
PingIDM
June 5, 2025

PINGIDM

Version: 7.4

Copyright

All product technical documentation is
Ping Identity Corporation
1001 17th Street, Suite 100
Denver, CO 80202
U.S.A.

Refer to https://docs.pingidentity.com for the most current product documentation.

Trademark

Ping Identity, the Ping Identity logo, PingAccess, PingFederate, PingID, PingDirectory, PingDataGovernance, PingIntelligence, and
PingOne are registered trademarks of Ping Identity Corporation ("Ping Identity"). All other trademarks or registered trademarks
are the property of their respective owners.

Disclaimer

The information provided in Ping Identity product documentation is provided "as is" without warranty of any kind. Ping Identity
disclaims all warranties, either express or implied, including the warranties of merchantability and fitness for a particular
purpose. In no event shall Ping Identity or its suppliers be liable for any damages whatsoever including direct, indirect, incidental,
consequential, loss of business profits or special damages, even if Ping Identity or its suppliers have been advised of the
possibility of such damages. Some states do not allow the exclusion or limitation of liability for consequential or incidental
damages so the foregoing limitation may not apply.

Table of Contents

Release Notes . 13
What’s new . 16
Before you install . 17

Third-Party software . 22
Incompatible changes . 23
Deprecation . 25
Discontinued . 29
Fixed issues . 29
Limitations . 31
Known issues . 32
Documentation . 35
Release levels and interface stability . 35

Getting Started . 37
About IDM . 39
IDM demo : Getting started . 41

Set up the server . 42
Demo data files . 43
Reconcile data stores . 43
Reconcile after an update . 45
Stop and remove the server . 46

Where to go from here . 46

Samples . 49
Samples provided with IDM . 52
Start here . 55
Synchronize data from a CSV file to IDM . 59
One-way synchronization from LDAP to IDM . 68
Two-way synchronization between LDAP and IDM . 71
Synchronize LDAP groups . 76
Synchronize LDAP group membership . 79
Synchronize data between two external resources . 84
Asynchronous reconciliation using workflow . 87
LiveSync with an LDAP server . 91
Synchronize accounts with the Google Apps connector . 97
Synchronize users between Salesforce and IDM . 108
Synchronize Kerberos user principals . 112
Store multiple passwords for managed users . 123
Link Multiple Accounts to a Single Identity . 137
Link historical accounts . 149
Provision users with roles . 159
Provision users with workflow . 183

Connect to DS with ScriptedREST . 187
Connect to Active Directory with the PowerShell connector . 199
Synchronize data between IDM and Azure Active Directory . 211
Connect to a MySQL database with ScriptedSQL . 222
Direct audit information to MySQL . 234
Direct audit information to a JMS broker . 238
Synchronize data between MongoDB and IDM . 242
Synchronize data between IDM and HubSpot . 247
Synchronize data between IDM and DocuSign . 250
Synchronize data between IDM and a SCIM provider . 252
Subscribe to JMS messages . 256
Authenticate using a trusted servlet filter . 268
Create a custom endpoint . 272

Installation . 276
Java requirements . 279
Install and run IDM . 280
Interact with IDM . 283
IDM as a service

IDM as a Linux service . 289
IDM as a Windows service . 292

Start a new project . 294
Select a repository . 295

Embedded DS repository . 296
External DS repository . 298
MySQL repository . 305
Microsoft SQL repository . 308
Oracle DB repository . 313
PostgreSQL repository . 317
IBM DB2 repository . 321

JDBC repository configuration
JDBC database access rights . 325
Case insensitivity for a JDBC repo . 326
JDBC over SSL . 326

Configuration and monitoring
Startup configuration . 329
Monitor server health . 330
Installed modules and features . 334

IDM in a cluster . 336
IDM cluster configuration . 337
Configuration updates in a cluster . 341
Manage configuration with Docker . 342
Scheduled tasks across a cluster . 344
Manage nodes in a cluster . 345

Host and port information . 348
Property files . 349
Embedded Jetty configuration . 350

IDM configuration properties in Jetty . 350
Jetty default settings . 352
Additional servlet filters . 352
Secure protocol configuration . 354
Jetty thread settings . 355
Gzip Compression . 356

Upgrade . 357
About upgrades . 359
Before you upgrade . 360
Migrate your configuration . 361
Update the repository . 363
Migrate data . 365
Upgrade a clustered deployment . 371
Update to a maintenance release . 372

Setup . 373
Architectural overview . 375
Server configuration . 379

Configuration changes . 380
Default REST context . 381
HTTP I/O buffer . 382
Configure the server over REST . 383
Property value substitution . 391
HTTP clients . 399

Command-line interface . 400
IDM user interface . 411

Manage dashboards . 411
Customize the admin UI . 419
Reset user passwords . 422

Object modeling . 423
Managed objects . 426

Create and modify object types . 427
Virtual properties . 432
Run scripts on managed objects . 434
Track user metadata . 434

Users . 437
Relationships between objects . 442

Create a relationship between two objects . 445
Configure relationship change notification . 447
Validate relationships between objects . 451
Create bidirectional relationships . 451

Grant relationships conditionally . 453
View relationships over REST . 454
View relationships in graph form . 459
Manage relationships using the admin UI . 460

Roles . 472
Managed roles . 473
Manipulate roles . 474
Use temporal constraints to restrict effective roles . 487
Use assignments to provision users . 491
Effective roles and effective assignments . 497
Roles and relationship change notification . 500
Managed role script hooks . 501
Map roles to external groups . 501

Organizations . 502
Manage organizations over REST . 505
Organizations in high latency environments . 513

Use policies to validate data . 514
Default policy for managed objects . 514
Extend the policy service . 524
Disable policy enforcement . 527
Manage policies over REST . 527

Store managed objects in the repository . 534
Repository configuration files . 535
Object mappings . 542

Mappings with a JDBC repository . 543
Mappings with a DS repository . 565

Access Data Objects
Access data objects using scripts . 572
Access data objects using the REST API . 573
Access data objects by remote proxy . 574
Define and call data queries . 578
Upload files to the server . 600

Data models and objects reference . 604
Managed objects reference . 605
Configuration objects . 621
System objects . 623
Audit objects . 623
Links . 623

Authentication and authorization . 624
Authentication . 626

IDM and HTTP basic authentication . 626
Password changes . 627
Character encoding in authentication headers . 629
Authenticate users . 629

Authentication and session modules . 638
Authenticate through AM . 657
Authenticate as a different user . 664
Authentication and roles . 667

Authorization and roles . 669
Administrative users . 698
Delegated administration . 708
Authentication and session module configuration . 738

Synchronization . 740
Synchronization overview . 743

Types . 743
Configuration overview . 744
Data mapping model . 745

Connections between resources . 745
Resource mapping . 746

Configure . 748
Remove . 750
Transform attributes . 751
Default attribute values . 752
Conditions . 753
Multi-target linking . 754
Prevent accidental target deletion . 760
Scripts . 760
Reusing links . 766
Case sensitivity . 766

Situations & actions . 767
Situation assessment . 768

Source reconciliation . 769
Target reconciliation . 771
Implicit & liveSync . 773

Actions . 774
Correlate source & target objects . 777
Synchronization operations

Manage reconciliation . 782
Manage liveSync . 795

Filter synchronization data . 797
Implicit synchronization and liveSync . 801
Schedule synchronization . 814
Clustered reconciliation . 815
Tuning reconciliation performance . 819
Asynchronous reconciliation . 823
Import bulk data . 825
Synchronization reference . 831

Security . 850
General security considerations . 852
Secure the repository . 853
Secure IDM data . 853

Secure sensitive values . 854
Encrypted objects . 859
Encrypt and decrypt properties over REST . 860

Sensitive files and directories . 862
Read-only installation . 863

Manage password policies . 866
Secure network connections . 871
Stores, certificates, and keys . 876

The IDM keystore . 877
Secret stores . 881

Filesystem . 885
Property . 887
Hardware . 888

Encryption key management . 895
CA-signed certificates . 904
FIPS 140-2 compliance . 907

Hide unused REST endpoints . 914
Secure the API Explorer . 914
Adjust log levels . 915
Disable automatic configuration updates . 915

Scripting . 916
Script configuration . 919
Call a script from the IDM configuration . 921
Validate scripts over REST . 924
Create custom endpoints to launch scripts . 926
Register custom scripted actions . 937
Request context chain . 940
Script triggers . 940

In managed objects . 941
In mappings . 944
In the router configuration . 950
augmentSecurityContext . 950

Script variables . 951
Available to scripts in custom endpoints . 951
Available to role assignment scripts . 952
identityServer . 953

Router configuration . 954
Filter objects . 954
Pattern matching . 955
Script execution sequence . 955

Script scope . 958
Scripting function reference . 959

Workflow . 978
BPMN 2.0 and workflow tools . 980
Enable workflows . 981
Test workflow integration . 984
Create workflows . 985

Workflow definition comparison . 986
Query workflows . 986
Invoke workflows . 987
Workflow audit . 989
Custom workflow templates . 993

Password synchronization plugins . 994
Password synchronization plugins . 996
Synchronize passwords with DS . 997
Synchronize passwords with Active Directory . 1015

Install . 1016
Upgrade . 1042
Configure . 1042
Start/Stop . 1051
Help . 1052
Remove . 1053

Audit . 1054
Configure audit logging . 1056

Configure the audit service . 1057
Specify the audit query handler . 1057
Choose audit event handlers . 1058
Audit event topics . 1074
Filter audit data . 1077
Use policies to filter audit data . 1081
Monitor specific activity log changes . 1087
Configure an audit exception formatter . 1088
Change audit write behavior . 1088
Purge obsolete audit information . 1089
Log file rotation . 1091
Log file retention . 1092
Query audit logs over REST . 1092
View audit events in the admin UI . 1109

Audit log schema . 1110
Reconciliation event topic properties . 1111
Synchronization event topic properties . 1112
Access event topic properties . 1113
Activity event topic properties . 1115

Authentication event topic properties . 1115
Configuration event topic properties . 1116

Audit event handler configuration . 1117
Common audit event handler properties . 1117
JSON audit event handler properties . 1118
CSV audit event handler properties . 1119
Repository and router audit event handler properties 1121
JMS audit event handler properties . 1122
Syslog audit event handler properties . 1123

Configure notifications . 1124

Schedules . 1128
Schedule tasks and events . 1130

Configure the scheduler service . 1130
Configure schedules . 1131
Schedules and daylight savings time . 1154
Persistent schedules . 1154
Scheduler metrics . 1155
Schedule examples . 1159

Scan data to trigger tasks . 1160
Activate and deactivate accounts . 1160
Create a new scanning task . 1162
Manage scanning tasks . 1166

Using REST . 1166
Using the admin UI . 1173

External services . 1174
Email . 1176
External REST . 1189

Monitoring . 1196
Server logs . 1198
Monitoring . 1201
Load testing . 1218
Metrics . 1221

API . 1222
Prometheus . 1237

REST API reference . 1254
ForgeRock Common REST . 1256

Create . 1260
Read . 1261
Update . 1262
Delete . 1262
Patch . 1263
Action . 1268
Query . 1269

HTTP status codes . 1272
REST & IDM . 1274
REST API Explorer . 1275
REST API versioning . 1277
REST API structure . 1281
REST endpoints

Server configuration . 1283
Managed users . 1286
Managed organizations . 1287
System objects . 1287
Internal objects . 1294
Schedules . 1294
Scanning tasks . 1295
Audit logs . 1296
Reconciliation operations . 1297
Synchronization service . 1298
Scripts . 1299
Privileges . 1300
Email . 1301
File upload . 1301
Bulk import . 1302
Server state . 1303
Social identity providers . 1303
Workflows . 1304

Self-service reference . 1312
About user self-service . 1315

The self-service process flow . 1316
Self-registration . 1319

User self-registration . 1319
User self-registration form . 1323
Self-Service registration emails . 1324
User preferences . 1325
Multiple user self-registration flows . 1327
Self-registration REST requests . 1330

Social registration . 1339
OpenID connect authorization code flow . 1341
Many social identity providers, one schema . 1342
Amazon social identity provider . 1345
Apple social identity provider . 1347
Facebook social identity provider . 1349
Google social identity provider . 1352
Instagram social identity provider . 1355
LinkedIn social identity provider . 1357
Microsoft social identity provider . 1360

Salesforce social identity provider . 1363
Twitter social identity provider . 1366
Vkontakte social identity provider . 1369
WeChat social identity provider . 1372
WordPress social identity provider . 1374
Yahoo social identity provider . 1377
Custom social identity provider . 1380
Social providers authentication module . 1385
Link IDM & social identity providers . 1385
Social identity providers over REST . 1390
Test social identity providers . 1392
Social registration scenarios . 1393
Social identity widgets . 1394
Social identity provider button and badge properties 1395

Progressive profile . 1397
Progressive profile completion form . 1397
Theauth.profile.jsonfile . 1401
Progressive profile completion and metadata . 1402
Progressive profile REST requests . 1403

Password reset . 1406
User password reset configuration files . 1409
Email for password reset . 1410
Password reset REST requests . 1411

Username retrieval . 1414
Username retrieval configuration . 1415
Email for forgotten username . 1417
Forgotten username REST requests . 1417

Additional configuration . 1419
Notification emails . 1420
Privacy and consent . 1423
UMA, trusted devices, and privacy . 1427
Terms & Conditions . 1429
Tokens and user self-service . 1433
End User UI notifications . 1433
Google reCAPTCHA . 1434
Identity fields . 1435
Security questions . 1435
Custom policies for self-registration and password reset 1442
Self-service end user UI . 1442

Custom self-service stages . 1446
Prep & build . 1446
Configure . 1448
Test . 1449

Self-service stage reference . 1450
All-in-one registration . 1450
OpenAM auto-login stage . 1451
Attribute collection stage . 1451
Captcha stage . 1452
Conditional User Stage . 1453
Consent Stage . 1454
Email validation stage . 1454
IDM user details stage . 1455
KBA security answer definition stage . 1456
KBA security answer verification stage . 1456
KBA update stage . 1457
Local auto-login stage . 1457
Parameters stage . 1458
Patch object stage . 1459
Password reset stage . 1459
Self-registration stage . 1460
Social user claim stage . 1460
Terms and Conditions stage . 1461
User query stage . 1463

IDM glossary . 1463

Release notes

ForgeRock Identity Management (IDM) software provides centralized, simple management and synchronization of identities for
users, devices, and things. IDM software is highly flexible and therefore able to fit almost any use case and workflow.

These release notes are written for anyone using the IDM 7.4 release. Read these notes before you install or upgrade ForgeRock
Identity Management software.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

What's New

New features and improvements in this version.

Prepare for Deployment

The requirements for running IDM software in
production.

Compatibility

Key implementation changes and compatibility
with previous deployments.

Bug Fixes

Bug fixes, limitations, and open issues.

Doc Updates

Documentation changes.

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 15

https://www.forgerock.com
https://www.forgerock.com

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

What’s new

Maintenance releases

ForgeRock maintenance releases contain a collection of fixes and minor RFEs grouped together and released as part of our
commitment to support our customers.

IDM 7.4.2 is the latest release targeted for IDM 7.4 deployments and can be downloaded from the Backstage Download Center.

IDM 7.4.2 features

Secure RCS access

You can create stricter RCS authorization and access rules. To enable authorization for RCS, add an appropriate role to the static-
user mapping used for the RCS subject and write the appropriate access rules to permit this role to be granted access to the
openicf servlet on the path (pattern) corresponding to the RCS name used in the RCS configuration.

Learn more in Secure RCS access.

Array comparison

You can choose how synchronization detects managed object array changes using unordered or ordered comparison using the
configuration property comparison in the schema. Unordered JSON array comparison ignores the order of elements and can
negate the need for certain custom scripts within mappings.

Learn more about managed object schema properties and array comparison.

_api parameter requires authorization

Requests passing the _api parameter now require authorization. Learn more in Common REST.

Jetty 12 support

The embedded Jetty web server supports Jetty 12.

Java 17 support

This IDM release requires Java 17. Learn more in Embedded Jetty configuration.

IDM 7.4.1 features

The Flowable embedded workflow engine has been upgraded to version 6.8.0.

info
You can deploy the release as an initial deployment or as an update from an existing 7.4.x deployment. Learn more
about updating from 7.4.x in Update to a maintenance release.

Note

•

Release notes PingIDM

16 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads/browse/idm/latest
https://backstage.forgerock.com/downloads/browse/idm/latest

End user UI supports array properties.

SalesForce connector supports client_credentials and refresh_token grant types.

IDM 7.4.0 features

Filesystem secret stores

You can now configure secret stores to use filesystem secret stores. Filesystem secret stores use a directory containing many
files, each storing a single secret. For more information, refer to Filesystem secret stores.

Microsoft Graph API email client

In addition to the SMTP client, you can now configure the outbound email service to use the new MS Graph API Client.

For more information, refer to Outbound email.

Additional metrics

New metrics are available for livesync and scheduler functions. For example requests, refer to Scheduler metrics.

Script support for countOnly queries

Queries within scripts now support the _countOnly parameter.

mTLS for authentication to DS

If you’re using IDM with a DS repository, ForgeRock recommends using mTLS to authenticate to DS to better facilitate credential
rotation. Refer to Configure mTLS.

Security advisories

ForgeRock issues security advisories in collaboration with our customers and the open source community to address any security
vulnerabilities transparently and rapidly. ForgeRock’s security advisory policy governs the process on how security issues are
submitted, received, and evaluated as well as the timeline for the issuance of security advisories and patches.

For details of all the security advisories across ForgeRock products, refer to Security Advisories in the Knowledge Base library.

Before you install

This section covers requirements before you run ForgeRock Identity Management software, especially in a production
environment. If you have a special request to support a component or combination not listed here, contact ForgeRock at
info@forgerock.com.

•

•

emergency_home
Use of the new email client requires a properly configured Microsoft Azure tenant.

Important

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 17

https://backstage.forgerock.com/knowledge/kb/book/b21824339
https://backstage.forgerock.com/knowledge/kb/book/b21824339
mailto:info@forgerock.com

Hardware and memory requirements

Due to the underlying Java platform, IDM software runs well on a variety of processor architectures.

When you install IDM for evaluation with the embedded DS repository, you need:

256 MB memory (32-bit) or 1 GB memory (64-bit) available.

10 GB free disk space for the software and sample data.

In production, disk space and memory requirements depend on the size of your external repository, as well as the size of the
audit and service log files that IDM creates.

The amount of memory that IDM consumes is highly dependent on the data that it holds. Queries that return large data sets will
have a significant impact on heap requirements, particularly if they are run in parallel with other large data requests. To avoid
out-of-memory errors, analyze your data requirements, set the heap configuration appropriately, and modify access controls to
restrict requests on large data sets.

IDM exposes many JVM metrics to help you analyze the amount of memory that it is consuming. For more information on
analyzing hardware and memory performance, see Load testing.

Operating System requirements

IDM 7.4 software is supported on the following operating systems:

Red Hat Enterprise Linux (and Rocky Linux) 7.9, 8.7, and 9.1

Ubuntu Linux 20.04 and 22.04

Windows Server 2019 and 2022

Java requirements

IDM software supports the following Java environments:

•

•

emergency_home
A DS repository (whether embedded or external) requires free disk space of 5% of the filesystem size, plus 1 GB by
default. To change this requirement, set the disk-full-threshold in the DS configuration. For more information,
refer to Disk Space Thresholds in the DS Maintenance Guide.
In the case of an embedded DS instance, you can manage the configuration using the dsconfig command in /path/
to/openidm/db/openidm/opendj/bin .

Important

•

•

•

Release notes PingIDM

18 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/7.4/config-guide/import-export.html#set-database-backend-disk-thresholds
https://docs.pingidentity.com/pingds/7.4/config-guide/import-export.html#set-database-backend-disk-thresholds

** Version 17.0.9 or higher.

Supported web application containers

You must install IDM as a standalone service, using the bundled Apache Felix framework and Jetty web application container.
Alternate containers are not supported. IDM bundles Jetty version 12.0.19.

Supported repositories

The following repositories are supported for use in production:

ForgeRock Directory Services (DS) 8.0.

By default, IDM uses an embedded DS instance for testing purposes. The embedded instance is not supported in
production. If you want to use DS as a repository in production, you must set up an external instance.

MySQL version 5.7 and 8.0 with MySQL JDBC Driver Connector/J 8.0.

MariaDB version 10.6.11 and 10.10.2 with MySQL JDBC Driver Connector/J 8.0.

Microsoft SQL Server 2019 and 2022.

Supported Java Versions

Vendor Versions

OpenJDK, including OpenJDK-based distributions:

AdoptOpenJDK/Eclipse Temurin
Amazon Corretto
Azul Zulu
Red Hat OpenJDK

17**

Oracle Java 17**

•
•
•
•

info
ForgeRock tests most extensively with AdoptOpenJDK/Eclipse Temurin. ForgeRock recommends
using the HotSpot JVM.

Note

lightbulb_2
ForgeRock recommends that you keep your Java installation up-to-date with the latest security fixes.

Tip

•

•

emergency_home
Do not use Connector/J versions 8.0.23 through 8.0.25. Why?

Important

•

emergency_home
Do not use Connector/J versions 8.0.23 through 8.0.25. Why?

Important

•

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 19

https://bugs.mysql.com/bug.php?id=102372
https://bugs.mysql.com/bug.php?id=102372
https://bugs.mysql.com/bug.php?id=102372
https://bugs.mysql.com/bug.php?id=102372

Oracle Database 19c and 21c.

PostgreSQL 13.10, 14.7, and 15.2.

IBM DB2 11.5.

ForgeRock supports repositories in cloud-hosted environments, such as AWS and GKE Cloud, as long as the underlying repository
is supported. In other words, the repositories listed above are supported, regardless of how they are hosted.

Supported browsers

The IDM UI has been tested with the latest, stable versions of the following browsers:

Chrome and Chromium

Edge

Firefox

Safari

Supported connectors

IDM bundles the following connectors:

Adobe Cloud Marketing connector

CSV File connector

Database Table connector

Google Apps connector

Groovy Connector Toolkit

This toolkit lets you create scripted connectors to virtually any resource.

Kerberos connector

The Kerberos connector bundled with IDM 8 is not backward-compatible with IDM 6.x. IDM 8 uses Groovy version 3.0. IDM
6.5 uses version 2.5, and IDM 6 uses version 2.4. The bundled Kerberos connector requires Groovy version 3.0.

LDAP connector

Using the LDAP connector to provision to Active Directory is supported with Active Directory Domain Controllers, Active
Directory Global Catalogues, and Active Directory Lightweight Directory Services (LDS).

Marketo connector

•

•

•

info
These repositories might not be supported on all operating system platforms. refer to the specific repository
documentation for more information.
Do not mix and match versions. For example, if you are running Oracle Database 19c, and want to take advantage of
the support for Oracle UCP, download driver and companion JARs for Oracle version 19c.

Note

•

•

•

•

•

•

•

•

•

•

•

•

Release notes PingIDM

20 Copyright © 2025 Ping Identity Corporation

MongoDB connector

Microsoft Graph API connector

Salesforce connector

SCIM connector

Scripted REST connector

The scripted REST connector bundled with IDM 8 is not backward-compatible with IDM 6.x. IDM 8 uses Groovy version 3.0.
IDM 6.5 uses version 2.5, and IDM 6 uses version 2.4. The bundled scripted REST connector requires Groovy version 3.0.

Scripted SQL connector

The scripted SQL connector bundled with IDM 8 is not backward-compatible with IDM 6.x. IDM 8 uses Groovy version 3.0.
IDM 6.5 uses version 2.5, and IDM 6 uses version 2.4. The bundled scripted SQL connector requires Groovy version 3.0.

ServiceNow connector

Scripted SSH connector

The scripted SSH connector bundled with IDM 8 is not backward-compatible with IDM 6.x. IDM 8 uses Groovy version 3.0.
IDM 6.5 uses version 2.5, and IDM 6 uses version 2.4. The bundled scripted SSH connector requires Groovy version 3.0.

Additional connectors are available from the Backstage download site.

A PowerShell Connector Toolkit is bundled with the .NET remove connector server. This toolkit lets you create scripted connectors
to address the requirements of your Microsoft Windows ecosystem.

Windows Server 2012 R2, 2016, and 2019 are supported as the remote systems for connectors and password synchronization
plugins.

You must use the supported versions of the .NET Remote Connector Server (RCS), or the Java Remote Connector Server (RCS). The
1.5.x Java RCS is backward-compatible with the version 1.1.x connectors. The 1.5.x .NET RCS is compatible only with the 1.4.x and
1.5.x connectors. For more information, refer to IDM / OpenICF Compatibility Matrix.

The Java RCS requires Java 17 and is supported on any platform on which Java runs.

The .NET RCS requires the .NET framework (version 4.6.2 or later) and is supported on Windows Server versions 2012 R2, 2016,
and 2019.

•

•

•

•

•

•

•

•

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

emergency_home
Although the scripted connector toolkits are supported, connectors that you build with these toolkits are not
supported. You can find examples of how to build connectors with these toolkits in Samples.

Important

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 21

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

The following table lists the connector and RCS versions that are supported across IDM versions. For a list of connectors
supported with this IDM release, refer to the OpenICF connector documentation. For a list of connector releases associated
with this version of IDM, refer to the OpenICF release notes.

Supported password synchronization plugins

The following table lists the supported password synchronization plugins:

IDM / OpenICF Compatibility Matrix

IDM
Version

RCS Version Java Connectors Scripted Groovy Connectors .NET Connectors

4.x 1.4.x, 1.5.x Java connectors version 1.1.x
- 1.5.x

Scripted REST, Scripted
CREST, Scripted SQL, SSH,
Kerberos connectors up to
version 1.5.1.0.

PowerShell Connector 1.4.x

5.x 1.4.x, 1.5.x Java connectors version 1.1.x
- 1.5.x

Scripted REST, Scripted
CREST, Scripted SQL, SSH,
Kerberos connectors up to
version 1.5.1.0.

PowerShell Connector 1.4.x

6.x 1.4.x, 1.5.x Java connectors version 1.1.x
- 1.5.x

Scripted REST, Scripted
CREST, Scripted SQL, SSH,
Kerberos connectors up to
version 1.5.1.0.

PowerShell Connector 1.4.x

7.x 1.4.x, 1.5.x Java connectors version 1.1.x
- 1.5.x

Scripted REST, Scripted SQL,
SSH, Kerberos connectors
version 1.5.x.

PowerShell Connector 1.4.x,
1.5.x

Plugin Supported Version

DS Password Synchronization
Plugin

7.4.x, supported with DS 7.4.x and IDM 7.4.x
7.3.x, supported with DS 7.3.x and IDM 7.3.x
7.1.x, supported with DS 7.1.x, DS 7.2.x, IDM 7.1.x, and IDM 7.2.x
7.0.1, supported with DS 7.0.x, IDM 7.0.x, and IDM 7.1.x
6.5.0, supported with DS 6.5.x and IDM 6.5.x
6.0, supported with DS 6.0.x and IDM 6.0.x
5.5.0, supported with DS 5.5.x and IDM 5.5.x
5.0, supported with DS 5.0.x and IDM 5.0.x
3.5, supported with OpenDJ 3.5 and OpenIDM 4.x
DS Password Sync plugins are not supported with DS OEM

Active Directory Password
Synchronization Plugin

1.7.0 and 1.5.0 supported on Windows Server versions 2012 R2, 2016, 2019, and 2022

Release notes PingIDM

22 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/index.html
https://docs.pingidentity.com/openicf/index.html
https://docs.pingidentity.com/openicf/connector-release-notes/overview.html
https://docs.pingidentity.com/openicf/connector-release-notes/overview.html

Third-Party software

ForgeRock provides support for using the following third-party software when logging ForgeRock Common Audit events:

Although ForgeRock does not provide support for these tools, you can any use of the following third-party software to monitor
ForgeRock servers:

For Hardware Security Module (HSM) support, ForgeRock software requires a client library that conforms to the PKCS#11
standard v2.20 or later.

Software Version

Java Message Service (JMS) 2.0 API

MySQL JDBC Driver Connector/J 8 (at least 8.0.19)

Splunk 8.0 (at least 8.0.2)

emergency_home
Do not use Connector/J versions 8.0.23 through 8.0.25.
Why?

Important

lightbulb_2
Elasticsearch and Splunk have native or third-party tools to collect, transform, and route logs. Examples include
Logstash and Fluentd.
ForgeRock recommends that you consider these alternatives. These tools have advanced, specialized features focused
on getting log data into the target system. They decouple the solution from the ForgeRock Identity Platform systems
and version, and provide inherent persistence and reliability. You can configure the tools to avoid losing audit
messages if a ForgeRock Identity Platform service goes offline, or delivery issues occur.
These tools can work with ForgeRock Common Audit logging:

Configure the server to log messages to standard output, and route from there.
Configure the server to log to files, and use log collection and routing for the log files.

Tip

•
•

Software Version

Grafana 7 (at least 7.4.3)

Graphite 1

Prometheus 2.36

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 23

https://bugs.mysql.com/bug.php?id=102372
https://bugs.mysql.com/bug.php?id=102372
https://www.elastic.co/logstash
https://www.elastic.co/logstash
https://www.fluentd.org/
https://www.fluentd.org/

Incompatible changes

When you update to IDM 8.0.0 from the last major version, the following changes may impact existing deployments. Adjust
existing scripts, files, clients, and so on, as necessary.

If you’re upgrading from an older release, review the changed functionality from all releases after your current version of IDM:

Incompatible changes (7.3.x)

Incompatible changes (7.2.x)

Incompatible changes (7.1.x)

Incompatible changes (7.0.x)

Changes between IDM 7.4.1 and 7.4.2

_api parameter requires authorization

Requests passing the _api parameter now require authorization. Learn more in Common REST.

Array comparison

Starting with IDM 7.3.0, unordered array comparison became the default behavior. For this release of IDM, ordered array
comparison is the default behavior, restoring the default behavior from prior to IDM 7.3.0.

You can now use the comparison managed object schema configuration property to choose how JSON array comparisons are
made with regard to array order.

Learn more about managed object schema properties and array comparison.

Java upgrade

You must upgrade to Java 17, which is required by Jetty 12, to run IDM 7.4.2. Learn more in Embedded Jetty configuration.

Changes between IDM 7.4.0 and 7.4.1

Workflow engine upgrade

The Flowable embedded workflow engine has been upgraded to version 6.8.0. If you’re upgrading from a previous version of
IDM and use workflow, this upgrade requires one or more incremental upgrade scripts. For more information, refer to Upgrade
an existing repository.

Changes between IDM 7.3.x and 7.4.0

IDM requires JDK 11.0.20 or higher

If you try to run this version of IDM using an older release of JDK, the following error displays:

•

•

•

•

Release notes PingIDM

24 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/idm/7.3/release-notes/changed-functionality.html
https://backstage.forgerock.com/docs/idm/7.3/release-notes/changed-functionality.html
https://backstage.forgerock.com/docs/idm/7.2/release-notes/changed-functionality.html
https://backstage.forgerock.com/docs/idm/7.2/release-notes/changed-functionality.html
https://backstage.forgerock.com/docs/idm/7.1/release-notes/changed-functionality.html
https://backstage.forgerock.com/docs/idm/7.1/release-notes/changed-functionality.html
https://backstage.forgerock.com/docs/idm/7/release-notes/changed-functionality.html
https://backstage.forgerock.com/docs/idm/7/release-notes/changed-functionality.html
https://github.com/flowable/flowable-engine/releases/tag/flowable-6.8.0
https://github.com/flowable/flowable-engine/releases/tag/flowable-6.8.0

SEVERE: Error loading keystore
java.io.IOException: Invalid keystore format
at java.base/sun.security.provider.JavaKeyStore.engineLoad(JavaKeyStore.java:667)
at java.base/sun.security.util.KeyStoreDelegator.engineLoad(KeyStoreDelegator.java:222)
at java.base/java.security.KeyStore.load(KeyStore.java:1479)
at org.forgerock.security.keystore.KeyStoreBuilder.build(KeyStoreBuilder.java:228)
at org.forgerock.openidm.secrets.keystore.KeyStoreRepository.load(KeyStoreRepository.java:59)
at org.forgerock.openidm.secrets.config.ConfigSupport.asKeyStoreHolder(ConfigSupport.java:95)
at org.forgerock.openidm.secrets.config.StoreSupport.asKeyStoreHolder(StoreSupport.java:61)
at org.forgerock.openidm.secrets.config.FileBasedStore.asKeyStoreHolder(FileBasedStore.java:18)
...

For a complete list of supported Java versions, refer to Java requirements.

The DB2 driver is now OSGi-compliant

When using IDM with a DB2 database, you previously had to create an OSGi-compliant driver. The driver included with DB2 is now
compliant.

For more information, refer to:

IBM DB2 repository

Supported repositories

Deprecation

The following features are deprecated and likely to be discontinued in a future release.

Progressive profile

Progressive profile data collection is deprecated and will be removed in a future release of IDM. This functionality is already
supported by AM in a platform deployment. For more information, refer to Progressive profile in the ForgeRock Identity
Platform documentation.

Social authentication

Social authentication is deprecated and will be removed in a future release of IDM. The feature will be a function of AM. Once a
user has logged in through AM (using a social provider or some other way), they can obtain an access token with that session and
use the access token to interact with IDM through the rsFilter configuration.

Additionally, Microsoft has deprecated the "Sign In with LinkedIn" functionality as of August 1, 2023. Refer to Sign In with LinkedIn
.

Integrated Windows Authentication (IWA)

IWA is deprecated and will be removed in a future release of IDM. This feature will be a function of AM.

•

•

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 25

https://backstage.forgerock.com/docs/platform-self-service/8.0/progressive-profile.html
https://backstage.forgerock.com/docs/platform-self-service/8.0/progressive-profile.html
https://learn.microsoft.com/en-us/linkedin/consumer/integrations/self-serve/sign-in-with-linkedin
https://learn.microsoft.com/en-us/linkedin/consumer/integrations/self-serve/sign-in-with-linkedin
https://learn.microsoft.com/en-us/linkedin/consumer/integrations/self-serve/sign-in-with-linkedin

Access configuration in access.js

In previous releases, access rules were configured in the access.js script. This script has been replaced by an access.json
configuration file, that performs the same function. Existing deployments that use customized access.js files are still supported
for backward compatibility. However, support for access rules defined in access.js is deprecated, and will be removed in a
future release. You should move these access rules to a conf/access.json file. For more information, refer to Authorization and
roles.

Actions on scheduler endpoint

The action parameter on the scheduler endpoint was deprecated in Version 1 of the endpoint and is not supported in Version
2.

To validate a cron expression, use the validateQuartzCronExpression action on the scheduler/job endpoint, as described in
Validate Cron Trigger Expressions.

Health endpoints

The health endpoints, used to monitor system activity have been deprecated in this release, as their functionality was not
considered to be of much use.

The information available on health/recon was node-specific. Instead, you can retrieve cluster-wide reconciliation details with a
GET on the recon endpoint.

The information available on the health/os and health/memory endpoints can be retrieved by inspecting the JVM metrics.

Conditional query filters

The syntax of conditional query filters and scripts within notification filters has changed in this release. In previous IDM releases,
request properties such as content in create and update requests or patchOperations in patch requests were referenced
directly. For example, a previous configuration might have used the following query filter:

"condition" : "content/manager pr"

In IDM 7 and later, query filters and scripts should reference the request object to obtain any request properties. Sample query
filters have been changed accordingly. The previous example would be changed to the following:

"condition" : "request/content/manager pr",

This syntax is more verbose, but it lets script implementations use request visitors logic based on the request type, and is more
consistent with generic router filters.

The old request syntax will still work in IDM 7.0, but is considered deprecated. Support for the old syntax will be removed in a
future release. Note that this change is limited to notification filters. Filters such as those used with scripted endpoints have never
supported direct access to request properties, and are therefore not changing. For more information on notification filters, refer
to Configure notifications.

Release notes PingIDM

26 Copyright © 2025 Ping Identity Corporation

Self-Service stages

Self-Service Stages (described in Self-service stage reference) are deprecated in this release and support for their use will be
removed in a future release. From IDM 7 onwards, this functionality is replaced by AM Authentication Trees.

oauthReturn endpoint

Support for oauthReturn as an endpoint for OAuth2 and OpenID Connect standards has been deprecated for interactions with
AM and will be removed in a future release. Support for interactions with social identity providers was removed in IDM 6.5.0.

Default versions of relevant configuration files no longer include oauthReturn in the redirectUri setting. However, for IDM 7.4,
these configuration files should still work both with and without oauthReturn in the endpoint.

timeZone in schedules

In Configure schedules, setting a time zone using the timeZone field is deprecated. To specify a time zone for schedules, use the
startTime and endTime fields.

MD5 and SHA-1 hash algorithms

Support for the MD5 and SHA-1 hash algorithms is deprecated and will be removed in a future release. You should use more
secure algorithms in a production environment. For a list of supported hash algorithms, refer to Salted Hash Algorithms.

JAVA_TYPE_DATE attribute type

Support for the native attribute type, JAVA_TYPE_DATE , is deprecated and will be removed in a future release. This property-level
extension is an alias for string . Any dates assigned to this extension should be formatted per ISO 8601.

POST request with ?_action=patch

Support for a POST request with ?_action=patch is deprecated, when patching a specific resource. You can still use ?
_action=patch when patching by query on a collection.

Clients that do not support the regular PATCH verb should use the X-HTTP-Method-Override header instead.

For example, the following POST request uses the X-HTTP-Method-Override header to patch user jdoe’s entry:

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 27

https://docs.pingidentity.com/pingam/7.4/authentication-guide/about-authentication-trees.html
https://docs.pingidentity.com/pingam/7.4/authentication-guide/about-authentication-trees.html
https://backstage.forgerock.com/docs/idm/6.5/release-notes/#removed-6.5.0
https://backstage.forgerock.com/docs/idm/6.5/release-notes/#removed-6.5.0

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--header "X-HTTP-Method-Override: PATCH" \
--data '[
 {
 "operation":"replace",
 "field":"/description",
 "value":"The new description for Jdoe"
 }
]' \
"http://localhost:8080/openidm/managed/user/jdoe"

minLength property

The managed object property minLength is deprecated. When you need to specify a minimum length for a property, use the
minimum-length policy:

{
 "policyId" : "minimum-length",
 "params" : {
 "minLength" : 8
 }
}

Read requests at top of /config

Support for top-level read requests to the /config endpoint is deprecated. You can still retrieve a list of config IDs by querying
the /config endpoint.

