum authentication level at which a user agent must authenticate to access a resource.

AuthenticateToService : The name of an authorization chain or service to which a user agent must authenticate to
access a resource.

AuthenticateToRealm : The name of a realm to which a user agent must authenticate to access a resource.

AuthScheme : The name of an authentication module to which a user agent must authenticate to access a resource, the
policy set name, and the authentication timeout.

Transaction : The additional actions that a user agent must perform before having a one-time access to the protected
resource.

When the PolicyEnforcementFilter isn’t preceded by a SingleSignOnFilter or CrossDomainSingleSignOnFilter in a Chain, it can’t
respond to advices from AM. Requests that return policy decisions with advices fail with an HTTP 403 Forbidden.

Notes on configuring policies in AM

In the AM policy, remember to configure the Resources parameter with the URI of the protected application.

The request URI from PingGateway must match the Resources parameter defined in the AM policy. If the URI of the incoming
request is changed before it enters the policy filter (for example, by rebasing or scripting), remember to change the Resources
parameter in AM policy accordingly.

WebSocket notifications for policy changes

When WebSocket notifications are set up for changes to policies, PingGateway receives a notification from AM when a policy
decision is created, deleted, or updated.

For information about setting up WebSocket notifications, using them to clear the policy cache, and including them in the server
logs, refer to WebSocket Notifications.

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 843

Usage

{
 "name": string,
 "type": "PolicyEnforcementFilter",
 "config": {
 "amService": AmService reference,
 "pepRealm": configuration expression<string>,
 "ssoTokenSubject": runtime expression<string>,
 "jwtSubject": runtime expression<string>,
 "claimsSubject": map or runtime expression<map>,
 "cache": object,
 "application": configuration expression<string>,
 "environment": map or runtime expression<map>,
 "failureHandler": Handler reference,
 "resourceUriProvider": ResourceUriProvider reference,
 "authenticateResponseRequestHeader": configuration expression<string>,
 "useLegacyAdviceEncoding": configuration expression<boolean> //deprecated
 }
}

Properties

"amService": AmService reference, required

The AM instance to use for policy decisions.

"pepRealm": configuration expression<string>, optional

The AM realm where the policy set is located.

Default: The realm declared for amService .

"ssoTokenSubject": _runtime expression<string>, required if neither of the following properties are
present: jwtSubject, claimsSubject

The AM token ID string for the subject making the request to the protected resource.

ssoTokenSubject can take the value of the session token from the following sources:

When the PolicyEnforcementFilter is preceded by a SingleSignOnFilter, ${contexts.ssoToken.value} .

When the PolicyEnforcementFilter is preceded by a CrossDomainSingleSignOnFilter,
${contexts.ssoToken.value} or ${contexts.cdsso.value} .

When the PolicyEnforcementFilter isn’t preceded by a SingleSignOnFilter or CrossDomainSingleSignOnFilter,
ssoTokenSubject usually points to the token value.

The token value can be in the request message, a header, or a cookie. For example, the ssoTokenSubject can
point to a header value such as ${request.headers.cookie name} , where cookie name is the AM session cookie
name.

Requests that return a policy decision with advices fail with an HTTP 403 and no advice handling.

•

•

•

Reference PingGateway

844 Copyright © 2025 Ping Identity Corporation

"jwtSubject": _runtime expression<string>, required if neither of the following properties are present:
ssoTokenSubject, claimsSubject

The JWT string for the subject making the request to the protected resource.

To use the raw id_token (base64, not decoded) returned by the OpenID Connect Provider during authentication, place an
AuthorizationCodeOAuth2ClientFilter filter before the PEP filter, and then use ${attributes.openid.id_token} as
the expression value.

See also AuthorizationCodeOAuth2ClientFilter and Expressions.

"claimsSubject": map or runtime expression<map>, required if neither of the following properties are
present: jwtSubject, `"ssoTokenSubject`

A map of one or more data pairs with the format Map<String, Object> , where:

The key is the name of a claim

The value is a claim object, or a runtime expression that evaluates to a claims object

The following formats are allowed:

{
 "claimsSubject": {
 "string": "runtime expression<object>",
 ...
 }
}

{
 "claimsSubject": "runtime expression<map>"
}

The claim "sub" must be specified; other claims are optional.

In the following example, the property is a map whose first value is a runtime expression that evaluates to a JWT claim for
the subject, and whose second value is a JWT claim for the subject:

"claimsSubject": {
 "sub": "${attributes.subject_identifier}",
 "iss": "am.example.com"
}

In the following example, the property is a runtime expression that evaluates to a map with the format Map<String,
Object> :

"claimsSubject": "${attributes.openid.id_token_claims}"

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 845

For an example that uses claimsSubject as a map, refer to Example policy enforcement using claimsSubject on this
reference page.

"application": configuration expression<string>, optional

The ID of the AM policy set to use when requesting policy decisions.

Default: iPlanetAMWebAgentService , provided by AM’s default policy set

cache: object, optional

Enable and configure caching of policy decisions from AM, based on Caffeine. For more information, see the GitHub entry,
Caffeine.

When a request matches a cached policy decision, PingGateway can reuse the decision without asking AM for a new
decision. When caching is disabled, PingGateway must ask AM to make a decision for each request.

{
 "cache": {
 "enabled": configuration expression<boolean>,
 "defaultTimeout": configuration expression<duration>,
 "executor": Executor service reference,
 "maximumSize": configuration expression<number>,
 "maximumTimeToCache": configuration expression<duration>,
 "onNotificationDisconnection": configuration expression<enumeration>
 }
}

Default: Policy decisions are not cached.

The following code example caches AM policy decisions without advices for these times:

One hour, when the policy decision doesn’t provide a ttl value.

The duration specified by the ttl , when ttl is shorter than one day.

One day, when ttl is longer than one day.

"cache": {
 "enabled": true,
 "defaultTimeout": "1 hour",
 "maximumTimeToCache": "1 day"
}

enabled: configuration expression<boolean>, optional

Enable or disable caching of policy decisions.

Default: false

info
Policy decisions that contain advices are never cached.

Note

•

•

•

Reference PingGateway

846 Copyright © 2025 Ping Identity Corporation

https://github.com/ben-manes/caffeine
https://github.com/ben-manes/caffeine

defaultTimeout: configuration expression<duration>, optional

The default duration for which to cache AM policy decisions.

If an AM policy decision provides a valid ttl value to specify the time until which the policy decision remains valid,
PingGateway uses that value or the maxTimeout .

Default: 1 minute

"executor": Executor service reference, optional

An executor service to schedule the execution of tasks, such as the eviction of entries in the cache.

Default: ForkJoinPool.commonPool()

"maximumSize": configuration expression<number>, optional

The maximum number of entries the cache can contain.

Default: Unlimited/unbound.

maximumTimeToCache: configuration expression<duration>, optional

The maximum duration for which to cache AM policy decisions.

If the ttl value provided by the AM policy decision is after the current time plus the maximumTimeToCache ,
PingGateway uses the maximumTimeToCache .

The duration cannot be zero or unlimited .

onNotificationDisconnection: configuration expression<enumeration>, optional

The strategy to manage the cache when the WebSocket notification service is disconnected, and PingGateway
receives no notifications for AM events. If the cache is not cleared it can become outdated, and PingGateway can
allow requests on revoked sessions or tokens.

Cached entries that expire naturally while the notification service is disconnected are removed from the cache.

Use one of the following values:

NEVER_CLEAR

When the notification service is disconnected:

Continue to use the existing cache.

Deny access for requests that are not cached, but do not update the cache with these
requests.

When the notification service is reconnected:

Continue to use the existing cache.

Query AM for incoming requests that are not found in the cache, and update the cache with
these requests.

•

◦

▪

▪

◦

▪

▪

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 847

CLEAR_ON_DISCONNECT

When the notification service is disconnected:

Clear the cache.

Deny access to all requests, but do not update the cache with these requests.

When the notification service is reconnected:

Query AM for all requests that are not found in the cache. (Because the cache was cleared,
the cache is empty after reconnection.)

Update the cache with these requests.

CLEAR_ON_RECONNECT

When the notification service is disconnected:

Continue to use the existing cache.

Deny access for requests that are not cached, but do not update the cache with these
requests.

When the notification service is reconnected:

Query AM for all requests that are not found in the cache. (Because the cache was cleared,
the cache is empty after reconnection.)

Update the cache with these requests.

Default: CLEAR_ON_DISCONNECT

"environment": map or runtime expression<map>, optional

A map of one or more data pairs with the format Map<String, Object> , where:

The key is the name of a field in the request environment or context, such as a request header

The value is the object to forward to AM with a policy decision request, or a runtime expression that evaluates to
the object

The following formats are allowed:

{
 "claimsSubject": {
 "string": "runtime expression<object>",
 ...
 }
}

{
 "claimsSubject": "runtime expression<map>"
}

•

◦

▪

▪

◦

▪

▪

•

◦

▪

▪

◦

▪

▪

•

•

Reference PingGateway

848 Copyright © 2025 Ping Identity Corporation

AM uses environment conditions to set the circumstances under which a policy applies. For example, environment
conditions can specify that the policy applies only during working hours or only when accessing from a specific IP address.

Forward any HTTP header or any value that the AM policy definition can use.

In the following example, the property is a map whose values are runtime expressions that evaluate to request headers,
an ID token, and the IP address of the subject making the request:

"environment": {
 "H-Via": "${request.headers['Via']}",
 "H-X-Forwarded-For": "${request.headers['X-Forwarded-For']}",
 "H-myHeader": "${request.headers['myHeader']}",
 "id_token": [
 "${attributes.openid.id_token}"
],
 "IP": [
 "${contexts.client.remoteAddress}"
]
}

"failureHandler": Handler reference, optional

Handler to treat the request if it is denied by the policy decision.

In the following example, the failureHandler is a chain with a scriptable filter. If there are some advices with the policy
decision, the script recovers the advices for processing. Otherwise, it passes the request to the StaticResponseHandler
to display a message.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 849

"failureHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "if (contexts.policyDecision.advices['MyCustomAdvice'] != null) {",
 " return handleCustomAdvice(context, request)",
 "} else {",
 " return next.handle(context, request)",
 "}"
]
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 403,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "Restricted area. You do not have sufficient privileges."
 }
 }
 }
}

Provide an inline handler configuration object or the name of a handler object declared in the heap. See also Handlers.

Default: HTTP 403 Forbidden, the request stops being executed.

"resourceUriProvider": ResourceUriProvider reference, optional

Use one of the following providers to return a resource URL to include in policy decision requests to AM:

RequestResourceUriProvider

ScriptableResourceUriProvider

The PolicyEnforcementFilter uses the returned resource URL to identify the policy decision in the policy cache.

When a request matches a cached policy decision, PingGateway can reuse the decision without asking AM for a new
decision. When caching is disabled, PingGateway must ask AM to make a decision for each request.

Default: RequestResourceUriProvider configured to use the request URI with all query parameters included.

•

•

Reference PingGateway

850 Copyright © 2025 Ping Identity Corporation

lightbulb_2
Maximize the cache hit ratio by managing the returned resource URL in conjuction with AM policies.

Strip all query parameters from the returned resource URL
Consider the following AM policy that matches requests on the specified path. The policy ignores query
parameters:

http://ig.example.com:8080/app

The following requests match the path but have additional query parameters:

http://ig.example.com:8080/app?day=monday
http://ig.example.com:8080/app?day=monday&place=london
http://ig.example.com:8080/app?day=monday&place=london&building=x

When includeQueryParams in RequestResourceUriProvider is true , the ResourceUriProvider includes
all query parameters in requests for policy decisions. The PolicyEnforcementFilter requests a policy
desicion for the first request /app?day=monday and caches the descision. The second request app?
day=monday&place=london doesn’t match the cached decision so the PolicyEnforcementFilter requests
another policy decision and adds it to the cache. Similarly for the third request.
When includeQueryParams in RequestResourceUriProvider is false , the ResourceUriProvider strips
all query parameters from the requests. The PolicyEnforcementFilter requests a policy decision for the
first request without query parameters and caches the policy desicion. The following two requests
without query parameters match the cached decision and PingGateway uses the cached decision
without consulting AM.

Include only specified query parameters in the returned resource URL
Consider a similar example where an AM policy matches requests on the specified path but also
requires one query parameter:

http//ig.example.com:8080/app?day=monday

The following requests match the path and query parameter but two of them have additional query
parameters:

http://ig.example.com:8080/app?day=monday
http://ig.example.com:8080/app?day=monday&place=london
http://ig.example.com:8080/app?day=monday&place=london&building=x

Because the policy requires a query parameter, you can’t use RequestResourceUriProvider to strip all
query parameters from the requests.
Instead, use ScriptableResourceUriProvider to include the ?day=monday query parameter but strip all
other query parameters.

Tip

info
Query order is important. The following queries are semantically the same but don’t
match: ?day=monday&place=london and ?place=london&day=monday.

Note

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 851

authenticateResponseRequestHeader: configuration expression<string>, optional

A header to include in a request to manage the way PingGateway handles policy advices from AM. The header name and
value is case-insensitive. The header value can be set as follows:

HEADER : Return policy advices in a WWW-Authenticate header as base64-encoded JSON in a parameter called
advices .

Any other value: Return policy advices as parameters in a redirect response (default).

For information about how the header is used in policy enforcement, refer to Deny requests with advices in a header.

Default: x-authenticate-response

useLegacyAdviceEncoding: configuration expression<boolean>, optional

True: Do not encode advices

False: Encode advices with the encoder used by the AM version

Default: False

Examples

For examples of policy enforcement, refer to Policy enforcement.

"resourceUriProvider": {
 "type": "ScriptableResourceUriProvider",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "// Define a list of parameters to keep",
 "def keepOnly = { ['place', 'day'].contains(it.key) }",
 "// Build a new URI based on the original request URI",
 "return new MutableUri(request.uri).with { uri ->",
 " // Build a filtered and normalized query string",
 " uri.rawQuery = new Form().with { form ->",
 " // Keep only the wanted parameters and sort by name",
 " form.addAll(request.queryParams.findAll(keepOnly).sort())",
 " return form.toQueryString()",
 " }",
 " // Return the full modified URI",
 " return uri.toASCIIString()",
 "}"
]
 }
}

•

•

emergency_home
The use of this property is deprecated and should be used only to support SDK in legacy installations. Refer to
the Deprecated section of the Release Notes.

Important

•

•

Reference PingGateway

852 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

More information

org.forgerock.openig.openam.PolicyEnforcementFilter

org.forgerock.openig.openam.PolicyDecisionContext

PolicyDecisionContext

AM’s Authorization guide

PrivateKeyJwtClientAuthenticationFilter

Supports client authentication with the private_key_jwt client-assertion, using an unencrypted JWT.

Clients send a signed JWT to the Authorization Server. PingGateway builds and signs the JWT, and prepares the request as in the
following example:

POST /token HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=...&
client_id=<clientregistration_id>&
client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer&
client_assertion=PHNhbWxwOl ... ZT

Use this filter with an endpoint handler that requires authentication with the with the private_key_jwt client-assertion, using an
unencrypted JWT. For example, the endpointHandler handler in the OAuth2TokenExchangeFilter.

Usage

{
 "name": string,
 "type": "PrivateKeyJwtClientAuthenticationFilter",
 "config": {
 "clientId": configuration expression<string>,
 "tokenEndpoint": configuration expression<url>,
 "secretsProvider": SecretsProvider reference,
 "signingSecretId": configuration expression<secret-id>,
 "signingAlgorithm": configuration expression<string>,
 "jwtExpirationTimeout": configuration expression<duration>,
 "claims": map or configuration expression<map>
 }
}

Configuration

"clientId": configuration expression<string>, required

The client_id obtained when registering with the Authorization Server.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 853

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/PolicyEnforcementFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/PolicyEnforcementFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/PolicyDecisionContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/PolicyDecisionContext.html
https://docs.pingidentity.com/pingam/7.5/authorization-guide/index.html
https://docs.pingidentity.com/pingam/7.5/authorization-guide/index.html

"tokenEndpoint": configuration expression<url>, required

The URL to the Authorization Server’s OAuth 2.0 token endpoint.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

"signingSecretId": configuration expression<string>, required

Reference to the keys used to sign the JWT.

This secret ID must point to a CryptoKey.

"signingAlgorithm": configuration expression<string>, optional

The JSON Web Algorithm (JWA) used to sign the JWT, such as:

RS256 : RSA using SHA-256

ES256 : ECDSA with SHA-256 and NIST standard P-256 elliptic curve

ES384 : ECDSA with SHA-384 and NIST standard P-384 elliptic curve

ES512 : ECDSA with SHA-512 and NIST standard P-521 elliptic curve

Default: RS256

"jwtExpirationTimeout": configuration expression<duration>, optional

The duration for which the JWT is valid.

Default: 1 minute

"claims": map or configuration expression<map>, optional

A map of one or more data pairs with the format Map<String, Object> , where:

The key is the name of a claim used in authentication

The value is the value of the claim, or a configuration expression that evaluates to the value

The following formats are allowed:

{
 "args": {
 "string": "configuration expression<string>",
 ...
 }
}

{
 "args": "configuration expression<map>"
}

•

•

•

•

•

•

Reference PingGateway

854 Copyright © 2025 Ping Identity Corporation

Default: Empty

ResourceOwnerOAuth2ClientFilter

Authenticates OAuth 2.0 clients by using the resource owner’s OAuth 2.0 credentials to obtain an access token from an
Authorization Server, and injecting the access token into the inbound request as a Bearer Authorization header.

Client authentication is provided by the endpointHandler property, which uses a client authentication filter.

The ResourceOwnerOAuth2ClientFilter refreshes the access token as required.

For more information, refer to RFC 6749 - Resource Owner Password Grant.

Usage

{
 "name": string,
 "type": "ResourceOwnerOAuth2ClientFilter",
 "config": {
 "username": configuration expression<string>,
 "passwordSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference,
 "tokenEndpoint": configuration expression<url>,
 "scopes": [configuration expression<string>, ...],
 "endpointHandler": Handler reference
 }
}

Properties

"username": configuration expression<string>, required

The resource owner username to supply during authentication.

"passwordSecretId": configuration expression<secret-id>, required

The secret ID to obtain the resource owner password.

This secret ID must point to a GenericSecret.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

"tokenEndpoint": configuration expression<url>, required

The URL to the Authorization Server’s OAuth 2.0 token endpoint.

emergency_home
This filter uses the Resource Owner Password Credentials grant type. According to information in the The OAuth 2.0
Authorization Framework, minimize use of this grant type and utilize other grant types whenever possible. Use this
filter in a service-to-service context, where services need to access resources protected by OAuth 2.0.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 855

https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
https://datatracker.ietf.org/doc/html/rfc6749#section-4.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.3

"scopes": array of configuration expression<strings>, optional

Array of scope strings to request from the Authorization Server.

Default: Empty, request no scopes.

"endpointHandler": Handler reference, optional

The Handler to exchange tokens on the authorization endpoint.

Configure this property as a Chain, using one of the following client authentication filters:

ClientSecretBasicAuthenticationFilter

ClientSecretPostAuthenticationFilter

PrivateKeyJwtClientAuthenticationFilter

{
 "name": "myHandler",
 "type": "Chain",
 "config": {
 "handler": "ForgeRockClientHandler",
 "filters": [
 {
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "myConfidentialClient",
 "clientSecretId": "my.client.secret.id",
 "secretsProvider" : "mySystemAndEnvSecretStore",
 }
 }
]
 }
}

Default: ForgeRockClientHandler

Examples

For an example, refer to Using OAuth 2.0 resource owner password credentials.

More information

org.forgerock.openig.filter.oauth2.client.ResourceOwnerOAuth2ClientFilterHeaplet

org.forgerock.openig.filter.oauth2.OAuth2ResourceServerFilterHeaplet

OAuth2ResourceServerFilter

The OAuth 2.0 Authorization Framework

The OAuth 2.0 Authorization Framework: Bearer Token Usage

•

•

•

Reference PingGateway

856 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/ResourceOwnerOAuth2ClientFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/ResourceOwnerOAuth2ClientFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2ResourceServerFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2ResourceServerFilterHeaplet.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750

SamlFederationFilter

Initiates the login or logout of a SAML 2.0 Service Provider (SP) with a SAML 2.0 Identity Provider (IDP). Login is initiated for
requests that don’t:

Trigger a logout expression

Match a SAML endpoint

Include a valid session

Requests with a valid session are passed along the chain.

SAML in deployments with multiple instances of PingGateway

When PingGateway acts as a SAML service provider, session information is stored in the fedlet not the session cookie. In
deployments with multiple instances of PingGateway as a SAML service provider, it is necessary to set up sticky sessions so that
requests always hit the instance where the SAML interaction was started.

For information, refer to Session state considerations in AM’s SAML v2.0 guide.

Usage

{
 "name": string,
 "type": "SamlFederationFilter",
 "config": {
 "redirectURI": configuration expression<url>,
 "assertionMapping": map or configuration expression<map>,
 "subjectMapping": configuration expression<string>,
 "sessionIndexMapping": configuration expression<string>,
 "authnContext": configuration expression<string>,
 "authnContextDelimiter": configuration expression<string>,
 "assertionConsumerEndpoint": configuration expression<url>,
 "SPinitiatedSSOEndpoint": configuration expression<url>,
 "SPinitiatedSLOEndpoint": configuration expression<url>,
 "singleLogoutEndpoint": configuration expression<url>,
 "singleLogoutEndpointSoap": configuration expression<url>,
 "useOriginalUri": configuration expression<boolean>,
 "logoutExpression": runtime expression<boolean>,
 "logoutURI": configuration expression<url>,
 "redirectionMarker": object,
 "secretsProvider": SecretsProvider reference,
 "spEntityId": configuration expression<string>,
 "idpEntityId": configuration expression<string>,
 "failureHandler": Handler reference
 }
}

Properties

"redirectURI": configuration expression<url>, required

The URI to use if there is no RelayState value.

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 857

https://docs.pingidentity.com/pingam/7.5/saml2-guide/saml2-configuration.html#saml2-and-session-state
https://docs.pingidentity.com/pingam/7.5/saml2-guide/saml2-configuration.html#saml2-and-session-state

"assertionMapping": map or configuration expression<map>, required

A map with the format Map<String, String> , where:

Key: Session name, localName

Value: SAML assertion name, incomingName , or a configuration expression that evaluates to the name

The following formats are allowed:

{
 "assertionMapping": {
 "string": "configuration expression<string>",
 ...
 }
}

{
 "assertionMapping": "configuration expression<map>"
}

In the following example, the session names username and password are mapped to SAML assertion names mail and
mailPassword :

{
 "assertionMapping": {
 "username": "mail",
 "password": "mailPassword"
 }
}

If an incoming SAML assertion contains the following statement:

mail = demo@example.com
mailPassword = demopassword

Then the following values are set in the session:

username[0] = demo@example.com
password[0] = demopassword

For this to work, edit the <Attribute name="attributeMap"> element in the SP extended metadata file, $HOME/.openig/
SAML/sp-extended.xml , so that it matches the assertion mapping configured in the SAML 2.0 Identity Provider (IDP)
metadata.

Because the dot character (.) serves as a query separator in expressions, do not use dot characters in the localName.

•

•

Reference PingGateway

858 Copyright © 2025 Ping Identity Corporation

To prevent different handlers from overwriting each others' data, use unique localName settings when protecting multiple
service providers.

"subjectMapping": configuration expression<string>, optional

Name of the session field to hold the value of the subject name. Because the dot character (.) serves as a query
separator in expressions, do not use dot characters in the field name.

Use this setting when protecting multiple service providers, as the different configurations must not map their data into
the same fields of session . Otherwise different handlers can overwrite each others' data.

As an example, if you set "subjectMapping": "mySubjectName" , then PingGateway sets session.mySubjectName to the
subject name specified in the assertion. If the subject name is an opaque identifier, then this results in the session
containing something like "mySubjectName": "vtO…zuL" .

Default: map to session.subjectName

"sessionIndexMapping": configuration expression<string>, optional

Name of the session field to hold the value of the session index. Because the dot character (.) serves as a query
separator in expressions, do not use dot characters in the field name.

Use this setting when protecting multiple service providers, as the different configurations must not map their data into
the same fields of session . Otherwise different handlers can overwrite each others' data.

As an example, if you set "sessionIndexMapping": "mySessionIndex" , then PingGateway sets
session.mySessionIndex to the session index specified in the assertion. This results in the session containing something
like "mySessionIndex": "s24c…801" .

Default: map to session.sessionIndex

"authnContext": configuration expression<string>, optional

Name of the session field to hold the value of the authentication context. Because the dot character (.) serves as a query
separator in expressions, do not use dot characters in the field name.

Use this setting when protecting multiple service providers, as the different configurations must not map their data into
the same fields of session . Otherwise different handlers can overwrite each others' data.

As an example, if you set "authnContext": "myAuthnContext" , then PingGateway sets session.myAuthnContext to the
authentication context specified in the assertion. When the authentication context is password over protected transport,
then this results in the session containing "myAuthnContext": "urn:oasis:names:tc:SAML:
2.0:ac:classes:PasswordProtectedTransport" .

Default: map to session.authnContext

"authnContextDelimiter": configuration expression<string>, optional

The authentication context delimiter used when there are multiple authentication contexts in the assertion.

Default: |

"assertionConsumerEndpoint": configuration expression<string>, optional

Part of the URI that designates the consumer endpoint as defined in the SP metadata shared with the IDP.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 859

If you modify this attribute, change the metadata to match.

Default: fedletapplication

"SPinitiatedSSOEndpoint": configuration expression<string>, optional

Part of the URI that designates the SP initiated SSO endpoint.

If you modify this attribute, change the metadata to match.

Default: SPInitiatedSSO

"SPinitiatedSLOEndpoint": configuration expression<string>, optional

Part of the URI that designates the SP initiated SLO endpoint.

If you modify this attribute, change the metadata to match.

Default: SPInitiatedSLO

"singleLogoutEndpoint": configuration expression<string>, optional

Part of the URI that designates the SP SLO endpoint as defined in the SP metadata shared with the IDP.

If you modify this attribute, change the metadata to match.

Default: fedletSLORedirect (same as the Fedlet)

"singleLogoutEndpointSoap": configuration expression<string>, optional

Part of the URI that designates the SP SLO SOAP endpoint as defined in the SPs metadata shared with the IDP.

If you modify this attribute, change the metadata to match.

Default: fedletSloSoap (same as the Fedlet)

"useOriginalUri": configuration expression<boolean>, optional

When true , use the original URI instead of a rebased URI to validate RelayState and Assertion Consumer Location URLs.
Use this property if a baseUri decorator is used in the route or in config.json .

Default: true

"logoutExpression": runtime expression<boolean>, optional

A flag to indicate whether a request initiates logout processing before reaching the protected application.

false : The request does not initiate logout processing:

If a valid SAML session is found, the request is forwarded to the protected application.

If a valid SAML session is not found, the request triggers the SAML login flow.

•

◦

◦

Reference PingGateway

860 Copyright © 2025 Ping Identity Corporation

true : The request initiates logout processing:

If a valid SAML session is found, the request triggers the SAML logout flow:

If there is a RelayState URL parameter, the request is forwarded to that URL. RelayState provides
backwards compatibility for SamlFederationHandler.

If there is no RelayState URL parameter and logoutURI is defined, the request is forwarded to the
logout page.

If there is no RelayState URL parameter and logoutURI is not defined, the request is forwarded to
the protected application without any other validation.

If a valid session is not found, the request is forwarded to the protected application without any other
validation.

Default: ${false}

"logoutURI": configuration expression<string>, optional

The URL to which a request is redirected if logoutExpression is evaluated as true or when the protected application
uses the single logout feature of the Identity Provider.

Default: None, processing continues.

"redirectionMarker": configuration expression<object>, optional

A redirect marker for the SAML flow. If the marker is present in the flow, the request isn’t redirected for authentication.

This feature is on by default to prevent redirect loops when the session cookie isn’t present in the SAML flow. The cookie
can be absent from the flow if it doesn’t include PingGateway’s domain.

•

◦

▪

▪

▪

◦

emergency_home
To prevent unwanted access to the protected application, use logoutExpression with extreme caution as
follows:

Define a logoutURI .
If you don’t define a logoutURI , specify logoutExpression to resolve to true only for requests that
target dedicated logout pages of the protected application.

Consider the following examples when a logoutURI is not defined:
This expression resolves to true only for requests with /app/logout in their path:

"logoutExpression": "${startsWith(request.uri.rawPath, '/app/logout')}"

When a request matches the expression, the SAML session is revoked and the request is forwarded to
the /app/logout page.
This expression resolves to true for all requests that contain logOff=true in their query parameters:

"logoutExpression": "${find(request.uri.query, 'logOff=true')}"

When a request matches the expression, the SAML session is revoked and the request is forwarded to
the protected application without any other validation. In this example, an attacker can bypass
PingGateway’s security mechanisms by simply adding ?logOff=true to a request.

Important

•
•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 861

"redirectionMarker": {
 "enabled": configuration expression<boolean>,
 "name": configuration expression<string>
}

"enabled": configuration expression<boolean>, optional

true : When the session is empty or invalid, PingGateway checks the request goto query parameter for the
presence of the redirection marker:

If the redirection marker is present, PingGateway fails the request.

If the redirection marker isn’t present, PingGateway redirects the user agent for login.

false: PingGateway never checks the request goto query parameter for the presence of a redirection
marker.

Default: true

"name": configuration expression<string>, optional

The name of the redirection marker query parameter to use when enabled is true .

Default: _ig

"secretsProvider": SecretsProvider reference, optional

The SecretsProvider to query for keys when AM provides signed or encrypted SAML assertions.

When this property isn’t set, the keys are provided by direct keystore look-ups based on entries in the SP extended
metadata file, sp-extended.xml .

"spEntityId": configuration expression<string>, optional

The entity ID that this SP represents. Configure this property when more than one SP is defined in the metadata.

Default:

When no SPs are defined in the metadata an error is generated.

When there one SP defined in the metadata the filter uses that SP.

When there is more than one SP defined in the metadata the filter uses the first SP in the list of discovered
metadata and logs a warning. Because ordering is not deterministic, the discovered SP can be the wrong SP.

"idpEntityId": configuration expression<string>, optional

The entity ID that this IDP represents. Configure this property when more than one IDP is defined in the metadata.

Default:

When no IDPs are defined in the metadata an error is generated.

When one IDP is defined in the metadata the filter uses that IDP.

•

◦

◦

•

•

•

•

•

•

Reference PingGateway

862 Copyright © 2025 Ping Identity Corporation

When there is more than one IDP defined in the metadata the filter uses the first IDP in the list of discovered
metadata and logs a warning. Because ordering is not deterministic, the discovered IDP can be the wrong IDP.

"failureHandler": Handler reference, optional

Handler to invoke when SAML processing fails.

Provide an inline handler configuration object or the name of a handler object declared in the heap. See also Handlers.

Default: Return an error response containing a SAML processing error.

ScriptableFilter

Processes requests and responses by executing a Groovy script. Executed scripts must return one of the following:

Promise<Response, NeverThrowsException>

Response

To execute the next element in a chain (a filter or a handler), the script must call the expression next.handle(context,
request) . If the script does not call next.handle(context, request) , the chain flow breaks and the script has to build and
return its own response by calling one of the following expressions:

return myResponse

return newResultPromise(myResponse)

Actions on the response returned from the downstream flow must be performed in the Promise’s callback methods.

For information about script properties, available global objects, and automatically imported classes, refer to Scripts. For
information about creating scriptable objects in Studio, refer to Scripts in Studio and Configure scriptable throttling.

Usage

{
 "name": string,
 "type": "ScriptableFilter",
 "config": {
 "type": configuration expression<string>,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both.
 "args": map,
 "clientHandler": Handler reference
 }
}

Properties

For information about properties for ScriptableFilter, refer to Scripts.

Examples

For an example scriptable filter that recovers policy advices from AM, see the failureHandler property of
PolicyEnforcementFilter.

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 863

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html

More information

Scripts

org.forgerock.openig.filter.ScriptableFilter

SessionInfoFilter

Calls the AM endpoint for session information, and makes the data available as a new context to downstream PingGateway filters
and handlers. For information, refer to SessionInfoContext.

WebSocket notifications for sessions

When WebSocket notifications are set up for sessions, PingGateway receives a notification from AM when a user logs out of AM,
or when the AM session is modified, closed, or times out. PingGateway then evicts entries that are related to the event from the
sessionCache .

For information about setting up WebSocket notifications, using them to clear the session cache, and including them in the server
logs, refer to WebSocket notifications.

Usage

{
 "name": string,
 "type": "SessionInfoFilter",
 "config": {
 "amService": AmService reference,
 "ssoToken": runtime expression<string>
 }
}

Properties

"amService": AmService reference, required

The AmService object to use for communication with AM.

The following sessionProperties , are retrieved from AM:

When sessionProperties in AmService is configured, listed session properties with a value.

When sessionProperties in AmService is not configured, all session properties with a value.

info
When using a SessionInfoFilter with a CrossDomainSingleSignOnFilter (CDSSO filter) or SingleSignOnFilter (SSO filter):

Include the SessionInfoFilter after the CDSSO or SSO filter in the chain.
Do not use the raw CDSSO or SSO token in the SessionInfoFilter configuration. Use the token the CDSSO or SSO
filter adds to the context, such as ${contexts.ssoToken.value} .

Note

•
•

•

•

Reference PingGateway

864 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ScriptableFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ScriptableFilter.html

Properties with a value that are required by PingGateway but not specified by sessionProperties in AmService.
For example, when the session cache is enabled, session properties related to the cache are automatically
retrieved.

Properties with a value are returned, properties with a null value are not returned.

"ssoToken": runtime expression<string>, optional

Location of the AM SSO or CDSSO token.

This property can take the following values:

${contexts.ssoToken.value} , when the SingleSignOnFilter is used for authentication

${contexts.ssoToken.value} or ${contexts.cdsso.token} , when the CrossDomainSingleSignOnFilter is used
for authentication

${request.headers['mySsoToken'][0]} , where the SSO or CDSSO token is the first value of the mySsoToken
header in the request.

Default: ${request.cookies['AmService-ssoTokenHeader'][0].value} , where AmService-ssoTokenHeader is the name
of the header or cookie where the AmService expects to find SSO or CDSSO tokens.

Examples

For an example that uses the SessionInfoFilter, refer to Retrieve a Username From the sessionInfo Context.

More information

org.forgerock.openig.openam.SessionInfoFilter

org.forgerock.openig.openam.SessionInfoContext

SessionInfoContext

AM’s Authorization guide

SetCookieUpdateFilter

Updates the attribute values of Set-Cookie headers in a cookie. This filter facilitates the transition to the SameSite and secure
cookie settings required by newer browsers. Use SetCookieUpdateFilter at the beginning of a chain to guarantee security along
the chain.

Set-Cookie headers must conform to grammar in RFC 6265: Set-Cookie.

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 865

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SessionInfoFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SessionInfoFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SessionInfoContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SessionInfoContext.html
https://docs.pingidentity.com/pingam/7.5/authorization-guide/
https://docs.pingidentity.com/pingam/7.5/authorization-guide/
https://www.rfc-editor.org/rfc/rfc6265#section-4.1
https://www.rfc-editor.org/rfc/rfc6265#section-4.1

Usage

{
 "name": string,
 "type": "SetCookieUpdateFilter",
 "config": {
 "cookies": {
 "cookie-name": {
 "attribute-name": "attribute-value",
 ...
 }
 ...
 }
 }
}

Properties

"cookies": map, required

Configuration that matches case-sensitive cookie names to response cookies, and specifies how matching cookies
attribute values should be updated. Each cookie begins with a name-value pair, where the value is one or more attribute-
value pairs.

cookie-name: pattern, required

The name of a cookie contained in the Set-Cookie header, as a pattern.

To change the attribute value on all existing cookies, specify .* .

If a cookie is named more than once, either explicitly or by the wildcard (*), the rules are applied to the cookie in
the order they appear in the map.

In the following example, the SameSite attribute of the CSRF cookie first takes the value none , and then that value
is overwritten by the value LAX .

"cookies": {
 "CSRF": {
 "value": "myValue",
 "secure": ${true},
 "SameSite": "none"
 }
 ".*": {
 "SameSite": "LAX"
 }
}

attribute-name: enumeration, required

A case-insensitive enumeration of a Set-Cookie attribute name.

Attribute names include SameSite , secure , http-only , value , expires , Max-Age , path , and domain . For
more information, refer to RFC 6265: Set-Cookie.

Reference PingGateway

866 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc6265#section-4.1
https://www.rfc-editor.org/rfc/rfc6265#section-4.1

Use the now dynamic binding to dynamically set the value of a cookie attribute that represents time. For example,
set the value of the attribute expires to one day after the expression is evaluated, as follows:

{
 "type": "SetCookieUpdateFilter",
 "config": {
 "cookies": {
 ".*": {
 "expires": "${now.plusDays(1).rfc1123}",
...

attribute-value: runtime expression<string, boolean, or integer>, required

The replacement value for the named attribute. The value must conform to the expected type for the attribute
name:

secure : runtime expression<boolean>. Required if SameSite is none

http-only : runtime expression<boolean>.

Max-Age : runtime expression<number>.

SameSite , and all other attribute names: runtime expression<string>.

For all values except expires , specify ${previous} to reuse the existing value for the attribute. The following
example adds five seconds to the Max-Age attribute:

"Max-Age": "${integer(previous+5)}",

If the named the Set-Cookie header doesn’t contain the named attribute, ${previous} returns null.

Examples

The following example updates attributes of all existing Set-Cookie headers:

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 867

{
 "name": "SetCookieUpdateFilter",
 "condition": "${find(request.uri.path, '/home')}",
 "baseURI": "http://app.example.com:8081",
 "heap": [],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "type": "SetCookieUpdateFilter",
 "config": {
 "cookies": {
 ".*": {
 "SameSite": "LAX",
 "domain": "ig.example.com",
 "Max-Age": "${session.maxAge}",
 "Secure": "${true}",
 "expires": 155...833
 }
 }
 }
 }],
 "handler": "ReverseProxyHandler"
 }
 }
}

More information

org.forgerock.openig.filter.SetCookieUpdateFilter

SingleSignOnFilter

When this filter processes a request, it injects the SSO token, the session user ID, and the full claims set into the
SsoTokenContext.

For an example of how to configure SSO and information about the SSO data flow, refer to Single sign-on.

lightbulb_2
To prevent issues with performance when accessing large resources, such as .jpg and .js files, consider using the
SingleSignOnFilter with the following options:

The sessionCache , so that PingGateway can reuse session token information without repeatedly asking AM to
verify the session token.
A ConditionalFilter, so that requests to access large resources skip the SingleSignOnFilter. For an example
configuration, see the example in ConditionalFilter.

Tip

•

•

Reference PingGateway

868 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/SetCookieUpdateFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/SetCookieUpdateFilter.html

WebSocket notifications for sessions

When WebSocket notifications are set up for sessions, PingGateway receives a notification from AM when a user logs out of AM,
or when the AM session is modified, closed, or times out. PingGateway then evicts entries that are related to the event from the
sessionCache .

For information about setting up WebSocket notifications, using them to clear the session cache, and including them in the server
logs, refer to WebSocket notifications.

Usage

{
 "name": string,
 "type": "SingleSignOnFilter",
 "config": {
 "amService": AmService reference,
 "authenticationService": configuration expression<string>,
 "redirectionMarker": object,
 "defaultLogoutLandingPage": configuration expression<url>,
 "loginEndpoint": runtime expression<url>,
 "logoutExpression": runtime expression<boolean>
 }
}

Properties

"amService": AmService reference, required

An AmService object to use for the following properties:

agent , the credentials of the PingGateway agent in AM. When the agent is authenticated, the token can be used
for tasks such as getting the user’s profile, making policy evaluations, and connecting to the AM notification
endpoint.

realm : Realm of the PingGateway agent in AM.

url , the URL of an AM service to use for session token validation and authentication when loginEndpoint is not
specified.

ssoTokenHeader , the name of the cookie that contains the session token created by AM.

amHandler , the handler to use when communicating with AM to validate the token in the incoming request.

sessionCache , the configuration of a cache for session information from AM.

info
When AM is using CTS-based sessions, it does not monitor idle time for client-side sessions, and so refresh requests
are ignored.
When the SingleSignOnFilter is used for authentication with AM, after a time AM can view the session as idle even
though the user continues to interact with PingGateway. The user session can eventually time out.
When AM is using CTS-based sessions, use the sessionIdleRefresh property of AmService to refresh idle sessions,
and prevent unwanted timeouts.

Note

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 869

version : The version of the AM server.

The AM version is derived as follows, in order of precedence:

Discovered value: AmService discovers the AM version. If version is configured with a different value,
AmService ignores the value of version and issues a warning.

Value in version : AmService cannot discover the AM version, and version is configured.

Default value of AM 6: AmService cannot discover the AM version, and version is not configured.

redirectionMarker: object, optional

A redirect marker for the SSO flow. If the marker is present in the SSO flow, the request isn’t redirected for authentication.

This feature is on by default to prevent redirect loops when the session cookie isn’t present in the SSO flow. The cookie can
be absent from the flow if it doesn’t include PingGateway’s domain.

"redirectionMarker": {
 "enabled": configuration expression<boolean>,
 "name": configuration expression<string>
}

"enabled": configuration expression<boolean>, optional

true : When the session is empty or invalid, PingGateway checks the request goto query parameter for the
presence of the redirection marker:

If the redirection marker is present, PingGateway fails the request.

If the redirection marker isn’t present, PingGateway redirects the user agent for login.

false: PingGateway never checks the request goto query parameter for the presence of a redirection
marker.

Default: true

"name": configuration expression<string>, optional

The name of the redirection marker query parameter to use when enabled is true .

Default: _ig

"authenticationService": configuration expression<string>,optional

The name of an AM authentication tree or authentication chain to use for authentication.

Default: AM’s default authentication tree.

•

◦

◦

◦

•

◦

◦

•

info
Use only authentication trees with PingOne Advanced Identity Cloud. Authentication modules and chains aren’t
supported.

Note

Reference PingGateway

870 Copyright © 2025 Ping Identity Corporation

For more information about authentication trees and chains, refer to Authentication nodes and trees and
Authentication modules and chains in AM’s Authentication and SSO guide.

"defaultLogoutLandingPage": configuration expression<url>, optional

The URL to which a request is redirected if logoutExpression is evaluated as true.

If this property is not an absolute URL, the request is redirected to the PingGateway domain name.

This parameter is effective only when logoutExpression is specified.

Default: None, processing continues.

"loginEndpoint": runtime expression<url>, optional

The URL of a service instance for the following tasks:

Manage authentication and the location to which the request is redirected after authentication.

Process policy advices after an AM policy decision denies a request with supported advices. The
PolicyEnforcementFilter redirects the request to this URL, with information about how to meet the conditions in the
advices.

For examples of different advice types, and the conditions that cause AM to return advices, see AM’s Authorization
guide. For information about supported advice types in PingGateway, refer to PolicyEnforcementFilter.

Default: The value of url in amService

Authentication can be performed in the following ways:

Directly through AM, with optional authentication parameters in the query string, such as service , module , and
realm . For a list of authentication parameters that you can include in the query string, see Authenticating
(browser) in AM’s Authentication and SSO guide.

The value must include a redirect with a goto parameter.

The following example uses AM as the authentication service, and includes the service authentication parameter:

"loginEndpoint": "https://am.example.com/openam?service=TwoFactor&goto=$
{urlEncodeQueryParameterNameOrValue(contexts.router.originalUri)}"

Through the URL of another application, with optional authentication parameters in the query string, such as
service , module , and realm . The application must create a session with an AM instance to set an SSO token and
return the request to the redirect location.

The value can optionally include a redirect with a goto parameter or different parameter name.

The following example uses an authentication service that is not AM, and includes a redirect parameter:

"loginEndpoint": "https://authservice.example.com/auth?redirect=$
{urlEncodeQueryParameterNameOrValue(contexts.router.originalUri)}"

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 871

https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-trees.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-trees.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-modules-and-chains.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/about-authentication-modules-and-chains.html
https://docs.pingidentity.com/pingam/7.5/authorization-guide/
https://docs.pingidentity.com/pingam/7.5/authorization-guide/
https://docs.pingidentity.com/pingam/7.5/authorization-guide/
https://docs.pingidentity.com/pingam/7.5/authentication-guide/authn-from-browser.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/authn-from-browser.html
https://docs.pingidentity.com/pingam/7.5/authentication-guide/authn-from-browser.html

When using this option, review the cookie domains to make sure cookies set by the authentication server are
properly conveyed to the PingGateway instance.

"logoutExpression": runtime expression<boolean>, optional

A flag to indicate whether a request initiates logout processing before reaching the protected application.

false : The request does not initiate logout processing:

If a valid AM session is found, the request is forwarded to the protected application.

If a valid AM session is not found, the request triggers login.

true : The request initiates logout processing:

If a valid AM session is found, the session is revoked and the request is forwarded as follows:

If defaultLogoutLandingPage is defined, the request is forwarded to the specified logout page.

If defaultLogoutLandingPage is not defined, the request is forwarded to the protected application
without any other validation.

If a valid session is not found, the request is forwarded to the protected application without any other
validation.

Default: ${false}

More information

org.forgerock.openig.openam.SingleSignOnFilter

org.forgerock.openig.openam.SsoTokenContext

•

◦

◦

•

◦

▪

▪

◦

emergency_home
To prevent unwanted access to the protected application, use logoutExpression with extreme caution as
follows:

Define a defaultLogoutLandingPage .
If you don’t define a defaultLogoutLandingPage , specify logoutExpression to resolve to true only
for requests that target dedicated logout pages of the protected application.

Consider the following examples when a defaultLogoutLandingPage is not configured:
This expression resolves to true only for requests with /app/logout in their path:

"logoutExpression": ${startsWith(request.uri.rawPath, '/app/logout')}

When a request matches the expression, the AM session is revoked and the request is forwarded to
the /app/logout page.
This expression resolves to true for all requests that contain logOff=true in their query parameters:

"logoutExpression": ${find(request.uri.query, 'logOff=true')}

When a request matches the expression, the AM session is revoked and the request is forwarded to the
protected application without any other validation. In this example, an attacker can bypass
PingGateway’s security mechanisms by simply adding ?logOff=true to a request.

Important

•
•

•

•

Reference PingGateway

872 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SingleSignOnFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SingleSignOnFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SsoTokenContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SsoTokenContext.html

SsoTokenContext

SqlAttributesFilter

Executes a SQL query through a prepared statement and exposes its first result. Parameters in the prepared statement are
derived from expressions. The query result is exposed in an object whose location is specified by the target expression. If the
query yields no result, then the resulting object is empty.

The execution of the query is performed lazily; it does not occur until the first attempt to access a value in the target. This defers
the overhead of connection pool, network and database query processing until a value is first required. This also means that the
parameters expressions is not evaluated until the object is first accessed.

Usage

{
 "name": string,
 "type": "SqlAttributesFilter",
 "config": {
 "dataSource": JdbcDataSource reference,
 "preparedStatement": configuration expression<string>,
 "parameters": [runtime expression<string>, ...],
 "target": lvalue-expression
 }
}

Properties

"dataSource": JdbcDataSource reference, required

The JdbcDataSource to use for connections. Configure JdbcDataSource as described in JdbcDataSource.

"preparedStatement": configuration expression<string>, required

The parameterized SQL query to execute, with ? parameter placeholders.

"parameters": array of runtime expressions<strings>, optional

The parameters to evaluate and include in the execution of the prepared statement.

See also Expressions.

"target": <lvalue-expression>, required

Expression that yields the target object containing the query results. For example, ${target.sql.queryresult} .

Access to target triggers a call to the database that blocks the executing thread until the database responds.

error
This filter uses synchronous architecture. Accessing the filter target triggers a call to the database that blocks the
executing thread until the database responds.
Consider the performance impact of this filter, especially for deployments with a small number of gateway units
(therefore, a small number of executing threads) and a long execution time for the JDBC call.

Caution

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 873

See also Expressions.

Example

Using the user’s session ID from a cookie, query the database to find the user logged in and set the profile attributes in the
attributes context:

{
 "name": "SqlAttributesFilter",
 "type": "SqlAttributesFilter",
 "config": {
 "target": "${attributes.sql}",
 "dataSource": "java:comp/env/jdbc/mysql",
 "preparedStatement": "SELECT f.value AS 'first', l.value AS 'last', u.mail AS 'email',
GROUP_CONCAT(CAST(r.rid AS CHAR)) AS 'roles' FROM sessions s INNER JOIN users u ON (u.uid = s.uid AND u.status = 1)
LEFT OUTER JOIN profile_values f ON (f.uid = u.uid AND f.fid = 1) LEFT OUTER JOIN profile_values l ON (l.uid =
u.uid AND l.fid = 2) LEFT OUTER JOIN users_roles r ON (r.uid = u.uid) WHERE (s.sid = ? AND s.uid <> 0) GROUP BY
s.sid;",
 "parameters": ["${request.cookies[keyMatch(request.cookies,'JSESSION1234')][0].value}"]
 }
 }

Lines are folded for readability in this example. In your JSON, keep the values for "preparedStatement" and "parameters" on
one line.

More information

org.forgerock.openig.sql.SqlAttributesFilter

StaticRequestFilter

Creates a new request, replacing any existing request. The request can include an entity specified in the entity parameter.
Alternatively, the request can include a form, specified in the form parameter, which is included in an entity encoded in
application/x-www-form-urlencoded format if request method is POST , or otherwise as (additional) query parameters in the
URI. The form and entity parameters cannot be used together when the method is set to POST .

Reference PingGateway

874 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/sql/SqlAttributesFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/sql/SqlAttributesFilter.html

Usage

{
 "name": string,
 "type": "StaticRequestFilter",
 "config": {
 "method": configuration expression<string>,
 "uri": runtime expression<url>,
 "version": configuration expression<string>,
 "headers": {
 configuration expression<string>: [runtime expression<string>, ...], ...
 },
 "form": {
 configuration expression<string>: [runtime expression<string>, ...], ...
 },
 "entity": runtime expression<string>
 }
}

Properties

"method": configuration expression<string>, required

The HTTP method to be performed on the resource; for example, GET .

"uri": runtime expression<url>, required

The fully-qualified URI of the resource being accessed; for example, http://www.example.com/resource.txt .

The result of the expression must be a string that represents a valid URI, but is not a real java.net.URI object. For
example, it would be incorrect to use ${request.uri} , which is not a string but a mutable URI.

"version": configuration expression<string>, optional

Protocol version.

Default: "HTTP/1.1"

"headers": map, optional

One or more headers to set for a request, with the format name: [value, …] , where:

name is a configuration expression<string> that resolve to a header name. If multiple expressions resolve to the
same final string, name has multiple values.

value is one or more runtime expression<strings> that resolve to header values.

In the following example, the header name is the value of the system variable defined in cookieHeaderName . The header
value is stored in contexts.ssoToken.value :

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 875

"headers": {
 "${application['header1Name']}": [
 "${application['header1Value'}"
]
}

Default: Empty

"form": map, optional

A form to include in the request and/or application/x-www-form-urlencoded entity, as name-value pairs, where:

name is a configuration expression<string> that resolves to a form parameter name.

value is one or more runtime expression<strings> that resolve to form parameter values.

When a Request method is POST , form is mutually exclusive with entity .

Examples:

In the following example, the field parameter names and values are hardcoded in the form:

"form": {
 "username": [
 "demo"
],
 "password": [
 "password"
]
}

In the following example, the values take the first value of username and password provided in the session:

"form": {
 "username": [
 "${session.username[0]}"
],
 "password": [
 "${session.password[0]}"
]
}

In the following example, the name of the first field parameter takes the value of the expression $
{application['formName']} when it is evaluated at startup. The values take the first value of username and
password provided in the session:

•

•

•

•

•

Reference PingGateway

876 Copyright © 2025 Ping Identity Corporation

"form": {
 "${application['formName']}": [
 "${session.username[0]}"
],
 "${application['formPassword']}": [
 "${session.password[0]}"
]
}

Default: Empty

"entity": runtime expression<string>, optional

The message entity body to include in a request.

When a Request method is POST , entity is mutually exclusive with form .

Methods are provided for accessing the entity as byte, string, or JSON content. For information, refer to Entity.

Default: Empty

Example

In the following example, PingGateway replaces the browser’s original HTTP GET request with an HTTP POST login request
containing credentials to authenticate to the sample application. For information about how to set up and test this example, refer
to the Quick install.

emergency_home
Attackers during reconnaissance can use messages to identify information about a deployment. For security,
limit the amount of information in messages, and avoid using words that help identify PingGateway.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 877

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Entity.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Entity.html

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "demo"
],
 "password": [
 "Ch4ng31t"
]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${find(request.uri.path, '^/static')}"
}

More information

org.forgerock.openig.filter.StaticRequestFilter

SwitchFilter

Verifies that a specified condition is met. If the condition is met or no condition is specified, the request is diverted to the
associated handler, with no further processing by the switch filter.

Reference PingGateway

878 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/StaticRequestFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/StaticRequestFilter.html

Usage

{
 "name": string,
 "type": "SwitchFilter",
 "config": {
 "onRequest": [
 {
 "condition": runtime expression<boolean>,
 "handler": Handler reference
 },
 ...
],
 "onResponse": [
 {
 "condition": runtime expression<boolean>,
 "handler": Handler reference
 },
 ...
]
 }
}

Properties

"onRequest": array of objects, optional

Conditions to test (and handler to dispatch to, if true) before the request is handled.

"onResponse": array of objects, optional

Conditions to test (and handler to dispatch to, if true) after the response is handled.

"condition": runtime expression<boolean>, optional

A flag to indicate that a condition is met:

true : The request is dispatched to the handler.

false : The request is not dispatched to the handler, and the next condition in the list is tried.

When the last condition in the list returns false , the request is passed to the next filter or handler in the chain.

Default: ${true}

"handler": Handler reference, required

The Handler to which PingGateway dispaches the request if the associated condition yields true .