Defining object schema type attribute in an array when it is a single type

Support for specifying an object’s schema type attribute in an array when there is only a single type is deprecated and will be
removed in a later release.

This affects schemas with type attribute definitions in the form:

{
 "type" : ["string"]
}

type attribute definitions in this form should be updated to:

Release notes PingIDM

28 Copyright © 2025 Ping Identity Corporation

{
 "type" : "string"
}

For additional information, refer to the JSON schema type attribute definition.

Discontinued

The following features or functionalities were removed in the applicable release.

IDM 7.4.2 removals

Apache Felix web console

We’ve removed the Apache Felix web console in this release of IDM.

Java 11 support

Java 11 support has been removed from this release. You must upgrade to Java 17, which is required by Jetty 12 to run IDM 7.4.2.
Learn more in Embedded Jetty configuration.

Gzip handler compressionLevel and excludedAgentPatterns properties

In Jetty 12, the compressionLevel and excludedAgentPatterns properties have been removed from the Gzip handler.

IDM 7.4.1 removals

No features or functionality were removed in this release.

IDM 7.4.0 removals

Sample notification configuration files

The following sample notification configuration files have been removed from the /path/to/openidm/samples/example-
configurations/conf directory:

notification-newReport.json

notification-termsUpdate.json

Splunk and Elasticsearch audit handlers

The Splunk and Elasticsearch audit event handlers have been removed in this release.

IDM 7.4 supports file-based audit handlers and logging to standard output, both of which Elasticsearch and Splunk can consume.

•

•

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 29

https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-03#anchor9
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-03#anchor9
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-03#anchor9

Fixed issues

IDM 7.4.2

OPENIDM-18495: Admin UI: Connector Data Tab is sending a queryFilter with bad sortKeys

OPENIDM-18848: New string and number attributes added to managed object schema default to "searchable"

OPENIDM-19405: Special characters (non-ASCII) inside of emails being sent from IDM/Identity Cloud fail

OPENIDM-19666: Admin UI should not inject domain configuration property within Connector config for GoogleApps/
Salesforce

OPENIDM-19755: GoogleApps Connector: update sample to reflect replacement of __SECONDARY_EMAIL__ with
__SECONDARY_EMAILS__

OPENIDM-19829: Time spent in authentication service is not included in access audit elapsed time

OPENIDM-19879: Query additional recon source/target pages whenever a paging cookie is returned irrespective of
whether paging is enabled

OPENIDM-19918: Order-agnostic comparison of array fields in sync must be optional

OPENIDM-20063: Syncing ldap object with // in them does not work

OPENIDM-20142: Permanent failure caused by transient connector validation failure during provisioner service activation

OPENIDM-20238: SynchronizationException, Expecting a Map or List

OPENIDM-20337: Provisioner createCoreConfig action should omit poolConfigOption properties for non-pooleable
Connectors

IDM 7.4.1

The following important bugs were fixed in this release:

OPENIDM-19203: Admin UI lists unsafe hashing algorithms

OPENIDM-19244: Workflow will not work if upgrade from IDM v7.0.4 to 7.3

OPENIDM-19467: Transformation script compile error in one mapping breaks another mapping

IDM 7.4.0

The following important bugs were fixed in this release:

OPENIDM-18405: Admin UI pagination disabled for array of relationships/roles when using JDBC repo

OPENIDM-18655: pagedResultsOffset on SpecReference query does not work when using sortKeys

OPENIDM-18737: Field Policy Service does not handle multivalued required attributes

OPENIDM-18743: IDM throws a NPE when operationOptions{} is defined in the provisioner

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Release notes PingIDM

30 Copyright © 2025 Ping Identity Corporation

OPENIDM-18774: Sync queue fails to initialise when mapping defined in individual file is updated

OPENIDM-18822: Query on relationship endpoint with paging takes too long to return with DS as repo

OPENIDM-18875: Incorrect behaviour in handling variables in workflow subprocesses

OPENIDM-18896: SpecReference not retrieving all vertex fields when _fields is present and empty

OPENIDM-18897: Signal cycle detection logic must be abrogated in override assignment processing

OPENIDM-18983: SpecReference - not retrieving vertex fields when removal of relationships ou support is not enabled

OPENIDM-18988: Anonymous info/ping results in query of the anonymous user in DS in IDC

OPENIDM-19139: Merry-go-round upon signal receipt will erase RDVP fields not returned by default

OPENIDM-19161: Boolean properties in managed user are always visible on End User UI

OPENIDM-19216: The clustered recon resilience scheme will fail if identities in a recovered page are mutated during
recovery

OPENIDM-19225: Scheduler shutdown semantics incorrect

OPENIDM-19238: SAP Connector label missing from IDM translation.json file

OPENIDM-19240: Cannot invoke "java.util.concurrent.atomic.AtomicInteger.intValue()" because the return value of
"java.util.Map.get(Object)" is null

OPENIDM-19248: CREST Proxy incorrectly downgrading to Protocol v1 when communicating with IDM 7.x and beyond

Limitations

ForgeRock Identity Management 7.4 has the following known limitations:

Workflow limitations

Workflows are not supported with a DS repository. If you are using a DS repository for IDM data, you must configure a
separate JDBC repository as the workflow datasource.

The embedded workflow and business process engine is based on Flowable and the Business Process and Notation
(BPMN) 2.0 standard. As an embedded system, local integration is supported. Remote integration is not currently
supported.

Queries with a DS repository

For DS repositories, relationships must be defined in the repository configuration (repo.ds.json). If you do not explicitly define
relationships in the repository configuration, you will be able to query those relationships, but filtering and sorting on those
queries will not work. For more information, refer to Relationship Properties in a DS Repository.

Queries with an OracleDB repository

For OracleDB repositories, queries that use the queryFilter syntax do not work on CLOB columns in explicit tables.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 31

Queries with privileges

Query filters used for privileges can only reference direct attributes of the object. For example, relationship fields cannot be
referenced in a privilege filter.

Connector limitations

When you add or edit a connector through the admin UI, the list of required Base Connector Details is not necessarily
accurate for your deployment. Some of these details might be required for specific deployment scenarios only. If you need
a connector configuration where not all the Base Connector Details are required, you must create your connector
configuration file over REST or by editing the provisioner file. For more information, refer to Configure connectors.

If-Match requests

A conditional GET request, with the If-Match request header, is not supported.

Known issues

This topic lists important issues that remain open at the time of release.

IDM issues

OPENIDM-848: Conflicting behavior might be observed between the default fields set by the onCreate script and policy
enforcement

OPENIDM-10490: admin UI doesn’t allow multiple values for the objectClassesToSynchronize LDAP connector property

OPENIDM-12540: Unable to change openidm-admin password via self service UI

OPENIDM-13198: PATCH requests are transformed to UPDATE requests internally, affecting more attributes than they
should

OPENIDM-13592: optimize java script context caching to reduce transient memory allocation

OPENIDM-14828: updateLastSync sets returnByDefault relationship to empty array

OPENIDM-15376: Sorting on retries on Workflow deadletter jobs causes 500 error.

OPENIDM-15614: large group membership UPDATE/GET operations is slow against AD

OPENIDM-15729: LastSync functionality is tightly coupled to the managed/user resource path

OPENIDM-15810: CSV Bulk Upload intermittently fails to import users with Oracle explicit table

OPENIDM-16224: Delegated admin doesn’t work for user who registers and logs in with Google idP

OPENIDM-16228: Temporal Roles not showing in Admin UI w/DS as ID Repo

OPENIDM-16250: Rhino scripts: resourceName.leaf() should be a string

OPENIDM-16269: Rhino: lodash isEqual() always returns false for objects

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Release notes PingIDM

32 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html

OPENIDM-16349: adpowershell provisioner account schema causes query with sortKey=distinguishedName to fail

OPENIDM-16491: connection between agent and IDM/RCS would break after IDM pod relocated from one node to another

OPENIDM-16516: Incoherent script hooks bindings when PATCH a relationship collection containing relationship
properties

OPENIDM-16697: Using Postgres and CITEXT, a user is unable to log in due to case sensitivity

OPENIDM-16843: Relationships, having "returnByDefault=true" flag set, are not being included in oldObject/newObject
values at onUpdate() trigger level when "_fields" is specified

OPENIDM-17190: PBKDF2 pre-hashed passwords from IDM not working on DS

OPENIDM-17327: Property Value Substitution failing for LoginURL in Salesforce Connector

OPENIDM-17347: 500 RuntimeException when parsing some date formats in audit query

OPENIDM-17443: Clean-up and remove obsolete nodes that appear "running" on the Cluster Node Status WIDGET?

OPENIDM-17448: Incorrect Year Display with different timezone on Audit Events Dashboard

OPENIDM-17466: Unit tests in ManagedObjectSetTest make false assumptions

OPENIDM-17476: Missing matchAttribute property when using /openidm/config/fieldPolicy/ to configure password
validator results in unexpected behaviour

OPENIDM-17478: RDVP calculation does not respect the 'validate' config that can be disabled in managed.json

OPENIDM-17488: Removing a parent relationship from a child org as owner/admin of that parent org returns a 404
instead of a 200 on JDBC/MySQL as repo

OPENIDM-17516: Pattern policy ignored when doing operation replace with empty values

OPENIDM-17630: A value set to the List of Names to Filter setting of a Provisioner via the UI disappears when saved and
the provisioner is accessed again

OPENIDM-17631: Overriding the key “aliases” in conf/secrets.json using $array and $list coercion type to support multiple
key aliases is not working

OPENIDM-17671: Request for postSync script hook

OPENIDM-17760: "In" clause can not be called from javascript with openidm.query()

OPENIDM-17813: File content incorrect on read

OPENIDM-17815: Saving invalid script in managed.json causes managed object to return 404

OPENIDM-17922: Sample scripted powershell with ad is missing ResolveUsername script

OPENIDM-17983: Workflow process definition diagram is not displayed in the Admin UI

OPENIDM-17997: Array virtual properties fail to update during a compound replace operation when revision data is
included.

OPENIDM-18039: Modify GroovyScript to utilize similar logic that RhinoScript is using in ScriptableWithDeferredBinding

OPENIDM-18074: End-User UI Preferences property to READ-ONLY (Non-editable) not working

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 33

OPENIDM-18132: Upgrade Rhino to resolve Issue #1232

OPENIDM-18154: Mapping will restore itself after being deleted when moving position in grid holder view

OPENIDM-18162: Transformation script for relationship attributes does not run in IDM 7.2.0

OPENIDM-18196: Assignments with multivalued attributes triggers unnecessary updates on target objects

OPENIDM-18218: RDVP and conditional grantee 'merry-go-round' causing superfluous relationship field reads

OPENIDM-18231: Disabling and enabling livesync schedule changes value of source

OPENIDM-18271: Adding Policy via UI doesn’t always work

OPENIDM-18277: Task Scanner fails on erroneous conditional policy validation failure

OPENIDM-18290: Dependent conditional policy not run when patching a property

OPENIDM-18333: Policy validation does not work fine if values are provided to all fields together which are being used in
policy validation

OPENIDM-18340: Multi-language support for platform deployment is missing

OPENIDM-18412: Value for boolean property in Linked Systems tab appears to be hidden

OPENIDM-18493: Response from csv/template endpoint is different in IDM CDK

OPENIDM-18496: Missing UI templates for Groovy scripted connectors 1.5

OPENIDM-18643: Sporadic NPE upon Activation of the OpenICF Provisioner Service

OPENIDM-18698: QueryFilter with invalid pageSize doesn’t throw an error

OPENIDM-18738: Field Policy Service exception handler hides DS exceptions that are not policy failure exceptions

OPENIDM-18760: Delegated admin can’t see authzMembers for internal role

OPENIDM-18780: IDM Native console should not query audit log

OPENIDM-18826: Out of memory in IDM platform groups read/delete members

OPENIDM-18846: Investigate order agnostic JsonValue comparisons

OPENIDM-18885: referencedRelationshipFields in queryConfig does not keep original data structure

OPENIDM-18891: IDM console cli.sh throws a java.lang.NoSuchFieldError

OPENIDM-18925: java.lang.IllegalArgumentException: Bad base context

OPENIDM-18941: Salesforce provisioner file is overwritten when connector is enabled

OPENIDM-19056: DS index required on reconprogressstate recon_id

OPENIDM-19061: "Persists association" option when not selected throws "Not found error"

OPENIDM-19084: Pyforge: Changing SOURCE_TARGET_CONFLICT default action to EXCEPTION caused a regression on
Oracle repo

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Release notes PingIDM

34 Copyright © 2025 Ping Identity Corporation

OPENIDM-19181: Merry-go-round will cause duplicate RDVP calculation for signals received across conditional relationship
fields

OPENIDM-19217: Make non-returnByDefault relationship attributes available in onUpdate

OPENIDM-19232: When adding additional property in new managed object the save button became unclickable

OPENIDM-19306: JDBC explicit table managed user PATCH with _fields=*_ref caused 400 error

OPENIDM-19392: IDM with set up RCS with SSL with empty or null connectorServerList is causing NullPointerException

OPENIDM-19424: _countOnly query parameter lost when used with proxied IDM

OPENIDM-19435: Docs: Link historical accounts sample docs page instructions cause errors

OPENIDM-19492: Query for clustered recon target ids should be paged with a very small page size (e.g. 2)

OPENIDM-19493: Conditional grantee processing speciously triggering processing of relationship fields in MOS#update

OPENIDM-19494: Editing "has one" relationship results in bad request error

OPENIDM-19555: Track: vulnerable to CVE-2023-43643 IDM 7.4.0 (RFE)

OPENIDM-19573: Invalid and non existing cookie should return Bad Request error with OpenDJ repo

OPENIDM-19801: Boolean attribute shows incorrect value in IDM Admin UI Level in Forgeops based deployments

OPENIDM-20724: Intermittent SF test timeout in pitf-cdk(-bc) postcommit runs

OPENIDM-20793: validateProperty appears to validate against the spelling of the properties itself

Documentation

Release levels and interface stability

ForgeRock product release levels

ForgeRock defines Major, Minor, Maintenance, and Patch product release levels. The release level is reflected in the version
number. The release level tells you what sort of compatibility changes to expect.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Date Description

2025-05-28 Initial release of Identity Management 7.4.2 software.

2024-04-30 Initial release of Identity Management 7.4.1 software.

2024-03-27 Added deprecation for "Sign In with LinkedIn". Refer to Deprecation → Social authentication.

2023-10-02 Initial release of Identity Management 7.4.0 software.

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 35

ForgeRock product stability labels

ForgeRock products support many features, protocols, APIs, GUIs, and command-line interfaces. Some of these are standard and
very stable. Others offer new functionality that is continuing to evolve.

ForgeRock acknowledges that you invest in these features and interfaces, and therefore must know when and how ForgeRock
expects them to change. For that reason, ForgeRock defines stability labels and uses these definitions in ForgeRock products.

Release Level Definitions

Release Label Version Numbers Characteristics

Major Version: x[.0.0] (trailing 0s are optional)
Bring major new features, minor features,
and bug fixes
Can include changes even to Stable
interfaces
Can remove previously Deprecated
functionality, and in rare cases remove
Evolving functionality that has not been
explicitly Deprecated
Include changes present in previous Minor
and Maintenance releases

Minor Version: x.y[.0] (trailing 0s are optional)
Bring minor features, and bug fixes
Can include backwards-compatible changes
to Stable interfaces in the same Major
release, and incompatible changes to
Evolving interfaces
Can remove previously Deprecated
functionality
Include changes present in previous Minor
and Maintenance releases

Maintenance,
Patch

Version: x.y.z[.p]
The optional .p reflects a Patch version. Bring bug fixes

Are intended to be fully compatible with
previous versions from the same Minor
release

•

•

•

•

•
•

•

•

•
•

Release notes PingIDM

36 Copyright © 2025 Ping Identity Corporation

ForgeRock Stability Label Definitions

Stability Label Definition

Stable This documented feature or interface is expected to undergo backwards-compatible
changes only for major releases. Changes may be announced at least one minor release
before they take effect.

Evolving This documented feature or interface is continuing to evolve and so is expected to
change, potentially in backwards-incompatible ways even in a minor release. Changes are
documented at the time of product release.
While new protocols and APIs are still in the process of standardization, they are Evolving.
This applies for example to recent Internet-Draft implementations, and also to newly
developed functionality.

Legacy This feature or interface has been replaced with an improved version, and is no longer
receiving development effort from ForgeRock.
You should migrate to the newer version, however the existing functionality will remain.
Legacy features or interfaces will be marked as Deprecated if they are scheduled to be
removed from the product.

Deprecated This feature or interface is deprecated and likely to be removed in a future release. For
previously stable features or interfaces, the change was likely announced in a previous
release. Deprecated features or interfaces will be removed from ForgeRock products.

Removed This feature or interface was deprecated in a previous release and has now been
removed from the product.

Technology Preview Technology previews provide access to new features that are considered as new
technology that is not yet supported. Technology preview features may be functionally
incomplete and the function as implemented is subject to change without notice. DO
NOT DEPLOY A TECHNOLOGY PREVIEW INTO A PRODUCTION ENVIRONMENT.
Customers are encouraged to test drive the technology preview features in a non-
production environment and are welcome to make comments and suggestions about the
features in the associated forums.
ForgeRock does not guarantee that a technology preview feature will be present in future
releases, the final complete version of the feature is liable to change between preview
and the final version. Once a technology preview moves into the completed version, said
feature will become part of the ForgeRock platform. Technology previews are provided
on an “AS-IS” basis for evaluation purposes only and ForgeRock accepts no liability or
obligations for the use thereof.

Internal/Undocumented Internal and undocumented features or interfaces can change without notice. If you
depend on one of these features or interfaces, contact ForgeRock support or email
info@forgerock.com to discuss your needs.

PingIDM Release notes

Copyright © 2025 Ping Identity Corporation 37

mailto:info@forgerock.com

Getting started

Guide to installing and evaluating ForgeRock® Identity Management software. This software offers flexible services for
automating management of the identity life cycle.

This guide shows you how to install and get started with ForgeRock Identity Management software. As you read this guide, you
will learn how ForgeRock Identity Management software reconciles customer identity data to ensure accurate information across
disparate resources within an organization.

Quick Start

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

About IDM

Whenever you need access to important information, administrators need to know who you are. They need to know your identity,
which may be distributed in multiple accounts.

Start Here

Learn about what IDM does and how it can help
your organization.

Demo: Getting Started

Set up the server; understand how IDM
reconciles identity data.

Where To Go from Here

Find pointers to the IDM product documentation
to learn more about IDM.

PingIDM Getting started

Copyright © 2025 Ping Identity Corporation 39

https://www.forgerock.com
https://www.forgerock.com

As a user, you might have several accounts even within your own company, for functions such as:

Email

Human Resources

Payroll

Engineering, Support, Accounting, and other functions

Each of these accounts may be stored in different resources, such as DS, Active Directory, OpenLDAP, and more. Keeping track of
user identities in each of these resources (also known as data stores) can get complex. IDM simplifies the process, as it reconciles
differences between resources.

With situational policies, IDM can handle discrepancies such as a missing or updated address for a specific user. The server
includes default but configurable policies to handle such conditions. In this way, consistency and predictability is ensured, in an
otherwise chaotic resource environment.

IDM can make it easier to track user identities across these resources. IDM has a highly scalable, modular, readily deployable
architecture that can help you manage workflows and user information.

What Can You Do With IDM?

This software allows you to simplify the management of identity, as it can help you synchronize data across multiple resources.
Each organization can maintain control of accounts within their respective domains.

IDM works equally well with user, group, and device identities.

You can also configure workflows to help users manage how they sign up for accounts, as part of how IDM manages the life cycle
of users and their accounts.

You can manage employee identities as they move from job to job. You will make their lives easier as their user accounts can be
registered on different systems automatically. Later, IDM can increase productivity when it reconciles information from different
accounts, saving users the hassle of entering the same information on different systems.

ForgeRock Identity Management Integrations

Now that you have seen how IDM can help you manage users, review the features that IDM can bring to your organization:

Web-Based Administrative User Interface

Configure IDM with the Web-Based Administrative User Interface. You can configure many major server components
without ever touching a text configuration file.

Self-Service Functionality

User self-service features can streamline onboarding, account certification, new user registration, username recovery, and
password reset. The self-service features are built upon a BPMN 2.0-compliant workflow engine.

Registration With Social Identities

Users can now register new accounts using information from social identity providers, including Google, Facebook, and
LinkedIn. If you configure access through more than one social identity provider, users can select and manage the
providers they use. You can also synchronize user information with marketing databases.

•

•

•

•

•

•

•

Getting started PingIDM

40 Copyright © 2025 Ping Identity Corporation

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

For more information, refer to Social registration.

Role-Based Provisioning

Create and manage users based on attributes such as organizational need, job function, and geographic location.

Backend Flexibility

Choose the desired backend database for your deployment. IDM supports MySQL, Microsoft SQL Server, Oracle Database,
IBM DB2, and PostgreSQL. For the supported versions of each database, refer to Before you install.

Password Management

Set up fine-grained control of passwords to ensure consistent password policies across all applications and data stores.
Supports separate passwords per external resource.

Logging, Auditing, and Reporting

IDM logs all activity, internally and within connected systems. With such logs, you can track information for access, activity,
authentication, configuration, reconciliation, and synchronization.

Access to External Resources

IDM can access a generic scripted connector that allows you to set up communications with many external data stores.

IDM demo : Getting started

In this guide, you will learn how IDM reconciles user data between two data stores. We will look at a department that is adding a
third engineer, Jane Sanchez.

Your Human Resources department has updated their data store with Jane Sanchez’s information. You want to use IDM to update
the internal Engineering data store, but first, you have to start IDM.

While the reconciliation demonstrated in this guide uses two simplified data files, you can set up the same operations at an
enterprise level on a variety of resources.

Return to the situation described earlier, where you have Jane Sanchez joining the engineering department. The following
illustration depicts what must be done to reconcile the differences.

•

•

•

•

•

PingIDM Getting started

Copyright © 2025 Ping Identity Corporation 41

Figure 1. Reconcile Data Stores

Set up the server

What You Need Before Starting

For an up-to-date list of requirements, refer to Before you install.

Check Your Java Installation.

Download and start the server

This procedure assumes that you are starting IDM as a regular (not administrative) user named user .

Download IDM from Backstage. Releases on Backstage are thoroughly validated for ForgeRock customers who run the
software in production deployments, and for those who want to try or test a given release.

Extract the contents of the IDM binary file to your user’s Downloads directory. The process should unpack the contents to
the Downloads/openidm subdirectory.

Navigate to the Downloads/openidm subdirectory:

In Microsoft Windows, use Windows Explorer to navigate to the C:\Users\user\Downloads\openidm directory.

1.

2.

1.

2.

3.

1.

Getting started PingIDM

42 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads/
https://backstage.forgerock.com/downloads/

Double-click the getting-started(.bat) file. Do not select the getting-started.sh file, as that is intended for
use on UNIX/Linux systems.

In Linux/UNIX, open a command-line interface and run the following command:

/home/user/Downloads/openidm/getting-started.sh

The following message should display:

-> OpenIDM ready

When the server is ready, you can administer it from a web browser. To do so, navigate to http://localhost:8080/admin or
https://localhost:8443/admin . If you have installed the server on a remote system, substitute that hostname or IP.

The default username and password for the IDM Administrator is openidm-admin and openidm-admin .

When you log in to IDM at a URL with the /admin endpoint, you are logging into the Administrative User Interface, also known as
the admin UI.

Demo data files

In a production deployment, you can have any number of external data stores, such as Active Directory and ForgeRock Directory
Services (DS). For illustration purposes, this guide uses two simple static files as external data stores:

hr.csv represents the Human Resources data store. It is in CSV format, commonly used to share data between
spreadsheet applications.

engineering.csv represents the Engineering data store. It is also in CSV format.

You can find these files in the binary package that you downloaded earlier, in the following subdirectory: openidm/samples/
getting-started/data .

Reconcile data stores

A central feature of IDM is reconciliation — comparing the contents of two data stores and deciding what to do, depending on the
differences.

2.

4.

info
In production, you should connect to IDM via a secure port and import a CA-signed certificate into the truststore, as
discussed in the Security.
Until you install that certificate, a warning displays in your browser the first time you access IDM over a secure port.

Note

warning
The default password for the administrative user, openidm-admin , is openidm-admin . To protect your deployment in
production, change this password.

Warning

•

•

PingIDM Getting started

Copyright © 2025 Ping Identity Corporation 43

http://localhost:8080/admin
http://localhost:8080/admin
https://localhost:8443/admin
https://localhost:8443/admin

This scenario is based on two data files:

hr.csv , which represents the Human Resources data store

engineering.csv , which represents the Engineering data store

Reconciliation modifies the Engineering data store by adding the newly hired Jane Sanchez. As suggested by the following
illustration, it will also address detailed differences between Jane’s Human Resources account and the Engineering data store.

Figure 1. Data Stores Can Have Different Categories of Data

This sample includes configuration files that map detailed information from the Human Resources data store to the Engineering
data store. For example, the configuration maps the firstName entry in Human Resources to the firstname entry in
Engineering.

In the admin UI, you can review how the different categories are reconciled for user Jane Sanchez. Log in to the admin UI at
https://localhost:8443/admin . The default username is openidm-admin and default password is openidm-admin .

•

•

info
Mapping between data stores may require additional configuration. You should find two provisioner.openicf-
*.json files in the /path/to/openidm/samples/getting-started/conf subdirectory. The provisioner files configure
connections to external resources, such as Active Directory, ForgeRock Directory Services (DS) or even the
engineering.csv and hr.csv files used in this guide. For more information, refer to Connector reference overview
.

Note

Getting started PingIDM

44 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/preface.html
https://docs.pingidentity.com/openicf/connector-reference/preface.html
https://docs.pingidentity.com/openicf/connector-reference/preface.html

Click Configure > Mappings > HumanResources_Engineering > Edit.

In the Sample source preview text box, enter Sanchez . A selectable drop-down entry for Jane Sanchez should display. When you
select Jane Sanchez’s entry, two tables of attributes should display. One table displays how the data is modeled in the source data
store. The other table displays how the data is modeled in the target data store. Refer to the following screenshot for an example:

Figure 2. Reconciling Differences for an Account

Scroll back up the same page. Click Reconcile.

When you reconcile the two data stores, IDM makes the change to the Engineering data store.

The mapping for this example is configured in the sync.json file, in the /path/to/openidm/samples/getting-started/conf
directory.

Reconcile after an update

Now that you have used IDM to reconcile two data stores, try something else. Assume the Engineering organization wants to
overwrite all user telephone numbers in its employee data store with one central telephone number.

For this purpose, you can set up a default telephone number for the next reconciliation:

Click Configure > Mappings > HumanResources_Engineering > Edit.

On the HumanResources_Engineering mapping page, click the Properties tab, and expand the Attributes grid.

In the TARGET column, select the row that contains the telephoneNumber attribute.

Click the Default Values tab, and type a default number:

1.

2.

3.

4.

PingIDM Getting started

Copyright © 2025 Ping Identity Corporation 45

Figure 1. Set a new default telephone number

When you click Update, and Save, IDM changes the mapping in the sync.json file. The next time you run a reconciliation from
Human Resources to Engineering, the default telephone number will be included for all employees in the Engineering group.

Stop and remove the server

Follow these steps to stop and remove IDM.

To stop IDM, return to the console window where you saw the following message:

-> OpenIDM ready

Press Return , and type the following command:

-> shutdown

IDM is self-contained. After you shut down the server, you can choose to delete the files in the /path/to/openidm
directory. There are no artifacts in system registries or elsewhere.

We hope that you want to continue exploring IDM.

To do so, review the rest of the IDM documentation.

Where to go from here

IDM can do much more than reconcile data between two different sources. Read about the key product features in these
sections:

Reconciliation

IDM supports reconciliation between two data stores, as a source and a target.

1.

2.

Getting started PingIDM

46 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingidm/8.0
https://docs.pingidentity.com/pingidm/8.0

In identity management, reconciliation compares the contents of objects in different data stores, and makes decisions based on
configurable policies.

For example, if you have an application that maintains its own user store, IDM can ensure your canonical directory attributes are
kept up-to-date by reconciling their values as they are changed.

For more information, refer to Synchronization overview.

Authentication Modules

IDM provides several authentication modules to help you protect your systems. For more information, refer to Authentication
and session modules.

Password Management

Administrative users can manage user passwords from the admin UI, and users can reset their own passwords in the End User UI.

To access the End User UI as an administrative user, log in to the admin UI, and select Self-Service from the drop-down menu in
the top right corner:

Figure 1. Access the Self-Service User Interface

In the End User UI, click Edit Your Profile, and click Reset next to the Password field. You can change your password, subject to
the following minimum number of characters:

Length ≥ 8

Capital letters ≥ 1

Numbers ≥ 1

IDM supports robust password policies. You can modify policies such as the following:

Elements that should not be a part of a password, such as a family name

Password expiration dates

Password histories, to prevent password reuse

For more information, including details on configuring these policies, refer to Manage password policies.

•

•

•

•

•

•

PingIDM Getting started

Copyright © 2025 Ping Identity Corporation 47

User Role Management

Some users need accounts on multiple systems. For example, insurance agents may also have insurance policies with the
company that they work for. In that situation, the insurance agent is also a customer of the company.

Alternatively, a salesperson may also test customer engineering scenarios. That salesperson may also need access to engineering
systems.

Each of these user scenarios is known as a role. You can set up a consolidated set of attributes associated with each role. To do
so, you would configure custom roles to assign to selected users. For example, you may assign both insured and agent roles to an
agent, while assigning the insured role to all customers.

In a similar fashion, you can assign both sales and engineering roles to the sales engineer.

You can then synchronize users with those roles into appropriate data stores.

For more information, refer to Managed Roles. For a sample of how you can configure external roles, refer to Provision users
with roles.

Business Processes and Workflows

A business process begins with an objective and includes a well-defined sequence of tasks to meet that objective. IDM allows you
to configure many of these tasks as self-service workflows, such as self-registration, new user onboarding, and account
certification.

You can also automate many of these tasks as a workflow.

After you configure the right workflows, a newly hired engineer can log in to IDM and request access to manufacturing
information.

That request is sent to the appropriate manager for approval. After it is approved, IDM provisions the new engineer with access
to manufacturing.

IDM supports workflow-driven provisioning activities, based on the embedded Flowable Process Engine, which complies with
the Business Process Model and Notation 2.0 (BPMN 2.0) standard.

Remote Data Stores

IDM can connect to a substantial variety of user and device data stores, on premise and in the cloud. A number of specific
connectors are provided, allowing you to connect to those dedicated data stores. In addition, you can connect to many more data
stores using a scripted connector framework.

Connectors are provided for a number of external resources, including:

Google Web Applications (refer to Google Apps connector).

Salesforce (refer to Salesforce connector).

Any LDAPv3-compliant directory, including DS and Active Directory (refer to LDAP connector).

CSV Files (refer to CSV file connector).

Database Tables (refer to Database table connector).

•

•

•

•

•

Getting started PingIDM

48 Copyright © 2025 Ping Identity Corporation

https://flowable.com/open-source/docs/
https://flowable.com/open-source/docs/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
https://docs.pingidentity.com/openicf/connector-reference/google.html
https://docs.pingidentity.com/openicf/connector-reference/google.html
https://docs.pingidentity.com/openicf/connector-reference/salesforce.html
https://docs.pingidentity.com/openicf/connector-reference/salesforce.html
https://docs.pingidentity.com/pingds/7.4/install-guide
https://docs.pingidentity.com/pingds/7.4/install-guide
https://docs.pingidentity.com/openicf/connector-reference/ldap.html
https://docs.pingidentity.com/openicf/connector-reference/ldap.html
https://docs.pingidentity.com/openicf/connector-reference/csv.html
https://docs.pingidentity.com/openicf/connector-reference/csv.html
https://docs.pingidentity.com/openicf/connector-reference/dbtable.html
https://docs.pingidentity.com/openicf/connector-reference/dbtable.html

For a full list, refer to Supported connectors.

If the resource that you need is not on the list, you should be able to use one of the scripted connectors to connect to that
resource:

For connectors associated with Microsoft Windows, IDM includes a PowerShell Connector Toolkit that you can use to
provision a variety of Microsoft services, including but not limited to Active Directory, SQL Server, Microsoft Exchange,
SharePoint, Azure Active Directory, and Office 365. For more information, refer to Powershell connector. IDM includes a
sample PowerShell Connector configuration, described in Connect to Active Directory with the PowerShell connector.

For other external resources, IDM includes a Groovy Connector Toolkit that allows you to run Groovy scripts to interact
with any external resource. For more information, refer to Groovy Connector Toolkit.

For sample implementations of the scripted Groovy connector, refer to Connect to DS with ScriptedREST.

Additional Samples

IDM is a lightweight and highly customizable identity management product.

The documentation includes a number of additional use cases. Most of these are known as Samples, and are described in
Samples provided with IDM.

These samples include step-by-step instructions on how you can connect to different data stores, customize product behavior
using JavaScript and Groovy, and administer IDM with ForgeRock’s common REST API commands.

•

•

PingIDM Getting started

Copyright © 2025 Ping Identity Corporation 49

https://docs.pingidentity.com/openicf/connector-reference/supported-connectors.html
https://docs.pingidentity.com/openicf/connector-reference/supported-connectors.html
https://docs.pingidentity.com/openicf/connector-reference/powershell.html
https://docs.pingidentity.com/openicf/connector-reference/powershell.html
https://docs.pingidentity.com/openicf/connector-reference/groovy.html
https://docs.pingidentity.com/openicf/connector-reference/groovy.html

Samples

Provides a number of "sample deployments" that walk you through the essential features of ForgeRock® Identity
Management software, as they would be implemented.

These samples demonstrate the core functionality of ForgeRock Identity Management software. The samples correspond to the
configurations provided in the openidm/samples directory. They cover a number of ForgeRock Identity Management features,
often including multiple features in a single sample.

You don’t need a complete understanding of ForgeRock Identity Management software to learn something from these topics,
although a background in identity management and maintaining web application software can help. You do need some
background in managing services on your operating systems and in your web application containers. You can nevertheless get
started with these samples, and then learn more as you go along.

emergency_home
Samples are provided as a starting point, using default configuration where appropriate. They will most likely need
further customization to address the specific requirements of your deployment.

Important

Samples Summary

Get a summary of all the samples in this guide.

Start Here

Setup that applies to all samples.

Sync With CSV

A basic sample showing one-way
synchronization from a CSV file to IDM.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 51

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Samples provided with IDM

This section lists the samples provided with IDM (in the openidm/samples directory), with a high-level overview of each sample.

Get Started

The Getting Started sample shows you how to install and evaluate a basic use case in an IDM deployment.

Example Configurations

In addition to the samples listed here, IDM provides example configuration and data files that you can use to set up your
own project. These files are in the samples/example-configurations directory. Each file in this directory is documented
in the section that corresponds to the purpose of the file. For example, the conf/external.email.json file is described in
Outbound email.

Sync With LDAP

A basic sample showing one-way
synchronization from an LDAP directory to IDM.

Sync Two External Resources

Synchronize two resources without storing data
in IDM.

liveSync

liveSync between external LDAP resources.

Samples PingIDM

52 Copyright © 2025 Ping Identity Corporation

https://www.forgerock.com
https://www.forgerock.com

Synchronize Data From a CSV File to IDM

The sync-with-csv sample demonstrates one-way synchronization from an external resource to an IDM repository. The
external resource in this case is a simple CSV file. User objects in that file are synchronized with the managed users in the
IDM repository.

One-Way Synchronization From LDAP to IDM

The sync-with-ldap sample uses the generic LDAP connector to connect to an LDAP directory. The sample includes one
mapping from the LDAP directory to the managed user repository, and demonstrates reconciliation from the external
resource to the repository.

Two-Way Synchronization Between LDAP and IDM

The sync-with-ldap-bidirectional sample uses the generic LDAP connector to connect to an LDAP directory. The
sample includes two mappings: one from the LDAP directory to the managed user repository, and one in the opposite
direction. The sample demonstrates reconciliation from the LDAP directory to the repository and implicit synchronization
from the managed user repository to the LDAP directory.

Synchronize LDAP Groups

The sync-with-ldap-groups sample uses the generic LDAP connector to connect to an LDAP directory. The sample builds
on the sync-with-ldap-bidirectional sample by providing an additional mapping, from the LDAP groups object, to the
managed groups object. The sample illustrates a new managed object type (groups) and shows how this object type is
synchronized with group containers in LDAP.

Synchronize LDAP Group Membership

The sync-with-ldap-group-membership sample uses the generic LDAP connector to connect to an LDAP directory. The
sample includes two mappings, one from the LDAP directory to the managed user repository, and one from the repository
to the LDAP directory. The sample demonstrates synchronization of group membership; that is, how the value of the
ldapGroups property in a managed user object is mapped to the corresponding user object in LDAP.

Synchronize Data Between Two External Resources

The sync-two-external-resources sample demonstrates synchronization between two external resources, routed
through IDM. The resources are named LDAP and AD , and represent two separate LDAP directories. In the sample both
resources are simulated with simple CSV files.

Asynchronous Reconciliation Using Workflow

The sync-asynchronous sample shows how you can use workflows to launch an asynchronous reconciliation operation.

LiveSync With an LDAP Server

The livesync-with-ad sample shows the liveSync mechanism that pushes changes from an external resource to the IDM
repository. The sample uses an LDAP connector to connect to an LDAP directory, either ForgeRock Directory Services (DS)
or Active Directory.

Synchronize Accounts With the Google Apps Connector

The sync-with-google sample uses the Google Apps Connector to create users and groups on an external Google
system, and to reconcile those accounts with the IDM managed user repository.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 53

Synchronize Users Between Salesforce and IDM

The sync-with-salesforce sample demonstrates how to create and update users in Salesforce, using the Salesforce
Connector. The sample also shows synchronization of users between Salesforce and the IDM managed user repository.