Provide the name of a Handler object defined in the heap or an inline Handler configuration object.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 879

Example

This example intercepts the response if it is equal to 200 and executes the LoginRequestHandler. This filter might be used in a
login flow where the request for the login page must go through to the target, but the response should be intercepted in order to
send the login form to the application. This is typical for scenarios where there is a hidden value or cookie returned in the login
page, which must be sent in the login form:

{
 "name": "SwitchFilter",
 "type": "SwitchFilter",
 "config": {
 "onResponse": [
 {
 "condition": "${response.status.code == 200}",
 "handler": "LoginRequestHandler"
 }
]
 }
}

More information

org.forgerock.openig.filter.SwitchFilter

ThrottlingFilter

Limits the rate that requests pass through a filter. The maximum number of requests that a client is allowed to make in a defined
time is called the throttling rate.

When the throttling rate is reached, PingGateway issues an HTTP status code 429 Too Many Requests and a Retry-After
header, whose value is rounded up to the number of seconds to wait before trying the request again.

GET http://ig.example.com:8080/home/throttle-scriptable HTTP/1.1
. . .
HTTP/1.1 429 Too Many Requests
Retry-After: 10

Reference PingGateway

880 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/SwitchFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/SwitchFilter.html
http://ig.example.com:8080/home/throttle-scriptable
http://ig.example.com:8080/home/throttle-scriptable

Usage

{
 "name": string,
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": runtime expression<string>,
 "throttlingRatePolicy": ThrottlingPolicy reference, //Use either "throttlingRatePolicy"
 "rate": { //or "rate", but not both.
 "numberOfRequests": configuration expression<number>,
 "duration": configuration expression<duration>
 },
 "cleaningInterval": configuration expression<duration>,
 "executor": ScheduledExecutorService reference
 }
}

Properties

"requestGroupingPolicy": runtime expression<string>, optional

An expression to identify the partition to use for the request. In many cases the partition identifies an individual client that
sends requests, but it can also identify a group that sends requests. The expression can evaluate to the client IP address or
user ID, or an OpenID Connect subject/issuer.

The value for this expression must not be null.

Default: Empty string; all requests share the same partition

See also Expressions.

"throttlingRatePolicy": ThrottlingPolicy reference, required if rate is not used

A reference to, or inline declaration of, a policy to apply for throttling rate. The following policies can be used:

MappedThrottlingPolicy

ScriptableThrottlingPolicy

DefaultRateThrottlingPolicy

This value for this parameter must not be null.

"rate": object, required if throttlingRatePolicy is not used

The throttling rate to apply to requests. The rate is calculated as the number of requests divided by the duration:

"numberOfRequests": configuration expression<integer>, required

The number of requests allowed through the filter in the time specified by "duration" .

"duration": configuration expression<duration>, required

A time interval during which the number of requests passing through the filter is counted.

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 881

"cleaningInterval": configuration expression<duration>, optional

The time to wait before cleaning outdated partitions. The value must be more than zero but not more than one day.

"executor": ScheduledExecutorService reference, optional

An executor service to schedule the execution of tasks, such as the clean up of partitions that are no longer used.

Default: ScheduledExecutorService

See also ScheduledExecutorService.

Examples

Example of a Mapped Throttling Policy

Example of a Scriptable Throttling Policy

The following route defines a throttling rate of 6 requests/10 seconds to requests. For information about how to set up and test
this example, refer to Configure Simple Throttling.

{
 "name": "00-throttle-simple",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/throttle-simple')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ThrottlingFilter",
 "name": "ThrottlingFilter-1",
 "config": {
 "requestGroupingPolicy": "",
 "rate": {
 "numberOfRequests": 6,
 "duration": "10 s"
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

More information

org.forgerock.openig.filter.throttling.ThrottlingFilterHeaplet

TokenTransformationFilter

Transforms a token issued by AM to another token type.

The TokenTransformationFilter makes the result of the token transformation

•

•

Reference PingGateway

882 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ThrottlingFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ThrottlingFilterHeaplet.html

available to downstream handlers in the sts context. For information, refer to StsContext.

The current implementation uses REST Security Token Service (STS) APIs to transform an OpenID Connect ID Token (id_token)
into a SAML 2.0 assertion. The subject confirmation method is Bearer, as described in Profiles for the OASIS Security Assertion
Markup Language (SAML) V2.0 .

The TokenTransformationFilter makes the result of the token transformation available to downstream handlers in the
issuedToken property of the ${contexts.sts} context.

The TokenTransformationFilter configuration references a REST STS instance that must be set up in AM before the
TokenTransformationFilter can be used. The REST STS instance exposes a preconfigured transformation under a specific REST
endpoint. For information about setting up a REST STS instance, see the AM documentation.

Errors that occur during the token transformation cause a error response to be returned to the client and an error message to be
logged for the PingGateway administrator.

Usage

{
 "name": "string",
 "type": "TokenTransformationFilter",
 "config": {
 "amService": AmService reference,
 "idToken": runtime expression<string>,
 "instance": configuration expression<string>,
 "username": configuration expression<string>, //deprecated
 "password": configuration expression<string> //deprecated
 }
}

Properties

"amService": AmService reference, required

The AmService heap object to use for the following properties:

agent , the credentials of the PingGateway agent in AM, to authenticate PingGateway as an AM REST STS client, and
to communicate WebSocket notifications from AM to PingGateway. This credentials are evaluated when the route is
initialized

url , the URL of an AM service to use for session token validation and authentication. Authentication and REST STS
requests are made to this service.

realm , the AM realm containing the following information:

The AM application that can make the REST STS request and whose credentials are the username and
password.

The STS instance described by the instance field.

ssoTokenHeader , the name of the HTTP header that provides the SSO token for the REST STS client subject.

amHandler , the handler to use for authentication and STS requests to AM.

•

•

•

◦

◦

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 883

http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

"idToken": runtime expression<string>, required

The value of the OpenID Connect ID token. The expected value is a string that is the JWT encoded id_token .

"instance": configuration expression<string>, required

An expression evaluating to the name of the REST STS instance.

This expression is evaluated when the route is initialized, so the expression cannot refer to request or contexts .

"username": string, required

The username to authenticate PingGateway as an AM REST STS client.

"password": expression, required

The password to authenticate PingGateway as an AM REST STS client.

Example

The following example shows a configuration for a TokenTransformationFilter:

{
 "type": "TokenTransformationFilter",
 "config": {
 "amService": "MyAmService",
 "idToken": "${attributes.openid.id_token}",
 "instance": "openig"
 }
}

For an example of how to set up and test the TokenTransformationFilter, refer to Transform OpenID Connect ID tokens into
SAML assertions.

More information

org.forgerock.openig.openam.TokenTransformationFilter

org.forgerock.openig.openam.StsContext

StsContext

emergency_home
The use of this property is deprecated; use the AmService property agent instead. For more information, refer
to the Deprecated section of the Release Notes.

Important

emergency_home
The use of this property is deprecated; use the AmService property agent instead. For more information, refer
to the Deprecated section of the Release Notes.

Important

Reference PingGateway

884 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/TokenTransformationFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/TokenTransformationFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/StsContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/StsContext.html

TransactionIdOutboundFilter

Inserts the ID of a transaction into the header of a request.

The default TransactionIdOutboundFilter is created by PingGateway, and used in ForgeRockClientHandler, as follows:

{
 "name": "ForgeRockClientHandler",
 "type": "ForgeRockClientHandler",
 "config": {
 "filters": ["TransactionIdOutboundFilter"],
 "handler": "ClientHandler"
 }
}

More information

org.forgerock.http.filter.TransactionIdOutboundFilter

UmaFilter

This filter acts as a policy enforcement point, protecting access as a User-Managed Access (UMA) resource server. Specifically, this
filter ensures that a request for protected resources includes a valid requesting party token with appropriate scopes before
allowing the response to flow back to the requesting party.

Usage

{
 "name": string,
 "type": "UmaFilter",
 "config": {
 "protectionApiHandler": Handler reference,
 "umaService": UmaService reference,
 "realm": configuration expression<string>
 }
}

Properties

"protectionApiHandler": Handler reference, required

The handler to use when interacting with the UMA Authorization Server for token introspection and permission requests,
such as a ClientHandler capable of making an HTTPS connection to the server.

For information, refer to Handlers.

"umaService": UmaService reference, required

The UmaService to use when protecting resources.

For information, refer to UmaService.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 885

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/filter/TransactionIdOutboundFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/filter/TransactionIdOutboundFilter.html

"realm": configuration expression<string>, optional

The UMA realm set in the response to a request for a protected resource that does not include a requesting party token
enabling access to the resource.

Default: uma

More information

User-Managed Access (UMA) Profile of OAuth 2.0

org.forgerock.openig.uma.UmaResourceServerFilter

UriPathRewriteFilter

Rewrite a URL path, using a bidirectional mapping:

In the request flow, fromPath is mapped to toPath .

In the response flow, toPath is mapped to fromPath .

PingGateway overwrites a response header only when all of the following conditions are true:

The response includes a header such as Location or Content-Location

The URI of the response header matches the mapping

The value of response header is a relative path or its scheme://host:port value matches the base URI.

Usage

{
 "name": string,
 "type": "UriPathRewriteFilter",
 "config": {
 "mappings": object,
 "failureHandler": Handler reference
 }
}

Properties

"mappings": object, required

One or more bidirectional mappings between URL paths. For example mappings, request scenarios, and an example
route, refer to Examples.

•

•

•

•

•

Reference PingGateway

886 Copyright © 2025 Ping Identity Corporation

https://docs.kantarainitiative.org/uma/rec-uma-core.html
https://docs.kantarainitiative.org/uma/rec-uma-core.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/uma/UmaResourceServerFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/uma/UmaResourceServerFilter.html

{
 "mappings": {
 "/fromPath1": "/toPath1",
 "/fromPath2": "/toPath2",
 ...
 }
}

Paths are given by a configuration expression<string> . Consider the following points when you define paths:

The incoming URL must start with the mapping path.

When more than one mapping applies to a URL, the most specific mapping is used.

Duplicate fromPath values are removed without warning.

Trailing slashes / are removed from path values.

If the response includes a Location or Content-Location header with a toPath in its URL, the response is
rewritten with fromPath .

"failureHandler": handler reference, optional

Failure handler to be invoked if an invalid URL is produced when the request path is mapped, or when the response
Location or Content-Location header URI path is reverse-mapped.

Provide an inline handler declaration, or the name of a handler object defined in the heap. See also Handlers.

Default: HTTP 500

Examples

Valid and invalid mapping examples

The following mapping examples are valid:

Single fromPath and toPath

"mappings": {
 "/fromPath1": "/toPath1",
 "/fromPath2": "/toPath2"
}

Expressions in the fromPath and toPath

"mappings": {
 "/${join(array(`fromPath`, 'path1'), `/`)}": "/${join(array(`toPath`, 'path2'), `/`)}"
}

Expressions in the fromPath and toPath that use predefined heap properties

•

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 887

"mappings": {
 "${fromPath}": "${toPath}"
}

No mappings—the configuration is valid, but has no effect

"mappings": { }

Duplicate toPath

"mappings": {
 "/fromPath1": "/toPath",
 "/fromPath2": "/toPath"
}

Duplicate fromPath —the configuration is overwritten without warning

"mappings": {
 "/fromPath": "/toPath1",
 "/fromPath": "/toPath2"
}

The following mapping examples are not valid

No toPath

"mappings": {
 "/fromPath": ""
}

"mappings": {
 "/fromPath": "${unknown}"
}

Invalid toPath

"mappings": {
 "/fromPath": "${invalidExpression}"
}

No fromPath

•

•

•

•

•

•

Reference PingGateway

888 Copyright © 2025 Ping Identity Corporation

"mappings": {
 "": "/toPath"
}

"mappings": {
 "${unknown}": "/toPath"
}

Invalid fromPath

"mappings": {
 "${invalidExpression}": "/toPath"
}

Example request scenarios

•

Description Mapping Inbound URI Rewritten URI

Basic path
"mappings": {
 "/fromPath": "/toPath"
}

http://example.com/
fromPath/remainder

http://example.com/
toPath/remainder

Root context, where the
inbound request URI has
a / path segment

"mappings": {
 "/": "/rootcontext"
}

http://example.com/ http://example.com/
rootcontext/

Root context, where the
inbound URI has a /
path segment

"mappings": {
 "/rootcontext": "/"
}

http://example.com/
rootcontext/

http://example.com/

Root context, where the
inbound request URI has
an empty path

"mappings": {
 "/": "/rootcontext"
}

http://example.com http://example.com/
rootcontext

Root context, where the
rewritten URI has an
empty path

"mappings": {
 "/rootcontext": "/"
}

http://example.com/
rootcontext

http://example.com

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 889

Description Mapping Inbound URI Rewritten URI

Root context, with path
remainder "mappings": {

 "/": "/rootcontext"
}

http://example.com/
remainder

http://example.com/
rootcontext/remainder

Root context, with path
remainder "mappings": {

 "/rootcontext": "/"
}

http://example.com/
rootcontext/remainder

http://example.com/
remainder

Root context, where the
trailing / on toPath is
ignored

"mappings": {
 "/": "/rootcontext/"
}

http://example.com/
remainder

http://example.com/
rootcontext/remainder

Path with dot-segments:
"mappings": {
 "/fromPath": "/toPath1/../
toPath2"
}

http://example.com/
fromPath

http://example.com/
toPath1/../toPath2

Path with syntax:
"mappings": {
 "/fromPath;v=1.1": "/toPath,
1.1"
}

http://example.com/
fromPath;v=1.1

http://example.com/
toPath,1.1

Path with syntax:
"mappings": {
 "/$fromPath": "/$toPath"
}

http://example.com/
$fromPath

http://example.com/
$toPath

Path with query
parameters "mappings": {

 "/fromPath": "/toPath"
}

http://example.com/
fromPath?
param1¶m2=2

http://example.com/
toPath?
param1¶m2=2

Path with fragment
"mappings": {
 "/fromPath": "/toPath"
}

http://example.com/
fromPath#fragment

http://example.com/
toPath#fragment

Reference PingGateway

890 Copyright © 2025 Ping Identity Corporation

Example route

The example route changes a request URL as follows:

The baseURI overrides the scheme, host, and port of a request URL.

The UriPathRewriteFilter remaps the path of a request URL.

Requests to http://ig.example.com:8080/mylogin are mapped to http://app.example.com:8081/login .

Requests to http://ig.example.com:8080/welcome are mapped to http://app.example.com:8081/home .

Requests to http://ig.example.com:8080/other are mapped to http://app.example.com:8081/not-found , and result
in an HTTP 404.

Requests to http://ig.example.com:8080/badurl are mapped to the invalid URL http://app.example.com:8081[, and
invoke the failure handler.

{
 "name": "UriPathRewriteFilter",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "UriPathRewriteFilter",
 "config": {
 "mappings": {
 "/mylogin": "/login",
 "/welcome": "/home",
 "/other": "/not-found",
 "/badurl": "["
 },
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": [
 "text/plain"
]
 },
 "entity": "Invalid URL produced"
 }
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 }
}

More information

org.forgerock.openig.filter.UriPathRewriteFilter

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 891

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/UriPathRewriteFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/UriPathRewriteFilter.html

RFC 3986: Path

UserProfileFilter

Queries AM to retrieve the profile attributes of an user identified by their username .

Only profile attributes that are enabled in AM can be returned by the query. The roles field is not returned.

The data is made available to downstream PingGateway filters and handlers, in the context UserProfileContext.

Usage

{
 "name": string,
 "type": "UserProfileFilter",
 "config": {
 "username": runtime expression<string>,
 "userProfileService": UserProfileService reference
 }
}

Properties

"username": runtime expression<string>, required

The username of an AM subject. This filter retrieves profile attributes for the subject.

"userProfileService": UserProfileService reference, required

The service to retrieve profile attributes from AM, for the subject identified by username .

"userProfileService": {
 "type": "UserProfileService",
 "config": {
 "amService": AmService reference,
 "cache": object,
 "profileAttributes": [configuration expression<string>, ...],
 "realm": configuration expression<string>
 }
}

"amService": AmService reference, required

The AmService heap object to use for the following properties:

agent , the credentials of the PingGateway agent in AM. When the agent is authenticated, the token can be
used for tasks such as getting the user’s profile, making policy evaluations, and connecting to the AM
notification endpoint.

url : URL of the AM server where the user is authenticated.

amHandler : Handler to use when communicating with AM to fetch the requested user’s profile.

realm : Realm of the PingGateway agent in AM.

•

◦

◦

•

Reference PingGateway

892 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc3986#section-3.3
https://www.rfc-editor.org/rfc/rfc3986#section-3.3

version : The version of the AM server.

The AM version is derived as follows, in order of precedence:

Discovered value: AmService discovers the AM version. If version is configured with a different
value, AmService ignores the value of version and issues a warning.

Value in version : AmService cannot discover the AM version, and version is configured.

Default value of AM 6: AmService cannot discover the AM version, and version is not configured.

"cache": object, optional

Caching of AM user profiles, based on Caffeine. For more information, see the GitHub entry, Caffeine.

When caching is enabled, PingGateway can reuse cached profile attributes without repeatedly querying AM. When
caching is disabled, PingGateway must query AM for each request, to retrieve the required user profile attributes.

Default: No cache.

"cache": {
 "enabled": configuration expression<boolean>,
 "executor": Executor reference,
 "maximumSize": configuration expression<number>,
 "maximumTimeToCache": configuration expression<duration>,
}

enabled: configuration expression<boolean>,optional

Enable or disable caching of user profiles. When false , the cache is disabled but the cache configuration is
maintained.

Default: true when cache is configured

executor: Executor reference, optional

An executor service to schedule the execution of tasks, such as the eviction of entries in the cache.

Default: ForkJoinPool.commonPool()

"maximumSize": configuration expression<number>, optional

The maximum number of entries the cache can contain.

Default: Unlimited/unbound

maximumTimeToCache: configuration expression<duration>, required

The maximum duration for which to cache user profiles.

The duration cannot be zero .

profileAttributes: array of configuration expression<strings>, optional

List of one or more fields to return and store in UserProfileContext.

•

◦

◦

◦

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 893

https://github.com/ben-manes/caffeine
https://github.com/ben-manes/caffeine

Field names are defined by the underlying repository in AM. When AM is installed with the default configuration,
the repository is PingDS.

The following convenience accessors are provided for commonly used fields:

cn : Retrieved through ${contexts.userProfile.commonName}

dn : Retrieved through ${contexts.userProfile.distinguishedName}

realm : Retrieved through ${contexts.userProfile.realm}

username : Retrieved through ${contexts.userProfile.username}

All other available fields can be retrieved through ${contexts.userProfile.rawInfo} and $
{contexts.userProfile.asJsonValue()} .

When profileAttributes is configured, the specified fields and the following fields are returned: username , _id ,
and _rev .

Default: All available fields are returned.

"realm": configuration expression<string>, optional

The AM realm where the subject is authenticated.

Default: The realm declared for amService .

Example

For examples that use the UserProfileFilter, see Pass profile data downstream.

More information

org.forgerock.openig.openam.UserProfileFilter

org.forgerock.openig.tools.userprofile.UserProfileService

org.forgerock.openig.openam.UserProfileContext

UserProfileContext

AM’s Authorization guide

Decorators

Decorators are heap objects to extend what other objects can do. PingGateway defines baseURI , capture , and timer
decorators that you can use without explicitly configuring them.

For more information, refer to Decorators.

•

•

•

•

Reference PingGateway

894 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/UserProfileFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/UserProfileFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/userprofile/UserProfileService.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/userprofile/UserProfileService.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/UserProfileContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/UserProfileContext.html
https://docs.pingidentity.com/pingam/7.5/authorization-guide/
https://docs.pingidentity.com/pingam/7.5/authorization-guide/

BaseUriDecorator

Overrides the scheme, host, and port of the existing request URI, rebasing the URI and so making requests relative to a new base
URI. Rebasing changes only the scheme, host, and port of the request URI. Rebasing does not affect the path, query string, or
fragment.

Decorator Usage

{
 "name": string,
 "type": "BaseUriDecorator"
}

A BaseUriDecorator does not have configurable properties.

PingGateway creates a default BaseUriDecorator named baseURI at startup time in the top-level heap, so you can use baseURI as
the decorator name without adding the decorator declaration

Decorated Object Usage

{
 "name": string,
 "type": string,
 "config": object,
 decorator name: runtime expression<url>
}

"name": string, required except for inline objects

The unique name of the object, just like an object that isn’t decorated.

"type": <string>, required

The class name of the decorated object, which must be either a Filters or a Handlers.

"config": object required unless empty

The configuration of the object, just like an object that is not decorated

decorator name: runtime expression<url>, required

The scheme, host, and port of the new base URI. The port is optional when using the defaults (80 for HTTP, 443 for HTTPS).

The value of the string must not contain underscores, and must conform to the syntax specified in RFC 3986.

Examples

Add a custom decorator to the heap named myBaseUri:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 895

https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc3986.txt

{
 "name": "myBaseUri",
 "type": "BaseUriDecorator"
}

Set a Router’s base URI to https://www.example.com:8443 :

{
 "name": "Router",
 "type": "Router",
 "myBaseUri": "https://www.example.com:8443/"
}

More information

org.forgerock.openig.decoration.baseuri.BaseUriDecorator

CaptureDecorator

Captures request and response messages in SLF4J logs, named in this format:

org.forgerock.openig.decoration.capture.CaptureDecorator.<decoratorName>.<decoratedObjectName>

If the decorated object isn’t named, the object path is used in the log.

For information about using default or custom logging, refer to Manage logs.

Decorator Usage

{
 "name": string,
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": configuration expression<boolean>,
 "captureContext": configuration expression<boolean>,
 "maxEntityLength": configuration expression<number>,
 "masks": object
 }
}

emergency_home
During debugging, consider using a CaptureDecorator to capture the entity and context of requests and responses.
However, increased logging consumes resources, such as disk space, and can cause performance issues. In
production, reduce logging by disabling the CaptureDecorator properties captureEntity and captureContext , or
setting maxEntityLength .

Important

Reference PingGateway

896 Copyright © 2025 Ping Identity Corporation

https://www.example.com:8443
https://www.example.com:8443
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/decoration/baseuri/BaseUriDecorator.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/decoration/baseuri/BaseUriDecorator.html

"captureEntity": configuration expression<boolean>, optional

A flag for capture of the message entity:

true : Capture the request and response message entity and write it to the logs. The message entity is the body of
the HTTP message, which can be a JSON document, XML, HTML, image, or other information.

When the message is binary, PingGateway writes a [binary entity] .

When streaming is enabled in admin.json, the decorator interrupts streaming for the captured request or response
until the whole entity is captured.

false : Don’t capture the message entity.

If the Content-Type header is set for a request or response, the decorator uses it to decode the request or response
messages, and then writes them to the logs. If the Content-Type header isn’t set, the decorator doesn’t write the request
or response messages to the logs.

Default: false

"captureContext": configuration expression<boolean>, optional

A flag for capture of contextual data about the handled request, such as client, session, authentication identity,
authorization identity, or any other state information associated with the request:

true : Capture contextual data about the handled request.

The context is captured as JSON. The context chain is used when processing the request inside PingGateway in the
filters and handlers.

false : Don’t capture contextual data about the handled request.

Default: false

"maxEntityLength": configuration expression<number>, optional

The maximum number of bytes that can be captured for an entity. This property is used when captureEntity is true .

If the captured entity is bigger than maxEntityLength , everything up to maxEntityLength is captured, and an [entity
truncated] message is written in the log.

Set maxEntityLength to be big enough to allow capture of normal entities, but small enough to prevent excessive
memory use or OutOfMemoryError errors. Setting maxEntityLength to 2 GB or more causes an exception at startup.

Default: 524 288 bytes (512 KB)

"masks": object, optional

The configuration to mask the values of headers and attributes in the logs.

For an example, refer to Masking Values of Headers and Attributes.

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 897

{
 "masks": {
 "headers": [pattern, ...],
 "trailers": [pattern, ...]
 "attributes": [pattern, ...]
 "mask": [configuration expression<string>, ...]
 }
}

"headers": array of patterns, optional

The case-insensitive name of one or more headers whose value to mask in the logs.

The following value masks headers called X-OpenAM-Username , X-OpenAM-Password and x-openam-token :

"headers": ["X-OpenAM-.*"]

Default: None

"trailers": array of patterns, optional

The case-insensitive name of one or more trailers whose value to mask in the logs.

The following value masks trailers called Expires :

"trailers": ["Expires"]

Default: None

"attributes": array of patterns, optional

The case-insensitive name of one or more attributes whose value to mask in the logs.

Default: None

"mask": configuration expression<string>, optional

Text to replace the masked header value or attribute value in the logs.

Default: *****

Decorated Object Usage

{
 "name": string,
 "type": string,
 "config": object,
 decorator name: capture point(s)
}

Reference PingGateway

898 Copyright © 2025 Ping Identity Corporation

"name": string, required except for inline objects

The unique name of the decorated object.

"type": string, required except for inline objects, required_

The class name of the decorated object, which must be either a Filter or a Handler. See also Filters and Handlers.

"config": object required unless empty

The configuration of the decorated object, as documented in the object reference page.

decorator name: capture point(s), optional

The decorator name must match the name of the CaptureDecorator. For example, if the CaptureDecorator has "name":
"capture" , then decorator name is capture .

The capture point(s) are either a single string, or an array of strings. The strings are documented here in lowercase, but are
not case-sensitive:

"all"

Capture at all available capture points.

"none"

Disable capture. If none is configured with other capture points, none takes precedence.

"request"

Capture the request as it enters the Filter or Handler.

"filtered_request"

Capture the request as it leaves the Filter. Only applies to Filters.

"response"

Capture the response as it enters the Filter or leaves the Handler.

"filtered_response"

Capture the response as it leaves the Filter. Only applies to Filters.

Examples

Log the entity

The following example decorator is configured to log the entity:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 899

{
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true
 }
}

Do not log the entity

The following example decorator is configured not to log the entity:

{
 "name": "capture",
 "type": "CaptureDecorator"
}

Log the context

The following example decorator is configured to log the context in JSON format, excluding the request and the response:

{
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureContext": true
 }
}

Log requests and responses with the entity

The following example decorator is configured to log requests and responses with the entity, before sending the request and
before returning the response:

Reference PingGateway

900 Copyright © 2025 Ping Identity Corporation

{
 "heap": [
 {
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true
 }
 },
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "capture": [
 "request",
 "response"
]
 }
],
 "handler": "ReverseProxyHandler"
}

Capture transformed requests and responses

The following example uses the default CaptureDecorator to capture transformed requests and responses, as they leave filters:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 901

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "X-RequestHeader": [
 "Capture at filtered_request point",
 "And at filtered_response point"
]
 }
 }
 },
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "RESPONSE",
 "add": {
 "X-ResponseHeader": [
 "Capture at filtered_response point"
]
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html; charset=UTF-8"]
 },
 "entity": "<html><body><p>Hello world!</p></body></html>"
 }
 }
 }
 },
 "capture": [
 "filtered_request",
 "filtered_response"
]
}

Capture the context as JSON

The following example captures the context as JSON, excluding the request and response, before sending the request and before
returning the response:

Reference PingGateway

902 Copyright © 2025 Ping Identity Corporation

{
 "heap": [
 {
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureContext": true
 }
 },
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "capture": [
 "request",
 "response"
]
 }
],
 "handler": "ReverseProxyHandler"
}

Mask values of headers and attributes

This example captures the context, and then masks the value of the cookies and credentials in the logs. To try it, set up the
example in Password replay from a file, replace that route with the following route, and search the route log file for the text
MASKED :

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 903

{
 "heap": [{
 "name": "maskedCapture",
 "type": "CaptureDecorator",
 "config": {
 "captureContext": true,
 "masks": {
 "headers": ["cookie*", "set-cookie*"],
 "attributes": ["credentials"],
 "mask": "MASKED"
 }
 }
 }],
 "name": "02-file-masked",
 "condition": "${find(request.uri.path, '^/profile')}",
 "maskedCapture": "all",
 "handler": {
 "type": "Chain",
 "baseURI": "http://app.example.com:8081",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${find(request.uri.path, '^/profile/george') and (request.method == 'GET')}",
 "credentials": {
 "type": "FileAttributesFilter",
 "config": {
 "file": "/tmp/userfile.txt",
 "key": "email",
 "value": "${igDemoEmail}",
 "target": "${attributes.credentials}"
 }
 },
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.credentials.username}"
],
 "password": [
 "${attributes.credentials.password}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

More information

org.forgerock.openig.decoration.capture.CaptureDecorator

Reference PingGateway

904 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/decoration/capture/CaptureDecorator.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/decoration/capture/CaptureDecorator.html

TimerDecorator

Records time to process filters, handlers, and access token resolvers.

Decorator usage

{
 "name": string,
 "type": "TimerDecorator",
 "config": {
 "timeUnit": configuration expression<string>
 }
}

PingGateway configures a default TimerDecorator named timer . Use timer as the decorator name without explicitly declaring a
decorator named timer.

"timeUnit": configuration expression<string>, optional

Unit of time used in the decorator output. The unit of time can be any unit allowed in the <duration> field.

Default: ms

Decorated object usage

{
 "name": string,
 "type": string,
 "config": object,
 decorator name: boolean
}

"name": string, required except for inline objects

The unique name of the object to decorate.

"type": string, required

The class name of the object to decorate, which must be a Filter, Handler, or the accessTokenResolver property of
OAuth2ResourceServerFilter.

"config": object, optional

The configuration of the object, just like an object that is not decorated.

Default: Empty

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 905

decorator name: configuration expression<boolean>, required

PingGateway looks for the presence of the decorator name field for the TimerDecorator:

true : Activate the timer

false : Deactivate the TimerDecorator

Timer metrics

Learn about Timer metrics:

Timer metrics at the Prometheus Scrape Endpoint

Timer metrics at the Common REST Monitoring Endpoint (deprecated)

Timer metrics in SLF4J logs are named in this format:

<className>.<decoratorName>.<decoratedObjectName>

If the decorated object is not named, the object path is used in the log.

When a route’s top-level handler is decorated, the timer decorator records the elapsed time for operations traversing the whole
route:

2018-09-04T12:16:08,994Z | INFO | I/O dispatcher 17 | o.f.o.d.t.T.t.top-level-handler | @myroute | Elapsed time: 13
ms

When an individual handler in the route is decorated, the timer decorator records the elapsed time for operations traversing the
handler:

2018-09-04T12:44:02,161Z | INFO | http-nio-8080-exec-8 | o.f.o.d.t.T.t.StaticResponseHandler-1 | @myroute | Elapsed
time: 1 ms

Examples

The following example uses the default timer decorator to record the time that TokenIntrospectionAccessTokenResolver takes to
process a request:

•

•

•

•

Reference PingGateway

906 Copyright © 2025 Ping Identity Corporation

{
 "accessTokenResolver": {
 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 ...
 },
 "timer": true
 }
}

The following example defines a customized timer decorator in the heap, and uses it to record the time that the
SingleSignOnFilter takes to process a request:

{
 "heap": [
 {
 "name": "mytimerdecorator",
 "type": "TimerDecorator",
 "config": {
 "timeUnit": "nano"
 }
 },
 ...
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 ...
 },
 "mytimerdecorator": true
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

More information

org.forgerock.openig.decoration.timer.TimerDecorator

Audit framework

PingGateway uses the ForgeRock common audit framework to record audit events, using an implementation that is common
across the ForgeRock platform.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 907

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/decoration/timer/TimerDecorator.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/decoration/timer/TimerDecorator.html

Audit logs use timestamps in UTC format (for example, 2018-07-18T08:48:00.160Z), a unified standard that is not affected by time
changes for daylight savings. The timestamps format is not configurable.

The following objects are available for auditing:

AuditService

The audit service is based on the ForgeRock common audit event framework to record access audit events. For information
about how to record other types of audit event, refer to Record custom audit events.

By default, no routes in a configuration are audited; the NoOpAuditService object type provides an empty audit service to the
top-level heap and its child routes. PingGateway provides a default empty service based on the NoOpAuditService type. The top-
level heap and child routes inherit from the setting and use a service equivalent to the following declaration:

{
 "name": "AuditService",
 "type": "NoOpAuditService"
}

Configure auditing in the following ways:

Override the NoOpAuditService for all routes in the configuration

Define an AuditService object named AuditService in config.json . No other configuration is required; all routes use
the same AuditService.

Configure an audit service that can be optionally used by all routes in the configuration

Do both of the following:

In config.json in the top-level heap, define an AuditService object that is not named AuditService .

In a route, configure the Route property auditService to refer to the name of the declared AuditService
heaplet.

Configure an audit service specifically for a route

Do one of the following:

Define an AuditService object named AuditService in the route heap.

In the route heap or a parent heap, define an AuditService object that is not named AuditService ; configure the
Route property auditService to refer to the name of the declared AuditService heaplet.

Configure the Route property auditService with an inline AuditService object.

One configuration can contain multiple AuditServices.

When you define multiple AuditServices that use JsonAuditEventHandler or CsvAuditEventHandler, configure each of the event
handlers with a different logDirectory . This prevents the AuditServices from logging to the same audit logging file.

•

•

•

•

•

Reference PingGateway

908 Copyright © 2025 Ping Identity Corporation

Usage

{
 "name": string,
 "type": "AuditService",
 "config": {
 "config": object,
 "eventHandlers": [object, ...],
 "topicsSchemasDirectory": configuration expression<string>
 }
}

Properties

"config": object, required

Configures the audit service itself, rather than event handlers. If the configuration uses only default settings, you can omit
the field instead of including an empty object as the field value.

{
 "config": {
 "handlerForQueries": configuration_expression<string>,
 "availableAuditEventHandlers": [configuration_expression<string>, ...],
 "caseInsensitiveFields": [configuration_expression<string>, ...],
 "filterPolicies": {
 "field": {
 "includeIf": [configuration_expression<string>, ...],
 "excludeIf": [configuration_expression<string>, ...]
 }
 }
 }
}

"handlerForQueries": configuration expression<string>, optional

The name of the event handler to use when querying audit event messages over REST.

"availableAuditEventHandlers": array of configuration expression<strings>, optional

A list of fully qualified event handler class names for event handlers available to the audit service.

"caseInsensitiveFields": array of configuration expression<strings>, optional

A list of audit event fields to be considered as case-insensitive for filtering. The fields are referenced using JSON
pointer syntax. The list can be null or empty.

Default: /access/http/request/headers and /access/http/response/headers fields are considered case-
insensitive for filtering. All other fields are considered case-sensitive.

"filterPolicies": object, optional

To prevent logging of sensitive data for an event, the Common Audit implementation uses a safelist to specify
which event fields appear in the logs. By default, only event fields that are safelisted are included in the audit event
logs. For more information about safelisting, refer to Safelisting audit event fields for the logs.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 909

"field": object, optional

This property specifies non-safelisted event fields to include in the logs, and safelisted event fields to
exclude from the logs.

If includeIf and excludeIf are specified for the same field, excludeIf takes precedence.

Audit event fields use JSON pointer notation, and are taken from the JSON schema for the audit event
content.

Default: Include only safelisted event fields in the logs.

"includeIf": array of configuration expression<strings>, optional:

A list of non-safelisted audit event fields to include in the logs. Specify the topic and the hierarchy to
the field. Any child fields of the specified field are encompassed.

"excludeIf": array of configuration expression<strings>, optional:

A list of safelisted audit event fields to exclude from the logs. Specify the topic and the hierarchy to
the field. Any child fields of the specified field are encompassed.

The following example excludes fields for the access topic:

{
 "field": {
 "excludeIf": [
 "/access/http/request/headers/host",
 "/access/http/request/path",
 "/access/server",
 "/access/response"
]
 }
}

For an example route that excludes fields, see Exclude safelisted audit event fields from logs.

"eventHandlers": array of Event Handler objects, required

An array of one or more audit event handler configuration objects to deal with audit events.

The configuration of the event handler depends on type of event handler. PingGateway supports the event handlers listed
in AuditFramework.

emergency_home
Before you include non-safelisted event fields in the logs, consider the impact on
security. Including some headers, query parameters, or cookies in the logs could cause
credentials or tokens to be logged, and allow anyone with access to the logs to
impersonate the holder of these credentials or tokens.

Important

Reference PingGateway

910 Copyright © 2025 Ping Identity Corporation

"topicsSchemasDirectory": configuration expression<string>, optional

Directory containing the JSON schema for the topic of a custom audit event. The schema defines which fields are included
in the topic. For information about the syntax, see JSON Schema.

Default: $HOME/.openig/audit-schemas (Windows, %appdata%\OpenIG\audit-schemas)

For an example of how to configure custom audit events, see Record custom audit events.

The following example schema includes the mandatory fields, _id , timestamp , transactionId , and eventName , and an
optional customField :

{
 "schema": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "/",
 "type": "object",
 "properties": {
 "_id": {
 "type": "string"
 },
 "timestamp": {
 "type": "string"
 },
 "transactionId": {
 "type": "string"
 },
 "eventName": {
 "type": "string"
 },
 "customField": {
 "type": "string"
 }
 }
 }
}

Example

The following example audit service logs access event messages in a comma-separated variable file, named /path/to/audit/
logs/access.csv :

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 911

https://json-schema.org
https://json-schema.org

{
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "config": {},
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "config": {
 "name": "csv",
 "logDirectory": "/path/to/audit/logs",
 "topics": [
 "access"
]
 }
 }
]
 }
}

The following example route uses the audit service:

{
 "handler": "ReverseProxyHandler",
 "auditService": "AuditService"
}

More information

NoOpAuditService

org.forgerock.audit.AuditService

CsvAuditEventHandler

An audit event handler that responds to events by logging messages to files in comma-separated variable (CSV) format.

Declare the configuration in an audit service, as described in AuditService.

emergency_home
The CSV handler does not sanitize messages when writing to CSV log files.
Do not open CSV logs in spreadsheets or other applications that treat data as code.

Important

Reference PingGateway

912 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/AuditService.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/AuditService.html

Usage

{
 "class": "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "config": {
 "name": configuration expression<string>,
 "logDirectory": configuration expression<string>,
 "topics": [configuration expression<string>, ...],
 "enabled": configuration expression<boolean>,
 "formatting": {
 "quoteChar": configuration expression<string>,
 "delimiterChar": configuration expression<string>,
 "endOfLineSymbols": configuration expression<string>
 },
 "buffering": {
 "enabled": configuration expression<boolean>,
 "autoFlush": configuration expression<boolean>
 },
 "security": {
 "enabled": configuration expression<boolean>,
 "filename": configuration expression<string>,
 "password": configuration expression<string>,
 "signatureInterval": configuration expression<duration>
 },
 "fileRotation": {
 "rotationEnabled": configuration expression<boolean>,
 "maxFileSize": configuration expression<number>,
 "rotationFilePrefix": configuration expression<string>,
 "rotationFileSuffix": configuration expression<string>,
 "rotationInterval": configuration expression<duration>,
 "rotationTimes": [configuration expression<duration>, ...]
 },
 "fileRetention": {
 "maxDiskSpaceToUse": configuration expression<number>,
 "maxNumberOfHistoryFiles": configuration expression<number>,
 "minFreeSpaceRequired": configuration expression<number>
 },
 "rotationRetentionCheckInterval": configuration expression<duration>
 }
}

The values in this configuration object can use expressions as long as they resolve to the correct types for each field. For details
about expressions, see Expressions.

Configuration

"name": configuration expression<string>, required

The name of the event handler.

"logDirectory": configuration expression<string>, required

The file system directory where this event handler writes log files.

When multiple AuditServices are defined in the deployment, prevent them from logging to the same audit logging file by
setting different values for logDirectory .

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 913

"topics": array of configuration expression<strings>, required

One or more topics that this event handler intercepts. PingGateway can record the following audit event topics:

access : Log access audit events. Access audit events occur at the system boundary, and include the arrival of the
initial request and departure of the final response.

To record access audit events, configure AuditService inline in a route, or in the heap.

customTopic: Log custom audit events. To create a topic for a custom audit event, include a JSON schema for the
topic in your PingGateway configuration.

To record custom audit events, configure AuditService in the heap, and refer to it from the route or subroutes. For
an example of how to set up custom audit events, refer to Record custom audit events.

"enabled": configuration expression<boolean>, optional

Whether this event handler is active.

Default: true

"formatting": object, optional

Formatting settings for CSV log files.

The formatting object has the following fields:

"quoteChar": configuration expression<string>, optional

A single character to quote CSV entries.

Default: "

"delimiterChar": configuration expression<string>, optional

A single character to delimit CSV entries.

Default: ,

"endOfLineSymbols": configuration expression<string>, optional

A character or characters to separate a line.

Default: System-dependent line separator defined for the JVM

"buffering": object, optional

Do not enable buffering when security is configured for tamper-evident logging.

Buffering settings for writing CSV log files. The default is for messages to be written to the log file for each event.

The buffering object has the following fields:

"enabled": configuration expression<boolean>, optional

Whether log buffering is enabled.

•

•

Reference PingGateway

914 Copyright © 2025 Ping Identity Corporation

Default: false

"autoFlush": configuration expression<boolean>, optional

Whether events are automatically flushed after being written.

Default: true

"security": object, optional

When security is configured for tamper-evident logging, do not enable buffering .

Security settings for CSV log files. These settings govern tamper-evident logging, whereby messages are signed. By default
tamper-evident logging is not enabled.

The security object has the following fields:

"enabled": configuration expression<boolean>, optional

Whether tamper-evident logging is enabled.

Default: false

Tamper-evident logging depends on a specially prepared keystore. For an example, see Recording Access Audit
Events in CSV.

"filename": configuration expression<string>, required

File system path to the keystore containing the private key for tamper-evident logging.

The keystore must be a keystore of type JCEKS . For an example, see Recording access audit events in CSV.

"password": configuration expression<string>, required

The password for the keystore for tamper-evident logging.

This password is used for the keystore and for private keys. For an example, see Recording access audit events in
CSV.

"signatureInterval": configuration expression<duration>, required

The time interval after which to insert a signature in the CSV file. This duration must not be zero, and must not be
unlimited.

"fileRotation": object, optional

File rotation settings for log files.

"rotationEnabled": configuration expression<boolean>, optional

A flag to enable rotation of log files.

Default: false.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 915

"maxFileSize": configuration expression<number>, optional

The maximum file size of an audit log file in bytes. A setting of 0 or less indicates that the policy is disabled.

Default: 0.

"rotationFilePrefix": configuration expression<string>, optional

The prefix to add to a log file on rotation. This has an effect when time-based file rotation is enabled.

"rotationFileSuffix": configuration expression<string>, optional

The suffix to add to a log file on rotation, possibly expressed in SimpleDateFormat.

This has an effect when time-based file rotation is enabled.

Default: -yyyy.MM.dd-HH.mm.ss , where yyyy characters are replaced with the year, MM characters are replaced
with the month, dd characters are replaced with the day, HH characters are replaced with the hour (00-23), mm
characters are replaced with the minute (00-60), and ss characters are replaced with the second (00-60).

"rotationInterval": configuration expression<duration>, optional

The time interval after which to rotate log files. This duration must not be zero. This has the effect of enabling time-
based file rotation.

"rotationTimes": array of configuration expression<durations>, optional

The durations, counting from midnight UTC, after which to rotate files.

The following example schedules rotation six and twelve hours after midnight:

"rotationTimes": ["6 hours", "12 hours"]

This has the effect of enabling time-based file rotation.

"fileRetention": object, optional

File retention settings for log files.

"maxNumberOfHistoryFiles": configuration expression<number>, optional

The maximum number of historical audit files that can be stored. If the number exceeds this maximum, older files
are deleted. A value of -1 disables purging of old log files.

Default: 0.

"maxDiskSpaceToUse": configuration expression<number>, optional

The maximum disk space in bytes that can be used for audit files. If the audit files use more than this space, older
files are deleted. A negative or zero value indicates that this policy is disabled, and historical audit files can use
unlimited disk space.

Default: 0

Reference PingGateway

916 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/SimpleDateFormat.html

"minFreeSpaceRequired": configuration expression<string>, optional

The minimum free disk space in bytes required on the system that houses the audit files. If the free space drops
below this minimum, older files are deleted. A negative or zero value indicates that this policy is disabled, and no
minimum space requirements apply.

Default: 0

"rotationRetentionCheckInterval": configuration expression<string>, optional

Interval at which to periodically check file rotation and retention policies. The interval must be a duration, for example, 5
seconds, 5 minutes, or 5 hours.

PingGateway checks whether to rotate the current audit file at each interval. If so, it also checks whether to retain old audit
files.

Default: 5 seconds

Example

For information about how to record audit events in a CSV file, see Recording Access Audit Events in CSV.

The following example configures a CSV audit event handler to write a log file, /path/to/audit/logs/access.csv , that is signed
every 10 seconds to make it tamper-evident:

{
 "name": "csv",
 "topics": [
 "access"
],
 "logDirectory": "/path/to/audit/logs/",
 "security": {
 "enabled": "true",
 "filename": "/path/to/secrets/audit-keystore",
 "password": "password",
 "signatureInterval": "10 seconds"
 }
}

More information

org.forgerock.audit.handlers.csv.CsvAuditEventHandler

ElasticsearchAuditEventHandler (deprecated)

emergency_home
This object is deprecated; use one of the following objects instead:

SyslogAuditEventHandler
JsonAuditEventHandler, with elasticsearchCompatible set to true

For more information, refer to the Deprecated section of the Release Notes.

Important

•
•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 917

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/csv/CsvAuditEventHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/csv/CsvAuditEventHandler.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

An audit event handler that responds to events by logging messages in the Elasticsearch search and analytics engine. For
information about downloading and installing Elasticsearch, refer to the Elasticsearch Getting started document.

Usage

Configure the ElasticsearchAuditEventHandler within an AuditService:

{
 "type": "AuditService",
 "config": {
 "config": {},
 "eventHandlers": [{
 "class": "org.forgerock.audit.handlers.elasticsearch.ElasticsearchAuditEventHandler",
 "config": {
 "name": configuration expression<string>,
 "topics": [configuration expression<string>, ...],
 "connection": {
 "host": configuration expression<string>,
 "port": configuration expression<number>,
 "useSSL": configuration expression<boolean>,
 "username": configuration expression<string>,
 "password": configuration expression<string>
 },
 "indexMapping": {
 "indexName": configuration expression<string>
 },
 "buffering": {
 "enabled": configuration expression<boolean>,
 "writeInterval": configuration expression<duration>,
 "maxSize": configuration expression<number>,
 "maxBatchedEvents": configuration expression<number>
 }
 }
 }
 }
}

The ElasticsearchAuditEventHandler relays audit events to Elasticsearch through the HTTP protocol, using a handler defined in a
heap. The handler can be of any kind of handler, from a simple ClientHandler to a complex Chain, composed of multiple filters
and a final handler or ScriptableHandler.

PingGateway searches first for a handler named ElasticsearchClientHandler . If not found, PingGateway searches for a client
handler named AuditClientHandler . If not found, PingGateway uses the route’s default client handler, named ClientHandler .

The following example configures a ClientHandler named ElasticsearchClientHandler :

{
 "name": "ElasticsearchClientHandler",
 "type": "ClientHandler",
 "config": {}
}

The following example configures a ScriptableHandler named AuditClientHandler :

Reference PingGateway

918 Copyright © 2025 Ping Identity Corporation

http://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html

{
 "name": "AuditClientHandler",
 "type": "ScriptableHandler",
 "config": {}
}

Properties

"name": configuration expression<string>, required

The name of the event handler.

"topics": array of configuration expression<strings>, required

One or more topics that this event handler intercepts. PingGateway can record the following audit event topics:

access : Log access audit events. Access audit events occur at the system boundary, and include the arrival of the
initial request and departure of the final response.

To record access audit events, configure AuditService inline in a route, or in the heap.

customTopic: Log custom audit events. To create a topic for a custom audit event, include a JSON schema for the
topic in your PingGateway configuration.

To record custom audit events, configure AuditService in the heap, and refer to it from the route or subroutes. For
an example of how to set up custom audit events, refer to Record custom audit events.

"connection": object, optional

Connection settings for sending messages to Elasticsearch. If this object is not configured, it takes default values for its
fields. This object has the following fields:

"host": configuration expression<string>, optional

Hostname or IP address of Elasticsearch.

Default: localhost

"port": configuration expression<number>, optional

The port used by Elasticsearch. The value must be between 0 and 65535.

Default: 9200

"useSSL": configuration expression<boolean>, optional

Setting to use or not use SSL/TLS to connect to Elasticsearch.

Default: false

"username": configuration expression<string>, optional

Username when basic authentication is enabled through Elasticsearch Shield.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 919

"password": configuration expression<string>, optional

Password when basic authentication is enabled through Elasticsearch Shield.

"indexMapping": object, optional

Defines how an audit event and its fields are stored and indexed.

"indexName": configuration expression<string>, optional

The index name. Set this parameter if the default name audit conflicts with an existing Elasticsearch index.

Default: audit .

"buffering": object, optional

Settings for buffering events and batch writes.

"enabled": configuration expression<boolean>, optional

Setting to use or not use log buffering.

Default: false.

"writeInterval": configuration expression<duration>

The interval at which to send buffered event messages to Elasticsearch. If buffering is enabled, this interval must be
greater than 0.

Default: 1 second

"maxBatchedEvents": configuration expression<number>, optional

The maximum number of event messages in a batch write to Elasticsearch for each writeInterval .

Default: 500

"maxSize": configuration expression<number>, optional

The maximum number of event messages in the queue of buffered event messages.

Default: 10000

Example

In the following example, an Elasticsearch audit event handler logs audit events for access. For an example of setting up and
testing this configuration, refer to [maintenance-guide:].

Reference PingGateway

920 Copyright © 2025 Ping Identity Corporation

{
 "name": "30-elasticsearch",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/elasticsearch-audit')}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.elasticsearch.ElasticsearchAuditEventHandler",
 "config": {
 "name": "elasticsearch",
 "indexMapping": {
 "indexName": "audit"
 },
 "connection": {
 "host": "localhost",
 "port": 9200,
 "useSSL": false
 },
 "topics": [
 "access"
]
 }
 }
]
 }
 }
],
 "auditService": "AuditService",
 "handler": "ReverseProxyHandler"
}

More information

org.forgerock.audit.handlers.elasticsearch.ElasticsearchAuditEventHandler

JdbcAuditEventHandler

An audit event handler that responds to events by logging messages to an appropriately configured relational database table.

Declare the configuration in an audit service, as described in AuditService.

To configure PingGateway to use the database, add the database .jar file containing the Driver as follows:

Create the directory $HOME/.openig/extra , where $HOME/.openig is the instance directory, and add .jar files to the
directory.

The JDBC handler library is in the lib directory.

Unpack the library, then find the examples under the db/ folder.

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 921

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/elasticsearch/ElasticsearchAuditEventHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/elasticsearch/ElasticsearchAuditEventHandler.html

Usage

{
 "class": "org.forgerock.audit.handlers.jdbc.JdbcAuditEventHandler",
 "config": {
 "name": configuration expression<string>,
 "topics": [configuration expression<string>, ...],
 "databaseType": configuration expression<string>,
 "enabled": configuration expression<boolean>,
 "buffering": {
 "enabled": configuration expression<boolean>,
 "writeInterval": configuration expression<duration>,
 "autoFlush": configuration expression<boolean>,
 "maxBatchedEvents": configuration expression<number>,
 "maxSize": configuration expression<number>,
 "writerThreads": configuration expression<number>
 },
 "connectionPool": {
 "driverClassName": configuration expression<string>,
 "dataSourceClassName": configuration expression<string>,
 "jdbcUrl": configuration expression<string>,
 "username": configuration expression<string>,
 "password": configuration expression<string>,
 "autoCommit": configuration expression<boolean>,
 "connectionTimeout": configuration expression<number>,
 "idleTimeout": configuration expression<number>,
 "maxLifetime": configuration expression<number>,
 "minIdle": configuration expression<number>,
 "maxPoolSize": configuration expression<number>,
 "poolName": configuration expression<string>
 },
 "tableMappings": [
 {
 "event": configuration expression<string>,
 "table": configuration expression<string>,
 "fieldToColumn": map or configuration expression<map>
 }
]
 }
}

Configuration

"name": configuration expression<string>, required

The name of the event handler.

"topics": array of configuration expression<strings>, required

One or more topics that this event handler intercepts. PingGateway can record the following audit event topics:

access : Log access audit events. Access audit events occur at the system boundary, and include the arrival of the
initial request and departure of the final response.

To record access audit events, configure AuditService inline in a route, or in the heap.

•

Reference PingGateway

922 Copyright © 2025 Ping Identity Corporation

customTopic: Log custom audit events. To create a topic for a custom audit event, include a JSON schema for the
topic in your PingGateway configuration.

To record custom audit events, configure AuditService in the heap, and refer to it from the route or subroutes. For
an example of how to set up custom audit events, refer to Record custom audit events.

"databaseType": configuration expression<string>, required

The database type name.

Built-in support is provided for oracle , mysql , and h2 .

"enabled": configuration expression<boolean>, optional

Whether this event handler is active.

Default: true.

"buffering": object, optional

Buffering settings for sending messages to the database. The default is for messages to be written to the log file for each
event.

The buffering object has the following fields:

"enabled": configuration expression<boolean>, optional

Whether log buffering is enabled.

Default: false.

"writeInterval": configuration expression<duration>, required

The interval at which to send buffered event messages to the database.

This interval must be greater than 0 if buffering is enabled.

"autoFlush": configuration expression<boolean>, optional

Whether the events are automatically flushed after being written.

Default: true.

"maxBatchedEvents": configuration expression<number>, optional

The maximum number of event messages batched into a PreparedStatement.

Default: 100.

"maxSize": : configuration expression<number>, optional

The maximum size of the queue of buffered event messages.

Default: 5000.

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 923

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/PreparedStatement.html

"writerThreads": configuration expression<number>, optional

The number of threads to write buffered event messages to the database.

Default: 1.

"connectionPool": object, required

When a JdbcDataSource object named AuditService is defined in the route heap. This configuration is not required.

Connection pool settings for sending messages to the database.

"driverClassName": configuration expression<string>, optional

The class name of the driver to use for the JDBC connection. For example, with MySQL Connector/J, the class name
is com.mysql.jdbc.Driver .

"dataSourceClassName": configuration expression<string>, optional

The class name of the data source for the database.

"jdbcUrl": configuration expression<string>, required

The JDBC URL to connect to the database.

"username": configuration expression<string>, required

The username identifier for the database user with access to write the messages.

"password": configuration expression<number>, optional

The password for the database user with access to write the messages.

"autoCommit": configuration expression<boolean>, optional

Whether to commit transactions automatically when writing messages.

Default: true.

"connectionTimeout": configuration expression<number>, optional

The number of milliseconds to wait for a connection from the pool before timing out.

Default: 30000.

"idleTimeout": configuration expression<number>, optional

The number of milliseconds to allow a database connection to remain idle before timing out.

Default: 600000.

"maxLifetime": configuration expression<number>, optional

The number of milliseconds to allow a database connection to remain in the pool.

Default: 1800000.

Reference PingGateway

924 Copyright © 2025 Ping Identity Corporation

"minIdle": configuration expression<number>, optional

The minimum number of idle connections in the pool.

Default: 10.

"maxPoolSize": configuration expression<number>, optional

The maximum number of connections in the pool.

Default: 10.

"poolName": configuration expression<string>, optional

The name of the connection pool.

"tableMappings": array of objects, required

Table mappings for directing event content to database table columns.

A table mappings object has the following fields:

"event": configuration expression<string>, required

The audit event that the table mapping is for.

Set this to access .

"table": configuration expression<string>, required

The name of the database table that corresponds to the mapping.

"fieldToColumn": map or configuration expression<map>, required

A map of one or more data pairs with the format Map<String, String> , where:

The key is the name of an audit event field

The value is the name of a database column, or a configuration expression that evaluates to the name of a
database column

The following formats are allowed:

{
 "fieldToColumn": {
 "string": "configuration expression<string>",
 ...
 }
}

{
 "fieldToColumn": "configuration expression<map>"
}

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 925

Audit event fields use JSON pointer notation, and are taken from the JSON schema for the audit event content.

In the following example, the property is a map whose keys and values are strings representing the names of audit
event fields and database columns:

{
 "fieldToColumn": {
 "_id": "id",
 "timestamp": "timestamp_",
 ...
 }

Example

Examples including statements to create tables are provided in the JDBC handler library, forgerock-audit-handler-jdbc-
version.jar .

For an example of using JdbcAuditEventHandler, refer to Recording access audit events in a database.

In the following example, PingGateway events are logged to an h2 database:

Reference PingGateway

926 Copyright © 2025 Ping Identity Corporation

{
 "name": "audit-jdbc",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/audit-jdbc')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AuditDataSource",
 "type": "JdbcDataSource",
 "config": {
 "dataSourceClassName" : "org.h2.jdbcx.JdbcDataSource",
 "username" : "sa",
 "passwordSecretId" : "database.password",
 "secretsProvider" : "SystemAndEnvSecretStore-1",
 "properties" : {
 "url" : "jdbc:h2:tcp://localhost/~/test"
 }
 }
 },
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.jdbc.JdbcAuditEventHandler",
 "config": {
 "databaseType": "h2",
 "name": "jdbc",
 "topics": [
 "access"
],
 "tableMappings": [
 {
 "event": "access",
 "table": "audit.auditaccess",
 "fieldToColumn": {
 "_id": "id",
 "timestamp": "timestamp_",
 "eventName": "eventname",
 "transactionId": "transactionid",
 "userId": "userid",
 "trackingIds": "trackingids",
 "server/ip": "server_ip",
 "server/port": "server_port",
 "client/ip": "client_ip",
 "client/port": "client_port",
 "request/protocol": "request_protocol",
 "request/operation": "request_operation",
 "request/detail": "request_detail",
 "http/request/secure": "http_request_secure",
 "http/request/method": "http_request_method",
 "http/request/path": "http_request_path",
 "http/request/queryParameters": "http_request_queryparameters",
 "http/request/headers": "http_request_headers",
 "http/request/cookies": "http_request_cookies",
 "http/response/headers": "http_response_headers",

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 927

 "response/status": "response_status",
 "response/statusCode": "response_statuscode",
 "response/elapsedTime": "response_elapsedtime",
 "response/elapsedTimeUnits": "response_elapsedtimeunits"
 }
 }
]
 }
 }
]
 }
 }
],
 "auditService": "AuditService",
 "handler": "ReverseProxyHandler"
}

More information

org.forgerock.audit.handlers.jdbc.JdbcAuditEventHandler

JmsAuditEventHandler

The Java Message Service (JMS) is a Java API for sending asynchronous messages between clients. It wraps audit events in JMS
messages and publishes them in a JMS broker, which then delivers the messages to the appropriate destination.

The JMS API architecture includes a JMS provider and JMS clients, and supports the publish/subscribe messaging pattern. For more
information, refer to Basic JMS API Concepts

The JMS audit event handler does not support queries. To support queries, also enable a second handler that supports queries.

The ForgeRock JMS audit event handler supports JMS communication, based on the following components:

JMS message broker .jar files, to provide clients with connectivity, message storage, and message delivery functionality.

Add the .jar files to the configuration as follows:

Create the directory $HOME/.openig/extra , where $HOME/.openig is the instance directory, and add .jar files to the
directory.

JMS messages.

Destinations, maintained by a message broker. A destination can be a JMS topic, using publish/subscribe to take the
ForgeRock JSON for an audit event, wrap it into a JMS TextMessage, and send it to the broker.

JMS clients, to produce and/or receive JMS messages.

Depending on the configuration, some or all of these components are included in JMS audit log messages.

Declare the configuration in an audit service, as described in AuditService.

•

•

•

•

•

emergency_home
The example in this section is based on Apache ActiveMQ, but you can choose a different JMS message broker.

Important

Reference PingGateway

928 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/jdbc/JdbcAuditEventHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/jdbc/JdbcAuditEventHandler.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html#bnced
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html#bnced
http://activemq.apache.org/
http://activemq.apache.org/

Usage

{
 "name": string,
 "type": "AuditService",
 "config": {
 "config": {},
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.jms.JmsAuditEventHandler",
 "config": {
 "name": configuration expression<string>,
 "topics": [configuration expression<string>, ...],
 "deliveryMode": configuration expression<string>,
 "sessionMode": configuration expression<string>,
 "jndi": {
 "contextProperties": map,
 "topicName": configuration expression<string>,
 "connectionFactoryName": configuration expression<string>
 }
 }
 }]
 }
}

The values in this configuration object can use configuration expressions, as described in Configuration and Runtime
Expressions.

Configuration

For a list of properties in the "config" object, refer to JMS Audit Event Handler in IDM’s Integrator’s guide.

"name": configuration expression<string>, required

The name of the event handler.

"topics": array of configuration expression<strings>, required

One or more topics that this event handler intercepts. PingGateway can record the following audit event topics:

access : Log access audit events. Access audit events occur at the system boundary, and include the arrival of the
initial request and departure of the final response.

To record access audit events, configure AuditService inline in a route, or in the heap.

customTopic: Log custom audit events. To create a topic for a custom audit event, include a JSON schema for the
topic in your PingGateway configuration.

To record custom audit events, configure AuditService in the heap, and refer to it from the route or subroutes. For
an example of how to set up custom audit events, refer to Record custom audit events.

"deliveryMode": configuration expression<string>, required

Delivery mode for messages from a JMS provider. Set to PERSISTENT or NON_PERSISTENT .

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 929

https://docs.pingidentity.com/pingidm/7.5/audit-guide/audit-config-prop-jms.html
https://docs.pingidentity.com/pingidm/7.5/audit-guide/audit-config-prop-jms.html

"sessionMode": configuration expression<string>, required

Acknowledgement mode in sessions without transactions. Set to AUTO , CLIENT , or DUPS_OK .

"contextProperties":_map, optional_

Settings with which to populate the initial context.

The map values are evaluated as configuration expression<strings>.

The following properties are required when ActiveMQ is used as the message broker:

java.naming.factory.initial

For example, "org.apache.activemq.jndi.ActiveMQInitialContextFactory" .

To substitute a different JNDI message broker, change the JNDI context properties.

java.naming.provider.url

For example, "tcp://127.0.0.1:61616" .

To configure the message broker on a remote system, substitute the associated IP address.

To set up SSL, set up keystores and truststores, and change the value of the java.naming.provider.url to:

ssl://127.0.0.1:61617?
daemon=true&socket.enabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA,SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

topic.audit

For example, "audit" .

To use the JMS resources provided by your application server, leave this field empty. The values for topicName and
connectionFactoryName are then JNDI names that depend on the configuration of your application server.

"topicName": configuration expression<string>, required

JNDI lookup name for the JMS topic.

For ActiveMQ, this property must be consistent with the value of topic.audit in contextProperties .

"connectionFactoryName": configuration expression<string>, required

JNDI lookup name for the JMS connection factory.

Example

In the following example, a JMS audit event handler delivers audit events in batches. The handler is configured to use the
ActiveMQ JNDI message broker, on port 61616. For an example of setting up and testing this configuration, refer to Recording
Access Audit Events in JMS.

•

•

•

Reference PingGateway

930 Copyright © 2025 Ping Identity Corporation

{
 "name": "30-jms",
 "MyCapture" : "all",
 "baseURI": "http://app.example.com:8081",
 "condition" : "${request.uri.path == '/activemq_event_handler'}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers" : [
 {
 "class" : "org.forgerock.audit.handlers.jms.JmsAuditEventHandler",
 "config" : {
 "name" : "jms",
 "topics": ["access"],
 "deliveryMode" : "NON_PERSISTENT",
 "sessionMode" : "AUTO",
 "jndi" : {
 "contextProperties" : {
 "java.naming.factory.initial" : "org.apache.activemq.jndi.ActiveMQInitialContextFactory",
 "java.naming.provider.url" : "tcp://am.example.com:61616",
 "topic.audit" : "audit"
 },
 "topicName" : "audit",
 "connectionFactoryName" : "ConnectionFactory"
 }
 }
 }
],
 "config" : { }
 }
 }
],
 "auditService": "AuditService",
 "handler" : {
 "type" : "StaticResponseHandler",
 "config" : {
 "status" : 200,
 "headers" : {
 "Content-Type" : ["text/plain; charset=UTF-8"]
 },
 "entity" : "Message from audited route"
 }
 }
}

More information

org.forgerock.audit.handlers.jms.JmsAuditEventHandler

JsonAuditEventHandler

Logs events as JSON objects to a set of JSON files. There is one file for each topic defined in topics , named with the format
topic.audit.json .

The JsonAuditEventHandler is the preferred file-based audit event handler.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 931

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/jms/JmsAuditEventHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/jms/JmsAuditEventHandler.html

Declare the configuration in an audit service, as described in AuditService.

Usage

{
 "name": string,
 "type": "AuditService",
 "config": {
 "config": {},
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config": {
 "name": configuration expression<string>,
 "topics": [configuration expression<string>, ...],
 "logDirectory": configuration expression<string>,
 "elasticsearchCompatible": configuration expression<boolean>,
 "fileRotation": {
 "rotationEnabled": configuration expression<boolean>,
 "maxFileSize": configuration expression<number>,
 "rotationFilePrefix": configuration expression<string>,
 "rotationFileSuffix": configuration expression<string>,
 "rotationInterval": configuration expression<duration>,
 "rotationTimes": [configuration expression<duration>, ...]
 },
 "fileRetention": {
 "maxNumberOfHistoryFiles": configuration expression<number>,
 "maxDiskSpaceToUse": configuration expression<number>,
 "minFreeSpaceRequired": configuration expression<number>
 },
 "rotationRetentionCheckInterval": configuration expression<duration>,
 "buffering": {
 "writeInterval": configuration expression<duration>,
 "maxSize": configuration expression<number>
 }
 }
 }]
 }
}

Configuration

"name": configuration expression<string>, required

The event handler name. This property is used only to refer to the event handler, but is not used to name the generated
log file.

"topics": array of configuration expression<strings>, required

One or more topics that this event handler intercepts. PingGateway can record the following audit event topics:

access : Log access audit events. Access audit events occur at the system boundary, and include the arrival of the
initial request and departure of the final response.

To record access audit events, configure AuditService inline in a route, or in the heap.

•

Reference PingGateway

932 Copyright © 2025 Ping Identity Corporation

customTopic: Log custom audit events. To create a topic for a custom audit event, include a JSON schema for the
topic in your PingGateway configuration.

To record custom audit events, configure AuditService in the heap, and refer to it from the route or subroutes. For
an example of how to set up custom audit events, refer to Record custom audit events.

"logDirectory": configuration expression<string>, required

The file system directory where this event handler writes log files.

When multiple AuditServices are defined in the deployment, prevent them from logging to the same audit logging file by
setting different values for logDirectory .

elasticsearchCompatible: configuration expression<boolean>, optional

Set to true to enable compatibility with ElasticSearch JSON format. For more information, refer to the ElasticSearch

documentation.

Default: false

"fileRotation": object, optional

File rotation settings for log files.

"rotationEnabled": configuration expression<boolean>, optional

A flag to enable rotation of log files.

Default: false.

"maxFileSize": configuration expression<number>, optional

The maximum file size of an audit log file in bytes. A setting of 0 or less indicates that the policy is disabled.

Default: 0.

"rotationFilePrefix": configuration expression<string>, optional

The prefix to add to a log file on rotation. This has an effect when time-based file rotation is enabled.

"rotationFileSuffix": configuration expression<string>, optional

The suffix to add to a log file on rotation, possibly expressed in SimpleDateFormat.

This has an effect when time-based file rotation is enabled.

Default: -yyyy.MM.dd-HH.mm.ss , where yyyy characters are replaced with the year, MM characters are replaced
with the month, dd characters are replaced with the day, HH characters are replaced with the hour (00-23), mm
characters are replaced with the minute (00-60), and ss characters are replaced with the second (00-60).

"rotationInterval": configuration expression<duration>, optional

The time interval after which to rotate log files. This duration must not be zero. This has the effect of enabling time-
based file rotation.

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 933

https://www.elastic.co/guide/en/logstash/current/index.html
https://www.elastic.co/guide/en/logstash/current/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/SimpleDateFormat.html

"rotationTimes": array of configuration expression<durations>, optional

The durations, counting from midnight UTC, after which to rotate files.

The following example schedules rotation six and twelve hours after midnight:

"rotationTimes": ["6 hours", "12 hours"]

This has the effect of enabling time-based file rotation.

"fileRetention": object, optional

File retention settings for log files.

"maxNumberOfHistoryFiles": configuration expression<number>, optional

The maximum number of historical audit files that can be stored. If the number exceeds this maximum, older files
are deleted. A value of -1 disables purging of old log files.

Default: 0.

"maxDiskSpaceToUse": configuration expression<number>, optional

The maximum disk space in bytes that can be used for audit files. If the audit files use more than this space, older
files are deleted. A negative or zero value indicates that this policy is disabled, and historical audit files can use
unlimited disk space.

Default: 0

"minFreeSpaceRequired": configuration expression<string>, optional

The minimum free disk space in bytes required on the system that houses the audit files. If the free space drops
below this minimum, older files are deleted. A negative or zero value indicates that this policy is disabled, and no
minimum space requirements apply.

Default: 0

"rotationRetentionCheckInterval": configuration expression<string>, optional

Interval at which to periodically check file rotation and retention policies. The interval must be a duration, for example, 5
seconds, 5 minutes, or 5 hours.

PingGateway checks whether to rotate the current audit file at each interval. If so, it also checks whether to retain old audit
files.

Default: 5 seconds

"buffering": object, optional

Settings for buffering events and batch writes.

"writeInterval": configuration expression<duration>, optional

The interval at which to send buffered event messages. If buffering is enabled, this interval must be greater than 0.

Reference PingGateway

934 Copyright © 2025 Ping Identity Corporation

Default: 1 second

"maxSize": configuration expression<number>, optional

The maximum number of event messages in the queue of buffered event messages.

Default: 10000

Examples

For an example of setting up and testing this configuration, refer to Recording Access Audit Events in JSON.

This example rotates the log at midnight UTC and retains files for 60 days:

{
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config": {
 "name": "json",
 "logDirectory": "/tmp/logs",
 "topics": ["access"],
 "fileRotation": {
 "rotationEnabled": true,
 "rotationTimes": ["0 hours"]
 },
 "fileRetention": {
 "maxNumberOfHistoryFiles": 60
 }
 }
 }
]
 }
}

This example rotates logs at 2:00 AM UTC and retains five files:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 935

{
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config": {
 "name": "json",
 "logDirectory": "/tmp/logs",
 "topics": ["access"],
 "fileRotation": {
 "rotationEnabled": true,
 "rotationTimes": ["2 hours"]
 },
 "fileRetention": {
 "maxNumberOfHistoryFiles": 5
 }
 }
 }
]
 }
}

More information

org.forgerock.audit.handlers.json.JsonAuditEventHandler

JsonStdoutAuditEventHandler

Logs events to JSON standard output (stdout).

Declare the configuration in an audit service, as described in AuditService.

Usage

{
 "name": string,
 "type": "AuditService",
 "config": {
 "config": {},
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "config": {
 "name": configuration expression<string>,
 "topics": [configuration expression<string>, ...],
 "elasticsearchCompatible": configuration expression<boolean>
 }
 }
 }
}

Reference PingGateway

936 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/json/JsonAuditEventHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/json/JsonAuditEventHandler.html

Configuration

"name": configuration expression<string>, required

The name of the event handler.

"topics": array of configuration expression<strings>, required

One or more topics that this event handler intercepts. PingGateway can record the following audit event topics:

access : Log access audit events. Access audit events occur at the system boundary, and include the arrival of the
initial request and departure of the final response.

To record access audit events, configure AuditService inline in a route, or in the heap.

customTopic: Log custom audit events. To create a topic for a custom audit event, include a JSON schema for the
topic in your PingGateway configuration.

To record custom audit events, configure AuditService in the heap, and refer to it from the route or subroutes. For
an example of how to set up custom audit events, refer to Record custom audit events.

elasticsearchCompatible: configuration expression<boolean>, optional

Set to true to enable compatibility with ElasticSearch JSON format. For more information, refer to the ElasticSearch

documentation.

Default: false

Example

In the following example, a JsonStdoutAuditEventHandler logs audit events. For an example of setting up and testing this
configuration, refer to Recording access audit events to standard output.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 937

https://www.elastic.co/guide/en/logstash/current/index.html
https://www.elastic.co/guide/en/logstash/current/index.html

{
 "name": "30-jsonstdout",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/jsonstdout-audit')}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "config": {
 "name": "jsonstdout",
 "elasticsearchCompatible": false,
 "topics": [
 "access"
]
 }
 }
],
 "config": {}
 }
 }
],
 "auditService": "AuditService",
 "handler": "ReverseProxyHandler"
}

More information

org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler

NoOpAuditService

Provides an empty audit service to the top-level heap and its child routes. Use NoOpAuditService to prevent routes from using the
parent audit service, when an AuditService is not explicitly defined.

For information about how to override the default audit service, refer to Audit framework.

Usage

{
 "name": "AuditService",
 "type": "NoOpAuditService"
 }

"auditService": "NoOpAuditService"

More information

AuditService

Reference PingGateway

938 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/json/stdout/JsonStdoutAuditEventHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/json/stdout/JsonStdoutAuditEventHandler.html

org.forgerock.openig.audit.NoOpAuditService

SyslogAuditEventHandler

An audit event handler that responds to events by logging messages to the UNIX system log as governed by RFC 5424, The Syslog
Protocol.

Declare the configuration in an audit service, as described in AuditService.

Usage

{
 "class": "org.forgerock.audit.handlers.syslog.SyslogAuditEventHandler",
 "config": {
 "name": configuration expression<string>,
 "topics": [configuration expression<string>, ...],
 "protocol": configuration expression<string>,
 "host": configuration expression<string>,
 "port": configuration expression<number>,
 "connectTimeout": configuration expression<number>,
 "facility": configuration expression<string>,
 "buffering": {
 "enabled": configuration expression<boolean>,
 "maxSize": configuration expression<number>
 },
 "severityFieldMappings": [
 {
 "topic": configuration expression<string>,
 "field": configuration expression<string>,
 "valueMappings": {
 "field-value": object
 }
 }
]
 }
}

The values in this configuration object can use expressions as long as they resolve to the correct types for each field. For details
about expressions, refer to Expressions.

Configuration

"name": configuration expression<string>, required

The name of the event handler.

"topics": array of configuration expression<strings>, required

One or more topics that this event handler intercepts. PingGateway can record the following audit event topics:

access : Log access audit events. Access audit events occur at the system boundary, and include the arrival of the
initial request and departure of the final response.

To record access audit events, configure AuditService inline in a route, or in the heap.

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 939

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/audit/NoOpAuditService.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/audit/NoOpAuditService.html
https://www.rfc-editor.org/rfc/rfc5424
https://www.rfc-editor.org/rfc/rfc5424
https://www.rfc-editor.org/rfc/rfc5424

customTopic: Log custom audit events. To create a topic for a custom audit event, include a JSON schema for the
topic in your PingGateway configuration.

To record custom audit events, configure AuditService in the heap, and refer to it from the route or subroutes. For
an example of how to set up custom audit events, refer to Record custom audit events.

"protocol": configuration expression<string>, required

The transport protocol used to send event messages to the Syslog daemon.

Set this to TCP for Transmission Control Protocol, or to UDP for User Datagram Protocol.

"host": configuration expression<string>, required

The hostname of the Syslog daemon to which to send event messages. The hostname must resolve to an IP address.

"port": configuration expression<number>, required

The port of the Syslog daemon to which to send event messages.

The value must be between 0 and 65535.

"connectTimeout": configuration expression<number>, required when using TCP

The number of milliseconds to wait for a connection before timing out.

"facility": configuration expression<enumeration>, required

The Syslog facility to use for event messages. Set to one of the following values:

kern : Kernel messages

user : User-level messages

mail : Mail system

daemon : System daemons

auth : Security/authorization messages

syslog : Messages generated internally by syslogd

lpr : Line printer subsystem

news : Network news subsystem

uucp : UUCP subsystem

cron : Clock daemon

authpriv : Security/authorization messages

ftp : FTP daemon

ntp : NTP subsystem

logaudit : Log audit

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Reference PingGateway

940 Copyright © 2025 Ping Identity Corporation

logalert : Log alert

clockd : Clock daemon

local0 : Local use 0

local1 : Local use 1

local2 : Local use 2

local3 : Local use 3

local4 : Local use 4

local5 : Local use 5

local6 : Local use 6

local7 : Local use 7

"buffering": object, optional

Buffering settings for writing to the system log facility. The default is for messages to be written to the log for each event.

"enabled": configuration expression<boolean>, optional

Whether log buffering is enabled.

Default: false.

"maxSize": configuration expression<number>, optional

The maximum number of buffered event messages.

Default: 5000.

"severityFieldMappings": object, optional

Severity field mappings set the correspondence between audit event fields and Syslog severity values.

The severity field mappings object has the following fields:

"topic": configuration expression<string>, required

The audit event topic to which the mapping applies.

Set this to a value configured in topics .

"field": configuration expression<string>, required

The audit event field to which the mapping applies.

Audit event fields use JSON pointer notation, and are taken from the JSON schema for the audit event content.

"valueMappings": object, required

The map of audit event values to Syslog severities, where both the keys and the values are strings.

•

•

•

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 941

Syslog severities are one of the following values:

emergency : System is unusable.

alert : Action must be taken immediately.

critical : Critical conditions.

error : Error conditions.

warning : Warning conditions.

notice : Normal but significant condition.

informational : Informational messages.

debug : Debug-level messages.

Example

The following example configures a Syslog audit event handler that writes to the system log daemon on syslogd.example.com ,
port 6514 over TCP with a timeout of 30 seconds. The facility is the first one for local use, and response status is mapped to
Syslog informational messages:

{
 "class": "org.forgerock.audit.handlers.syslog.SyslogAuditEventHandler",
 "config": {
 "name": "MySyslogAuditEventHandler",
 "topics": ["access"],
 "protocol": "TCP",
 "host": "https://syslogd.example.com",
 "port": 6514,
 "connectTimeout": 30000,
 "facility": "local0",
 "severityFieldMappings": [
 {
 "topic": "access",
 "field": "response/status",
 "valueMappings": {
 "FAILED": "INFORMATIONAL",
 "SUCCESSFUL": "INFORMATIONAL"
 }
 }
]
 }
}

More information

org.forgerock.audit.handlers.syslog.SyslogAuditEventHandler

•

•

•

•

•

•

•

•

Reference PingGateway

942 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/syslog/SyslogAuditEventHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/syslog/SyslogAuditEventHandler.html

SplunkAuditEventHandler (deprecated)

The Splunk audit event handler logs PingGateway events to a Splunk system.

For an example of setting up and testing Splunk, see Recording access audit events in Splunk.

Usage

Configure the SplunkAuditEventHandler within an AuditService:

{
 "type": "AuditService",
 "config": {
 "config": {},
 "eventHandlers": [{
 "class": "org.forgerock.audit.handlers.splunk.SplunkAuditEventHandler",
 "config": {
 "name": configuration expression<string>,
 "topics": [configuration expression<string>, ...],
 "enabled": configuration expression<boolean>,
 "connection": {
 "useSSL": configuration expression<boolean>,
 "host": configuration expression<string>,
 "port": configuration expression<number>
 },
 "buffering": {
 "maxSize": configuration expression<number>,
 "writeInterval": configuration expression<duration>,
 "maxBatchedEvents": configuration expression<number>
 },
 "authzToken": configuration expression<string>
 }
 }]
 }
}

The SplunkAuditEventHandler relays audit events to Splunk through the HTTP protocol, using a handler defined in a heap. The
handler can be of any kind of handler, from a simple ClientHandler to a complex Chain, composed of multiple filters and a final
handler or ScriptableHandler.

PingGateway searches first for a handler named SplunkAuditEventHandler . If not found, PingGateway searches for a client
handler named AuditClientHandler . If not found, PingGateway uses the route’s default client handler, named ClientHandler .

The following example configures a ClientHandler named SplunkClientHandler :

emergency_home
This object is deprecated; use SyslogAuditEventHandler or JsonAuditEventHandler instead. For more information,
refer to the Deprecated section of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 943

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

{
 "name": "SplunkClientHandler",
 "type": "ClientHandler",
 "config": {}
}

The following example configures a ScriptableHandler named AuditClientHandler :

{
 "name": "AuditClientHandler",
 "type": "ScriptableHandler",
 "config": {}
}

Configuration

"name": configuration expression<string>, required

The name of the event handler.

"topics": array of configuration expression<strings>, required

One or more topics that this event handler intercepts. PingGateway can record the following audit event topics:

access : Log access audit events. Access audit events occur at the system boundary, and include the arrival of the
initial request and departure of the final response.

To record access audit events, configure AuditService inline in a route, or in the heap.

customTopic: Log custom audit events. To create a topic for a custom audit event, include a JSON schema for the
topic in your PingGateway configuration.

To record custom audit events, configure AuditService in the heap, and refer to it from the route or subroutes. For
an example of how to set up custom audit events, refer to Record custom audit events.

"enabled": configuration expression<boolean>, required

Specifies whether this audit event handler is enabled.

"connection": object, optional

Connection settings for sending messages to the Splunk system. If this object is not configured, it takes default values for
its fields. This object has the following fields:

"useSSL": configuration expression<boolean>, optional

Specifies whether PingGateway should connect to the audit event handler instance over SSL.

Default: false

"host": configuration expression<string>, optional

Hostname or IP address of the Splunk system.

•

•

Reference PingGateway

944 Copyright © 2025 Ping Identity Corporation

Default: localhost

"port": configuration expression<number>, optional

The dedicated Splunk port for HTTP input.

Before you install Splunk, make sure this port is free. Otherwise, change the port number in Splunk and in the
PingGateway routes that use Splunk.

Default: 8088

"buffering": object, optional

Settings for buffering events and batch writes. If this object is not configured, it takes default values for its fields. This
object has the following fields:

"maxSize": configuration expression<number>, optional

The maximum number of event messages in the queue of buffered event messages.

Default: 10000

"maxBatchedEvents": configuration expression<number>, optional

The maximum number of event messages in a batch write to this event handler for each writeInterval .

Default: 500

"writeInterval": configuration expression<duration>, optional

The delay after which the writer thread is scheduled to run after encountering an empty event buffer.

Default: 100 ms (units of 'ms' or 's' are recommended)

"authzToken": configuration expression<string>, required

The authorization token associated with the configured HTTP event collector.

Example

In the following example, PingGateway events are logged to a Splunk system.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 945

{
 "name": "30-splunk",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/splunk-audit')}",
 "heap": [
 {
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.splunk.SplunkAuditEventHandler",
 "config": {
 "name": "splunk",
 "enabled": true,
 "authzToken": "<splunk-authorization-token>",
 "connection": {
 "host": "localhost",
 "port": 8088,
 "useSSL": false
 },
 "topics": [
 "access"
],
 "buffering": {
 "maxSize": 10000,
 "maxBatchedEvents": 500,
 "writeInterval": "100 ms"
 }
 }
 }
]
 }
 }
],
 "auditService": "AuditService",
 "handler": "ReverseProxyHandler"
}

For an example of setting up and testing this configuration, see Recording Access Audit Events in Splunk.

More information

org.forgerock.audit.handlers.splunk.SplunkAuditEventHandler

Monitoring

The following sections describe monitoring endpoints exposed by PingGateway, and the metrics available at the endpoints.

For information about how to set up and maintain monitoring, refer to Monitor services.

Reference PingGateway

946 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/splunk/SplunkAuditEventHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/audit/handlers/splunk/SplunkAuditEventHandler.html

Vert.x Metrics

Vert.x metrics for HTTP clients, TCP clients, and servers are available by default at the Prometheus Scrape Endpoint and Common
REST Monitoring Endpoint (deprecated) endpoints. Vert.x metrics provide low-level information about requests and responses,
such as the number of bytes, duration, the number of concurrent requests. The available metrics are based on those described in
Vert.x core tools metrics.

For more information about Vert.x and PingGateway, refer to the vertx object in AdminHttpApplication (admin.json), and
Monitoring Vert.x Metrics.

Monitoring types

This section describes the data types used in monitoring:

Counter

Cumulative metric for a numerical value that only increases.

Gauge

Metric for a numerical value that can increase or decrease.

Summary

Metric that samples observations, providing a count of observations, sum total of observed amounts, average rate of
events, and moving average rates across a sliding time window.

The Prometheus view doesn’t provide time-based statistics, because rates can be calculated from the time-series data.
Instead, the Prometheus view includes summary metrics whose names have the following suffixes or labels:

_count : number of recorded events

_sum : total sum of recorded events

{quantile="0.5"} : 50% at or below this value

{quantile="0.75"} : 75% at or below this value

{quantile="0.95"} : 95% at or below this value

{quantile="0.98"} : 98% at or below this value

{quantile="0.99"} : 99% at or below this value

{quantile="0.999"} : 99.9% at or below this value

Timer

Metric combining time-series summary statistics.

Common REST views show summaries as JSON objects. JSON summaries have the following fields:

•

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 947

https://vertx.io/docs/vertx-micrometer-metrics/java/#_vert_x_core_tools_metrics
https://vertx.io/docs/vertx-micrometer-metrics/java/#_vert_x_core_tools_metrics

{
 "max": number, // maximum duration recorded
 "mean": number, // total/count, or 0 if count is 0
 "min": number, // minimum duration recorded for this metric
 "mean_rate": number, // average rate
 "p50": number, // 50% at or below this value
 "p75": number, // 75% at or below this value
 "p95": number, // 95% at or below this value
 "p98": number, // 98% at or below this value
 "p99": number, // 99% at or below this value
 "p999": number, // 99.9% at or below this value
 "stddev": number, // standard deviation of recorded durations
 "m15_rate": number, // fifteen-minute average rate
 "m5_rate": number, // five-minute average rate
 "m1_rate": number, // one-minute average rate
 "duration_units": string, // time unit used in durations
 "rate_units": string, // event count unit and time unit used in rate
 "seconds_count": number, // events recorded for this metric
 "count": number, // events recorded for this metric (deprecated)
 "seconds_total": number // sum of the durations of events recorded
 "total": number // sum of the durations of events recorded (deprecated)
}

Metrics at the Prometheus Scrape Endpoint

All products automatically expose a monitoring endpoint where Prometheus can scrape metrics in a standard Prometheus
format. Learn more from the Prometheus website.

When PingGateway is set up as described in the Quick install, the Prometheus Scrape Endpoint is available at the following
endpoints:

http://ig.example.com:8080/openig/metrics/prometheus/0.0.4

http://ig.example.com:8080/openig/metrics/prometheus (deprecated)

For an example that queries the Prometheus Scrape Endpoint, refer to Monitor the Prometheus Scrape Endpoint.

Route metrics at the Prometheus Scrape Endpoint

Route metrics at the Prometheus Scrape Endpoint have the following labels:

name : Route name, for example, My Route .

If the router was declared with a default handler, then its metrics are published through the route named default .

route : Route identifier, for example, my-route .

router : Fully qualified name of the router, for example, gateway.main-router .

The following table summarizes the recorded metrics:

•

•

•

•

•

Name Monitoring type Description

ig_route_request_active Gauge Number of requests being processed.

Reference PingGateway

948 Copyright © 2025 Ping Identity Corporation

https://prometheus.io
https://prometheus.io

Router metrics at the Prometheus Scrape Endpoint

Router metrics at the Prometheus Scrape Endpoint have the following labels:

fully_qualified_name : Fully qualified name of the router, for example, gateway.main-router .

heap : Name of the heap in which this router is declared, for example, gateway .

name : Simple name declared in router configuration, for example, main-router .

The following table summarizes the recorded metrics:

Name Monitoring type Description

ig_route_request_total Counter Number of requests processed by the router or
route since it was deployed.

ig_route_response_error_total Counter Number of responses that threw an exception.

ig_route_response_null_total Counter Number of responses that were not handled by
PingGateway.

ig_route_response_status_total Counter Number of responses by HTTP status code
family. The family label depends on the HTTP
status code:

Informational (1xx)
Successful (2xx)
Redirection (3xx)
Client_error (4xx)
Server_error (5xx)
Unknown (status code >= 600)

ig_route_response_time :

ig_route_response_time_seconds_coun

t

ig_route_response_time_count

(deprecated)
ig_route_response_time_seconds_sum

ig_route_response_time_seconds_tota

l (deprecated)

Summary A summary of response time observations.

•
•
•
•
•
•

•

•

•
•

•

•

•

Name Monitoring type Description

ig_router_deployed_routes Gauge Number of routes deployed in the
configuration.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 949

Cache metrics at the Prometheus Scrape Endpoint

Cache metrics at the Prometheus Scrape Endpoint have the following meters and metrics:

ig_cache_gets_total

A counter monitoring type, incremented when a cache request hits or misses an entry.

Example:

ig_cache_gets_total{content="session",...result="hit",...} 13.0
ig_cache_gets_total{content="session",...,result="miss"...} 1.0
ig_cache_gets_total{content="policy_decision",...,result="hit",...} 5.0
ig_cache_gets_total{content="policy_decision",...,result="miss",...} 2.0

ig_cache_loads

This meter exposes the following metrics:

ig_cache_loads_seconds

A timer monitoring type, measuring the time in seconds spent successfully or unsuccessfully loading entries in the cache.

Example:

Label Possible values

content session ,
policy_decision ,
user_profile ,
access_token

result hit , miss

Label Possible values

content session ,
policy_decision ,
user_profile ,
access_token

result success , failure

quantile 0.5 , 0.75 , 0.95 , 0.98 , 0.99 , 0.999

Reference PingGateway

950 Copyright © 2025 Ping Identity Corporation

ig_cache_loads_seconds{content="session",...result="success",...quantile="0.5",} 0.057710516
ig_cache_loads_seconds{content="session",...result="success",...quantile="0.75",} 0.057710516
ig_cache_loads_seconds{content="session",...result="success",...quantile="0.95",} 0.057710516
ig_cache_loads_seconds{content="session",...result="success",...quantile="0.98",} 0.057710516
ig_cache_loads_seconds{content="session",...result="success",...quantile="0.99",} 0.057710516
ig_cache_loads_seconds{content="session",...result="success",...quantile="0.999",} 0.057710516

ig_cache_loads_seconds_sum/ig_cache_loads_seconds_total (deprecated)

A timer monitoring type, measuring the cumulated time in seconds spent successfully or unsuccessfully loading entries in
the cache.

Example:

ig_cache_loads_seconds_sum{content="session",...result="failure",...} 0.0
ig_cache_loads_seconds_sum{content="session",...result="success",...} 0.057710516
ig_cache_loads_seconds_sum{content="policy_decision",...,result="failure",...} 0.0
ig_cache_loads_seconds_sum{content="policy_decision",...,result="success",...} 0.144314803

ig_cache_loads_seconds_count/ ig_cache_loads_count (deprecated)

A counter monitoring type, incremented when a cache request is successfully or unsuccessfully loaded in the cache.

Example:

ig_cache_loads_count{content="session",...result="failure",...} 0.0
ig_cache_loads_count{content="session",...result="success",...} 1.0
ig_cache_loads_count{content="policy_decision",...,result="failure",...} 0.0
ig_cache_loads_count{content="policy_decision",...,result="success",...} 2.0

Label Possible values

content session ,
policy_decision ,
user_profile ,
access_token

result success , failure

Label Possible values

content session ,
policy_decision ,
user_profile ,
access_token

result success , failure

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 951

ig_cache_evictions

This meter exposes the following metrics:

ig_cache_evictions_count

A counter monitoring type, incremented when an entry is evicted from the cache.

Example

ig_cache_evictions_count{cause="COLLECTED",content="session",...} 0.0
ig_cache_evictions_sum{cause="EXPIRED",content="session",...} 0.0
ig_cache_evictions_count{cause="EXPIRED",content="session",...} 0.0
ig_cache_evictions_sum{cause="EXPLICIT",content="session",...} 0.0
ig_cache_evictions_count{cause="EXPLICIT",content="session",...} 0.0
ig_cache_evictions_sum{cause="REPLACED",content="session",...} 0.0
ig_cache_evictions_count{cause="REPLACED",content="session",...} 0.0
ig_cache_evictions_sum{cause="SIZE",content="session",...} 0.0
ig_cache_evictions_count{cause="SIZE",content="session",...} 0.0
ig_cache_evictions_sum{cause="COLLECTED",content="policy_decision",...} 0.0
ig_cache_evictions_count{cause="COLLECTED",content="policy_decision",...} 0.0
ig_cache_evictions_sum{cause="EXPIRED",content="policy_decision",...} 1.0
ig_cache_evictions_count{cause="EXPIRED",content="policy_decision",...} 1.0
ig_cache_evictions_sum{cause="EXPLICIT",content="policy_decision",...} 0.0
ig_cache_evictions_count{cause="EXPLICIT",content="policy_decision",...} 0.0
ig_cache_evictions_sum{cause="REPLACED",content="policy_decision",...} 0.0
ig_cache_evictions_count{cause="REPLACED",content="policy_decision",...} 0.0
ig_cache_evictions_sum{cause="SIZE",content="policy_decision",...} 0.0
ig_cache_evictions_count{cause="SIZE",content="policy_decision",...} 0.0

ig_cache_evictions_sum/ig_cache_evictions_total (deprecated)

A counter monitoring type, incremented when an entry is evicted from the cache. Each evicted entry has the weight 1 , so
this metric is equal to ig_cache_evictions_count .

Label Possible values

content session ,
policy_decision ,
user_profile ,
access_token

cause COLLECTED ,
EXPIRED ,
EXPLICIT ,
REPLACED ,
SIZE

Reference PingGateway

952 Copyright © 2025 Ping Identity Corporation

Example

ig_cache_evictions_sum{cause="COLLECTED",content="session",...} 0.0
ig_cache_evictions_count{cause="COLLECTED",content="session",...} 0.0
ig_cache_evictions_sum{cause="EXPIRED",content="session",...} 0.0
ig_cache_evictions_count{cause="EXPIRED",content="session",...} 0.0
ig_cache_evictions_sum{cause="EXPLICIT",content="session",...} 0.0
ig_cache_evictions_count{cause="EXPLICIT",content="session",...} 0.0
ig_cache_evictions_sum{cause="REPLACED",content="session",...} 0.0
ig_cache_evictions_count{cause="REPLACED",content="session",...} 0.0
ig_cache_evictions_sum{cause="SIZE",content="session",...} 0.0
ig_cache_evictions_count{cause="SIZE",content="session",...} 0.0
ig_cache_evictions_sum{cause="COLLECTED",content="policy_decision",...} 0.0
ig_cache_evictions_count{cause="COLLECTED",content="policy_decision",...} 0.0
ig_cache_evictions_sum{cause="EXPIRED",content="policy_decision",...} 1.0
ig_cache_evictions_count{cause="EXPIRED",content="policy_decision",...} 1.0
ig_cache_evictions_sum{cause="EXPLICIT",content="policy_decision",...} 0.0
ig_cache_evictions_count{cause="EXPLICIT",content="policy_decision",...} 0.0
ig_cache_evictions_sum{cause="REPLACED",content="policy_decision",...} 0.0
ig_cache_evictions_count{cause="REPLACED",content="policy_decision",...} 0.0
ig_cache_evictions_sum{cause="SIZE",content="policy_decision",...} 0.0
ig_cache_evictions_count{cause="SIZE",content="policy_decision",...} 0.0

Timer metrics at the Prometheus Scrape Endpoint

Timer metrics at the Prometheus Scrape Endpoint have the following following labels:

decorated_object

heap

name (decorator name)

route

router

Label Possible values

content session ,
policy_decision ,
user_profile ,
access_token

cause COLLECTED ,
EXPIRED ,
EXPLICIT ,
REPLACED ,
SIZE

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 953

WebSocket metrics at the Prometheus Scrape Endpoint

WebSocket metrics at the Prometheus Scrape Endpoint have the following labels:

frame_type

fully_qualified_name

heap

local

name

remote

route

router

The following table summarizes the recorded metrics:

Name Monitoring type Description

ig_timerdecorator_handler_elapsed_

seconds

Summary Time to process the request and
response in the decorated handler.

ig_timerdecorator_filter_elapsed_s

econds

Summary Time to process the request and
response in the decorated filter and its
downstream filters and handler.

ig_timerdecorator_filter_internal_

seconds

Summary Time to process the request and
response in the decorated filter.

ig_timerdecorator_filter_downstrea

m_seconds

Summary Time to process the request and
response in filters and handlers that are
downstream of the decorated filter.

•

•

•

•

•

•

•

•

Name Monitoring type Description

ig_http_client_active_ws_connectio

ns

Gauge Number of client websockets currently
open.

ig_http_server_active_ws_connectio

ns

Gauge Number of server websockets currently
open.

ig_reverseproxyhandler_ws_proxy_ap

plication_side_errors_total 1
Counter Number of application-side proxy

errors.

ig_reverseproxyhandler_ws_proxy_ap

plication_side_read_total 1
Counter Number of application-side proxy

frames received.

Reference PingGateway

954 Copyright © 2025 Ping Identity Corporation

1 The reverseproxyhandler in the metric name reflects the name of the ReverseProxyHandler component in the PingGateway
configuration. The name shown in these examples derives from the route configuration shown in WebSocket traffic.

Startup metrics at the Prometheus Scrape Endpoint

Startup metrics at the Prometheus Scrape Endpoint are captured once at startup to record the time to load, build, and start
PingGateway and the components in its heap.

ig_startup_seconds_count metric

A counter monitoring type to record the number of times the startup process has been measured for a component or instance.
The value is always 1 .

Example

ig_startup_seconds_count{id="ig.logging",kind="setup",level="1",parentId="ig",parentKind="ig",} 1.0
ig_startup_seconds_count{id="ig.admin",kind="start",level="1",parentId="ig",parentKind="ig",} 1.0
ig_startup_seconds_count{id="ig.gateway.gateway.myRoute",kind="heap",level="3",parentId="ig.gateway.gateway",parentKi
nd="heap",} 1.0

ig_startup_seconds_sum/ig_startup_seconds_total (deprecated) metric

A timer monitoring type to record the total time to load, build, and start PingGateway and the components in its heap.

Example

Name Monitoring type Description

ig_reverseproxyhandler_ws_proxy_ap

plication_side_write_total 1
Counter Number of application-side proxy

frames sent.

ig_reverseproxyhandler_ws_proxy_cl

ient_side_errors_total 1
Counter Number of client-side proxy errors.

ig_reverseproxyhandler_ws_proxy_cl

ient_side_read_total 1
Counter Number of client-side proxy frames

received.

ig_reverseproxyhandler_ws_proxy_cl

ient_side_write_total 1
Counter Number of client-side proxy frames

sent.

ig_reverseproxyhandler_ws_proxy_tu

nnels_active 1
Gauge Number of active websocket proxy

tunnels.

ig_reverseproxyhandler_ws_proxy_tu

nnels_created_total 1
Counter Number of websocket proxy tunnels

created.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 955

ig_startup_seconds_sum{id="ig.gateway.gateway.myRoute",kind="heap",level="3",parentId="ig.gateway.gateway",parentKind
="heap",} 5.59...
ig_startup_seconds_sum{id="ig.gateway.gateway._router.myroute1",kind="route",level="4",parentId="ig.gateway.gateway._
router",parentKind="heaplet",} 0.01...
ig_startup_seconds_sum{class="StaticResponseHandler",id="ig.gateway.gateway.myRoute.{StaticResponseHandler}/
handler",kind="heaplet",level="4",parentId="ig.gateway.gateway.myRoute",parentKind="heap",} 0.00...

ig_startup_seconds metric

A timer monitoring type to record quantiles for the time to load, build, and start PingGateway and the components in its heap.

Example

ig_startup_seconds{id="ig.gateway.gateway.myRoute",kind="heap",level="3",parentId="ig.gateway.gateway",parentKind="he
ap",quantile="0.95",} 4.8673300000000004E-4
ig_startup_seconds{id="ig.gateway.gateway.myRoute",kind="heap",level="3",parentId="ig.gateway.gateway",parentKind="he
ap",quantile="0.98",} 4.8673300000000004E-4
ig_startup_seconds{id="ig.gateway.gateway.myRoute",kind="heap",level="3",parentId="ig.gateway.gateway",parentKind="he
ap",quantile="0.99",} 4.8673300000000004E-4
ig_startup_seconds{id="ig.gateway.gateway.myRoute",kind="heap",level="3",parentId="ig.gateway.gateway",parentKind="he
ap",quantile="0.999",} 4.8673300000000004E-4

Metric labels

Startup metrics can take the following labels:

Label Description

id (string) The instance component

kind (string) The instance type. Can take the following values:

ig : Top-level component
start : Gateway and admin component
heap : Heap component
heaplet : Heaplet component
route : Route component
setup : Internal processing
quantile : Quantiles of the value given by ig_startup_seconds_sum
For ig_startup_seconds only

level (integer) The position of the component in the system hierarchy

class (string, optional) The component class

parentId : (string, optional) The component parent

parentKind : (string, optional) The parent component type

•
•
•
•
•
•
•

Reference PingGateway

956 Copyright © 2025 Ping Identity Corporation

Metrics at the Common REST Monitoring Endpoint (deprecated)

The Common REST Monitoring Endpoint exposes metrics as a JSON format monitoring resource.

When PingGateway is set up as described in the documentation, the endpoint is http://ig.example.com:8080/openig/metrics/
api?_queryFilter=true .

For an example that queries the Common REST Monitoring Endpoint, refer to Monitor the Common REST Monitoring Endpoint.

Route metrics at the Common REST Monitoring Endpoint (deprecated)

Route metrics at the Common REST Monitoring Endpoint are published with an _id in the following pattern:

heap.router-name.route.route-name.metric

The following table summarizes the recorded metrics:

•

Name Monitoring type Description

request Counter Number of requests processed by the
router or route since it was deployed.

request.active Gauge Number of requests being processed by
the router or route at this moment.

response.error Counter Number of responses that threw an
exception.

response.null Counter Number of responses that were not
handled by PingGateway.

response.status.client_error Counter Number of responses with an HTTP
status code 400 - 499 , indicating client
error.

response.status.informational Counter Number of responses with an HTTP
status code 100 - 199 , indicating that
they are provisional responses.

response.status.redirection Counter Number of responses with an HTTP
status code 300 - 399 , indicating a
redirect.

response.status.server_error Counter Number of responses with an HTTP
status code 500 - 599 , indicating server
error.

response.status.successful Counter Number of responses with an HTTP
status code 200 - 299 , indicating
success.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 957

Learn more in Common REST Monitoring Endpoint.

Router metrics at the Common REST Monitoring Endpoint (deprecated)

Router metrics at the Common REST Monitoring Endpoint are JSON objects, with the following form:

[heap name].[router name].deployed-routes

The following table summarizes the recorded metrics:

For more information about the the Common REST Monitoring Endpoint, refer to Common REST Monitoring Endpoint.

Timer metrics at the Common REST Monitoring Endpoint (deprecated)

This section describes the metrics recorded at the the ForgeRock Common REST Monitoring Endpoint.

When PingGateway is set up as described in the documentation, the endpoint is http://ig.example.com:8080/openig/metrics/api?
_queryFilter=true.

Metrics are published with an _id in the following pattern:

heap.router-name.route-name.decorator-name.object

Name Monitoring type Description

response.status.unknown Counter Number of responses with an HTTP
status code 600 - 699 , indicating that a
request failed and was not executed.

response.time Timer Time-series summary statistics.

•

Name Monitoring type Description

deployed-routes Gauge Number of routes deployed in the
configuration.

Timer metrics at the Common REST Monitoring Endpoint

Name Monitoring type Description

elapsed Timer Time to process the request and
response in the decorated handler, or
in the decorated filter and its
downstream filters and handler.

internal Timer Time to process the request and
response in the decorated filter.

Reference PingGateway

958 Copyright © 2025 Ping Identity Corporation

Throttling policies

To protect applications from being overused by clients, use a ThrottlingFilter with one of the following policies to limit how many
requests clients can make in a defined time:

MappedThrottlingPolicy

Maps different throttling rates to different groups of requests, according to the evaluation of throttlingRateMapper .

Usage

{
 "name": string,
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": runtime expression<string>,
 "throttlingRatePolicy": {
 "type": "MappedThrottlingPolicy",
 "config": {
 "throttlingRateMapper": runtime expression<string>,
 "throttlingRatesMapping": {
 "mapping1": {
 "numberOfRequests": configuration expression<number>,
 "duration": configuration expression<duration>
 },
 "mapping2": {
 "numberOfRequests": configuration expression<number>,
 "duration": configuration expression<duration>
 }
 },
 "defaultRate": {
 "numberOfRequests": configuration expression<number>,
 "duration": configuration expression<duration>
 }
 }
 }
 }
}

Properties

"throttlingRateMapper": runtime expression<string>, required

An expression to categorize requests for mapping to a throttling rate in the throttlingRatesMapping .

If this parameter is null or does not match any specified mappings, the default throttling rate is applied.

Name Monitoring type Description

downstream Timer Time to process the request and
response in filters and handlers that are
downstream of the decorated filter.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 959

"throttlingRatesMapping": object, required

A map of throttling rate by request group. Requests are categorized into groups by the evaluation of the expression
"throttlingRateMapper" .

"mapping1" and "mapping2": string, required

The evaluation of the expression "throttlingRateMapper" .

The number of mappings is not limited to two.

"numberOfRequests": configuration expression<integer>, required

The number of requests allowed through the filter in the time specified by "duration" .

"duration": configuration expression<duration>, required

A time interval during which the number of requests passing through the filter is counted.

"defaultRate": object, required

The default throttling rate to apply if the evaluation of the expression "throttlingRateMapper" is null or is not mapped
to a throttling rate.

"numberOfRequests": configuration expression<integer>, required

The number of requests allowed through the filter in the time specified by "duration" .

"duration": configuration expression<duration>, required

A time interval during which the number of requests passing through the filter is counted.

Example of a Mapped Throttling Policy

In the following example, requests from users with different statuses are mapped to different throttling rates. For information
about how to set up and test this example, see Configure Mapped Throttling.

Reference PingGateway

960 Copyright © 2025 Ping Identity Corporation

{
 "name": "00-throttle-mapped",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/throttle-mapped')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 961

 },
 {
 "name": "ThrottlingFilter-1",
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${contexts.oauth2.accessToken.info.mail}",
 "throttlingRatePolicy": {
 "name": "MappedPolicy",
 "type": "MappedThrottlingPolicy",
 "config": {
 "throttlingRateMapper": "${contexts.oauth2.accessToken.info.status}",
 "throttlingRatesMapping": {
 "gold": {
 "numberOfRequests": 6,
 "duration": "10 s"
 },
 "silver": {
 "numberOfRequests": 3,
 "duration": "10 s"
 },
 "bronze": {
 "numberOfRequests": 1,
 "duration": "10 s"
 }
 },
 "defaultRate": {
 "numberOfRequests": 1,
 "duration": "10 s"
 }
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

More information

org.forgerock.openig.filter.throttling.MappedThrottlingPolicyHeaplet

ScriptableThrottlingPolicy

Uses a script to look up the throttling rates to apply to groups of requests.

The script can store the mapping for the throttling rate in memory, and can use a more complex mapping mechanism than that
used in the MappedThrottlingPolicy . For example, the script can map the throttling rate for a range of IP addresses. The script
can also query an external database or read the mapping from a file.

Scripts must return a Promise<ThrottlingRate, Exception> or a ThrottlingRate.

For information about script properties, available global objects, and automatically imported classes, refer to Scripts.

For an example of how to create a ScriptableThrottlingPolicy in Studio, refer to Configure scriptable throttling.•

Reference PingGateway

962 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/MappedThrottlingPolicyHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/MappedThrottlingPolicyHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ThrottlingRate.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ThrottlingRate.html

Usage

{
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": runtime expression<string>,
 "throttlingRatePolicy": {
 "name": string,
 "type": "ScriptableThrottlingPolicy",
 "config": {
 "type": configuration expression<string>,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both
 "args": map,
 "clientHandler": Handler reference
 }
 }
 }
}

Properties

For information about properties for ScriptableThrottlingPolicy, refer to Scripts.