Synchronize Kerberos User Principals

The sync-with-kerberos sample demonstrates how to use the scripted Kerberos connector to manage Kerberos user
principals and to reconcile user principals with IDM managed user objects.

Store Multiple Passwords For Managed Users

The multiple-passwords sample demonstrates how to set up multiple passwords for managed users, and how to
synchronize separate passwords to different external resources. The sample includes two target LDAP servers, each with
different password policy and encryption requirements. The sample also shows how to extend the password history policy
to apply to multiple password fields.

Link Multiple Accounts to a Single Identity

The multi-account-linking sample illustrates how IDM addresses links from multiple accounts to one identity. The
sample shows how you can create links between a single source account and multiple target accounts, using link qualifiers
that enable one-to-many relationships in mappings and policies.

Link Historical Accounts

The historical-account-linking sample demonstrates the retention of inactive (historical) LDAP accounts that have
been linked to a corresponding managed user account.

Connect to DS With ScriptedREST

The scripted-rest-with-dj sample uses the Groovy Connector Toolkit to implement a ScriptedREST connector that
interacts with the DS REST API.

Connect to MySQL With ScriptedSQL

The scripted-sql-with-mysql sample uses the Groovy Connector Toolkit to implement a ScriptedSQL connector that
interacts with an external MySQL database.

Synchronize Users Between IDM and AzureAD

The sync-with-azuread sample uses the MS Graph API connector to synchronize users between IDM and Azure AD.

Connect to Active Directory With the PowerShell Connector

The scripted-powershell-with-ad sample uses the MS Active Directory PowerShell module to demonstrate how you
can synchronize managed objects with a Microsoft Active Directory deployment. The sample provides a number of
PowerShell scripts that let you perform basic CRUD (create, read, update, delete) operations on an Active Directory server.

Provision Users With Roles

The provisioning-with-roles sample builds on the sample described in One-way synchronization from LDAP to IDM,
and demonstrates how attributes are provisioned to an external system (an LDAP directory), based on role membership.

Samples PingIDM

54 Copyright © 2025 Ping Identity Corporation

Provision Users With Workflow

The provisioning-with-workflow sample demonstrates a typical use case of a workflow — provisioning new users. The
sample demonstrates the use of the End User UI to let users complete a registration process.

Direct Audit Information To MySQL

The audit-jdbc sample uses a ScriptedSQL implementation of the Groovy Connector Toolkit to direct audit information
to a MySQL database.

Direct Audit Information to a JMS Broker

The audit-jms sample demonstrates how the JMS audit event handler can publish messages that comply with the Java™
Message Service Specification Final Release 1.1.

Synchronize Data Between MongoDB and IDM

The sync-with-mongodb sample uses the Groovy Connector Toolkit to implement a scripted connector that interacts with
a MongoDB Database. The connector can be used for provisioning MongoDB database users and roles from an IDM
managed repository.

Synchronize Data Between HubSpot and IDM

The sync-with-hubspot sample demonstrates bidirectional synchronization between IDM managed users and HubSpot
contacts.

Synchronize Data Between DocuSign and IDM

The sync-with-docusign sample demonstrates bidirectional synchronization between IDM managed users and DocuSign
user accounts.

Synchronize Data Between a SCIM Provider and IDM

The sync-with-scim sample demonstrates bidirectional synchronization between IDM managed users and roles with
corresponding users and roles from a SCIM provider.

Subscribe to JMS Messages

The scripted-jms-subscriber sample demonstrates the scripted JMS message handler, and how it performs ForgeRock
REST operations.

Authenticate Using a Trusted Servlet Filter

The trusted-servlet-filter sample shows how to use a custom servlet filter and the Trusted Request Attribute
authentication module to let IDM authenticate through another service.

Create a Custom Endpoint

IDM supports scriptable custom endpoints that let you launch arbitrary scripts through an IDM REST URI. The example-
configurations/custom-endpoint sample shows how custom endpoints are configured and returns a list of variables
available to each method used in a custom endpoint script.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 55

https://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/

Start here

Before you try any of the samples read Run the Samples and Prepare IDM. For any samples that require an LDAP server, refer to
LDAP Server Configuration.

Run the samples

Each sample directory in openidm/samples/ contains a number of subdirectories, such as conf/ and script/ . To start IDM
with a sample configuration, navigate to the /path/to/openidm directory and use the -p option of the startup command to
point to the sample whose configuration you want to use. Some samples require additional software, such as an external LDAP
server or database.

Many of the procedures in this guide refer to paths such as samples/sample-name . In each of these cases, the complete path is
assumed to be /path/to/openidm/samples/sample-name .

When you move from one sample to the next, you are changing the IDM configuration. For more information, refer to
Configuration changes.

The command-line examples in the IDM documentation assume a UNIX shell. To run the samples on Windows, adjust the
commands, as necessary.

Prepare IDM

Install an instance of IDM specifically to experiment with the samples and easily discard the result when you finish.

If you are using the same IDM instance for multiple samples, clear the repository between samples. To do so, shut down IDM and
delete the openidm/db/openidm directory:

rm -rf /path/to/openidm/db/openidm

LDAP server configuration

For samples in this guide that require an LDAP server, ForgeRock recommends using ForgeRock Directory Services (DS).

The LDAP server runs on the local host.

The LDAP server listens on port 1389.

The replication port is 8989.

Servers with replication ports maintain a changelog for their own use. The changelog is exposed over LDAP under the base
DN, cn=changelog . For samples that demonstrate liveSync with an LDAP server, you must configure a replication port
when you set up DS. For ease of use, all the LDAP samples assume that you have configured a replication port, even if you
don’t use liveSync.

A user with DN uid=admin and password password has read access to the LDAP server.

Directory data for that server is stored under base DN dc=com .

User objects for that server are stored under base DN ou=People,dc=example,dc=com .

•

•

•

•

•

•

Samples PingIDM

56 Copyright © 2025 Ping Identity Corporation

User objects have the object class inetOrgPerson .

User objects have the following attributes:

cn

description

givenName

mail

sn

telephoneNumber

uid

userPassword

dn: uid=bjensen,ou=People,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
givenName: Barbara
uid: bjensen
cn: Barbara Jensen
telephoneNumber: 1-360-229-7105
sn: Jensen
mail: bjensen@example.com
description: Created for OpenIDM
userPassword: password

•

•

◦

◦

◦

◦

◦

◦

◦

◦

info
If you are using the same DS instance for multiple samples, delete the DS configuration between samples:

Shutdown DS:

/path/to/opendj/bin/stop-ds --quiet

Delete the opendj/db directory:

rm -rf /path/to/opendj/db

Delete the opendj/config directory:

rm -rf /path/to/opendj/config

Note

1.

2.

3.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 57

Start DS using sample LDIF data

Samples that use an LDAP server require existing user data. The example procedure below corresponds to the sync-with-ldap
sample and imports user data (openidm/samples/sync-with-ldap/data/Example.ldif) during DS setup. For other samples,
replace the path to the sample data, as necessary.

Download the DS and IDM .zip archives.

Extract the .zip archives.

Generate a DS deploymentId for DS setup and deployment management:

/path/to/opendj/bin/dskeymgr create-deployment-id --deploymentIdPassword password
your-deployment-ID

Start DS:

/path/to/opendj/setup \
--serverId evaluation-only \
--deploymentId your-deployment-ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword password \
--hostname localhost \
--adminConnectorPort 4444 \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--replicationPort 8989 \
--httpPort 8090 \
--profile ds-user-data:7.0.0 \
--set ds-user-data/baseDn:dc=com \
--set ds-user-data/ldifFile:/path/to/openidm/samples/sync-with-ldap/data/Example.ldif \
--acceptLicense \
--start
<License Agreement>...

Validating parameters..... Done
Configuring certificates..... Done
Configuring server..... Done
Configuring profile DS user data store......... Done
Starting directory server............... Done

To see basic server status and configuration, you can launch
/path/to/opendj/bin/status

info
The following procedure provides setup instructions for DS 7.4. For older versions of DS, or an alternative LDAP
server, modify the instructions, as necessary.

Note

1.

2.

3.

4.

Samples PingIDM

58 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

Import the DS CA certificate into the IDM truststore:

/path/to/opendj/bin/dskeymgr \
export-ca-cert \
--deploymentId your-deployment-ID \
--deploymentIdPassword password \
--alias dscert \
--keyStoreFile /path/to/openidm/security/truststore \
--keyStorePassword:file /path/to/openidm/security/storepass

Synchronize data from a CSV file to IDM

This sample demonstrates one-way synchronization from an external resource to an IDM repository.

The external resource in this case is a simple CSV file. User objects in that file are synchronized with the managed users in the
IDM repository.

Sample overview

IDM connects data objects held in separate resources by mapping one object to another. To connect to external resources, IDM
uses connectors, that are configured for each external resource.

info
Every DS deployment requires a deploymentId and a deploymentIdPassword to secure network connections. The
deploymentId is a random string generated by DS software. The deploymentIdPassword is a secret string that
you choose. It must be at least 8 characters long. The deploymentId and deploymentIdPassword automate key
pair generation and signing without storing the CA private key. For more information, refer to Deployment IDs
 in the DS Security Guide.

Note

5.

info
Because each new deployment of DS has a unique deploymentId, the same certificate does not work from one
sample to the next. To handle this scenario, do one of the following:

Give each subsequent sample certificate a unique alias. For example:
--alias dscert1

--alias dscert2

--alias dscert3

Delete the old certificate from the truststore:

keytool \
-delete \
-keystore /path/to/openidm/security/truststore \
-alias dscert

Note

◦

▪

▪

▪

◦

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 59

https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys
https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys
https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys

When objects in one external resource change, IDM determines how the changes affect the objects in the connected resource,
and can make the changes in that resource as necessary. This sample demonstrates how IDM does this by using reconciliation.
Reconciliation compares the objects in one resource to the mapped objects in another resource. For a complete explanation of
reconciliation and synchronization, refer to Synchronization types.

In this sample, IDM connects to a CSV file that holds sample user data. The CSV file is configured as the authoritative source. A
mapping is configured between objects in the CSV file and managed user objects in the IDM repository.

Note that you can use IDM to synchronized objects between two external resources without going through the IDM repository. In
such a case, objects are synchronized directly through connectors to the external resources.

This sample involves only one external resource. In practice, you can connect as many resources as needed for your deployment.

Sample configuration files

The configuration files for this sample are located in the /path/to/openidm/samples/sync-with-csv/conf directory. When you
start IDM with the -p project variable (./startup.sh -p samples/sync-with-csv), the project location (&{idm.instance.dir})
is set to a value of samples/sync-with-csv . All subsequent paths use this project location as a base. Throughout this
documentation, you will see things like "...in your project’s conf/ directory...". The "project" refers to the value of the
&{idm.instance.dir} variable.

The following configuration files play important roles in this sample:

samples/sync-with-csv/conf/provisioner.openicf-csvfile.json

This file provides the configuration for this instance of the CSV connector. It describes, among other things, the connector
version, the location of the CSV file resource, and the object types that are supported for this connection. For a complete
understanding of connector configuration files, refer to Configure connectors.

samples/sync-with-csv/conf/sync.json

This file, also called a mapping file, defines the configuration for reconciliation and synchronization. This sample file
includes only one mapping - systemCsvfileAccounts_managedUser . The mapping specifies the synchronization
configuration between the CSV file (source) and the IDM repository (target). Examine the file to see how objects are
mapped between the two resources, and the actions that IDM should take when it finds objects in specific situations:

Samples PingIDM

60 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html

{
 "mappings": [
 {
 "name" : "systemCsvfileAccounts_managedUser",
 "source" : "system/csvfile/account",
 "target": "managed/user",
 "correlationQuery": {
 "type": "text/javascript",
 "source": "var query = {'_queryId' : 'for-userName',
 'uid' : source.name};query;"
 },
 "properties": [
 {
 "source": "email",
 "target": "mail"
 },
 {
 "source": "firstname",
 "target": "givenName"
 },
 {
 "source": "lastname",
 "target": "sn"
 },
 {
 "source": "description",
 "target": "description"
 },
 {
 "source": "_id",
 "target": "_id"
 },
 {
 "source": "name",
 "target": "userName"
 },
 {
 "source": "password",
 "target": "password"
 },
 {
 "source" : "mobileTelephoneNumber",
 "target" : "telephoneNumber"
 },
 {
 "source" : "roles",
 "transform" : {
 "type" : "text/javascript",
 "source" : "var _ = require('lib/lodash'); _.map(source.split(','),
 function(role) { return {'_ref': 'internal/role/' + role} });"
 },
 "target" : "authzRoles"
 }
],
 "policies": [
 {
 "situation": "CONFIRMED",
 "action": "UPDATE"
 },
 {

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 61

 "situation": "FOUND",
 "action": "IGNORE"
 },
 {
 "situation": "ABSENT",
 "action": "CREATE"
 },
 {
 "situation": "AMBIGUOUS",
 "action": "IGNORE"
 },
 {
 "situation": "MISSING",
 "action": "IGNORE"
 },
 {
 "situation": "SOURCE_MISSING",
 "action": "IGNORE"
 },
 {
 "situation": "UNQUALIFIED",
 "action": "IGNORE"
 },
 {
 "situation": "UNASSIGNED",
 "action": "IGNORE"
 }
]
 }
]
}

Source and target paths that start with managed , such as managed/user , always refer to objects in the IDM repository.
Paths that start with system , such as system/csvfile/account , refer to external objects, in this case, objects in the CSV
file.

When you start a reconciliation, IDM queries all users in the source, and then creates, deletes, or modifies users in the IDM
repository, as mapped in conf/sync.json .

For more information about synchronization, reconciliation, and mappings, refer to Synchronization.

samples/sync-with-csv/conf/schedule-reconcile_systemCsvAccounts_managedUser.json

The sample schedule configuration file defines a task that launches a reconciliation every minute for the mapping named
systemCsvfileAccounts_managedUser . The schedule is disabled by default:

Samples PingIDM

62 Copyright © 2025 Ping Identity Corporation

{
 "enabled" : false,
 "type": "simple",
 "repeatInterval": 3600000,
 "persisted" : true,
 "concurrentExecution" : false,
 "misfirePolicy" : "fireAndProceed",
 "invokeService" : "sync",
 "invokeContext" : {
 "action" : "reconcile",
 "mapping" : "systemCsvfileAccounts_managedUser"
 }
}

IDM regularly scans the conf/ directory for any schedule configuration files.

Apart from the scheduled reconciliation run, you can also start reconciliation run through the REST interface. The call to
the REST interface is an HTTP POST such as the following:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemCsvfileAccounts_managedUser&waitForCompletion=true"

The waitForCompletion=true parameter specifies that the operation should return only when it has completed.

samples/sync-with-csv/data/csvConnectorData.csv

This CSV file is the external resource or data store in this sample. The file contains two users, bjensen and scarter. During
the sample, you will reconcile those users from the CSV file to the managed user repository.

Run the sample

To run this sample, start IDM with the configuration for the sample:

/path/to/openidm/startup.sh -p samples/sync-with-csv

You can work through the sample using the command line, or using the admin UI:

When you have started IDM, reconcile the objects in both resources.

You can trigger the reconciliation either by setting "enabled" : true in the schedule configuration file (conf/schedule-
reconcile_systemCsvAccounts_managedUser.json) and then waiting until the scheduled reconciliation happens, or by
running the following curl command:

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 63

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemCsvfileAccounts_managedUser&waitForCompletion=true"

Successful reconciliation returns a reconciliation run ID, and the status of the reconciliation operation, as follows:

{
 "_id":"2d87c817-3d00-4776-a705-7de2c65937d8",
 "state":"SUCCESS"
}

Display the managed user records that were created by the reconciliation operation.

You can use any REST client to query the repository. Perform an HTTP GET on the URL
"http://localhost:8080/openidm/managed/user?_queryFilter=true" with the headers "X-OpenIDM-Username:
openidm-admin" and "X-OpenIDM-Password: openidm-admin" . The following example uses the curl command to get all
managed user records, in JSON format:

2.

Samples PingIDM

64 Copyright © 2025 Ping Identity Corporation

https://curl.se
https://curl.se

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true"
{
 "result": [
 {
 "_id": "bjensen",
 "_rev": "00000000e17186b6",
 "mail": "bjensen@example.com",
 "givenName": "Barbara",
 "sn": "Jensen",
 "description": "Created By CSV",
 "userName": "bjensen",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
 },
 {
 "_id": "scarter",
 "_rev": "00000000970685c3",
 "mail": "scarter@example.com",
 "givenName": "Steven",
 "sn": "Carter",
 "description": "Created By CSV",
 "userName": "scarter",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
 }
],
 ...
}

You can user any query filter to return the information you need. For more information, refer to Define and call data
queries.

Now display user bjensen’s record by appending her user ID to the URL:3.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 65

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen"
{
 "_id": "bjensen",
 "_rev": "00000000e17186b6",
 "mail": "bjensen@example.com",
 "givenName": "Barbara",
 "sn": "Jensen",
 "description": "Created By CSV",
 "userName": "bjensen",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

This command returns bjensen’s complete user record.

Restrict the query output with the fields parameter, as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=userName,mail"
{
 "result": [
 {
 "_id": "bjensen",
 "_rev": "00000000e17186b6",
 "mail": "bjensen@example.com",
 "userName": "bjensen"
 },
 {
 "_id": "scarter",
 "_rev": "00000000970685c3",
 "mail": "scarter@example.com",
 "userName": "scarter"
 }
],
 ...
}

To test the scheduled reconciliation, add a user to the CSV data file, samples/sync-with-csv/data/
csvConnectorData.csv . For example, add user jberg as follows:

4.

5.

Samples PingIDM

66 Copyright © 2025 Ping Identity Corporation

"description", "uid", "username", "firstname", "lastname", "email", "mobile...
"Created ...", "bjensen", "bjensen@example.com", "Barbara", "Jensen", "bjensen@example.com", "123456...
"Created ...", "scarter", "scarter@example.com", "Steven", "Carter", "scarter@example.com", "123456...
"Created ...", "jberg", "jberg@example.com", "James", "Berg", "jberg@example.com", "123456...

If you enabled the scheduled reconciliation in Step 1, you can simply wait for the reconciliation operation to run.
Otherwise, run the reconciliation manually with the same command you used in that step.

After the reconciliation has run, query the managed user repository to view the new user in the list of managed users:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "bjensen",
 "_rev": "00000000e17186b6"
 },
 {
 "_id": "scarter",
 "_rev": "00000000970685c3"
 },
 {
 "_id": "jberg",
 "_rev": "00000000ea628233"
 }
],
 ...
}

To view the reconciliation details, query the reconciliation using its id :

6.

7.

8.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 67

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon/assoc/2d87c817-3d00-4776-a705-7de2c65937d8"
{
 "_id": "2d87c817-3d00-4776-a705-7de2c65937d8",
 "_rev": "1",
 "mapping": "systemCsvfileAccounts_managedUser",
 "sourceResourceCollection": "managed/user",
 "targetResourceCollection": "system/csv/account",
 "isAnalysis": "false",
 "finishTime": "2022-05-01T23:36:24.434153Z"
}

For more information on reconciliation operations via REST, refer to Manage reconciliation.

You configure the action that IDM takes for each situation in the mapping file, conf/sync.json . For the list of all possible
situations and actions, refer to Synchronization situations and actions.

IDM includes a browser-based Administrative User Interface, known as the admin UI.

After starting IDM, access the admin UI by navigating to https://localhost:8443/admin . The first time you log in, use the
default administrative credentials, (Login: openidm-admin, Password: openidm-admin).

You should now see the Dashboard screen, with quick start cards for common administrative tasks.

Reconcile the two resources as follows:

Click Configure > Mappings, select the systemCsvfileAccounts_managedUser mapping, and click Reconcile.

After reconciliation, display the user records in both the source and target resources.

Select the Association tab and scroll down to the bottom of the page to see the resulting source and target users.

One-way synchronization from LDAP to IDM

This sample demonstrates one-way synchronization from an LDAP directory to an IDM repository and shows how IDM detects
new or changed objects from an external resource.

The sample has been tested with ForgeRock Directory Services (DS) but should work with any LDAPv3-compliant server. The
configuration includes one mapping, from the LDAP resource to the IDM repository. The sample does not push any changes
made to IDM managed user objects out to the LDAP server.

The mapping configuration file (conf/sync.json) for this sample includes one mapping, systemLdapAccounts_managedUser ,
which synchronize users from the source LDAP server with the target IDM repository.

info
If you’ve enabled audit logging, you can view the reconciliation details in the openidm/audit/
recon.audit.json file.

Note

1.

2.

Samples PingIDM

68 Copyright © 2025 Ping Identity Corporation

https://localhost:8443/admin
https://localhost:8443/admin

Prepare the sample

Set up DS using /path/to/openidm/samples/sync-with-ldap/data/Example.ldif .

Prepare IDM, and start the server using the sample configuration:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-ldap

Run the sample

You can work through the sample using the command line or admin UI:

Reconcile the repository:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemLdapAccounts_managedUser&waitForCompletion=true"
{
 "_id": "b1394d10-29b0-4ccf-81d8-c88948ea121c-4",
 "state": "SUCCESS"
}

The reconciliation operation creates the two users from the LDAP server in the IDM repository and assigns the new objects
random unique IDs.

Retrieve the users from the repository:

1.

2.

1.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 69

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=id,userName"
{
 "result": [
 {
 "_id": "0326cbff-8f6e-4531-97dd-7b1a4c04b23a",
 "_rev": "00000000657c9a27",
 "userName": "bjensen"
 },
 {
 "_id": "9afbf2bc-0323-4cbe-89b3-92f2f47742c3",
 "_rev": "0000000015ae92f5",
 "userName": "jdoe"
 }
],
 ...
}

To retrieve an individual user object, include their ID in the URL. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/0326cbff-8f6e-4531-97dd-7b1a4c04b23a"
{
 "_id": "0326cbff-8f6e-4531-97dd-7b1a4c04b23a",
 "_rev": "00000000657c9a27",
 "displayName": "Barbara Jensen",
 "description": "Created for OpenIDM",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "sn": "Jensen",
 "telephoneNumber": "1-360-229-7105",
 "userName": "bjensen",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

Log in to the admin UI at http://localhost:8080/admin as the default administrative user: openidm-admin with
password openidm-admin .

Select Configure > Mappings .

The Mappings page displays one mapping, from the ldap server to the IDM repository (managed/user).

3.

1.

2.

Samples PingIDM

70 Copyright © 2025 Ping Identity Corporation

http://localhost:8080/admin
http://localhost:8080/admin

Select the mapping, and click Reconcile .

The reconciliation operation creates the two users from the LDAP server in the IDM repository.

To verify the new users exist in the repository:

From the navigation bar, click Manage > User .

IDM displays the two users.

To view the details for a user account, from the User List page, click any username row.

The User details page displays.

Two-way synchronization between LDAP and IDM

This sample demonstrates bidirectional synchronization between an LDAP directory and an IDM repository.

The sample has been tested with ForgeRock Directory Services, but should work with any LDAPv3-compliant server. The
configuration includes two mappings, one from the LDAP resource to the IDM repository, and one from IDM to LDAP.

In this sample, you will start IDM and reconcile the two data sources. The mapping configuration file (sync.json) for this sample
includes two mappings, systemLdapAccounts_managedUser , which synchronizes users from the source LDAP server with the
target repository, and managedUser_systemLdapAccounts , which synchronizes changes from the repository to the LDAP server.

Prepare the sample

Set up DS using /path/to/openidm/samples/sync-with-ldap-bidirectional/data/Example.ldif .

Prepare IDM, and start the server using the sample configuration:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-ldap-bidirectional

Run the sample

You can work through the sample using the command line or the admin UI:

Reconcile the repository over the REST interface:

3.

4.

1.

2.

1.

2.

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 71

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemLdapAccounts_managedUser&waitForCompletion=true"
{
 "state": "SUCCESS",
 "_id": "027e25e3-7a33-4858-9080-161c2b40a6bf-2"
}

The reconciliation operation returns a reconciliation run ID and the status of the operation. Reconciliation creates user
objects from LDAP in the IDM repository, assigning the new objects random unique IDs.

To retrieve the users from the repository, query their IDs:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "d460ed00-74f9-48fb-8cc1-7829be60ddac",
 "_rev": "00000000792afa08"
 },
 {
 "_id": "74fe2d25-4eb1-4148-a3ae-ff80f194b3a6",
 "_rev": "00000000a92657c7"
 }
],
 ...
}

To retrieve individual user objects, include the ID in the URL, for example:

2.

3.

Samples PingIDM

72 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/d460ed00-74f9-48fb-8cc1-7829be60ddac"
{
 "_id": "d460ed00-74f9-48fb-8cc1-7829be60ddac",
 "_rev": "00000000792afa08",
 "displayName": "Barbara Jensen",
 "description": "Created for OpenIDM",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "1-360-229-7105",
 "sn": "Jensen",
 "userName": "bjensen",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

To test the second mapping, create a user in the IDM repository:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "mail": "fdoe@example.com",
 "sn": "Doe",
 "telephoneNumber": "555-1234",
 "userName": "fdoe",
 "givenName": "Felicitas",
 "description": "Felicitas Doe",
 "displayName": "fdoe"}' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "90d1f388-d8c3-4438-893c-be4e498e7a1c",
 "_rev": "00000000792afa08",
 "mail": "fdoe@example.com",
 "sn": "Doe",
 "telephoneNumber": "555-1234",
 "userName": "fdoe",
 "givenName": "Felicitas",
 "description": "Felicitas Doe",
 "displayName": "fdoe",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

4.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 73

mailto:bjensen@example.com
mailto:fdoe@example.com
mailto:fdoe@example.com

By default, implicit synchronization is enabled for mappings from the managed/user repository to any external resource.
This means that when you update a managed object, any mappings defined in the sync.json file that have the managed
object as the source are automatically executed to update the target system. For more information, refer to Resource
mapping.

To test that the implicit synchronization has been successful, query the users in the LDAP directory over REST:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account?_queryId=query-all-ids"
{
 "result": [
 {
 "_id": "0da50512-79bb-3461-bd04-241ee4c785bf"
 },
 {
 "_id": "887732e8-3db2-31bb-b329-20cd6fcecc05"
 },
 {
 "_id": "2f03e095-ec81-4eb5-9201-a4df2f1f9add"
 }
],
 ...
}

Note the additional user entry.

To query the complete entry, include the _id in the URL:

5.

6.

Samples PingIDM

74 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account/2f03e095-ec81-4eb5-9201-a4df2f1f9add"
{
 "_id": "2f03e095-ec81-4eb5-9201-a4df2f1f9add",
 "givenName": "Felicitas",
 "dn": "uid=fdoe,ou=People,dc=example,dc=com",
 "mail": "fdoe@example.com",
 "ldapGroups": [],
 "uid": "fdoe",
 "employeeType": [],
 "aliasList": [],
 "telephoneNumber": "555-1234",
 "kbaInfo": [],
 "cn": "fdoe",
 "objectClass": [
 "person",
 "organizationalPerson",
 "inetOrgPerson",
 "top"
],
 "sn": "Doe",
 "description": "Felicitas Doe"
}

Log in to the admin UI.

From the navigation bar, click Configure > Mappings .

The Mappings page displays two configured mappings, one from the ldap server to the IDM repository (managed/user)
and one from the repository to the ldap server.

Select the LDAP to managed user mapping, and click Reconcile .

The reconciliation operation creates the two users from the LDAP server in the IDM repository.

To view the new users in the repository, from the navigation bar, click Manage > User .

IDM displays the two users.

To add a user account, from the User List page, click + New User .

On the New User page, enter the user details, and click Save .

1.

2.

3.

4.

5.

6.

info
By default, implicit synchronization is enabled for mappings from the managed/user repository to any external
resource. This means that when you update a managed object, any mappings defined in the sync.json file
that have the managed object as the source are automatically executed to update the target system. For more
information, refer to Resource mapping.

Note

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 75

mailto:fdoe@example.com

To test for successful implicit synchronization, from the navigation bar, click Manage > User .

From the Users List page, click the new user you created in the previous step.

Click the Linked Systems tab.

IDM displays the user’s mapped external resource.

Synchronize LDAP groups

This sample demonstrates synchronization between an LDAP directory and an IDM repository. The sample synchronizes LDAP
group objects (rather than LDAP group membership, demonstrated in Synchronize LDAP group membership).

The sample has been tested with ForgeRock Directory Services (DS) but should work with any LDAPv3-compliant server. The
sample includes mappings from the LDAP server to the IDM repository, and from the IDM repository to the LDAP server. During
reconciliation, user entries and group entries are synchronized.

Sample overview

The mapping configuration file, conf/sync.json , for this sample includes three mappings:

systemLdapAccounts_managedUser

Synchronizes users from the source LDAP server with the target IDM repository.

managedUser_systemLdapAccounts

Synchronizes users from the IDM repository to the LDAP server.

systemLdapGroups_managedGroup

Synchronizes groups from the source LDAP server with the target IDM repository.

This sample focuses only on the groups mapping, systemLdapGroups_managedGroup .

Prepare the sample

Set up DS using /path/to/openidm/samples/sync-with-ldap-groups/data/Example.ldif .

The import file includes a number of LDAP groups, including:

7.

◦

◦

1.

Samples PingIDM

76 Copyright © 2025 Ping Identity Corporation

dn: ou=Groups,dc=example,dc=com
ou: Groups
objectClass: organizationalUnit
objectClass: top

dn: cn=openidm,ou=Groups,dc=example,dc=com
uniqueMember: uid=jdoe,ou=People,dc=example,dc=com
cn: openidm
objectClass: groupOfUniqueNames
objectClass: top

dn: cn=openidm2,ou=Groups,dc=example,dc=com
uniqueMember: uid=bjensen,ou=People,dc=example,dc=com
cn: openidm2
objectClass: groupOfUniqueNames
objectClass: top

The user with dn uid=jdoe,ou=People,dc=example,dc=com is also imported with the Example.ldif file.

There is an additional user, bjensen in the sample LDIF file. This user is essentially a "dummy" user, provided for
compliance with RFC 4519, which stipulates that every groupOfUniqueNames object must contain at least one
uniqueMember . bjensen is not actually used in this sample.

Prepare IDM, and start the server using the sample configuration:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-ldap-groups

Run the sample

You can run this sample using the command line or admin UI:

Reconcile the group objects over the REST interface:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemLdapGroups_managedGroup&waitForCompletion=true"
{
 "_id": "83f5b34b-0ddd-4c39-9349-de24816487ff-1198",
 "state": "SUCCESS"
}

The reconciliation operation returns a reconciliation run ID along with operation status, and creates managed group
objects for each group that exists in DS.

To list the managed groups, run the following command:

2.

1.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 77

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/group?_queryFilter=true"
{
 "result": [
 {
 "_id": "b6c4d7ce-2103-42c2-b5f2-74ca9309ad37",
 "_rev": "000000001298f6a6",
 "dn": "cn=Contractors,ou=Groups,dc=example,dc=com",
 "description": null,
 "uniqueMember": [],
 "name": "Contractors"
 },
 {
 "_id": "2326b9ee-6975-4c19-aa3c-d228afc4ff71",
 "_rev": "00000000dc6160c8",
 "dn": "cn=openidm2,ou=Groups,dc=example,dc=com",
 "description": null,
 "uniqueMember": [
 "uid=bjensen,ou=People,dc=example,dc=com"
],
 "name": "openidm2"
 },
 {
 "_id": "035f6444-bce3-4931-96b7-e10b2301fe74",
 "_rev": "000000004cab60c8",
 "dn": "cn=Employees,ou=Groups,dc=example,dc=com",
 "description": null,
 "uniqueMember": [],
 "name": "Employees"
 },
 {
 "_id": "65c8fb86-01e6-4fca-9237-e50c251f4575",
 "_rev": "0000000050c62938",
 "dn": "cn=Chat Users,ou=Groups,dc=example,dc=com",
 "description": null,
 "uniqueMember": [],
 "name": "Chat Users"
 },
 {
 "_id": "5c3e4965-16d7-4a8f-af73-3ab165b66cf9",
 "_rev": "000000004121fb7e",
 "dn": "cn=openidm,ou=Groups,dc=example,dc=com",
 "description": null,
 "uniqueMember": [
 "uid=jdoe,ou=People,dc=example,dc=com"
],

Samples PingIDM

78 Copyright © 2025 Ping Identity Corporation

 "name": "openidm"
 }
],
 ...
}

Log in to the admin UI.

From the navigation bar, click Configure > Mappings .

The Mappings page displays three configured mappings:

From the ldap server user accounts to the IDM repository (managed/user).

From the IDM managed users back to the ldap accounts.

From the ldap server group entries to the IDM managed/group entries.

Select the LDAP groups to managed groups mapping, and click Reconcile .

The reconciliation operation creates the two groups from the LDAP server in the IDM repository.

From the navigation bar, click Manage > Group .

IDM displays the five groups from the LDAP server (source) that were reconciled to the IDM repository (target).

Synchronize LDAP group membership

This sample demonstrates synchronization between an LDAP directory and an IDM repository, with a focus on synchronizing
LDAP group membership, that is, how the value of the ldapGroups property in a managed user object is mapped to the
corresponding user object in LDAP.

The sample has been tested with ForgeRock Directory Services (DS) but should work with any LDAPv3-compliant server. The
sample includes mappings from the LDAP server to the IDM repository, and from the IDM repository to the LDAP server. During
the reconciliation, memberships are synchronized, in addition to user entries.

Prepare the sample

Set up DS using /path/to/openidm/samples/sync-with-ldap-group-membership/data/Example.ldif .

The import file includes a number of LDAP groups, including the following:

1.

2.

◦

◦

◦

3.

4.

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 79

dn: ou=Groups,dc=example,dc=com
ou: Groups
objectClass: organizationalUnit
objectClass: top

dn: cn=openidm,ou=Groups,dc=example,dc=com
uniqueMember: uid=jdoe,ou=People,dc=example,dc=com
cn: openidm
objectClass: groupOfUniqueNames
objectClass: top

dn: cn=openidm2,ou=Groups,dc=example,dc=com
uniqueMember: uid=bjensen,ou=People,dc=example,dc=com
cn: openidm2
objectClass: groupOfUniqueNames
objectClass: top

The users with DNs uid=jdoe,ou=People,dc=example,dc=com and uid=bjensen,ou=People,dc=example,dc=com are also
imported with the Example.ldif file.

Prepare IDM, and start the server using the sample configuration:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-ldap-group-membership

Run the sample

You can work through the sample using the command line or admin UI:

Reconcile the repository over the REST interface:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemLdapAccounts_managedUser&waitForCompletion=true"
{
 "_id": "6652c292-5309-40e5-b272-b74d67dd95c9-4",
 "state": "SUCCESS"
}

The reconciliation operation returns a reconciliation run ID and the status of the operation. Reconciliation creates user
objects from LDAP in the IDM repository, assigning the new objects random unique IDs.

Retrieve the user IDs from the repository:

2.

1.

2.

Samples PingIDM

80 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "1eaca03d-aef7-415a-99d9-bfd3f442ef51",
 "_rev": "0000000028e4e01e"
 },
 {
 "_id": "4e15c41e-6051-4150-8cde-b91c16397f25",
 "_rev": "00000000bb39e698"
 }
],
 ...
}

To retrieve individual user objects, include the ID in the URL. The following request retrieves the user object for John Doe:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/1eaca03d-aef7-415a-99d9-bfd3f442ef51"
{
 "_id": "1eaca03d-aef7-415a-99d9-bfd3f442ef51",
 "_rev": "0000000028e4e01e",
 "displayName": "John Doe",
 "description": "Created for OpenIDM",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "1-415-599-1100",
 "sn": "Doe",
 "userName": "jdoe",
 "ldapGroups": [
 "cn=openidm,ou=Groups,dc=example,dc=com"
],
 "accountStatus": "active",
 ...
}

3.

info
John Doe’s user object contains an ldapGroups property, whose value shows his groups on the LDAP server:

"ldapGroups":["cn=openidm,ou=Groups,dc=example,dc=com"]

Note

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 81

Update John Doe’s ldapGroups property, to change his membership from the openidm group to the openidm2 group:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '[
 {
 "operation": "replace",
 "field": "/ldapGroups",
 "value": ["cn=openidm2,ou=Groups,dc=example,dc=com"]
 }
]' \
"http://localhost:8080/openidm/managed/user/1eaca03d-aef7-415a-99d9-bfd3f442ef51?_action=patch"
{
 "displayName": "John Doe",
 "description": "Created for OpenIDM",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "1-415-599-1100",
 "sn": "Doe",
 "userName": "jdoe",
 "ldapGroups": [
 "cn=openidm2,ou=Groups,dc=example,dc=com"
],
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": [],
 "_rev": "00000000d0ebe04c",
 "_id": "1eaca03d-aef7-415a-99d9-bfd3f442ef51"
}

This command changes John Doe’s ldapGroups property in the IDM repository, from
"cn=openidm,ou=Groups,dc=example,dc=com" to "cn=openidm2,ou=Groups,dc=example,dc=com" . Because of implicit
synchronization, the change is propagated to the LDAP server. John Doe is removed from the first LDAP group and added
to the second LDAP group in DS.

To verify the change, query John Doe’s record on the LDAP server:

4.

5.

Samples PingIDM

82 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account/?_queryFilter=uid+eq+'jdoe'"
{
 "result": [
 {
 "_id": "0da50512-79bb-3461-bd04-241ee4c785bf",
 "employeeType": [],
 "objectClass": [
 "person",
 "organizationalPerson",
 "inetOrgPerson",
 "top"
],
 "cn": "John Doe",
 "uid": "jdoe",
 "ldapGroups": [
 "cn=openidm2,ou=Groups,dc=example,dc=com"
],
 "givenName": "John",
 "mail": "jdoe@example.com",
 "aliasList": [],
 "dn": "uid=jdoe,ou=People,dc=example,dc=com",
 "sn": "Doe",
 "description": "Created for OpenIDM",
 "telephoneNumber": "1-415-599-1100",
 "kbaInfo": []
 }
],
 ...
}

Log in to the admin UI.

From the navigation bar, click Configure > Mappings .

The Mappings page displays two configured mappings, one from the LDAP server to the IDM repository (managed/user)
and one from the IDM repository to the LDAP server.

Select the LDAP to managed user mapping, and click Reconcile .

The reconciliation operation creates the two users from the LDAP server in the IDM repository.

To view the new users in the repository, from the navigation bar, click Manage > User .

IDM displays the two new users.

From the Users List page, click the user jdoe .

Click the Linked Systems tab.

IDM displays John Doe’s mapped external resource, ldap/account .

1.

2.

3.

4.

5.

6.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 83

In the mapped resource, IDM displays John Doe’s ldapGroups :

cn=openidm,ou=Groups,dc=example,dc=com

Update John Doe’s ldapGroups property to change his membership from the openidm group to the openidm2 group.
You must perform this operation over the REST interface:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '[
 {
 "operation": "replace",
 "field": "/ldapGroups",
 "value": ["cn=openidm2,ou=Groups,dc=example,dc=com"]
 }
]' \
"http://localhost:8080/openidm/managed/user?_action=patch&_queryId=for-userName&uid=jdoe"
{
 "displayName": "John Doe",
 "description": "Created for OpenIDM",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "1-415-599-1100",
 "sn": "Doe",
 "userName": "jdoe",
 "ldapGroups": [
 "cn=openidm2,ou=Groups,dc=example,dc=com"
],
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": [],
 "_rev": "0000000050c62938",
 "_id": "8462fe0c-2ab2-459a-a25e-474474889c9e"
}

This command changes John Doe’s ldapGroups property in the IDM repository, from
"cn=openidm,ou=Groups,dc=example,dc=com" to "cn=openidm2,ou=Groups,dc=example,dc=com" . As a result of implicit
synchronization, the change is propagated to the LDAP server. John Doe is removed from the first LDAP group and added
to the second LDAP group in DS.

To verify the change, reload John Doe’s user information:

Reload John Doe’s user information page.

Click the Linked Systems tab.

Observe the value of the ldapGroups property.

7.

8.

1.

2.

Samples PingIDM

84 Copyright © 2025 Ping Identity Corporation

Synchronize data between two external resources

This sample demonstrates synchronization between two external resources, routed through the IDM repository.

The resources are named LDAP and AD and represent two separate LDAP directories. In the sample both resources are
simulated with simple CSV files.

The sample also demonstrates the (optional) configuration of an outbound email service. You can set up outbound email if you
want to receive emailed reconciliation summaries.

Configure email for the sample

If you do not configure the email service, the functionality of the sample does not change. However, you might see the following
message in the OSGi console when you run a reconciliation operation:

Email service not configured; report not generated.

To configure IDM to send a reconciliation summary by email, follow these steps:

Copy external.email.json from samples/example-configurations/conf/ to the conf/ directory of this sample:

cd /path/to/openidm/
cp samples/example-configurations/conf/external.email.json samples/sync-two-external-resources/conf/

Edit external.email.json for outbound email.

In the samples/sync-two-external-resources/script directory, edit the reconStats.js script to reflect the correct
email details.

Near the start of the file, locate the var email variable and update the values as required:

var email = {
 //UPDATE THESE VALUES
 from : "openidm@example.com",
 to : "youremail@example.com",
 cc : "idmadmin2@example.com,idmadmin3@example.com",
 subject : "Recon stats for " + global.mappingName,
 type : "text/html"
},
template,
...

Run the sample

No external configuration is required for this sample. Before you start, prepare IDM as described in Prepare IDM.

Start the server with the configuration of this sample:

1.

2.

3.

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 85

cd /path/to/openidm/
./startup.sh -p samples/sync-two-external-resources

Examine the data files.

The CSV files that simulate the two LDAP resources are located in the openidm/samples/sync-two-external-resources/
data/ directory. Look at the contents of these files. Initially, the csvConnectorLDAPData.csv file contains one user and
the csvConnectorADData.csv file contains no users.

Run a reconciliation operation to synchronize the contents of the simulated LDAP resource with the IDM repository.

You can run the reconciliation in the admin UI (Configure > Mappings, click systemLdapAccounts_managedUser , then click
Reconcile) or over the command line as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemLdapAccounts_managedUser&waitForCompletion=true"
{
 "_id": "75e08ea9-411f-4c25-96b9-8e2396fb75aa-1062",
 "state": "SUCCESS"
}

The reconciliation creates a managed user in the IDM repository. You do not need to run a second reconciliation to
synchronize the AD resource. Implicit synchronization propagates any change made to managed users in the repository to
the simulated AD resource.

For more information about implicit synchronization, refer to Synchronization types.

Review the contents of the simulated AD resource (csvConnectorADData.csv):

more /path/to/openidm/samples/sync-two-external-resources/data/csvConnectorADData.csv
"uid", "username", "firstname", "description", "email", "lastname"
"1",,"Barbara",,"bjensen@example.com","Jensen"

This file should now contain the same user that was present in the csvConnectorLDAPData.csv file.

Alternatively, you can list users in the AD resource with the following command:

2.

3.

4.

Samples PingIDM

86 Copyright © 2025 Ping Identity Corporation

mailto:bjensen@example.com

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ad/account?_queryId=query-all-ids"
{
 "result": [
 {
 "_id": "1",
 "name": "1"
 }
],
 ...
}

Use the _id of the user to read the complete user record from the AD resource:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ad/account/1"
{
 "_id": "1",
 "firstname": "Barbara",
 "lastname": "Jensen",
 "email": [
 "bjensen@example.com"
],
 "name": "1"
}

To verify that the sample is working, repeat the process.

Set up a second user in the csvConnectorLDAPData.csv file. The following example shows how that file might appear with
a second user (scarter):

"uid","username","firstname","description", "email", "lastname"
"1", "bjensen", "Barbara", "Created By CSV","bjensen@example.com","Jensen"
"2", "scarter", "Steve", "Created By CSV","scarter@example.com","Carter"

Rerun the reconciliation and query REST commands shown previously.

The reconciliation operation creates the new user from the simulated LDAP resource in the IDM repository. An implicit
synchronization operation then creates that user in the AD resource.

If you configured the reconciliation email summary at the beginning of this sample, you should have received an email that
lists the details of the reconciliation operations.

5.

6.

7.

8.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 87

mailto:bjensen@example.com

Asynchronous reconciliation using workflow

This sample demonstrates asynchronous reconciliation using workflows.

The data for this sample is in the file samples/sync-asynchronous/data/csvConnectorData.csv . That file contains two users, as
follows:

"description", "uid", "username", "firstname", "lastname", "email", "mobile..."
"Created ...", "bjensen", "bjensen@example.com", "Barbara", "Jensen", "bjensen@example.com", 1234..."
"Created ...", "scarter", "scarter@example.com", "Steven", "Carter", "scarter@example.com", 1234..."

During the sample, you will reconcile the users in the CSV file with the managed user repository. Instead of creating each user
immediately, the reconciliation operation generates an approval request for each ABSENT user (users who are not found in the
repository). The configuration for this action is defined in the conf/sync.json file, which specifies that an ABSENT condition
should launch the managedUserApproval workflow:

...
 {
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
 },
 ...

When each request is approved by an administrator, an asynchronous reconciliation operation is launched, that ultimately
creates the users in the repository.

Run the sample

Before you start, prepare IDM as described in Prepare IDM.

Edit the /path/to/openidm/samples/sync-asynchronous/conf/datasource.jdbc-default.json file with the details of
your JDBC repository. For more information, refer to Select a repository.

Start IDM with the configuration for this sample:

/path/to/openidm/startup.sh -p samples/sync-asynchronous

The sample is configured to assign new workflow tasks to an admin account named async.admin . Create this account
before you begin:

emergency_home
Workflows are not supported with a DS repository. Before you test this sample, install a JDBC repository.

Important

1.

2.

3.

Samples PingIDM

88 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "userName": "async.admin",
 "givenName": "async",
 "sn" : "admin",
 "password" : "Passw0rd",
 "displayName" : "async admin",
 "mail" : "async.admin@example.com",
 "authzRoles": [
 { "_ref": "internal/role/openidm-admin" },
 { "_ref": "internal/role/openidm-authorized" }
],
 "_id" : "asyncadmin"
 }' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id":"asyncadmin",
 "_rev":"00000000e8f502db",
 "userName":"async.admin",
 "givenName":"async",
 "sn":"admin",
 "displayName":"async admin",
 "mail":"async.admin@example.com",
 "accountStatus":"active",
 "effectiveRoles":[],
 "effectiveAssignments":[]
}

Run reconciliation over the REST interface:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=recon&mapping=systemCsvfileAccounts_managedUser"
{
 "_id": "98d7f3c5-684e-4ef0-b4f9-f2e816a339cf-32",
 "state": "ACTIVE"
}

The reconciliation operation returns a reconciliation run ID, and the status of the operation.

This reconciliation launches a workflow that generates an approval process for each ABSENT user. The approval processes
must be approved by an administrator before the workflow can continue.

4.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 89

Review the approval tasks launched by the reconciliation.

To review the tasks in the admin UI, log in to the admin UI at https://localhost:8443/admin/ using an
administrator account (either openidm-admin or async.admin will work) and select Manage > Tasks.

You should see two task instances launched by the Managed User Approval Workflow.

To view the approval tasks over REST run the following command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/workflow/taskinstance?
_queryFilter=true&_fields=_id,processDefinitionId"

The request returns two task instances, each with a process ID (_id) and a process definition ID.

{
 "result": [
 {
 "_id": "38",
 "processDefinitionId": "managedUserApproval:1:5"
 },
 {
 "_id": "39",
 "processDefinitionId": "managedUserApproval:1:5"
 }
],
 ...
}

Complete each approval task.

To complete the approval tasks using the UI, log in to the End User UI at https://localhost:8443/#/login as
user async.admin with password Passw0rd .

You should see two Evaluate request tasks under My Tasks on the Dashboard.

For each task, select Edit, and then click Approve to add the noted users.

To approve the requests over REST, set requestApproved to true for each task instance, and use the complete
action. Specify the _id of each task in the URL.

For example, to approve the first request:

5.

◦

◦

6.

◦

◦

Samples PingIDM

90 Copyright © 2025 Ping Identity Corporation

https://localhost:8443/admin/
https://localhost:8443/admin/
https://localhost:8443/#/login
https://localhost:8443/#/login

curl \
--header "X-OpenIDM-Username: async.admin" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{"requestApproved": "true"}' \
"http://localhost:8080/openidm/workflow/taskinstance/38?_action=complete"
{
 "Task action performed": "complete"
}

Repeat this command for each task ID.

When the requests have been approved, select Manage > User in the admin UI to view the new users in the repository, or
query the managed users over REST as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "asyncadmin",
 "_rev": "00000000e8f502db"
 }, {
 "_id": "scarter",
 "_rev": "000000007e120780"
 }, {
 "_id": "bjensen",
 "_rev": "00000000d9390751"
 }
],
 ...
}

LiveSync with an LDAP server

This sample resembles the sample described in Synchronize data between two external resources. However, this sample
demonstrates liveSync from one external LDAP resource to another. LiveSync is the mechanism by which changes are pushed
from an external resource to IDM and then, optionally, to another external resource. For more information, refer to
Synchronization types.

The sample assumes a scenario where changes in an Active Directory server are synchronized, using LiveSync, with a ForgeRock
Directory Services (DS) server.

7.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 91

The sample provides a configuration for two scenarios, depending on whether you are using a live Active Directory (AD) service, or
whether you are simulating the AD service with a DS server. Each scenario is associated with a file in the livesync-with-ad/
alternatives directory. Depending on your scenario, copy the corresponding file to the livesync-with-ad/conf directory:

Live AD Instance

If you have an AD instance to test with, use that AD instance as the first LDAP resource. For the second LDAP resource,
configure DS as described in Set Up the LDAP Resources. The data for the DS instance is contained in the file samples/
livesync-with-ad/data/Example.ldif .

For the connection to Active Directory, copy the provisioner.openicf-realad.json file from livesync-with-ad/
alternatives to the conf/ directory and rename it provisioner.openicf-ad.json .

Because this sample demonstrates synchronization from the AD server to DS, data on the AD server is not changed.

Simulated AD Instance

If you are simulating the AD instance with a DS server, copy the provisioner.openicf-fakead.json file from livesync-
with-ad/alternatives to the conf/ directory and rename it provisioner.openicf-ad.json .

This sample simulates an AD server on the same instance of DS, using a different base DN (dc=fakead,dc=com). You can
also simulate the AD server with a separate DS instance, running on the same host, as long as the two instances
communicate on different ports. The data for the simulated AD instance is contained in the file samples/livesync-with-
ad/data/AD.ldif . The data for the DS instance is contained in the file samples/livesync-with-ad/data/Example.ldif .

Set up the LDAP resources

Whether you use a simulated Active Directory server, or a live Active Directory server, you must still set up a DS instance as the
second LDAP resource.

Set up DS using /path/to/openidm/samples/livesync-with-ad/data/Example.ldif , and do one of the following:

To configure the connection to a live AD instance, open the connector configuration file (provisioner.openicf-ad.json) in a
text editor. Update the file as required to reflect your AD instance. At a minimum, check and update the following parameters:

host

The hostname or IP address of the AD server.

port

The LDAP port; 389 by default.

ssl

Whether the connection to the AD instance is secured over SSL; false by default.

principal

The full DN of the account that is used to bind to the server, for example,
"CN=Administrator,CN=Users,DC=example,DC=com".

Samples PingIDM

92 Copyright © 2025 Ping Identity Corporation

credentials

If a password is used, replace null with that password. When IDM starts, it encrypts that password in the
provisioner.openicf-ad.conf file.

baseContexts

A list of DNs for account containers, for example, "CN=Users,DC=Example,DC=com".

baseContextsToSynchronize

Set to the same value as baseContexts .

accountSearchFilter

The LDAP search filter to locate accounts; only user accounts by default.

accountSynchronizationFilter

The LDAP search filter to synchronize user accounts; only user accounts by default.

If you do not want to filter out computer and disabled user accounts, set the accountSearchFilter and
accountSynchronizationFilter to null .

If you do not have a testable instance of AD available, you can simulate an AD instance in a separate suffix on the existing DS
instance. The data/AD.ldif file includes LDIF data for a simulated AD instance.

If you have not already done so, copy the
samples/livesync-with-ad/alternatives/provisioner.openicf-fakead.json to the conf subdirectory and rename it
provisioner.openicf-ad.json .

This file sets up the connection to the DS server, targeting the suffix (dc=fakead,dc=com) that is simulating an AD server.

Load the simulated data into that suffix:

/path/to/opendj/bin/ldapmodify \
--port 1636 \
--useSSL \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--bindDN uid=admin \
--bindPassword password \
--filename /path/to/openidm/samples/livesync-with-ad/data/AD.ldif
ADD operation successful for DN dc=fakead,dc=com

ADD operation successful for DN ou=People,dc=fakead,dc=com

ADD operation successful for DN uid=bobf,ou=People,dc=fakead,dc=com

ADD operation successful for DN uid=stony,ou=People,dc=fakead,dc=com

1.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 93

Run the sample

When both DS and a real or simulated AD server are configured, prepare IDM as described in Prepare IDM. Then start IDM with
the configuration for this sample:

cd /path/to/openidm/
./startup.sh -p samples/livesync-with-ad

The following sections show how to synchronize the two external LDAP data stores by running a reconciliation operation, how to
configure scheduled liveSync.

Reconcile the two LDAP data stores

Review the entries in the DS server (imported from the Example.ldif file). When you run reconciliation, any entries that share
the same uid with the AD data store will be updated with the contents from AD.

If you have set up the simulated AD data store as described in Simulated AD Instance, compare the entries in the AD.ldif and
Example.ldif files. Note that each file has two different users—after importing the data, the AD instance has users bobf and
stony, and the DS instance has users jdoe and bjensen.

Run reconciliation over the REST interface:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemAdAccounts_managedUser&waitForCompletion=true"

The reconciliation operation returns a reconciliation run ID, and the status of the operation.

{
 "state": "SUCCESS",
 "_id": "985ee939-fbe1-4607-a757-00b404b4ef77"
}

The reconciliation operation synchronizes the data in the AD server with the IDM repository (managed/user). Implicit
synchronization then pushes those changes out to the DS server. For more information about implicit synchronization,
refer to Synchronization types.

List all the users in the DS server:

1.

2.

Samples PingIDM

94 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account?_queryFilter=true&_fields=_id,dn"

Your DS server should now contain four users:

{
 "result": [
 {
 "_id": "0da50512-79bb-3461-bd04-241ee4c785bf",
 "dn": "uid=jdoe,ou=People,dc=example,dc=com"
 },
 {
 "_id": "887732e8-3db2-31bb-b329-20cd6fcecc05",
 "dn": "uid=bjensen,ou=People,dc=example,dc=com"
 },
 {
 "_id": "fc4feff0-11ae-430f-858d-338b1b05d66a",
 "dn": "uid=bobf,ou=People,dc=example,dc=com"
 },
 {
 "_id": "ba07d4f4-0e2b-4c53-aecb-4b234e1fec1c",
 "dn": "uid=stony,ou=People,dc=example,dc=com"
 }
],
 ...
}

The two users from the AD server have been added to the DS server.

Configure liveSync

LiveSync pushes changes made in an external system to the IDM repository. You can launch a liveSync operation over REST, or
configure a schedule to poll for changes. This sample includes a liveSync schedule (conf/schedule-
activeSynchroniser_systemAdAccount.json) that is disabled by default. When the schedule is enabled, a liveSync operation is
launched every 15 seconds.

To activate liveSync, change the value of the enabled property in the schedule configuration from false to true :

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 95

{
 "enabled" : true,
 "type" : "simple",
 "repeatInterval" : 15000,
 "persisted" : true,
 "concurrentExecution" : false,
 "invokeService" : "provisioner",
 "invokeContext" : {
 "action" : "liveSync",
 "source" : "system/ad/account"
 },
 "invokeLogLevel" : "debug"
}

Test liveSync

Test liveSync as follows:

Create an LDIF file with a new user entry (uid=bsmith) that will be added to the AD directory.

You can use the following LDIF file (bsmith.ldif) as an example. This sample file assumes the simulated AD instance.
Adjust the DN if you are using a live AD instance:

dn: uid=bsmith,ou=People,dc=fakead,dc=com
objectClass: person
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: top
givenName: Barry
description: Created to see liveSync work
uid: bsmith
cn: Barry
sn: Smith
mail: bsmith@example.com
telephoneNumber: 1-415-523-0772
userPassword: 5up35tr0ng

Use the ldapmodify command to add the new user to the AD directory:

/path/to/opendj/bin/ldapmodify \
--port 1636 \
--useSSL \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--bindDN uid=admin \
--bindPassword password \
--filename /path/to/bsmith.ldif
ADD operation successful for DN uid=bsmith,ou=People,dc=fakead,dc=com

Within 15 seconds, liveSync should create the user in the IDM repository.

Test that the liveSync has worked by viewing the new user in IDM.

1.

2.

3.

Samples PingIDM

96 Copyright © 2025 Ping Identity Corporation

The easiest way to do this, is through the End User UI. You should be able to log in to the End User UI (http://localhost:
8080) as user bsmith , with password 5up35tr0ng . If you can log in to the UI as this new user, liveSync has synchronized
the user from the AD directory to the managed/user repository.

Implicit synchronization pushes this change out to the DS server. To test this synchronization operation, search the DS
baseDN for the new user entry.

/path/to/opendj/bin/ldapsearch \
--port 1636 \
--useSSL \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--bindDN uid=admin \
--bindPassword password \
--baseDN ou=people,dc=example,dc=com \
"(uid=bsmith)"

Synchronize accounts with the Google Apps connector

The Google Apps Connector lets you interact with Google’s web applications.

This sample shows how to create users and groups on an external Google system, and how to synchronize those accounts with
the IDM managed user repository. The sample requires a Google Apps account.

Prepare the sample

To set up IDM to connect to your Google Apps account, you must have a Google Apps project that authorizes consent for IDM.

Log in to the Google Apps Developers Console and update your existing project, or create a new project.

Enable the following APIs for your project:

Admin SDK API

Enterprise License Manager API

Set up an OAuth2 Client.

The Google Apps connector uses OAuth2 to authorize the connection to the Google service:

In the Google Apps Developers Console, select Credentials > Create Credentials > OAuth client ID.

Click Configure Consent Screen, select Internal, and click Create.

On the OAuth consent screen, enter an Application name; for example, IDM , and click Save.

This name displays for all applications registered in this project.

4.

1.

2.

◦

◦

emergency_home
Failure to enable the specified APIs can cause connector requests to hang indefinitely with no error message.

Important

3.

1.

2.

3.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 97

https://support.google.com/a/answer/53926?hl=en
https://support.google.com/a/answer/53926?hl=en
https://console.developers.google.com/start
https://console.developers.google.com/start
https://support.google.com/googleapi/answer/6158841
https://support.google.com/googleapi/answer/6158841
https://console.cloud.google.com/apis/library/admin.googleapis.com
https://console.cloud.google.com/apis/library/admin.googleapis.com
https://console.cloud.google.com/apis/library/licensing.googleapis.com
https://console.cloud.google.com/apis/library/licensing.googleapis.com

Select Credentials > Create Credentials > OAuth client ID > Web application, and enter information in the
following fields:

Authorized JavaScript origins

The URI that clients use to access your application. The default URI is https://localhost:8443 .

Authorized redirect URIs

The OAuth redirect URI, https://localhost:8443/admin/oauth.html by default.

Click Create.

On the OAuth client created pop-up, make a note of your Client ID and Client Secret.

Add IDM to the Trusted Apps list:

Log in to the Google Admin Console.

From the top left menu, select Security > API Controls.

Select MANAGE THIRD-PARTY APP ACCESS, click Change Access, and change the IDM app settings to Trusted.

Configure the Google Apps connector

This procedure uses the admin UI to configure the Google Apps connector.

Start IDM with the Google Apps sample configuration:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-google
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using PROJECT_HOME: /path/to/openidm/samples/sync-with-google/
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/resolver/boot.properties
-> OpenIDM ready

Log in to the admin UI at the URL https://localhost:8443/admin as the default administrative user (openidm-admin)
with password openidm-admin .

This URL reflects the host on which IDM is installed, and must be the same as the Authorized JavaScript origin URI
that you set in your Google app.

Select Configure > Connectors, and click the Google Apps connector.

On the Details tab, enable the connector.

4.

info
The URI that you enter here must be the same URI you use to access IDM. If you enter https://
localhost:8443 here, but use http://localhost:8080 to access IDM, the sample will not
work.

Note

5.

6.

4.

1.

2.

3.

1.

2.

3.

4.

Samples PingIDM

98 Copyright © 2025 Ping Identity Corporation

https://localhost:8443
https://localhost:8443
https://localhost:8443
https://localhost:8443
https://localhost:8443
http://localhost:8080
http://localhost:8080
https://localhost:8443/admin/oauth.html
https://localhost:8443/admin/oauth.html
https://admin.google.com/
https://admin.google.com/
https://localhost:8443/admin
https://localhost:8443/admin

In the Base Connector Details area, enter the Client ID and Client Secret that you obtained in the previous section.

Click Save.

IDM redirects you to a Sign in with Google page.

Log in.

After you log in, Google requests that you allow access from your project; in this case, IDM.

Click Allow.

After you allow access, you are redirected to the Connectors page in the admin UI, where the Google Apps Connector
should now be Active.

5.

6.

7.

8.

info
If you click Deny, you must return to the Connector Configuration > Details tab in the admin UI, and save your
changes again.

Note

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 99

Run the sample

This procedure uses create, read, update, and delete (CRUD) operations on the Google resource, to verify that the connector is
working as expected. The procedure uses a combination of REST commands, to manage objects on the Google system, and the
admin UI, to reconcile users from the Google system to the manage user repository.

The sample configuration has one mapping from the Google system to the managed user repository.

The commands shown here assume that your domain is example.com . Adjust the examples to match your domain.

Create a user entry on your Google resource, over REST.

The following command creates an entry for user Sam Carter :

1.

info
When you create resources for Google, the equals (=) character cannot be used in any attribute value.

Note

Samples PingIDM

100 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "__NAME__": "samcarter@example.com",
 "__PASSWORD__" : "password",
 "givenName" : "Sam",
 "familyName": "Carter",
 "agreedToTerms": true,
 "changePasswordAtNextLogin" : false
}' \
"http://localhost:8080/openidm/system/google/__ACCOUNT__?_action=create"

Which returns:

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 101

{
 "_id": "103567435255251233551",
 "_rev": "\"iwpzoDgSq9BJw-XzORg0bILYPVc/LWHPMXXG8M0cjQAPITM95Y636cM\"",
 "orgUnitPath": "/",
 "isAdmin": false,
 "fullName": "Sam Carter",
 "customerId": "C02rsqddz",
 "relations": null,
 "nonEditableAliases": null,
 "suspensionReason": null,
 "includeInGlobalAddressList": true,
 "givenName": "Sam",
 "addresses": null,
 "isDelegatedAdmin": false,
 "changePasswordAtNextLogin": false,
 "isMailboxSetup": true,
 "__NAME__": "samcarter@example.com",
 "agreedToTerms": true,
 "externalIds": null,
 "ipWhitelisted": false,
 "aliases": null,
 "lastLoginTime": [
 "1970-01-01T00:00:00.000Z"
],
 "organizations": null,
 "suspended": false,
 "deletionTime": null,
 "familyName": "Carter",
 "ims": null,
 "creationTime": [
 "2016-02-02T12:52:30.000Z"
],
 "thumbnailPhotoUrl": null,
 "emails": [
 {
 "address": "samcarter@example.com",
 "primary": true
 }
],
 "phones": null
}

Note the _id of the new user (103567435255251233551 in this example). You will need this ID for the update commands
in this section.

Reconcile the Google resource with the managed user repository.

This step should create the new user, Sam Carter (and any other users in your Google resource) in the managed user
repository.

In the admin UI, select Configure > Mappings.

Click on the sourceGoogle__ACCOUNT___managedUser mapping, and click Reconcile.

Select Manage > User and verify that the user Sam Carter has been created in the repository.

Update Sam Carter’s phone number in your Google resource by sending a PUT request with the updated data, and
specifying the user _id in the request:

2.

1.

2.

3.

3.

Samples PingIDM

102 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PUT \
--header "If-Match: *" \
--data '{
 "__NAME__": "samcarter@example.com",
 "givenName" : "Sam",
 "familyName": "Carter",
 "agreedToTerms": true,
 "changePasswordAtNextLogin" : false,
 "phones" : [
 {
 "value": "1234567890",
 "type": "home"
 },
 {
 "value": "0987654321",
 "type": "work"
 }
]
}' \
"http://localhost:8080/openidm/system/google/__ACCOUNT__/103567435255251233551"
{
 "_id": "103567435255251233551",
 "_rev": "\"iwpzoDgSq9BJw-XzORg0bILYPVc/vfSJgHt-STUUto4lM_4ESO9izR4\"",
 ...
 "emails": [
 {
 "address": "samcarter@example.com",
 "primary": true
 }
],
 "phones": [
 {
 "value": "1234567890",
 "type": "home"
 },
 {
 "value": "0987654321",
 "type": "work"
 }
]
}

Read Sam Carter’s entry from your Google resource by including his _id in the URL:4.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 103

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/google/__ACCOUNT__/103567435255251233551"
{
 "_id": "103567435255251233551",
 "__NAME__": "samcarter@example.com",
 ...
 "phones": [
 {
 "value": "1234567890",
 "type": "home"
 },
 {
 "value": "0987654321",
 "type": "work"
 }
]
}

Create a group entry on your Google resource:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "__NAME__": "testGroup@example.com",
 "__DESCRIPTION__": "Group used for google-connector sample.",
 "name": "TestGroup"
}' \
"http://localhost:8080/openidm/system/google/__GROUP__?_action=create"
{
 "_id": "00meukdy40gpg98",
 "_rev": "\"iwpzoDgSq9BJw-XzORg0bILYPVc/LLhHx2plMJPKeY1-h6eX_OVDi4c\"",
 "adminCreated": true,
 "__NAME__": "testgroup@example.com",
 "aliases": null,
 "nonEditableAliases": null,
 "__DESCRIPTION__": "Group used for google-connector sample.",
 "name": "TestGroup",
 "directMembersCount": 0
}

Add Sam Carter to the test group you have just created. Include the Member endpoint, and Sam Carter’s _id in the URL.
Specify the _id of the group you created as the value of the groupKey in the JSON payload:

5.

6.

Samples PingIDM

104 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
-H 'If-Match: "iwpzoDgSq9BJw-XzORg0bILYPVc/LLhHx2plMJPKeY1-h6eX_OVDi4c"' \
--request PUT \
--data '{
 "members": [
 {
 "role": "MEMBER",
 "email": "samcarter@example.com"
 }
]
}' \
"http://localhost:8080/openidm/system/google/__GROUP__/00meukdy40gpg98"
{
 "_id": "00meukdy40gpg98/samcarter@example.com",
 "_rev": "iwpzoDgSq9BJw-XzORg0bILYPVc/CPNpkRnowkGWRvNQvUK9ev6gQ90",
 "__NAME__": "00meukdy40gpg98/samcarter@example.com",
 "role": "MEMBER",
 "email": "samcarter@example.com",
 "type": "USER",
 "groupKey": "103567435255251233551"
}

Read the group entry by specifying the group _id in the request URL. Notice that the group has one member
("directMembersCount": 1):

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/google/__GROUP__/00meukdy40gpg98"
{
 "_id": "00meukdy40gpg98",
 "_rev": "iwpzoDgSq9BJw-XzORg0bILYPVc/chUdq5m5_cycV2G4sdl7ZKAF75A",
 "adminCreated": true,
 "__NAME__": "testgroup@example.com",
 "aliases": null,
 "nonEditableAliases": [
 "testGroup@example.test-google-a.com"
],
 "__DESCRIPTION__": "Group used for google-connector sample.",
 "name": "TestGroup",
 "directMembersCount": 1
}

Delete the group entry:

7.

8.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 105

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/system/google/__GROUP__/00meukdy40gpg98"
{
 "_id": "00meukdy40gpg98",
 "_rev": "iwpzoDgSq9BJw-XzORg0bILYPVc/chUdq5m5_cycV2G4sdl7ZKAF75A",
 "adminCreated": true,
 "__NAME__": "testgroup@example.com",
 "aliases": null,
 "nonEditableAliases": [
 "testGroup@example.com.test-google-a.com"
],
 "__DESCRIPTION__": "Group used for google-connector sample.",
 "name": "TestGroup",
 "directMembersCount": 1
}

The delete request returns the complete group object.

Delete Sam Carter, to return your Google resource to its original state:9.

Samples PingIDM

106 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/system/google/__ACCOUNT__/103567435255251233551"
{
 "_id": "103567435255251233551",
 "_rev": "iwpzoDgSq9BJw-XzORg0bILYPVc/ah6xBLujMAHieSWSisPa1CV6T3Q",
 "orgUnitPath": "/",
 "isAdmin": false,
 "fullName": "Sam Carter",
 "customerId": "C02rsqddz",
 "relations": null,
 "nonEditableAliases": [
 "samcarter@example.com.test-google-a.com"
],
 "suspensionReason": null,
 "includeInGlobalAddressList": true,
 "givenName": "Sam",
 "addresses": null,
 "isDelegatedAdmin": false,
 "changePasswordAtNextLogin": false,
 "isMailboxSetup": true,
 "__NAME__": "samcarter@example.com",
 "agreedToTerms": true,
 "externalIds": null,
 "ipWhitelisted": false,
 "aliases": null,
 "lastLoginTime": [
 "1970-01-01T00:00:00.000Z"
],
 "organizations": null,
 "suspended": false,
 "deletionTime": null,
 "familyName": "Carter",
 "ims": null,
 "creationTime": [
 "2016-02-02T12:52:30.000Z"
],
 "thumbnailPhotoUrl": null,
 "emails": [
 {
 "address": "samcarter@example.com",
 "primary": true
 }
],
 "phones": [
 {
 "value": "1234567890",
 "type": "home"
 },
 {

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 107

 "value": "0987654321",
 "type": "work"
 }
]
}

In this sample, you used the Google Apps connector to add and delete user and group objects in your Google application and to
reconcile users from your Google application to the managed user repository. You can expand on this sample by customizing the
connector configuration to provide additional synchronization functionality between IDM and your Google applications. For more
information on configuring connectors, refer to Google Apps connector.

Synchronize users between Salesforce and IDM

The Salesforce connector enables provisioning, reconciliation, and synchronization between Salesforce and IDM.

This sample shows how to synchronize Salesforce user accounts and managed users in the IDM repository. You can use either the
admin UI, or the command line to run this sample. Both methods are outlined in the sections that follow.

Prepare the sample

Configure your Salesforce organization.

To test this sample you must have an existing Salesforce organization, a Salesforce developer account, and a Connected
App with OAuth enabled. For instructions on setting up a Connected App, refer to the corresponding Salesforce
documentation. When you have set up the Connected App, locate the Consumer Key and Consumer Secret. You will need
these details to configure the connector.

When you set up your Connected App, make sure that you include the following scopes, even if you plan to use the "Full
access (full)" scope:

Access and manage your data (api).

Access your basic information (id, profile, email, address, phone).

Perform requests on your behalf at any time (refresh_token, offline_access).

Prepare IDM as described in Prepare IDM, then start the server with the configuration for the Salesforce sample:

/path/to/openidm/startup.sh -p samples/sync-with-salesforce

Run the sample

You can run the sample using the admin UI, or over the command line. Using the admin UI is recommended because the
command-line example is significantly more complex for this sample:

Use the admin UI

Log in to the admin UI at the URL https://localhost:8443/admin as the default administrative user (openidm-admin)
with password openidm-admin .

1.

◦

◦

◦

2.

1.

Samples PingIDM

108 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/google.html
https://docs.pingidentity.com/openicf/connector-reference/google.html
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_defining_remote_access_applications.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_defining_remote_access_applications.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_defining_remote_access_applications.htm
https://localhost:8443/admin
https://localhost:8443/admin

Enable the Salesforce connector by completing the authentication details as follows. You will need the Consumer Key and
Consumer Secret that you obtained from your Connected App configuration.

Select the Salesforce connector, and click Enable.

Under Base Connector Details, select Production, Sandbox, or Custom to set your Login URL.

The Login URL is the OAuth endpoint that will be used to make the OAuth authentication request to Salesforce.

The default endpoint for a production system is https://login.salesforce.com/services/oauth2/token . The
default endpoint for a sandbox (test) system is https://test.salesforce.com/services/oauth2/token .

Enter your Consumer Key and Consumer Secret, then select Save to update the connector configuration.

The connector now attempts to access your Salesforce organization.

Enter your Salesforce login credentials.

On the permission request screen click Allow, to enable IDM to access your Salesforce Connected App.

To test reconciliation, select Configure > Mappings.

There are two configured mappings, one from Salesforce to the IDM repository (managed/user) and one from the
repository to Salesforce.

Select Reconcile on the first mapping.

The reconciliation operation creates the users that were present in your Salesforce organization in the IDM repository.

Retrieve the users in the repository by selecting Manage > User.

The repository should now contain all the users from your Salesforce organization.

To test the second mapping (from IDM to Salesforce), update any user in the repository.

By default, implicit synchronization is enabled for mappings from the managed/user repository to any external resource.
This means that when you update a managed object, any mappings defined in the sync.json file that have the managed
object as the source are automatically run to update the target system. For more information, refer to Resource mapping.

To confirm that the implicit synchronization has been successful, check the updated user record in Salesforce.

Use the command line

This section breaks the sample into two tasks:

Configure the connector.

Test the configuration.

2.

1.

2.

info
When you create your connected app, you are instructed to wait 2-10 minutes for the settings to
propagate across all the Salesforce data centers. If you are using a Salesforce test tenant, such as
https://eu26.lightning.force.com, you can specify a custom URL here and enter the FQDN of the
test tenant. This will enable you to test the connector without waiting for the new app settings to be
propagated.

Note

3.

4.

5.

6.

3.

4.

5.

6.

•

•

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 109

Configure the Salesforce connector

Retrieve all the required configuration properties, as described in Configure the Salesforce connector with a configuration
file.

Edit the configurationProperties object in the Salesforce connector configuration file (openidm/samples/sync-with-
salesforce/conf/provisioner.openicf-salesforce.json) to include your Salesforce login URL, Consumer Key and
Consumer Secret, refresh token, and instance URL.

Set the enabled property to true to enable the connector.

The relevant excerpts of the provisioner.openicf-salesforce.json file are as follows:

{
 "enabled" : true,
...
 "configurationProperties" : {
 "connectTimeout" : 120000,
 "loginUrl" : https://login.salesforce.com/services/oauth2/token,
 "idleCheckInterval" : 10000,
 "refreshToken" : "5Aep861KIwKdekr90I4iHdtDgWwRoG7O_6uHrgJ.yVtMS0UaGxRqE6WFM...",
 "clientSecret" : "4850xxxxxxxxxxxxx425",
 "clientId" : "3MVG98dostKihXN7Is8Q0g5q1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxP...",
 "instanceUrl" : "https://example-com.cs1.my.salesforce.com",
 "version" : 44
 }
...

Check that your connector configuration is correct by testing the status of the connector, over REST.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system?_action=test"
{
 "name": "salesforce",
 "enabled": true,
 "config": "config/provisioner.openicf/salesforce",
 "connectorRef": {
 "bundleVersion": "1.5.20.29",
 "bundleName": "org.forgerock.openicf.connectors.salesforce-connector",
 "connectorName": "org.forgerock.openicf.connectors.salesforce.SalesforceConnector"
 },
 "displayName": "Salesforce Connector",
 "objectTypes": [
 "__ALL__",
 "User"
],
 "ok": true
}

1.

2.

3.

Samples PingIDM

110 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/salesforce.html#salesforce-provisioner
https://docs.pingidentity.com/openicf/connector-reference/salesforce.html#salesforce-provisioner
https://docs.pingidentity.com/openicf/connector-reference/salesforce.html#salesforce-provisioner

Run reconciliation

The mapping configuration file (sync.json) for this sample includes two mappings, systemSalesforceUser_managedUser , which
synchronizes users from the Salesforce with the IDM repository, and managedUser_systemSalesforceUser , which synchronizes
changes from the repository to Salesforce.