Example of a scriptable throttling policy

In the following example, the DefaultRateThrottlingPolicy delegates the management of throttling to the scriptable throttling
policy. For information about how to set up and test this example, refer to Configure scriptable throttling.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 963

{
 "name": "00-throttle-scriptable",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/throttle-scriptable')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam/"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }

Reference PingGateway

964 Copyright © 2025 Ping Identity Corporation

 },
 {
 "name": "ThrottlingFilter-1",
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${contexts.oauth2.accessToken.info.mail}",
 "throttlingRatePolicy": {
 "type": "DefaultRateThrottlingPolicy",
 "config": {
 "delegateThrottlingRatePolicy": {
 "name": "ScriptedPolicy",
 "type": "ScriptableThrottlingPolicy",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "if (contexts.oauth2.accessToken.info.status == status) {",
 " return new ThrottlingRate(rate, duration)",
 "} else {",
 " return null",
 "}"
],
 "args": {
 "status": "gold",
 "rate": 6,
 "duration": "10 seconds"
 }
 }
 },
 "defaultRate": {
 "numberOfRequests": 1,
 "duration": "10 s"
 }
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

More information

org.forgerock.openig.filter.throttling.ScriptableThrottlingPolicy.Heaplet

DefaultRateThrottlingPolicy

Provides a default throttling rate if the delegating throttling policy returns null .

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 965

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ScriptableThrottlingPolicy.Heaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ScriptableThrottlingPolicy.Heaplet.html

Usage

{
 "name": string,
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": expression,
 "throttlingRatePolicy": {
 "type": "DefaultRateThrottlingPolicy",
 "config": {
 "delegateThrottlingRatePolicy": ThrottlingRatePolicy reference,
 "defaultRate": {
 "numberOfRequests": configuration expression<number>,
 "duration": configuration expression<duration>
 }
 }
 }
 }
}

Properties

"delegateThrottlingRatePolicy": ThrottlingRatePolicy reference, required

The policy to which the default policy delegates the throttling rate. The DefaultRateThrottlingPolicy delegates
management of throttling to the policy specified by delegateThrottlingRatePolicy .

If delegateThrottlingRatePolicy returns null , the defaultRate is used.

For information about policies to use, refer to MappedThrottlingPolicy and ScriptableThrottlingPolicy.

"defaultRate": object, required

The default throttling rate to apply if the delegating policy returns null .

"numberOfRequests": configuration expression<integer>, required

The number of requests allowed through the filter in the time specified by "duration" .

"duration": configuration expression<duration>, required

A time interval during which the number of requests passing through the filter is counted.

Example

For an example of how this policy is used, refer to Example of a Scriptable Throttling Policy.

More information

org.forgerock.openig.filter.throttling.DefaultRateThrottlingPolicyHeaplet

Reference PingGateway

966 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/DefaultRateThrottlingPolicyHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/DefaultRateThrottlingPolicyHeaplet.html

Miscellaneous configuration objects

The following objects can be defined in the configuration:

AmService

Holds information about the configuration of an instance of AM. The AmService is available to PingGateway filters that
communicate with that instance.

When PingGateway uses an AmService, PingGateway is positioned as the client of the service. By default, PingGateway is
subscribed to Websocket notifications from AM, and the WebSocket connection can be secured by ClientTlsOptions.

Usage

{
 "name": string,
 "type": "AmService",
 "config": {
 "agent": object,
 "secretsProvider": SecretsProvider reference,
 "notifications": object,
 "realm": configuration expression<string>,
 "amHandler": Handler reference,
 "sessionCache": object,
 "sessionIdleRefresh": object,
 "sessionProperties": [configuration expression<string>, ...],
 "ssoTokenHeader": configuration expression<string>,
 "url": configuration expression<url>,
 "version": configuration expression<string>
 }
}

Properties

"agent": object, required

An PingGateway agent profile. When the agent is authenticated, the token can be used for tasks such as getting the user’s
profile, making policy evaluations, and connecting to the AM notification endpoint.

{
 "AmService": {
 "username": configuration expression<string>,
 "passwordSecretId": configuration expression<secret-id>
 }
}

"username": configuration expression<string>, required

Name of the AM agent profile.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 967

"passwordSecretId": configuration expression<secret-id>, required

The secret ID of the AM agent password. This secret ID must point to a GenericSecret.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the agent password.

"realm": configuration expression<string>, optional

The AM realm in which the PingGateway agent is created.

Default: / (top level realm).

"amHandler": Handler reference, optional

The Handler to use for communicating with AM. In production, use a ClientHandler that is capable of making an HTTPS
connection to AM.

AmService does not use amHandler to subscribe to WebSocket notifications from AM. To subscribe to WebSocket
notifications from AM, configure a ClientTlsOptions object in the heap, and refer to it from the amHandler object and the
notifications subproperty tls .

To facilitate auditing, configure this handler with a ForgeRockClientHandler , which sends a ForgeRock Common Audit
transaction ID when it communicates with protected applications.

Alternatively, configure this handler as a chain containing a TransactionIdOutboundFilter , as in the following
configuration:

"amHandler": {
 "type": "Chain",
 "config": {
 "handler": "MySecureClientHandler",
 "filters": ["TransactionIdOutboundFilter"]
 }
}

Default: ForgeRockClientHandler

See also Handlers and ClientHandler.

"notifications": object, optional

Configure a WebSocket notification service to subscribe to Websocket notifications from AM.

To subscribe to WebSocket notifications from AM, configure a ClientTlsOptions object in the heap, and refer to it from the
amHandler object and the notifications subproperty tls . Alternatively, use proxyOptions to share a proxy
configuration between the amHandler and the notification service.

For information, refer to WebSocket notifications.

Reference PingGateway

968 Copyright © 2025 Ping Identity Corporation

{
 "notifications": {
 "enabled": configuration expression<boolean>,
 "initialConnectionAttempts": configuration expression<number>,
 "reconnectDelay": configuration expression<duration>,
 "renewalDelay": configuration expression<duration>,
 "heartbeatInterval": configuration expression<duration>,
 "connectionTimeout": configuration expression<duration>,
 "idleTimeout": configuration expression<duration>,
 "tls": ClientTlsOptions reference,
 "proxyOptions": ProxyOptions reference,
 "vertx": object
 }
}

enabled: configuration expression<boolean>, optional

A flag to enable WebSocket notifications. Set to false to disable WebSocket notifications.

Default: true

initialConnectionAttempts: configuration expression<number>, optional

The maximum number of times PingGateway attempts to open a WebSocket connection before failing to deploy a
route. For no limit, set this property to -1 .

If the WebSocket connection fails after it has been opened and the route is deployed, PingGateway attempts to
reconnect to it an unlimited number of times.

Default: 5

reconnectDelay: configuration expression<duration>, optional

The time between attempts to re-establish a lost WebSocket connection.

When a WebSocket connection is lost, PingGateway waits for this delay and then attempts to re-establish the
connection. If subsequent attempts fail, PingGateway waits and tries again an unlimited number of times.

Default: 5 seconds

renewalDelay: configuration expression<duration>, optional

The time before automatically renewing a WebSocket connection between PingGateway and AM. PingGateway
renews connections transparently.

PingOne Advanced Identity Cloud closes WebSocket connections every 60 minutes. This property is set by default
to prevent connection closure by automatically renewing connections every 50 minutes.

Set to 0 or unlimited to never automatically renew connections.

Default: 50 minutes

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 969

heartbeatInterval: configuration expression<duration>, optional

The interval at which the AmService issues a heartbeat on WebSocket connections. When activity on the connection
is low, the heartbeat prevents middleware or policies situated between PingGateway and AM from closing the
connection for timeout.

Set to zero or unlimited to disable heartbeats.

Default: 1 minute

connectionTimeout: configuration expression<duration>, optional

The time PingGateway waits to establish a Websocket connection to AM before it considers the attempt as failed.

Default: 60 seconds

idleTimeout: configuration expression<duration>, optional

The time that a WebSocket connection to AM can be inactive before PingGateway closes it.

Default: unlimited

tls: ClientTlsOptions reference, optional

Configure options for WebSocket connections to TLS-protected endpoints. Define a ClientTlsOptions object inline
or in the heap.

Default: Connections to TLS-protected endpoints are not configured.

proxyOptions: ProxyOptions reference>, optional

A proxy server to which requests can be submitted. Use this property to relay requests to other parts of the
network. For example, use it to submit requests from an internal network to the internet.

Provide the name of a ProxyOptions object defined in the heap or an inline configuration.

Default: A heap object named ProxyOptions .

vertx: object, optional

Vert.x-specific configuration for WebSocket connections to AM. Vert.x values are evaluated as configuration
expressions.

Use the Vert.x options described in VertxOptions.

"url": configuration expression<url>, required

The URL of the AM service. When AM is running locally, this value could be https://am.example.com/openam . When AM is
running in PingOne Advanced Identity Cloud, this value could be https://myTenant.forgeblocks.com/am .

"sessionCache": object, optional

In AM, if the realm includes a customized session property safelist, include AMCtxId in the list of properties. The
customized session property safelist overrides the global session property safelist.

Reference PingGateway

970 Copyright © 2025 Ping Identity Corporation

https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/VertxOptions.html
https://vertx.io/docs/4.5.8/apidocs/io/vertx/core/VertxOptions.html

Enable and configure caching of session information from AM, based on Caffeine. For more information, see the GitHub
entry, Caffeine.

When sessionCache is enabled, PingGateway can reuse session token information without repeatedly asking AM to verify
the token. Each instance of AmService has an independent cache content. The cache is not shared with other AmService
instances, either in the same or different routes, and is not distributed among clustered PingGateway instances.

When sessionCache is disabled, PingGateway must ask AM to verify the token for each request.

PingGateway evicts session info entries from the cache for the following reasons:

AM cache timeout, based the whichever of the following events occur first:

maxSessionExpirationTime from SessionInfo

maxSessionTimeout from the AmService configuration

When PingGateway evicts session info entries from the cache, the next time the token is presented,
PingGateway must ask AM to verify the token.

If Websocket notifications are enabled, AM session revocation, for example, when a user logs out of AM.

When Websocket notifications are enabled, PingGateway evicts a cached token almost as soon as it is revoked on
AM, and in this way stays synchronized with AM. Subsequent requests to PingGateway that present the revoked
token are rejected.

When Websocket notifications are disabled, the token remains in the cache after it is revoked on AM. Subsequent
requests to PingGateway that present the revoked token are considered as valid, and can cause incorrect
authentication and authorization decisions until its natural eviction from the cache.

{
 "sessionCache": {
 "enabled": configuration expression<boolean>,
 "executor": Executor service reference,
 "maximumSize": configuration expression<number>,
 "maximumTimeToCache": configuration expression<duration>,
 "onNotificationDisconnection": configuration expression<enumeration>
 }
}

enabled: configuration expression<boolean>, optional

Enable caching.

Default: false

executor: Executor service reference, optional

An executor service to schedule the execution of tasks, such as the eviction of entries in the cache.

Default: ForkJoinPool.commonPool()

"maximumSize": configuration expression<number>, optional

The maximum number of entries the cache can contain.

•

◦

◦

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 971

https://github.com/ben-manes/caffeine
https://github.com/ben-manes/caffeine

Default: Unlimited/unbound.

maximumTimeToCache: configuration expression<duration>, optional

The maximum duration for which to cache session info. Consider setting this duration to be less than the idle
timeout of AM.

If maximumTimeToCache is longer than maxSessionExpirationTime from SessionInfo, maxSessionExpirationTime
is used.

Default:

When sessionIdleRefresh is set, idle timeout of AM minus 30 seconds.

When sessionIdleRefresh is not set, maxSessionExpirationTime , from SessionInfo.

onNotificationDisconnection: configuration expression<enumeration>, optional

The strategy to manage the cache when the WebSocket notification service is disconnected, and PingGateway
receives no notifications for AM events. If the cache is not cleared it can become outdated, and PingGateway can
allow requests on revoked sessions or tokens.

Cached entries that expire naturally while the notification service is disconnected are removed from the cache.

Use one of the following values:

NEVER_CLEAR

When the notification service is disconnected:

Continue to use the existing cache.

Deny access for requests that are not cached, but do not update the cache with these
requests.

When the notification service is reconnected:

Continue to use the existing cache.

Query AM for incoming requests that are not found in the cache, and update the cache with
these requests.

CLEAR_ON_DISCONNECT

When the notification service is disconnected:

Clear the cache.

Deny access to all requests, but do not update the cache with these requests.

When the notification service is reconnected:

Query AM for all requests that are not found in the cache. (Because the cache was cleared,
the cache is empty after reconnection.)

Update the cache with these requests.

•

•

•

◦

▪

▪

◦

▪

▪

•

◦

▪

▪

◦

▪

▪

Reference PingGateway

972 Copyright © 2025 Ping Identity Corporation

CLEAR_ON_RECONNECT

When the notification service is disconnected:

Continue to use the existing cache.

Deny access for requests that are not cached, but do not update the cache with these
requests.

When the notification service is reconnected:

Query AM for all requests that are not found in the cache. (Because the cache was cleared,
the cache is empty after reconnection.)

Update the cache with these requests.

Default: CLEAR_ON_DISCONNECT

"sessionIdleRefresh": object, optional

Enable and configure periodic refresh of idle sessions. When this property is enabled, PingGateway requests session
refresh:

The first time PingGateway gets an SSO token from AM, irrespective of the age of the token

When sessionIdleRefresh.interval has elapsed

Use this property when AM is using CTS-based sessions. AM does not monitor idle time for client-side sessions, and so
refresh requests are ignored.

When the SingleSignOnFilter is used for authentication with AM, AM can view a session as idle even though a user
continues to interact with PingGateway. The user session eventually times out and the user must re-authenticate.

When the SingleSignOnFilter filter is used with the PolicyEnforcementFilter, the session is refreshed each time
PingGateway requests a policy decision from AM. The session is less likely to become idle, and this property less required.

{
 "sessionIdleRefresh": {
 "enabled": configuration expression<boolean>,
 "interval": configuration expression<duration>
 }
}

enabled: configuration expression<boolean>, optional

Enable refresh of idle sessions.

Default: false

interval: configuration expression<duration>, optional

Duration to wait after a session becomes idle before requesting a session refresh.

Consider setting the refresh interval in line with the latest access time update frequency of AM. For example, if
PingGateway requests a refresh every 60 seconds, but the update frequency of AM is 5 minutes, AM ignores most
of the PingGateway requests.

•

◦

▪

▪

◦

▪

▪

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 973

Default: 5 minutes

"sessionProperties": array of configuration expression<strings>, optional

The list of user session properties to retrieve from AM by the SessionInfoFilter.

Default: All available session properties are retrieved from AM.

"ssoTokenHeader": configuration expression<string>, optional

The header name or cookie name where this AM server expects to find SSO tokens.

If a value for ssoTokenHeader is provided, PingGateway uses that value. Otherwise, PingGateway queries the AM /
serverinfo/* endpoint for the header or cookie name.

Default: Empty. PingGateway queries AM for the cookie name.

"version": configuration expression<string>, optional

The version number of the AM server. PingGateway uses the AM version to establish endpoints for its interaction with AM.

The AM version is derived as follows, in order of precedence:

Discovered value: AmService discovers the AM version. If version is configured with a different value, AmService
ignores the value of version and issues a warning.

Value in version : AmService cannot discover the AM version, and version is configured.

Default value of AM 6: AmService cannot discover the AM version, and version is not configured.

If you use a feature that is supported only in a higher AM version than discovered or specifed, a message can be logged or
an error thrown.

Default: AM 6.

More information

org.forgerock.openig.tools.am.AmService

ClientRegistration

A ClientRegistration holds information about registration with an OAuth 2.0 Authorization Server or OpenID Provider.

The configuration includes the client credentials that are used to authenticate to the identity provider. The client credentials can
be included directly in the configuration, or retrieved in some other way using an expression, described in Expressions.

emergency_home
Each session refresh must be reflected in the AM core token service. Setting the interval to a duration
lower than one minute can adversely impact AM performance.

Important

•

•

•

Reference PingGateway

974 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/am/AmService.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/am/AmService.html

Usage

{
 "name": string,
 "type": "ClientRegistration",
 "config": {
 "clientId": configuration expression<string>,
 "issuer": Issuer reference,
 "scopes": [configuration expression<string>, ...],
 "registrationHandler": Handler reference,
 "authenticatedRegistrationHandler": Handler reference,
 "clientSecretUsage": configuration expression<enumeration>,
 "clientSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference,
 "skipSignatureVerification": configuration expression<boolean>,
 "jwtExpirationTimeout": duration, //deprecated
 "privateKeyJwtSecretId": configuration expression<secret-id>, //deprecated
 "tokenEndpointAuthMethod": enumeration, //deprecated
 "tokenEndpointAuthSigningAlg": string //deprecated
 }
}

Properties

"clientId": configuration expression<string>, required

The client_id obtained when registering with the Authorization Server. See also Expressions.

When using a login page with AuthorizationCodeOAuth2ClientFilter, the link to the /login endpoint must refer to a valid
clientId identified by this property.

"issuer": Issuer reference, required

The provider configuration to use for this client registration. Provide either the name of a Issuer object defined in the heap
or an inline Issuer configuration object. See also Issuer.

"scopes": array of configuration expression<strings>, optional

Array of scope strings to present to the user for approval, and include in tokens so that protected resources can make
decisions about access.

Default: Empty

"registrationHandler": Handler reference, optional

HTTP client handler to invoke during client registration, to access endpoints that do not require client authentication.
Provide either the name of a Handler object defined in the heap or an inline Handler configuration object.

Usually set this to the name of a ClientHandler configured in the heap, or a chain that ends in a ClientHandler.

Default: ClientHandler.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 975

"authenticatedRegistrationHandler": Handler reference, optional

HTTP client handler to invoke during client registration, to access endpoints that require client authentication. Configure
this property as a Chain, using one of the following filters for client authentication:

ClientSecretBasicAuthenticationFilter

ClientSecretPostAuthenticationFilter

EncryptedPrivateKeyJwtClientAuthenticationFilter

PrivateKeyJwtClientAuthenticationFilter

{
 "name": "AuthenticatedRegistrationHandler",
 "type": "Chain",
 "config": {
 "handler": "ForgeRockClientHandler",
 "filters": [
 {
 "type": "ClientSecretBasicAuthenticationFilter",
 "config": {
 "clientId": "service-client",
 "clientSecretId": "client.secret.id",
 "secretsProvider" : "SystemAndEnvSecretStore-1"
 }
 }
]
 }
}

Default: registrationHandler with no authentication filter.

"clientSecretUsage": configuration expression<enumeration>, optional

Specifies how to use the "clientSecretId" ; one of:

CLIENT_AUTHENTICATION_ONLY

ID_TOKEN_VALIDATION_AND_CLIENT_AUTHENTICATION

ID_TOKEN_VALIDATION_ONLY

Default: CLIENT_AUTHENTICATION_ONLY

"clientSecretId": configuration expression<secret-id>, required to verify ID tokens with HMAC-based
signatures

The secret ID of the client secret.

Set this for ID token validation when the OpenID provider signs ID tokens using an HMAC algorithm. In addition, set
"clientSecretUsage" to ID_TOKEN_VALIDATION_AND_CLIENT_AUTHENTICATION or ID_TOKEN_VALIDATION_ONLY and use a
"secretsProvider" to access the client secret.

This secret ID must point to a GenericSecret.

•

•

•

•

•

•

•

Reference PingGateway

976 Copyright © 2025 Ping Identity Corporation

"secretsProvider": SecretsProvider reference, required to verify ID tokens with HMAC-based signatures

The SecretsProvider object to query for the client’s GenericSecret. For more information, see SecretsProvider.

When the OpenID provider signs ID tokens using an HMAC algorithm, use this provider to access the "clientSecretId" .

"skipSignatureVerification": configuration expression<boolean>, optional

A flag for signature validation of OpenID Connect ID tokens:

true : Don’t validate signatures.

false : Validate signatures.

Default: true

"jwtExpirationTimeout": duration, optional

When private_key_jwt is used for authentication, this property specifies the duration for which the JWT is valid.

Default: 1 minute

"privateKeyJwtSecretId": configuration expression<secret-id>, required when private_key_jwt is used
for client authentication

The secret ID of the key to sign the JWT.

This secret ID must point to a CryptoKey.

"tokenEndpointAuthMethod": enumeration, optional

•

emergency_home
By default, for backward compatibility in this release, the default value of this property is true .
Before using the value true , consider the security impact on your deployment. Use only when the
connection between the Issuer and Client is direct and well secured.

Important

•

emergency_home
This property is deprecated; use authenticatedRegistrationHandler instead. For more information, refer to
the Deprecated section of the Release Notes.

Important

emergency_home
This property is deprecated; use authenticatedRegistrationHandler instead. For more information, refer to
the Deprecated section of the Release Notes.

Important

emergency_home
This property is deprecated; use authenticatedRegistrationHandler instead. For more information, refer to
the Deprecated section of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 977

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

The authentication method with which a client authenticates to the authorization server or OpenID provider at the token
endpoint. For information about client authentication methods, see OpenID Client Authentication. The following client
authentication methods are allowed:

client_secret_basic : Clients that have received a client_secret value from the Authorization Server
authenticate with the Authorization Server by using the HTTP Basic authentication scheme, as in the following
example:

POST /oauth2/token HTTP/1.1
Host: as.example.com
Authorization: Basic
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=...

client_secret_post : Clients that have received a client_secret value from the Authorization Server
authenticate with the Authorization Server by including the client credentials in the request body, as in the
following example:

POST /oauth2/token HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&;
client_id=...&
client_secret=...&
code=...

private_key_jwt : Clients send a signed JSON Web Token (JWT) to the Authorization Server. PingGateway builds
and signs the JWT, and prepares the request as in the following example:

POST /token HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=...&
client_id=<clientregistration_id>&
client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer&
client_assertion=PHNhbWxwOl ... ZT

If the Authorization Server doesn’t support private_key_jwt , a dynamic registration falls back on the method
returned by the Authorization Server, for example, client_secret_basic or client_secret_post .

If tokenEndpointAuthSigningAlg is not configured, the RS256 signing algorithm is used for private_key_jwt .

Consider these points for identity providers:

Some providers accept more than one authentication method.

•

•

•

•

Reference PingGateway

978 Copyright © 2025 Ping Identity Corporation

http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

If a provider strictly enforces how the client must authenticate, align the authentication method with the provider.

If a provider doesn’t support the authentication method, the provider sends an HTTP 400 Bad Request response
with an invalid_client error message, according to RFC 6749 The OAuth 2.0 Authorization Framework, section
5.2 .

If the authentication method is invalid, the provider sends an IllegalArgumentException .

Default: client_secret_basic

"tokenEndpointAuthSigningAlg": string, optional

The JSON Web Algorithm (JWA) used to sign the JWT that is used to authenticate the client at the token endpoint. The
property is used when private_key_jwt is used for authentication.

Use one of the following algorithms:

RS256 : RSA using SHA-256

ES256 : ECDSA with SHA-256 and NIST standard P-256 elliptic curve

ES384 : ECDSA with SHA-384 and NIST standard P-384 elliptic curve

ES512 : ECDSA with SHA-512 and NIST standard P-521 elliptic curve

Default: RS256

Example

Refer to AM as a single OpenID Connect provider.

More information

org.forgerock.openig.filter.oauth2.client.ClientRegistration

Issuer, AuthorizationCodeOAuth2ClientFilter

The OAuth 2.0 Authorization Framework

The OAuth 2.0 Authorization Framework: Bearer Token Usage

OpenID Connect

ClientTlsOptions

Configures connections to the TLS-protected endpoint of servers, when PingGateway is client-side.

When PingGateway is client-side, PingGateway sends requests to a proxied application, or requests services from a third-party
application. PingGateway is acting as a client of the application, and the application is acting as a server.

Use ClientTlsOptions in ClientHandler, ReverseProxyHandler, and AmService.

•

•

•

emergency_home
This property is deprecated; use authenticatedRegistrationHandler instead. For more information, refer to
the Deprecated section of the Release Notes.

Important

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 979

https://tools.ietf.org/html/rfc6749#section-5.2
https://tools.ietf.org/html/rfc6749#section-5.2
https://tools.ietf.org/html/rfc6749#section-5.2
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/ClientRegistration.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/ClientRegistration.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750
http://openid.net/connect/
http://openid.net/connect/

Usage

{
 "name": string,
 "type": "ClientTlsOptions",
 "config": {
 "keyManager": [Key manager reference, ...],
 "trustManager": [Trust manager reference, ...],
 "sslCipherSuites": [configuration expression<string>, ...],
 "sslContextAlgorithm": configuration expression<string>,
 "sslEnabledProtocols": [configuration expression<string>, ...],
 "alpn": object,
 "hostnameVerifier": configuration expression<enumeration>
 }
}

Properties

"keyManager": array of key manager references, optional

One or more of the following objects to serve the same secret key and certificate pair for TLS connections to all server
names in the deployment:

SecretsKeyManager

KeyManager (deprecated)

Key managers are used to prove the identity of the local peer during TLS handshake, as follows:

When ServerTlsOptions is used in an HTTPS connector configuration (server-side), the key managers to which
ServerTlsOptions refers are used to prove this PingGateway’s identity to the remote peer (client-side). This is the
usual TLS configuration setting (without mTLS).

When ClientTlsOptions is used in a ClientHandler or ReverseProxyHandler configuration (client-side), the key
managers to which ClientTlsOptions refers are used to prove this PingGateway’s identity to the remote peer
(server-side). This configuration is used in mTLS scenarios.

Default: None

"trustManager": array of trust manager references, optional

One or more of the following objects to manage PingGateway’s public key certificates:

SecretsTrustManager

TrustAllManager

TrustManager (deprecated)

•

•

•

•

•

•

•

emergency_home
When the TrustManager object is configured, only certificates accessible through that TrustManager are
trusted. Default and system certificates are no longer trusted.

Important

Reference PingGateway

980 Copyright © 2025 Ping Identity Corporation

Trust managers verify the identity of a peer by using certificates, as follows:

When ServerTlsOptions is used in an HTTPS connector configuration (server-side), ServerTlsOptions refers to trust
managers that verify the remote peer’s identity (client-side). This configuration is used in mTLS scenarios.

When ClientTlsOptions is used in a ClientHandler or a ReverseProxyHandler configuration (client-side),
ClientTlsOptions refers to trust managers that verify the remote peer’s identity (server-side). This is the usual TLS
configuration setting (without mTLS).

If trustManager is not configured, PingGateway uses the default Java truststore to verify the remote peer’s identity. The
default Java truststore depends on the Java environment. For example, $JAVA_HOME/lib/security/cacerts .

Default: No trustManager is set, and PingGateway uses the default and system certificates

"sslCipherSuites": array of configuration expression<strings>, optional

Array of cipher suite names, used to restrict the cipher suites allowed when negotiating transport layer security for an
HTTPS connection.

For information about the available cipher suite names, refer to the documentation for the Java virtual machine (JVM)
where you run PingGateway. For Oracle Java, refer to the list of JSSE Cipher Suite Names.

Default: Allow any cipher suite supported by the JVM.

"sslContextAlgorithm": configuration expression<string>, optional

The SSLContext algorithm name, as listed in the table of SSLContext Algorithms for the Java Virtual Machine (JVM).

Default: TLS

"sslEnabledProtocols": array of configuration expression<strings>, optional

Array of protocol names, used to restrict the protocols allowed when negotiating transport layer security for an HTTPS
connection.

For information about the available protocol names, refer to the documentation for the Java Virtual Machine (JVM). For
Oracle Java, refer to the list of Additional JSSE Standard Names.

Follow these protocol recommendations:

Use TLS 1.3 when it is supported by available libraries, otherwise use TLS 1.2.

If TLS 1.1 or TLS 1.0 is required for backwards compatibility, use it only with express approval from enterprise
security.

Do not use deprecated versions SSL 3 or SSL 2.

Default: TLS 1.3, TLS 1.2

"alpn": object, optional

A flag to enable the Application-Layer Protocol Negotiation (ALPN) extension for TLS connections.

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 981

https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#jsse-cipher-suite-names
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#jsse-cipher-suite-names
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#sslcontext-algorithms
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#sslcontext-algorithms
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#additional-jsse-standard-names
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#additional-jsse-standard-names

{
 "alpn": {
 "enabled": configuration expression<boolean>
 }
}

enabled: configuration expression<boolean>, optional

true : Enable ALPN. Required for HTTP/2 connections over TLS

false : Disable ALPN.

Default: true

"hostnameVerifier": configuration expression<enumeration>, optional

The method to handle hostname verification for outgoing SSL connections.

For backward compatibility, when a ClientHandler or ReverseProxyHandler includes the deprecated "hostnameVerifier":
"ALLOW_ALL" configuration, it takes precedence over this property. A deprecation warning is written to the logs.

Use one of the following values:

ALLOW_ALL : Allow a certificate issued by a trusted CA for any hostname or domain to be accepted for a connection
to any domain.

If the SSL endpoint uses a raw IP address rather than a fully-qualified hostname, you must configure this property
as ALLOW_ALL .

To prevent the compromise of TLS connections, use ALLOW_ALL in development mode only. In production, use
STRICT .

STRICT : Match the hostname either as the value of the the first CN, or any of the subject-alt names.

A wildcard can occur in the CN, and in any of the subject-alt names. Wildcards match one domain level, so
*.example.com matches www.example.com but not some.host.example.com .

Default: STRICT

Example

For an example that uses ClientTlsOptions, refer to Configure PingGateway for TLS (client-side).

Delegate

Delegates all method calls to a referenced handler, filter, or any object type.

Use a Delegate to decorate referenced objects differently when they are used multiple times in a configuration.

•

•

•

error
The ALLOW_ALL setting allows a certificate issued for one company to be accepted as a valid certificate
for another company.

Caution

•

Reference PingGateway

982 Copyright © 2025 Ping Identity Corporation

Usage

{
 "filter or handler": {
 "type": "Delegate",
 [decorator reference, ...],
 "config": {
 "delegate": object
 }
 }
}

Example

For an example of how to delegate tasks to ForgeRockClientHandler , and capture PingGateway’s interaction with AM, refer to
Decorating PingGateway’s interactions with AM.

More information

org.forgerock.openig.decoration.DelegateHeaplet

JwtSession

Configures settings for stateless sessions.

Session information is serialized as a secure JWT, that is encrypted and signed, and optionally compressed. The resulting JWT
string is placed in one or more JWT session cookies. The cookies contain session attributes as JSON, and a marker for the session
timeout.

Use JwtSession to configure stateless sessions as follows:

Configure a JwtSession object named Session in the heap of config.json .

Stateless sessions are created when a request traverses any route or subroute in the configuration. No routes can create
stateful sessions.

Configure a JwtSession object in the session property of a Route object.

When a request enters the route, PingGateway builds a new session object for the route. Any child routes inherit the
session. The session information is saved/persisted when the response exits the route. For more information, refer to
Route.

Configure a JwtSession object in the session property of multiple sibling routes in the configuration, using an identical
cookie name and cryptographic properties. Sibling routes are in the same configuration, with no ascending hierarchy to
each other.

When a JwtSession object is declared in a route, the session content is available only within that route. With this
configuration, sibling routes can read/write in the same session.

Consider the following points when you configure JwtSession:

Only JSON-compatible types can be serialized into a JWT and included in JWT session cookies. Compatible types include
primitive JSON structures, lists, arrays, and maps. For more information, refer to http://json.org.

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 983

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/decoration/DelegateHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/decoration/DelegateHeaplet.html
http://json.org
http://json.org

The maximum size of the JWT session cookie is 4 KBytes, as defined by the browser. If the cookie exceeds this size,
PingGateway automatically splits it into multiple cookies.

If an empty session is serialized, the supporting cookie is marked as expired and is effectively discarded.

To prevent PingGateway from cleaning up empty session cookies, consider adding some information to the session
context by using an AssignmentFilter. For an example, refer to Adding info to a session.

When HTTP clients perform multiple requests in a session that modify the content, the session information can become
inconsistent.

For information about PingGateway sessions, refer to Sessions.

Usage

{
 "name": string,
 "type": "JwtSession",
 "config": {
 "authenticatedEncryptionSecretId": configuration expression<secret-id>,
 "encryptionMethod": configuration expression<string>,
 "cookie": object,
 "sessionTimeout": configuration expression<duration>,
 "persistentCookie": configuration expression<boolean>,
 "secretsProvider": SecretsProvider reference,
 "skewAllowance": configuration expression<duration>,
 "useCompression": configuration expression<boolean>
 }
}

Properties

"authenticatedEncryptionSecretId": configuration expression<secret-id>, optional

The secret ID of the encryption key used to perform authenticated encryption on a JWT. Authenticated encryption encrypts
data and then signs it with HMAC, in a single step.

This secret ID must point to a CryptoKey.

Authenticated encryption is achieved with a symmetric encryption key. Therefore, the secret must refer to a symmetric
key.

For more information, refer to RFC 5116.

Default: PingGateway generates a default symmetric key for authenticated encryption. Consequently, PingGateway instances
cannot share the JWT session.

"encryptionMethod": configuration expression<string>, optional

The algorithm to use for authenticated encryption. For information about allowed encryption algorithms, refer to RFC
7518: "enc" (Encryption Algorithm) Header Parameter Values for JWE.

Default: A256GCM

•

•

•

Reference PingGateway

984 Copyright © 2025 Ping Identity Corporation

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1
https://www.rfc-editor.org/rfc/rfc7518#section-5.1

"cookie": object, optional

The configuration of the cookie used to store the encrypted JWT.

The maximum size of the JWT session cookie is 4 KBytes, as defined by the browser. If the cookie exceeds this size,
PingGateway automatically splits it into multiple cookies.

Default: The cookie is treated as a host-based cookie.

{
 "name": configuration expression<string>,
 "domain": configuration expression<string>,
 "httpOnly": configuration expression<boolean>,
 "path": configuration expression<string>,
 "sameSite": configuration expression<enumeration>,
 "secure": configuration expression<boolean>
}

"name" configuration expression<string>, optional

Name of the JWT cookie stored on the user agent. For security, change the default name of cookies.

Default: openig-jwt-session

"domain" configuration expression<string>, optional

Domain from which the JWT cookie can be accessed. When the domain is specified, a JWT cookie can be accessed
from different hosts in that domain.

Set a domain only if the user agent is able to re-emit cookies on that domain on its next hop. For example, to re-
emit a cookie on the domain .example.com , the user agent must be able to access that domain on its next hop.

Default: The fully qualified hostname of the user agent’s next hop.

"httpOnly": configuration expression<boolean>, optional

Flag to mitigate the risk of client-side scripts accessing protected cookies.

Default: true

"path": configuration expression<string>, optional

Path protected by this session.

Set a path only if the user agent is able to re-emit cookies on the path. For example, to re-emit a cookie on the
path /home/cdsso , the user agent must be able to access that path on its next hop.

Default: The path of the request that got the Set-Cookie in its response.

"sameSite": configuration expression<enumeration>, optional

Options to manage the circumstances in which a cookie is sent to the server. Use one of the following values to
reduce the risk of CSRF attacks:

STRICT : Send the cookie only if the request was initiated from the cookie domain. Not case-sensitive.•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 985

Use this value to reduce the risk of cross-site request forgery (CSRF) attacks.

LAX : Send the cookie only with GET requests in a first-party context, where the URL in the address bar
matches the cookie domain. Not case-sensitive.

Use this value to reduce the risk of cross-site request forgery (CSRF) attacks.

NONE : Send the cookie whenever a request is made to the cookie domain. Not case-sensitive.

With this setting, consider setting secure to true to prevent browsers from rejecting the cookie. For more
information, refer to SameSite cookies.

Default: LAX

"secure": configuration expression<boolean>, optional

Flag to limit the scope of the cookie to secure channels.

Set this flag only if the user agent is able to re-emit cookies over HTTPS on its next hop. For example, to re-emit a
cookie with the secure flag, the user agent must be connected to its next hop by HTTPS.

Default: false

"sessionTimeout": configuration expression<duration>, optional

The duration for which a JWT session is valid. If the supporting cookie is persistent, this property also defines the expiry of
the cookie.

The value must be above zero. The maximum value is 3650 days (approximately 10 years). If you set a longer duration,
PingGateway truncates the duration to 3650 days.

Default: 30 minutes

"persistentCookie": configuration expression<boolean>,optional

Whether or not the supporting cookie is persistent:

true : the supporting cookie is a persistent cookie. Persistent cookies are re-emitted by the user agent until their
expiration date or until they are deleted.

false : the supporting cookie is a session cookie. PingGateway does not specify an expiry date for session cookies.
The user agent is responsible for deleting them when it considers that the session is finished (for example, when
the browser is closed).

Default: false

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the JWT session signing or encryption keys.

"skewAllowance": configuration expression<duration>, optional

The duration to add to the validity period of a JWT to allow for clock skew between different servers.

A skewAllowance of 2 minutes affects the validity period as follows:

A JWT with an iat of 12:00 is valid from 11:58 on the PingGateway clock.

•

•

•

•

•

Reference PingGateway

986 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

A JWT with an exp 13:00 is expired after 13:02 on the PingGateway clock.

Default: To support a zero-trust policy, the skew allowance is by default zero .

"useCompression": configuration expression boolean, optional

A flag to compress the session JWT before it is placed in a cookie.

Default: false

Example

For information about configuring a JwtSession with authenticated encryption, see Encrypt JWT sessions.

For information about managing multiple instances of PingGateway in the same deployment, refer to the Installation guide.

More information

For information about PingGateway sessions, refer to Sessions.

KeyManager (deprecated)

The configuration of a Java Secure Socket Extension KeyManager to manage private keys for PingGateway. The configuration
references the keystore that holds the keys.

When PingGateway acts as a server, it uses a KeyManager to prove its identity to the client. When PingGateway acts as a client, it
uses a KeyManager to prove its identity to the server.

Usage

{
 "name": string,
 "type": "KeyManager",
 "config": {
 "keystore": KeyStore reference,
 "passwordSecretId": configuration expression<secret-id>,
 "alg": configuration expression<string>,
 "secretsProvider": SecretsProvider reference
 }
}

•

emergency_home
Compression can undermine the security of encryption. Evaluate this threat according to your use case before
you enable compression.

Important

emergency_home
This object is deprecated; use SecretsKeyManager instead. For more information, refer to the Deprecated section
of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 987

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/javax/net/ssl/KeyManager.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/javax/net/ssl/KeyManager.html

Properties

"keystore": KeyStore reference, required

The KeyStore (deprecated) object that references the store for key certificates. When keystore is used in a KeyManager,
it queries for private keys; when keystore is used in a TrustManager, it queries for certificates.

Provide either the name of the keystore object defined in the heap or an inline keystore configuration object.

"passwordSecretId": configuration expression<secret-id>, required

The secret ID of the password required to read private keys from the keystore.

This secret ID must point to a GenericSecret.

"alg": configuration expression<string>, optional

The certificate algorithm to use.

Default: the default for the platform, such as SunX509 .

See also Expressions.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the keystore password.

Example

The following example configures a KeyManager that depends on a KeyStore (deprecated) configuration. The KeyManager and
KeyStore passwords are provided by Java system properties or environment variables, and retrieved by the
SystemAndEnvSecretStore. By default, the password values must be base64-encoded.

{
 "name": "MyKeyManager",
 "type": "KeyManager",
 "config": {
 "keystore": {
 "type": "KeyStore",
 "config": {
 "url": "file://${env['HOME']}/keystore.p12",
 "passwordSecretId": "keymanager.keystore.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore"
 }
 },
 "passwordSecretId": "keymanager.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore"
 }
}

More information

org.forgerock.openig.security.KeyManagerHeaplet

JSSE Reference guide , KeyStore, TrustManager

Reference PingGateway

988 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/security/KeyManagerHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/security/KeyManagerHeaplet.html
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345

KeyStore (deprecated)

The configuration for a Java KeyStore, which stores cryptographic private keys and public key certificates.

Usage

{
 "name": name,
 "type": "KeyStore",
 "config": {
 "url": configuration expression<url>,
 "passwordSecretId": configuration expression<secret-id>,
 "type": configuration expression<string>,
 "secretsProvider": SecretsProvider reference
 }
}

Properties

"url": configuration expression<url>, required

URL to the keystore file.

See also Expressions.

"passwordSecretId": configuration expression<secret-id>, optional

The secret ID of the password required to read private keys from the KeyStore.

This secret ID must point to a GenericSecret.

If the KeyStore is used as a truststore to store only public key certificates of peers and no password is required to do so,
then you do not have to specify this field.

Default: No password is set.

See also Expressions.

"type": configuration expression<string>, optional

The secret store type.

emergency_home
This object is deprecated; use KeyStoreSecretStore instead. For more information, refer to the Deprecated section
of the Release Notes.

Important

warning
Legacy keystore types such as JKS and JCEKS are supported but are not secure. Consider using the PKCS#12 keystore
type.

Warning

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 989

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/security/KeyStore.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/security/KeyStore.html

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the keystore password.

Example

The following example configures a KeyStore that references the Java KeyStore file $HOME/keystore.p12 . The KeyStore password
is provided by a Java system property or environment variable, and retrieved by the SystemAndEnvSecretStore. By default, the
password value must be base64-encoded.

{
 "name": "MyKeyStore",
 "type": "KeyStore",
 "config": {
 "url": "file://${env['HOME']}/keystore.p12",
 "passwordSecretId": "keystore.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore"
 }
}

More information

org.forgerock.openig.security.KeyStoreHeaplet

JSSE Reference guide

KeyManager

TrustManager

Issuer

Describes an OAuth 2.0 Authorization Server or an OpenID Provider that PingGateway can use as a OAuth 2.0 client or OpenID
Connect relying party.

The Issuer requires OpenID Connect ID Token signature validation. It doesn’t support ID Token encryption.

An Issuer is usually referenced from a ClientRegistration.

Reference PingGateway

990 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/security/KeyStoreHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/security/KeyStoreHeaplet.html
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345

Usage

{
 "name": string,
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": configuration expression<url>,
 "idTokenVerificationSecretId": configuration expression<string>,
 "secretsProvider": SecretsProvider reference,
 "authorizeEndpoint": configuration expression<url>,
 "registrationEndpoint": configuration expression<url>,
 "tokenEndpoint": configuration expression<url>,
 "userInfoEndpoint": configuration expression<url>,
 "endSessionEndpoint": configuration expression<url>,
 "revocationEndpoint": configuration expression<url>,
 "issuer": configuration expression<string>,
 "issuerHandler": Handler reference,
 "issuerRepository": Issuer repository reference,
 "supportedDomains": [pattern, ...],
 "idTokenSkewAllowance": configuration expression<duration>
 }
}

Properties

If the provider has a well-known configuration URL as defined for OpenID Connect 1.0 Discovery that returns JSON with at least
authorization and token endpoint URLs, then you can specify that URL in the provider configuration. Otherwise, you must specify
at least the provider authorization and token endpoint URLs, and optionally the registration endpoint and user info endpoint
URLs.

For token signature validation, if you don’t specify the well-known configuration URL, do specify the expected issuer and how to
access the secret. For HMAC-based signature validation, PingGateway must have access to the symmetric key, such as the client
secret it uses to connect to the OpenID provider. The verification secret ID expects a CryptoKey. The OAuth2 client secret ID to
registering the client is a GenericSecret. At present, you can’t reuse the same secrets provider for both the client secret and
signature validation.

The provider configuration object properties are as follows:

"name": string, required

A name for the provider configuration.

"wellKnownEndpoint": configuration expression<url>, required unless authorizeEndpoint and
tokenEndpoint are configured

The URL to the well-known configuration resource as described in OpenID Connect 1.0 Discovery.

"idTokenVerificationSecretId": configuration expression<string>, optional

When OpenID Connect ID token signature validation is enabled on the ClientRegistration and no "wellKnownEndpoint" is
set, set this to reference the provider’s public key for asymmetric ID token signature validation.

If the OpenID provider uses a symmetric (HMAC-based) signature algorithm, the symmetric key is the client secret.
Configure the client secret ID in the ClientRegistration instead.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 991

This secret ID must point to a CryptoKey in the "secretsProvider" .

Default: Use the jwks_uri in the well-known configuration to get the asymmetric signature validation keys and ignore this
setting.

"secretsProvider": SecretsProvider reference, required when idTokenVerificationSecretId is set

The SecretsProvider to query for the signature validation secret.

Default: Use the jwks_uri in the well-known configuration to get the asymmetric signature validation keys and ignore this
setting.

"authorizeEndpoint": configuration expression<url>, required unless obtained through
wellKnownEndpoint

The URL to the provider’s OAuth 2.0 authorization endpoint.

"registrationEndpoint": configuration expression<url>, optional

The URL to the provider’s OpenID Connect dynamic registration endpoint.

"tokenEndpoint": configuration expression<url>, required unless obtained through wellKnownEndpoint

The URL to the provider’s OAuth 2.0 token endpoint.

"userInfoEndpoint": configuration expression<url>, optional

The URL to the provider’s OpenID Connect UserInfo endpoint.

Default: no UserInfo is obtained from the provider.

"endSessionEndpoint": configuration expression<url>, optional

The URL to the Authorization Server’s end_session_endpoint . In OpenID Connect, when a request accesses this endpoint,
PingGateway kills the user session in AM.

Consider the following example endpoint: https://am.example.com:8443/openam/oauth2/realms/root/realms/alpha/
connect/endSession

For more information, refer to OpenID Connect Session Management.

Default: No endpoint

"revocationEndpoint": configuration expression<url>, optional

The URL to the Authorization Server’s revocation_endpoint . When a request accesses this endpoint, PingGateway
revokes access tokens or refresh tokens associated to the current user session in AM.

Consider the following example endpoint: https://am.example.com:8443/openam/oauth2/realms/root/realms/alpha/
token/revoke

Default: No endpoint

Reference PingGateway

992 Copyright © 2025 Ping Identity Corporation

https://openid.net/specs/openid-connect-session-1_0-10.html
https://openid.net/specs/openid-connect-session-1_0-10.html

"issuer": configuration expression<string>, required for OIDC unless obtained through the
wellKnownEndpoint

The identifier of the issuer for OpenID Connect ID tokens. Must match the iss claim value in the ID tokens.

Default: Use the issuer in the well-known configuration.

"issuerHandler": Handler reference, optional

Invoke this HTTP client handler to communicate with the Authorization Server.

Provide either the name of a Handler object defined in the heap or an inline Handler configuration object.

Usually set this to the name of a ClientHandler configured in the heap, or a chain that ends in a ClientHandler.

Default: PingGateway uses the default ClientHandler.

See also Handlers, ClientHandler.

"issuerRepository": Issuer repository reference, optional

A repository of OAuth 2.0 issuers, built from discovered issuers and the PingGateway configuration.

Provide the name of an IssuerRepository object defined in the heap.

Default: Look up an issuer repository named IssuerRepository in the heap. If none is explicitly defined, then a default
one named IssuerRepository is created in the current route.

See also IssuerRepository.

"supportedDomains": array of patterns, optional

One or more domain patterns to match domain names that are handled by this issuer, used as a shortcut for OpenID
Connect discovery before performing OpenID Connect dynamic registration.

In summary when the OpenID Provider is not known in advance, it might be possible to discover the OpenID Provider
Issuer based on information provided by the user, such as an email address. The OpenID Connect discovery specification
explains how to use WebFinger to discover the issuer. PingGateway can discover the issuer in this way. As a shortcut
PingGateway can also use supported domains lists to find issuers already described in the PingGateway configuration.

To use this shortcut, PingGateway extracts the domain from the user input, and looks for an issuer whose supported
domains list contains a match.

Supported domains patterns match host names with optional port numbers. Do not specify a URI scheme such as HTTP.
PingGateway adds the scheme. For instance, *.example.com matches any host in the example.com domain. You can
specify the port number as well as in host.example.com:8443 . Patterns must be valid regular expression patterns
according to the rules for the Java Pattern class.

"idTokenSkewAllowance": configuration expression<duration>, optional

Acceptable clock skew when validating OpenID Connect ID Tokens.

Default: zero

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 993

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
https://www.rfc-editor.org/rfc/rfc7033
https://www.rfc-editor.org/rfc/rfc7033
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

Examples

The following example shows an AM issuer configuration for AM. AM exposes a well-known endpoint for the provider
configuration, but this example demonstrates use of the other fields:

{
 "name": "openam",
 "type": "Issuer",
 "config": {
 "authorizeEndpoint":
 "https://am.example.com:8443/openam/oauth2/authorize",
 "registration_endpoint":
 "https://am.example.com:8443/openam/oauth2/connect/register",
 "tokenEndpoint":
 "https://am.example.com:8443/openam/oauth2/access_token",
 "userInfoEndpoint":
 "https://am.example.com:8443/openam/oauth2/userinfo",
 "supportedDomains": ["mail.example.*", "docs.example.com:8443"]
 }
}

The following example shows an issuer configuration for Google:

{
 "name": "google",
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint":
 "https://accounts.google.com/.well-known/openid-configuration",
 "supportedDomains": ["gmail.*", "googlemail.com:8052"]
 }
}

More information

org.forgerock.openig.filter.oauth2.client.Issuer

IssuerRepository

Stores OAuth 2 issuers that are discovered or built from the configuration.

It is not normally necessary to change this object. Change it only for the following tasks:

To isolate different repositories in the same route.

To view the interactions of the well-known endpoint, for example, if the issuerHandler is delegating to another handler.

•

•

•

Reference PingGateway

994 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/Issuer.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/Issuer.html

Usage

{
 "name": string,
 "type": "IssuerRepository",
 "config": {
 "issuerHandler": Handler reference
 }
}

Properties

"issuerHandler": Handler reference, optional

The default handler to fetch OAuth2 issuer configurations from the well-known endpoint.

Provide the name of a Handler object defined in the heap or an inline Handler configuration object.

Default: ForgeRockClientHandler

More information

org.forgerock.openig.filter.oauth2.client.IssuerRepository

JdbcDataSource

Manages connections to a JDBC data source.

To configure the connection pool, add a JdbcDataSource object named AuditService in the route heap.

Usage

{
 "name": string,
 "type": "JdbcDataSource",
 "config": {
 "dataSourceClassName": configuration expression<string>,
 "driverClassName": configuration expression<string>,
 "executor": ScheduledExectutorService reference,
 "jdbcUrl": configuration expression<url>,
 "passwordSecretId": configuration expression<secret-id>,
 "poolName": configuration expression<string>,
 "properties": object,
 "secretsProvider": SecretsProvider reference,
 "username": configuration expression<string>
 }
}

Properties

"dataSourceClassName": configuration expression<string>, optional

The data source class name to use to connect to the database.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 995

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/IssuerRepository.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/IssuerRepository.html

Depending on the underlying data source, use either jdbcUrl , or dataSourceClassName with url . See the Properties.

"driverClassName": configuration expression<string>, optional

Class name of the JDBC connection driver. The following examples can be used:

MySQL Connector/J: com.mysql.jdbc.Driver

H2: org.h2.Driver

This property is optional, but required for older JDBC drivers.

"executor": ScheduledExecutorService reference, optional

A ScheduledExecutorService for maintenance tasks.

Default: ScheduledExecutorService.

"jdbcUrl": configuration expression<url>, optional

The JDBC URL to use to connect to the database.

Depending on the underlying data source, use either jdbcUrl , or dataSourceClassName with url . See the Properties.

"passwordSecretId": configuration expression<secret-id>, required if the database is password-protected

The secret ID of the password to access the database.

This secret ID must point to a GenericSecret.

"poolName": configuration expression<string>, optional

The connection pool name. Use to identify a pool easily for maintenance and monitoring.

"properties": object, optional

Server properties specific to the type of data source being used. The values of the object are evaluated as configuration
expression<strings>.

For information about available options, refer to the data source documentation.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

"username": configuration expression<string>, optional

The username to access the database.

Example

For an example that uses JdbcDataSource, refer to Log In With Credentials From a Database and Recording Access Audit Events
in a Database.

The following example configures a JdbcDataSource with a dataSourceClassName and url :

•

•

Reference PingGateway

996 Copyright © 2025 Ping Identity Corporation

"config": {
 "username": "testUser",
 "dataSourceClassName": "org.h2.jdbcx.JdbcDataSource",
 "properties": {
 "url": "jdbc:h2://localhost:3306/auth"
 },
 "passwordSecretId": "database.password",
 "secretsProvider": "MySecretsProvider"
}

The following example configures a JdbcDataSource with jdbcUrl alone:

"config": {
 "username": "testUser",
 "jdbcUrl": "jdbc:h2://localhost:3306/auth",
 "passwordSecretId": "database.password",
 "secretsProvider": "MySecretsProvider"
}

The following example configures a JdbcDataSource with jdbcUrl and driverName . Use this format for older drivers, where
jdbcUrl does not provide enough information:

"config": {
 "username": "testUser",
 "jdbcUrl": "jdbc:h2://localhost:3306/auth",
 "driverName": "org.h2.Driver",
 "passwordSecretId": "database.password",
 "secretsProvider": "MySecretsProvider"
}

More information

org.forgerock.openig.sql.JdbcDataSourceHeaplet

KerberosIdentityAssertionPlugin

Use with an IdentityAssertionHandler to validate Kerberos authentication tickets locally.

The KerberosIdentityAssertionPlugin doesn’t support Windows New Technology LAN Manager (NTLM) tokens.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 997

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/sql/JdbcDataSourceHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/sql/JdbcDataSourceHeaplet.html

Usage

{
 "name": string,
 "type": "KerberosIdentityAssertionPlugin",
 "config": {
 "serviceLogin": ServiceLogin reference,
 "trustedRealms": [configuration_expression<string>, ...]
 }
}

Properties

"serviceLogin": ServiceLogin reference, required

A service account object to log PingGateway in to the Kerberos server so that PingGateway can act on user tokens.
PingGateway will be able to validate user tokens, for example.

PingGateway provides the following service account objects for the KerberosIdentityAssertionPlugin:

UsernamePasswordServiceLogin

Log PingGateway in to the Kerberos server by using a service account username and password.

{
 "type": "UsernamePasswordServiceLogin",
 "config": {
 "username": configuration_expression<string>,
 "passwordSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference
 }
}

"username": configuration expression<string>, required

Service username.

"passwordSecretId": configuration expression<secret-id>, required if the proxy requires
authentication

The secret ID of the service account password.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the password.

KeytabServiceLogin

Log PingGateway in to the Kerberos server by using a Keytab file.

Reference PingGateway

998 Copyright © 2025 Ping Identity Corporation

{
 "type": "KeytabServiceLogin",
 "config": {
 "username": configuration_expression<string>,
 "keytabFile": configuration expression<secret-id>,
 "executor": ScheduledExecutorService reference
 }
}

"username": configuration expression<string>, required

Service username.