Reconcile the repository over the REST interface by running the following command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemSalesforceUser_managedUser&waitForCompletion=true"
{
 "state": "SUCCESS",
 "_id": "8a6281ef-6faf-43dd-af5c-3a842b38c468"
}

The reconciliation operation returns a reconciliation run ID and the status of the operation. Reconciliation creates user
objects from Salesforce in the IDM repository, assigning the new objects random unique IDs.

Retrieve the managed users in the repository:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "180c6686-b098-460a-a246-4e03fa0b8eb2",
 "_rev": "00000000cfe1fccf"
 },
 {
 "_id": "d0c25a0c-f7e6-4249-9c81-e546728f5bdd",
 "_rev": "000000000828e760"
 },
 {
 "_id": "25181ab3-0d40-4f80-96d6-d620eef7b6da",
 "_rev": "0000000038b6e342"
 }
],
 "resultCount": 3,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

1.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 111

The output displays that the users in the Salesforce data store have been created in the repository.

Synchronize Kerberos user principals

This sample demonstrates how to manage Kerberos user principals and how to reconcile user principals with IDM managed user
objects.

The connector configuration (/path/to/openidm/samples/sync-with-kerberos/conf/provisioner.openicf-kerberos.json))
assumes that IDM is running on a host that is separate from the Kerberos host.

This sample assumes that the default realm is EXAMPLE.COM and that there is an existing user principal openidm/admin . Adjust
the sample to match your Kerberos realm and principals.

Configure the Kerberos connector

Before you run this sample, edit the connector configuration file to match your Kerberos environment. Specifically, set the correct
values for the following properties:

host

The host name or IP address of the machine on which Kerberos is running.

port

The SSH port on that machine.

Default: 22 (the default SSH port)

user

The username of the account that is used to connect to the SSH server.

password

The password of the account that is used to connect to the SSH server.

prompt

A string that represents the remote SSH session prompt. This must be the exact prompt string, in the format
username@target: , for example root@localhost:~$. The easiest way to obtain this string is to ssh into the machine
and copy paste the prompt.

customConfiguration

The details of the admin user principal and the default realm.

This example assumes an admin user principal of openidm/admin .

For more information on setting this property, refer to customConfiguration .

customSensitiveConfiguration

The password for the user principal.

Samples PingIDM

112 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/kerberos.html#customConfiguration
https://docs.pingidentity.com/openicf/connector-reference/kerberos.html#customConfiguration
https://docs.pingidentity.com/openicf/connector-reference/kerberos.html#customConfiguration

For more information on setting this property, refer to customSensitiveConfiguration .

Your connector configuration should look something like the following:

...
 "configurationProperties" : {
 "host" : "192.0.2.0",
 "port" : 22,
 "user" : "admin",
 "password" : "Passw0rd",
 "prompt" : "admin@myhost:~$",
 "sudoCommand" : "/usr/bin/sudo",
 "echoOff" : true,
 "terminalType" : "vt102",
 "setLocale" : false,
 "locale" : "en_US.utf8",
 "connectionTimeout" : 5000,
 "expectTimeout" : 5000,
 "authenticationType" : "PASSWORD",
 "throwOperationTimeoutException" : true,
 "customConfiguration" : "kadmin { cmd = '/usr/sbin/kadmin.local'; user='openidm/admin';
default_realm='EXAMPLE.COM' }",
 "customSensitiveConfiguration" : "kadmin { password = 'Passw0rd'}",
 ...

IDM encrypts passwords in the configuration when it starts up, or whenever it reloads the configuration file.

For information about the complete Kerberos connector configuration, refer to Configure the Kerberos connector.

Run the sample

This sample demonstrates IDM communicating with the Kerberos Server, creating/deleting users, and reconciling the IDM
repository with Kerberos.

Start IDM with the configuration for the Kerberos sample:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-kerberos

Test that your connector configuration is correct and that IDM can reach your Kerberos server:

error
Do not modify the value of the scriptRoots or classpath properties unless you have extracted the scripts from the
connector bundle and placed them on the filesystem.

Caution

1.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 113

https://docs.pingidentity.com/openicf/connector-reference/kerberos.html#customSensitiveConfiguration
https://docs.pingidentity.com/openicf/connector-reference/kerberos.html#customSensitiveConfiguration
https://docs.pingidentity.com/openicf/connector-reference/kerberos.html#customSensitiveConfiguration
https://docs.pingidentity.com/openicf/connector-reference/kerberos.html#ssh-kerberos-config
https://docs.pingidentity.com/openicf/connector-reference/kerberos.html#ssh-kerberos-config

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system?_action=test"
[
 {
 "name": "kerberos",
 "enabled": true,
 "config": "config/provisioner.openicf/kerberos",
 "objectTypes": [
 "__ALL__",
 "account"
],
 "connectorRef": {
 "bundleName": "org.forgerock.openicf.connectors.kerberos-connector",
 "connectorName": "org.forgerock.openicf.connectors.kerberos.KerberosConnector",
 "bundleVersion": "[1.4.0.0,1.6.0.0)"
 },
 "displayName": "Kerberos Connector",
 "ok": true
 }
]

If the command returns "ok": true , your configuration is correct. Continue with the sample.

Retrieve a list of the existing user principals in the Kerberos database:3.

Samples PingIDM

114 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/kerberos/account?_queryId=query-all-ids"
{
 "result": [
 {
 "_id": "K/M@EXAMPLE.COM",
 },
 {
 "_id": "kadmin/admin@EXAMPLE.COM",
 },
 {
 "_id": "kadmin/changepw@EXAMPLE.COM",
 },
 {
 "_id": "kadmin/krb1.example.com@EXAMPLE.COM",
 },
 {
 "_id": "kiprop/krb1.example.com@EXAMPLE.COM",
 },
 {
 "_id": "krbtgt/EXAMPLE.COM@EXAMPLE.COM",
 },
 {
 "_id": "openidm/admin@EXAMPLE.COM",
 }
],
 ...
}

Create two new managed users, using REST or the admin UI.4.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 115

REST

Samples PingIDM

116 Copyright © 2025 Ping Identity Corporation

The following commands create users bjensen and scarter over REST:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-type: application/json" \
--request POST \
--data '{
 "userName": "bjensen",
 "givenName": "Barbara",
 "sn" : "Jensen",
 "password" : "Passw0rd",
 "displayName" : "Barbara Jensen",
 "mail" : "bjensen@example.com"
 }' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "ce3d9b8f-1d15-4950-82c1-f87596aadcb6",
 "_rev": "00000000792afa08",
 "userName": "bjensen",
 "givenName": "Barbara",
 "sn": "Jensen",
 "displayName": "Barbara Jensen",
 "mail": "bjensen@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 117

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-type: application/json" \
--request POST \
--data '{
 "userName": "scarter",
 "givenName": "Steven",
 "sn" : "Carter",
 "password" : "Passw0rd",
 "displayName" : "Steven Carter",
 "mail" : "scarter@example.com"
 }' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "a204ca60-b0fc-42f8-bf93-65bb30131361",
 "_rev": "000000004121fb7e",
 "userName": "scarter",
 "givenName": "Steven",
 "sn": "Carter",
 "displayName": "Steven Carter",
 "mail": "scarter@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

To create users bjensen and scarter using the admin UI, select Managed > User, and click New User.

Run a reconciliation operation between the managed user repository and the Kerberos database to create the new users
bjensen and scarter in Kerberos. You can run the reconciliation over REST, or using the admin UI.

admin UI

5.

Samples PingIDM

118 Copyright © 2025 Ping Identity Corporation

The following command creates runs the reconciliation over REST:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=recon&mapping=managedUser_systemKerberos"
{
 "_id": "862ab9ba-d1d9-4058-b6bc-a23a94b68776-234",
 "state": "ACTIVE"
}

To run the reconciliation using the admin UI, select Configure > Mappings, click on the
managedUser_systemKerberos mapping, and click Reconcile.

Retrieve the list of Kerberos user principals again. You should now see bjensen and scarter in this list:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/kerberos/account?_queryId=query-all-ids"
{
 "result": [
 {
 "_id": "bjensen@EXAMPLE.COM",
 },
 {
 "_id": "scarter@EXAMPLE.COM",
 },
 ...
 {
 "_id": "openidm/admin@EXAMPLE.COM",
 }
],
 ...
}

Retrieve the bjensen complete user principal from the Kerberos server over REST, or using the admin UI:

REST

admin UI

6.

7.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 119

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/kerberos/account/bjensen@EXAMPLE.COM"
{
 "_id": "bjensen@EXAMPLE.COM",
 "lastFailedAuthentication": "[never]",
 "passwordExpiration": "[none]",
 "lastSuccessfulAuthentication": "[never]",
 "maximumTicketLife": "0 days 10:00:00",
 "lastModified": "Tue May 24 04:05:45 EDT 2016 (openidm/admin@EXAMPLE.COM)",
 "policy": "user [does not exist]",
 "expirationDate": "[never]",
 "failedPasswordAttempts": "0",
 "maximumRenewableLife": "7 days 00:00:00",
 "principal": "bjensen@EXAMPLE.COM",
 "lastPasswordChange": "Tue May 24 04:05:45 EDT 2016"
}

To retrieve the user using the admin UI, select Manage > User, click bjensen, and click the Linked Systems tab to
display the corresponding Kerberos server entry.

Delete the managed user bjensen by specifying the managed object ID in the DELETE request.

First, obtain the ID by querying the userName :

REST

admin UI

info
The default values for properties such as maximumRenewableLife are set in your connector configuration. For
more information, refer to Configure the Kerberos connector.

Note

8.

1.

Samples PingIDM

120 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/kerberos.html#ssh-kerberos-config
https://docs.pingidentity.com/openicf/connector-reference/kerberos.html#ssh-kerberos-config

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+'bjensen'"
{
 "result": [
 {
 "_id": "ce3d9b8f-1d15-4950-82c1-f87596aadcb6",
 "_rev": "00000000a92657c7",
 "userName": "bjensen",
 "givenName": "Barbara",
 "sn": "Jensen",
 "displayName": "Barbara Jensen",
 "mail": "bjensen@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
 }
],
 ...
}

Now delete the user with ID ce3d9b8f-1d15-4950-82c1-f87596aadcb6 over REST, or using the admin UI. This ID
will be different in your example.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/user/ce3d9b8f-1d15-4950-82c1-f87596aadcb6"
{
 "_id": "ce3d9b8f-1d15-4950-82c1-f87596aadcb6",
 "_rev": "00000000a92657c7",
 "userName": "bjensen",
 "givenName": "Barbara",
 "sn": "Jensen",
 "displayName": "Barbara Jensen",
 "mail": "bjensen@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

2.

REST

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 121

To delete managed user bjensen using the admin UI, select Manage > User, select the checkbox adjacent
to bjensen, and click Delete Selected.

Reconcile the managed user repository and the Kerberos database again:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=recon&mapping=managedUser_systemKerberos"
{
 "_id": "862ab9ba-d1d9-4058-b6bc-a23a94b68776-584",
 "state": "ACTIVE"
}

Retrieve the list of Kerberos user principals again. The Kerberos principal for bjensen should not exist:

admin UI

9.

10.

Samples PingIDM

122 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/kerberos/account?_queryId=query-all-ids"
{
 "result": [
 {
 "_id": "K/M@EXAMPLE.COM",
 },
 {
 "_id": "kadmin/admin@EXAMPLE.COM",
 },
 {
 "_id": "kadmin/changepw@EXAMPLE.COM",
 },
 {
 "_id": "kadmin/krb1.example.com@EXAMPLE.COM",
 },
 {
 "_id": "kiprop/krb1.example.com@EXAMPLE.COM",
 },
 {
 "_id": "krbtgt/EXAMPLE.COM@EXAMPLE.COM",
 },
 {
 "_id": "scarter@EXAMPLE.COM",
 },
 {
 "_id": "openidm/admin@EXAMPLE.COM",
 }
],
 ...
}

Store multiple passwords for managed users

This sample demonstrates how to set up multiple passwords for managed users and how to synchronize separate passwords to
different external resources.

info
Some user IDs in Kerberos include characters such as a forward slash (/) and an "at sign" (@) that prevent them from
being used directly in a REST URL. For example, openidm/system/kerberos/account/kadmin/admin@EXAMPLE.COM ,
where the ID is kadmin/admin@EXAMPLE.COM . To retrieve such entries directly over REST, you must URL-encode the
Kerberos ID; for example:

"http://localhost:8080/openidm/system/kerberos/account/kadmin%2Fadmin%40EXAMPLE.COM"

Note

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 123

Configure the multiple passwords sample

This sample assumes the following scenario:

The managed/user repository is the source system.

There are two target LDAP servers— ldap and ldap2 .

For the purposes of this sample, the two servers are represented by two separate organizational units on a single
ForgeRock Directory Services (DS) instance.

Managed user objects have two additional password fields, each mapped to one of the two LDAP servers.

Both LDAP servers have a requirement for a password history policy, but the history size differs for the two policies.

The sample shows how to extend the password history policy described in Password history policy to apply to multiple
password fields.

The value of a managed user’s password field is used by default for the additional passwords unless the CREATE, UPDATE,
or PATCH requests on the managed user explicitly contain a value for these additional passwords.

The sample includes several customized configuration files in the samples/multiple-passwords/conf/ directory. These
customizations are crucial to the sample functionality and are described in detail in the following list:

provisioner.openicf-ldap.json

Configures the connection to the first LDAP directory.

provisioner.openicf-ldap2.json

Configures the connection to the second LDAP directory.

sync.json

Provides the mappings from the IDM managed user repository to the respective LDAP servers. The file includes two
mappings:

A mapping from IDM managed users to the LDAP user objects at the system/ldap/account endpoint. This
endpoint represents the ou=People subtree.

A mapping from IDM managed users to the LDAP user objects at the system/ldap2/account endpoint. This
endpoint represents the ou=Customers subtree.

info
You cannot run this sample through the admin UI. To make the sample work with the admin UI, set the viewable and
required fields of the password property in the conf/managed.json file as follows:

"password" : {
 "title" : "Password",
 "type" : "string",
 "viewable" : true,
...

Note

•

•

•

•

•

•

•

Samples PingIDM

124 Copyright © 2025 Ping Identity Corporation

Both mappings include an explicit mapping from ldapPassword and ldap2Password to userPassword in the standard
property mappings. Because these passwords are encrypted, a transform script is defined which uses
openidm.decrypt() to set the value on the target object.

managed.json

Contains a customized schema for managed users that includes the additional password fields.

This file has been customized as follows:

The schema includes an ldapPassword field that is mapped to the accounts in the system/ldap/accounts target.
This field is subject to the standard policies associated with the password field of a managed user. In addition, the
ldapPassword must contain two capital letters instead of the usual one capital letter requirement.

The schema includes an ldap2Password field that is mapped to the accounts in the system/ldap2/accounts
target. This field is subject to the standard policies associated with the password field of a managed user. In
addition, the ldap2Password must contain two numbers instead of the usual one number requirement.

A custom password history policy ("policyId" : "is-new") applies to each of the two mapped password fields
ldapPassword , and ldap2Password .

router.json

A scripted filter on managed/user and policy/managed/user that populates the values of the additional password fields
with the value of the main password field if the additional fields are not included in the request content.

The sample includes the following customized scripts in the script directory:

onCreate-user-custom.js and onUpdate-user-custom.js are used for validation of the password history policy when a
user is created or updated.

pwpolicy.js is an additional policy script for the password history policy.

set-additional-passwords.js populates the values of the additional password fields with the value of the main
password field if the additional fields are not included in the request content.

Password history policy

The sample includes a custom password history policy. Although the sample demonstrates the history of password attributes
only, you can use this policy to enforce history validation on any managed object property.

The following configuration changes set up the password history policy:

A fieldHistory property is added to managed users. The value of this field is a map of field names to a list of historical
values for that field. These lists of values are used by the policy to determine if a new value has previously been used.

The fieldHistory property is not accessible over REST by default, and cannot be modified.

The onCreate-user-custom.js script performs the standard onCreate tasks for a managed user object but also stores
the initial value of each of the fields for which IDM should keep a history. The script is passed the following configurable
properties:

•

•

•

•

•

•

•

•

historyFields a list of the fields to store history on.
historySize the number of historical fields to store.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 125

The onUpdate-user-custom.js script compares the old and new values of the historical fields on update events to
determine if the values have changed. When a new value is detected, it is stored in the list of historical values for that field.

This script also contains logic to deal with the comparison of encrypted field values. The script is passed the following
configurable properties:

The pwpolicy.js script contains the additional policy definition for the password history policy. This script compares the
new field value with the list of historical values for each field.

The policy configuration (policy.json) references this script in its additionalFiles list, so that the policy service loads
the policy definition. The new policy takes a historyLength parameter, which indicates the number of historical values to
enforce the policy on. This number must not exceed the historySize specified in the onCreate and onUpdate scripts.

The ldapPassword and ldap2Password fields in the managed user schema have been updated with the policy. For the
purposes of this sample the historySize has been set to 2 for ldapPassword and to 4 for ldap2Password .

LDAP server configuration

Set up DS using /path/to/openidm/samples/multiple-passwords/data/Example.ldif .

Perform an ldapsearch on the LDAP directory, and take note of the organizational units:

/path/to/opendj/bin/ldapsearch \
--port 1636 \
--useSSL \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--baseDN "dc=example,dc=com" \
--bindDN uid=admin \
--bindPassword password \
"ou=*" \
ou
dn: ou=People,dc=example,dc=com
ou: People

dn: ou=Customers,dc=example,dc=com
ou: people
ou: Customers

The organizational units, ou=People and ou=Customers , represent the two different target LDAP systems that our
mappings point to.

•

historyFields a list of the fields to store history on.
historySize the number of historical fields to store.

•

•

1.

2.

Samples PingIDM

126 Copyright © 2025 Ping Identity Corporation

Show multiple accounts

This section starts IDM with the sample configuration, then creates a user with multiple passwords, adhering to the different
policies in the configured password policy. The section tests that the user was synchronized to two separate LDAP directories,
with the different required passwords, and that the user can bind to each of these LDAP directories.

Prepare IDM as described in Prepare IDM, then start the server with the configuration for the multiple passwords sample:

cd /path/to/openidm/
./startup.sh -p samples/multiple-passwords

Create a user, jdoe, providing individual values for each of the different password fields, that comply with the three
different password policies:

1.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 127

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "userName": "jdoe",
 "givenName": "John",
 "sn": "Doe",
 "displayName": "John Doe",
 "mail": "john.doe@example.com",
 "password": "Secretpw1",
 "ldapPassword": "S3cretPw",
 "ldap2Password": "Secr3tpw1"
}' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "5ce188f6-252b-429e-aad1-4d8754d77de5",
 "_rev": "00000000d2d76089",
 "userName": "jdoe",
 "givenName": "John",
 "sn": "Doe",
 "displayName": "John Doe",
 "mail": "john.doe@example.com",
 "ldapPassword": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "lkackh...",
 "data": "T0mljk...",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "ehSMbdNn...",
 "mac": "PssPOsW..."
 }
 }
 },
 "ldap2Password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "lSzMTU54...",
 "data": "UWlQo5Ws...",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "ehSMbdN...",
 "mac": "PssPOs..."
 }
 }

Samples PingIDM

128 Copyright © 2025 Ping Identity Corporation

mailto:john.doe@example.com
mailto:john.doe@example.com

 },
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": [],
 "roles": []
}

The user has been created with three different passwords that comply with three distinct password policies. The
passwords have been encrypted as defined in the managed.json file.

As a result of implicit synchronization, two separate LDAP accounts should have been created for user jdoe on our two
simulated LDAP servers. For more information about implicit synchronization, refer to Synchronization types.

Query the IDs in the LDAP directory as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account?_queryId=query-all-ids"
{
 "result": [
 {
 "_id": "00452010-a164-4065-9f84-3e4636a3ee20",
 },
 {
 "_id": "e5b35587-2d7c-4faa-b3e5-962f5a4ada5c",
 }
],
 ...
}

jdoe has two entries—one in ou=People and one in ou=Customers .

To verify the passwords propagated correctly, perform an LDAP search, bound using each of the jdoe accounts, against
the rootDSE.

info
In this example, the user has been created with ID 5ce188f6-252b-429e-aad1-4d8754d77de5. You will need the
user ID when you update the entry later in this procedure.

Note

3.

4.

5.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 129

/path/to/opendj/bin/ldapsearch \
--hostname localhost \
--port 1636 \
--useSSL \
--bindDN uid=jdoe,ou=People,dc=example,dc=com \
--bindPassword S3cretPw \
--searchScope base \
--baseDN "" "(objectClass=*)"
dn:
objectClass: top
objectClass: ds-root-dse

/path/to/opendj/bin/ldapsearch \
--hostname localhost \
--port 1636 \
--useSSL \
--bindDN uid=jdoe,ou=Customers,dc=example,dc=com \
--bindPassword Secr3tpw1 \
--searchScope base \
--baseDN "" "(objectClass=*)"
dn:
objectClass: top
objectClass: ds-root-dse

Patch jdoe’s managed user entry (5ce188f6-252b-429e-aad1-4d8754d77de5) to change his ldapPassword :

info
For the following commands, make sure to enter 2 or 3 at the following prompt:

Do you trust this server certificate?

 1) No
 2) Yes, for this session only
 3) Yes, also add it to a truststore
 4) View certificate details

Enter choice [1]: 2

Note

6.

Samples PingIDM

130 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[{
 "operation": "replace",
 "field": "ldapPassword",
 "value": "TTestw0rd"
}]' \
"http://localhost:8080/openidm/managed/user/5ce188f6-252b-429e-aad1-4d8754d77de5"
{
 "_id": "5ce188f6-252b-429e-aad1-4d8754d77de5",
 "_rev": "000000001298f6a6",
 "userName": "jdoe",
 "givenName": "John",
 "sn": "Doe",
 "displayName": "John Doe",
 ...
 "ldapPassword": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "Vlco8e...",
 "data": "INj9lk...",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "ehSMbdNn...",
 "mac": "PssPOsW..."
 }
 }
 },
 ...
}

To verify the password change propagated correctly, perform an LDAP search, bound using jdoe from the People
organizational unit, against the rootDSE.

7.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 131

/path/to/opendj/bin/ldapsearch \
--hostname localhost \
--port 1636 \
--useSSL \
--bindDN uid=jdoe,ou=People,dc=example,dc=com \
--bindPassword TTestw0rd \
--searchScope base \
--baseDN "" "(objectClass=*)"
dn:
objectClass: top
objectClass: ds-root-dse

Show the password history policy

This section demonstrates the password history policy by patching jdoe’s managed user entry, changing his ldapPassword
multiple times.

Send the following patch requests, changing the value of jdoe’s ldapPassword each time:

info
For the following command, make sure to enter 2 or 3 at the following prompt:

Do you trust this server certificate?

 1) No
 2) Yes, for this session only
 3) Yes, also add it to a truststore
 4) View certificate details

Enter choice [1]: 2

Note

1.

Samples PingIDM

132 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[{
 "operation": "replace",
 "field": "ldapPassword",
 "value": "TTestw0rd1"
}]' \
"http://localhost:8080/openidm/managed/user/5ce188f6-252b-429e-aad1-4d8754d77de5"
{
 "_id": "5ce188f6-252b-429e-aad1-4d8754d77de5",
 "_rev": "00000000a92657c7",
 "userName": "jdoe",
 "givenName": "John",
 "sn": "Doe",
 "displayName": "John Doe",
 "mail": "john.doe@example.com",
 ...
 "ldapPassword": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "TjolL7...",
 "data": "Unbalo...",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "ehSMbdNn...",
 "mac": "PssPOsW..."
 }
 }
 },
 ...
}

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 133

mailto:john.doe@example.com

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[{
 "operation": "replace",
 "field": "ldapPassword",
 "value": "TTestw0rd2"
}]' \
"http://localhost:8080/openidm/managed/user/5ce188f6-252b-429e-aad1-4d8754d77de5"
{
 "_id": "5ce188f6-252b-429e-aad1-4d8754d77de5",
 "_rev": "00000000dc6160c8",
 "userName": "jdoe",
 "givenName": "John",
 "sn": "Doe",
 "displayName": "John Doe",
 ...
 "ldapPassword": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "Ynio9n...",
 "data": "R0ol2b...",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "ehSMbdNn...",
 "mac": "PssPOsW..."
 }
 }
 },
 ...
}

Samples PingIDM

134 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[{
 "operation": "replace",
 "field": "ldapPassword",
 "value": "TTestw0rd3"
}]' \
"http://localhost:8080/openidm/managed/user/5ce188f6-252b-429e-aad1-4d8754d77de5"
{
 "_id": "5ce188f6-252b-429e-aad1-4d8754d77de5",
 "_rev": "00000000a92657c7",
 "userName": "jdoe",
 "givenName": "John",
 "sn": "Doe",
 "displayName": "John Doe",
 ...
 "ldapPassword": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "9kilajT...",
 "data": "Hnkja98...",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "ehSMbdNn...",
 "mac": "PssPOsW..."
 }
 }
 },
 ...
}

User jdoe now has a history of ldapPassword values, that contains TTestw0rd3 , TTestw0rd2 , TTestw0rd1 , and
TTestw0rd , in that order.

The history size for the ldapPassword policy is set to 2. To demonstrate the history policy, attempt to patch jdoe’s entry
with a password value that was used in his previous 2 password changes: TTestw0rd2 :

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 135

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[{
 "operation": "replace",
 "field": "ldapPassword",
 "value": "TTestw0rd2"
}]' \
"http://localhost:8080/openidm/managed/user/5ce188f6-252b-429e-aad1-4d8754d77de5"
{
 "code": 403,
 "reason": "Forbidden",
 "message": "Failed policy validation",
 "detail": {
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "IS_NEW"
 }
],
 "property": "ldapPassword"
 }
]
 }
}

The password change fails the IS_NEW policy requirement.

Change jdoe’s ldapPassword to a value not used in the previous two updates:3.

Samples PingIDM

136 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[{
 "operation": "replace",
 "field": "ldapPassword",
 "value": "TTestw0rd"
}]' \
"http://localhost:8080/openidm/managed/user/5ce188f6-252b-429e-aad1-4d8754d77de5"
{
 "_id": "5ce188f6-252b-429e-aad1-4d8754d77de5",
 "_rev": "00000000792afa08",
 "userName": "jdoe",
 "givenName": "John",
 "sn": "Doe",
 "displayName": "John Doe",
 ...
 "ldapPassword": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "Ivmal5...",
 "data": "0mkywe...",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "ehSMbdNn...",
 "mac": "PssPOsW..."
 }
 }
 },
 ...
}

The password change succeeds.

Link Multiple Accounts to a Single Identity

This sample illustrates how IDM handles links from multiple accounts to a single identity.

The sample is based on a common use case in the insurance industry, where a company (Example.com) employs agents to sell
policies to their insured customers. Most of their agents are also insured, which means that they have two distinct roles within the
company - customers, and agents. With minor changes, this sample works for other use cases. For example, a hospital employs
doctors who treat patients, and some of those same doctors are also patients of the hospital.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 137

Sample Overview

You define mappings between source and target accounts in your project’s sync.json file. As part of a mapping, you can create a
link between a single source account and multiple target accounts using a link qualifier, that enables one-to-many relationships in
mappings and policies. For more information about mappings and link qualifiers, refer to Resource mapping and Map a Single
Source Object to Multiple Target Objects.

This sample uses two link qualifiers:

Insured represents the accounts associated with Example.com’s Insured customers, created under the LDAP container
ou=Customers,dc=example,dc=com .

Agent represents agent accounts, considered independent contractors, and created under the LDAP container
ou=Contractors,dc=example,dc=com .

Assume that agents and insured customers connect using two different portals, and that each group has access to different
features, depending on the portal.

Agents might have two separate accounts; one each for professional and personal use. Although the accounts are different, the
identity information for each agent should be the same for both accounts.

This sample therefore uses link qualifiers to distinguish the two categories of users. The link qualifiers are named insured and
agent , and are defined as part of the managedUser_systemLdapAccounts mapping in the sync.json file:

{
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "linkQualifiers" : [
 "insured",
 "agent"
],
 ...
}

You can check this configuration in the admin UI. Click Configure > Mappings > managedUser_systemLdapAccounts > Properties
> Link Qualifiers. You should see insured and agent in the list of configured link qualifiers.

In addition, the sample uses a transformation script that determines the LDAP Distinguished Name (dn) from the user category.
The following excerpt of the sync.json file shows that script:

•

•

Samples PingIDM

138 Copyright © 2025 Ping Identity Corporation

{
 "target" : "dn",
 "transform" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" :
 "if (linkQualifier === 'agent') {
 'uid=' + source.userName + ',ou=Contractors,dc=example,dc=com';
 } else if (linkQualifier === 'insured') {
 'uid=' + source.userName + ',ou=Customers,dc=example,dc=com';
 }"
},

Finally, the following validSource script assesses the effective roles of a managed user to determine if that user has an Agent
or Insured role. The script then assigns a link qualifier based on the assessed role.

"validSource" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "var res = false;
 var i=0;

 while (!res && i < source.effectiveRoles.length) {
 var roleId = source.effectiveRoles[i]._ref;
 if (roleId != null && roleId.indexOf("/") != -1) {
 var roleInfo = openidm.read(roleId);
 res = (((roleInfo.name === 'Agent') &&(linkQualifier ==='agent'))
 || ((roleInfo.name === 'Insured') &&(linkQualifier ==='insured')));
 }
 i++;
 }
 res"
}

Prepare the Sample

Set up DS using /path/to/openidm/samples/multi-account-linking/data/Example.ldif .

Prepare IDM, and start the server using the sample configuration:

cd /path/to/openidm/
./startup.sh -p samples/multi-account-linking

Run the Sample

Create the Users, Roles, and Assignments

Create the managed users for John Doe and Barbara Jensen.

1.

2.

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 139

To set up these managed users using the admin UI, select Manage > User > New User; otherwise, using the REST
interface:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "displayName" : "Barbara Jensen",
 "description" : "Created for OpenIDM",
 "givenName" : "Barbara",
 "mail" : "bjensen@example.com",
 "telephoneNumber" : "1-360-229-7105",
 "sn" : "Jensen",
 "userName" : "bjensen",
 "accountStatus" : "active"
}' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "580f1441-ff8e-434b-9605-90e10a6fbdf6",
 "_rev": "00000000792afa08",
 "displayName": "Barbara Jensen",
 "description": "Created for OpenIDM",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "1-360-229-7105",
 "sn": "Jensen",
 "userName": "bjensen",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Samples PingIDM

140 Copyright © 2025 Ping Identity Corporation

mailto:bjensen@example.com
mailto:bjensen@example.com

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "displayName" : "John Doe",
 "description" : "Created for OpenIDM",
 "givenName" : "John",
 "mail" : "jdoe@example.com",
 "telephoneNumber" : "1-415-599-1100",
 "sn" : "Doe",
 "userName" : "jdoe",
 "accountStatus" : "active"
}' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "02632173-e413-4af1-8495-f749d5880226",
 "_rev": "000000001298f6a6",
 "displayName": "John Doe",
 "description": "Created for OpenIDM",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "1-415-599-1100",
 "sn": "Doe",
 "userName": "jdoe",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Set up the managed roles Agent and Insured, to distinguish between the two user types.

To set up these roles using the admin UI, select Manage > Role > New Role; otherwise, using the REST interface:

info
Make sure to record the unique _id for both managed users.

Note

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 141

mailto:jdoe@example.com
mailto:jdoe@example.com

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "name" : "Agent",
 "description" : "Role assigned to insurance agents."
}' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "1b58ec8d-fae2-4b28-a5cf-b63567e4cf3f",
 "_rev": "000000005b3d5ebd",
 "name": "Agent",
 "description": "Role assigned to insurance agents."
}

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "name" : "Insured",
 "description" : "Role assigned to insured customers."
}' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "617368f2-fa4e-44a2-a25a-f0a86e16ef00",
 "_rev": "000000002b845f24",
 "name": "Insured",
 "description": "Role assigned to insured customers."
}

Grant the managed roles to the users. In this sample, jdoe is an agent and customer, and bjensen is only a customer.

To grant the roles, you need the _id s you recorded when you created the users and roles.

The following command grants the Agent role to jdoe:

info
Make sure to record the unique _id for both managed roles.

Note

3.

1.

Samples PingIDM

142 Copyright © 2025 Ping Identity Corporation

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/roles/-",
 "value": {
 "_ref": "managed/role/1b58ec8d-fae2-4b28-a5cf-b63567e4cf3f"
 }
 }
]' \
"http://localhost:8080/openidm/managed/user/02632173-e413-4af1-8495-f749d5880226"
{
 "_id": "02632173-e413-4af1-8495-f749d5880226",
 "_rev": "00000000dc6160c8",
 "displayName": "John Doe",
 "description": "Created for OpenIDM",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "1-415-599-1100",
 "sn": "Doe",
 "userName": "jdoe",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "1b58ec8d-fae2-4b28-a5cf-b63567e4cf3f",
 "_ref": "managed/role/1b58ec8d-fae2-4b28-a5cf-b63567e4cf3f"
 }
]
}

The following command grants the Insured role to user bjensen:2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 143

mailto:jdoe@example.com

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/roles/-",
 "value": {
 "_ref": "managed/role/617368f2-fa4e-44a2-a25a-f0a86e16ef00"
 }
 }
]' \
"http://localhost:8080/openidm/managed/user/580f1441-ff8e-434b-9605-90e10a6fbdf6"
{
 "_id": "580f1441-ff8e-434b-9605-90e10a6fbdf6",
 "_rev": "000000004cab60c8",
 "displayName": "Barbara Jensen",
 "description": "Created for OpenIDM",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "1-360-229-7105",
 "sn": "Jensen",
 "userName": "bjensen",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "617368f2-fa4e-44a2-a25a-f0a86e16ef00",
 "_ref": "managed/role/617368f2-fa4e-44a2-a25a-f0a86e16ef00"
 }
]
}

The following command grants the Insured role to jdoe:3.

Samples PingIDM

144 Copyright © 2025 Ping Identity Corporation

mailto:bjensen@example.com

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/roles/-",
 "value": {
 "_ref": "managed/role/617368f2-fa4e-44a2-a25a-f0a86e16ef00"
 }
 }
]' \
"http://localhost:8080/openidm/managed/user/02632173-e413-4af1-8495-f749d5880226"
{
 "_id": "02632173-e413-4af1-8495-f749d5880226",
 "_rev": "00000000a92657c7",
 "displayName": "John Doe",
 "description": "Created for OpenIDM",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "1-415-599-1100",
 "sn": "Doe",
 "userName": "jdoe",
 "accountStatus": "active",
 "effectiveAssignments": []
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "1b58ec8d-fae2-4b28-a5cf-b63567e4cf3f",
 "_ref": "managed/role/1b58ec8d-fae2-4b28-a5cf-b63567e4cf3f"
 },
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "617368f2-fa4e-44a2-a25a-f0a86e16ef00",
 "_ref": "managed/role/617368f2-fa4e-44a2-a25a-f0a86e16ef00"
 }
]
}

Notice jdoe now has two managed roles, as shown by the multiple effectiveRoles .

Create the managed assignments.

Assignments specify what a role actually does on a target system. A single account frequently has different functions on a
system. For example, while agents might be members of the Contractor group, insured customers might be part of a Chat
Users group (possibly for access to customer service). The following commands create two managed assignments that will
be attached to the agent and insured roles. Note the _id of each assignment because you will need these when you
attach the assignment to its corresponding role.

4.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 145

mailto:jdoe@example.com

The following command creates an ldapAgent assignment. Users who have this assignment will have their ldapGroups
property in DS set to cn=Contractors,ou=Groups,dc=example,dc=com . The assignment is associated with the agent link
qualifier:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "name": "ldapAgent",
 "description": "LDAP Agent Assignment",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "ldapGroups",
 "value": [
 "cn=Contractors,ou=Groups,dc=example,dc=com"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
],
 "linkQualifiers": ["agent"]
}' \
"http://localhost:8080/openidm/managed/assignment?_action=create"
{
 "_id": "cc0dbcdc-64a4-4f5b-aade-648fc012e2b5",
 "_rev": "00000000c7554e13",
 "name": "ldapAgent",
 "description": "LDAP Agent Assignment",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "ldapGroups",
 "value": [
 "cn=Contractors,ou=Groups,dc=example,dc=com"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
],
 "linkQualifiers": [
 "agent"
]
}

The following command creates an ldapCustomer assignment. Users who have this assignment will have their
ldapGroups property in DS set to cn=Chat Users,ou=Groups,dc=example,dc=com . The assignment is associated with the
insured link qualifier:

Samples PingIDM

146 Copyright © 2025 Ping Identity Corporation

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "name": "ldapCustomer",
 "description": "LDAP Customer Assignment",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "ldapGroups",
 "value": [
 "cn=Chat Users,ou=Groups,dc=example,dc=com"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
],
 "linkQualifiers": ["insured"]
}' \
"http://localhost:8080/openidm/managed/assignment?_action=create"
{
 "_id": "56b1f300-7156-4110-9b23-2052c16dd2aa",
 "_rev": "000000000cde398e",
 "name": "ldapCustomer",
 "description": "LDAP Customer Assignment",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "ldapGroups",
 "value": [
 "cn=Chat Users,ou=Groups,dc=example,dc=com"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
],
 "linkQualifiers": [
 "insured"
]
}

Add the assignments to their respective roles.

Add the ldapCustomer assignment to the Insured customer role:

5.

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 147

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/assignments/-",
 "value": {
 "_ref": "managed/assignment/56b1f300-7156-4110-9b23-2052c16dd2aa"
 }
 }
]' \
"http://localhost:8080/openidm/managed/role/617368f2-fa4e-44a2-a25a-f0a86e16ef00"
{
 "_id": "617368f2-fa4e-44a2-a25a-f0a86e16ef00",
 "_rev": "0000000050c62938",
 "name": "Insured",
 "description": "Role assigned to insured customers."
}

Add the ldapAgent assignment to the Agent role:

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/assignments/-",
 "value" : {
 "_ref": "managed/assignment/cc0dbcdc-64a4-4f5b-aade-648fc012e2b5"
 }
 }
]' \
"http://localhost:8080/openidm/managed/role/1b58ec8d-fae2-4b28-a5cf-b63567e4cf3f"
{
 "_id": "1b58ec8d-fae2-4b28-a5cf-b63567e4cf3f",
 "_rev": "0000000013e50a6b",
 "name": "Agent",
 "description": "Role assigned to insurance agents."
}

Reconcile Managed Users to the LDAP Server

With the managed roles and assignments set up, reconcile the managed user repository with the DS data store:

2.

1.

Samples PingIDM

148 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=recon&mapping=managedUser_systemLdapAccounts"
{
 "_id": "a6b46fc6-0731-47d8-83b5-89cca8963512-11550",
 "state": "ACTIVE"
}

This reconciliation creates three new accounts in DS:

Two accounts under ou=Customers,dc=example,dc=com (one for each user who has the insured customers role),
bjensen and jdoe .

One account under ou=Contractors,dc=example,dc=com (for the use who has the agents role), jdoe .

Query the list of users in DS to see the multiple accounts created for jdoe and bjensen as a result of the reconciliation:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account?_queryId=query-all-ids"
{
 "result": [
 {
 "_id": "3bbf1f43-e120-4d34-a4c9-05bd02be23bd"
 },
 {
 "_id": "d6c73ea1-fd05-4b80-8625-c50303755c91"
 },
 {
 "_id" : "0acc77a5-0f38-473b-b533-e37ca1d4fd4c"
 },
 {
 "_id" : "3310b29a-0d7f-4ed5-aa0d-795d2780e002"
 },
 {
 "_id" : "3c8e3c3d-f748-44c1-8cfc-172f5b0a9b5e"
 }
],
 ...
}

◦

◦

info
Both users already exist in DS, from the Example.ldif file that you imported during the setup.

Note

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 149

Link historical accounts

This sample demonstrates the retention of inactive (historical) LDAP accounts that have been linked to a corresponding managed
user account. The sample builds on Two-way synchronization between LDAP and IDM and uses the LDAP connector to connect
to a ForgeRock Directory Services (DS) instance. You can use any LDAP-v3 compliant directory server.

Sample overview

In this sample, IDM is the source resource. Managed users in the IDM repository maintain a list of the accounts to which they
have been linked on the local LDAP server. This list is stored in the historicalAccounts field of the managed user entry. The list
contains a reference to all past and current LDAP accounts. Each LDAP account in the list is represented as a relationship and
includes information about the date the accounts were linked or unlinked, and whether the account is currently active.

This sample includes the following custom scripts, in its script directory:

onLink-managedUser_systemLdapAccounts.js

When a managed user object is linked to a target LDAP object, this script creates the relationship entry in the managed
user’s historicalAccounts property. The script adds two relationship properties:

linkDate —specifies the date that the link was created.

active —boolean true/false. When set to true, this property indicates that the target object is currently linked to
the managed user account.

onUnlink-managedUser_systemLdapAccounts.js

When a managed user object is unlinked from a target LDAP object, this script updates that relationship entry’s properties
with an unlinkDate that specifies when the target was unlinked, and sets the active property to false, indicating that
the target object is no longer linked.

check_account_state_change.js

During liveSync or reconciliation, this script checks if the LDAP account state has changed. If the state has changed, the
script updates the historical account properties to indicate the new state (enabled or disabled), and the date that the state
was changed. This date can only be approximated and is set to the time that the change was detected by the script.

ldapBackCorrelationQuery.js

This script correlates entries in the LDAP directory with managed user identities in IDM.

Run the sample

This section walks you through each step of the sample to demonstrate how historical accounts are stored.

Set up DS using /path/to/openidm/samples/historical-account-linking/data/Example.ldif .

Prepare IDM, and start the server using the sample configuration:

cd /path/to/openidm/
./startup.sh -p samples/historical-account-linking

•

◦

◦

•

•

•

1.

2.

Samples PingIDM

150 Copyright © 2025 Ping Identity Corporation

Create a user, Joe Smith, in IDM:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "userName": "joe.smith",
 "givenName": "Joe",
 "sn" : "Smith",
 "password" : "Passw0rd",
 "displayName" : "Joe Smith",
 "mail" : "joe.smith@example.com"
}' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "24356bf0-f026-4dc1-9f68-2a571b0a236f",
 "_rev": "00000000c8dc2137",
 "userName": "joe.smith",
 "givenName": "Joe",
 "sn": "Smith",
 "displayName": "Joe Smith",
 "mail": "joe.smith@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Record Joe Smith’s system-generated _id .

Verify that the user Joe Smith was created in DS.

Because implicit synchronization is enabled by default, any change to the managed/user repository should be propagated
to DS. For more information about implicit synchronization, refer to Synchronization types.

The following command returns all users in DS and shows that user joesmith was created successfully:

3.

4.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 151

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account?_queryFilter=true&_fields=_id,dn"
{
 "result": [
 {
 "_id": "0da50512-79bb-3461-bd04-241ee4c785bf",
 "dn": "uid=jdoe,ou=People,dc=example,dc=com"
 },
 {
 "_id": "887732e8-3db2-31bb-b329-20cd6fcecc05",
 "dn": "uid=bjensen,ou=People,dc=example,dc=com"
 },
 {
 "_id": "da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa",
 "dn": "uid=joe.smith0,ou=People,dc=example,dc=com"
 }
],
 ...
}

Verify that the historical account relationship object that corresponds to this linked LDAP account was created in the IDM
repository.

The following command queries Joe Smith’s managed user entry and returns all of the historicalAccounts for that
entry:

info
Joe Smith’s uid in DS is appended with a 0. The onCreate script, defined in the mapping (sync.json),
increments the uid each time a new DS entry is linked to the same managed user object.

Note

5.

Samples PingIDM

152 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/24356bf0-f026-4dc1-9f68-2a571b0a236f/historicalAccounts?
_queryFilter=true"
{
 "result": [
 {
 "_id": "3f193422-156b-4b66-adcf-447db1b7d770",
 "_rev": "00000000c2beced4",
 "_ref": "system/ldap/account/da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa",
 "_refResourceCollection": "system/ldap/account",
 "_refResourceId": "da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa",
 "_refProperties": {
 "active": true,
 "stateLastChanged": "Mon May 18 2020 13:47:18 GMT+0200 (SAST)",
 "state": "enabled",
 "linkDate": "Mon May 18 2020 13:47:18 GMT+0200 (SAST)",
 "_id": "3f193422-156b-4b66-adcf-447db1b7d770",
 "_rev": "00000000c2beced4"
 }
 }
],
 ...
}

At this stage, Joe Smith has only one historical account link—the link to system/ldap/account/
da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa , which corresponds to the DN "dn":
"uid=joe.smith0,ou=People,dc=example,dc=com" . Note that the relationship properties (_refProperties) show the
following information about the linked accounts:

The date on which the accounts were linked

The fact that this link is currently active

The state of the account in DS (enabled)

Enable the liveSync schedule to propagate changes made in DS to the managed user repository.

To start liveSync, set enabled to true in the conf/schedule-liveSync.json file:

more /path/to/openidm/samples/historical-account-linking/conf/schedule-liveSync.json
{
 "enabled" : true,
 "type" : "simple",
 "repeatInterval" : 15000,
...

Use the manage-account command in the opendj/bin directory to disable Joe Smith’s account in DS:

◦

◦

◦

6.

7.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 153

/path/to/opendj/bin/manage-account set-account-is-disabled \
--port 4444 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--bindDN uid=admin \
--bindPassword password \
--operationValue true \
--targetDN uid=joe.smith0,ou=people,dc=example,dc=com
Account Is Disabled: true

Within 15 seconds, according to the configured schedule, liveSync should pick up the change. IDM should then adjust the
state property in Joe Smith’s managed user account.

To make sure that the linked account state has changed, request Joe Smith’s historical accounts:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/24356bf0-f026-4dc1-9f68-2a571b0a236f/historicalAccounts?
_queryFilter=true"
{
 "result": [
 {
 "_id": "3f193422-156b-4b66-adcf-447db1b7d770",
 "_rev": "00000000d430e15a",
 "_ref": "system/ldap/account/da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa",
 "_refResourceCollection": "system/ldap/account",
 "_refResourceId": "da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa",
 "_refProperties": {
 "active": true,
 "stateLastChanged": "Mon May 18 2020 13:51:06 GMT+0200 (SAST)",
 "state": "disabled",
 "linkDate": "Mon May 18 2020 13:47:18 GMT+0200 (SAST)",
 "_id": "3f193422-156b-4b66-adcf-447db1b7d770",
 "_rev": "00000000d430e15a"
 }
 }
],
 ...
}

Now, deactivate Joe Smith’s managed user account by setting his accountStatus property to inactive .

To do this by using the admin UI, select Manage > User, select Joe Smith's account, and change his Status to inactive on
his Details tab.

The following command deactivates Joe Smith’s account over REST:

8.

9.

Samples PingIDM

154 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 { "operation" : "replace",
 "field" : "accountStatus",
 "value" : "inactive" }
]' \
"http://localhost:8080/openidm/managed/user/24356bf0-f026-4dc1-9f68-2a571b0a236f"
{
 "_id": "24356bf0-f026-4dc1-9f68-2a571b0a236f",
 "_rev": "000000004cc82207",
 "userName": "joe.smith",
 "givenName": "Joe",
 "sn": "Smith",
 "displayName": "Joe Smith",
 "mail": "joe.smith@example.com",
 "accountStatus": "inactive",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Request Joe Smith’s historical accounts:10.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 155

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/24356bf0-f026-4dc1-9f68-2a571b0a236f/historicalAccounts?
_queryFilter=true"
{
 "result": [
 {
 "_id": "3f193422-156b-4b66-adcf-447db1b7d770",
 "_rev": "0000000037beefe7",
 "_ref": "system/ldap/account/da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa",
 "_refResourceCollection": "system/ldap/account",
 "_refResourceId": "da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa",
 "_refProperties": {
 "active": false,
 "stateLastChanged": "Mon May 18 2020 13:51:06 GMT+0200 (SAST)",
 "state": "disabled",
 "linkDate": "Mon May 18 2020 13:47:18 GMT+0200 (SAST)",
 "unlinkDate": "Mon May 18 2020 13:52:33 GMT+0200 (SAST)",
 "_id": "3f193422-156b-4b66-adcf-447db1b7d770",
 "_rev": "0000000037beefe7"
 }
 }
]
 ...
}

Activate Joe Smith’s managed user account by setting his accountStatus property to active. This action should create a
new entry in DS (with uid=joe.smith1), and a new link from Joe Smith’s managed user object to that DS entry.

You can activate the account over the REST interface, or by using the admin UI, as described previously.

The following command activates Joe Smith’s account over REST:

11.

Samples PingIDM

156 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 { "operation" : "replace",
 "field" : "accountStatus",
 "value" : "active" }
]' \
"http://localhost:8080/openidm/managed/user/24356bf0-f026-4dc1-9f68-2a571b0a236f"
{
 "_id": "24356bf0-f026-4dc1-9f68-2a571b0a236f",
 "_rev": "00000000c8d52133",
 "userName": "joe.smith",
 "givenName": "Joe",
 "sn": "Smith",
 "displayName": "Joe Smith",
 "mail": "joe.smith@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Verify that a new LDAP entry for user Joe Smith was created in DS.

The following command returns all IDs in DS and shows that two entries now exist for Joe Smith: uid=joe.smith0 and
uid=joe.smith1 .

12.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 157

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account?_queryFilter=true&_fields=_id,dn"
{
 "result": [
 {
 "_id": "0da50512-79bb-3461-bd04-241ee4c785bf",
 "dn": "uid=jdoe,ou=People,dc=example,dc=com"
 },
 {
 "_id": "887732e8-3db2-31bb-b329-20cd6fcecc05",
 "dn": "uid=bjensen,ou=People,dc=example,dc=com"
 },
 {
 "_id": "da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa",
 "dn": "uid=joe.smith0,ou=People,dc=example,dc=com"
 },
 {
 "_id": "52821eec-e00d-4321-8857-f46a870afc45",
 "dn": "uid=joe.smith1,ou=People,dc=example,dc=com"
 }
],
 ...
}

Request Joe Smith’s historical accounts:13.

Samples PingIDM

158 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/24356bf0-f026-4dc1-9f68-2a571b0a236f/historicalAccounts?
_queryFilter=true"
{
 "result": [
 {
 "_id": "3f193422-156b-4b66-adcf-447db1b7d770",
 "_rev": "0000000037beefe7",
 "_ref": "system/ldap/account/da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa",
 "_refResourceCollection": "system/ldap/account",
 "_refResourceId": "da7c8fe9-4959-4dc9-9cd5-60c0ead9b0aa",
 "_refProperties": {
 "active": false,
 "stateLastChanged": "Mon May 18 2020 13:51:06 GMT+0200 (SAST)",
 "state": "disabled",
 "linkDate": "Mon May 18 2020 13:47:18 GMT+0200 (SAST)",
 "unlinkDate": "Mon May 18 2020 13:52:33 GMT+0200 (SAST)",
 "_id": "3f193422-156b-4b66-adcf-447db1b7d770",
 "_rev": "0000000037beefe7"
 }
 },
 {
 "_id": "8850640c-2233-4ddc-9725-6b4b2d59605f",
 "_rev": "000000000843ce68",
 "_ref": "system/ldap/account/52821eec-e00d-4321-8857-f46a870afc45",
 "_refResourceCollection": "system/ldap/account",
 "_refResourceId": "52821eec-e00d-4321-8857-f46a870afc45",
 "_refProperties": {
 "active": true,
 "stateLastChanged": "Mon May 18 2020 13:54:52 GMT+0200 (SAST)",
 "state": "enabled",
 "linkDate": "Mon May 18 2020 13:54:52 GMT+0200 (SAST)",
 "_id": "8850640c-2233-4ddc-9725-6b4b2d59605f",
 "_rev": "000000000843ce68"
 }
 }
],
 ...
}

Joe Smith’s entry now shows two DS accounts, but that only the link to uid=joe.smith1 ("_ref": "system/ldap/
account/52821eec-e00d-4321-8857-f46a870afc45",) is enabled and active .

Provision users with roles

This sample demonstrates how attributes are provisioned to an external system (an LDAP directory), based on role membership.
This sample uses ForgeRock Directory Services (DS) as the LDAP directory, but you can use any LDAP v3-compliant server.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 159

Sample overview

IDM supports two types of roles:

Provisioning roles specify how objects are provisioned to an external system.

Authorization roles specify the authorization rights of a managed object internally, within IDM.

Both provisioning roles and authorization roles use relationships to link the role object, and the managed object to which the role
applies. For information about managing roles, refer to Managed Roles.

The main purpose of IDM roles is to provision a set of attributes, based on a managed user’s role membership.

The sample assumes a company, example.com. As an Employee of example.com, a user should be added to two groups in DS - the
Employees group and the Chat Users group (presumably to access certain internal applications). As a Contractor, a user should be
added only to the Contractors group in DS. A user’s employee type must also be set correctly in DS, based on the role that is
granted to the user.

Prepare the sample

Configure the LDAP server as shown in LDAP Server Configuration. The LDAP user must have write access to create users from
IDM on the LDAP server. When you set up the LDAP server, import the LDIF file for this sample (openidm/samples/provisioning-
with-roles/data/Example.ldif) .

This section sets up the scenario by performing the following tasks:

Start IDM with the configuration for this sample.

Create two managed roles, Employee and Contractor.

Reconcile the managed user repository with the user entries in the LDAP server.

Prepare IDM, and start the server using the sample configuration:

cd /path/to/openidm/
./startup.sh -p samples/provisioning-with-roles

Create two managed roles, Employee and Contractor, either by using the admin UI, or by running the following
commands:

•

•

info
Most of the commands in this sample can be run using the command-line, but it is generally easier to use the admin
UI. In some cases, the command-line version makes it easier to explain what is happening in IDM. Therefore, in all
steps, the sample first shows the command-line version, and then provides the equivalent method of running the
command in the admin UI.

Note

1.

2.

3.

1.

2.

Samples PingIDM

160 Copyright © 2025 Ping Identity Corporation

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "name" : "Employee",
 "description": "Role granted to workers on the payroll."
}' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "d4f6b571-7e71-4901-8033-090a15098867",
 "_rev": "00000000ba0f5c8d",
 "name": "Employee",
 "description": "Role granted to workers on the payroll."
}

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "name": "Contractor",
 "description": "Role granted to contract workers."
}' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "95899c38-e483-4d89-8aec-a88baab0603a",
 "_rev": "00000000c7cb5c0f",
 "name": "Contractor",
 "description": "Role granted to contract workers."
}

Reconcile the repository.

The sync.json configuration file for this sample includes two mappings:

systemLdapAccounts_managedUser , which synchronizes users from the source LDAP server with the target IDM
repository.

managedUser_systemLdapAccounts , which synchronizes changes from the repository with the LDAP server.

Run a reconciliation operation for the first mapping, either by using the admin UI, or over the REST interface:

To use the admin UI, select Configure > Mapping, click on the first mapping (System/Ldap/Account → Managed
User), and click Reconcile.

info
Make sure to record these two role IDs, as they are required to complete the sample.

Note

3.

◦

◦

◦

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 161

To use the REST interface, run the following command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemLdapAccounts_managedUser&waitForCompletion=true"
{
 "_id": "61abc9a3-a9cb-4d4b-b063-17891c3b355c-2541",
 "state": "SUCCESS"
}

The sample is now ready to demonstrate provisioning roles.

Run the sample

This section assumes that you have reconciled the managed user repository to populate it with the users from the LDAP server,
and that you have created the Employee and Contractor roles.

This part of the sample demonstrates the following features of the roles implementation:

Add Assignments to a Role Definition

Grant a Role to a User and Observe that User’s Role Assignments

Propagate Assignments to an External System

Remove a Role Grant From a User and Observe That User’s Role Assignments

Add assignments to a role definition

An assignment is the logic that provisions a managed user to an external system, based on some criteria. The most common use
case of an assignment is the provisioning of specific attributes to an external system, based on the role or roles that the managed
user has been granted. Assignments are sometimes called entitlements.

In this section, you will create an assignment and add it to the Employee role that you created previously. This section assumes
the following scenario:

example.com’s policy requires that every employee has the correct value for their employeeType in their corporate directory (DS).

Display the roles that you created in the previous section:

◦

•

•

•

•

1.

Samples PingIDM

162 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/role?_queryFilter=true"
{
 "result": [
 {
 "_id": "d4f6b571-7e71-4901-8033-090a15098867",
 "_rev": "00000000ba0f5c8d",
 "name": "Employee",
 "description": "Role granted to workers on the payroll."
 },
 {
 "_id": "95899c38-e483-4d89-8aec-a88baab0603a",
 "_rev": "00000000c7cb5c0f",
 "name": "Contractor",
 "description": "Role granted to contract workers."
 }
],
 ...
}

Create a new managed assignment named Employee.

The assignment is specifically for the mapping from the managed user repository to the LDAP server. The assignment sets
the value of the employeeType attribute on the LDAP server to Employee :

lightbulb_2
Display the roles in the admin UI by selecting Manage > Role.

Tip

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 163

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-type: application/json" \
--request POST \
--data '{
 "name" : "Employee",
 "description": "Assignment for employees.",
 "mapping" : "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation" : "mergeWithTarget",
 "unassignmentOperation" : "removeFromTarget"
 }
]
 }' \
"http://localhost:8080/openidm/managed/assignment?_action=create"
{
 "_id": "1bbda95c-2a89-4e09-9719-8957849febeb",
 "_rev": "00000000ca15975d",
 "name": "Employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}

Samples PingIDM

164 Copyright © 2025 Ping Identity Corporation

Add the assignment to the Employee role that you created previously.

Assignments are implemented as relationship objects. This means that you add an assignment to a role by referencing the
assignment in the role’s assignments field:

This command patches the Employee role to update its assignments field:

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation" : "add",
 "field" : "/assignments/-",
 "value" : { "_ref": "managed/assignment/1bbda95c-2a89-4e09-9719-8957849febeb"}
 }
]' \
"http://localhost:8080/openidm/managed/role/d4f6b571-7e71-4901-8033-090a15098867"
{
 "_id": "d4f6b571-7e71-4901-8033-090a15098867",
 "_rev": "00000000ba0f5c8d",
 "name": "Employee",
 "description": "Role granted to workers on the payroll."
}

lightbulb_2
Create the assignment using the admin UI:

From the navigation bar, click Manage > Assignment.
On the Assignment List page, click New Assignment.
On the New Assignment page, do the following:

Enter the Assignment Name.
Enter the Description.
From the Mapping drop-down list, select the mapping for which the assignment is applied
(managedUser_systemLdapAccounts).
Click Save.

Select the Attributes tab, and click Add an Attribute.
From the drop-down list, select employeeType.
In the adjacent attribute value area, click item.
From the item 1 drop-down list, select string, and enter the value Employee .
Click Save.

Tip

1.
2.
3.

1.
2.
3.

4.
4.
5.
6.
7.
8.

3.

lightbulb_2
Add the assignment to the role in the admin UI:

Select Manage > Role, and select the Employee role.
On the Managed Assignments tab, click Add Managed Assignments.
Select the Employee assignment and click Add.

Tip

1.
2.
3.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 165

Grant a role to a user and observe that user’s role assignments

When a role is granted to a user (by updating the users roles property), any assignments that are referenced by the role are
automatically referenced in the user’s assignments property.

In this section, we will grant the Employee role we created previously to the user Barbara Jensen, who was created in the
managed/user repository during the reconciliation from DS.

Before you can update Barbara Jensen’s entry, determine the identifier of her entry by querying her username, bjensen ,
and requesting only her _id field:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=/userName+eq+'bjensen'&_fields=_id"
{
 "result": [
 {
 "_id": "57356103-a1d5-4aaa-bcc5-a640147704e0",
 "_rev": "000000006688d203"
 }
],
 ...
}

From the output, observe that bjensen’s _id is 57356103-a1d5-4aaa-bcc5-a640147704e0 .

Update bjensen’s entry by adding a reference to the ID of the Employee role as a value of her roles attribute. Make sure
to use the unique ID from your command output.

1.

2.

Samples PingIDM

166 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/roles/-",
 "value": { "_ref": "managed/role/d4f6b571-7e71-4901-8033-090a15098867" }
 }
]' \
"http://localhost:8080/openidm/managed/user/57356103-a1d5-4aaa-bcc5-a640147704e0"
{
 "_id": "57356103-a1d5-4aaa-bcc5-a640147704e0",
 "_rev": "000000005498d7b5",
 "displayName": "Barbara Jensen",
 "description": "Created for OpenIDM",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "1-360-229-7105",
 "sn": "Jensen",
 "userName": "bjensen",
 "accountStatus": "active",
 "effectiveAssignments": [
 {
 "_rev": "00000000ca15975d",
 "_id": "1bbda95c-2a89-4e09-9719-8957849febeb",
 "_refResourceCollection": "managed/assignment",
 "_refResourceId": "1bbda95c-2a89-4e09-9719-8957849febeb",
 "_ref": "managed/assignment/1bbda95c-2a89-4e09-9719-8957849febeb"
 "name": "Employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
 }
],
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 167

mailto:bjensen@example.com

 "_refResourceId": "d4f6b571-7e71-4901-8033-090a15098867",
 "_ref": "managed/role/d4f6b571-7e71-4901-8033-090a15098867"
 }
]
}

Take a closer look at bjensen’s entry, specifically at her roles, effective roles and effective assignments:

lightbulb_2
Assign the role to bjensen by using the admin UI:

Select Manage > User, and click bjensen’s entry.
On the Provisioning Roles tab, click Add Provisioning Roles.
Select the Employee role, and click Add.

Tip

1.
2.
3.

3.

Samples PingIDM

168 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=/
userName+eq+'bjensen'&_fields=_id,userName,roles,effectiveRoles,effectiveAssignments"
{
 "result": [
 {
 "_id": "57356103-a1d5-4aaa-bcc5-a640147704e0",
 "_rev": "000000005498d7b5",
 "userName": "bjensen",
 "effectiveAssignments": [
 {
 "_rev": "00000000ca15975d",
 "_id": "1bbda95c-2a89-4e09-9719-8957849febeb",
 "name": "Employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
],
 "_refResourceCollection": "managed/assignment",
 "_refResourceId": "1bbda95c-2a89-4e09-9719-8957849febeb",
 "_ref": "managed/assignment1bbda95c-2a89-4e09-9719-8957849febeb"
 }
],
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "d4f6b571-7e71-4901-8033-090a15098867",
 "_ref": "managed/role/d4f6b571-7e71-4901-8033-090a15098867"
 }
],
 "roles": [
 {
 "_ref": "managed/role/d4f6b571-7e71-4901-8033-090a15098867",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "d4f6b571-7e71-4901-8033-090a15098867",
 "_refProperties": {
 "_id": "75441276-4ede-4655-855c-e13ed4b47e8e",
 "_rev": "00000000ccc59e6c"
 }
 }

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 169

]
 }
],
 ...
}

bjensen now has the calculated property effectiveAssignments , which includes the set of assignments that pertains to
any user with the Employee role. Currently, the assignment lists the employeeType attribute.

In the next section, you will see how the assignment is used to set the value of the employeeType attribute in the LDAP
server.

Propagate assignments to an external system

This section provides a number of steps that show how effective assignments propagate to the external systems associated with
their mappings.

Verify that bjensen’s employeeType has been set correctly in DS.

Because implicit synchronization is enabled by default, any changes made to a managed user object are pushed out to all
the external systems for which mappings are configured.

Because bjensen has an effective assignment that sets an attribute in her LDAP entry, you should immediately see the
resulting change in her LDAP entry.

To verify that her entry has changed, run an ldapsearch on her entry and check the value of her employeeType attribute:

/path/to/opendj/bin/ldapsearch \
--port 1636 \
--useSSL \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--baseDN "dc=example,dc=com" \
--bindDN uid=admin \
--bindPassword password \
--searchScope sub \
"(uid=bjensen)" dn uid employeeType isMemberOf
dn: uid=bjensen,ou=People,dc=example,dc=com
employeeType: Employee
uid: bjensen
isMemberOf: cn=openidm2,ou=Groups,dc=example,dc=com

bjensen’s employeeType attribute is correctly set to Employee .

To observe how a managed user’s roles can be used to provision group membership in an external directory, we add the
groups that an Employee and a Contractor should have in the corporate directory (DS) as assignment attributes of the
respective roles.

First, look at the current assignments of the Employee role again:

1.

2.

Samples PingIDM

170 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/role/d4f6b571-7e71-4901-8033-090a15098867?
_fields=assignments,name"
{
 "_id": "d4f6b571-7e71-4901-8033-090a15098867",
 "_rev": "00000000ba0f5c8d",
 "name": "Employee",
 "assignments": [
 {
 "_ref": "managed/assignment/1bbda95c-2a89-4e09-9719-8957849febeb",
 "_refResourceCollection": "managed/assignment",
 "_refResourceId": "1bbda95c-2a89-4e09-9719-8957849febeb",
 "_refProperties": {
 "_id": "94cb5abd-5358-42d7-ab96-0e6808a157aa",
 "_rev": "00000000cf18a2b6"
 }
 }
]
}

To update the groups attribute in bjensen’s LDAP entry, you do not need to create a new assignment. You simply need to
add the attribute for LDAP groups to the Employee assignment (1bbda95c-2a89-4e09-9719-8957849febeb):

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 171

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/attributes/-",
 "value": {
 "name": "ldapGroups",
 "value": [
 "cn=Employees,ou=Groups,dc=example,dc=com",
 "cn=Chat Users,ou=Groups,dc=example,dc=com"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
 }
]' \
"http://localhost:8080/openidm/managed/assignment/1bbda95c-2a89-4e09-9719-8957849febeb"
{
 "_id": "1bbda95c-2a89-4e09-9719-8957849febeb",
 "_rev": "000000007248f2bc",
 "name": "Employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 },
 {
 "name": "ldapGroups",
 "value": [
 "cn=Employees,ou=Groups,dc=example,dc=com",
 "cn=Chat Users,ou=Groups,dc=example,dc=com"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}

So, the Employee assignment now sets two attributes on the LDAP system - the employeeType attribute, and the
ldapGroups attribute.

Samples PingIDM

172 Copyright © 2025 Ping Identity Corporation

With the implicit synchronization between the managed user repository and DS, bjensen should now be a member of the
cn=Employees and cn=Chat Users groups in LDAP.

You can verify this with the following ldapsearch command. This command returns bjensen’s group membership, in her
isMemberOf attribute:

/path/to/opendj/bin/ldapsearch \
--port 1636 \
--useSSL \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--baseDN "dc=example,dc=com" \
--bindDN uid=admin \
--bindPassword password \
--searchScope sub \
"(uid=bjensen)" dn uid employeeType isMemberOf
dn: uid=bjensen,ou=People,dc=example,dc=com
employeeType: Employee
uid: bjensen
isMemberOf: cn=Employees,ou=Groups,dc=example,dc=com
isMemberOf: cn=openidm2,ou=Groups,dc=example,dc=com
isMemberOf: cn=Chat Users,ou=Groups,dc=example,dc=com

You can also check bjensen’s group membership by querying her object in the LDAP system, using the REST interface:

lightbulb_2
To add more attributes to the Employee assignment in the admin UI:

Select Manage > Assignment, and click the Employee assignment.
On the Attributes tab, select Add an attribute, and select the ldapGroups attribute.
Enter the following values, and click Save:
cn=Employees,ou=Groups,dc=example,dc=com
cn=Chat Users,ou=Groups,dc=example,dc=com

Tip

1.
2.
3.

3.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 173

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account?_queryFilter=/
uid+sw+'bjensen'&_fields=dn,uid,employeeType,ldapGroups"
{
 "result": [
 {
 "_id": "887732e8-3db2-31bb-b329-20cd6fcecc05",
 "dn": "uid=bjensen,ou=People,dc=example,dc=com",
 "uid": "bjensen",
 "employeeType": [
 "Employee"
],
 "ldapGroups": [
 "cn=Chat Users,ou=Groups,dc=example,dc=com",
 "cn=openidm2,ou=Groups,dc=example,dc=com",
 "cn=Employees,ou=Groups,dc=example,dc=com"
]
 }
],
 ...
}

In the original LDIF file, bjensen was already a member of the openidm2 group. You can ignore this group for the purposes
of this sample.

Now, create a new assignment that will apply to Contract employees, and add that assignment to the Contractor role.

Create the Contractor assignment with the following command. This assignment sets the value of the employeeType
attribute to Contractor , and updates the user’s ldapGroups attribute to include the cn=Contractors group:

lightbulb_2
Use the admin UI to view bjensen’s LDAP groups as follows:

Select Manage > User, and select bjensen.
On the Linked Systems tab, scroll down to the ldapGroups item.

Tip

1.
2.

4.

Samples PingIDM

174 Copyright © 2025 Ping Identity Corporation

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "name": "Contractor",
 "description": "Contractor assignment for contract workers.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "ldapGroups",
 "value": [
 "cn=Contractors,ou=Groups,dc=example,dc=com"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 },
 {
 "name": "employeeType",
 "value": [
 "Contractor"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}' \
"http://localhost:8080/openidm/managed/assignment?_action=create"
{
 "_id": "30323ed3-d885-4d09-94ca-c8f3b3408296",
 "_rev": "00000000db43da70",
 "name": "Contractor",
 "description": "Contractor assignment for contract workers.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "ldapGroups",
 "value": [
 "cn=Contractors,ou=Groups,dc=example,dc=com"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 },
 {
 "name": "employeeType",
 "value": [
 "Contractor"
],

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 175

 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}

Note the ID of the Contractor assignment (30323ed3-d885-4d09-94ca-c8f3b3408296 in this example).

Add the Contractor assignment to the Contractor role:

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/assignments/-",
 "value": {
 "_ref": "managed/assignment/30323ed3-d885-4d09-94ca-c8f3b3408296"
 }
 }
]' \
"http://localhost:8080/openidm/managed/role/95899c38-e483-4d89-8aec-a88baab0603a"
{
 "_id": "95899c38-e483-4d89-8aec-a88baab0603a",
 "_rev": "00000000c7cb5c0f",
 "name": "Contractor",
 "description": "Role granted to contract workers."
}

Next, we need to grant the Contractor role to user jdoe. Before we can patch jdoe’s entry, we need to know their system-
generated ID. To obtain the ID, query jdoe’s entry as follows:

lightbulb_2
To create the assignment using the admin UI, refer to Add Assignments to a Role Definition.

Tip

5.

lightbulb_2
Add the Contractor assignment to the Contractor role in the admin UI, as follows:

Select Manage > Role, and select the Contractor role.
On the Managed Assignments tab, click Add Managed Assignment.
Select the Contractor assignment from the dropdown list, and click Add.

Tip

1.
2.
3.

6.

Samples PingIDM

176 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=/userName+eq+'jdoe'&_fields=_id"
{
 "result": [
 {
 "_id": "0d8a1d10-62e0-43aa-9892-ec51258771d0",
 "_rev": "000000005daacae0"
 }
],
 ...
}

For this example, you can see that jdoe’s _id is 0d8a1d10-62e0-43aa-9892-ec51258771d0 .

Update jdoe’s entry by adding a reference to the ID of the Contractor role as a value of their roles attribute:7.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 177

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/roles/-",
 "value": {
 "_ref": "managed/role/95899c38-e483-4d89-8aec-a88baab0603a"
 }
 }
]' \
"http://localhost:8080/openidm/managed/user/0d8a1d10-62e0-43aa-9892-ec51258771d0"
{
 "_id": "0d8a1d10-62e0-43aa-9892-ec51258771d0",
 "_rev": "00000000aa64591e",
 "displayName": "John Doe",
 "description": "Created for OpenIDM",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "1-415-599-1100",
 "sn": "Doe",
 "userName": "jdoe",
 "accountStatus": "active",
 "effectiveAssignments": [
 {
 "_rev": "00000000db43da70",
 "_id": "30323ed3-d885-4d09-94ca-c8f3b3408296",
 "_refResourceCollection": "managed/assignment",
 "_refResourceId": "30323ed3-d885-4d09-94ca-c8f3b3408296",
 "_ref": "managed/assignment/30323ed3-d885-4d09-94ca-c8f3b3408296"
 "name": "Contractor",
 "description": "Contractor assignment for contract workers.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "ldapGroups",
 "value": [
 "cn=Contractors,ou=Groups,dc=example,dc=com"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 },
 {
 "name": "employeeType",
 "value": [
 "Contractor"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }

Samples PingIDM

178 Copyright © 2025 Ping Identity Corporation

mailto:jdoe@example.com

]
 }
],
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "95899c38-e483-4d89-8aec-a88baab0603a",
 "_ref": "managed/role/95899c38-e483-4d89-8aec-a88baab0603a"
 }
]
}

Check jdoe’s entry on the LDAP system.

With the implicit synchronization between the managed user repository and DS, jdoe should now be a member of the
cn=Contractors group in LDAP. In addition, his employeeType should have been set to Contractor .

You can verify this with the following REST query. This command returns jdoes’s group membership, in his isMemberOf
attribute, and his employeeType :

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account?_queryFilter=/
uid+sw+'jdoe'&_fields=dn,uid,employeeType,ldapGroups"
{
 "result": [
 {
 "_id": "0da50512-79bb-3461-bd04-241ee4c785bf",
 "dn": "uid=jdoe,ou=People,dc=example,dc=com",
 "uid": "jdoe",
 "employeeType": [
 "Contractor"
],
 "ldapGroups": [
 "cn=openidm,ou=Groups,dc=example,dc=com",
 "cn=Contractors,ou=Groups,dc=example,dc=com"
]
 }
],
 ...
}

lightbulb_2
Grant the Contractor role to jdoe by using the admin UI, as follows:

Select Manage > User, and click jdoe.
On the Provisioning Roles tab, click Add Provisioning Roles.
Select the Contractor role, and click Add.

Tip

1.
2.
3.

8.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 179

Remove a role grant from a user and observe that user’s role assignments

In this section, you will remove the Contractor role from jdoe’s managed user entry and observe the subsequent change to jdoe’s
managed assignments, and to the corresponding attributes in DS.

Before you change jdoe’s roles, view his entry again to examine his current roles:

lightbulb_2
Use the admin UI to view jdoe’s LDAP groups as follows:

Select Manage > User, and select jdoe.
On the Linked Systems tab, scroll down to the ldapGroups item.

Tip

1.
2.

info
When working with large groups in LDAP services such as DS, you should use dynamic groups instead of static groups.
The steps laid out above for setting assignments and roles work with the exception of how you add a user to a group:
in dynamic groups, membership is determined by whether a user has an attribute the group is configured to search
for.
For example, if the Employees group was a dynamic group, membership might be set based on the employeeType
attribute directly, by setting the memberURL in the group to ldap:///ou=People,dc=example,dc=com??sub?
(employeeType=Employee) . You would then remove the ldapGroups attribute from the Employee assignment, since
group membership is handled by employeeType .
This membership won’t be listed in the ldapGroups attribute in IDM (since it is no longer set there), but can be
verified by querying DS directly:

/path/to/opendj/bin/ldapsearch \
--port 1636 \
--useSSL \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--baseDN "dc=example,dc=com" \
--bindDN uid=admin \
--bindPassword password \
--searchScope sub \
"(uid=bjensen)" dn uid employeeType isMemberOf
dn: uid=bjensen,ou=People,dc=example,dc=com
employeeType: Employee
uid: bjensen
isMemberOf: cn=Employees,ou=Groups,dc=example,dc=com
isMemberOf: cn=openidm2,ou=Groups,dc=example,dc=com
isMemberOf: cn=Chat Users,ou=Groups,dc=example,dc=com

For more information about dynamic groups in DS, refer to Dynamic Groups in the Configuration Guide for
ForgeRock Directory Services.

Note

1.