"keytabFile": configuration expression<string>, required

Path to the keytab file. Both the username and keytabFile are required for login.

"executor": ScheduledExecutorService reference, optional

An executor service to schedule the execution of tasks during a keytab service login.

Default: ScheduledExecutorService or an executor service declared in the heap.

"trustedRealms": array of configuration expression<strings>, optional

A list of one or more Kerberos realms that are expected to match the principal’s realm from the user’s Kerberos ticket.

Kerberos tickets are accepted only if the principal’s realm matches a realm in the list.

Default: Empty

Examples

{
 "type": "KerberosIdentityAssertionPlugin",
 "config": {
 "serviceLogin": "UsernamePasswordServiceLogin",
 "trustedRealms": ["EXAMPLE.COM"]
 }
}

emergency_home
This service account object is less secure than UsernamePasswordServiceLogin; use it only for testing or
to ease migration. In production environments, always use the most secure options available.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 999

{
 "type": "UsernamePasswordServiceLogin",
 "config": {
 "username": "igsa",
 "passwordSecretId": "igsa.id",
 "secretsProvider": "mySecretsProvider"
 }
}

When using a Kerberos keytab file, generate it for PingGateway with the Windows ktpass command. The following commands
add and view a Service Principal Name (SPN) for the PingGateway service account, igsa , and generate a keytab file for
PingGateway in the example.com realm mapped to the service account username. Run the commands as the Windows
Administrator to ensure you have access to everything necessary:

Add the SPN for the service account:
PS C:\path\to> setspn -s HTTP/ig.example.com igsa

View the SPN for the service account:
PS C:\path\to> setspn -l igsa
Registered ServicePrincipalNames for CN=igsa,CN=Users,DC=example,DC=com:
 HTTP/ig.example.com

Generate the keytab file:
PS C:\path\to> ktpass -out keytab.file -princ HTTP/ig.example.com@EXAMPLE.COM -pass `
+rndPass -maxPass 256 -mapuser igsa -crypto All -ptype KRB5_NT_PRINCIPAL -kvno 0

In the PingGateway configuration, you can use the Kerberos principal as the username:

{
 "type": "KeytabServiceLogin",
 "config": {
 "username": "HTTP/ig.example.com@EXAMPLE.COM",
 "keytabFile": "/path/to/keytab.file"
 }
}

More information

org.forgerock.openig.assertion.plugin.kerberos.KerberosIdentityAssertionPlugin

org.forgerock.openig.assertion.plugin.IdentityAssertionPlugin

org.forgerock.openig.handler.assertion.IdentityAssertionClaims

The following APIs are used in this class:

Kerberos: The Network Authentication Protocol

Kerberos Authentication Overview

Kerberos Requirements

Single Sign-on Using Kerberos in Java

•

•

•

•

Reference PingGateway

1000 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/kerberos/KerberosIdentityAssertionPlugin.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/kerberos/KerberosIdentityAssertionPlugin.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/IdentityAssertionPlugin.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/IdentityAssertionPlugin.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionClaims.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionClaims.html
https://web.mit.edu/kerberos/www/index.html
https://web.mit.edu/kerberos/www/index.html
https://learn.microsoft.com/en-us/windows-server/security/kerberos/kerberos-authentication-overview
https://learn.microsoft.com/en-us/windows-server/security/kerberos/kerberos-authentication-overview
https://docs.oracle.com/en/java/javase/17/security/kerberos-requirements.html
https://docs.oracle.com/en/java/javase/17/security/kerberos-requirements.html
https://docs.oracle.com/en/java/javase/17/security/single-sign-using-kerberos-java1.html
https://docs.oracle.com/en/java/javase/17/security/single-sign-using-kerberos-java1.html

Java Troubleshooting

How do I enable debug logging for troubleshooting Kerberos and WDSSO issues in PingAM?

ProxyOptions

A proxy to which a ClientHandler or ReverseProxyHandler can submit requests, and an AmService can submit Websocket
notifications.

Use this object to configure a proxy for AM notifications, and use it in a ClientHandler or ReverseProxyHandler, and again in an
AmService notifications block.

Usage

Use one of the following ProxyOption types with the proxyOptions option of ClientHandler, ReverseProxyHandler, and
AmService:

No proxy.

{
 "name": string,
 "type": "NoProxyOptions"
}

System defined proxy options.

{
 "name": string,
 "type": "SystemProxyOptions"
}

Custom proxy

{
 "name": string,
 "type": "CustomProxyOptions",
 "config": {
 "uri": configuration expression<url>,
 "username": configuration expression<string>,
 "passwordSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference
 }
}

Default: NoProxyOptions

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1001

https://docs.oracle.com/en/java/javase/17/security/troubleshooting.html
https://docs.oracle.com/en/java/javase/17/security/troubleshooting.html
https://support.pingidentity.com/s/article/How-do-I-enable-debug-logging-for-troubleshooting-Kerberos-and-WDSSO-issues-in-PingAM
https://support.pingidentity.com/s/article/How-do-I-enable-debug-logging-for-troubleshooting-Kerberos-and-WDSSO-issues-in-PingAM

Properties

"uri": configuration expression<url>, required

URI of a server to use as a proxy for outgoing requests.

The result of the expression must be a string that represents a valid URI, but is not a real java.net.URI object.

"username": configuration expression<string>, required if the proxy requires authentication

Username to access the proxy server.

"passwordSecretId": configuration expression<secret-id>, required if the proxy requires authentication

The secret ID of the password to access the proxy server.

This secret ID must point to a GenericSecret.

"secretsProvider": _ SecretsProvider <reference>, required

The SecretsProvider to query for the proxy’s password.

Example

In the following example, the handler passes outgoing requests to the proxy server, which requires authentication:

"handler": {
 "type": "ClientHandler" or "ReverseProxyHandler",
 "config": {
 "proxyOptions": {
 "type": "CustomProxyOptions",
 "config": {
 "uri": "http://proxy.example.com:3128",
 "username": "proxyuser",
 "passwordSecretId": "myproxy.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore"
 }
 }
 }
}

In the following example, the AmService notification service passes Websocket notifications to the proxy server, which requires
authentication:

Reference PingGateway

1002 Copyright © 2025 Ping Identity Corporation

"type": "AmService",
 "config": {
 ...
 "notifications": {
 "proxyOptions": {
 "type": "CustomProxyOptions",
 "config": {
 "uri": "http://proxy.example.com:3128",
 "username": "proxyuser",
 "passwordSecretId": "myproxy.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore"
 }
 }
 }
 }
}

ScheduledExecutorService

An executor service to schedule tasks for execution after a delay or for repeated execution with a fixed interval of time in
between each execution. You can configure the number of threads in the executor service and how the executor service is
stopped.

The ScheduledExecutorService is shared by all downstream components that use an executor service.

Usage

{
 "name": string,
 "type": "ScheduledExecutorService",
 "config": {
 "corePoolSize": configuration expression<number>,
 "gracefulStop": configuration expression<boolean>,
 "gracePeriod": configuration expression<duration>
 }
}

Properties

"corePoolSize": configuration expression<number>, optional

The minimum number of threads to keep in the pool. If this property is an expression, the expression is evaluated as soon
as the configuration is read.

The value must be an integer greater than zero.

Default: 1

"gracefulStop": configuration expression<boolean>, optional

Defines how the executor service stops.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1003

If true, the executor service does the following:

Blocks the submission of new jobs.

If a grace period is defined, waits for up to that maximum time for submitted and running jobs to finish.

Removes submitted jobs without running them.

Attempts to end running jobs.

If false, the executor service does the following:

Blocks the submission of new jobs.

If a grace period is defined, ignores it.

Removes submitted jobs without running them.

Attempts to end running jobs.

Default: true

"gracePeriod": configuration expression<duration>, optional

The maximum time that the executor service waits for running jobs to finish before it stops. If this property is an
expression, the expression is evaluated as soon as the configuration is read.

If all jobs finish before the grace period, the executor service stops without waiting any longer. If jobs are still running after
the grace period, the executor service removes the scheduled tasks, and notifies the running tasks for interruption.

When gracefulStop is false , the grace period is ignored.

Default: 10 seconds

Example

The following example creates a thread pool to execute tasks. When the executor service is instructed to stop, it blocks the
submission of new jobs, and waits for up to 10 seconds for submitted and running jobs to complete before it stops. If any jobs are
still submitted or running after 10 seconds, the executor service stops anyway and prints a message.

{
 "name": "ExecutorService",
 "comment": "Default service for executing tasks in the background.",
 "type": "ScheduledExecutorService",
 "config": {
 "corePoolSize": 5,
 "gracefulStop": true,
 "gracePeriod": "10 seconds"
 }
}

More information

org.forgerock.openig.thread.ScheduledExecutorServiceHeaplet

•

•

•

•

•

•

•

•

Reference PingGateway

1004 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/thread/ScheduledExecutorServiceHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/thread/ScheduledExecutorServiceHeaplet.html

ScriptableResourceUriProvider

Use a script to return a resource URL to include in policy decision requests to AM. The result of the script must be a string that
represents a resource URL. The PolicyEnforcementFilter uses the returned resource URL as a key to identify cached policy
decisions.

To increase performance, use ScriptableResourceUriProvider in conjunction with AM policies to maximize the the cache hit ratio.

When a request matches a cached policy decision, PingGateway can reuse the decision without asking AM for a new decision.
When caching is disabled, PingGateway must ask AM to make a decision for each request.

Usage

"resourceUriProvider": {
 "type": "ScriptableResourceUriProvider",
 "config": {
 "type": configuration expression<string>,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both.
 "args": object,
 "clientHandler": Handler reference
 }
}

Properties

For information about properties, refer to Scripts.

ServerTlsOptions

When PingGateway is server-side, applications send requests to PingGateway or request services from PingGateway. PingGateway
is acting as a server of the application, and the application is acting as a client.

ServerTlsOptions configures the TLS-protected endpoint when PingGateway is server-side. Use ServerTlsOptions in admin.json .

Usage

{
 "type": "ServerTlsOptions",
 "config": {
 "keyManager": [Key manager reference, ...], // Use "keyManager" or
 "sni": object, // "sni", but not both
 "trustManager": [Trust manager reference, ...],
 "sslCipherSuites": [configuration expression<string>, ...],
 "sslContextAlgorithm": configuration expression<string>,
 "sslEnabledProtocols": [configuration expression<string>, ...],
 "alpn": object,
 "clientAuth": configuration expression<enumeration>,
 }
}

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1005

Properties

Either sni or keyManager must be configured. When both are configured, sni takes precedence and a warning is logged. When
neither is configured, an exception is thrown and a warning is logged.

"keyManager": array of key manager references, required if sni isn’t configured

One or more of the following objects to serve the same secret key and certificate pair for TLS connections to all server
names in the deployment:

SecretsKeyManager

KeyManager (deprecated)

Key managers are used to prove the identity of the local peer during TLS handshake, as follows:

When ServerTlsOptions is used in an HTTPS connector configuration (server-side), the key managers to which
ServerTlsOptions refers are used to prove this PingGateway’s identity to the remote peer (client-side). This is the
usual TLS configuration setting (without mTLS).

When ClientTlsOptions is used in a ClientHandler or ReverseProxyHandler configuration (client-side), the key
managers to which ClientTlsOptions refers are used to prove this PingGateway’s identity to the remote peer
(server-side). This configuration is used in mTLS scenarios.

Default: None

"trustManager": array of trust manager references, optional

One or more of the following objects to manage PingGateway’s public key certificates:

SecretsTrustManager

TrustAllManager

TrustManager (deprecated)

Trust managers verify the identity of a peer by using certificates, as follows:

When ServerTlsOptions is used in an HTTPS connector configuration (server-side), ServerTlsOptions refers to trust
managers that verify the remote peer’s identity (client-side). This configuration is used in mTLS scenarios.

When ClientTlsOptions is used in a ClientHandler or a ReverseProxyHandler configuration (client-side),
ClientTlsOptions refers to trust managers that verify the remote peer’s identity (server-side). This is the usual TLS
configuration setting (without mTLS).

If trustManager is not configured, PingGateway uses the default Java truststore to verify the remote peer’s identity. The
default Java truststore depends on the Java environment. For example, $JAVA_HOME/lib/security/cacerts .

Default: No trustManager is set, and PingGateway uses the default and system certificates

•

•

•

•

•

•

•

emergency_home
When the TrustManager object is configured, only certificates accessible through that TrustManager are
trusted. Default and system certificates are no longer trusted.

Important

•

•

Reference PingGateway

1006 Copyright © 2025 Ping Identity Corporation

"sni": object, required if keyManager is not configured

Server Name Indication (SNI) is an extension of the TLS handshake, to serve different secret key and certificate pairs to the
TLS connections on different server names. Use this property to host multiple domains on the same machine. For more
information, refer to Server Name Indication.

During a TLS handshake, vert.x accesses secret key and certificate pairs synchronously; they are loaded in memory at
PingGateway startup, and must be present. You must restart PingGateway to update a secret key and certificate pair.

For an example that uses this property, refer to Serve different certificates for TLS connections to different server names.

{
 "sni": {
 "serverNames": map,
 "defaultSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference
 }
}

serverNames: map, required

A map of one or more data pairs with the format Map<String, String> , where:

The key is the name of server provided during TLS handshake, or a configuration expression that evaluates
to the name

The value is a string representing the secret ID of the servers' secret key/certificate pair. Alternatively, it can
be a configuration expression that evaluates to that string.

The following format is required:

{
 "serverNames": {
 "configuration expression<string>": "configuration expression<string>",
 ...
 }
}

In the following example, the keys and values in the map are strings:

"serverNames": {
 "app1.example.com": "my.app1.secretId",
 "app2.example.com": "my.app2.secretId",
 "*.test.com": "my.wildcard.test.secretId"
}

In the following example, the keys and values in the map are configuration expressions:

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1007

https://www.rfc-editor.org/rfc/rfc6066.html#page-6
https://www.rfc-editor.org/rfc/rfc6066.html#page-6

"serverNames": {
 "${server.name.available.at.config.time}" : "${secret.id.available.at.config.time}"
}

Note the following points:

One server cannot be mapped to multiple certificates.

PingGateway cannot provide multiple certificates for the same server name, as is allowed by Java’s
key managers.

Multiple servers can be mapped to one certificate.

Map server names individually. In the following configuration, both server names use the same
certificate:

"serverNames": {
 "cat.com" : "my.secret.id",
 "dog.org" : "my.secret.id"
}

Use the * wildcard in the server name to map groups of server names. In the following
configuration, app1.example.com and app2.example.com use the same certificate:

"serverNames": {
 "*.example.com": "my.wildcard.secret.id"
}

"defaultSecretId": configuration expression<secret-id>, required

The secret ID representing the certificate to use when an unmapped server name is provided during TLS
handshake.

This secret ID must point to a CryptoKey.

For information about how PingGateway manages secrets, refer to About secrets.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for each secret ID.

"sslCipherSuites": array of configuration expression<strings>, optional

Array of cipher suite names, used to restrict the cipher suites allowed when negotiating transport layer security for an
HTTPS connection.

For information about the available cipher suite names, refer to the documentation for the Java virtual machine (JVM)
where you run PingGateway. For Oracle Java, refer to the list of JSSE Cipher Suite Names.

Default: Allow any cipher suite supported by the JVM.

◦

◦

Reference PingGateway

1008 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#jsse-cipher-suite-names
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#jsse-cipher-suite-names

"sslContextAlgorithm": configuration expression<string>, optional

The SSLContext algorithm name, as listed in the table of SSLContext Algorithms for the Java Virtual Machine (JVM).

Default: TLS

"sslEnabledProtocols": array of configuration expression<strings>, optional

Array of protocol names, used to restrict the protocols allowed when negotiating transport layer security for an HTTPS
connection.

For information about the available protocol names, refer to the documentation for the Java Virtual Machine (JVM). For
Oracle Java, refer to the list of Additional JSSE Standard Names.

Follow these protocol recommendations:

Use TLS 1.3 when it is supported by available libraries, otherwise use TLS 1.2.

If TLS 1.1 or TLS 1.0 is required for backwards compatibility, use it only with express approval from enterprise
security.

Do not use deprecated versions SSL 3 or SSL 2.

Default: TLS 1.3, TLS 1.2

"alpn": object, optional

A flag to enable the Application-Layer Protocol Negotiation (ALPN) extension for TLS connections.

{
 "alpn": {
 "enabled": configuration expression<boolean>
 }
}

enabled: configuration expression<boolean>, optional

true : Enable ALPN. Required for HTTP/2 connections over TLS

false : Disable ALPN.

Default: true

"clientAuth": configuration expression<enumeration>, optional

The authentication expected from the client. Use one of the following values:

REQUIRED : Require the client to present authentication. If it is not presented, then decline the connection.

REQUEST : Request the client to present authentication. If it is not presented, then accept the connection anyway.

NONE : Accept the connection without requesting or requiring the client to present authentication.

Default: NONE

•

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1009

https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#sslcontext-algorithms
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#sslcontext-algorithms
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#additional-jsse-standard-names
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#additional-jsse-standard-names

Example

See the following examples that use ServerTlsOptions:

Set up PingGateway for HTTPS (server-side)

Serve different certificates for TLS connections to different server names

RequestResourceUriProvider

Return a resource URL to include in policy decision requests to AM. The PolicyEnforcementFilter uses the returned resource URL
as a key to identify cached policy decisions.

To increase performance, use RequestResourceUriProvider in conjunction with AM policies to maximize the the cache hit ratio.

When a request matches a cached policy decision, PingGateway can reuse the decision without asking AM for a new decision.
When caching is disabled, PingGateway must ask AM to make a decision for each request.

Usage

"resourceUriProvider": {
 "type": "RequestResourceUriProvider",
 "config": {
 "useOriginalUri": configuration expression<boolean>,
 "includeQueryParams": configuration expression<boolean>
 }
}

Properties

useOriginalUri: configuration expression<boolean>, optional

When 'true`, use the value of UriRouterContext.originalUri as the resource URL when requesting policy decisions from
AM.

When false , use the current Request.uri value. Consider that the value might have been modified by the baseURI of
the route or by any other filter executed before the PolicyEnforcementFilter.

Default: false

includeQueryParams: configuration expression<boolean>, optional

When true , include query parameters in the resource URL when requesting a policy decision from AM.

When false , strip all query parameters from the resource URL when requesting a policy decision from AM. To strip some
but not all query parameters, use ScriptableResourceUriProvider.

Default: true

ScriptableIdentityAssertionPlugin

An out-of-the box implementation of IdentityAssertionPlugin to support use-cases that aren’t provided by a PingGateway
plugin.

•

•

Reference PingGateway

1010 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/IdentityAssertionPlugin.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/IdentityAssertionPlugin.html

Use with an IdentityAssertionHandler for local processing, such as authentication. The plugin returns IdentityAssertionClaims

to include in the identity assertion JWT PingGateway sends to PingOne Advanced Identity Cloud.

The script does the following:

Validates the identity request JWT.

(Optional) Takes a single String that represents the principal or a principal and a map of additional claims from the
IdentityRequestJwtContext.

If a PreProcessingFilter is configured, triggers the filter.

Returns principal and identity claims in the identity assertion JWT.

If script execution fails, the plugin creates an IdentityAssertionPluginException.

Usage

{
 "name": string,
 "type": "ScriptableIdentityAssertionPlugin",
 "config": {
 "preProcessingFilter": Filter reference,
 "type": configuration expression<string>,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both
 "args": map,
 "clientHandler": Handler reference
 }
}

Properties

For information about other properties for ScriptableIdentityAssertionPlugin, refer to Scripts.

"preProcessingFilter": _Filter reference, optional

A Filter to perform user defined actions, such as local authentication and/or authorization.

Default: Pass the request without pre-processing.

Example

The following example applies a preProcessingFilter that uses a ScriptableFilter to test whether the user is authenticated. If a
Basic Authorization Header isn’t found, a response is generated to trigger a Basic Authentication.

1.

2.

3.

4.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1011

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionClaims.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionClaims.html

{
 "name": "BasicAuthScriptablePlugin",
 "type": "ScriptableIdentityAssertionPlugin",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "import org.forgerock.openig.handler.assertion.IdentityAssertionClaims",
 "import org.forgerock.openig.handler.assertion.IdentityAssertionException",
 "if (request.headers.authorization != null && request.headers.authorization.values[0] == 'Basic
user:password') {",
 return new IdentityAssertionClaims("iguser", Map.of("auth", "basic"))",
 "}",
 "return newExceptionPromise(new IdentityAssertionException('Invalid authentication'))",
],
 "preProcessingFilter": {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "if (request.headers.authorization == null) {",
 " Response response = new Response(Status.UNAUTHORIZED)",
 " response.headers['WWW-Authenticate'] = \"Basic\"",
 " return response",
 "}",
 "return next.handle(context, request)",
],
 },
 }
 }
}

More information

org.forgerock.openig.assertion.plugin.IdentityAssertionPlugin

org.forgerock.openig.handler.assertion.IdentityAssertionClaims

ScriptableIdentityAssertionPluginTechPreview

An out-of-the box implementation of IdentityAssertionPluginTechPreview.

Use with an IdentityAssertionHandlerTechPreview for local processing, such as authentication. The plugin returns
IdentityAssertionClaims to include in the outgoing JWT sent to PingOne Advanced Identity Cloud.

emergency_home
The IdentityAssertionHandlerTechPreview, ScriptableIdentityAssertionPluginTechPreview, and
IdentityAssertionPluginTechPreview are available in Technology preview. They aren’t yet supported, may be
functionally incomplete, and are subject to change without notice.

Important

Reference PingGateway

1012 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/IdentityAssertionPlugin.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/assertion/plugin/IdentityAssertionPlugin.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionClaims.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionClaims.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionPluginTechPreview.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionPluginTechPreview.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionClaims.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionClaims.html
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability

The script must:

Access the context, request, and claims of an incoming JWT, where the claims are available under the name
incomingClaims .

Return an IdentityAssertionClaims containing the assertions to add to the outgoing JWT sent to PingOne Advanced
Identity Cloud.

Usage

{
 "name": string,
 "type": "ScriptableIdentityAssertionPluginTechPreview",
 "config": {
 "preProcessingFilter": Filter reference,
 "type": configuration expression<string>,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both
 "args": map,
 "clientHandler": Handler reference
 }
}

Properties

For information about other properties for ScriptableIdentityAssertionPluginTechPreview, refer to Scripts.

"preProcessingFilter": _Filter reference, required

A Filter to perform user defined actions, such as local authentication and/or authorization. The Filter can be used to
process the request before it reaches the script.

Example

The following example applies a preProcessingFilter that uses a ScriptableFilter to test whether the user is authenticated. If
the user isn’t authenticated, the request passes to another script to manage authentication.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1013

{
 "name": "BasicAuthScriptablePlugin",
 "type": "ScriptableIdentityAssertionPluginTechPreview",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "import org.forgerock.openig.handler.assertion.IdentityAssertionClaims",
 "import org.forgerock.openig.handler.assertion.IdentityAssertionException",
 "if (request.headers.authorization != null && request.headers.authorization.values[0] == 'Basic
user:password') {",
 return new IdentityAssertionClaims({Map.of("iguser", "user"))",
 "}",
 "return newExceptionPromise(new IdentityAssertionException('Invalid authentication'))",
],
 "preProcessingFilter": {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "if (request.headers.authorization == null) {",
 " Response response = new Response(Status.UNAUTHORIZED)",
 " response.headers['WWW-Authenticate'] = \"Basic\"",
 " return response",
 "}",
 "return next.handle(context, request)",
],
 },
 }
 }
}

More information

org.forgerock.openig.handler.assertion.IdentityAssertionPlugin

IdentityAssertionClaims

TemporaryStorage

Allocates temporary buffers for caching streamed content during request processing. Initially uses memory; when the memory
limit is exceeded, switches to a temporary file.

Reference PingGateway

1014 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionPluginTechPreview.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionPluginTechPreview.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionClaims.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/assertion/IdentityAssertionClaims.html

Usage

{
 "name": string,
 "type": "TemporaryStorage",
 "config": {
 "initialLength": configuration expression<number>,
 "memoryLimit": configuration expression<number>,
 "fileLimit": configuration expression<number>,
 "directory": configuration expression<string>
 }
}

Properties

"initialLength": configuration expression<number>, optional

Initial size of the memory buffer.

Default: 8 192 bytes (8 KB). Maximum: The value of "memoryLimit" .

"memoryLimit": configuration expression<number>, optional

Maximum size of the memory buffer. When the memory buffer is full, the content is transferred to a temporary file.

Default: 65 536 bytes (64 KB). Maximum: 2 147 483 647 bytes (2 GB).

"fileLimit": configuration expression<number>, optional

Maximum size of the temporary file. If the file is bigger than this value, PingGateway responds with an OverflowException.

Default: 1 073 741 824 bytes (1 GB). Maximum: 2 147 483 647 bytes (2 GB).

"directory": configuration expression<string>, optional

The directory where temporary files are created.

Default: $HOME/.openig/tmp (on Windows, %appdata%\OpenIG\tmp)

More information

org.forgerock.openig.io.TemporaryStorageHeaplet

TrustAllManager

Blindly trusts all server certificates presented the servers for protected applications. It can be used instead of a TrustManager in
test environments to trust server certificates that were not signed by a well-known CA, such as self-signed certificates.

The TrustAllManager is not safe for production use. Use a properly configured TrustManager instead.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1015

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/io/TemporaryStorageHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/io/TemporaryStorageHeaplet.html

Usage

{
 "name": string,
 "type": "TrustAllManager"
}

Example

The following example configures a client handler that blindly trusts server certificates when PingGateway connects to servers
over HTTPS:

{
 "name": "BlindTrustClientHandler",
 "type": "ReverseProxyHandler",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 }
 }
}

More information

org.forgerock.openig.security.TrustAllManager

UmaService

The UmaService includes a list of resource patterns and associated actions that define the scopes for permissions to matching
resources. When creating a share using the REST API described below, you specify a path matching a pattern in a resource of the
UmaService.

Usage

{
 "name": string,
 "type": "UmaService",
 "config": {
 "protectionApiHandler": Handler reference,
 "amService": AmService reference, // Use either "amService"
 "wellKnownEndpoint": configuration expression<url>, // or "wellKnownEndpoint", but not both.
 "resources": [object, ...]
 }
}

Properties

"protectionApiHandler": Handler reference, required

The handler to use when interacting with the UMA Authorization Server to manage resource sets, such as a ClientHandler
capable of making an HTTPS connection to the server.

Reference PingGateway

1016 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/security/TrustAllManager.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/security/TrustAllManager.html

For more information, refer to Handlers.

"amService": AmService reference, required if wellKnownEndpoint is not configured

The AmService heap object to use for the URI to the well-known endpoint for this UMA Authorization Server. The endpoint
is extrapolated from the url property of the AmService, and takes the realm into account.

If the UMA Authorization Server is AM, use this property to define the endpoint.

If amService is configured, it takes precedence over wellKnownEndpoint .

For more information, refer to UMA discovery in AM’s User-Managed Access (UMA) 2.0 guide.

See also AmService.

"wellKnownEndpoint": configuration expression<url>, required if amService is not configured

The URI to the well-known endpoint for this UMA Authorization Server.

If the UMA Authorization Server is not AM, use this property to define the endpoint.

If amService is configured, it takes precedence over wellKnownEndpoint .

Examples:

In this example, the UMA configuration is in the default realm of AM:

https://am.example.com:8088/openam/uma/.well-known/uma2-configuration

In this example, the UMA configuration is in a European customer realm:

https://am.example.com:8088/openam/uma/realms/root/realms/customer/realms/europe/.well-known/uma2-
configuration

For more information, refer to AM as UMA Authorization Server in AM’s User-Managed Access (UMA) 2.0 guide.

"resources": array of objects, required

Resource objects matching the resources the resource owner wants to share.

Each resource object has the following form:

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1017

https://docs.pingidentity.com/pingam/7.5/uma-guide/uma-introduction.html#uma-discovery-intro
https://docs.pingidentity.com/pingam/7.5/uma-guide/uma-introduction.html#uma-discovery-intro
https://docs.pingidentity.com/pingam/7.5/uma-guide/uma-introduction.html
https://docs.pingidentity.com/pingam/7.5/uma-guide/uma-introduction.html

{
 "pattern": resource pattern,
 "actions": [
 {
 "scopes": [scope string, ...],
 "condition": runtime expression<boolean>
 },
 {
 ...
 }
]
}

Each resource pattern can represent an application, or a consistent set of endpoints that share scope definitions. The
actions map each request to the associated scopes. This configuration serves to set the list of scopes in the following ways:

When registering a resource set, PingGateway uses the list of actions to provide the aggregated, exhaustive list of
all scopes that can be used.

When responding to an initial request for a resource, PingGateway derives the scopes for the ticket based on the
scopes that apply according to the request.

When verifying the RPT, PingGateway checks that all required scopes are encoded in the RPT.

A description of each field follows:

"pattern": pattern, required

A pattern matching resources to be shared by the resource owner, such as .* to match any resource path, and /
photos/.* to match paths starting with /photos/ .

See also Patterns.

"actions": array of objects, optional

A set of scopes to authorize when the corresponding condition evaluates to true .

"actions": [
 {
 "scopes": ["#read"],
 "condition": "${request.method == 'GET'}"
 },
 {
 "scopes": ["#create"],
 "condition": "${request.method == 'POST'}"
 }
]

"scopes": array of configuration expression<strings>, optional

One or more scopes that are authorized when the corresponding condition evaluates to true .

For example, the scope #read grants read-access to a resource.

1.

2.

3.

Reference PingGateway

1018 Copyright © 2025 Ping Identity Corporation

"condition": runtime expression<boolean>, required

When the condition evaluates to true , the corresponding scope is authorized.

For example, the condition ${request.method == 'GET'} is true when reading a resource.

REST API for shares

The REST API for UMA shares is exposed at a registered endpoint. PingGateway logs the paths to registered endpoints when the
log level is INFO or finer. Look for messages such as the following in the log:

UMA Share endpoint available at
 '/openig/api/system/objects/_router/routes/00-uma/objects/umaservice/share'

To access the endpoint over HTTP or HTTPS, prefix the path with the PingGateway scheme, host, and port to obtain a full URL,
such as http://localhost:8080/openig/api/system/objects/_router/routes/00-uma/objects/umaservice/share .

The UMA REST API supports create (POST only), read, delete, and query (_queryFilter=true only). For an introduction to
common REST APIs, refer to About ForgeRock Common REST.

In the present implementation, PingGateway does not have a mechanism for persisting shares. When PingGateway stops, the
shares are discarded.

For information about API descriptors for the UMA share endpoint, refer to API descriptors. For information about Common
REST, refer to About ForgeRock Common REST.

A share object has the following form:

{
 "path": pattern,
 "pat": UMA protection API token (PAT) string,
 "id": unique identifier string,
 "resource_id": unique identifier string,
 "user_access_policy_uri": URI string
}

"path": pattern, required

A pattern matching the path to protected resources, such as /photos/.* .

This pattern must match a pattern defined in the UmaService for this API.

See also Patterns.

"pat": PAT string, required

A PAT granted by the UMA Authorization Server given consent by the resource owner.

In the present implementation, PingGateway has access only to the PAT, not to any refresh tokens.

"id": unique identifier string, read-only

This uniquely identifies the share. This value is set by the service when the share is created, and can be used when reading
or deleting a share.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1019

http://localhost:8080/openig/api/system/objects/_router/routes/00-uma/objects/umaservice/share
http://localhost:8080/openig/api/system/objects/_router/routes/00-uma/objects/umaservice/share

"resource_id": unique identifier string, read-only

This uniquely identifies the UMA resource set registered with the authorization server. This value is obtained by the service
when the resource set is registered, and can be used when setting access policy permissions.

"user_access_policy_uri": URI string, read-only

This URI indicates the location on the UMA Authorization Server where the resource owner can set or modify access
policies. This value is obtained by the service when the resource set is registered.

More information

User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

org.forgerock.openig.uma.UmaSharingService

Property value substitution

In an environment with multiple PingGateway instances, you can require similar but not identical configurations across the
different instances.

Property value substitution enables you to do the following:

Define a configuration that is specific to a single instance, for example, setting the location of the keystore on a particular
host.

Define a configuration whose parameters vary between different environments, for example, the URLs and passwords for
test, development, and production environments.

Disable certain capabilities on specific nodes.

Property value substitution uses configuration tokens to introduce variables into the server configuration. For information, refer to
Configuration Tokens.

The substitution follows a process of token resolution, JSON evaluation, and data transformation, as described in the following
sections:

JSON Evaluation

Token Resolution

Transformations

Configuration Tokens

A configuration token is a simple reference to a value. When configuration tokens are resolved, the result is always a string.
Transformation described in Transformations can be used to coerce the output type.

Configuration Tokens for File System

PingGateway provides ig.instance.dir and ig.instance.url to define the file system directory and URL for configuration
files.

•

•

•

•

•

•

Reference PingGateway

1020 Copyright © 2025 Ping Identity Corporation

https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-08.html
https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-08.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/uma/UmaSharingService.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/uma/UmaSharingService.html

Their values are computed at startup, and evaluate to a directory such as $HOME/.openig (%appdata%\OpenIG). You can use
these tokens in your configuration without explicitly setting their values.

For information about how to change the default values, refer to Configuration location.

Syntax

Configuration tokens follow the syntax &{token[|default]} , as follows:

Are preceded by an ampersand, &

Are enclosed in braces, {}

Define default values with a vertical bar (|) after the configuration token

Are in lowercase

Use the period as a separator, .

When a configuration token is supplied in a configuration parameter, it is always inside a string enclosed in quotation marks, as
shown in the following example:

"&{listen.port|8080}"

To escape a string with the syntax of a configuration token, use a backslash (\). The following string is treated as normal text:

"\&{listen.port|8080}"

A configuration property can include a mix of static values and expressions, as shown in the following example:

"&{hostname}.example.com"

Configuration tokens can be nested inside other configuration tokens as shown in the following example:

"&{&{protocol.scheme}.port}"

Default values or values in the property resolver chain can be nested, as shown in the following example:

"&{&{protocol.scheme|http}.port|8080}"

JSON Evaluation

JSON evaluation is the process of substituting configuration tokens and transforming JSON nodes for an entire JSON
configuration. After JSON evaluation, all configuration tokens and transformations in the configuration are replaced by values.

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1021

At startup, PingGateway evaluates the configuration tokens in config.json and admin.json . When routes are deployed,
PingGateway evaluates the configuration tokens in the route.

Configuration tokens are matched with tokens available in the chain of resolvers, and the configuration token is substituted with
the value available in the resolver. For information about each of the resolvers mentioned in the following section, refer to Token
Resolution.

PingGateway searches for matching tokens in the chain of resolvers, using the following order of precedence:

Local resolver:

The route resolver for the route being deployed

Intermediate resolver:

All intermediate route resolvers (for example, for parent routes to the route being deployed) up to the bootstrap resolver

Bootstrap resolver:

Environment variables resolver

System properties resolver

Token source file resolvers

Hardcoded default values

The first resolver that matches the token returns the value of the token.

If the token can’t be resolved, PingGateway uses the default value defined with the configuration token. If there is no default
value, the token can’t be resolved and an error occurs:

If the configuration token is in config.json or admin.json , PingGateway fails to start up.

If the configuration token is in a route, the route fails to load.

When configuration tokens are nested inside other configuration tokens, the tokens are evaluated bottom-up, or leaf-first. For
example, if the following configuration token takes only the default values, it is resolved as follows:

"&{&{protocol.scheme|http}.port|8080}"

"&{http.port|8080}"

When &{protocol.scheme|http} takes the default value http .

"8080"

When &{http.port|8080} takes the default value 8080 .

If the configuration includes a transformation, PingGateway applies the transformation after the token is substituted. When
transformations are nested inside other transformations, the transformations are applied bottom-up, or leaf-first. For more
information, refer to Transformations.

Token Resolution

At startup, the bootstrap resolver builds a chain of resolvers to resolve configuration tokens included in config.json and
admin.json . When a route is deployed, route resolvers build on the chain to add resolvers for the route.

1.

2.

3.

1.

2.

3.

4.

•

•

1.

2.

3.

Reference PingGateway

1022 Copyright © 2025 Ping Identity Corporation

Route Token Resolvers

When a route is deployed in PingGateway a route resolver is created to resolve the configuration tokens for the route. The
resolvers uses token values defined in the properties section of the route.

If the token can’t be resolved locally, the route resolver accesses token values recursively in a parent route.

For more information, about route properties, refer to Route properties.

Environment Variables Resolver

When the bootstrap resolver resolves a configuration token to an environment variable, it replaces the lowercase and periods (.)
in the token to match the convention for environment variables.

Environment variable keys are transformed as follows:

Periods (.) are converted to underscores

All characters are transformed to uppercase

The following example sets the value of an environment variable for the port number:

$ export LISTEN_PORT=8080

In the following PingGateway configuration, the value of port is 8080 :

{
 "port": "&{listen.port}"
}

System Properties Resolver

The system property name must match a configuration token exactly. The following example sets a system property for a port
number:

$ java -Dlisten.port=8080 -jar start.jar

In the following PingGateway configuration, the value of port is 8080 :

{
 "port": "&{listen.port}"
}

Token Source File Resolvers

Token source files have the .json or .properties extension. The bootstrap resolver uses the files to add file resolvers to the
chain of resolvers:

JSON file resolvers

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1023

Token source files with the .json extension take a JSON format. The token name is mapped either to the JSON attribute
name or to the JSON path.

Each of the following .json files set the value for the configuration token product.listen.port :

{
 "product.listen.port": 8080
}

{
 "product.listen": {
 "port": 8080
 }
}

{
 "product": {
 "listen": {
 "port": 8080
 }
 }
}

Properties file resolvers

Token source files with the .properties extension are Java properties files. They contain a flat list of key/value pairs, and
keys must match tokens exactly.

The following .properties file also sets the value for the tokens listen.port and listen.address :

listen.port=8080
listen.address=192.168.0.10

Token source files are stored in one or more directories defined by the environment variable IG_ENVCONFIG_DIRS or the system
property ig.envconfig.dirs .

If token source files are in multiple directories, each directory must be specified in a comma-separated list. PingGateway doesn’t
scan subdirectories. The following example sets an environment variable to define two directories that hold token source files:

$ export IG_ENVCONFIG_DIRS="/myconfig/directory1,/myconfig/directory2"

At startup, the bootstrap resolver scans the directories in the specified order, and adds a resolver to the chain of resolvers for
each token source file in the directories.

Although the bootstrap resolver scans the directories in the specified order, within a directory it scans the files in a
nondeterministic order.

•

Reference PingGateway

1024 Copyright © 2025 Ping Identity Corporation

Note the following constraints for using the same configuration token more than once:

Do not define the same configuration token more than once in a single file. There is no error, but you won’t know which
token is used.

Do not define the same configuration token in more than one file in a single directory. An error occurs.

You can define the same configuration token once in several files that are located in different directories, but the first
value that PingGateway reads during JSON evaluation is used.

Transformations

A set of built-in transformations are available to coerce strings to other data types. The transformations can be applied to any
string, including strings resulting from the resolution of configurations tokens.

After transformation, the JSON node representing the transformation is replaced by the result value.

The following sections describe how to use transformations, and describe the transformations available:

Usage

{
 "$transformation": string or transformation
}

A transformation is a JSON object with a required main attribute, starting with a $. The following example transforms a string to
an integer:

{"$int": string}

The value of a transformation value can be a JSON string or another transformation that results in a string. The following example
shows a nested transformation:

•

•

emergency_home
This constraint implies that you can’t have backup .properties and .json files in a single directory if they
define the same tokens.

Important

•

info
When logging is enabled at the DEBUG level for token resolvers, the origin of the token value is logged.
If you are using the default logback implementation, add the following line to your logback.xml to enable
logging:

<logger name="org.forgerock.config.resolvers" level="DEBUG" />

Note

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1025

{
 "$array": {
 "$base64:decode": string
 }
}

The input string must match the format expected by the transformation. In the previous example, because the final
transformation is to an array, the input string must be a string that represents an array, such as "[\"one\", \"two\"]" .

In the first transformation, the encoded string is transformed to a base64-decoded string. In the second, the string is transformed
into a JSON array, for example, ["one", "two"] .

array

{"$array": string}

Returns a JSON array of the argument.

The following example transformation results in the JSON array ["one", "two"] :

{"$array": "[\"one\", \"two\"]"}

bool

{"$bool": string}

Returns true if the input value equals "true" (ignoring case). Otherwise, returns false .

If the configuration token &{capture.entity}" resolves to "true" , the following example transformation results in the value
true :

Argument Returns

string
String representing a JSON array.

array
JSON array of the argument.

Argument Returns

string
String containing the boolean representation.

boolean
Boolean value represented by the argument.

Reference PingGateway

1026 Copyright © 2025 Ping Identity Corporation

{"$bool": "&{capture.entity}"}

decodeBase64

{
 "$base64:decode": string,
 "$charset": "charset"
}

Transforms a base64-encoded string into a decoded string. If $charset is specified, the decoded value is interpreted with the
character set.

The following example transformation returns the Hello string:

{
 "$base64:decode": "SGVsbG8=",
 "$charset": "UTF-8"
}

encodeBase64

{
 "$base64:encode": string,
 "$charset": "charset"
}

Transforms a string into a base64-encoded string. Transforms to null if the string is null .

If $charset is specified, the string is encoded with the character set.

Argument Parameters Returns

string
Base64-encoded string.

$charset
The name of a Java character
set, as described in Class
Charset.

string
Base64-decoded string in the
given character set.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1027

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/charset/Charset.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/charset/Charset.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/charset/Charset.html

int

{"$int": string}

Transforms a string into an integer.

If the parameter is not a valid number in radix 10, returns null .

The following example transformation results in the integer 1234 :

{"$int": "1234"}

list

{"$list": string}

Transforms a comma-separated list of strings into a JSON array of strings

The following example transformation results in the array of strings ["Apple","Banana","Orange","Strawberry"] :

Argument Parameters Returns

string
String to encode with the given
character set.

$charset
The name of a Java character
set, as described in Class
Charset.

string
Base64-encoded string.

Argument Returns

string
String containing the integer representation.

int
Integer value represented by the argument.

Argument Returns

string
A string representing a comma-separated list of
strings.

array
The JSON array of the provided argument. Values are
not trimmed of leading spaces.

Reference PingGateway

1028 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/charset/Charset.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/charset/Charset.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/charset/Charset.html

{"$list": "Apple,Banana,Orange,Strawberry"}

The following example transformation results in the array of strings ["Apple"," Banana"," Orange"," Strawberry"] , including
the untrimmed spaces:

{"$list": "Apple, Banana, Orange, Strawberry"}

The following example transformation results in the array of strings ["1","2","3","4"] , and not an array of JSON numbers
[1,2,3,4] :

{"$list": "1,2,3,4"}

number

{"$number": string}

Transform a string into a Java number, as defined in Class Number.

The following example transformation results in the number 0.999 :

{"$number": ".999"}

object

{"$object": string}

Transforms a string representation of a JSON object into a JSON object.

Argument Returns

strings
A string containing the number representation.

number
The number value represented by the argument.

Argument Returns

string
String representation of a JSON object.

object
JSON object of the argument.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1029

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Number.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Number.html

The following example transformation

{"$object": "{\"ParamOne\":{\"InnerParamOne\":\"InnerParamOneValue\",\"InnerParamTwo\": false}}"}

results in the following JSON object:

{
 "ParamOne": {
 "InnerParamOne": "myValue",
 "InnerParamTwo": false
 }
}

string

{"$string": placeholder string}

Transforms a string representation of a JSON object into a placeholder string. Placeholder strings are not encrypted.

Use this transformation for placeholder strings that that must not be encrypted.

This example transformation:

{
 "someAttributeExpectingString": { "$string": "&{ig.instance.dir}" }
}

results in this JSON object:

{
 "someAttributeExpectingString": "/path/to/ig"
}

Argument Returns

string
String representation of a JSON object.

placeholder string
Placeholder string.

Reference PingGateway

1030 Copyright © 2025 Ping Identity Corporation

Expressions

Use expressions that conform to the Unified Expression Language in JSR-245 to specify configuration parameters as
expressions in routes. The result of an expression must match the expected type. For examples of expressions used in routes,
refer to Examples.

Use expressions in routes for the following tasks:

Evaluate object properties

The following example returns the URI of the incoming request:

${request.uri}

Call functions decribed in Functions

Functions can be operands for operations and can yield parameters for other function calls.

The following example uses the function find to test whether the request URI is on the /home path:

${find(request.uri.path, '^/home')}

Call Java methods

The following example uses the method Java String.startsWith() to test whether the request starts with /home :

${request.uri.path.startsWith("/home")}

Retrieve Java system properties

The following example yields the home directory of the user executing the PingGateway process:

${system['user.home']}

Retrieve environment variables

The following example yields the home directory of the user executing the PingGateway process:

${env['HOME']}

The following example yields the path value of the keystore.p12 file in the user’s home directory. The result is just a
String concatenation, there is no verification that the file actually exists:

${env['HOME']}/keystore.p12`

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1031

http://www.jcp.org/en/jsr/detail?id=245
http://www.jcp.org/en/jsr/detail?id=245

Perform logical operations such as and, or, and not

The following expression uses the operators and and or to determine where to dispatch a request. The expression is
used in Share JWT sessions between multiple instances of PingGateway:

${find(request.uri.path, '/webapp/browsing') and (contains(request.uri.query, 'one') or
empty(request.uri.query))}

Perform arbitrarily complex arithmetic, such as addition, substraction, division, and multiplication

The following expression yields the URI port number incremented by four:

${request.uri.port + 4}

Perform relational operations, such as numerical equality and inequality

The following example is for a DispatchHandler condition, where the request is dispatched if it contains a form field with
the attribute answer whose value is greater than 42 :

"bindings": [
 {
 "condition": "#{request.entity.form['answer'] > 42}",
 "handler": ...
 }
]

Perform conditional operations of this form <condition> ? <if-true> : <if-false>

The following example tests whether the request path starts with /home . If so, the request is directed to home ; otherwise,
it is directed to not-home :

${request.uri.path.startsWith('/home') ? 'home' : 'not-home' }

Consume evaluated configuration tokens described in JSON Evaluation (runtime expressions only)

The following example returns true if the configuration token my.status.code resolves to 200 :

${integer(&{my.status.code|404}) == 200}

Expressions access the environment through the implicit object openig . The object has the following properties:

instanceDirectory : Path to the base location for PingGateway files. The default location is:•

Reference PingGateway

1032 Copyright © 2025 Ping Identity Corporation

$HOME/.openig

%appdata%\OpenIG\config

configDirectory : Path to the PingGateway configuration files. The default location is:

$HOME/.openig/config

%appdata%\OpenIG\config

temporaryDirectory : Path to the PingGateway temporary files. The default location is:

$HOME/.openig/tmp

%appdata%\OpenIG\tmp

Linux

Windows

•

Linux

Windows

•

Linux

Windows

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1033

To change default values, refer to Change the base location of the PingGateway configuration.

Syntax

Expression syntax must conform to Unified Expression Language described in JSR-245.

Route syntax

Expressions in routes are enclosed in quotation marks, for example: "${request.method}" and "#{expression}" .

Immediate and deferred evaluation syntax

Use the ${} syntax for expressions to be evaluated at startup or when a route loads or reloads.

Use the #{} syntax for expressions to be evaluated later, when the evaluation result requires the request or response to be fully
loaded.

Operator syntax

AM uses the . and [] operators to access properties:

Use . for the following tasks:

Access object properties, such as public fields and Java bean properties.

Invoke methods on an object.

Access map entries when the specified entry name doesn’t contain reserved characters.

Use [] to access indexed elements:

If the object is a collection, such as an array, set, or list, use [i] to access an element at position i .

If the object isn’t a collection, such as an array, set, or list, use ['prop'] to access the property 'prop' . This is
equivalent to . notation. The following expressions are equivalent:

${request.method}

${request['method']}

If the object is a map, use ['name'] to access the entry with name 'name' .

•

◦

◦

◦

•

◦

◦

◦

Reference PingGateway

1034 Copyright © 2025 Ping Identity Corporation

http://www.jcp.org/en/jsr/detail?id=245
http://www.jcp.org/en/jsr/detail?id=245

Array syntax

The index of an element in an array is expressed as a number in brackets. For example, the following expression refers to the first
Content-Type header value in a request:

${request.headers['Content-Type'][0]}

Map syntax

The map key is expressed in brackets. For example, the following expression is an example of Map entry access:

system['prop.name']

If a property doesn’t exist, the index reference yields a null (empty) value.

Function syntax

Expressions can call built-in functions described in Functions.

Use the syntax ${function(parameter, …)} , supplying one or more parameters to the function. For examples, refer to
Expressions that use functions.

Functions can be operands for operations and can yield parameters for other function calls.

Method syntax

Use the syntax ${object.method()} to call a method on the object instance.

If the object resolves to a String, then all methods in the java.lang.String class are usable.

For examples, refer to Expressions that use functions.

Escape syntax

The character \ is treated as an escape character when followed by ${ or \#{ .

For example, the expression ${true} normally evaluates to true . To include the string ${true} in an expression, write \$
{true}

lightbulb_2
To access map entries containing characters that are also expression operators, prevent parsing exceptions by using
[] instead of .
For example, to access a map field containing a dash - , such as dash-separated-name , write the expression as:

${data['dash-separated-name']}

instead of:

${data.dash-separated-name}

In the second example, the dash - is interpreted as part of the String instead of as an expression operator.

Tip

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1035

When \ is followed by any other character sequence, it isn’t treated as an escape character.

Configuration expressions

PingGateway evaluates configuration expressions at startup and when a route loads or reloads. Configuration expressions are
always evaluated immediately and use the ${} syntax.

Configuration expressions can refer to the following information:

System heap properties

Built-in functions listed in Functions

Environment variables, ${env['variable']}

System properties, ${system['property']}

ExpressionInstant

Because configuration expressions are evaluated before requests are made, they can’t refer to the runtime properties request ,
response , context , or contexts .

Runtime expressions

PingGateway evaluates runtime expressions for each request and response, as follows:

Immediate evaluation of runtime expressions

If the expression consumes streamed content, for example, the content of a request or response, PingGateway blocks the
executing thread until all the content is available.

Runtime expressions whose evaluation is immediate are written with the ${} syntax.

Deferred evaluation of runtime expressions

PingGateway waits until all streamed content is available before it evaluates the expression. Deferred evaluation doesn’t
block executing threads.

Runtime expressions whose evaluation is deferred are written with the #{} syntax.

When the streamingEnabled property in admin.json is true , expressions that consume streamed content must be
written with # instead of $.

Runtime expressions can refer to the following information:

System heap properties

Built-in functions listed in Functions

Environment variables

System properties

ExpressionInstant

•

•

•

•

•

•

•

•

•

•

Reference PingGateway

1036 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/el/ExpressionInstant.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/el/ExpressionInstant.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/el/ExpressionInstant.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/el/ExpressionInstant.html

attributes : org.forgerock.services.context.AttributesContext Map<String, Object>, obtained from
AttributesContext.getAttributes() . For information, refer to AttributesContext.

context : org.forgerock.services.context.Context object.

contexts : map<string, context> object. For information, refer to Contexts.

request : org.forgerock.http.protocol.Request object. For information, refer to Request.

response : org.forgerock.http.protocol.Response object, available only when the expression is intended to be evaluated
on the response flow. For information, refer to Response.

session : org.forgerock.http.session.Session object, available only when the expression is intended to be evaluated for
both request and response flow. For information, refer to SessionContext.

Embedded expressions

Consider the following points when embedding expressions:

System properties, environment variables, or function expressions can be embedded within expressions.

The following example embeds an environment variable in the argument for a read() function. The value of entity is
set to the contents of the file $HOME/.openig/html/defaultResponse.html , where $HOME/.openig is the instance
directory:

"entity": "${read('&{ig.instance.dir}/html/defaultResponse.html')}"

Expressions can’t be embedded inside other expressions, as ${expression} .

Embedded elements can’t be enclosed in ${} .

Extensions

PingGateway offers a plugin interface for extending expressions. See Key extension points.

L-value expressions

L-value expressions assign a value to the expression scope. For example, "${session.gotoURL}" assignes a value to the session
attribute named gotoURL .

PingGateway ignores attempts to write to read-only values.

L-value expressions must be specified using immediate evaluation syntax; use $ instead of # .

Operators

The following operators are provided by Unified Expression Language:

Index property value: [] , .

Change precedence: ()

•

•

•

•

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1037

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/AttributesContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/AttributesContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Request.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Request.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/session/Session.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/session/Session.html

Arithmetic: + (binary), - (binary), * , / , div , % , mod , - (unary)

Logical: and , && , or , || , not , !

Relational: == , eq , != , ne , < , lt , > , gt , ⇐ , le , >= , ge

Empty: empty
Use this prefix operator to determine whether a value is null or empty.

Conditional: ? , :

Operators have the following precedence, from highest to lowest, and from left to right:

[] .

()

- (unary) not ! empty

* / div % mod

+ (binary) - (binary)

< > ⇐ >= lt gt le ge

== != eq ne

&& and

|| or

? :

Dynamic bindings

Configuration and runtime expressions can use ExpressionInstant.

The current instant is ${now.epochSeconds} .

To add or subtract a period of time to the instant, add one or more of the following time periods to the binding:

plusMillis(integer) , minusMillis(integer)

plusSeconds(integer) , minusSeconds(integer)

plusMinutes(integer) , minusMinutes(integer)

plusHours(integer) , minusHours(integer)

plusDays(integer) , minusDays(integer)

The following example binding refers to 30 minutes after the current instant:

${now.plusMinutes(30).epochSeconds}

The following example binding accesses the instant in RFC 1123 date format one day after the current instant:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Reference PingGateway

1038 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/el/ExpressionInstant.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/el/ExpressionInstant.html

${now.plusDays(1).rfc1123}

For more examples, refer to the template property of JwtBuilderFilter and the attribute-name property of
SetCookieUpdateFilter.

Examples

Immediate evaluation of configuration expressions

The following example yields the value of a secret from a system property.

{
 "passwordSecretId": "${system['keypass']}"
}

The following example yields a file from the home directory of the user running the PingGateway application server.