Samples PingIDM

180 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/7.4/config-guide/groups.html#dynamic-groups
https://docs.pingidentity.com/pingds/7.4/config-guide/groups.html#dynamic-groups

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=/userName+eq+'jdoe'&_fields=_id,roles"
{
 "result": [
 {
 "_id": "0d8a1d10-62e0-43aa-9892-ec51258771d0",
 "_rev": "00000000aa64591e",
 "roles": [
 {
 "_ref": "managed/role/95899c38-e483-4d89-8aec-a88baab0603a",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "95899c38-e483-4d89-8aec-a88baab0603a",
 "_refProperties": {
 "_id": "de68f5d9-baf9-49ca-8db5-96f0a382946d",
 "_rev": "00000000e299a021"
 }
 }
]
 }
],
 ...
}

Note the following IDs in this example output, you need them in the next step:

The ID of jdoe’s user object is 0d8a1d10-62e0-43aa-9892-ec51258771d0 .

The ID of the contractor role (_refResourceId) is 95899c38-e483-4d89-8aec-a88baab0603a .

The ID of the relationship that expresses the role grant is de68f5d9-baf9-49ca-8db5-96f0a382946d .

Remove the Contractor role from jdoe’s entry by sending a DELETE request to his user entry, specifying the relationship ID:

◦

◦

◦

lightbulb_2
View jdoe’s current roles in the admin UI:

Select Manage > User, and select jdoe.
The Provisioning Roles tab lists the current roles.

Tip

1.
2.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 181

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/user/0d8a1d10-62e0-43aa-9892-ec51258771d0/roles/de68f5d9-
baf9-49ca-8db5-96f0a382946d"
{
 "_id": "de68f5d9-baf9-49ca-8db5-96f0a382946d",
 "_rev": "00000000e299a021",
 "_ref": "managed/role/95899c38-e483-4d89-8aec-a88baab0603a",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "95899c38-e483-4d89-8aec-a88baab0603a",
 "_refProperties": {
 "_id": "de68f5d9-baf9-49ca-8db5-96f0a382946d",
 "_rev": "00000000e299a021"
 }
}

The output shows that the relationship between the user and the role was deleted.

Verify jdoe’s employeeType and ldapGroups .

The removal of the Contractor role causes a synchronization operation to be run on jdoe’s entry. His employeeType and
ldapGroups attributes in DS should be reset to what they were before he was granted the Contractor role.

Check jdoe’s attributes by querying his object in the LDAP directory, over the REST interface:

lightbulb_2
Use the admin UI to remove the Contractor role from jdoe’s entry as follows:

Select Manage > User, and select jdoe.
On the Provisioning Roles tab, check the box next to the Contractor role and click Remove Selected
Provisioning Roles.

Tip

1.
2.

3.

Samples PingIDM

182 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account?_queryFilter=/
uid+sw+'jdoe'&_fields=dn,uid,employeeType,ldapGroups"
{
 "result": [
 {
 "_id": "0da50512-79bb-3461-bd04-241ee4c785bf",
 "dn": "uid=jdoe,ou=People,dc=example,dc=com",
 "uid": "jdoe",
 "employeeType": [],
 "ldapGroups": [
 "cn=openidm,ou=Groups,dc=example,dc=com"
]
 }
],
 ...
}

For more information about roles, assignments, and how to manipulate them, refer to Managed Roles.

Provision users with workflow

This sample demonstrates a typical workflow use case, provisioning new users.

The sample uses the admin UI to set up the initial users and roles, then shows how users can complete their registration process
in the End User UI.

The sample simulates the following scenario:

An existing employee requests that an outside contractor be granted access to an organization’s system.

The system in this case, is the IDM managed user repository and a remote HR data source, represented by a CSV file
(hr.csv).

User roles are stored separately, in a second CSV file (roles.csv).

The sample has three mappings—two for the bidirectional synchronization of the managed user repository and the HR data
store, and one for the synchronization of the roles data to the managed repository.

lightbulb_2
Use the admin UI to view jdoe’s LDAP groups as follows:

Select Manage > User, and select jdoe’s entry.
On the Linked Systems tab, scroll down to the ldapGroups item.

Tip

1.
2.

•

•

•

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 183

Prepare the sample

In this section, you start IDM, configure the outbound email service, and reconcile user and role data. The reconciliation
operations create two managed users, user1 and manager1 , and two managed roles, employee (assigned to user1) and
manager (assigned to manager1).

Edit the /path/to/openidm/samples/provisioning-with-workflow/conf/datasource.jdbc-default.json file with the
details of your JDBC repository. For more information, refer to Select a repository.

Start IDM with the configuration for the provisioning sample:

cd /path/to/openidm/
./startup.sh -p samples/provisioning-with-workflow

Log in to the admin UI.

Configure the outbound email service:

From the navigation bar, click Configure > Email Settings.

On the Email Settings page, enable the outbound mail service, enter the connection information, and click Save.

Enable Password Reset:

From the navigation bar, click Configure > Password Reset.

On the Password Reset page, enable password reset, enter the applicable information, and click Save.

Reconcile the role and user data:

From the navigation bar, click Configure > Mappings.

Select the first mapping (systemRolesFileRole_internalRole), and click Reconcile.

To verify the reconciliation:

From the navigation bar, click Manage > Role.

On the Roles page, click the Internal tab.

IDM displays the two roles created in the previous step:

employee

manager

From the navigation bar, click Configure > Mappings.

emergency_home
Workflows are not supported with a DS repository. Before you test this sample, install a JDBC repository.

Important

1.

2.

3.

4.

1.

2.

5.

1.

2.

info
For additional password reset information, refer to Email for password reset.

Note

6.

1.

2.

3.

1.

2.

▪

▪

4.

Samples PingIDM

184 Copyright © 2025 Ping Identity Corporation

Select the second mapping (systemCsvfileAccounts_managedUser), and click Reconcile.

The reconciliation operation creates the top-level managers (users who do not have their own manager property)
in the managed user repository. In this sample, there is only one top-level manager (manager1).

Select the second mapping again (systemCsvfileAccounts_managedUser), and click Reconcile.

This reconciliation operation creates the employees of the managers that were created by the previous
reconciliation. In this sample, there is only one employee (employee1).

From the navigation bar, click Manage > User, and verify the users manager1 and user1 exist.

Verify the relationships between the new user and role objects:

Click user1.

The Manager field displays manager1 for this user.

Click the Authorization Roles tab.

user1 has two roles, openidm-authorized and employee .

From the breadcrumb link at the top of the page, click User, and select manager1 .

The Manager field is empty for this user.

Click the Authorization Roles tab.

manager1 has three roles: manager , openidm-authorized , and openidm-tasks-manager .

Verify the available workflows:

From the navigation bar, click Manage > Processes.

On the Workflow Processes page, select the Definitions tab.

From the Definitions list, click Contractor onboarding process.

IDM displays a diagram similar to the following:

Log out of the admin UI.

Run the sample

During this part of the sample, an existing employee initiates a Contractor Onboarding process. This process is a request to add a
contractor to the managed user repository, with an option to include the contractor in the original HR data source (hr.csv).

5.

6.

7.

7.

1.

2.

3.

4.

8.

1.

2.

3.

9.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 185

When the employee has completed the required form, the request is sent to the manager for approval. Any user with the role
manager can claim the approval task. If the request is approved, an email is sent to the address provided in the initial form, with
a request for the contractor to reset their password. When the password reset has been completed, the contractor is created in
the managed user repository. If a request was made to add the contractor to the original HR data source, this is done when the
manager approves the request.

Log in to the End User UI (https://localhost:8443/) as the user you created in the previous section (user1) with
password Welcome1 .

Navigate to the dashboard, with the Dashboard icon (). Alternatively, select the Menu icon (), and select Dashboard.

Initiate the provisioning workflow as user1 :

Scroll down to the Start a Process menu, and click Edit adjacent to Contractor onboarding process.

Complete the form for the sample user you will be creating. Use an accessible email address, as you’ll need the
email message to complete this workflow.

Enable Create in CSV File. This option enables implicit synchronization from the managed user repository to the
hr.csv file.

Select Submit to initiate the process.

Log out of the End User UI.

Approve the workflow task as manager1 :

Log in to the End User UI as manager1 with password Welcome1 .

Navigate to the dashboard, with the Dashboard icon (). Alternatively, select the Menu icon (), and select
Dashboard.

Under Unassigned Tasks, locate the Approve Contractor task, select Assign, and click Assign to Me.

Approve Contractor is now listed under My Tasks.

Click Edit adjacent to the task name.

Review the form content, and click Accept.

Log out of the End User UI.

Verify that the contractor has been created in the HR data source (/path/to/openidm/samples/provisioning-with-
workflow/data/hr.csv):

1.

2.

3.

1.

2.

3.

info
user1 does not provide a password for this user. A password reset request is sent to the email address
provided on this form to ensure that only the actual contractor can log in with this account.

Note

4.

5.

4.

1.

2.

3.

4.

5.

info
This is the same content you provided as user1.

Note

6.

5.

Samples PingIDM

186 Copyright © 2025 Ping Identity Corporation

https://localhost:8443/
https://localhost:8443/

"username","firstname","lastname","manager", "department","jobTitle", ...
"user1", "Ordinary", "Employee","manager1","dep1", "job1", ...
"manager1","Big", "Manager", "", "dep1", "Manager", ...
"bjensen", "Barbara", "Jensen", "user1", "Payroll", "Payroll clerk",...

Note the addition of the new contractor entry, bjensen .

Complete the password reset process:

Check the email account you provided on the initial form for a message with the subject line "Reset your
password".

Open the password reset email, and click Password reset link.

The link takes you to the End User UI.

Click Reset Your Password.

Enter a new password, and click Change Password.

The password you enter here must comply with the password policy configured for managed users. For more
information, refer to Password policy.

Click Sign In, and enter the username and new password.

Click the notifications icon (), and you should see a welcome message.

Connect to DS with ScriptedREST

This sample uses the scripted REST connector to interact with the ForgeRock Directory Services (DS) REST API, using Groovy
scripts. The sample demonstrates reconciliation, implicit sync, and liveSync between the IDM repository and a DS instance.

The scripted REST connector is bundled with IDM in the JAR openidm/connectors/scriptedrest-connector-1.5.20.29.jar .

The Groovy scripts required for the sample are located in the samples/scripted-rest-with-dj/tools directory. You must
customize these scripts to address the requirements of your specific deployment; however, the sample scripts are a good starting
point on which to base your customization.

Set up DS

Set up DS, but remove the line --set ds-user-data/ldifFile:Example.ldif .

6.

1.

2.

3.

4.

5.

6.

emergency_home
If you declined the approval request, the user is not created in either the managed user repository, or in the HR CSV
file.

Important

emergency_home
The Rest2ldap HTTP endpoint provided with DS is an evolving interface. As such, compatibility between versions is not
guaranteed. This sample was tested with DS 7.4.

Important

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 187

Optionally, you can enable an HTTP access logger on the DS server.

Import the data required for the sample:

/path/to/opendj/bin/ldapmodify \
--port 1636 \
--useSSL \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--bindDN uid=admin \
--bindPassword password \
--filename /path/to/openidm/samples/scripted-rest-with-dj/data/ldap.ldif
ADD operation successful for DN dc=example,dc=com

ADD operation successful for DN ou=Administrators,dc=example,dc=com

ADD operation successful for DN uid=idm,ou=Administrators,dc=example,dc=com

ADD operation successful for DN ou=People,dc=example,dc=com

ADD operation successful for DN ou=Groups,dc=example,dc=com

Set up the access control instructions (ACIs) that enable the IDM administrator user to read the DS external change log:

/path/to/opendj/bin/dsconfig set-access-control-handler-prop \
--port 4444 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--bindDN uid=admin \
--bindPassword password \
--add global-aci:"(target=\"ldap:///cn=changelog\")(targetattr=\"*||+\") \
(version 3.0; acl \"IDM can access cn=changelog\"; \
allow (read,search,compare) \
userdn=\"ldap:///uid=idm,ou=Administrators,dc=example,dc=com\";)" \
--no-prompt

/path/to/opendj/bin/dsconfig set-access-control-handler-prop \
--port 4444 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--bindDN uid=admin \
--bindPassword password \
--add global-aci:"(targetcontrol=\"1.3.6.1.4.1.26027.1.5.4\") \
(version 3.0; acl \"IDM changelog control access\"; \
allow (read) \
userdn=\"ldap:///uid=idm,ou=Administrators,dc=example,dc=com\";)" \
--no-prompt

Enable the default Rest2ldap HTTP endpoint:

2.

3.

4.

5.

Samples PingIDM

188 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/7.4/logging-guide/http-access.html#log-http-access
https://docs.pingidentity.com/pingds/7.4/logging-guide/http-access.html#log-http-access

/path/to/opendj/bin/dsconfig set-http-endpoint-prop \
--port 4444 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--bindDN uid=admin \
--bindPassword password \
--endpoint-name /api \
--set authorization-mechanism:"HTTP Basic" \
--set config-directory:config/rest2ldap/endpoints/api \
--set enabled:true \
--no-prompt

For more information, refer to HTTP User APIs in the DS Configuration Guide.

Replace the default DS REST to LDAP configuration with the configuration for this sample:

cp /path/to/openidm/samples/scripted-rest-with-dj/data/example-v1.json /path/to/opendj/config/
rest2ldap/endpoints/api/

Restart DS for the configuration change to take effect.

/path/to/opendj/bin/stop-ds --restart
Stopping Server...
...
The Directory Server has started successfully

Run the sample

This section illustrates the basic CRUD operations on users and groups using the ScriptedREST connector and the DS REST API.
Note that the power of the Groovy connector is in the associated Groovy scripts, and their application in your particular
deployment. The scripts provided with this sample are specific to the sample and customization of the scripts is required.

Start IDM with the configuration for the ScriptedREST sample:

cd /path/to/openidm/
./startup.sh -p samples/scripted-rest-with-dj

Check that the scripted REST connector can reach the DS instance by obtaining the connector status over REST:

6.

7.

1.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 189

https://docs.pingidentity.com/pingds/7.4/config-guide/http-access.html#setup-rest2ldap-endpoint
https://docs.pingidentity.com/pingds/7.4/config-guide/http-access.html#setup-rest2ldap-endpoint

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system/scriptedrest?_action=test"
{
 "name": "scriptedrest",
 "enabled": true,
 "config": "config/provisioner.openicf/scriptedrest",
 "connectorRef": {
 "bundleVersion": "[1.5.0.0,1.6.0.0)",
 "bundleName": "org.forgerock.openicf.connectors.scriptedrest-connector",
 "connectorName": "org.forgerock.openicf.connectors.scriptedrest.ScriptedRESTConnector"
 },
 "displayName": "Scripted REST Connector",
 "objectTypes": [
 "__ALL__",
 "account",
 "group"
],
 "ok": true
}

Create a group entry on the DS server:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "cn": "group1"
}' \
"http://localhost:8080/openidm/system/scriptedrest/group?_action=create"
{
 "_id": "group1",
 "members": null,
 "created": "2020-07-21T23:04:25Z",
 "cn": "group1",
 "displayName": "group1"
}

Create a user entry on the DS server. This command creates a user with uid scarter:

3.

4.

Samples PingIDM

190 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "givenName": "Steven",
 "familyName": "Carter",
 "emailAddress": "scarter@example.com",
 "telephoneNumber": "444-444-4444",
 "password": "5up35tr0ng",
 "displayName": "Steven.Carter",
 "uid": "scarter"
}' \
"http://localhost:8080/openidm/system/scriptedrest/account?_action=create"
{
 "_id": "scarter",
 "givenName": "Steven",
 "groups": null,
 "displayName": "Steven.Carter",
 "emailAddress": "scarter@example.com",
 "uid": "scarter",
 "created": "2020-07-21T23:07:13Z",
 "familyName": "Carter",
 "telephoneNumber": "444-444-4444"
}

Notice that the user is not a member of any group.

Reconcile the DS server with the managed user repository:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemRestLdapUser_managedUser&waitForCompletion=true"
{
 "_id": "ee7534bd-ccfd-4f6a-bdc3-49caa6d2043c-547",
 "state": "SUCCESS"
}

The reconciliation creates a managed user with a server-assigned ID. To retrieve the ID, run the following query:

5.

6.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 191

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "4657a420-6608-410e-baa7-f64668cc500c",
 "_rev": "000000007995f006"
 }
],
 ...
}

To initialize liveSync set the sync token by running one liveSync operation over REST:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system/scriptedrest/account?_action=liveSync"
{
 "connectorData": {
 "nativeType": "string",
 "syncToken": "8"
 }
}

Update Steven Carter’s managed user entry, by modifying his telephone number. Specify the user ID that you retrieved
previously:

7.

8.

Samples PingIDM

192 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "replace",
 "field": "telephoneNumber",
 "value": "555-555-5555"
 }
]' \
"http://localhost:8080/openidm/managed/user/4657a420-6608-410e-baa7-f64668cc500c"
{
 "_id": "4657a420-6608-410e-baa7-f64668cc500c",
 "_rev": "0000000096edf021",
 "userName": "scarter",
 "mail": "scarter@example.com",
 "displayName": "Steven.Carter",
 "telephoneNumber": "555-555-5555",
 "givenName": "Steven",
 "sn": "Carter",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

The implicit synchronization mechanism between the managed user repository and DS propagates the change to DS. You
can check this change by reading scarter’s user entry in DS and noting the changed telephoneNumber :

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/scriptedrest/account/scarter"
{
 "_id": "scarter",
 "familyName": "Carter",
 "givenName": "Steven",
 "created": "2018-02-07T10:14:31Z",
 "uid": "scarter",
 "groups": null,
 "emailAddress": "scarter@example.com",
 "displayName": "Steven.Carter",
 "telephoneNumber": "555-555-5555"
}

Now, update Steven Carter’s entry on the DS server, by modifying the givenName :

9.

10.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 193

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "replace",
 "field": "givenName",
 "value": "Steve"
 }
]' \
"http://localhost:8080/openidm/system/scriptedrest/account/scarter"
{
 "_id": "scarter",
 "givenName": "Steve",
 "groups": null,
 "displayName": "Steven.Carter",
 "emailAddress": "scarter@example.com",
 "uid": "scarter",
 "created": "2020-07-21T23:07:13Z",
 "familyName": "Carter",
 "telephoneNumber": "555-555-5555"
}

To propagate the change made on DS back to the managed user entry, launch a liveSync operation, either by defining a
schedule, or directly over REST. The following command launches liveSync over REST:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system/scriptedrest/account?_action=liveSync"
{
 "connectorData": {
 "nativeType": "string",
 "syncToken": "9"
 },
 "_rev": "000000000a585336",
 "_id": "SYSTEMSCRIPTEDRESTACCOUNT"
}

Verify that the changes propagated by reading scarter’s managed user entry and noting the changed givenName :

11.

12.

Samples PingIDM

194 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/4657a420-6608-410e-baa7-f64668cc500c"
{
 "_id": "4657a420-6608-410e-baa7-f64668cc500c",
 "_rev": "000000007937efb7",
 "userName": "scarter",
 "mail": "scarter@example.com",
 "displayName": "Steven.Carter",
 "telephoneNumber": "555-555-5555",
 "givenName": "Steve",
 "sn": "Carter",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Add user scarter to the group you created previously, by updating the group entry:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--header "If-Match: *" \
--request PUT \
--data '{
 "_id": "group1",
 "members": [{"_id": "scarter"}]
}' \
"http://localhost:8080/openidm/system/scriptedrest/group/group1"
{
 "_id": "group1",
 "displayName": "group1",
 "created": "2018-02-07T10:14:12Z",
 "members": [
 {
 "_id": "scarter",
 "displayName": "Steven.Carter"
 }
],
 "cn": "group1",
 "lastModified": "2018-02-07T10:20:22Z"
}

Read Steven Carter’s user entry in DS, to verify that he is now a member of group1:

13.

14.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 195

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/scriptedrest/account/scarter"
{
 "_id": "scarter",
 "givenName": "Steve",
 "groups": [
 {
 "_id": "group1"
 }
],
 "displayName": "Steven.Carter",
 "emailAddress": "scarter@example.com",
 "uid": "scarter",
 "created": "2020-07-21T23:07:13Z",
 "familyName": "Carter",
 "telephoneNumber": "555-555-5555"
}

Read the group entry to verify its members:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/scriptedrest/group/group1"
{
 "_id": "group1",
 "lastModified": "2020-07-21T23:17:09Z",
 "members": [
 {
 "_id": "scarter",
 "displayName": "Steven.Carter"
 }
],
 "created": "2020-07-21T23:04:25Z",
 "cn": "group1",
 "displayName": "group1"
}

Reconcile the DS groups with the managed group repository:

15.

16.

Samples PingIDM

196 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemRestLdapGroup_managedGroup&waitForCompletion=true"
{
 "_id": "ee7534bd-ccfd-4f6a-bdc3-49caa6d2043c-1477",
 "state": "SUCCESS"
}

The reconciliation creates a managed group with a server-assigned ID. To retrieve the group ID, run the following query:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request GET \
"http://localhost:8080/openidm/managed/group?_queryId=query-all-ids"
{
 "result": [
 {
 "_id": "67b5ec50-d5a6-4bfa-bb19-17965447ad00",
 "_rev": "00000000b0e95e9b"
 }
],
 ...
}

Read the managed group to verify that the DS group has been added, and that its members have been reconciled to the
managed group repository. Specify the ID that you retrieved in the previous step:

17.

18.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 197

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/group/67b5ec50-d5a6-4bfa-bb19-17965447ad00"
{
 "_id": "67b5ec50-d5a6-4bfa-bb19-17965447ad00",
 "_rev": "00000000b0e95e9b",
 "members": [
 {
 "_id": "scarter",
 "displayName": "Steven.Carter"
 }
],
 "displayName": "group1"
}

Delete the DS user and group entries, returning the DS server to its initial state.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/system/scriptedrest/account/scarter"
{
 "_id": "scarter",
 "givenName": "Steve",
 "groups": [
 {
 "_id": "group1"
 }
],
 "displayName": "Steven.Carter",
 "emailAddress": "scarter@example.com",
 "uid": "scarter",
 "created": "2020-07-21T23:07:13Z",
 "familyName": "Carter",
 "telephoneNumber": "555-555-5555"
}

19.

Samples PingIDM

198 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/system/scriptedrest/group/group1"
{
 "_id": "group1",
 "lastModified": "2020-07-21T23:17:09Z",
 "members": null,
 "created": "2020-07-21T23:04:25Z",
 "cn": "group1",
 "displayName": "group1"
}

Connect to Active Directory with the PowerShell connector

This sample shows an implementation of the PowerShell Connector toolkit and provides a number of PowerShell scripts that let
you perform basic CRUD (create, read, update, delete) operations on an Active Directory server.

The sample uses the MS Active Directory PowerShell module. For more information on this module, refer to the corresponding
Microsoft documentation.

Sample overview

The generic PowerShell Connector Toolkit enables you to run PowerShell scripts on any external resource. The PowerShell
Connector Toolkit is not a complete connector, in the traditional sense. Rather, it is a framework within which you must write your
own PowerShell scripts to address the requirements of your Microsoft Windows ecosystem. You can use the PowerShell
Connector Toolkit to create connectors that can provision any Microsoft system.

The PowerShell Connector Toolkit is available from the Backstage download site.

This sample assumes that IDM is running on a Windows system on the localhost. It also assumes that Active Directory and the
OpenICF .NET connector server run on a remote Windows server. The PowerShell connector runs on the .NET connector server.

To use this sample for IDM instances installed on UNIX systems, adjust the relevant commands shown with PowerShell prompts.

info
By default, the Get-ADUser and Get-ADGroup cmdlets are not thread safe. To avoid thread issues when you use this
connector with Active Directory, you must set the pooling configuration properties as follows:

"UseInterpretersPool" : true,
"MinInterpretersPoolSize" : 1,
"MaxInterpretersPoolSize" : 10

For more information about these properties, refer to Configure the PowerShell Connector.

Note

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 199

https://docs.microsoft.com/en-us/powershell/module/activedirectory
https://docs.microsoft.com/en-us/powershell/module/activedirectory
https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads
https://docs.pingidentity.com/openicf/connector-reference/powershell.html#powershell-connector-configure
https://docs.pingidentity.com/openicf/connector-reference/powershell.html#powershell-connector-configure

Prepare the sample

Run the commands in this procedure from the PowerShell command line. The continuation character used in the command is the
back-tick (`).

Install, configure, and start the .NET connector server on the machine that is running an Active Directory Domain
Controller or on a workstation on which the Microsoft Active Directory PowerShell module is installed.

For instructions on installing the .NET connector server, refer to Set Up a .NET RCS.

Configure IDM to connect to the .NET connector server.

Download the PowerShell Connector Toolkit archive (mspowershell-connector-1.4.7.0.zip) from the Backstage
download site.

Extract the archive and move the MsPowerShell.Connector.dll to the folder in which the connector server application
(connectorserver.exe) is located.

Copy the PowerShell scripts and the ADSISearch module from the samples\scripted-powershell-with-ad\tools
directory, to the machine on which the connector server is installed.

dir \path\to\openidm\samples\scripted-powershell-with-ad\tools
Directory: C:\path\to\openidm\samples\scripted-powershell-with-ad\tools

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 4/3/2018 3:26 AM 4279 ADAuthenticate.ps1
-a---- 4/3/2018 3:26 AM 9055 ADCreate.ps1
-a---- 4/3/2018 3:26 AM 3717 ADDelete.ps1
-a---- 4/3/2018 3:26 AM 10756 ADSchema.ps1
-a---- 4/3/2018 3:26 AM 4625 ADSearch.ps1
-a---- 4/3/2018 3:26 AM 8064 ADSISearch.psm1
-a---- 4/3/2018 3:26 AM 5918 ADSync.ps1
-a---- 4/3/2018 3:26 AM 2408 ADTest.ps1
-a---- 4/3/2018 3:26 AM 18406 ADUpdate.ps1
PS C:\path\to\openidm>

Copy the sample connector configuration for the PowerShell connector to your project’s conf directory.

cp \path\to\openidm\samples\example-configurations\provisioners\provisioner.openicf-
adpowershell.json \path\to\openidm\conf

The following excerpt of the sample connector configuration shows the configuration properties:

1.

2.

3.

4.

5.

6.

Samples PingIDM

200 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/remote-connector.html#install-.net-connector
https://docs.pingidentity.com/openicf/connector-reference/remote-connector.html#install-.net-connector
https://docs.pingidentity.com/openicf/connector-reference/remote-connector.html#configure-rcs
https://docs.pingidentity.com/openicf/connector-reference/remote-connector.html#configure-rcs
https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

"configurationProperties" : {
 "AuthenticateScriptFileName" : "C:/openidm/samples/scripted-powershell-with-ad/tools/ADAuthenticate.ps1",
 "CreateScriptFileName" : "C:/openidm/samples/scripted-powershell-with-ad/tools/ADCreate.ps1",
 "DeleteScriptFileName" : "C:/openidm/samples/scripted-powershell-with-ad/tools/ADDelete.ps1",
 "SchemaScriptFileName" : "C:/openidm/samples/scripted-powershell-with-ad/tools/ADSchema.ps1",
 "SearchScriptFileName" : "C:/openidm/samples/scripted-powershell-with-ad/tools/ADSearch.ps1",
 "SyncScriptFileName" : "C:/openidm/samples/scripted-powershell-with-ad/tools/ADSync.ps1",
 "TestScriptFileName" : "C:/openidm/samples/scripted-powershell-with-ad/tools/ADTest.ps1",
 "UpdateScriptFileName" : "C:/openidm/samples/scripted-powershell-with-ad/tools/ADUpdate.ps1",
 "VariablesPrefix" : "Connector",
 "QueryFilterType" : "Ldap",
 "ReloadScriptOnExecution" : true,
 "UseInterpretersPool" : true,
 "SubstituteUidAndNameInQueryFilter" : true,
 "UidAttributeName" : "ObjectGUID",
 "NameAttributeName" : "DistinguishedName",
 "PsModulesToImport" : [
 "ActiveDirectory",
 "C:/openidm/samples/scripted-powershell-with-ad/tools/ADSISearch.psm1"
],
 "Host" : "",
 "Port" : null,
 "Login" : "",
 "Password" : null,
 "CustomProperties" : ["baseContext = CN=Users,DC=example,DC=com"],
 "MinInterpretersPoolSize" : 1,
 "MaxInterpretersPoolSize" : 10
},

The sample connector configuration assumes that the scripts are located in C:/openidm/samples/scripted-powershell-
with-ad/tools/ . If you copied your scripts to a different location, or are using a different base context for search and
synchronization operations such as DC=example,DC=org , adjust your connector configuration file accordingly.

The host, port, login and password of the machine on which Active Directory runs do not need to be specified here. By
default the Active Directory cmdlets pick up the first available Domain Controller. In addition, the scripts are executed
using the credentials of the .Net connector server.

Make sure that the value of the connectorHostRef property in the connector configuration file matches the value that
you specified in the remote connector configuration file, in step 2 of this procedure. For example:

emergency_home
The OpenICF framework requires the path to use forward slash characters and not the backslash characters
that you would expect in a Windows path.

Important

info
The ReloadScriptOnExecution property is set to true in this sample configuration. This setting causes script
files to be reloaded each time the script is invoked. Having script files reloaded each time is suitable for
debugging purposes. However, this property should be set to false in production environments, as the script
reloading can have a negative performance impact.

Note

7.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 201

"connectorHostRef" : "dotnet",

Run the Sample

Because you have copied all required configuration files into the default IDM project, you can start IDM with the default
configuration (that is, without the -p option):

\path\to\openidm\startup.bat

When IDM has started, test the sample by using the curl command-line utility. The following examples test the scripts that were
provided in the tools directory.

Test the connector configuration, and whether IDM is able to connect to the .NET connector server with the following
request:

curl.exe `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--request POST `
"http://localhost:8080/openidm/system?_action=test"
[
 {
 "ok": true,
 "connectorRef": {
 "bundleVersion": "[1.4.2.0,1.5.0.0)",
 "bundleName": "MsPowerShell.Connector",
 "connectorName": "Org.ForgeRock.OpenICF.Connectors.MsPowerShell.MsPowerShellConnector"
 },
 "objectTypes": [
 "__ALL__",
 "group",
 "account"
],
 "config": "config/provisioner.openicf/adpowershell",
 "enabled": true,
 "name": "adpowershell"
 }
]

Query the users in your Active Directory with the following request:

1.

2.

Samples PingIDM

202 Copyright © 2025 Ping Identity Corporation

curl.exe `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--request GET `
"http://localhost:8080/openidm/system/adpowershell/account?_queryId=query-all-ids"
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 1257,
 "result": [
 {
 "_id": "7c41496a-9898-4074-a537-bed696b6be92"
 },
 {
 "_id": "f2e08a5c-473f-4798-a2d5-d5cc27c862a9"
 },
 {
 "_id": "6feef4a0-b121-43dc-be68-a96703a49aba"
 },
...

To return the complete record of a specific user, include the ID of the user in the URL. The following request returns the
record for Steven Carter:

3.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 203

curl.exe `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--request GET `
"http://localhost:8080/openidm/system/adpowershell/account/6feef4a0-b121-43dc-be68-a96703a49aba"
{
 "_id": "6feef4a0-b121-43dc-be68-a96703a49aba",
 "postalCode": null,
 "passwordNotRequired": false,
 "cn": "Steven Carter",
 "name": "Steven Carter",
 "trustedForDelegation": false,
 "uSNChanged": "47219",
 "manager": null,
 "objectGUID": "6feef4a0-b121-43dc-be68-a96703a49aba",
 "modifyTimeStamp": "11/27/2014 3:37:16 PM",
 "employeeNumber": null,
 "sn": "Carter",
 "userAccountControl": 512,
 "passwordNeverExpires": false,
 "displayName": "Steven Carter",
 "initials": null,
 "pwdLastSet": "130615726366949784",
 "scriptPath": null,
 "badPasswordTime": "0",
 "employeeID": null,
 "badPwdCount": "0",
 "accountExpirationDate": null,
 "userPrincipalName": "steve.carter@ad0.example.com",
 "sAMAccountName": "steve.carter",
 "mail": "steven.carter@example.com",
 "logonCount": "0",
 "cannotChangePassword": false,
 "division": null,
 "streetAddress": null,
 "allowReversiblePasswordEncryption": false,
 "description": null,
 "whenChanged": "11/27/2014 3:37:16 PM",
 "title": null,
 "lastLogon": "0",
 "company": null,
 "homeDirectory": null,
 "whenCreated": "6/23/2014 2:50:48 PM",
 "givenName": "Steven",
 "telephoneNumber": "555-2518",
 "homeDrive": null,
 "uSNCreated": "20912",
 "smartcardLogonRequired": false,
 "distinguishedName": "CN=Steven Carter,CN=Users,DC=example,DC=com",
 "createTimeStamp": "6/23/2014 2:50:48 PM",
 "department": null,

Samples PingIDM

204 Copyright © 2025 Ping Identity Corporation

mailto:steve.carter@ad0.example.com
mailto:steven.carter@example.com

 "memberOf": [
 "CN=employees,DC=example,DC=com"
],
 "homePhone": null
}

Test that you can authenticate as one of the users in your Active Directory. The username that you specify here can be
either an ObjectGUID, UPN, sAMAccountname or CN:

curl.exe `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--header "Content-Type: application/json" `
--request POST `
--data "{
 \"username\" : \"Steven Carter\",
 \"password\" : \"Passw0rd\"
 }" `
"http://localhost:8080/openidm/system/adpowershell/account?_action=authenticate"
{
 "_id": "6feef4a0-b121-43dc-be68-a96703a49aba"
}

The request returns the ObjectGUID if the authentication is successful.

You can return the complete record for a specific user, using the query filter syntax described in Construct Queries.

The following query returns the record for the guest user:

4.

5.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 205

curl.exe `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--request GET `
"http://localhost:8080/openidm/system/adpowershell/account?_queryFilter=cn+eq+'guest'"
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 1,
 "result": [
 {
 "_id": "f2e08a5c-473f-4798-a2d5-d5cc27c862a9",
 "postalCode": null,
 "passwordNotRequired": true,
 "cn": "Guest",
 "name": "Guest",
 "trustedForDelegation": false,
 "uSNChanged": "8197",
 "manager": null,
 "objectGUID": "f2e08a5c-473f-4798-a2d5-d5cc27c862a9",
 "modifyTimeStamp": "6/9/2014 12:35:16 PM",
 "employeeNumber": null,
 "userAccountControl": 66082,
 "whenChanged": "6/9/2014 12:35:16 PM",
 "initials": null,
 "pwdLastSet": "0",
 "scriptPath": null,
 "badPasswordTime": "0",
 "employeeID": null,
 "badPwdCount": "0",
 "accountExpirationDate": null,
 "sAMAccountName": "Guest",
 "logonCount": "0",
 "cannotChangePassword": true,
 "division": null,
 "streetAddress": null,
 "allowReversiblePasswordEncryption": false,
 "description": "Built-in account for guest access to the computer/domain",
 "userPrincipalName": null,
 "title": null,
 "lastLogon": "0",
 "company": null,
 "homeDirectory": null,
 "whenCreated": "6/9/2014 12:35:16 PM",
 "givenName": null,
 "homeDrive": null,
 "uSNCreated": "8197",
 "smartcardLogonRequired": false,
 "distinguishedName": "CN=Guest,CN=Users,DC=example,DC=com",
 "createTimeStamp": "6/9/2014 12:35:16 PM",
 "department": null,
 "memberOf": [
 "CN=Guests,CN=Builtin,DC=example,DC=com"

Samples PingIDM

206 Copyright © 2025 Ping Identity Corporation

],
 "homePhone": null,
 "displayName": null,
 "passwordNeverExpires": true
 }
]
}

Test that you can create a user on the Active Directory server by sending a POST request with the create action.

The following request creates the user Jane Doe on the Active Directory server:

6.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 207

curl.exe `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--header "Content-Type: application/json" `
--request POST `
--data '{
 \"distinguishedName\" : \"CN=Jane Doe,CN=Users,DC=EXAMPLE,DC=COM\",
 \"sn\" : \"Doe\",
 \"cn\" : \"Jane Doe\",
 \"sAMAccountName\" : \"sample\",
 \"userPrincipalName\" : \"janedoe@example.com\",
 \"enabled\" : true,
 \"password\" : \"Passw0rd\",
 \"telephoneNumber\" : \"0052-611-091\"
 }' `
"http://localhost:8080/openidm/system/adpowershell/account?_action=create"
{
 "_id": "42725210-8dce-4fdf-b0e0-393cf0377fdf",
 "title": null,
 "uSNCreated": "47244",
 "pwdLastSet": "130615892934093041",
 "cannotChangePassword": false,
 "telephoneNumber": "0052-611-091",
 "smartcardLogonRequired": false,
 "badPwdCount": "0",
 "department": null,
 "distinguishedName": "CN=Jane Doe,CN=Users,DC=example,DC=com",
 "badPasswordTime": "0",
 "employeeID": null,
 "cn": "Jane Doe",
 "division": null,
 "description": null,
 "userPrincipalName": "janedoe@example.com",
 "passwordNeverExpires": false,
 "company": null,
 "memberOf": [],
 "givenName": null,
 "streetAddress": null,
 "sn": "Doe",
 "initials": null,
 "logonCount": "0",
 "homeDirectory": null,
 "employeeNumber": null,
 "objectGUID": "42725210-8dce-4fdf-b0e0-393cf0377fdf",
 "manager": null,
 "lastLogon": "0",
 "trustedForDelegation": false,
 "scriptPath": null,
 "allowReversiblePasswordEncryption": false,
 "modifyTimeStamp": "11/27/2014 8:14:53 PM",
 "whenCreated": "11/27/2014 8:14:52 PM",
 "whenChanged": "11/27/2014 8:14:53 PM",
 "accountExpirationDate": null,

Samples PingIDM

208 Copyright © 2025 Ping Identity Corporation

mailto:janedoe@example.com

 "name": "Jane Doe",
 "displayName": null,
 "homeDrive": null,
 "passwordNotRequired": false,
 "createTimeStamp": "11/27/2014 8:14:52 PM",
 "uSNChanged": "47248",
 "sAMAccountName": "sample",
 "userAccountControl": 512,
 "homePhone": null,
 "postalCode": null
}

Test that you can update a user object on the Active Directory server by sending a PUT request with the complete object,
including the user ID in the URL.