{
 "url": "file://${env['HOME']}/keystore.p12"
}

The following example of a temporaryStorage object takes the value of the system property storage.ref , which must a be
string equivalent to the name of an object defined in the heap:

{
 "temporaryStorage": "${system['storage.ref']}"
}

Deferred evaluation of runtime expressions

The following example is a Route condition, where the Route is accessed if the request contains json with the attribute answer ,
whose value is 42 .

PingGateway defers evaluation of the expression until it receives the entire body of the reqest, transfoms it to JSON view, and
then introspects it for the attribute answer .

{
 "condition": "#{request.entity.json['answer'] == 42}",
 "handler": ...
}

The following example expression is for a JwtBuilderFilter that uses the content of the request mapped as a string. PingGateway
defers evaluation of the expression until it receives the entire body of the request:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1039

{
 "template": {
 "content": "#{request.entity.string}"
 }
}

Immediate and deferred evaluation of runtime expressions

The following example expressions are for an AssignmentFilter that consumes an ID captured from a response.

PingGateway evaluates the first expression immediately to define the target.

It then defers evaluation of the second expression until it receives the entire body of the response.

"onResponse": [
 {
 "target": "${response.headers['X-IG-FooBar']}",
 "value": "#{toString(response.entity.json['userId'])}"
 }
]

Expressions that use functions

In the following example, "timer" is defined by an expression that recovers the environment variable "ENABLE_TIMER" and
transforms it into a boolean. Similarly, "numberOfRequests" is defined by an expression that recovers the system property
"requestsPerSecond" and transforms it into an integer:

{
 "name": "throttle-simple-expressions1",
 "timer": "${bool(env['ENABLE_TIMER'])}",
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/throttle-simple-expressions1')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ThrottlingFilter",
 "name": "ThrottlingFilter-1",
 "config": {
 "requestGroupingPolicy": "",
 "rate": {
 "numberOfRequests": "${integer(system['requestsPerSecond'])}",
 "duration": "10 s"
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Reference PingGateway

1040 Copyright © 2025 Ping Identity Corporation

If "requestsPerSecond"=6 and "ENABLE_TIMER"=true , after the expressions are evaluated PingGateway views the example
route as follows:

{
 "name": "throttle-simple-expressions2",
 "timer": true,
 "baseURI": "http://app.example.com:8081",
 "condition": "${find(request.uri.path, '^/home/throttle-simple-expressions2')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ThrottlingFilter",
 "name": "ThrottlingFilter-1",
 "config": {
 "requestGroupingPolicy": "",
 "rate": {
 "numberOfRequests": 6,
 "duration": "10 s"
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Functions

A set of built-in functions that can be called from within Expressions.

array

array(strings...)

Returns an array of the strings given as argument.

Parameters

strings

Strings to put in the array.

Returns

array

Resulting array of containing the given strings.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1041

boolean

bool(string)

Returns a Boolean with a value represented by the specified string.

The returned Boolean represents a true value if the string argument is not null and is equal to the string "true" , ignoring case.

Parameters

string

String containing the boolean representation.

Returns

Boolean

Boolean value represented by the string.

contains

contains(object, value)

Returns true if the object contains the specified value. If the object is a string, a substring is searched for the value. If the object
is a collection or array, its elements are searched for the value.

Parameters

object

Object to search for.

value

Value to search for.

Returns

true

If the object contains the specified value.

decodeBase64

decodeBase64(string)

Returns the base64-decoded string, or null if the string is not valid base64.

Parameters

string

Base64-encoded string to decode.

Reference PingGateway

1042 Copyright © 2025 Ping Identity Corporation

Returns

string

Base64-decoded string.

decodeBase64url

decodeBase64url(string)

Returns the decoded value of the provided base64url-encoded string, or null if the string was not valid base64url.

Parameters

string

Base64url-encoded string to decode.

Returns

string

Base64url-decoded string.

digestSha256

digestSha256(byte array or string)

Calculates the SHA-256 hash of an incoming object.

Parameters

byte array or string

The bytes to be hashed. If a string is provided, this function uses the UTF-8 charset to get the bytes from the string.

Returns

byte array

SHA-256 hash as a byte array, or null if the hash could not be calculated.

encodeBase64

encodeBase64(string)

Returns the base64-encoded string, or null if the string is null .

Parameters

string

String to encode into base64.

Returns

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1043

string

Base64-encoded string.

encodeBase64url

encodeBase64url(string)

Returns the base64url-encoded string, or null if the string is null .

Parameters

string

String to encode into base64url.

Returns

string

Base64url-encoded string.

fileToUrl

fileToUrl(file)

Converts a java.io.File into a string representation for the URL of the file or directory.

Parameters

file

File or directory for which to build the URL.

For example, ${fileToUrl(openig.configDirectory)}/myProperties.json .

Returns

file

String representation for the URL of the file or directory, or null if the file or directory is null .

For example, file:///home/gcostanza/.openig/config/myProperties.json .

find

find(string, pattern)

Attempts to find the next subsequence of the input string that matches the pattern.

Parameters

string

The input string.

Reference PingGateway

1044 Copyright © 2025 Ping Identity Corporation

file:///home/gcostanza/.openig/config/myProperties.json
file:///home/gcostanza/.openig/config/myProperties.json

pattern

A regular expression pattern.

Returns

boolean

true if a subsequence of the input string matches the regular expression pattern.

false if the input string is null, or a subsequence of it does not match the regular expression pattern.

findGroups

findGroups(string, pattern)

Attempts to find a string that matches the regular expression or groups specified in the regular expression.

Parameters

string

The input on which the regular expression is applied.

pattern

A regular expression pattern.

Returns

array

An array containing the result of a find on the regular expression against the input string, or null if no result is found.

The first element of the array is the entire match, and each subsequent element correlates to a capture group specified in
the regular expression.

formDecodeParameterNameOrValue

formDecodeParameterNameOrValue(string)

Returns the string that results from decoding the provided form encoded parameter name or value as per application/x-www-
form-urlencoded , which can be null if the input is null .

Parameters

string

Parameter name or value.

Returns

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1045

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

string

String resulting from decoding the provided form encoded parameter name or value as per application/x-www-form-
urlencoded .

formEncodeParameterNameOrValue

formEncodeParameterNameOrValue(string)

Returns the string that results from form encoding the provided parameter name or value as per application/x-www-form-
urlencoded , which can be null if the input is null .

Parameters

string

Parameter name or value.

Returns

string

String resulting from form encoding the provided parameter name or value as per application/x-www-form-urlencoded .

indexOf

indexOf(string, substring)

Returns the index of the first instance of a specified substring inside a string.

Characters in the provided string are UTF-16, based on 16-bit code units. Each character is encoded as at least two bytes, and
some extended characters are encoded as four bytes.

When this function processes a 2-byte character, it counts it as one 16-bit character. When it processes a 4-byte character, it
counts it as two 16-bit characters.

Examples:

The unicode character a (U+0061) has the UTF-16 value 0x0061 . The function {{indexOf('afooBar', 'Bar')}}
evaluates to 4 .

The unicode character (U+10057) has the UTF-16 value 0xD800 0xDC57 . The function
{{indexOf(' fooBar', 'Bar')}} evaluates to 5 .

Parameters

string

String in which to search for the specified substring.

substring

Value to search for within the string.

Returns

•

•

Reference PingGateway

1046 Copyright © 2025 Ping Identity Corporation

number

Index of the first instance of the substring, or -1 if not found.

The index count starts from 1, not 0.

integer

integer(string)

Transforms the string parameter into an integer. If the parameter is not a valid number in radix 10, returns null.

Parameters

string

String containing the integer representation.

Returns

integer

Integer value represented by the string.

integerWithRadix

integer(string, radix)

Uses the radix as the base for the string, and transforms the string into a base-10 integer. For example:

("20", 8) : Transforms 20 in base 8 , and returns 16 .

("11", 16) Transforms 11 in base 16 , and returns 17 .

If either parameter is not a valid number, returns null.

Parameters

string

String containing the integer representation, and an integer containing the radix representation.

Returns

integer

Integer value in base-10.

ipMatch

ipMatch(string, string)

Returns true if the provided IP address matches the range provided by the Classless Inter-Domain Routing (CIDR), or false
otherwise.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1047

Parameters

string

IP address of a request sender, in IPv4 or IPv6

string

CIDR defining an IP address range

Returns

Boolean

true or false

join

join(values, separator)

Returns a string joined with the given separator, using either of the following values:

Array of strings (String[])

Iterable value (Iterable<String>)

The function uses the toString result from each value.

Parameters

separator

Separator to place between joined values.

strings

Array of values to be joined.

Returns

string

String containing the joined values.

keyMatch

keyMatch(map, pattern)

Returns the first key found in a map that matches the specified regular expression pattern, or null if no such match is found.

Parameters

map

Map whose keys are to be searched.

•

•

Reference PingGateway

1048 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

pattern

String containing the regular expression pattern to match.

Returns

string

First matching key, or null if no match found.

length

length(object)

Returns the number of items in a collection, or the number of characters in a string.

Characters in the provided string are UTF-16, based on 16-bit code units. Each character is encoded as at least two bytes, and
some extended characters are encoded as four bytes.

When this function processes a 2-byte character, it counts it as one 16-bit character. When it processes a 4-byte character, it
counts it as two 16-bit characters.

Examples:

The unicode character a (U+0061) has the UTF-16 value 0x0061 . The function {{length('a')}} evaluates to 1 .

The unicode character (U+10057) has the UTF-16 value 0xD800 0xDC57 . The function {{length(' ')}} evaluates to
2 .

Parameters

object

A collection or string, whose length is to be determined.

Returns

number

Length of the collection or string, or 0 if length could not be determined.

matches (deprecated)

matches(string, pattern)

Returns true if the string contains a match for the specified regular expression pattern.

Parameters

•

•

emergency_home
This function is deprecated. Use the matchesWithRegex or find function instead. For more information, refer to the
Deprecated section of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1049

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

string

The input string.

pattern

A regular expression pattern.

Returns

true

String contains the specified regular expression pattern.

matchesWithRegex

matchesWithRegex(string, pattern)

Attempts to match the entire input string against the regular expression pattern.

Parameters

string

The input string.

pattern

A regular expression pattern.

Returns

boolean

true if the entire input string matches the regular expression pattern.

false if the input string is null, or the entire input string does not match the regular expression pattern.

matchingGroups (deprecated)

matchingGroups(string, pattern)

Returns an array of matching groups for the specified regular expression pattern applied to the specified string, or null if no
such match is found. The first element of the array is the entire match, and each subsequent element correlates to any capture
group specified within the regular expression.

Parameters

•

•

emergency_home
This function is deprecated. Use the findGroups function instead. For more information, refer to the Deprecated

section of the Release Notes.

Important

Reference PingGateway

1050 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html

string

String to be searched.

pattern

String containing the regular expression pattern to match.

Returns

array

Array of matching groups, or null if no such match is found.

pathToUrl

pathToUrl(path)

Converts the given path into the string representation of its URL.

Parameters

path

Path of a file or directory as a string.

For example, ${pathToUrl(system['java.io.tmpdir'])} .

Returns

string

String representation for the URL of the path, or null if the path is null .

For example, file:///var/tmp .

pemCertificate

pemCertificate(string)

Convert the incoming character sequence into a certificate.

Parameters

string

Character sequence representing a PEM-formatted certificate

Returns

string

A Certificate instance, or null if the function failed to load a certificate from the incoming object.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1051

file:///var/tmp
file:///var/tmp

read

read(string)

Takes a file name as a string, interprets the content of the file with the UTF-8 character set, and returns the content of the file as a
plain string.

Provides the absolute path to the file, or a path relative to the location of the Java system property user.dir .

Parameters

string

Name of the file to read.

Returns

string

Content of the file, or null on error.

readProperties

readProperties(string)

Takes a Java Properties filename as a string , and returns the content of the file as a key/value map of properties, or null on
error (due to the file not being found, for example).

Java properties files are expected to be encoded with ISO-8859-1. Characters that cannot be directly represented in ISO-8859-1
can be written using Unicode escapes, as defined in Unicode Escapes, in The Java™ Language Specification.

Parameters

string

The absolute path to the Java properties file, or a path relative to the location of the Java system property user.dir .

For example, to return the value of the key property in the Java properties file /path/to/my.properties , provide $
{readProperties('/path/to/my.properties')['key']} .

Returns

object

Key/value map of properties or null on error.

readWithCharset

readWithCharset(string, string)

Takes a file name as a string, interprets the content of the file with the specified Java character set, and returns the content of the
file as a plain string.

Parameters

Reference PingGateway

1052 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.3
https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.3

filename

Name of the file to read.

Provides the absolute path to the file, or a path relative to the location of the Java system property user.dir .

charsetName

Name of a Java character set with which to interpret the file, as described in Class Charset.

Returns

string

Content of the file, or null on error.

split

split(string, pattern)

Splits the specified string into an array of substrings around matches for the specified regular expression pattern.

Parameters

string

String to be split.

pattern

Regular expression to split substrings around.

Returns

array

Resulting array of split substrings.

toJson

toJson(JSON string)

Converts a JSON string to a JSON structure.

Parameters

JSON string

JSON string representing a JavaScript object.

For example, the string value contained in contexts.amSession.properties.userDetails contains the JSON object
{"email":"test@example.com"} .

Returns

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1053

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/charset/Charset.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/charset/Charset.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
mailto:test@example.com

JSON structure

JSON structure, or null on error.

In the expression "${toJson(contexts.amSession.properties.userDetails) .email}" , the string value is treated as
JSON, and the expression evaluates to test@example.com .

toLowerCase

toLowerCase(string)

Converts all of the characters in a string to lowercase.

Parameters

string

String whose characters are to be converted.

Returns

string

String with characters converted to lowercase.

toString

toString(object)

Returns the string value of an arbitrary object.

Parameters

object

Object whose string value is to be returned.

Returns

string

String value of the object.

toUpperCase

toUpperCase(string)

Converts all of the characters in a string to upper case.

Parameters

string

String whose characters are to be converted.

Reference PingGateway

1054 Copyright © 2025 Ping Identity Corporation

Returns

string

String with characters converted to upper case.

trim

trim(string)

Returns a copy of a string with leading and trailing whitespace omitted.

Parameters

string

String whose white space is to be omitted.

Returns

string

String with leading and trailing white space omitted.

urlDecode

urlDecode(string)

Returns the URL decoding of the provided string.

This is equivalent to formDecodeParameterNameOrValue.

Parameters

string

String to be URL decoded, which may be null .

Returns

string

URL decoding of the provided string, or null if string was null .

urlEncode

urlEncode(string)

Returns the URL encoding of the provided string.

This is equivalent to formEncodeParameterNameOrValue.

Parameters

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1055

string

String to be URL encoded, which may be null .

Returns

string

URL encoding of the provided string, or null if string was null .

urlDecodeFragment

urlDecodeFragment(string)

Returns the string that results from decoding the provided URL encoded fragment as per RFC 3986, which can be null if the
input is null .

Parameters

string

URL encoded fragment.

Returns

string

String resulting from decoding the provided URL encoded fragment as per RFC 3986.

urlDecodePathElement

urlDecodePathElement(string)

Returns the string that results from decoding the provided URL encoded path element as per RFC 3986, which can be null if the
input is null .

Parameters

string

The path element.

Returns

string

String resulting from decoding the provided URL encoded path element as per RFC 3986.

urlDecodeQueryParameterNameOrValue

urlDecodeQueryParameterNameOrValue(string)

Returns the string that results from decoding the provided URL encoded query parameter name or value as per RFC 3986, which
can be null if the input is null .

Reference PingGateway

1056 Copyright © 2025 Ping Identity Corporation

Parameters

string

Parameter name or value.

Returns

string

String resulting from decoding the provided URL encoded query parameter name or value as per RFC 3986.

urlDecodeUserInfo

urlDecodeUserInfo(string)

Returns the string that results from decoding the provided URL encoded userInfo as per RFC 3986, which can be null if the input
is null .

Parameters

string

URL encoded userInfo.

Returns

string

String resulting from decoding the provided URL encoded userInfo as per RFC 3986.

urlEncodeFragment

urlEncodeFragment(string)

Returns the string that results from URL encoding the provided fragment as per RFC 3986, which can be null if the input is
null .

Parameters

string

Fragment.

Returns

string

The string resulting from URL encoding the provided fragment as per RFC 3986.

urlEncodePathElement

urlEncodePathElement(string)

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1057

Returns the string that results from URL encoding the provided path element as per RFC 3986, which can be null if the input is
null .

Parameters

string

Path element.

Returns

string

String resulting from URL encoding the provided path element as per RFC 3986.

urlEncodeQueryParameterNameOrValue

urlEncodeQueryParameterNameOrValue(string)

Returns the string that results from URL encoding the provided query parameter name or value as per RFC 3986, which can be
null if the input is null .

Parameters

string

Parameter name or value.

Returns

string

String resulting from URL encoding the provided query parameter name or value as per RFC 3986.

urlEncodeUserInfo

urlEncodeUserInfo(string)

Returns the string that results from URL encoding the provided userInfo as per RFC 3986, which can be null if the input is null .

Parameters

string

userInfo.

Returns

string

String resulting from URL encoding the provided userInfo as per RFC 3986.

Reference PingGateway

1058 Copyright © 2025 Ping Identity Corporation

More information

Some functions are provided by org.forgerock.openig.el.Functions.

Other functions are provided by org.forgerock.http.util.Uris.

Patterns

Patterns in configuration parameters and expressions use the standard Java regular expression Pattern class. For more
information on regular expressions, see Oracle’s tutorial on Regular Expressions.

Pattern templates

A regular expression pattern template expresses a transformation to be applied for a matching regular expression pattern. It may
contain references to capturing groups within the match result. Each occurrence of $g (where g is an integer value) is
substituted by the indexed capturing group in a match result. Capturing group zero "$0" denotes the entire pattern match. A
dollar sign or numeral literal immediately following a capture group reference can be included as a literal in the template by
preceding it with a backslash (\). Backslash itself must be also escaped in this manner.

More information

Java Pattern class

Regular Expressions tutorial

Scripts

PingGateway uses Groovy 4 for scripting. For more information, refer to the Groovy Language Documentation.

Groovy scripts used in the PingGateway configuration are restricted to the UTF-8 character set.

Use Groovy scripts with the following object types:

ScriptableFilter, to customize flow of requests and responses

ScriptableHandler, to customize creation of responses

ScriptableThrottlingPolicy, to customize throttling rates

ScriptableAccessTokenResolver to customize resolution and validation of OAuth 2.0 access tokens

ScriptableResourceAccess in OAuth2ResourceServerFilter, to customize the list of OAuth 2.0 scopes required in an
OAuth 2.0 access token

ScriptableIdentityAssertionPlugin, to use with an IdentityAssertionHandler for local processing.

ScriptableIdentityAssertionPluginTechPreview, to use with an IdentityAssertionHandlerTechPreview for local
authentication or authorization.

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1059

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/el/Functions.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/el/Functions.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/util/Uris.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/util/Uris.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/index.html
http://docs.oracle.com/javase/tutorial/essential/regex/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html#cg
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html#cg
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/index.html
http://docs.oracle.com/javase/tutorial/essential/regex/index.html
http://docs.groovy-lang.org/docs/groovy-4.0.19/html/documentation/
http://docs.groovy-lang.org/docs/groovy-4.0.19/html/documentation/

When PingGateway accesses a script, it compiles and then caches the script. PingGateway uses the cached version until the script
is changed.

After you update a script used in a route, leave at least one second before processing a request. The Groovy interpreter needs
time to detect and take the update into account.

Usage

{
 "name": string,
 "type": scriptable object type,
 "config": {
 "type": string,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both.
 "args": map or configuration expression<map>,
 "clientHandler": Handler reference
 }
}

Properties

"type": string, required

The Internet media type (formerly MIME type) of the script, "application/x-groovy" for Groovy

emergency_home
When writing scripts or Java extensions that use the Promise API, avoid the blocking methods get() , getOrThrow() ,
and getOrThrowUninterruptibly() . A promise represents the result of an asynchronous operation; therefore, using
a blocking method to wait for the result can cause deadlocks and/or race issues.
Instead, consider using then() methods, such as thenOnResult() , thenAsync() , or thenCatch() , which allow
execution blocks to be executed when the response is available.

Blocking code example

def response = next.handle(ctx, req).get() // Blocking method 'get' used
response.headers['new']="new header value"
return response

Non-blocking code example

return next.handle(ctx, req)
//Process result when it is available

 .thenOnResult { response ->
 response.headers['new']="new header value"
 }

Important

Reference PingGateway

1060 Copyright © 2025 Ping Identity Corporation

"file": configuration expression<string> , required if source is not used

Path to the file containing the script; mutually exclusive with source . Specify file as follows:

For Groovy files from default packages

Place Groovy files in the base script directory, $HOME/.openig/scripts/groovy (on Windows, %appdata%
\OpenIG\scripts\groovy). For example, place myScript.groovy from the default package in
$HOME/.openig/scripts/groovy .

Specify file with the filename of the Groovy file. For the previous example, specify:

"config": {
 "type": "application/x-groovy",
 "file": "myScript.groovy"
}

For Groovy files from non-default packages

Place Groovy files in a subdirectory of the base script directory that corresponds to the package name. For
example, place myScript.groovy from the package com.example.groovy in $HOME/.openig/scripts/
groovy/com/example/groovy .

Specify file with the relative path from the base script directory and the filename. For the previous
example, specify:

"config": {
 "type": "application/x-groovy",
 "file": "com/example/groovy/myScript.groovy"
}

"source": array of <strings>, required if file is not used

The script as one or more strings; mutually exclusive with file .

The following example shows the source of a script as an array of strings:

"source": [
 "Response response = new Response(Status.OK)",
 "response.entity = 'foo'",
 "return response"
]

•

•

•

•

emergency_home
PingGateway runs scripts from an absolute path, or from a path relative to the base script directory. Routes
that refer to scripts otherwise, such as through a URL, fail to deploy.
Do one of the following to prevent errors:

Move scripts to the base script directory or the correct subdirectory of the base script directory
Refer to scripts through an absolute path

Important

•
•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1061

"args": map or configuration expression<map>, optional

A map of one or more data pairs with the format Map<String, String> , where:

The key is the name of a configuration parameter in a script

The value is a string to use in the script, or a configuration expression that evaluates to the string

The following formats are allowed:

{
 "args": {
 "string": "configuration expression<string>",
 ...
 }
}

{
 "args": "configuration expression<map>"
}

In the following example, the property is a map whose values are scalars, arrays, and objects:

{
 "args": {
 "title": "Coffee time",
 "status": 418,
 "reason": [
 "Not Acceptable",
 "I'm a teapot",
 "Acceptable"
],
 "names": {
 "1": "koffie",
 "2": "kafe",
 "3": "cafe",
 "4": "kafo"
 }
 }
}

A script can access the args parameters in the same way as other global objects. The following example sets the
response status to I’m a teapot :

response.status = Status.valueOf(418, reason[1])

For information about the 418 status coderefer to RFC 7168: 418 I’m a Teapot.

The following example configures arguments as strings and numbers for a ScriptableThrottlingPolicy:

•

•

•

•

Reference PingGateway

1062 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc7168#section-2.3.3
https://www.rfc-editor.org/rfc/rfc7168#section-2.3.3

"args": {
 "status": "gold",
 "rate": 6,
 "duration": "10 seconds"
}

The following lines set the throttling rate to 6 requests each 10 seconds when the response status is gold :

if (attributes.rate.status == status) {
 return new ThrottlingRate(rate, duration)
}

The following example configures arguments that reference a SampleFilter defined in the heap:

{
 "heap": [
 {
 "name": "SampleFilter",
 "type": "SampleFilter",
 "config": {
 "name": "X-Greeting",
 "value": "Hello world"
 }
 }
]
}

In the following example, the property is a map whose value is an expression to pass SampleFilter to the script:

{
 "args": {
 "filter": "${heap['SampleFilter']}"
 }
}

The script can then reference SampleFilter as filter .

"clientHandler": ClientHandler reference, optional

A Handler for making outbound HTTP requests to third-party services. In a script, clientHandler is wrapped within the
global object http .

Default: The default ClientHandler.

Available objects

The following global objects are available to scripts:

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1063

Any parameters passed as args

You can use the configuration to pass parameters to the script by specifying an args object.

The args object is a map whose values can be scalars, arrays, and objects. The args object can reference objects defined in
the heap by using expressions, for example, "${heap['ObjectName']}" .

The values for script arguments can be defined as configuration expressions, and evaluated at configuration time.

Script arguments cannot refer to context and request , but context and request variables can be accessed directly
within scripts.

Take care when naming keys in the args object. If you reuse the name of another global object, cause the script to fail and
PingGateway to return a response with HTTP status code 500 Internal Server Error.

All heap objects

The heap object configuration, described in Heap objects.

openig

An implicit object that provides access to the environment when expressions are evaluated.

attributes

The attributes object provides access to a context map of arbitrary attributes, which is a mechanism for transferring
transient state between components when processing a single request.

Use session for maintaining state between successive requests from the same logical client.

builder

For ScriptableJwtValidatorCustomizer only.

Used by the ScriptableJwtValidatorCustomizer and JwtValidationFilter to create constraints to test JWT claims and sub-
claims. The purpose of the ScriptableJwtValidatorCustomizer is to enrich the builder object.

For information about methods to enrich the builder instance, refer to JwtValidator.Builder.

constraints

The constraints object, all its static methods, constant(String) , and claim(String) .

Use this object for JWT validation with the customizer property of JwtValidationFilter.

claim(String) must be followed by one of the following methods: asString() , asInteger() , asLong() , asDouble() ,
asBoolean() , as(yourCustomJsonValueTransformer)

context

The processing context.

This context is the leaf of a chain of contexts. It provides access to other Context types, such as SessionContext,
AttributesContext, and ClientContext, through the context.asContext(ContextClass.class) method.

Reference PingGateway

1064 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/AttributesContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/AttributesContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/JwtValidator.Builder.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/JwtValidator.Builder.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/Constraints.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/Constraints.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html

contexts

a map<string, context> object. For information, refer to Contexts.

request

The HTTP request.

globals

This object is a Map that holds variables that persist across successive invocations.

http

An embedded client for making outbound HTTP requests, which is an org.forgerock.http.Client.

If a "clientHandler" is set in the configuration, then that Handler is used. Otherwise, the default ClientHandler
configuration is used.

For information, refer to Handlers.

logger

The logger object provides access to a unique SLF4J logger instance for scripts, where the logger instance is named with
the script name.

For information about logging for scripts, refer to Logging in scripts.

next

The object named next refers to the next element in the chain, which can be the following filter or the terminal
handler. If the next object in the chain is a filter, PingGateway wraps it in a handler.

session

The session object provides access to the session context, which is a mechanism for maintaining state when processing
a successive requests from the same logical client or end user.

Use attributes for transferring transient state between components when processing a single request.

Imported classes

The following classes are imported automatically for Groovy scripts:

org.forgerock.http.Client

emergency_home
The request.form method, used in scripts to read or set query and form parameters, is deprecated. Use the
following replacement settings:

Request.getQueryParams() to read query parameters
Entity.getForm() to read form parameters
Entity.setForm() to set form parameters

For more information, refer to the Deprecated section of the Release Notes.

Important

•
•
•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1065

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Request.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Request.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
http://docs.groovy-lang.org/latest/html/groovy-jdk/java/util/Map.html
http://docs.groovy-lang.org/latest/html/groovy-jdk/java/util/Map.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Client.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Client.html
https://www.slf4j.org/api/org/slf4j/Logger.html
https://www.slf4j.org/api/org/slf4j/Logger.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Handler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Handler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/session/SessionContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/session/SessionContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Client.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Client.html

org.forgerock.http.Filter

org.forgerock.http.Handler

org.forgerock.http.protocol.Header

org.forgerock.openig.filter.throttling.ThrottlingRate

org.forgerock.http.util.Uris

org.forgerock.util.AsyncFunction

org.forgerock.util.Function

org.forgerock.util.promise.NeverThrowsException

org.forgerock.util.promise.Promise

org.forgerock.util.promise.Promises

org.forgerock.services.context.Context

org.forgerock.http.protocol.*

org.forgerock.http.oauth2.AccessTokenInfo

org.forgerock.json.JsonValue, and all its static methods, including json(Object) , array(Object…) , object(fields…) ,
and field(String, Object)

org.forgerock.openig.util.JsonValues and all its static methods.

org.forgerock.openig.tools.jwt.validation.Constraints and all its static methods.

More information

ScriptableFilter, org.forgerock.openig.filter.ScriptableFilter, and org.forgerock.http.Filter

ScriptableHandler, org.forgerock.openig.handler.ScriptableHandler, and org.forgerock.http.Handler

ScriptableThrottlingPolicy, org.forgerock.openig.filter.throttling.ScriptableThrottlingPolicy.Heaplet, and
org.forgerock.openig.filter.throttling.ThrottlingPolicy

ScriptableResourceAccess in OAuth2ResourceServerFilter,
org.forgerock.openig.filter.oauth2.ScriptableResourceAccess, and org.forgerock.http.oauth2.ResourceAccess

ScriptableAccessTokenResolver in OAuth2ResourceServerFilter,
org.forgerock.openig.filter.oauth2.ScriptableAccessTokenResolver, and
org.forgerock.http.oauth2.AccessTokenResolver

ScriptableJwtValidatorCustomizer in JwtValidationFilter and
org.forgerock.openig.filter.jwt.ScriptableJwtValidatorCustomizer

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Reference PingGateway

1066 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Filter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Filter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Handler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Handler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Header.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Header.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ThrottlingRate.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ThrottlingRate.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/util/Uris.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/util/Uris.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/AsyncFunction.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/AsyncFunction.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/Function.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/Function.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/NeverThrowsException.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/NeverThrowsException.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promise.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promises.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/util/promise/Promises.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/AccessTokenInfo.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/AccessTokenInfo.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/util/JsonValues.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/util/JsonValues.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/Constraints.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/Constraints.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ScriptableFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/ScriptableFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Filter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Filter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/ScriptableHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/handler/ScriptableHandler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Handler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/Handler.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ScriptableThrottlingPolicy.Heaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ScriptableThrottlingPolicy.Heaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ThrottlingPolicy.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/throttling/ThrottlingPolicy.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/ScriptableResourceAccess.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/ScriptableResourceAccess.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/ResourceAccess.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/ResourceAccess.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/ScriptableAccessTokenResolver.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/ScriptableAccessTokenResolver.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/AccessTokenResolver.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/AccessTokenResolver.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/ScriptableJwtValidatorCustomizer.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/ScriptableJwtValidatorCustomizer.html

Route properties

Configuration parameters, such as host names, port numbers, and directories, can be declared as property variables in the
PingGateway configuration or in an external JSON file. The variables can then be used in expressions in routes and in
config.json to set the value of configuration parameters.

Properties can be inherited across the router, so a property defined in config.json can be used in any of the routes in the
configuration. Storing the configuration centrally and using variables for parameters that can be different for each installation
makes it easier to deploy PingGateway in different environments without changing a single line in your route configuration.

Usage

Simple property configured inline

{
 "properties": {
 "<variable name>": "valid JSON value"
 }
}

Group property configured inline

{
 "properties": {
 "<group name>": {
 "<variable name>": "valid JSON value", ...
 }
 }
}

Properties configured in one or more external files

{
 "properties": {
 "$location": expression
 }
}

In this example, description1 and description2 prefix the variable names contained in the external file.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1067

{
 "properties": {
 "description1": {
 "$location": expression
 },
 "description2": {
 "$location": expression
 }
 }
}

Properties

"<variable name>": configuration expression<string>

The name of a variable to use in the PingGateway configuration. The variable can be used in expressions in routes or in
config.json to assign the value of a configuration parameter.

The value assigned to the variable can be any valid JSON value: string, number, boolean, array, object, or null.

In the following example from config.json , the URL of an application is declared as a property variable named
appLocation . The variable is then used by the baseURI parameter of the handler, and can be used again in other
routes in the configuration.

{
 "properties": {
 "appLocation": "http://app.example.com:8081"
 },
 "handler": {
 "type": "Router",
 "baseURI": "${appLocation}",
 "capture": "all"
 }
}

In the following example, the property variable ports is added to define an array of port numbers used by the
configuration. The ports variable is referenced in the appLocation variable, and is resolved at runtime with the
value in the ports array:

{
 "properties": {
 "ports": [8080, 8081, 8088],
 "appLocation": "http://app.example.com:${ports[1]}"
 },
 "handler": {
 "type": "Router",
 "baseURI": "${appLocation}",
 "capture": "all"
 }
}

•

•

Reference PingGateway

1068 Copyright © 2025 Ping Identity Corporation

In the following example route, the request path is declared as the property variable uriPath , with the value
hello , and the variable is used by the route condition:

{
 "properties": {
 "uriPath": "hello"
 },
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain; charset=UTF-8"]
 },
 "entity": "Hello world!"
 }
 },
 "condition": "${matchesWithRegex(request.uri.path, '^/welcome') or matchesWithRegex(request.uri.path,
'&{uriPath}')}"
}

When PingGateway is set up as described in the Quick install, requests to ig.example.com:8080/hello or
ig.example.com:8080/welcome can access the route.

"<group name>": <object>, required

The name of a group of variables to use in the PingGateway configuration. The group name and variable name are
combined using dot notation in an expression.

In the following example from config.json , the property group directories contains two variables that define the
location of files:

{
 "properties": {
 "directories": {
 "config": "${openig.configDirectory.path}",
 "auditlog": "/tmp/logs"
 }
 }
}

The group name and variable name are combined using dot notation in the following example to define the directory
where the audit log is stored:

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1069

{
 "type": "AuditService",
 "config": {
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "config": {
 "name": "csv",
 "logDirectory": "${directories.auditlog}",
 . . .

"$location": configuration expression<string>, required

The location and name of one or more JSON files where property variables are configured.

Files must be .json files, and contain property variables with a key/value format, where the key cannot contain the
period (.) separator.

For example, this file is correct:

{
 "openamLocation": "http://am.example.com:8088/openam/",
 "portNumber": 8081
}

This file would cause an error:

{
 "openam.location": "http://am.example.com:8088/openam/",
 "port.number": 8081
}

Examples

Property variables configured in one file

In the following example, the location of the file that contains the property variables is defined as an expression:

{
 "properties": {
 "$location": "${fileToUrl(openig.configDirectory)}/myProperties.json"
 }
}

In the following example, the location of the file that contains the property variables is defined as a string:

Reference PingGateway

1070 Copyright © 2025 Ping Identity Corporation

{
 "properties": {
 "$location": "file:///Users/user-id/.openig/config/myProperties.json"
 }
}

The file location can be defined as any real URL.

The file myProperties.json contains the base URL of an AM service and the port number of an application.

{
 "openamLocation": "http://am.example.com:8088/openam/",
 "appPortNumber": 8081
}

Property variables configured in multiple files

In the following example, the property variables are contained in two files, defined as a set of strings:

{
 "properties": {
 "urls": {
 "$location": "file://path-to-file/myUrlProperties.json"
 },
 "ports": {
 "$location": "file://path-to-file/myPortProperties.json"
 }
 }
}

The file myUrlProperties.json contains the base URL of the sample application:

{
 "appUrl": "http://app.example.com"
}

The file myPortProperties.json contains the port number of an application:

{
 "appPort": 8081
}

The base config file, config.json , can use the properties as follows:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1071

{
 "properties": {
 "urls": {
 "$location": "file:///Users/user-id/.openig/config/myUrlProperties.json"
 },
 "ports": {
 "$location": "file:///Users/user-id/.openig/config/myPortProperties.json"
 }
 },
 "handler": {
 "type": "Router",
 "name": "_router",
 "baseURI": "${urls.appUrl}:${ports.appPort}",
 . . .

Contexts

The root object for request context information.

Contexts is a map of available contexts, which implement the Context interface. The contexts map is populated dynamically
when creating bindings to evaluate expressions and scripts.

If a context type appears multiple times in the chain of contexts, only the last value of the context is exposed in the contexts map.
For example, if a route contains two JwtBuilderFilters that each provided data in the JwtBuilderContext, only data from the last
processed JwtBuilderFilter is contained in ${contexts.jwtBuilder} . Data from the first processed JwtBuilderFilter can be
accessed by scripts and extensions through the Context API. The following example script accesses data from the first processed
JwtBuilderFilter:

Context second = context.get("jwtBuilder")
 .map(Context::getParent)
 .flatMap(ctx -> ctx.get("jwtBuilder"))
 .orElse(null);

The map keys are strings and the values are context objects. All context objects use their version of the following properties:

"context-Name": string

Context name.

"context-ID": string

Read-only string uniquely identifying the context object.

"context-rootContext": boolean

True if the context object is a RootContext (has no parent).

"context-Parent": Context object

Parent of this context object.

Reference PingGateway

1072 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/Context.html

Contexts provide contextual information to downstream filters and handlers about a handled request. The context can include
information about the client making the request, the session, the authentication or authorization identity of the user, and any
other state information associated with the request.

Contexts provide a way to access state information throughout the duration of the HTTP session between the client and
protected application. Interaction with additional services can also be captured in the context.

Filters can enrich existing contexts (store objects in sessions or attributes), or by provide new contexts tailored for a purpose.
Therefore, the list of available context is dynamic and depends on which filters have been executed when a context is queried.
For example, a context can be queried by a script, at startup, or at runtime.

Unlike session information, which spans multiple request/response exchanges, contexts last only for the duration of the request/
response exchange, and are then lost.

Summary of contexts

Type Accessible at Populated by Contains

AttributesContext contexts.attribu

tes.attributes

and
attributes

PingGateway core, when a request
enters PingGateway

Map of request
attributes for use by
filters at different
positions in the chain

AuthRedirectContext $

{contexts.AuthRe

directContext}

FragmentFilter and
DataPreservationFilter

Indication to the
FragmentFilter and
DataPreservationFilter
that a login redirect is
pending

CapturedUserPasswordContext $

{contexts.captur

edPassword}

CapturedUserPasswordFilter Decrypted AM password
of the current user

CdSsoContext $

{contexts.cdsso

}

CrossDomainSingleSignOnFilter CDSSO token properties,
session user ID, full
claims set.

CdSsoFailureContext $

{contexts.cdssoF

ailure}

CrossDomainSingleSignOnFilter Information about errors
occurring during CDSSO
authentication

ClientContext $

{contexts.client

}

PingGateway core, when a request
enters PingGateway

Information about the
client sending the
request, and the client
certificate if using mTLS

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1073

Type Accessible at Populated by Contains

IdentityRequestJwtContext $

{contexts.Identi

tyRequestJwtCont

ext}

IdentityAssertionHandler Information and claims
for an identity request
JWT issued by PingOne
Advanced Identity Cloud
to PingGateway.

IdpSelectionLoginContext $

{contexts.idpSel

ectionLogin}

AuthorizationCodeOAuth2ClientFilter
when loginHandler is specified.

The original target URI
for a request received by
PingGateway.

JwtBuilderContext $

{contexts.jwtBui

lder}

JwtBuilderFilter Built JWT as string,
JsonValue, or map

JwtValidationContext $

{contexts.jwtVal

idation}

JwtValidationFilter and
IdTokenValidationFilter

Properties of a JWT after
validatedation

JwtValidationErrorContext $

{contexts.jwtVal

idationError}

JwtValidationFilter and
IdTokenValidationFilter

Properties of a JWT after
validation fails

OAuth2Context $

{contexts.oauth2

}

OAuth2ResourceServerFilter Properties of an OAuth
2.0 access token after
validation

OAuth2TokenExchangeContext $

{contexts.oauth2

TokenExchange}

OAuth2TokenExchangeFilter Issued token and its
scopes

OAuth2FailureContext $

{contexts.oauth2

Failure}

AuthorizationCodeOAuth2ClientFilter
and OAuth2TokenExchangeFilter

OAuth 2.0 authorization
operation error and
error description

PingOneProtectEvaluationContext $

{contexts.pingOn

eProtect}

PingOneProtectEvaluationFilter A PingOne Protect risk
evaluation result for an
incoming request

PolicyDecisionContext $

{contexts.policy

Decision}

PolicyEnforcementFilter Attributes and advices
returned by AM policy
decisions

SessionContext $

{contexts.sessio

n}

PingGateway core, when a request
enters PingGateway

Information about
stateful and stateless
sessions

Reference PingGateway

1074 Copyright © 2025 Ping Identity Corporation

AttributesContext

Provides a map for request attributes. When PingGateway processes a single request, it injects transient state information about
the request into this context. Attributes stored when processing one request are not accessible when processing a subsequent
request.

PingGateway automatically provides access to the attributes field through the attributes bindings in expressions. For
example, to access a username with an expression, use ${attributes.credentials.username} instead of $
{contexts.attributes.attributes.credentials.username}

Use SessionContext to maintain state between successive requests from the same logical client.

Properties

The context is named attributes , and is accessible at ${attributes} . The context has the following property:

"attributes": map

Map with the format Map<String,Object> , where:

Key: Attribute name

Value: Attribute value

Cannot be null.

Type Accessible at Populated by Contains

SessionInfoContext $

{contexts.amSess

ion}

SessionInfoFilter AM session information
and properties

SsoTokenContext $

{contexts.ssoTok

en}

SingleSignOnFilter and
CrossDomainSingleSignOnFilter

SSO tokens and their
validation information

StsContext ${contexts.sts} TokenTransformationFilter Result of a token
transformation

TransactionIdContext $

{contexts.transa

ctionId}

PingGateway core, when a request
enters PingGateway

ForgeRock transaction ID
of a request

UriRouterContext $

{contexts.router

}

PingGateway core, when a request
traverses a route

Routing information
associated with a request

UserProfileContext $

{contexts.userPr

ofile}

UserProfileFilter User profile information

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1075

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html

More information

org.forgerock.services.context.AttributesContext

AuthRedirectContext

Used by the following filters to indicate that a login redirect is pending:

FragmentFilter

DataPreservationFilter

This context is not intended for use in scripts or extensions.

For a single request there must be at most one instance of AuthRedirectContext in the context hierarchy. Confirm for the
presence of an AuthRedirectContext before adding a new instance or adding query parameters to an existing instance.

The context is named AuthRedirectAwareContext , and is accessible at ${contexts.AuthRedirectContext} .

Properties

"impendingIgRedirectNotified": boolean

Returns true if a PingGateway redirect attempt is pending. Otherwise, returns false .

"notifyImpendingIgRedirectAndUpdateUri": URI

Notifies that a PingGateway redirection has been attempted, and returns an updated URI as follows:

If no query parameters are added to the context, return the original URI.

If query parameters are added to the context, apply them to the URI and return an updated URI.

If the added query parameters have the same name as existing query parameters, replace the existing parameters
and return an updated URI.

For example, a request to example.com/profile triggers a login redirect to example.com/login . After authentication,
the request is expected to be redirected to the original URI, example.com/profile .

"addQueryParameter": java.lang.String

Adds a query parameter to the context, for use by notifyImpendingIgRedirectAndUpdateUri .

More information

org.forgerock.openig.filter.AuthRedirectContext

CapturedUserPasswordContext

Provides the decrypted AM password of the current user. When the CapturedUserPasswordFilter processes a request, it injects
the decrypted password from AM into this context.

•

•

•

•

•

Reference PingGateway

1076 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/AttributesContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/AttributesContext.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/AuthRedirectContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/AuthRedirectContext.html

Properties

The context is named capturedPassword , and is accessible at ${contexts.capturedPassword} . The context has the following
properties:

"raw": byte

The decrypted password as bytes.

"value": java.lang.String

The decrypted password as a UTF-8 string.

More information

org.forgerock.openig.openam.CapturedUserPasswordContext

CdSsoContext

Provides the cross-domain SSO properties for the CDSSO token, the user ID of the session, and the full claims set. When the
CrossDomainSingleSignOnFilter processes a request, it injects the information in this context.

Properties

The context is named cdsso , and is accessible at ${contexts.cdsso} . The context has the following properties:

"claimsSet": org.forgerock.json.jose.jwt.JwtClaimsSet

Full JwtClaimsSet for the identity of the authenticated user. Cannot be null.

Access claims as follows:

Claims with a getter by using the property name. For example, access getSubject with
contexts.cdsso.claimsSet.subject .

All other claims by using the getClaim method. For example, access subname with
contexts.cdsso.claimsSet.getClaim('subname') .

"cookieInfo": org.forgerock.openig.http.CookieBuilder

Configuration data for the CDSSO authentication cookie, with the following attributes:

name : Cookie name (string)

domain : (Optional) Cookie domain (string)

path : Cookie path (string)

No attribute can be null.

"redirectEndpoint": java.lang.String

Redirect endpoint URI configured for communication with AM. Cannot be null.

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1077

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CapturedUserPasswordContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CapturedUserPasswordContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/jose/jwt/JwtClaimsSet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/jose/jwt/JwtClaimsSet.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

"sessionUid": java.lang.String

Universal session ID. Cannot be null.

"token": java.lang.String

Value of the CDSSO token. Cannot be null.

More information

org.forgerock.openig.openam.CdSsoContext

CdSsoFailureContext

Contains the error details for any error that occurred during cross-domain SSO authentication. When the
CrossDomainSingleSignOnFilter processes a request, should an error occur that prevents authentication, the error details are
captured in this context.

Properties

The context is named cdssoFailure , and is accessible at ${contexts.cdssoFailure} . The context has the following properties:

"error": java.lang.String

The error that occurred during authentication. Cannot be null.

"description": java.lang.String

A description of the error that occurred during authentication. Cannot be null.

"throwable": java.lang.Throwable

Any Throwable associated with the error that occured during authentication. Can be null.

More information

org.forgerock.openig.openam.CdSsoFailureContext

ClientContext

Information about the client sending a request. When PingGateway receives a request, it injects information about the client
sending the request into this context.

Properties

The context is named client , and is accessible at ${contexts.client} . The context has the following properties:

"certificates": java.util.List <java.security.cert.Certificate>

List of X.509 certificates presented by the client. If the client does not present any certificates, PingGateway returns an
empty list. Never null .

The following example uses the certificate associated with the incoming HTTP connection:

Reference PingGateway

1078 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CdSsoContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CdSsoContext.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Throwable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Throwable.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CdSsoFailureContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/CdSsoFailureContext.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/security/cert/Certificate.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/security/cert/Certificate.html

{
 "name": "CertificateThumbprintFilter-1",
 "type": "CertificateThumbprintFilter",
 "config": {
 "certificate": "${contexts.client.certificates[0]}"
 }
}

"isExternal": boolean

True if the client connection is external.

"isSecure": boolean

True if the client connection is secure.

"localAddress": java.lang.String

The IP address of the interface that received the request.

"localPort": integer

The port of the interface that received the request.

"remoteAddress": java.lang.String

The IP address of the client (or the last proxy) that sent the request.

"remotePort": integer

The source port of the client (or the last proxy) that sent the request.

"remoteUser": java.lang.String

The login of the user making the request, or null if unknown. This is likely to be null unless you have deployed
PingGateway with a non-default deployment descriptor that secures the PingGateway web application.

"userAgent": java.lang.String

The value of the User-Agent HTTP header in the request if any, otherwise null .

More information

org.forgerock.services.context.ClientContext

IdentityRequestJwtContext

Provides the properties of an identity request JWT issued by PingOne Advanced Identity Cloud to PingGateway as part of an
PingOne Advanced Identity Cloud authentication journey with an IdentityGatewayAssertionNode node.

The context is created by the IdentityAssertionHandler.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1079

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/ClientContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/ClientContext.html

Properties

The context is named identityRequestJwt , and is accessible at ${contexts.identityRequestJwt} . The context has the
following properties:

"dataClaims": java.util.Map

Map of claims that can be required by a plugin, in the format Map<String,Object> , where:

Key: Claim name

Value: Claim value

Claims are documented on a per-plugin basis.

If no claim is provided, this is an empty map.

"nonce": java.lang.String

Unique ID generated by the IdentityGatewayAssertionNode and returned in the identity assertion JWT.

Can’t be null

"redirect": java.net.URI

The URL on which to send the identity assertion JWT.

Can’t be null

"version": java.lang.String

The JWT version; only the value v1 is supported.

Can’t be null

IdpSelectionLoginContext

Provides the original target URI for the request received by PingGateway. Use this context with loginHandler in
AuthorizationCodeOAuth2ClientFilter.

Properties

The context is named idpSelectionLogin and is accessible at ${contexts.idpSelectionLogin} . The context has the following
property:

"originalUri": URI

The original target URI for the request received by PingGateway. The value of this field is read-only.

JwtBuilderContext

When the JwtBuilderFilter processes a request, it stores provided data in this context. This context returns the JWT as string,
JsonValue, or map for downstream use.

•

•

Reference PingGateway

1080 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/URI.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/URI.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/URI.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/URI.html

Properties

The context is named jwtBuilder , and is accessible at ${contexts.jwtBuilder} , with the following properties:

"value": java.lang.String

The base64url encoded UTF-8 parts of the JWT, containing name-value pairs of data. Cannot be null.

"claims": java.util.Map

Map with the format Map<String,Object> , where:

Key: Claim name

Value: Claim value

"claimsAsJsonValue": org.forgerock.json.JsonValue

Claims as a JSon value.

More information

org.forgerock.openig.filter.JwtBuilderFilter

org.forgerock.openig.filter.JwtBuilderContext

JwtValidationContext

Provides the properties of a JWT after validation. When the JwtValidationFilter validates a JWT, or the IdTokenValidationFilter
validates an id_token, it injects a copy of the JWT and its claims into this context.

Properties

The context is named jwtValidation , and is accessible at ${contexts.jwtValidation} . The context has the following
properties:

"value": java.lang.String

The value of the JWT. Cannot be null.

"claims": org.forgerock.json.jose.jwt.JwtClaimsSet

A copy of the claims as a JwtClaimsSet.

"info": java.util.Map

A map in the format Map<String,Object> , where:

Key: Claim name

Value: Claim value

"jwt": org.forgerock.json.jose.jwt.Jwt

A copy of the JWT.

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1081

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/JwtBuilderFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/JwtBuilderFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/JwtBuilderContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/JwtBuilderContext.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/jose/jwt/JwtClaimsSet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/jose/jwt/JwtClaimsSet.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/jose/jwt/Jwt.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/jose/jwt/Jwt.html

More information

org.forgerock.openig.filter.jwt.JwtValidationFilter

org.forgerock.openig.filter.oauth2.client.IdTokenValidationFilterHeaplet

org.forgerock.openig.filter.jwt.JwtValidationContext

org.forgerock.openig.filter.jwt.JwtValidationErrorContext

JwtValidationErrorContext

Provides the properties of a JWT after validation fails. When the JwtValidationFilter fails to validate a JWT, or the
IdTokenValidationFilter fails to validate an id_token, it injects the JWT and a list of violations into this context.

Properties

The context is named jwtValidationError , and is accessible at ${contexts.jwtValidationError} . The context has the
following properties:

"jwt": java.lang.String

The value of the JWT. Cannot be null.

"violations": java.util.List<Violation>

A list of violations.

More information

org.forgerock.openig.filter.jwt.JwtValidationFilter

org.forgerock.openig.filter.oauth2.client.IdTokenValidationFilterHeaplet

org.forgerock.openig.filter.jwt.JwtValidationContext

org.forgerock.openig.filter.jwt.JwtValidationErrorContext

OAuth2Context

Provides OAuth 2.0 access tokens. When the OAuth2ResourceServerFilter processes a request, it injects the access token into
this context.

Properties

The context name is oauth2 , and is accessible at ${contexts.oauth2} . The context has the following properties:

"accessToken": org.forgerock.http.oauth2.AccessTokenInfo

The AccessTokenInfo is built from the following properties:

Reference PingGateway

1082 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/IdTokenValidationFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/IdTokenValidationFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationErrorContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationErrorContext.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/Violation.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/tools/jwt/validation/Violation.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationFilter.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/IdTokenValidationFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/IdTokenValidationFilterHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationErrorContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/jwt/JwtValidationErrorContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/AccessTokenInfo.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/AccessTokenInfo.html

"info": java.util.Map

A map with the format Map<String,Object> , where

Key: Claim name

Value: Claim value in raw JSON

"token": java.lang.String

Access token identifier issued from the Authorization Server.

"scopes": java.util.Set

A set scopes associated to this token, with the format Set<String> .

"expiresAt": java.lang.Long

Timestamp of when the token expires, in milliseconds since epoch.

More information

org.forgerock.http.oauth2.OAuth2Context

org.forgerock.http.oauth2.AccessTokenInfo

OAuth2TokenExchangeContext

When the OAuth2TokenExchangeFilter succesfully issues a token, it injects the issued token and its scopes into this context.

Properties

The context name is OAuth2TokenExchangeContext , and is accessible at ${contexts.oauth2TokenExchange} .

The context has the following properties:

"issuedToken": java.lang.String

The token issued by the Authorization Server.

"issuedTokenType": java.lang.String

The token type URN.

"scopes": java.util.Set<java.lang.String>

One or more scopes associated with the issued token, for example, "scope1", "scope2", "scope3" .

"rawInfo": org.forgerock.json.JsonValue

The raw token info as issued by the Authorization Server.

More information

org.forgerock.openig.filter.oauth2.OAuth2TokenExchangeContext

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1083

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Long.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Long.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/OAuth2Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/OAuth2Context.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/AccessTokenInfo.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/oauth2/AccessTokenInfo.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2TokenExchangeContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2TokenExchangeContext.html

OAuth2FailureContext

OAuth2TokenExchangeFilter

RFC 6749: Error Response

OAuth2FailureContext

When an OAuth 2.0 authorization operation fails, the error and error description provided by the authorization service are
injected into this context for use downstream.

The amount and type of information in the context depends on when a failure occurs.

This context is created by AuthorizationCodeOAuth2ClientFilter and OAuth2TokenExchangeFilter.

This context supports OAuth 2.0 error messages in the format given by RFC 6749.

Properties

The context is named OAuth2Failure , and is accessible at ${contexts.oauth2Failure} . The context has the following
properties:

"error": java.lang.String

The error field name.

"description": java.lang.String

Error description field name.

"exception": org.forgerock.openig.filter.oauth2.client.OAuth2ErrorException

The OAuth 2.0 exception associated with the token exchange error.

Examples

For examples that use ${contexts.oauth2Failure.error} and ${contexts.oauth2Failure.description , refer to the routes in
OAuth 2.0 token exchange and Discover and dynamically register with OpenID Connect providers.

More information

org.forgerock.openig.filter.oauth2.OAuth2FailureContext

OAuth2TokenExchangeContext

OAuth2TokenExchangeFilter

RFC 6749: Error Response

PingOneProtectEvaluationContext

Holds a PingOne Protect risk evaluation result for the incoming request.

Reference PingGateway

1084 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/OAuth2ErrorException.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/client/OAuth2ErrorException.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2FailureContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/OAuth2FailureContext.html
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2

You use a PingOneProtectEvaluationFilter to make a risk evaluation request to PingOne Protect. The filter records the evaluation
result in the PingOneProtectEvaluationContext object.

Configure a PingOneProtectThreatLevelRoutingHandler to act on the risk level set in the context. As an alternative, use a
DispatchHandler to act on the risk score.

Properties

The context is named pingOneProtect . It is accessible at ${contexts.pingOneProtect} and has the following properties:

"clientIpAddress": java.lang.String

The client IP address for the PingOne Protect evaluation result.

"evaluationId": java.lang.String

The string identifier for the PingOne Protect evaluation result.

"isPendingCompletion": boolean

Whether PingGateway has reported the status to PingOne Protect following post-evaluation actions.

"level": java.lang.String

The level from the PingOne Protect evaluation result; one of:

LOW

MEDIUM

HIGH

"score": integer

The score from the PingOne Protect evaluation result.

More information

org.forgerock.openig.ping.protect.PingOneProtectEvaluationContext

PolicyDecisionContext

Provides attributes and advices returned by AM policy decisions. When the PolicyEnforcementFilter processes a request, it injects
the attributes and advices into this context.

Properties

The context is named policyDecision , and is accessible at ${contexts.policyDecision} . The context has the following
properties:

emergency_home
The PingOneProtectEvaluationContext is available in Technology preview. It isn’t yet supported, may be functionally
incomplete, and is subject to change without notice.

Important

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1085

https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.pingidentity.com/pinggateway/release-notes/stability.html#interface-stability
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/ping/protect/PingOneProtectEvaluationContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/ping/protect/PingOneProtectEvaluationContext.html

"attributes": java.util.Map

A map with the format Map<String, List<String>> , where:

Key: Attribute name.

Value: A One or more attribute values provided in the policy decision. Can be empty, but not null.

"jsonAttributes": java.util.Map

A map with the format Map<String, List<String>> , where:

Key: Attribute name.

Value: One or more attribute values provided in the policy decision. Can be empty, but not null.

"advices": java.util.Map

A map with the format Map<String, List<String>> , where:

Key: Advice name.

Value: One or more advice values provided in the policy decision. Can be empty, but not null.

"jsonAdvices": java.util.Map

A map with the format Map<String, List<String>> , where:

Key: Advice name

Value: One or more advice values provided in the policy decision. Can be empty, but not null.

"actions": java.util.Map

A map with the format Map<String, Boolean> where:

Key: Action name.

Value: true when an action is allowed for the specified resource, false otherwise. Cannot be null.

"jsonActions": json.JsonValue

A map with the format Map<String, Boolean> , where:

Key: Action name.

Value: true when an action is allowed for the specified resource, false otherwise. Cannot be null.

"resource": java.lang.String

The resource value used in the policy request. Can be empty, but not null.

More information

org.forgerock.openig.openam.PolicyDecisionContext.html

•

•

•

•

•

•

•

•

•

•

•

•

Reference PingGateway

1086 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/PolicyDecisionContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/PolicyDecisionContext.html

SessionContext

Provides access to information about stateful and stateless sessions.

To process a single request, consider using AttributesContext to transfer transient state between components and prevent
PingGateway from creating additional sessions.

PingGateway automatically provides access to the session field through the session bindings in expressions. For example, to
access a username with an expression, use ${session.username} instead of ${contexts.session.session.username}

Properties

The context is named session , and is accessible at ${contexts.session} . The context has the following properties:

"session": java.util.Map

A map with the format Map<String, Object> , where:

Key: Session property name

Value: Session property value

Any object type can be stored in the session.

More information

org.forgerock.http.session.SessionContext

SessionInfoContext

Provides AM session information and properties. When the SessionInfoFilter processes a request, it injects info and properties
from the AM session into this context.

Properties

The context is named amSession , and is accessible at ${contexts.amSession} . The context has the following properties:

"asJsonValue()": json.JsonValue

Raw JSON.

"latestAccessTime": java.time.Instant

The timestamp of when the session was last used. Can be null if the DN is not resident on the SSO token, or if the time
cannot be obtained from the session.

"maxIdleExpirationTime": java.time.Instant

The timestamp of when the session would time out for inactivity. Can be null if the DN is not resident on the SSO token, or
if the time cannot be obtained from the session.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1087

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/session/SessionContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/session/SessionContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Instant.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Instant.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Instant.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Instant.html

"maxSessionExpirationTime": java.time.Instant

The timestamp of when the session would time out regardless of activity. Can be null if the DN is not resident on the SSO
token, or if the time cannot be obtained from the session.

"properties": java.util.Map

A read-only map with the format Map<String, String> , where

Key: Name of a property bound to the session

Value: Value of the property

The following properties are retrieved:

When sessionProperties in AmService is configured, listed session properties with a value.

When sessionProperties in AmService is not configured, all session properties with a value.

Properties with a value that are required by PingGateway but not specified by sessionProperties in AmService.
For example, when the session cache is enabled, session properties related to the cache are automatically
retrieved.

Properties with a value are returned, properties with a null value are not returned

Can be empty, but not null.

"realm": java.lang.String

The realm as specified by AM, in a user-friendly slash (/) separated format. Can be null if the DN is not resident on the SSO
token.

"sessionHandle": java.lang.String

The handle to use for logging out of the session. Can be null if the handle is not available for the session.

"universalId": java.lang.String

The DN that AM uses to uniquely identify the user. Can be null if it cannot be obtained from the SSO token.

"username": java.lang.String

A user-friendly version of the username. Can be null if the DN is not resident on the SSO token, or empty if it cannot be
obtained from the DN.

More information

org.forgerock.openig.openam.SessionInfoContext

SsoTokenContext

Provides SSO tokens and their validation information. When the SingleSignOnFilter or CrossDomainSingleSignOnFilter processes
a request, it injects the value of the SSO token and additional information in this context.

•

•

•

•

•

Reference PingGateway

1088 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Instant.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/Instant.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SessionInfoContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SessionInfoContext.html

Properties

The context is named ssoToken , and is accessible at ${contexts.ssoToken} . The context has the following properties:

"info": java.util.Map

A map with the format Map<String, Object> , where

Key: Property bound to the SSO token, such as realm or uid

Value: Value of the property

Information associated with the SSO token, such as realm or uid . Cannot be null.

"loginEndpoint": java.lang.String

A string representing the URL of the login endpoint, evaluated from the configuration of SingleSignOnFilter.

"value": java.lang.String

The value of the SSO token. Cannot be null.

More information

org.forgerock.openig.openam.SsoTokenContext

StsContext

Provides the result of a token transformation. When the TokenTransformationFilter processes a request, it injects the result into
this context.

Properties

The context is named sts , and is accessible at ${contexts.sts} . The context has the following properties:

"issuedToken": java.lang.String

The result of the token transformation.

More information

org.forgerock.openig.openam.StsContext

UriRouterContext

Provides routing information associated with a request. When PingGateway routes a request, it injects information about the
routing into this context.

Properties

The context is named router , and is accessible at ${contexts.router} . The context has the following properties:

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1089

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SsoTokenContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/SsoTokenContext.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/StsContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/StsContext.html

"baseUri": java.lang.String

The portion of the request URI which has been routed so far.

"matchedUri": java.lang.String

The portion of the request URI that matched the URI template.

"originalUri": URI

The original target URI for the request, as received by PingGateway. The value of this field is read-only.

"remainingUri": java.lang.String

The portion of the request URI that is remaining to be matched.

"uriTemplateVariables": java.util.Map

A map with the format Map<String, String> , where:

Key: Name of a URI template variable

Value: Value of a URI template variable

More information

org.forgerock.http.routing.UriRouterContext

UserProfileContext

When the UserProfileFilter processes a request, it injects the user profile information into this context. This context provides raw
JSON representation, and convenience accessors that map commonly used LDAP field names to a context names.

Properties

The context is named userProfile , and is accessible at ${contexts.userProfile} . The context has the following properties:

"username": java.lang.String

User-friendly version of the username. This field is always fetched. If the underlying data store doesn’t include username ,
this field is null.

Example of use: ${contexts.userProfile.username}

"realm": java.lang.String

Realm as specified by AM, in a user-friendly slash (/) separated format. Can be null.

Example of use: ${contexts.userProfile.realm}

"distinguishedName": java.lang.String

Distinguished name of the user. Can be null.

Example of use: ${contexts.userProfile.distinguishedName}

•

•

Reference PingGateway

1090 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/URI.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/URI.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/routing/UriRouterContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/routing/UriRouterContext.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

"commonName": java.lang.String

Common name of the user. Can be null.

Example of use: ${contexts.userProfile.commonName}

"rawInfo": java.util.Map

An unmodifiable map in the format Map<String, Object> , where:

Key: Name of a field in an AM user profile

Value: Value of a field in an AM user profile

This context contains the object structure of the AM user profile. Any individual field can be retrieved from the map.
Depending on the requested fields, the context can be empty or values can be null.

Examples of use: ${contexts.userProfile.rawInfo} , ${contexts.userProfile.rawInfo.username} , $
{contexts.userProfile.rawInfo.employeeNumber[0]} .

"asJsonValue()": json.JsonValue

User profile information structured as JSON.

Example of use: ${contexts.userProfile.asJsonValue()}

More information

org.forgerock.openig.openam.UserProfileContext

UserProfileFilter

TransactionIdContext

The transaction ID of a request. When PingGateway receives a request, it injects the transaction ID into this context.

Properties

The context is named transactionId , and is accessible at ${contexts.transactionId} . The context has the following
properties:

"transactionId": org.forgerock.services.TransactionId

The ID of the transaction.

More information

org.forgerock.services.TransactionIdContext

org.forgerock.services.context.TransactionIdContext

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1091

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/json/JsonValue.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/UserProfileContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/openam/UserProfileContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/TransactionId.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/TransactionId.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/TransactionId.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/TransactionId.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/TransactionIdContext.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/services/context/TransactionIdContext.html

Requests and responses

Request

An HTTP request message. Access the content of the request by using expressions.

Properties

"method": java.lang.String

The HTTP method; for example, GET .

"uri": java.net.URI

The fully-qualified URI of the resource being accessed; for example, http://www.example.com/resource.txt .

"version": java.lang.String

The protocol version used for the request; for example, HTTP/2 .

"headers": org.forgerock.http.protocol.Headers

One or more headers in the request, with the format header_name: [header_value, …] . The following example
accesses the first value of the request header UserId :

pass:[${request.headers['UserId'][0]}

"cookies": org.forgerock.http.protocol.RequestCookies

Incoming request cookies, with the format cookie_name: [cookie_value, …] . The following example accesses the first
value of the request cookie my-jwt :

pass:[${request.cookies['my-jwt'][0].value}

"entity": Entity

The message body. The following example accesses the subject token from the request entity:

pass:[#{request.entity.form['subject_token'][0]}]

"queryParams": Form

Returns a copy of the query parameters decoded as a form. Modifications to the returned form are not reflected in the
request.

More information

org.forgerock.http.protocol.Request

Reference PingGateway

1092 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/URI.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/URI.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Headers.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Headers.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/RequestCookies.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/RequestCookies.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Entity.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Entity.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Form.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Form.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Request.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Request.html

Response

An HTTP response message. Access the content of the response by using expressions.

Properties

"cause": java.lang.Exception

The cause of an error if the status code is in the range 4xx-5xx. Possibly null.

"status": Status

The response status.

"version": java.lang.String

The protocol version used the response; for example, HTTP/2 .

"headers": org.forgerock.http.protocol.Headers

One or more headers in the response. The following example accesses the first value of the response header Content-
Type :

pass:[${response.headers['Content-Type'][0]}]

"trailers": org.forgerock.http.protocol.Headers

One or more trailers in the response. The following example accesses the first value of the response trailer Content-
Length :

pass:[${response.trailers['Content-Length'][0]}]

"entity": Entity

The message entity body. The following example accesses the user ID from the response:

pass:[#{toString(response.entity.json['userId'])}]

More information

org.forgerock.http.protocol.Response

Status

An HTTP response status.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1093

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Exception.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Exception.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Status.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Status.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Headers.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Headers.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Headers.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Headers.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Entity.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Entity.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Response.html

Properties

"code": integer

Three-digit integer reflecting the HTTP status code.

"family": enumeration

Family Enum value representing the class of response that corresponds to the code:

Family.INFORMATIONAL

Status code reflects a provisional, informational response: 1xx.

Family.SUCCESSFUL

The server received, understood, accepted and processed the request successfully. Status code: 2xx.

Family.REDIRECTION

Status code indicates that the client must take additional action to complete the request: 3xx.

Family.CLIENT_ERROR

Status code reflects a client error: 4xx.

Family.SERVER_ERROR

Status code indicates a server-side error: 5xx.

Family.UNKNOWN

Status code does not belong to one of the known families: 600+.

"reasonPhrase": string

The human-readable reason-phrase corresponding to the status code.

"isClientError": boolean

True if Family.CLIENT_ERROR.

"isInformational": boolean

True if Family.INFORMATIONAL.

"isRedirection": boolean

True if Family.REDIRECTION.

"isServerError": boolean

True if Family.SERVER_ERROR.

Reference PingGateway

1094 Copyright © 2025 Ping Identity Corporation

"isSuccessful": boolean

True if Family.SUCCESSFUL.

More information

Response Status Codes.

org.forgerock.http.protocol.Status

URI

Represents a Uniform Resource Identifier (URI) reference.

Properties

"scheme": string

The scheme component of the URI, or null if the scheme is undefined.

"authority": string

The decoded authority component of the URI, or null if the authority is undefined.

Use "rawAuthority" to access the raw (encoded) component.

"userInfo": string

The decoded user-information component of the URI, or null if the user information is undefined.

Use "rawUserInfo" to access the raw (encoded) component.

"host": string

The host component of the URI, or null if the host is undefined.

"port": number

The port component of the URI, or null if the port is undefined.

"path": string

The decoded path component of the URI, or null if the path is undefined.

Use "rawPath" to access the raw (encoded) component.

"query": string

The decoded query component of the URI, or null if the query is undefined.

info
The query key and value is decoded. However, because a query value can be encoded more than once in a
redirect chain, even though it is decoded it can contain unsafe ASCII characters.

Note

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1095

https://datatracker.ietf.org/doc/html/rfc7231#section-6
https://datatracker.ietf.org/doc/html/rfc7231#section-6
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Status.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/protocol/Status.html

Use "rawQuery" to access the raw (encoded) component.

"fragment": string

The decoded fragment component of the URI, or null if the fragment is undefined.

Use "rawFragment" to access the raw (encoded) component.

More information

org.forgerock.http.MutableUri

Access token resolvers

The following objects are available to resolve OAuth 2.0 access tokens:

TokenIntrospectionAccessTokenResolver

In OAuth2ResourceServerFilter, use the token introspection endpoint, /oauth2/introspect , to resolve access tokens and
retrieve metadata about the token. The endpoint typically returns the time until the token expires, the OAuth 2.0 scopes
associated with the token, and potentially other information.

The introspection endpoint is defined as a standard method for resolving access tokens, in RFC-7662, OAuth 2.0 Token
Introspection.

Usage

Use this resolver with the accessTokenResolver property of OAuth2ResourceServerFilter.

"accessTokenResolver": {
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": AmService reference, // Use either "amService"
 "endpoint": configuration expression<url>, // or "endpoint", but not both.
 "providerHandler": Handler reference
 }
}

Properties

"amService": AmService reference, required if endpoint is not configured

The AmService heap object to use for the token introspection endpoint. The endpoint is extrapolated from the url
property of the AmService.

When the Authorization Server is AM, use this property to define the token introspection endpoint.

If amService is configured, it takes precedence over endpoint .

See also AmService.

Reference PingGateway

1096 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/MutableUri.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/http/MutableUri.html
https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/rfc/rfc7662

"endpoint": configuration expression<url>, required if amService is not configured

The URI for the token introspection endpoint. Use /oauth2/introspect .

When the Authorization Server is not AM, use this property to define the token introspection endpoint.

If amService is configured, it takes precedence over endpoint .

"providerHandler": Handler reference, optional

Invoke this HTTP client handler to send token info requests.

Provide either the name of a Handler object defined in the heap or an inline Handler configuration object.

Default: ForgeRockClientHandler

If you use the AM token introspection endpoint, this handler can be a Chain containing a HeaderFilter to add the
authorization to the request header, as in the following example:

"providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "request",
 "add": {
 "Authorization": ["Basic ${encodeBase64('<client_id>:<client_secret>')}"]
 }
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
}

Example

For an example route that uses the token introspection endpoint, refer to Validate access tokens through the introspection
endpoint.

More information

org.forgerock.openig.filter.oauth2.TokenIntrospectionAccessTokenResolverHeaplet

OAuth2ResourceServerFilter

StatelessAccessTokenResolver

Locally resolve and validate stateless access tokens issued by AM, without referring to AM.

AM can be configured to secure access tokens by signing or encrypting. The StatelessAccessTokenResolver must be configured for
signature or encryption according to the AM configuration.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1097

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/TokenIntrospectionAccessTokenResolverHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/TokenIntrospectionAccessTokenResolverHeaplet.html

Usage

Use this resolver with the accessTokenResolver property of OAuth2ResourceServerFilter.

"accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "issuer": configuration expression<string>,
 "secretsProvider": SecretsProvider reference,
 "verificationSecretId": configuration expression<secret-id>, // Use "verificationSecretId" or
 "decryptionSecretId": configuration expression<secret-id>, // "decryptionSecretId", but not both
 "skewAllowance": configuration expression<duration>
 }
}

Properties

"issuer": configuration expression<string>, required

URI of the AM instance responsible for issuing access tokens.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for passwords and cryptographic keys.

"verificationSecretId": configuration expression<secret-id>, required if AM secures access tokens with a
signature

The secret ID for the secret used to verify the signature of signed access tokens.

This secret ID must point to a CryptoKey.

Depending on the type of secret store that is used to verify signatures, use the following values:

For JwkSetSecretStore, use any non-empty string that conforms to the field convention for secret-id. The value of
the string is not used.

For other types of secret stores:

null : No signature verification is required.

A kid as a string: Signature verification is required with the provided kid . The
StatelessAccessTokenResolver searches for the matching kid in the SecretsProvider.

For information about how signatures are validated, refer to Validate the signature of signed tokens. For information
about how each type of secret store resolves named secrets, refer to Secrets.

Use either verificationSecretId or decryptionSecretId , according to the configuration of the token provider in AM. If
AM is configured to sign and encrypt tokens, encryption takes precedence over signing.

"decryptionSecretId": configuration expression<secret-id>, required if AM secures access tokens with
encryption

The secret ID for the secret used to decrypt the JWT, for confidentiality.

•

•

◦

◦

Reference PingGateway

1098 Copyright © 2025 Ping Identity Corporation

This secret ID must point to a CryptoKey.

Use either verificationSecretId or decryptionSecretId , according to the configuration of the token provider in AM. If
AM is configured to sign and encrypt the token, encryption takes precedence over signing.

"skewAllowance": configuration expression<duration>, optional

The duration to add to the validity period of a JWT to allow for clock skew between different servers.

A skewAllowance of 2 minutes affects the validity period as follows:

A JWT with an iat of 12:00 is valid from 11:58 on the PingGateway clock.

A JWT with an exp 13:00 is expired after 13:02 on the PingGateway clock.

Default: To support a zero-trust policy, the skew allowance is by default zero .

Example

For examples of how to set up and use StatelessAccessTokenResolver to resolve signed and encrypted access tokens, refer to
Validate stateless access tokens with the StatelessAccessTokenResolver.

More information

org.forgerock.openig.filter.oauth2.StatelessAccessTokenResolver

OAuth2ResourceServerFilter

ConfirmationKeyVerifierAccessTokenResolver

In OAuth2ResourceServerFilter, use the ConfirmationKeyVerifierAccessTokenResolver to verify that certificate-bound OAuth 2.0
bearer tokens presented by clients use the same mTLS-authenticated HTTP connection.

When a client obtains an access token from AM by using mTLS, AM can optionally use a confirmation key to bind the access token
to a certificate. When the client connects to PingGateway using that certificate, the ConfirmationKeyVerifierAccessTokenResolver
verifies that the confirmation key corresponds to the certificate.

This proof-of-possession interaction ensures that only the client in possession of the key corresponding to the certificate can use
the access token to access protected resources.

To use the ConfirmationKeyVerifierAccessTokenResolver, the following configuration is required in AM:

OAuth 2.0 clients must be registered using an X.509 certificate, that is self-signed or signed in public key infrastructure
(PKI)

The AM client authentication method must be self_signed_client_auth or tls_client_auth .

AM must be configured to bind a confirmation key to each client certificate.

The ConfirmationKeyVerifierAccessTokenResolver delegates the token resolution to a specified AccessTokenResolver, which
retrieves the token information. The ConfirmationKeyVerifierAccessTokenResolver verifies the confirmation keys bound to the
access token, and then acts as follows:

If there is no confirmation key, pass the request down the chain.

If the confirmation key matches the client certificate, pass the request down the chain.

•

•

•

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1099

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/StatelessAccessTokenResolver.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/StatelessAccessTokenResolver.html

If the confirmation key doesn’t match the client certificate, throw an error.

If the confirmation key method is not supported by PingGateway, throw an error.

For an example that uses the ConfirmationKeyVerifierAccessTokenResolver, refer to Validate Certificate-Bound Access Tokens.

For information about issuing certificate-bound OAuth 2.0 access tokens, refer to Certificate-bound proof-of-possession in
AM’s OAuth 2.0 guide. For information about authenticating an OAuth 2.0 client using mTLS certificates, refer to Mutual TLS in
AM’s OAuth 2.0 guide .

Usage

Use this resolver with the accessTokenResolver property of OAuth2ResourceServerFilter.

"accessTokenResolver": {
 "type": "ConfirmationKeyVerifierAccessTokenResolver",
 "config": {
 "delegate": AccessTokenResolver reference
 }
}

Properties

"delegate": AccessTokenResolver reference, required

The access token resolver to use for resolving access tokens. Use any access token resolver described in Access token
resolvers.

Examples

For an example that uses the ConfirmationKeyVerifierAccessTokenResolver with the following route, refer to Validate Certificate-
Bound Access Tokens.

More information

org.forgerock.openig.filter.oauth2.cnf.ConfirmationKeyVerifierAccessTokenResolver

OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens

OAuth2ResourceServerFilter

ScriptableAccessTokenResolver

In OAuth2ResourceServerFilter, use a Groovy script to resolve access tokens against an Authorization Server.

Receive a string representing an access token and use a Groovy script to create an instance or promise of
org.forgerock.http.oauth2.AccessTokenInfo .

Usage

Use this resolver with the accessTokenResolver property of OAuth2ResourceServerFilter.

•

•

Reference PingGateway

1100 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-PoP-Cert.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/oauth2-PoP-Cert.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/client-auth-mtls.html
https://docs.pingidentity.com/pingam/7.5/oauth2-guide/client-auth-mtls.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/cnf/ConfirmationKeyVerifierAccessTokenResolver.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/cnf/ConfirmationKeyVerifierAccessTokenResolver.html
https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://tools.ietf.org/html/draft-ietf-oauth-mtls

"accessTokenResolver": {
 "type": "ScriptableAccessTokenResolver",
 "config": {
 "type": configuration expression<string>,
 "file": configuration expression<string>, // Use either "file"
 "source": [string, ...], // or "source", but not both.
 "args": map,
 "clientHandler": Handler reference
 }
}

Properties

For information about properties for ScriptableAccessTokenResolver, refer to Scripts.

More information

org.forgerock.openig.filter.oauth2.ScriptableAccessTokenResolver

OAuth2ResourceServerFilter

CacheAccessTokenResolver

Enable and configure caching of OAuth 2.0 access tokens, based on Caffeine. For more information, refer to the GitHub entry,
Caffeine.

This resolver configures caching of OAuth 2.0 access tokens, and delegates their resolution to another AccessTokenResolver. Use
this resolver with AM or any OAuth 2.0 access token provider.

For an alternative way to cache OAuth 2.0 access tokens, configure the cache property of OAuth2ResourceServerFilter.

Usage

{
 "name": string,
 "type": "CacheAccessTokenResolver",
 "config": {
 "delegate": AccessTokenResolver reference,
 "enabled": configuration expression<boolean>,
 "defaultTimeout": configuration expression<duration>,
 "executor": Executor reference,
 "maximumSize": configuration expression<number>,
 "maximumTimeToCache": configuration expression<duration>,
 "amService": AmService reference,
 "onNotificationDisconnection": configuration expression<enumeration>
 }
}

Properties

"delegate": AccessTokenResolver reference, required

Delegate access token resolution to one of the access token resolvers in Access token resolvers.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1101

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/ScriptableAccessTokenResolver.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/filter/oauth2/ScriptableAccessTokenResolver.html
https://github.com/ben-manes/caffeine
https://github.com/ben-manes/caffeine

To use AM WebSocket notification to evict revoked access tokens from the cache, the delegate must be able to provide the
token metadata required to update the cache.

The notification property of AmService is enabled.

The delegate AccessTokenResolver provides the token metadata required to update the cache.

enabled: configuration expression<boolean>, optional

Enable caching.

When an access token is cached, PingGateway can reuse the token information without repeatedly asking the
Authorization Server to verify the access token. When caching is disabled, PingGateway must ask the Authorization Server
to validate the access token for each request.

Default: true

defaultTimeout: configuration expression<duration>, optional

The duration for which to cache an OAuth 2.0 access token when it doesn’t provide a valid expiry value or
maximumTimeToCache .

If the defaultTimeout is longer than the maximumTimeToCache , then the maximumTimeToCache takes precedence.

Default: 1 minute

"executor": Executor reference, optional

An executor service to schedule the execution of tasks, such as the eviction of entries from the cache.

Default: ForkJoinPool.commonPool()

"maximumSize": configuration expression<number>, optional

The maximum number of entries the cache can contain.

Default: Unlimited/unbound

"maximumTimeToCache": configuration expression<duration>, optional

The maximum duration for which to cache access tokens.

Cached access tokens are expired according to their expiry time and maximumTimeToCache , as follows:

If the expiry time is before the current time plus the maximumTimeToCache , the cached token is expired when the
expiry time is reached.

If the expiry time is after the current time plus the maximumTimeToCache , the cached token is expired when the
maximumTimeToCache is reached

The duration cannot be zero or unlimited .

Default: The token expiry time or defaultTimeout

"amService": AmService reference, optional

An AmService to use for the WebSocket notification service.

•

•

•

•

Reference PingGateway

1102 Copyright © 2025 Ping Identity Corporation

When an access token is revoked on AM, the CacheAccessTokenResolver can delete the token from the cache when both
of the following conditions are true:

The notification property of AmService is enabled.

The delegate AccessTokenResolver provides the token metadata required to update the cache.

When a refresh_token is revoked on AM, all associated access tokens are automatically and immediately revoked.

See also AmService.

onNotificationDisconnection: configuration expression<enumeration>, optional

An amService must be configured for this property to have effect.

The strategy to manage the cache when the WebSocket notification service is disconnected, and PingGateway receives no
notifications for AM events. If the cache is not cleared it can become outdated, and PingGateway can allow requests on
revoked sessions or tokens.

Cached entries that expire naturally while the notification service is disconnected are removed from the cache.

Use one of the following values:

NEVER_CLEAR

When the notification service is disconnected:

Continue to use the existing cache.

Deny access for requests that are not cached, but do not update the cache with these requests.

When the notification service is reconnected:

Continue to use the existing cache.

Query AM for incoming requests that are not found in the cache, and update the cache with these
requests.

CLEAR_ON_DISCONNECT

When the notification service is disconnected:

Clear the cache.

Deny access to all requests, but do not update the cache with these requests.

When the notification service is reconnected:

Query AM for all requests that are not found in the cache. (Because the cache was cleared, the cache
is empty after reconnection.)

Update the cache with these requests.

CLEAR_ON_RECONNECT

When the notification service is disconnected:

Continue to use the existing cache.

•

•

•

◦

▪

▪

◦

▪

▪

•

◦

▪

▪

◦

▪

▪

•

◦

▪

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1103

Deny access for requests that are not cached, but do not update the cache with these requests.

When the notification service is reconnected:

Query AM for all requests that are not found in the cache. (Because the cache was cleared, the cache
is empty after reconnection.)

Update the cache with these requests.

Default: CLEAR_ON_DISCONNECT

Example

For an example that uses the CacheAccessTokenResolver, refer to Cache access tokens.

Caches

Learn about Cache metrics from Cache metrics at the Prometheus Scrape Endpoint.

Session cache

When a user authenticates with AM, this cache stores information about the session. PingGateway can reuse the information
without asking AM to verify the session token (SSO token or CDSSO token) for each request.

If WebSocket notifications are enabled, the cache evicts entries based on session notifications from AM, making the cached
content more accurate and reliable.

By default, session information isn’t cached. To increase performance, consider enabling and configuring the cache. Find out
more from sessionCache in AmService.

Policy cache

When the PolicyEnforcementFilter requests and receives a policy decision from AM, it stores the decision in the policy cache.

When a request matches a cached policy decision, PingGateway can reuse the decision without asking AM for a new decision.
When caching is disabled, PingGateway must ask AM to make a decision for each request.

If WebSocket notifications are enabled, the cache evicts entries based on policy notifications from AM, making the cached content
more accurate and reliable.

By default, policy decisions aren’t cached.

▪

◦

▪

▪

lightbulb_2
Maximize the cache hit ratio by using RequestResourceUriProvider or ScriptableResourceUriProvider in conjunction
with AM policies. The PolicyEnforcementFilter identifies cached policy decisions by the resource URL returned by
these URI providers.
Find more information from the resourceUriProvider property of PolicyEnforcementFilter.

Tip

Reference PingGateway

1104 Copyright © 2025 Ping Identity Corporation

User profile cache

When the UserProfileFilter retrieves user information, it caches it. PingGateway can reuse the cached data without repeatedly
querying AM to retrieve it.

By default, profile attributes aren’t cached.

Access token cache

When a user presents an access token to the OAuth2ResourceServerFilter, the access token cache stores the token. PingGateway
can reuse the token information without asking the Authorization Server to verify the access token for each request.

By default, access tokens aren’t cached. To increase performance by caching access tokens, consider configuring a cache in one of
the following ways:

Configure a CacheAccessTokenResolver for a cache based on Caffeine.

Configure the cache property of OAuth2ResourceServerFilter.

Open ID Connect user information cache

When a downstream filter or handler needs user information from an OpenID Connect provider, PingGateway fetches it lazily. By
default, PingGateway caches the information for 10 minutes to prevent repeated calls over a short time.

Find out more from cacheExpiration in AuthorizationCodeOAuth2ClientFilter.

Secrets

PingGateway uses the ForgeRock Commons Secrets API to manage secrets, such as passwords and cryptographic keys.

For more information about how PingGateway manages secrets, refer to About secrets.

Base64EncodedSecretStore

Manage a repository of generic secrets, such as passwords or simple shared secrets, whose values are base64-encoded, and
hard-coded in the route.

This Secret store can only manage the GenericSecret type.

The secrets provider queries the Base64EncodedSecretStore for a named secret, identified by the secret-id in the "secret-
id": "string" pair. The Base64EncodedSecretStore returns the matching secret.

The secrets provider builds the secret, checking that the secret’s constraints are met, and returns a unique secret. If the secret’s
constraints are not met, the secrets provider cannot build the secret and the secret query fails.

Secrets from Base64EncodedSecretStore never expire.

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1105

For a description of how secrets are managed, refer to About secrets

Usage

{
 "name": string,
 "type": "Base64EncodedSecretStore",
 "config": {
 "secrets": map or configuration expression<map>
 }
}

Properties

"secrets": map or configuration expression<map>, required

Map of one or more data pairs with the format Map<String, String> , where:

The key is the ID of a secret used in a route

The value is the base64-encoded value of a secret, or a configuration expression that evaluates to the base64-
encoded value of a secret

The following formats are allowed:

{
 "secrets": {
 "secret-id": "configuration expression<string>",
 ...
 }
}

{
 "secrets": "configuration expression<map>"
}

In the following example, the property is a map whose values are provided by strings:

emergency_home
Use Base64EncodedSecretStore for testing or evaluation only, to store passwords locally. In production, use an
alternative secret store.

Important

•

•

Reference PingGateway

1106 Copyright © 2025 Ping Identity Corporation

{
 "type": "Base64EncodedSecretStore",
 "config": {
 "secrets": {
 "agent.password": "d2VsY29tZQ==",
 "crypto.header.key": "Y2hhbmdlaXQ="
 }
 }
}

In the following example, the property is a map whose values are provided by a configuration token and a configuration
expression. The values are substituted when the route is loaded:

{
 "type": "Base64EncodedSecretStore",
 "config": {
 "secrets": {
 "agent.password": "&{secret.value|aGVsbG8=}",
 "crypto.header.key": "${readProperties('file.property')['b64.key.value']}"
 }
 }
}

Log level

To facilitate debugging secrets for the Base64EncodedSecretStore, in logback.xml add a logger defined by the fully qualified
package name of the Base64EncodedSecretStore. The following line in logback.xml sets the log level to ALL :

<logger name="org.forgerock.openig.secrets.Base64EncodedSecretStore" level="ALL">

Example

For an example that uses Base64EncodedSecretStore, refer to client-credentials.json in Using OAuth 2.0 client credentials.

More information

Secrets

org.forgerock.openig.secrets.Base64EncodedSecretStore

FileSystemSecretStore

Manage a store of secrets held in files, specified as follows:

Each file must contain only one secret.

The file must be in the directory specified by the property directory .

The filename must match the mappings property secretId .

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1107

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/Base64EncodedSecretStore.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/Base64EncodedSecretStore.html

The file content must match the mappings property format . For example, if the mapping specifies BASE64 , the file
content must be base64-encoded.

This Secret store can manage secrets of both GenericSecret and CryptoKey types when used with dedicated formats.

Secrets are read lazily from the filesystem.

The secrets provider queries the FileSystemSecretStore for a named secret, identified by the name of a file in the specified
directory, without the prefix/suffix defined in the store configuration. The FileSystemSecretStore returns the secret that exactly
matches the name.

The secrets provider builds the secret, checking that the secret’s constraints are met, and returns a unique secret. If the secret’s
constraints are not met, the secrets provider cannot build the secret and the secret query fails.

For a description of how secrets are managed, refer to About secrets

Usage

{
 "name": string,
 "type": "FileSystemSecretStore",
 "config": {
 "directory": configuration expression<string>,
 "format": SecretPropertyFormat reference,
 "suffix": configuration expression<string>,
 "mappings": [object, ...],
 "leaseExpiry": configuration expression<duration>,
 "autoRefresh": object
 }
}

Properties

"directory": configuration expression<string>, required

File path to a directory containing secret files. This object checks the specified directory, but not its subdirectories.

format: SecretPropertyFormat reference, optional

Format in which the secret is stored. Use one of the following values or formats:

BASE64 : Base64-encoded

PLAIN : Plain text

A JwkPropertyFormat

A PemPropertyFormat

Default: BASE64

"suffix": configuration expression<string>, optional

File suffix.

When set, the FileSystemSecretStore will append that suffix to the secret ID and try to find a file with the mapped name.

•

•

•

•

•

Reference PingGateway

1108 Copyright © 2025 Ping Identity Corporation

Default: None

"mappings": array of objects, optional

One or more mappings to define a secret:

secretId: configuration expression<secret-id>, required

The ID of the secret used in your configuration.

format: SecretPropertyFormat reference, required

The format and algorithm of the secret. Use SecretKeyPropertyFormat or PemPropertyFormat.

"leaseExpiry": configuration expression<duration>, optional

The amount of time that secrets produced by this store can be cached before they must be refreshed.

If the duration is zero or unlimited , PingGateway issues a warning, and uses the default value.

Default: 5 minutes

"autoRefresh": object, optional

Automatically reload the FileSystemSecretStore when a file is edited or deleted in the directory given by directory .

When autoRefresh is triggered, secrets and keys are refreshed even if the leaseExpiry has not expired. When
autoRefresh is triggered, the leaseExpiry is reset.

{
 "enabled": configuration expression<boolean>,
 "executor": ScheduledExecutorService reference
}

enabled: configuration expression<boolean>, optional

Flag to enable or disable automatic reload:

true : Enable

false : Disable

Default: true

"executor": ScheduledExecutorService reference, optional

A ScheduledExecutorService to monitor the filesystem.

Default: The default ScheduledExecutorService in the heap

Log level

To facilitate debugging secrets for the FileSystemSecretStore, in logback.xml add a logger defined by the fully qualified package
name of the property resolver. The following line in logback.xml sets the log level to ALL :

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1109

<logger name="org.forgerock.secrets.propertyresolver" level="ALL">

Example

For an example that uses FileSystemSecretStore, refer to Pass runtime data in a JWT signed with a PEM.

More information

Secrets

org.forgerock.openig.secrets.FileSystemSecretStoreHeaplet

HsmSecretStore

Manage a store of secrets with a hardware security module (HSM) device or a software emulation of an HSM device, such as
SoftHSM.

This Secret store can only manage secrets of the CryptoKey type.

The secrets provider queries the HsmSecretStore for a named secret, identified by a secret ID and a stable ID, corresponding to
the secret-id / aliases mapping. The HsmSecretStore returns a list of matching secrets.

The secrets provider builds the secret, checking that the secret’s constraints are met, and returns a unique secret. If the secret’s
constraints are not met, the secrets provider cannot build the secret and the secret query fails.

For a description of how secrets are managed, refer to About secrets

Usage

{
 "name": string,
 "type": "HsmSecretStore",
 "config": {
 "providerName": configuration expression<string>,
 "storePasswordSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference,
 "mappings": [object, ...],
 "leaseExpiry": configuration expression<duration>,
 "storePassword": configuration expression<secret-id> //deprecated
 }
}

Properties

"providerName": configuration expression<string>, required

The name of the pre-installed Java Security Provider supporting an HSM. Use a physical HSM device, or a software
emulation of an HSM device, such as SoftHSM.

For the SunPKCS11 provider, concatenate "providerName" with the prefix SunPKCS11- . For example, declare the
following for the name FooAccelerator :

Reference PingGateway

1110 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/FileSystemSecretStoreHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/FileSystemSecretStoreHeaplet.html

"providerName": "SunPKCS11-FooAccelerator"

"storePasswordSecretId": configuration expression<secret-id>, optional

The secret ID of the password to access the HsmSecretStore.

This secret ID must point to a GenericSecret.

For information about how PingGateway manages secrets, refer to About secrets.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the storePassword .

"mappings": array of objects, required

One or more mappings of one secret ID to one or more aliases.

"mappings" : {
 "secretId": configuration expression<secret-id>,
 "aliases": array of configuration expression<string>, //use aliases or
 "aliasesMatching": [string, ...] //aliasesMatching but not both
}

"secretId": configuration expression<secret-id>, required

The secret ID of the key.

"aliases": array of configuration expression<strings>, required if aliasesMatching is not used

One or more key aliases. Named aliases are mapped to the secret ID.

Use aliases or aliasesMatching but not both.

"aliasesMatching": array of <strings>, required if aliases is not used

One or more regular expressions to match key aliases. Aliases that match the expressions are mapped to the
secret ID.

Use aliases or aliasesMatching but not both.

Some KeyStores, such as a global Java TrustStore, can contain hundreds of valid certificates. Use this property to
map multiple aliases to a secret ID without listing them all in the mapping.

The secret store uses the mappings as follows:

When the secret is used to create signatures or encrypt values, the secret store uses the active secret, the first alias
in the list.

When the secret is used to verify signatures or decrypt data, the secret store tries all of the mapped aliases in the
list, starting with the first, and stopping when it finds a secret that can successfully verify signature or decrypt the
data.

The following example maps the named aliases to the named secret IDs:

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1111

"mappings": [
 {
 "secretId": "id.key.for.signing.jwt",
 "aliases": ["signingkeyalias", "anothersigningkeyalias"]
 },
 {
 "secretId": "id.key.for.encrypting.jwt",
 "aliases": ["encryptionkeyalias"]
 }
]

The following example maps aliases that match the regular expression .* to the named secret ID:

"mappings": [
 {
 "secretId": "id.key.for.signing.jwt",
 "aliasesMatching": [".*"]
 }
]

secretId: configuration expression<secret-id>, required

The ID of the secret used in your configuration.

aliases: array of configuration expression<strings>, required

One or more aliases for the secret ID. :leveloffset: +2

"leaseExpiry": configuration expression<duration>, optional

The amount of time that secrets produced by this store can be cached before they must be refreshed.

If the duration is zero or unlimited , PingGateway issues a warning, and uses the default value.

Default: 5 minutes

"storePassword": configuration expression<secret-id>, required if storePasswordSecretId not set

The secret ID of the password to access the HsmSecretStore.

+ For information about how PingGateway manages secrets, refer to About secrets.

Log level

To facilitate debugging secrets for the HsmSecretStore, in logback.xml add a logger defined by the fully qualified package name
of the HsmSecretStore. The following line in logback.xml sets the log level to ALL :

emergency_home
The use of this property is deprecated. If the KeyStore is password-protected, use storePasswordSecretId. For
more information, refer to the Deprecated section of the Release Notes.

Important

Reference PingGateway

1112 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

<logger name="org.forgerock.secrets.keystore" level="ALL">

Example

To set up this example:

Set up and test the example in JwtBuilderFilter, and then replace the KeyStoreSecretStore in that example with an
HsmSecretStore.

Set an environment variable for the HsmSecretStore password, storePassword , and then restart PingGateway.

For example, if the HsmSecretStore password is password , set the following environment variable:

export HSM_PIN='cGFzc3dvcmQ='

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-encoded.

Create a provider config file, as specified in the PKCS#11 Reference guide.

Depending on your version of Java, create a java.security.ext file for the PingGateway instance, with the following
content:

security.provider.<number>=<provider-name> <path-to-provider-cfg-file>

or

security.provider.<number>=<class-name> <path-to-provider-cfg-file>

Start the PingGateway JVM with the following system property that points to the provider config file:

-Djava.security.properties=file://path-to-security-extension-file

The following example route is based on the examples in JwtBuilderFilter, replacing the KeyStoreSecretStore with an
HsmSecretStore:

1.

2.

3.

4.

5.

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1113

https://docs.oracle.com/en/java/javase/17/security/pkcs11-reference-guide1.html
https://docs.oracle.com/en/java/javase/17/security/pkcs11-reference-guide1.html

{
 "name": "hsm-jwt-signature",
 "condition": "${find(request.uri.path, '/hsm-jwt-signature$')}",
 "baseURI": "http://app.example.com:8081",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://am.example.com:8088/openam"
 }
 },
 {
 "name": "HsmSecretStore-1",
 "type": "HsmSecretStore",
 "config": {
 "providerName": "SunPKCS11-SoftHSM",
 "storePasswordSecretId": "hsm.pin",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "mappings": [{
 "secretId": "id.key.for.signing.jwt",
 "aliases": ["signature-key"]
 }]
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }, {
 "name": "UserProfileFilter-1",
 "type": "UserProfileFilter",
 "config": {
 "username": "${contexts.ssoToken.info.uid}",
 "userProfileService": {
 "type": "UserProfileService",
 "config": {
 "amService": "AmService-1"
 }
 }
 }
 }, {
 "name": "JwtBuilderFilter-1",
 "type": "JwtBuilderFilter",
 "config": {

Reference PingGateway

1114 Copyright © 2025 Ping Identity Corporation

 "template": {
 "name": "${contexts.userProfile.commonName}",
 "email": "${contexts.userProfile.rawInfo.mail[0]}"
 },
 "secretsProvider": "HsmSecretStore-1",
 "signature": {
 "secretId": "id.key.for.signing.jwt"
 }
 }
 }, {
 "name": "HeaderFilter-1",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-openig-user": ["${contexts.jwtBuilder.value}"]
 }
 }
 }],
 "handler": "ReverseProxyHandler"
 }
 }
}

More information

Secrets

org.forgerock.openig.secrets.HsmSecretStoreHeaplet

JwkPropertyFormat

The format of a secret used with FileSystemSecretStore to decode JSON Web Key (JWK) formatted keys into secrets.

Usage

{
 "name": string,
 "type": "JwkPropertyFormat"
}

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1115

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/HsmSecretStoreHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/HsmSecretStoreHeaplet.html

Example

{
 "heap" : [
 {
 "name": "jwkPropertyFormat",
 "type": "JwkPropertyFormat"
 },
 {
 "name": "MySecretStore",
 "type": "FileSystemSecretStore",
 "config": {
 "format": "jwkPropertyFormat",
 "directory": "&{secretsDir}/idcloud",
 "mappings": [{
 "secretId": "my.privateKey.jwk",
 "format": "jwkPropertyFormat"
 }
]
 }
 }
}

More information

org.forgerock.secrets.propertyresolver.JwkPropertyFormat

JwkSetSecretStore

A secret store of JSON Web Keys (JWK) from a local or remote JWK Set.

This Secret store can only manage secrets of the CryptoKey type.

The secrets provider builds the secret, checking that the secret’s constraints are met, and returns a unique secret. If the secret’s
constraints are not met, the secrets provider cannot build the secret and the secret query fails.

For a description of how secrets are managed, refer to About secrets.

For information about JWKs and JWK Sets, refer to JSON Web Key (JWK).

Usage

{
 "name": string,
 "type": "JwkSetSecretStore",
 "config": {
 "jwkUrl": configuration expression<url>,
 "handler": Handler reference,
 "cacheTimeout": configuration expression<duration>,
 "cacheMissCacheTime": configuration expression<duration>,
 "leaseExpiry": configuration expression<duration>
 }
}

Reference PingGateway

1116 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/secrets/propertyresolver/JwkPropertyFormat.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/secrets/propertyresolver/JwkPropertyFormat.html
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517

Properties

"jwkUrl": configuration expression<url>, required

A URL that contains the client’s public keys in JWK format.

"handler": Handler reference, optional

An HTTP client handler to communicate with the jwkUrl .

Usually set this property to the name of a ClientHandler configured in the heap, or a chain that ends in a ClientHandler.

Default: ClientHandler

"cacheTimeout": configuration expression<duration>, optional

Delay before the cache is reloaded. The cache contains the jwkUrl .

The cache cannot be deactivated. If a value lower than 10 seconds is configured, a warning is logged and the default value
is used instead.

Default: 2 minutes

"cacheMissCacheTime": configuration expression<duration>, optional

If the jwkUrl is looked up in the cache and is not found, this is the delay before the cache is reloaded.

Default: 2 minutes

"leaseExpiry": configuration expression<duration>, optional

The amount of time that secrets produced by this store can be cached before they must be refreshed.

If the duration is zero or unlimited , PingGateway issues a warning, and uses the default value.

Default: 5 minutes

Log level

To facilitate debugging secrets for the JwkSetSecretStore, in logback.xml add a logger defined by the fully qualified package
name of the JwkSetSecretStore. The following line in logback.xml sets the log level to ALL :

<logger name="org.forgerock.secrets.jwkset" level="ALL">

Example

For an example of how to set up and use JwkSetSecretStore to validate signed access tokens, refer to Validate signed
access_tokens with the StatelessAccessTokenResolver and JwkSetSecretStore.

In the following example, a StatelessAccessTokenResolver validates a signed access token by using a JwkSetSecretStore:

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1117

"accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "secretsProvider": {
 "type": "JwkSetSecretStore",
 "config": {
 "jwkUrl": "http://am.example.com:8088/openam/oauth2/connect/jwk_uri"
 },
 "issuer": "http://am.example.com:8088/openam/oauth2",
 "verificationSecretId": "verification.secret.id"
 }
 }
}

The JWT signature is validated as follows:

If the JWT contains a kid with a matching secret in the JWK set:

The secrets provider queries the JwkSetSecretStore for a named secret.

The JwkSetSecretStore returns the matching secret, identified by a stable ID.

The StatelessAccessTokenResolver tries to validate the signature with that named secret. If it fails, the token is
considered as invalid.

In the route, note that the property verificationSecretId must be configured but is not used in named secret
resolution.

If the JWT contains a kid without a matching secret in the JWK set:

The secrets provider queries the JwkSetSecretStore for a named secret.

Because the referenced JWK set doesn’t contain a matching secret, named secret resolution fails. PingGateway tries
valid secret resolution in the same way as when the JWT doesn’t contain a kid .

If the JWT doesn’t contain a kid :

The secrets provider queries the JwkSetSecretStore for list of valid secrets, whose secret ID is
verification.secret.id .

The JwkSetSecretStore returns all secrets in the JWK set whose purpose is signature verification. For example,
signature verification keys can have the following JWK parameters:

{
 "use": "sig"
}

{
 "key_opts": ["verify"]
}

Secrets are returned in the order that they are listed in the JWK set.

•

◦

◦

◦

•

◦

◦

•

◦

◦

Reference PingGateway

1118 Copyright © 2025 Ping Identity Corporation

The StatelessAccessTokenResolver tries to validate the signature with each secret sequentially, starting with the
first, and stopping when it succeeds.

If none of the valid secrets can verify the signature, the token is considered as invalid.

More information

org.forgerock.openig.secrets.JwkSetSecretStoreHeaplet

JSON Web Key (JWK)

KeyStoreSecretStore

Manages a secret store for cryptographic keys and certificates, based on a standard Java keystore.

This Secret store can only manage secrets of the CryptoKey type.

The secrets provider queries the KeyStoreSecretStore for a named secret, identified by a secret ID and a stable ID, corresponding
to the secret-id / aliases mapping. The KeyStoreSecretStore returns a secret that exactly matches the name, and whose
purpose matches the secret ID and any purpose constraints.

The secrets provider builds the secret, checking that the secret’s constraints are met, and returns a unique secret. If the secret’s
constraints are not met, the secrets provider cannot build the secret and the secret query fails.

For a description of how secrets are managed, refer to About secrets

Usage

{
 "name": string,
 "type": "KeyStoreSecretStore",
 "config": {
 "file": configuration expression<string>,
 "storeType": configuration expression<string>,
 "storePasswordSecretId": configuration expression<string>,
 "entryPasswordSecretId": configuration expression<string>,
 "secretsProvider": SecretsProvider reference,
 "mappings": [object, ...],
 "leaseExpiry": configuration expression<duration>,
 "autoRefresh": object,
 "storePassword": configuration expression<string>, //deprecated
 "keyEntryPassword": configuration expression<string> //deprecated
 }
}

◦

◦

warning
Legacy keystore types such as JKS and JCEKS are supported but are not secure. Consider using the PKCS#12 keystore
type.

Warning

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1119

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/JwkSetSecretStoreHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/JwkSetSecretStoreHeaplet.html
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517

Properties

"file": configuration expression<string>, required

The path to the KeyStore file.

"storeType": configuration expression<string>, optional

The secret store type.

Default: PKCS12

"storePasswordSecretId": configuration expression<secret-id>, optional

The secret ID of the password to access the KeyStore.

This secret ID must point to a GenericSecret.

PingGateway searches for the value of the password until it finds it, first locally, then in parent routes, then in
config.json .

To create a store password, add a file containing the password. The filename must corresponds to the secret ID, and the
file content must contain only the password, with no trailing spaces or carriage returns.

Default: None; the KeyStore is not password-protected

"entryPasswordSecretId": configuration expression<secret-id>, optional

The secret ID of the password to access entries in the KeyStore.

This secret ID must point to a GenericSecret.

To create an entry password, add a file containing the password. The filename must correspond to the secret ID, and the
file content must contain only the password, with no trailing spaces or carriage returns.

When this property is used, the password must be the same for all entries in the KeyStore. If the KeyStore uses different
passwords for entries, entryPasswordSecretId doesn’t work.

Default: The value of storePasswordSecretId

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for the keystore password and key entry password.

"mappings": array of objects, required

One or more mappings of one secret ID to one or more aliases.

"mappings" : {
 "secretId": configuration expression<secret-id>,
 "aliases": array of configuration expression<string>, //use aliases or
 "aliasesMatching": [string, ...] //aliasesMatching but not both
}

Reference PingGateway

1120 Copyright © 2025 Ping Identity Corporation

"secretId": configuration expression<secret-id>, required

The secret ID of the key.

"aliases": array of configuration expression<strings>, required if aliasesMatching is not used

One or more key aliases. Named aliases are mapped to the secret ID.

Use aliases or aliasesMatching but not both.

"aliasesMatching": array of <strings>, required if aliases is not used

One or more regular expressions to match key aliases. Aliases that match the expressions are mapped to the
secret ID.

Use aliases or aliasesMatching but not both.

Some KeyStores, such as a global Java TrustStore, can contain hundreds of valid certificates. Use this property to
map multiple aliases to a secret ID without listing them all in the mapping.

The secret store uses the mappings as follows:

When the secret is used to create signatures or encrypt values, the secret store uses the active secret, the first alias
in the list.

When the secret is used to verify signatures or decrypt data, the secret store tries all of the mapped aliases in the
list, starting with the first, and stopping when it finds a secret that can successfully verify signature or decrypt the
data.

The following example maps the named aliases to the named secret IDs:

"mappings": [
 {
 "secretId": "id.key.for.signing.jwt",
 "aliases": ["signingkeyalias", "anothersigningkeyalias"]
 },
 {
 "secretId": "id.key.for.encrypting.jwt",
 "aliases": ["encryptionkeyalias"]
 }
]

The following example maps aliases that match the regular expression .* to the named secret ID:

"mappings": [
 {
 "secretId": "id.key.for.signing.jwt",
 "aliasesMatching": [".*"]
 }
]

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1121

secretId: configuration expression<secret-id>, required

The ID of the secret used in your configuration.

aliases: array of configuration expression<strings>, required

One or more aliases for the secret ID. :leveloffset: +2

"leaseExpiry": configuration expression<duration>, optional

The amount of time that secrets produced by this store can be cached before they must be refreshed.

If the duration is zero or unlimited , PingGateway issues a warning, and uses the default value.

Default: 5 minutes

"autoRefresh": object, optional

Automatically reload the KeystoreSecretStore when the keystore is edited or deleted.

{
 "enabled": configuration expression<boolean>,
 "executor": ScheduledExecutorService reference
}

enabled: configuration expression<boolean>, optional

Flag to enable or disable automatic reload:

true : Enable

false : Disable

Default: true

"executor": ScheduledExecutorService reference, optional

A ScheduledExecutorService to monitor the keystore.

Default: The default ScheduledExecutorService in the heap

"storePassword": configuration expression<secret-id>, required

The secret ID of the password to access the KeyStore.

This secret ID must point to a GenericSecret.

PingGateway searches for the value of the password until it finds it, first locally, then in parent routes, then in
config.json .

•

•

emergency_home
This property is deprecated. If the KeyStore is password-protected, use storePasswordSecretId. For more
information, refer to the Deprecated section of the Release Notes.

Important

Reference PingGateway

1122 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

To create a store password, add a file containing the password. The filename must corresponds to the secret ID, and the
file content must contain only the password, with no trailing spaces or carriage returns.

"keyEntryPassword": configuration expression<secret-id>, optional

The secret ID of the password to access entries in the KeyStore.

This secret ID must point to a GenericSecret.

To create an entry password, add a file containing the password. The filename must correspond to the secret ID, and the
file content must contain only the password, with no trailing spaces or carriage returns.

When this property is used, the password must be the same for all entries in the keystore. If the keystore uses different
passwords for entries, keyEntryPassword doesn’t work.

Default: The value of storePassword

Log level

To facilitate debugging secrets for the KeyStoreSecretStore, in logback.xml add a logger defined by the fully qualified package
name of the KeyStoreSecretStore. The following line in logback.xml sets the log level to ALL :

<logger name="org.forgerock.secrets.keystore" level="ALL">

Example

For examples of routes that use KeyStoreSecretStore, see the examples in JwtBuilderFilter.

In the following example, a StatelessAccessTokenResolver validates a signed access token by using a KeyStoreSecretStore:

emergency_home
This property is deprecated; use the entryPasswordSecretId instead. For more information, refer to the
Deprecated section of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1123

https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html

"accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "secretsProvider": {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "IG_keystore.p12",
 "storeType": "PKCS12",
 "storePasswordSecretId": "keystore.secret.id",
 "entryPasswordSecretId": "keystore.secret.id",
 "mappings": [{
 "secretId": "verification.secret.id",
 "aliases": ["verification.key.1", "verification.key.2"]
 }]
 },
 "issuer": "http://am.example.com:8088/openam/oauth2",
 "verificationSecretId": "verification.secret.id"
 }
 }
}

The JWT signature is validated as follows:

If the JWT contains a kid with a mapped value, for example verification.key.1 :

The secrets provider queries the KeyStoreSecretStore for a named secret with the secret ID
verification.secret.id and the stable ID verification.key.1 .

Because the KeyStoreSecretStore contains that mapping, the KeyStoreSecretStore returns a named secret.

The StatelessAccessTokenResolver tries to validate the JWT signature with the named secret. If it fails, the token is
considered as invalid.

If the JWT contains a kid with an unmapped value, for example, verification.key.3 :

The secrets provider queries the KeyStoreSecretStore for a named secret with the secret ID
verification.secret.id and the stable ID verification.key.3 .

Because the KeyStoreSecretStore doesn’t contain that mapping, named secret resolution fails. PingGateway tries
valid secret resolution in the same way as when the JWT doesn’t contain a kid .

If the JWT doesn’t contain a kid :

The secrets provider queries the KeyStoreSecretStore for all valid secrets, whose alias is mapped to the secret ID
verification.secret.id . There are two valid secrets, with aliases verification.key.1 and verification.key.
2 .

The StatelessAccessTokenResolver first tries to verify the signature with verification.key.1 . If that fails, it tries
verification.key.2 .

If neither of the valid secrets can verify the signature, the token is considered as invalid.

More information

org.forgerock.secrets.keystore.KeyStoreSecretStore

•

◦

◦

◦

•

◦

◦

•

◦

◦

◦

Reference PingGateway

1124 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/secrets/keystore/KeyStoreSecretStore.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/secrets/keystore/KeyStoreSecretStore.html

org.forgerock.openig.secrets.KeyStoreSecretStoreHeaplet

PemPropertyFormat

The format of a secret used with a mappings configuration in FileSystemSecretStore and SystemAndEnvSecretStore. Privacy-
Enhanced Mail (PEM) is a file format for storing and sending cryptographic keys, certificates, and other data, based on standards
in Textual Encodings of PKIX, PKCS, and CMS Structures. By default, OpenSSL generates keys using the PEM format.

Encryption methods and ciphers used for PEM encryption must be supported by the Java Cryptography Extension.

PEM keys have the following format, where the PEM label is associated to the type of stored cryptographic material:

-----BEGIN {PEM label}-----
Base64-encoded cryptographic material
-----END {PEM label}-----

Note the following points about the key formats:

PKCS#1 is the standard that defines RSA. For more information, refer to RFC 8017: RSA Public Key Syntax.

PKCS#1-style DSA and EC keys are not defined in any standard, but are adapted from the RSA format.

HMAC SECRET KEY , AES SECRET KEY , and GENERIC SECRET are a ForgeRock extension, and not currently supported by
any other tools.

PEM Label Stored Cryptographic Material

CERTIFICATE X.509 Certificate

PUBLIC KEY X.509 SubjectPublicKeyInfo

PRIVATE KEY PKCS#8 Private Key

ENCRYPTED PRIVATE KEY Encrypted PKCS#8 Private Key

EC PRIVATE KEY EC Private Key

RSA PRIVATE KEY PKCS#1 RSA Private Key

RSA PUBLIC KEY PKCS#1 RSA Public Keys

DSA PRIVATE KEY PKCS#1-style DSA Private Key

HMAC SECRET KEY HMAC Secret Keys

AES SECRET KEY AES Secret Keys

GENERIC SECRET Generic Secrets (passwords, API keys, etc)

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1125

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/KeyStoreSecretStoreHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/KeyStoreSecretStoreHeaplet.html
https://www.rfc-editor.org/rfc/rfc7468
https://www.rfc-editor.org/rfc/rfc7468
https://www.rfc-editor.org/rfc/rfc8017#appendix-A.1.1
https://www.rfc-editor.org/rfc/rfc8017#appendix-A.1.1

The following example is non-standard PEM encoding of an HMAC symmetric secret key. The payload is base64-encoded
random bytes that are the key material, with no extra encoding.

-----BEGIN HMAC SECRET KEY-----
Pj/Vel...thB0U=
-----END HMAC SECRET KEY-----

Run the following example command to create the key:

cat <<EOF
-----BEGIN HMAC SECRET KEY-----
$(head -c32 /dev/urandom | base64)
-----END HMAC SECRET KEY-----
EOF

Usage

{
 "name": string,
 "type": "PemPropertyFormat",
 "config": {
 "decryptionSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference
 }
}

Properties

"decryptionSecretId": configuration expression<secret-id>, optional

The secret ID for the secret to decrypt a PKCS#8 private key.

This secret ID must point to a GenericSecret.

"secretsProvider": SecretsProvider reference, required when decryptionSecretId is used

The SecretsProvider to query for the decryption secret.

Example

For examples of use, see Pass runtime data in a JWT signed with a PEM and Pass runtime data in a JWT signed and encrypted
with a PEM.

More information

org.forgerock.openig.secrets.PemPropertyFormatHeaplet

Reference PingGateway

1126 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/PemPropertyFormatHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/PemPropertyFormatHeaplet.html

SecretsKeyManager

Uses the Commons Secrets API to manage keys that authenticate a TLS connection to a peer. The configuration references the
keystore that holds the keys.

Usage

{
 "name": string,
 "type": "SecretsKeyManager",
 "config": {
 "signingSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference
 }
}

Properties

"signingSecretId": configuration expression<secret-id>, required

The secret ID used to retrieve private signing keys.

This secret ID must point to a CryptoKey.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for secrets to resolve the private signing key.

Example

The following example uses a private key found from a keystore for TLS handshake.

{
 "type": "SecretsKeyManager",
 "config": {
 "signingSecretId": "key.manager.secret.id",
 "secretsProvider": {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "path/to/certs/ig.example.com.p12",
 "storePasswordSecretId": "keystore.pass",
 "secretsProvider": "SecretsPasswords",
 "mappings": [{
 "secretId": "key.manager.secret.id",
 "aliases": ["ig.example.com"]
 }]
 }
 }
 }
}

More information

Secrets

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1127

org.forgerock.openig.secrets.SecretsKeyManagerHeaplet

SecretKeyPropertyFormat

The format of a secret used with a secret store.

Usage

{
 "name": string,
 "type": "SecretKeyPropertyFormat",
 "config": {
 "format": SecretPropertyFormat reference,
 "algorithm": configuration expression<string>
 }
}

Properties

format: SecretPropertyFormat reference, optional

Format in which the secret is stored. Use one of the following values, or define a format:

BASE64 : Base64-encoded

PLAIN : Plain text

Default: BASE64

"algorithm": configuration expression<string>, required

The algorithm name used for encryption and decryption. Use algorithm names given in Java Security Standard Algorithm
Names.

Example

{
 "type": "SecretKeyPropertyFormat",
 "config": {
 "format": "PLAIN",
 "algorithm": "AES"
 }
}

More information

Secrets

org.forgerock.openig.secrets.SecretKeyPropertyFormatHeaplet

•

•

Reference PingGateway

1128 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/SecretsKeyManagerHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/SecretsKeyManagerHeaplet.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#algorithmparameters-algorithms
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#algorithmparameters-algorithms
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#algorithmparameters-algorithms
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/SecretKeyPropertyFormatHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/SecretKeyPropertyFormatHeaplet.html

SecretsProvider

Uses the specified secret stores to resolve queried secrets, such as passwords and cryptographic keys. Attempts to resolve the
secret with the secret stores in the order that they are declared in the array.

Usage

{
 "name": string,
 "type": "SecretsProvider",
 "config": {
 "stores": [SecretStore reference, ...]
 }
}

This object can alternatively be configured in a compact format, without the SecretsProvider declaration, as follows:

With an inline secret store:

"secretsProvider": {
 "type": "secret store type1",
 "config": {...}
}

With multiple inline secret stores:

"secretsProvider": [
 {
 "type": "secret store type1",
 "config": {...}
 },
 {
 "type": "secret store type2",
 "config": {...}
 }
]

With a referenced secret store:

"secretsProvider": "mySecretStore1"

With multiple referenced secret stores:

"secretsProvider": [
 "mySecretStore1", "mySecretStore2"
]

•

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1129

See Example for more example configurations.

Properties

"stores": array of SecretStore references, required

One or more secret stores to provide access to stored secrets. Configure secret stores described in Secrets.

Example

The following SecretsProvider is used in Discover and dynamically register with OpenID connect providers.

"secretsProvider": {
 "type": "SecretsProvider",
 "config": {
 "stores": [
 {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/keystore.p12",
 "mappings": [
 {
 "aliases": ["myprivatekeyalias"],
 "secretId": "private.key.jwt.signing.key"
 }
],
 "storePasswordSecretId": "keystore.secret.id",
 "storeType": "PKCS12",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
]
 }
}

The following example shows the equivalent SecretsProvider configuration with an inline compact format:

"secretsProvider": {
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/keystore.p12",
 "mappings": [
 {
 "aliases": ["myprivatekeyalias"],
 "secretId": "private.key.jwt.signing.key"
 }
],
 "storePasswordSecretId": "keystore.secret.id",
 "storeType": "PKCS12",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
}

Reference PingGateway

1130 Copyright © 2025 Ping Identity Corporation

The following example shows the equivalent SecretsProvider configuration with a compact format, referencing a
KeyStoreSecretStore object in the heap:

"secretsProvider": "KeyStoreSecretStore-1"

More information

StatelessAccessTokenResolver

Secrets

org.forgerock.secrets.SecretsProvider

SecretsTrustManager

Uses the Commons Secrets API to manage trust material that verifies the credentials presented by a peer. Trust material is
usually public key certificates. The configuration references the secrets store that holds the trust material.

Usage

{
 "name": string,
 "type": "SecretsTrustManager",
 "config": {
 "verificationSecretId": configuration expression<secret-id>,
 "certificateVerificationSecretId": configuration expression<secret-id>,
 "secretsProvider": SecretsProvider reference,
 "checkRevocation": configuration expression<boolean>
 }
}

Properties

"verificationSecretId": configuration expression<secret-id>, required if certificateVerificationSecretId
isn’t used

Either verificationSecretId or certificateVerificationSecretId is required.

The secret ID to retrieve trusted certificates. This secret ID must point to a CryptoKey.

Consider the following requirements for using certificates with verificationSecretId :

Certificates loaded from keystores can be used with the following constraint:

The KeyUsage extension digitalSignature must be set or no KeyUsage extension must be set

Certificates loaded from JWKs or JWK sets can be used with the following constraints:

The use parameter must be set to sig or the use parameter must not be set

The key_ops parameter must contain verify or the key_ops parameter must not be set

Certificates loaded from PEM can be used without constraint.

•

◦

•

◦

◦

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1131

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/secrets/SecretsProvider.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/secrets/SecretsProvider.html

"certificateVerificationSecretId": configuration expression<secret-id>, required if verificationSecretId
isn’t used

Either verificationSecretId or certificateVerificationSecretId is required.

The secret ID to retrieve certificates for trusted certificate authorities (CA). Use this property when you trust client
certificates only because they are signed by a trusted CA.

Consider the following requirements:

Certificates loaded from keystores can be used with the following constraint:

The KeyUsage extension keyCertSign must be set or no KeyUsage extension must be set

Certificates loaded from JWKs or JWK sets can be used with the following constraints:

The use parameter must not be set

The key_ops parameter must not be set

Certificates loaded from PEM can be used without constraint.

"secretsProvider": SecretsProvider reference, required

The SecretsProvider to query for secrets to resolve trusted certificates.

"checkRevocation": configuration expression<boolean>, optional

Specifies whether to check for certificate revocation.

Default: true

Example

The following example trusts a list of certificates found in a given keystore:

{
 "name": "SecretsTrustManager-1",
 "type": "SecretsTrustManager",
 "config": {
 "verificationSecretId": "trust.manager.secret.id",
 "secretsProvider": {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "path/to/certs/truststore.p12",
 "storePasswordSecretId": "keystore.pass",
 "secretsProvider": "SecretsPasswords",
 "mappings": [{
 "secretId": "trust.manager.secret.id",
 "aliases": ["alias-of-trusted-cert-1", "alias-of-trusted-cert-2"]
 }]
 }
 }
 }
}

•

◦

•

◦

◦

•

Reference PingGateway

1132 Copyright © 2025 Ping Identity Corporation

The following example trusts a list of CA-signed certificates found in a given keystore:

{
 "type": "SecretsTrustManager",
 "config": {
 "certificateVerificationSecretId": "ca.secret.id",
 "secretsProvider": {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "&{ig.instance.dir}/certs/truststore.p12",
 "storePassword": "keystore.pass",
 "secretsProvider": "SecretsPasswords",
 "mappings": [{
 "secretId": "ca.secret.id",
 "aliases": ["alias-of-trusted-cacert-1", "alias-of-trusted-cacert-2"]
 }]
 }
 }
 }
}

More information

Secrets

org.forgerock.openig.secrets.SecretsTrustManagerHeaplet

SystemAndEnvSecretStore

Manage a store of secrets from system properties and environment variables.

This secret store can manage GenericSecret and CryptoKey secret types when used with dedicated formats.

A secret ID must conform to the convention described in secret-id. The reference is then transformed to match the environment
variable name, as follows:

Periods (.) are converted to underscores.

Characters are transformed to uppercase.

For example, my.secret.id is transformed to MY_SECRET_ID .

The secrets provider queries the SystemAndEnvSecretStore for a named secret, identified by the name of a system property or
environment variable. The SystemAndEnvSecretStore returns a secret that exactly matches the name.

The secrets provider builds the secret, checking that the secret’s constraints are met, and returns a unique secret. If the secret’s
constraints are not met, the secrets provider cannot build the secret and the secret query fails.

For a description of how secrets are managed, refer to About secrets

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1133

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/SecretsTrustManagerHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/SecretsTrustManagerHeaplet.html

Usage

{
 "name": string,
 "type": "SystemAndEnvSecretStore",
 "config": {
 "format": SecretPropertyFormat reference,
 "mappings": [object, ...],
 "leaseExpiry": configuration expression<duration>
 }
}

Properties

format: SecretPropertyFormat reference, optional

Format in which the secret is stored. Use one of the following values, or define a format:

BASE64 : Base64-encoded

PLAIN : Plain text

Default: BASE64

"mappings": array of objects, optional

One or more mappings to define a secret:

secretId: configuration expression<secret-id>, required

The ID of the secret used in your configuration.

format: SecretPropertyFormat reference, required

The format and algorithm of the secret. Use SecretKeyPropertyFormat or PemPropertyFormat.

"leaseExpiry": configuration expression<duration>, optional

The amount of time that secrets produced by this store can be cached before they must be refreshed.

If the duration is zero or unlimited , PingGateway issues a warning, and uses the default value.

Default: 5 minutes

Log level

To facilitate debugging secrets for the SystemAndEnvSecretStore, in logback.xml add a logger defined by the fully qualified
package name of the property resolver. The following line in logback.xml sets the log level to ALL :

<logger name="org.forgerock.secrets.propertyresolver" level="ALL">

•

•

Reference PingGateway

1134 Copyright © 2025 Ping Identity Corporation

Example

For an example of how to uses a SystemAndEnvSecretStore to manage a password, refer to the example in Authenticate with
SSO through the default authentication service

More information

Secrets

org.forgerock.openig.secrets.SystemAndEnvSecretStoreHeaplet

TrustManager (deprecated)

The configuration of a Java Secure Socket Extension TrustManager to manage trust material (typically X.509 public key
certificates) for PingGateway. The configuration references the keystore that holds the trust material.

When PingGateway acts as a client, it uses a trust manager to verify that the server is trusted. When PingGateway acts as a server,
it uses a trust manager to verify that the client is trusted.

Usage

{
 "name": string,
 "type": "TrustManager",
 "config": {
 "keystore": KeyStore reference,
 "alg": configuration expression<string>
 }
}

Properties

"keystore": KeyStore reference, required

The KeyStore (deprecated) object that references the store for key certificates. When keystore is used in a KeyManager,
it queries for private keys; when keystore is used in a TrustManager, it queries for certificates.

Provide either the name of the keystore object defined in the heap or an inline keystore configuration object.

"alg": configuration expression<string>, optional

The certificate algorithm to use.

Default: the default for the platform, such as SunX509 .

emergency_home
This object is deprecated; use SecretsTrustManager instead. For more information, refer to the Deprecated section
of the Release Notes.

Important

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1135

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/SystemAndEnvSecretStoreHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/secrets/SystemAndEnvSecretStoreHeaplet.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.pingidentity.com/pinggateway/release-notes/deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/javax/net/ssl/TrustManager.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/javax/net/ssl/TrustManager.html

Example

The following example configures a trust manager that depends on a KeyStore configuration. This configuration uses the default
certificate algorithm:

{
 "name": "MyTrustManager",
 "type": "TrustManager",
 "config": {
 "keystore": {
 "type": "KeyStore",
 "config": {
 "url": "file://${env['HOME']}/keystore.p12",
 "passwordSecretId": "${system['keypass']}",
 "secretsProvider": "SystemAndEnvSecretStore"
 }
 }
 }
}

More information

org.forgerock.openig.security.TrustManagerHeaplet

JSSE reference guide , KeyManager, KeyStore

Supported standards

PingGateway implements the following RFCs, Internet-Drafts, and standards:

OAuth 2.0

RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6750: The OAuth 2.0 Authorization Framework: Bearer Token Usage

RFC 7515: JSON Web Signature (JWS)

RFC 7516: JSON Web Encryption (JWE)

RFC 7517: JSON Web Key (JWK)

RFC 7518: JSON Web Algorithms (JWA)

RFC 7519: JSON Web Token (JWT)

RFC 7523: JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants

RFC 7591: OAuth 2.0 Dynamic Client Registration Protocol

RFC 7662: OAuth 2.0 Token Introspection

RFC 7800: Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)

Reference PingGateway

1136 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/security/TrustManagerHeaplet.html
https://docs.pingidentity.com/pinggateway/2025.6/_attachments/apidocs/org/forgerock/openig/security/TrustManagerHeaplet.html
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345
https://oauth.net/2/
https://oauth.net/2/
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7516
https://www.rfc-editor.org/rfc/rfc7516
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7523
https://www.rfc-editor.org/rfc/rfc7523
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc7800

RFC 8705: OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens

OpenID Connect 1.0

PingGateway can be configured to play the role of OpenID Connect relying party. The OpenID Connect specifications
depend on OAuth 2.0, JSON Web Token, Simple Web Discovery and related specifications. The following specifications
make up OpenID Connect 1.0.

OpenID Connect Core 1.0 defines core OpenID Connect 1.0 features.

OpenID Connect Discovery 1.0 defines how clients can dynamically discover information about OpenID Connect
providers.

OpenID Connect Dynamic Client Registration 1.0 defines how clients can dynamically register with OpenID
Connect providers.

OAuth 2.0 Multiple Response Type Encoding Practices defines additional OAuth 2.0 response types used in
OpenID Connect.

User-Managed Access (UMA) 2.0

User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

Federated Authorization for User-Managed Access (UMA) 2.0

Representational State Transfer (REST)

Style of software architecture for web-based, distributed systems. PingGateway’s APIs are RESTful APIs.

Security Assertion Markup Language (SAML)

Standard, XML-based framework for implementing a SAML service provider. PingGateway supports multiple versions of
SAML including 2.0, 1.1, and 1.0.

Specifications are available from the OASIS standards page.

Other Standards

RFC 4627: The application/json Media Type for JavaScript Object Notation (JSON). JSON text is encoded with Unicode;
PingGateway reads and stores JSON as Unicode.

RFC 2616: Hypertext Transfer Protocol — HTTP/1.1.

RFC 2617: HTTP Authentication: Basic and Digest Access Authentication, supported as an authentication module.

RFC 5280: Internet X.509 Public Key Infrastructure Certificate, supported for certificate-based authentication.

RFC 5785: Defining Well-Known Uniform Resource Identifiers (URIs).

RFC 6265: HTTP State Management Mechanism regarding HTTP Cookies and Set-Cookie header fields.

•

info
In section 5.6 of the specification, PingGateway supports Normal Claims. The optional Aggregated Claims
and Distributed Claims representations are not supported by PingGateway.

Note

•

•

•

PingGateway Reference

Copyright © 2025 Ping Identity Corporation 1137

https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc8705
http://openid.net/connect/
http://openid.net/connect/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-08.html
https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-08.html
https://docs.kantarainitiative.org/uma/wg/oauth-uma-federated-authz-2.0-08.html
https://docs.kantarainitiative.org/uma/wg/oauth-uma-federated-authz-2.0-08.html
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://saml.xml.org/
http://saml.xml.org/
https://www.oasis-open.org/standards
https://www.oasis-open.org/standards
https://www.rfc-editor.org/rfc/rfc4627
https://www.rfc-editor.org/rfc/rfc4627
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2617
https://www.rfc-editor.org/rfc/rfc2617
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5785
https://www.rfc-editor.org/rfc/rfc5785
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc6265

Internationalization

PingGateway supports internationalization (i18n) to facilitate localization for target audiences that vary in culture, region, or
language.

Information type Character set/encoding

HTTP header names and values US-ASCII

HTTP trailer names and values US-ASCII

Response entities for
StaticResponseHandler

The Content-Type header must be set.
For text content, the character set must also be specified; for example:

Content-Type: text/html; charset=utf-8

Content-Type: text/plain; charset=utf-8

The entity must conform to the content type.

Text in request and response entities
for CaptureDecorator

If the Content-Type header is set for the request or response, the decorator uses
it to decode the text in request or response messages, and then writes them to the
logs.
If the Content-Type header is not set, the decorator does not write the request or
response messages to the logs.

Logs The system default character set where PingGateway is running.
To use a different character set, configure logback.xml as described in Change
the character set and format of log messages.

PingGateway configuration files UTF-8

Hostnames US-ASCII

Non US-ASCII characters must be escaped with Punycode encoding.

URIs US-ASCII

Non US-ASCII and reserved characters must be escaped with percent-encoding.

•
•

Reference PingGateway

1138 Copyright © 2025 Ping Identity Corporation

https://www.charset.org/charsets/us-ascii
https://www.charset.org/charsets/us-ascii
https://www.charset.org/charsets/us-ascii
https://www.charset.org/charsets/us-ascii
https://datatracker.ietf.org/doc/rfc3629/
https://datatracker.ietf.org/doc/rfc3629/
https://www.charset.org/charsets/us-ascii
https://www.charset.org/charsets/us-ascii
https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc3492
https://www.charset.org/charsets/us-ascii
https://www.charset.org/charsets/us-ascii

	Table of Contents
	PingGateway
	Release notes
	Get started with PingGateway
	Use PingGateway
	Troubleshoot PingGateway
	Learn More

	About PingGateway
	PingGateway as a reverse proxy
	PingGateway as a forward proxy
	PingGateway as a microgateway
	Object model
	Sessions
	Stateful sessions
	Stateless sessions
	Session stickiness

	API descriptors
	Retrieve API descriptors for a router
	Retrieve API descriptors for the UMA service
	Retrieve API descriptors for the main router
	Retrieve API descriptors for PingGateway instances

	Quick install
	Download PingGateway
	Prepare the network
	Start and stop PingGateway
	Start PingGateway with default settings
	Stop PingGateway

	Use the sample application
	Download the sample application
	Start the sample application
	Stop the sample application
	Serve static resources
	Configuration options

	Protect an application with PingGateway
	Next steps
	Add a base configuration file
	Add a default route
	Switch from production mode to development mode
	Use PingGateway Studio

	Install
	Prepare to install
	Create a PingGateway service account
	Prepare the network
	Set up PingOne Advanced Identity Cloud
	Authenticate a PingGateway agent to PingOne Advanced Identity Cloud
	Register a PingGateway agent in PingOne Advanced Identity Cloud
	Set up a demo user in PingOne Advanced Identity Cloud
	Recommendations

	Set up AM
	Authenticate a PingGateway agent to AM
	Register a PingGateway agent in AM
	Set up a demo user in AM
	Find the AM session cookie name

	Download PingGateway
	Start and stop PingGateway
	Start PingGateway with default settings
	Start PingGateway with custom settings
	Allow startup when there is an existing PID file
	Stop PingGateway

	Set up environment variables and system properties
	Start PingGateway with a customized router scan interval
	Define environment variables for startup, runtime, and stop

	Encrypt and share JWT sessions
	Encrypt JWT sessions
	Share JWT sessions between multiple instances of PingGateway

	Prepare for load balancing and failover
	Manage state information
	Prepare stateless sessions
	SAML in deployments with multiple instances of PingGateway

	Secure connections
	Configure PingGateway for TLS (client-side)
	Configure PingGateway for TLS (server-side)
	Serve one certificate for TLS connections to all server names
	Use Server Name Indication (SNI) to serve different certificates for TLS connections to different server names

	Configure PingGateway for mutual TLS (server-side)

	Configure
	Configuration files and routes
	Configuration location
	Configuration security
	Change the base location
	Route names, IDs, and filenames
	Inline and heap objects
	Comment the configuration
	Restart after configuration change
	Prevent reload of routes
	Reserved routes

	Routes and Common REST
	Decorators
	Decorate individual objects in a route
	Decorate the route handler
	Decorate the route heap
	Decorate named objects differently in different parts of the configuration
	Decorate PingGateway’s interactions with AM
	Decorate an object multiple times
	Guidelines for naming decorators

	Operating modes
	Production mode (immutable mode)
	Development mode (mutable mode)
	Switch from production mode to development mode
	Switch from development mode to production mode

	Configuration templates
	Proxy and capture
	Simple login form
	Login form with cookie from login page
	Login form with password replay and cookie filters
	Login which requires a hidden value from the login page
	HTTP and HTTPS application
	AM integration with headers

	Extend
	Add .jar files for extensions
	Extend PingGateway through scripts
	About scripts
	Use a reference file script
	Scripts in Studio

	Script dispatch
	Script HTTP basic access authentication
	Script SQL queries

	Extend PingGateway through the Java API
	Key extension points
	Implement a customized sample filter
	Implement a class alias resolver
	Configure the heap object for the customization

	Embed customizations in PingGateway
	Record custom audit events

	Upgrade
	Plan the upgrade
	Upgrade
	Drop-in software update with binaries
	Drop-in software update with Docker files
	Major upgrade with binaries
	Major upgrade with Docker files
	Post upgrade tasks
	Rollback

	Migrate from web container mode to standalone mode
	Session replication between PingGateway instances
	Streaming asynchronous responses and events
	Connection reuse when client certificates are used for authentication
	Replacement settings for migration from web container mode with Tomcat

	Deploy with Docker
	Build and run a Docker image
	Build the base image for PingGateway
	Run the Docker image
	Stop the Docker image
	Run options

	Add configuration to a Docker image
	Run an image with a mutable configuration
	Run an image with an immutable configuration

	Gateway guide
	Example installation for this guide
	Set up AM
	Authenticate a PingGateway agent to AM
	Register a PingGateway agent in AM
	Set up a demo user in AM
	Find the AM session cookie name

	Set up PingOne
	Create a PingOne test environment
	Add a PingOne test user

	External tools used in this guide
	Authentication
	Single sign-on (SSO)
	SSO through the default AM authentication tree
	SSO through a specified AM authentication tree

	Cross-domain single sign-on (CDSSO)
	Password replay from AM
	Password replay from a database
	Password replay from a file
	Session cache eviction

	Policy enforcement
	About policy enforcement
	Deny requests without advices
	Deny requests with advices as parameters in a redirect response
	Deny requests with advices in a header

	Enforce policy decisions from AM
	Enforce AM policy decisions in the same domain
	Require users to authenticate to a specific realm
	Enforce AM policy decisions in different domains
	Enforce policy decisions using claimsSubject
	Using WebSocket notifications to evict the policy cache

	Harden authorization with advice from AM
	Step up the authentication level for an AM session
	Increase authorization for a single transaction

	OAuth 2.0
	PingGateway as an OAuth 2.0 client
	PingGateway as an OAuth 2.0 resource server
	Validate stateful or stateless access tokens through the introspection endpoint
	Define required scopes with a script
	Validate stateless access tokens with the StatelessAccessTokenResolver
	Validate signed access tokens with the StatelessAccessTokenResolver and JwkSetSecretStore
	Validate signed access tokens with the StatelessAccessTokenResolver and KeyStoreSecretStore
	Validating encrypted access tokens with the StatelessAccessTokenResolver and KeyStoreSecretStore

	Validate certificate-bound access tokens
	mTLS using standard TLS client certificate authentication
	mTLS using trusted headers

	Use the OAuth 2.0 context to log in to the sample application
	Cache access tokens
	Use OAuth 2.0 client credentials
	Use OAuth 2.0 resource owner password credentials

	OpenID Connect
	About PingGateway with OpenID Connect
	AM as an OpenID Connect provider
	Authenticate automatically to the sample application

	PingOne Advanced Identity Cloud as an OpenID Connect provider
	PingOne as an OpenID Connect provider
	Multiple OpenID Connect providers
	Discovery and dynamic registration with OpenID Connect providers
	ID token validation

	Passing data along the chain
	Pass profile data downstream
	Retrieve profile attributes for a user authenticated with an SSO token
	Retrieve a username from the sessionInfo context
	Retrieve a username from the OAuth2Context

	Passing runtime data downstream
	Pass runtime data in a JWT signed with a PEM
	Pass runtime data in a JWT signed with PEM then encrypted with a symmetric key
	Pass runtime data in JWT encrypted with a symmetric key
	Pass runtime data in JWT encrypted with an asymmetric key

	SAML
	About SP-initiated SSO
	SAML with AM as the identity provider
	SAML with AM as the identity provider using unsigned/unencrypted assertions
	SAML with AM as the identity provider using signed/encrypted assertions

	SAML with PingOne as the identity provider
	Federation using the SamlFederationHandler (deprecated)
	About SP-initiated SSO with the SamlFederationHandler
	About IDP-initiated SSO the the SamlFederationHandler
	Set up federation with unsigned/unencrypted assertions with the SamlFederationHandler
	Set up federation with signed/encrypted assertions with the SamlFederationHandler
	SAML 2.0 and multiple applications with the SamlFederationHandler

	Use a non-transient NameID format
	Example fedlet files
	AM as the SAML IDP
	PingOne as the SAML IDP
	FederationConfig.properties
	fedlet.cot
	idp-extended.xml
	sp.xml
	sp-extended.xml

	Token transformation
	Transform OpenID Connect ID tokens into SAML assertions
	OAuth 2.0 token exchange

	Not-enforced URIs
	Implement not-enforced URIs with a SwitchFilter
	Implement not-enforced URIs with a DispatchHandler

	POST data preservation
	Preserve POST data during CDSSO

	CSRF protection
	Throttling
	About throttling
	Configure simple throttling
	Configure mapped throttling
	Considerations for dynamic throttling

	Configure scriptable throttling

	URI fragments in redirect
	JWT validation
	WebSocket traffic
	UMA support
	About PingGateway as an UMA resource server
	Limitations of PingGateway as an UMA resource server
	Set up the UMA example
	Edit the example to match custom settings
	Understand the UMA API with an API descriptor

	PingGateway as a microgateway

	PingOne Advanced Identity Cloud
	Example installation for this guide
	Authenticate a PingGateway agent to PingOne Advanced Identity Cloud
	Register a PingGateway agent in PingOne Advanced Identity Cloud
	Set up a demo user in PingOne Advanced Identity Cloud
	Recommendations
	About PingGateway and PingOne Advanced Identity Cloud
	OAuth 2.0
	PingOne Advanced Identity Cloud as an OpenID Connect provider
	Cross-domain single sign-on
	Password replay
	Request flow
	Tasks
	Before you start
	Task 1: Run the sample application
	Task 2: Install PingGateway
	Task 3: Register PingGateway with PingOne Advanced Identity Cloud
	Task 4: Prepare a shared secret
	Task 5: Prepare PingOne Advanced Identity Cloud
	Task 6: Configure PingGateway
	Task 7: Create a test user in PingOne Advanced Identity Cloud

	Validation

	Policy enforcement
	Enforce a simple policy
	Step up authorization for a transaction

	PingOne Protect integration
	Risk management
	Example: protect against session degradation
	Before you start
	Configure PingGateway
	Verify the route

	Pass runtime data downstream in a JWT
	Secure the OAuth 2.0 access token endpoint

	Studio
	Start with Studio
	Upgrade from an earlier version of Studio
	Create and edit routes with Structured Editor (deprecated)
	Creating simple routes
	Change the basic settings of a route
	Adding configuration to a route
	Add other configuration to a route
	Add other filters to a route

	Managing the route chain
	Deploy and undeploy routes

	Create and edit routes with Freeform Designer
	Create a simple route
	Change the basic settings of a route
	Add objects to a route heap
	Add configuration to a route
	Decorate objects in the route

	Edit and import routes
	Edit routes in editor mode
	Import routes into Studio
	View and search for routes in your configuration

	Restrict access to Studio
	Example routes created with Structured Editor (deprecated)
	Single sign-on in Structured Editor
	Policy enforcement in Structured Editor
	Policy enforcement for CDSSO in Structured Editor
	Token validation using the introspection endpoint in Structured Editor
	OpenID Connect in Structured Editor
	Token transformation in Structured Editor
	Simple throttling filter in Structured Editor
	Mapped throttling filter in Structured Editor
	Scriptable throttling filter in Structured Editor
	Proxy for websocket traffic in Structured Editor

	Example routes created with Freeform Designer
	Use a basic template in FreeForm Designer
	Protect a web app with Freeform Designer
	Protect an API with Freeform Designer

	Summary of tasks, route status, and icons

	Maintenance
	Audit the deployment
	Record access audit events in CSV
	Record access audit events with a JMS audit event handler
	Record access audit events with a JSON audit event handler
	Record access audit events to standard output
	Trust transaction IDs from other products
	Safelist audit event fields for the logs
	Include or exclude audit event fields in logs
	Record user ID in audit events
	Record user ID in audit logs after SSO authentication
	Record user ID in audit logs after OpenID connect authentication
	Record user ID in audit logs after SAML authentication

	Monitor services
	Access the monitoring endpoints
	Monitor at the Prometheus Scrape Endpoint
	Monitor the Common REST Monitoring Endpoint (deprecated)
	Monitor Vert.x metrics

	Protect monitoring endpoints

	Manage sessions
	Manage logs
	Default logging behavior
	Using a custom Logback file
	Change the global log level
	Change the log level for different object types
	Change the character set and format of log messages
	Log in scripts
	Log the BaseUriDecorator
	Stop exception logging
	Capture the context or entity of messages for routes
	Limit repetitive log messages

	Tune performance
	Define requirements and constraints
	Service level objectives
	Available resources
	Benchmarks

	Tune PingGateway
	Logs
	Buffering message content
	Caches
	WebSocket notifications

	Tune the ClientHandler/ReverseProxyHandler
	Set the maximum number of file descriptors and processes per user
	Tune PingGateway’s JVM

	Rotate keys
	About key rotation
	Why and when to rotate keys
	Steps for rotating symmetric keys
	Steps for rotating asymmetric keys
	Key rotation for keys in a JWK set

	Rotate keys for stateless access tokens signed with a KeyStoreSecretStore
	Rotate keys in a shared JWT session

	Troubleshoot
	Getting support
	Getting info about the problem
	Start up
	Resources
	Routes
	Studio
	Timeout errors
	Other problems

	Security
	Threats
	Operating systems
	Connections
	Access
	Keys and Secrets
	Audit Trails
	Access
	Use a PingGateway service account
	Remove non-essential access
	Remove non-essential features
	Update patches
	Manage sessions
	Expire PingOne Advanced Identity Cloud and AM sessions
	Validate the signature of PingOne Advanced Identity Cloud and AM session cookies

	Manage cookies

	Threats
	Out-of-date software
	Reconnaissance
	Cross-site scripting
	Compromised passwords
	Misconfiguration
	Unauthorized access
	Poor risk management

	Operating systems
	System updates
	System audits
	Unused features

	Network connections
	Message-level security

	Keys and secrets
	About secrets
	Secret types
	Secret terminology

	About keys and certificates
	Validate the signature of signed tokens
	Named secret resolution
	Valid secret resolution

	Using multiple secret stores in a configuration
	Algorithms for elliptic curve digital signatures
	Update cryptography
	Use strong keys
	Rotate keys

	Audits and logs
	Audit trails
	Log files

	Reference
	Reserved routes
	Reserved field names
	Field value conventions
	About Common REST
	Common REST resources
	Common REST verbs
	Common REST parameters
	Common REST extension points
	Common REST headers
	Accept-API-Version
	X-ForgeRock-TransactionId

	Common REST API documentation
	Create
	Read
	Update
	Delete
	Patch
	Patch operation: add
	Patch operation: copy
	Patch operation: increment
	Patch operation: move
	Patch operation: remove
	Patch operation: replace
	Patch operation: transform
	Patch operation limitations

	Action
	Query
	HTTP status codes

	Required configuration
	AdminHttpApplication (admin.json)
	Default objects
	Provided objects
	Usage
	Properties
	Example configuration files
	Default configuration
	Overriding the default ApiProtectionFilter

	More information

	GatewayHttpApplication (config.json)
	Routes endpoint
	Default objects
	Sessions
	Usage
	Properties
	Example configuration files
	Default configuration
	Example config.json used in the documentation

	More information

	Heap objects
	Usage
	Properties
	More information

	Configuration settings
	System properties

	Handlers
	Chain
	Usage
	Properties
	Example
	More information

	ClientHandler
	Usage
	Properties
	More information

	DispatchHandler
	Usage
	Properties
	Example
	More information

	ForgeRockClientHandler
	Example
	More information

	IdentityAssertionHandler
	Usage
	Example
	More information

	IdentityAssertionHandlerTechPreview
	Usage
	Example
	More information

	JwkSetHandler
	Usage
	Examples
	More information

	PingOneProtectThreatLevelRoutingHandler
	Usage
	Configuration
	Example
	More information

	ResourceHandler
	Usage
	Properties
	Example
	More information

	ReverseProxyHandler
	Usage
	Properties
	More information

	Route
	Usage
	Properties
	Example

	Router
	Usage
	Properties
	Example
	More information

	SamlFederationHandler (deprecated)
	Usage
	Properties
	Example

	ScriptableHandler
	Usage
	Properties
	More information

	SequenceHandler
	Usage
	Properties
	More information

	StaticResponseHandler
	Usage
	Properties
	Example
	More information

	Filters
	AllowOnlyFilter
	Usage
	Properties
	Examples
	More information

	AmSessionIdleTimeoutFilter
	Usage
	Properties
	Example
	More information

	AssignmentFilter
	Usage
	Properties
	Examples
	More information

	AuthorizationCodeOAuth2ClientFilter
	Service URIs
	Usage
	Properties
	Examples
	More information

	CapturedUserPasswordFilter
	Usage
	Properties
	Examples
	More information

	CertificateThumbprintFilter
	Usage
	Properties
	Examples
	More information

	CircuitBreakerFilter
	Usage
	Properties
	Example
	More information

	ClientCredentialsOAuth2ClientFilter
	Usage
	Properties
	Examples
	More information

	ClientSecretBasicAuthenticationFilter
	Usage
	Configuration
	Example

	ClientSecretPostAuthenticationFilter
	Usage
	Configuration

	ConditionalFilter
	Usage
	Properties
	Example
	More information

	ConditionEnforcementFilter
	Usage
	Properties
	Example
	More information

	ChainOfFilters
	Usage
	Properties
	Example
	More information

	CookieFilter
	Usage
	Properties
	More information

	CorsFilter
	Usage
	Properties
	More information

	CrossDomainSingleSignOnFilter
	WebSocket notifications for sessions
	Usage
	Properties
	Example
	More information

	CsrfFilter
	Usage
	Properties
	Example
	More information

	DataPreservationFilter
	Usage
	Properties
	Example
	More information

	DateHeaderFilter
	Usage
	Properties
	Example
	More information

	EncryptedPrivateKeyJwtClientAuthenticationFilter
	Usage
	Configuration

	EntityExtractFilter
	Usage
	Properties
	Examples
	More information

	FapiInteractionIdFilter
	Usage
	Properties
	Example
	More information

	FragmentFilter
	Usage
	Example
	More information

	FileAttributesFilter
	Usage
	Properties
	More information

	ForwardedRequestFilter
	Usage
	Properties
	Example
	More information

	GrantSwapJwtAssertionOAuth2ClientFilter
	Usage
	Properties
	Example
	More information

	HeaderFilter
	Usage
	Properties
	Examples
	Replace host header on an incoming request
	Add a header to a response
	Add headers to a request
	Add a token value to a response
	Add headers and logging results

	More information

	HttpBasicAuthenticationClientFilter
	Usage
	Properties
	Example

	HttpBasicAuthFilter
	Usage
	Properties
	Example
	More information

	IdTokenValidationFilter
	Usage
	Properties
	Example
	More information

	JwtBuilderFilter
	Usage
	Properties
	Examples
	More information

	JwtValidationFilter
	Usage
	Properties
	Example
	More information

	LocationHeaderFilter
	Usage
	Properties
	Example
	More information

	OAuth2ClientFilter
	OAuth2ResourceServerFilter
	Usage
	Properties
	Examples
	More information

	OAuth2TokenExchangeFilter
	Usage
	Configuration
	Example
	More information

	PasswordReplayFilter
	Usage
	Properties
	Example
	More information

	PingOneApiAccessManagementFilter
	Usage
	Configuration
	More information

	PingOneProtectEvaluationFilter
	Usage
	Configuration
	Example
	More information

	PingOneProtectFeedbackFilter
	Usage
	Configuration

	PolicyEnforcementFilter
	Notes on configuring policies in AM
	WebSocket notifications for policy changes
	Usage
	Properties
	Examples
	More information

	PrivateKeyJwtClientAuthenticationFilter
	Usage
	Configuration

	ResourceOwnerOAuth2ClientFilter
	Usage
	Properties
	Examples
	More information

	SamlFederationFilter
	Usage
	Properties

	ScriptableFilter
	Usage
	Properties
	Examples
	More information

	SessionInfoFilter
	WebSocket notifications for sessions
	Usage
	Properties
	Examples
	More information

	SetCookieUpdateFilter
	Usage
	Properties
	Examples
	More information

	SingleSignOnFilter
	WebSocket notifications for sessions
	Usage
	Properties
	More information

	SqlAttributesFilter
	Usage
	Properties
	Example
	More information

	StaticRequestFilter
	Usage
	Properties
	Example
	More information

	SwitchFilter
	Usage
	Properties
	Example
	More information

	ThrottlingFilter
	Usage
	Properties
	Examples
	More information

	TokenTransformationFilter
	Usage
	Properties
	Example
	More information

	TransactionIdOutboundFilter
	More information

	UmaFilter
	Usage
	Properties
	More information

	UriPathRewriteFilter
	Usage
	Properties
	Examples
	Valid and invalid mapping examples
	Example request scenarios
	Example route

	More information

	UserProfileFilter
	Usage
	Properties
	Example
	More information

	Decorators
	BaseUriDecorator
	Decorator Usage
	Decorated Object Usage
	Examples
	More information

	CaptureDecorator
	Decorator Usage
	Decorated Object Usage
	Examples
	More information

	TimerDecorator
	Decorator usage
	Decorated object usage
	Timer metrics
	Examples
	More information

	Audit framework
	AuditService
	Usage
	Properties
	Example
	More information

	CsvAuditEventHandler
	Usage
	Configuration
	Example
	More information

	ElasticsearchAuditEventHandler (deprecated)
	Usage
	Properties
	Example
	More information

	JdbcAuditEventHandler
	Usage
	Configuration
	Example
	More information

	JmsAuditEventHandler
	Usage
	Configuration
	Example
	More information

	JsonAuditEventHandler
	Usage
	Configuration
	Examples
	More information

	JsonStdoutAuditEventHandler
	Usage
	Configuration
	Example
	More information

	NoOpAuditService
	Usage
	More information

	SyslogAuditEventHandler
	Usage
	Configuration
	Example
	More information

	SplunkAuditEventHandler (deprecated)
	Usage
	Configuration
	Example
	More information

	Monitoring
	Vert.x Metrics
	Monitoring types
	Metrics at the Prometheus Scrape Endpoint
	Route metrics at the Prometheus Scrape Endpoint
	Router metrics at the Prometheus Scrape Endpoint
	Cache metrics at the Prometheus Scrape Endpoint
	Timer metrics at the Prometheus Scrape Endpoint
	WebSocket metrics at the Prometheus Scrape Endpoint
	Startup metrics at the Prometheus Scrape Endpoint
	ig_startup_seconds_count metric
	ig_startup_seconds_sum/ig_startup_seconds_total (deprecated) metric
	ig_startup_seconds metric
	Metric labels

	Metrics at the Common REST Monitoring Endpoint (deprecated)
	Route metrics at the Common REST Monitoring Endpoint (deprecated)
	Router metrics at the Common REST Monitoring Endpoint (deprecated)
	Timer metrics at the Common REST Monitoring Endpoint (deprecated)

	Throttling policies
	MappedThrottlingPolicy
	Usage
	Properties
	Example of a Mapped Throttling Policy
	More information

	ScriptableThrottlingPolicy
	Usage
	Properties
	Example of a scriptable throttling policy
	More information

	DefaultRateThrottlingPolicy
	Usage
	Properties
	Example
	More information

	Miscellaneous configuration objects
	AmService
	Usage
	Properties
	More information

	ClientRegistration
	Usage
	Properties
	Example
	More information

	ClientTlsOptions
	Usage
	Properties
	Example

	Delegate
	Usage
	Example
	More information

	JwtSession
	Usage
	Properties
	Example
	More information

	KeyManager (deprecated)
	Usage
	Properties
	Example
	More information

	KeyStore (deprecated)
	Usage
	Properties
	Example
	More information

	Issuer
	Usage
	Properties
	Examples
	More information

	IssuerRepository
	Usage
	Properties
	More information

	JdbcDataSource
	Usage
	Properties
	Example
	More information

	KerberosIdentityAssertionPlugin
	Usage
	Properties
	Examples
	More information

	ProxyOptions
	Usage
	Properties
	Example

	ScheduledExecutorService
	Usage
	Properties
	Example
	More information

	ScriptableResourceUriProvider
	Usage
	Properties

	ServerTlsOptions
	Usage
	Properties
	Example

	RequestResourceUriProvider
	Usage
	Properties

	ScriptableIdentityAssertionPlugin
	Usage
	Properties
	Example
	More information

	ScriptableIdentityAssertionPluginTechPreview
	Usage
	Properties
	Example
	More information

	TemporaryStorage
	Usage
	Properties
	More information

	TrustAllManager
	Usage
	Example
	More information

	UmaService
	Usage
	Properties
	REST API for shares
	More information

	Property value substitution
	Configuration Tokens
	Configuration Tokens for File System
	Syntax

	JSON Evaluation
	Token Resolution
	Route Token Resolvers
	Environment Variables Resolver
	System Properties Resolver
	Token Source File Resolvers

	Transformations
	Usage
	array
	bool
	decodeBase64
	encodeBase64
	int
	list
	number
	object
	string

	Expressions
	Syntax
	Route syntax
	Immediate and deferred evaluation syntax
	Operator syntax
	Array syntax
	Map syntax
	Function syntax
	Method syntax
	Escape syntax

	Configuration expressions
	Runtime expressions
	Embedded expressions
	Extensions
	L-value expressions
	Operators
	Dynamic bindings
	Examples
	Immediate evaluation of configuration expressions
	Deferred evaluation of runtime expressions
	Immediate and deferred evaluation of runtime expressions
	Expressions that use functions

	Functions
	array
	boolean
	contains
	decodeBase64
	decodeBase64url
	digestSha256
	encodeBase64
	encodeBase64url
	fileToUrl
	find
	findGroups
	formDecodeParameterNameOrValue
	formEncodeParameterNameOrValue
	indexOf
	integer
	integerWithRadix
	ipMatch
	join
	keyMatch
	length
	matches (deprecated)
	matchesWithRegex
	matchingGroups (deprecated)
	pathToUrl
	pemCertificate
	read
	readProperties
	readWithCharset
	split
	toJson
	toLowerCase
	toString
	toUpperCase
	trim
	urlDecode
	urlEncode
	urlDecodeFragment
	urlDecodePathElement
	urlDecodeQueryParameterNameOrValue
	urlDecodeUserInfo
	urlEncodeFragment
	urlEncodePathElement
	urlEncodeQueryParameterNameOrValue
	urlEncodeUserInfo
	More information

	Patterns
	Pattern templates
	More information

	Scripts
	Usage
	Properties
	Available objects
	Imported classes
	More information

	Route properties
	Usage
	Simple property configured inline
	Group property configured inline
	Properties configured in one or more external files

	Properties
	Examples
	Property variables configured in one file
	Property variables configured in multiple files

	Contexts
	Summary of contexts
	AttributesContext
	Properties
	More information

	AuthRedirectContext
	Properties
	More information

	CapturedUserPasswordContext
	Properties
	More information

	CdSsoContext
	Properties
	More information

	CdSsoFailureContext
	Properties
	More information

	ClientContext
	Properties
	More information

	IdentityRequestJwtContext
	Properties

	IdpSelectionLoginContext
	Properties

	JwtBuilderContext
	Properties
	More information

	JwtValidationContext
	Properties
	More information

	JwtValidationErrorContext
	Properties
	More information

	OAuth2Context
	Properties
	More information

	OAuth2TokenExchangeContext
	Properties
	More information

	OAuth2FailureContext
	Properties
	Examples
	More information

	PingOneProtectEvaluationContext
	Properties
	More information

	PolicyDecisionContext
	Properties
	More information

	SessionContext
	Properties
	More information

	SessionInfoContext
	Properties
	More information

	SsoTokenContext
	Properties
	More information

	StsContext
	Properties
	More information

	UriRouterContext
	Properties
	More information

	UserProfileContext
	Properties
	More information

	TransactionIdContext
	Properties
	More information

	Requests and responses
	Request
	Properties
	More information

	Response
	Properties
	More information

	Status
	Properties
	More information

	URI
	Properties
	More information

	Access token resolvers
	TokenIntrospectionAccessTokenResolver
	Usage
	Properties
	Example
	More information

	StatelessAccessTokenResolver
	Usage
	Properties
	Example
	More information

	ConfirmationKeyVerifierAccessTokenResolver
	Usage
	Properties
	Examples
	More information

	ScriptableAccessTokenResolver
	Usage
	Properties
	More information

	CacheAccessTokenResolver
	Usage
	Properties
	Example

	Caches
	Session cache
	Policy cache
	User profile cache
	Access token cache
	Open ID Connect user information cache

	Secrets
	Base64EncodedSecretStore
	Usage
	Properties
	Log level
	Example
	More information

	FileSystemSecretStore
	Usage
	Properties
	Log level
	Example
	More information

	HsmSecretStore
	Usage
	Properties
	Log level
	Example
	More information

	JwkPropertyFormat
	Usage
	Example
	More information

	JwkSetSecretStore
	Usage
	Properties
	Log level
	Example
	More information

	KeyStoreSecretStore
	Usage
	Properties
	Log level
	Example
	More information

	PemPropertyFormat
	Usage
	Properties
	Example
	More information

	SecretsKeyManager
	Usage
	Properties
	Example
	More information

	SecretKeyPropertyFormat
	Usage
	Properties
	Example
	More information

	SecretsProvider
	Usage
	Properties
	Example
	More information

	SecretsTrustManager
	Usage
	Properties
	Example
	More information

	SystemAndEnvSecretStore
	Usage
	Properties
	Log level
	Example
	More information

	TrustManager (deprecated)
	Usage
	Properties
	Example
	More information

	Supported standards
	Internationalization