The following request updates user Jane Doe 's entry, including her ID in the request. The update sends the same
information that was sent in the create request, but adds an employeeNumber :

7.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 209

curl.exe `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--header "Content-Type: application/json" `
--header "If-Match: *" `
--request PUT `
--data '{
 \"distinguishedName\" : \"CN=Jane Doe,CN=Users,DC=EXAMPLE,DC=COM\",
 \"sn\" : \"Doe\",
 \"cn\" : \"Jane Doe\",
 \"userPrincipalName\" : \"janedoe@example.com\",
 \"enabled\" : true,
 \"password\" : \"Passw0rd\",
 \"telephoneNumber\" : \"0052-611-091\",
 \"employeeNumber\": \"567893\"
 }' `
"http://localhost:8080/openidm/system/adpowershell/account/42725210-8dce-4fdf-b0e0-393cf0377fdf"
{
 "_id": "42725210-8dce-4fdf-b0e0-393cf0377fdf",
 "title": null,
 "uSNCreated": "47244",
 "pwdLastSet": "130615906375709689",
 "cannotChangePassword": false,
 "telephoneNumber": "0052-611-091",
 "smartcardLogonRequired": false,
 "badPwdCount": "0",
 "department": null,
 "distinguishedName": "CN=Jane Doe,CN=Users,DC=example,DC=com",
 "badPasswordTime": "0",
 "employeeID": null,
 "cn": "Jane Doe",
 "division": null,
 "description": null,
 "userPrincipalName": "janedoe@example.com",
 "passwordNeverExpires": false,
 "company": null,
 "memberOf": [],
 "givenName": null,
 "streetAddress": null,
 "sn": "Doe",
 "initials": null,
 "logonCount": "0",
 "homeDirectory": null,
 "employeeNumber": "567893",
 "objectGUID": "42725210-8dce-4fdf-b0e0-393cf0377fdf",
 "manager": null,
 "lastLogon": "0",
 "trustedForDelegation": false,
 "scriptPath": null,
 "allowReversiblePasswordEncryption": false,
 "modifyTimeStamp": "11/27/2014 8:37:17 PM",
 "whenCreated": "11/27/2014 8:14:52 PM",
 "whenChanged": "11/27/2014 8:37:17 PM",

Samples PingIDM

210 Copyright © 2025 Ping Identity Corporation

 "accountExpirationDate": null,
 "name": "Jane Doe",
 "displayName": null,
 "homeDrive": null,
 "passwordNotRequired": false,
 "createTimeStamp": "11/27/2014 8:14:52 PM",
 "uSNChanged": "47253",
 "sAMAccountName": "sample",
 "userAccountControl": 512,
 "homePhone": null,
 "postalCode": null
}

Test whether you are able to delete a user object on the Active Directory server by sending a DELETE request with the user
ID in the URL.

The following request deletes user Jane Doe 's entry:

curl.exe `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--request DELETE `
"http://localhost:8080/openidm/system/adpowershell/account/42725210-8dce-4fdf-b0e0-393cf0377fdf"

The response includes the complete user object that was deleted.

You can you attempt to query the user object to confirm that it has been deleted:

curl.exe `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--request GET `
"http://localhost:8080/openidm/system/adpowershell/account/42725210-8dce-4fdf-b0e0-393cf0377fdf"
{
 "message": "",
 "reason": "Not Found",
 "code": 404
}

Synchronize data between IDM and Azure Active Directory

Azure Active Directory (Azure AD) is Microsoft’s cloud-based identity and access management service that lets users sign in and
access resources. This sample uses the Microsoft Graph API connector to synchronize IDM managed users and Azure AD users.

8.

9.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 211

https://docs.pingidentity.com/openicf/connector-reference/ms-graph-api.html
https://docs.pingidentity.com/openicf/connector-reference/ms-graph-api.html

Prepare the sample

Before you can run this sample, you must register an application with Azure. You need a Microsoft Azure subscription to
complete this procedure:

Log in to the MS Azure portal as an administrative user.

Under Azure services , select App registrations.

On the Register an application page, enter a name for the application; for example, FR-Connector.

Select the supported account types, and enter a Redirect URI.

The redirect URI is the IDM URI that Azure should redirect to after successful authentication; for example, https://
idm.example.com:8443/ .

On the new registration page for your application, make a note of the Application (client) ID and the Directory (tenant)
ID. You will need these to configure the connector:

Generate a client secret:

Select Certificates & secrets > New client secret .

Enter a description, select an expiration date, and click Add.

Copy the client secret Value:

1.

2.

3.

4.

5.

6.

1.

2.

3.

emergency_home
You will not be able to retrieve the client secret in cleartext after you exit this screen.

Important

Samples PingIDM

212 Copyright © 2025 Ping Identity Corporation

https://portal.azure.com/
https://portal.azure.com/

Set the API permissions:

Select API permissions, click Microsoft Graph, and then click Application permissions.

From the User item, select the following permissions:

User.Export.All

User.ManageIdentities.All

User.Read.All

User.ReadWrite.All

From the Group item, select the following permissions:

Group.Create

Group.Read.All

Group.ReadWrite.All

From the Directory item, select the following permissions:

Directory.Read.All

Directory.ReadWrite.All

Click Add permissions .

Grant admin consent for the API permissions:

On the Configured permissions page, Grant admin consent for org-name, then click Yes.

7.

1.

2.

▪

▪

▪

▪

3.

▪

▪

▪

4.

▪

▪

5.

8.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 213

Configure the MS Graph API connector

This procedure uses the admin UI to configure the connector. You can also edit the samples/sync-with-azuread/conf/
provisioner.openicf-azuread.json file directly.

Start IDM with the configuration for the AzureAD sample:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-azuread

Log in to the admin UI at the URL https://localhost:8443/admin as the default administrative user (openidm-admin)
with password openidm-admin .

This URL reflects the host on which IDM is installed, and must be the same as the Redirect URI that you set when you
registered your Azure application.

Select Configure > Connectors, and click the Azuread connector.

Under General Details, select Enabled.

Under Base Connector Details, enter at least the Tenant, ClientID, and Client Secret that you obtained when you
prepared the sample, and then click Save.

After you click Save, IDM validates the connector configuration. If you do not see an error, your connector is configured
correctly.

1.

2.

3.

4.

5.

Samples PingIDM

214 Copyright © 2025 Ping Identity Corporation

Run the sample

This procedure uses create, read, update, and delete (CRUD) operations on the Azure AD resource, to verify that the connector is
working as expected. The procedure uses a combination of REST commands, to manage users and groups in Azure AD, and the
admin UI, to manage IDM users and reconcile objects between the Azure AD and IDM.

The sample configuration has two mappings: one from Azure AD to the managed user repository, and one from the managed user
repository to the users in Azure AD.

Before you can synchronize accounts between the two data stores, you must update the second mapping with your tenant name:

In the admin UI, select Configure > Mappings.

Click on mapping 2 (managedUser_systemAzureadUser).

On the Properties tab, under the Attributes grid, click the userName to userPrincipalName mapping.

On the Transformation Script tab, replace <my tenant> with the name of your tenant. For example:

source +'@example.onmicrosoft.com'

Click Save.

Manage users in Azure AD

Create a user entry in Azure AD, over REST. This command creates an entry for user Sam Carter :

1.

2.

3.

4.

5.

info
All of the commands shown here assume that your domain is example.com . Adjust the examples to match your
domain.

Note

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 215

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--header "content-type: application/json" \
--data '{
 "surname": "Carter",
 "displayName": "Sam Carter",
 "givenName": "Sam",
 "userType": "Member",
 "accountEnabled": true,
 "mail": "scarter@example.com",
 "country": "US",
 "mailNickname": "scarter",
 "userPrincipalName": "scarter@example.onmicrosoft.com",
 "__PASSWORD__": "MyPassw0rd"
}' \
"http://localhost:8080/openidm/system/azuread/user?_action=create"
{
 "_id": "be14f228-1d3a-4f31-aeee-ba6e8419b1b0",
 "accountEnabled": true,
 "memberOf": [],
 "userPrincipalName": "scarter@example.onmicrosoft.com",
 "mailNickname": "scarter",
 "givenName": "Sam",
 "proxyAddresses": [
 "SMTP:scarter@example.com"
],
 "createdDateTime": "2021-03-31T13:47:59Z",
 "onPremisesExtensionAttributes": {
 ...
 },
 "surname": "Carter",
 "imAddresses": [],
 "userType": "Member",
 "manager": null,
 "country": "US",
 "licenses": [],
 "id": "be14f228-1d3a-4f31-aeee-ba6e8419b1b0",
 "mail": "scarter@example.com",
 "displayName": "Sam Carter",
 "identities": [
 {
 "signInType": "userPrincipalName",
 "issuerAssignedId": "scarter@example.onmicrosoft.com",
 "issuer": "example.onmicrosoft.com"
 }
],
 "__NAME__": "scarter@example.onmicrosoft.com",
 "businessPhones": []
}

Samples PingIDM

216 Copyright © 2025 Ping Identity Corporation

Reconcile the Azure AD resource with the managed user repository.

This step should create the new user, Sam Carter (and any other users in your Azure AD resource) in the managed user
repository:

In the admin UI, select Configure > Mappings.

On mapping 1 (systemAzureadUser_managedUser), click Reconcile.

Select Manage > User, and verify that the user Sam Carter exists in the repository.

Update Sam Carter’s country property in IDM:

Select Manage > User, and click Sam Carter's entry.

Change his Country property from US to FR, and click Save.

As a result of implicit synchronization, Sam Carter’s country should be updated automatically in the Azure AD resource.

Read the value of Sam Carter’s country attribute in your Azure AD, specifying the ID you retrieved when you created the
user:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/azuread/user/be14f228-1d3a-4f31-aeee-ba6e8419b1b0?
_fields=country"
{
 "_id": "be14f228-1d3a-4f31-aeee-ba6e8419b1b0",
 "country": "FR"
}

Manage groups in Azure AD

Create a basic group entry in Azure AD:

info
Take note of the ID of the new user (be14f228-1d3a-4f31-aeee-ba6e8419b1b0 in this example). You will need
this ID for additional commands in this example.

Note

2.

1.

2.

3.

3.

1.

2.

4.

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 217

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "description": "Group used for Azure AD sample.",
 "displayName": "AzureAD Test Group",
 "mailNickname": "ExampleTestGroup",
 "mailEnabled": false,
 "securityEnabled": true
}' \
"http://localhost:8080/openidm/system/azuread/group?_action=create"
{
 "_id": "c628713f-e6c8-43a4-8c5d-9c9ee437d950",
 "description": "Group used for Azure AD sample.",
 "mailNickname": "ExampleTestGroup",
 "groupTypes": [],
 "displayName": "AzureAD Test Group",
 "securityIdentifier": "S-1-12-1-3324539199-1134880456-2661047692-1356412900",
 "proxyAddresses": [],
 "mailEnabled": false,
 "createdDateTime": "2021-04-01T12:40:22Z",
 "securityEnabled": true,
 "members": [],
 "__NAME__": "AzureAD Test Group",
 "creationOptions": []
}

Add Sam Carter to the AzureAD Test Group that you have just created. Choose one of the following methods:2.

Samples PingIDM

218 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PUT \
--header "If-Match:*" \
--header "content-type: application/json" \
--data '{
 "memberOf": ["c628713f-e6c8-43a4-8c5d-9c9ee437d950"]
}' \
"http://localhost:8080/openidm/system/azuread/user/be14f228-1d3a-4f31-aeee-ba6e8419b1b0"
{
 "_id": "be14f228-1d3a-4f31-aeee-ba6e8419b1b0",
 "manager": null,
 "userPrincipalName": "scarter@example.onmicrosoft.com",
 "userType": "Member",
 "country": "FR",
 "createdDateTime": "2021-03-31T13:47:59Z",
 "givenName": "Sam",
 "__NAME__": "scarter@example.onmicrosoft.com",
 "onPremisesExtensionAttributes": {
 ...
 },
 "mailNickname": "scarter",
 "licenses": [],
 "businessPhones": [],
 "displayName": "Sam Carter",
 "imAddresses": [],
 "id": "be14f228-1d3a-4f31-aeee-ba6e8419b1b0",
 "mail": "scarter@example.com",
 "proxyAddresses": [
 "smtp:scarter@example.onmicrosoft.com",
 "SMTP:scarter@example.com"
],
 "accountEnabled": true,
 "memberOf": [
 "c628713f-e6c8-43a4-8c5d-9c9ee437d950"
],
 "identities": [
 {
 "signInType": "userPrincipalName",
 "issuerAssignedId": "scarter@example.onmicrosoft.com",
 "issuer": "example.onmicrosoft.com"
 }
],
 "surname": "Carter"
}

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 219

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PUT \
--header "If-Match:*" \
--data '{
 "members": ["be14f228-1d3a-4f31-aeee-ba6e8419b1b0"]
}' \
"http://localhost:8080/openidm/system/azuread/group/c628713f-e6c8-43a4-8c5d-9c9ee437d950"
{
 "_id": "c628713f-e6c8-43a4-8c5d-9c9ee437d950",
 "description": "Group used for Azure AD sample.",
 "mailNickname": "ExampleTestGroup",
 "groupTypes": [],
 "displayName": "AzureAD Test Group",
 "securityIdentifier": "S-1-12-1-3324539199-1134880456-2661047692-1356412900",
 "proxyAddresses": [],
 "mailEnabled": false,
 "createdDateTime": "2021-04-01T12:40:22Z",
 "securityEnabled": true,
 "members": [
 "be14f228-1d3a-4f31-aeee-ba6e8419b1b0"
],
 "__NAME__": "AzureAD Test Group",
 "creationOptions": []
}

Read the group entry’s members property to verify that the Sam Carter has been added:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/azuread/group/c628713f-e6c8-43a4-8c5d-9c9ee437d950?
_fields=members"
{
 "_id": "c628713f-e6c8-43a4-8c5d-9c9ee437d950",
 "members": [
 "be14f228-1d3a-4f31-aeee-ba6e8419b1b0"
]
}

Delete the group entry:

3.

4.

Samples PingIDM

220 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/system/azuread/group/c628713f-e6c8-43a4-8c5d-9c9ee437d950"
{
 "_id": "c628713f-e6c8-43a4-8c5d-9c9ee437d950",
 "description": "Group used for Azure AD sample.",
 "mailNickname": "ExampleTestGroup",
 "groupTypes": [],
 "displayName": "AzureAD Test Group",
 "securityIdentifier": "S-1-12-1-3324539199-1134880456-2661047692-1356412900",
 "proxyAddresses": [],
 "mailEnabled": false,
 "createdDateTime": "2021-04-01T12:40:22Z",
 "securityEnabled": true,
 "members": [
 "be14f228-1d3a-4f31-aeee-ba6e8419b1b0"
],
 "__NAME__": "AzureAD Test Group",
 "creationOptions": []
}

Delete user Sam Carter, to return your Azure AD resource to its original state:5.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 221

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/system/azuread/user/be14f228-1d3a-4f31-aeee-ba6e8419b1b0"
{
 "_id": "be14f228-1d3a-4f31-aeee-ba6e8419b1b0",
 "manager": null,
 "userPrincipalName": "scarter@example.onmicrosoft.com",
 "userType": "Member",
 "country": "FR",
 "createdDateTime": "2021-03-31T13:47:59Z",
 "givenName": "Sam",
 "__NAME__": "scarter@example.onmicrosoft.com",
 "onPremisesExtensionAttributes": {
 ...
 },
 "mailNickname": "scarter",
 "licenses": [],
 "businessPhones": [],
 "displayName": "Sam Carter",
 "imAddresses": [],
 "id": "be14f228-1d3a-4f31-aeee-ba6e8419b1b0",
 "mail": "scarter@example.com",
 "proxyAddresses": [
 "smtp:scarter@example.onmicrosoft.com",
 "SMTP:scarter@example.com"
],
 "accountEnabled": true,
 "memberOf": [],
 "identities": [
 {
 "signInType": "userPrincipalName",
 "issuerAssignedId": "scarter@example.onmicrosoft.com",
 "issuer": "example.onmicrosoft.com"
 }
],
 "surname": "Carter"
}

In this sample, you used the MS Graph API connector to add and delete user and group objects in your Azure AD tenant and to
reconcile users between Azure AD and IDM. You can expand on this sample by customizing the connector configuration to
provide additional synchronization functionality between IDM and Azure AD. For information about configuring connectors, refer
to Connector reference.

Samples PingIDM

222 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/preface.html
https://docs.pingidentity.com/openicf/connector-reference/preface.html

Connect to a MySQL database with ScriptedSQL

This sample uses the Groovy Connector Toolkit bundled with IDM (openidm/connectors/groovy-connector-1.5.20.29.jar) to
implement a ScriptedSQL connector that interacts with an external MySQL database (HRDB), and also demonstrates the following
functionality:

Complex data types.

Complex data types can be stored, retrieved and synchronized like any other object property. They are stored in the
managed data as JSON objects, represented as a string, but can be mapped to external resources in any format required.
You can customize the mapping to do additional work with or transformations on the complex data types.

This sample defines one complex data type, cars , discussed in more detail later in this section.

Event hooks to perform actions.

The mapping from the internal repository to the external hrdb database includes two script hooks. The first hook is for an
onCreate event and the second is for an onUpdate event.

Custom scripted endpoints.

Custom scripted endpoints are configured in the provisioner configuration file and allow you to execute custom scripts
over REST. This sample uses a custom scripted endpoint to reset the database and populate it with data.

The Groovy scripts required for the sample are located in the samples/scripted-sql-with-mysql/tools directory. Note that the
power of the Groovy connector is in the associated Groovy scripts, and their application in your particular deployment. The
scripts provided with this sample are specific to the sample. You must customize these scripts to address the requirements of
your specific deployment. The sample scripts are a good starting point on which to base your customization.

Configure the external MySQL database

This sample assumes a database running on the localhost.

Download MySQL Connector/J version 8.0 or later.

Unpack the downloaded file, and copy the .jar file to openidm/lib :

cp mysql-connector-java-version-bin.jar /path/to/openidm/lib/

•

•

•

error
Because MySQL cannot "un-hash" user passwords there is no way for a reconciliation operation to retrieve the
password from MySQL and store it in the managed user object. This issue might impact configurations that support
multiple external resources in that passwords might not be synchronized immediately after reconciliation from
MySQL to the managed user repository. Users who are missing in the repository will be created by reconciliation but
their passwords will be empty. When those users are synchronized to other external resources, they will have empty
passwords in those resources. Additional scripting might be required to handle this situation, depending on the
requirements of your deployment.

Caution

1.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 223

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Set up MySQL to listen on localhost, port 3306 . IDM will connect to the hrdb database as user root with password
password .

To use an existing MySQL instance that runs on a different host or port, or to change the database credentials, edit the
configurationProperties in the connector configuration file (samples/scripted-sql-with-mysql/conf/
provisioner.openicf-hrdb.json) before you start the sample. The default configuration is as follows:

"configurationProperties" : {
 "username" : "root",
 "password" : "password",
 "driverClassName" : "com.mysql.cj.jdbc.Driver",
 "url" : "jdbc:mysql://localhost:3306/hrdb?serverTimezone=UTC",
 ...

Set up the hrdb database, with which IDM will synchronize its managed user repository:

mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.7.13 MySQL Community Server (GPL)

Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE hrdb CHARACTER SET utf8 COLLATE utf8_bin;
Query OK, 1 row affected (0.00 sec)

Configure your GRANT permissions:

CREATE USER IF NOT EXISTS 'root'@'%' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON hrdb.* TO 'root'@'%' WITH GRANT OPTION;

info
If you are running this sample with an SQL database other than MySQL, download the corresponding driver
and place it in the openidm/lib directory. It is not necessary to create an OSGi bundle for the driver.

Note

3.

info
The default configuration expects SSL, which is strongly advised in a production environment. If you are running
this in a test environment, you can bypass the SSL requirement:

Add &useSSL=false to the end of the url .
If you are running MySQL 8.0.11+, add &allowPublicKeyRetrieval=true to the end of the url .

Note

◦

◦

4.

5.

Samples PingIDM

224 Copyright © 2025 Ping Identity Corporation

Run the sample

The mapping configuration file (sync.json) for this sample includes the mapping systemHrdb_managedUser . You will use this
mapping to synchronize users from the source hrdb database with the target IDM repository.

Start IDM with the configuration for the ScriptedSQL sample:

/path/to/openidm/startup.sh -p samples/scripted-sql-with-mysql

Run the custom script (samples/scripted-sql-with-mysql/tools/ResetDatabaseScript.groovy) to reset the database
and populate it with sample data.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system/hrdb?_action=script&scriptId=ResetDatabase"
{
 "actions": [
 {
 "result": "Database reset successful."
 }
]
}

The hrdb database should now be populated with sample data.

Review the contents of the database:

1.

2.

lightbulb_2
You can run the script again, at any point, to reset the database.

Tip

3.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 225

mysql -u root -p
Enter password:
mysql > use hrdb;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql > select * from users;
--...
| id | uid | password | firstname | lastname | fullname | email ...
+--...
| 1 | bob | e38ad2149... | Bob | Fleming | Bob Fleming | Bob.Fle...
| 2 | rowley | 2aa60a8ff... | Rowley | Birkin | Rowley Birkin | Rowley....
| 3 | louis | 1119cfd37... | Louis | Balfour | Louis Balfour | Louis.B...
| 4 | john | a1d7584da... | John | Smith | John Smith | John.Sm...
| 5 | jdoe | edba955d0... | John | Doe | John Doe | John.Do...
+---+-------...
5 rows in set (0.00 sec)

Reconcile the hrdb database with the managed user repository.

To reconcile the repository by using the Administration UI:

Log in to the admin UI at the URL https://localhost:8443/admin as the default administrative user
(openidm-admin) with password openidm-admin .

Select Configure > Mappings.

The Mappings page shows two mappings, one from the hrdb database to the IDM managed user
repository (managed/user), and one in the opposite direction.

Click Reconcile on the first mapping (systemHrdb_managedUser).

To reconcile the repository by using the command-line, launch the reconciliation operation with the following
command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemHrdb_managedUser&waitForCompletion=true"
{
 "state": "SUCCESS",
 "_id": "f3c618aa-cc3b-49ed-9a3a-00b012db2513"
}

info
The passwords in the above output are SHA-1 hashed because they cannot be read into IDM as cleartext. The
SHA-1 Hash function is used for compatibility reasons. Use a more secure algorithm in a production database.

Note

4.

1.

1.

2.

3.

2.

Samples PingIDM

226 Copyright © 2025 Ping Identity Corporation

https://localhost:8443/admin
https://localhost:8443/admin

The reconciliation operation creates the five users from the MySQL database in the IDM repository.

Retrieve the list of users from the repository.

To retrieve the users in the repository from the admin UI:

Select Manage > User to display the User List.

The five users from the hrdb database have been reconciled to the OpenIDM repository.

To retrieve the details of a specific user, click that user entry.

To retrieve the users from the repository by using the command-line, query the IDs in the repository as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryId=query-all-ids"
{
 "result": [
 {
 "_id": "1b379e4d-3b8d-47e7-93d5-a72c4b483e39",
 "_rev": "000000002d93e471"
 },
 {
 "_id": "a658f751-d6e9-4b5d-af56-071a9b05c3af",
 "_rev": "000000003c83d48a"
 },
 {
 "_id": "5b31027b-09f8-4c7f-abfa-c6bc86ae3943",
 "_rev": "00000000b042e559"
 },
 {
 "_id": "1b3f6b06-1752-4c40-ba34-51d30b184b9d",
 "_rev": "0000000092bdda6d"
 },
 {
 "_id": "9c62f0d2-47e2-4fc5-89d1-b50b782b1022",
 "_rev": "0000000025cdd3c6"
 }
],
 "resultCount": 5,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To retrieve a complete user record, query the userName of the individual user entry. The following query returns
the record for the user Rowley Birkin :

5.

1.

1.

2.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 227

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/?_queryId=for-userName&uid=rowley"
"result": [
 {
 "_id": "1b379e4d-3b8d-47e7-93d5-a72c4b483e39",
 "_rev": "000000002d93e471",
 "mail": "Rowley.Birkin@example.com",
 "userName": "rowley",
 "sn": "Birkin",
 "organization": "SALES",
 "givenName": "Rowley",
 "cars": [
 {
 "year": "2013",
 "make": "BMW",
 "model": "328ci"
 },
 {
 "year": "2010",
 "make": "Lexus",
 "model": "ES300"
 }
],
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
 }
],
 ...
}

Regardless of how you have retrieved Rowley Birkin’s entry, note the cars property in this user’s entry. This property
demonstrates a complex object, stored in JSON format in the user entry, as a list that contains multiple objects. In the
MySQL database, the car table joins to the users table through a cars.users_id column. The Groovy scripts read this
data from MySQL and repackage it in a way that IDM can understand. With support for complex objects, the data is passed
through to IDM as a list of car objects. Data is synchronized from IDM to MySQL in the same way. Complex objects can
also be nested to any depth.

Group membership (not demonstrated here) is maintained with a traditional "join table" in MySQL (groups_users). IDM does not
maintain group membership in this way, so the Groovy scripts do the work to translate membership between the two resources.

Test the event hooks

This sample uses the onCreate and onUpdate hooks to log messages when a user is created or updated in the external
database.

The sample’s conf/sync.json file defines these event hooks as follows:

Samples PingIDM

228 Copyright © 2025 Ping Identity Corporation

...
 {
 "name" : "managedUser_systemHrdb",
 "source" : "managed/user",
 "target" : "system/hrdb/account",
 "links" : "systemHrdb_managedUser",
 "correlationQuery" : {
 "type" : "text/javascript",
 "source" : "({'_queryFilter': 'uid eq \"' + source.userName + '\"'});"
 },
 "onCreate" : {
 "type" : "text/javascript",
 "source" : "logger.info(\"Creating new user in external repo\")"
 },
 "onUpdate" : {
 "type" : "text/javascript",
 "source" : "logger.info(\"Updating existing user in external repo\")"
 },
...

Using these event hooks, IDM logs a message when a user is created or updated in the external database. In this sample, the
script source is included in the mapping. However, a script can also be called from an external file. For more information about
event hooks, refer to Script triggers.

To test the event hooks, create a new managed user as follows:

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 229

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "mail":"fdoe@example.com",
 "sn":"Doe",
 "telephoneNumber":"555-1234",
 "userName":"fdoe",
 "givenName":"Felicitas",
 "description":"Felicitas Doe",
 "displayName":"fdoe"}' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "2e5e9748-77e6-4019-90e1-abe9ab897343",
 "_rev": "0000000015b2d4ba",
 "mail": "fdoe@example.com",
 "sn": "Doe",
 "telephoneNumber": "555-1234",
 "userName": "fdoe",
 "givenName": "Felicitas",
 "description": "Felicitas Doe",
 "displayName": "fdoe",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

The implicit synchronization between the managed user repository and the HRDB database creates that user in the database
automatically.

Check the latest log file at path/to/openidm/logs/openidm0.log.0 . You should see the following message at the end of the log:

INFO: Creating new user in external repo

Query the new user entry in the HRDB database:

Samples PingIDM

230 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/hrdb/account?_queryFilter=uid+eq+'fdoe'"
{
 "result": [
 {
 "_id": "6",
 "cars": [],
 "firstName": "Felicitas",
 "uid": "fdoe",
 "lastName": "Doe",
 "organization": "IDM",
 "fullName": "Felicitas Doe",
 "email": "fdoe@example.com"
 }
],
 ...
}

Update fdoe’s entry in the HRDB database with a patch request. The following request updates the user’s organization field:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[{
 "operation" : "replace",
 "field" : "organization",
 "value" : "example.com"
}]' \
"http://localhost:8080/openidm/system/hrdb/account/6"
{
 "_id": "6",
 "cars": [],
 "firstName": "Felicitas",
 "uid": "fdoe",
 "lastName": "Doe",
 "organization": "example.com",
 "fullName": "Felicitas Doe",
 "email": "fdoe@example.com"
}

Note that this update does not reference the onUpdate script hook so this change is not logged in openidm0.log.0 .

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 231

Run the sample with paging

All OpenICF connectors from version 1.4 onwards support the use of paging parameters to restrict query results. The following
command indicates that only two records should be returned (_pageSize=2) and that the records should be sorted according to
their timestamp and _id (_sortKeys=timestamp,_id). Including the timestamp in the sort ensures that, as you page through
the set, changes to records that have already been visited are not lost. Instead, those records are pushed onto the last page:

Samples PingIDM

232 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/hrdb/account?_queryFilter=true&_pageSize=2&_sortKeys=timestamp,_id"
{
 "result": [
 {
 "_id": "1",
 "firstName": "Bob",
 "cars": [
 {
 "year": "1979",
 "make": "Ford",
 "model": "Pinto"
 }
],
 "fullName": "Bob Fleming",
 "email": "Bob.Fleming@example.com",
 "uid": "bob",
 "lastName": "Fleming",
 "organization": "HR"
 },
 {
 "_id": "2",
 "firstName": "Rowley",
 "cars": [
 {
 "year": "2013",
 "make": "BMW",
 "model": "328ci"
 }
],
 "fullName": "Rowley Birkin",
 "email": "Rowley.Birkin@example.com",
 "uid": "rowley",
 "lastName": "Birkin",
 "organization": "SALES"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": "2018-04-05+16%3A30%3A22.0%2C2",
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

The pagedResultsCookie is used by the server to keep track of the position in the search results. You can ignore the
"remainingPagedResults": -1 in the output. The real value of this property is not returned because the scripts that the
connector uses do not do any counting of the records in the resource.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 233

Using the pagedResultsCookie from the previous step, run a similar query, to retrieve the following set of records in the
database:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/hrdb/account?_queryId=query-all-
ids&_pageSize=2&_sortKeys=timestamp,_id&_pagedResultsCookie=2018-04-05+16%3A30%3A22.0%2C2"
{
 "result": [
 {
 "_id": "3",
 },
 {
 "_id": "4",
 }
],
 "resultCount": 2,
 "pagedResultsCookie": "2018-04-05+16%3A30%3A22.0%2C4",
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

For more information about paging, refer to Page Query Results.

Direct audit information to MySQL

The sample includes an external CSV file and a mapping between objects in that file and the managed user repository. The
reconciliations across this mapping generate the audit records that will be directed to the MySQL database. The connection to the
MySQL database is through a ScriptedSQL implementation of the Groovy Connector Toolkit.

About the configuration files

The files that demonstrate the functionality of this sample are located under /path/to/openidm/samples/audit-jdbc/ , in the
conf/ and data/ directories.

The following files play important roles in this sample:

conf/provisioner.openicf-auditdb.json

This file provides the configuration for the Scripted SQL implementation of the Groovy Connector. The file specifies,
among other things, the connection details to the MySQL database, the connector version information, and the object
types that are supported for this connection. For more information, refer to Groovy Connector Toolkit.

Samples PingIDM

234 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/groovy.html
https://docs.pingidentity.com/openicf/connector-reference/groovy.html

conf/provisioner.openicf-csvfile.json

This file provides the configuration for this instance of the CSV connector. It includes, among other things, the location of
the CSV file resource.

conf/sync.json

Provides the mapping between managed users and the data set in the CSV file.

conf/audit.json

This file configures the router as the audit event handler, and routes audit logs to a remote system, identified as auditdb .

data/csvConnectorData.csv

This file contains the sample data set that will be reconciled to the managed user repository.

data/sample_audit_db.mysql

This file sets up the schema for the MySQL database that will contain the audit logs.

tools/*.groovy

The Groovy scripts in this directory allow the connector to perform operations on the MySQL database.

Configure the MySQL database

The sample assumes the following MySQL configuration:

The database is available on the local host.

The database listens on the standard MySQL port, 3306.

You can connect to the MySQL database, as user root with password password .

Before you start this sample, MySQL must be installed and running, and must include the database required for the sample. In
addition, IDM must include the connector JAR required to connect to the MySQL database.

Install and configure MySQL.

This step sets up an audit database with tables that correspond to the various audit events. When MySQL is up and
running, import the database schema to set up the database required for the sample:

mysql -u root -p < /path/to/openidm/samples/audit-jdbc/data/sample_audit_db.mysql
Enter password:password

To view the tables in the audit database, use the following command:

•

•

•

1.

2.

3.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 235

mysql -u root -p
Enter password:password
mysql> use audit
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> show tables;
+---------------------+
| Tables_in_audit |
+---------------------+
| auditaccess |
| auditactivity |
| auditauthentication |
| auditconfig |
| auditrecon |
| auditsync |
+---------------------+
6 rows in set (0.00 sec)

Download MySQL Connector/J, version 8.0 or later from the MySQL website. Unpack the delivery, and copy the .jar into
the openidm/bundle directory:

cp mysql-connector-java-version-bin.jar /path/to/openidm/bundle/

Edit the url property in the SQL connector configuration file (openidm/samples/audit-jdbc/conf/
provisioner.openicf-auditdb.json) to match the host and port of your MySQL instance. The default configuration is as
follows:

"url" : "jdbc:mysql://localhost:3306/audit?serverTimezone=UTC",

Run the sample

In this section, you will start IDM, then run a reconciliation between the CSV file and the managed user repository. After the
reconciliation, you should be able to read the audit logs in the audit database on your MySQL instance.

Prepare IDM as described in Prepare IDM, then start the server with the configuration for this sample:

cd /path/to/openidm/
./startup.sh -p samples/audit-jdbc

4.

5.

info
The default configuration expects SSL, which is strongly advised in a production environment. If you are running
this in a test environment, you can bypass the SSL requirement:

Add &useSSL=false to the end of the url .
If you are running MySQL 8.0.11+, add &allowPublicKeyRetrieval=true to the end of the url .

Note

◦

◦

1.

Samples PingIDM

236 Copyright © 2025 Ping Identity Corporation

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Reconcile the two data sources.

To run the reconciliation over REST, use the following command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemCsvfileAccounts_managedUser&waitForCompletion=true"
{
 "_id": "a3664c26-bf82-4100-b411-19edc248c306-7",
 "state": "SUCCESS"
}

To run the reconciliation from the admin UI, select Configure > Mappings, select the
systemCsvfileAccounts_managedUser mapping, and then select Reconcile.

Inspect the tables in the audit database to see how the logs have been routed to that location.

The following example displays the reconciliation audit logs:

mysql -u root -p
Enter password:password...
mysql> use audit;...
mysql> show tables;
+---------------------+
+---------------------+
| Tables_in_audit |
+---------------------+
| auditaccess |
| auditactivity |
| auditauthentication |
| auditconfig |
| auditrecon |
| auditsync |
+---------------------+
6 rows in set (0.00 sec)
mysql> select * from auditactivity;

+----+-------------+--------------------------+-------------+----------------+---------------+...+
| id | objectid | activitydate | eventname | transactionid | userid |...|
+----+-------------+--------------------------+-------------+----------------+---------------+...+
| 1 | 9927b8db* | 2021-01-25T12:53:00.800Z | activity | 9927b8db* | openidm-admin |...|

You can inspect the other audit logs in the same way.

By default, the audit configuration in this sample uses the router audit handler for queries, as indicated in the following
line from the conf/audit.json file:

2.

◦

◦

3.

4.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 237

"handlerForQueries" : "router",

With this configuration, when you query the audit logs over REST, the audit data is returned from the router handler (in
this case the MySQL database). The following example shows how to query the activity audit log:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/audit/activity?_queryFilter=true"
{
 "result": [
 {
 "_id": "9927b8db-4537-467f-a077-dbe8cab2a4c8-1187",
 "timestamp": "2021-01-25T12:53:00.800Z",
 "userId": "openidm-admin",
 "operation": "CREATE",
 "changedFields": null,
 "objectId": "managed/user/47527af8-f7d5-4b4b-9d8e-af45169016d4",
 "eventName": "activity",
 "trackingIds": null,
 "transactionId": "9927b8db-4537-467f-a077-dbe8cab2a4c8-1109",
 "runAs": "openidm-admin",
 "passwordChanged": false,
 "message": "create",
 "status": "SUCCESS"
 },
],
 ...
}

You can query the other audit logs in the same way.

Direct audit information to a JMS broker

This sample shows how to configure a Java Message Service (JMS) audit event handler to direct audit information to a JMS broker.

JMS is an API that supports Java-based peer-to-peer messages between clients. The JMS API can create, send, receive, and read
messages, reliably and asynchronously. You can set up a JMS audit event handler to publish messages that comply with the Java
Message Service Specification Final Release 1.1.

This sample demonstrates the use of the JMS audit event handler. In the sample you will set up communication between IDM and
an external JMS Message Broker, as well as Apache ActiveMQ Artemis as the JMS provider and message broker.

Samples PingIDM

238 Copyright © 2025 Ping Identity Corporation

https://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
http://activemq.apache.org/
http://activemq.apache.org/

Dependencies for JMS messaging

The JMS audit event handler requires Apache ActiveMQ Artemis and additional dependencies bundled with the ActiveMQ Artemis
delivery. This section lists the dependencies, and where they must be installed in the IDM instance. If you use a different
ActiveMQ version, you may need to download the corresponding dependencies separately.

Download the following files:

Apache ActiveMQ Artemis.

The most recent bnd JAR file from https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/.

Unpack the ActiveMQ Artemis archive. For example:

tar -zxvf ~/Downloads/apache-artemis-2.20.0-bin.tar.gz

Create a temporary directory, and then change to that directory:

mkdir ~/Downloads/tmp
cd ~/Downloads/tmp/

Move the ActiveMQ Artemis Client and bnd JAR files to the temporary directory.

mv ~/Downloads/apache-artemis-2.20.0/lib/client/artemis-jms-client-all-2.20.0.jar ~/Downloads/tmp/
mv ~/Downloads/biz.aQute.bnd-version.jar ~/Downloads/tmp/

Create an OSGi bundle:

In a text editor, create a BND file named activemq.bnd with the following contents, and save it to the current
directory:

info
JMS topics are not related to ForgeRock audit event topics. The ForgeRock implementation of JMS topics uses the
publish/subscribe messaging domain to direct messages to the JMS audit event handler. In contrast, ForgeRock
audit event topics specify categories of events.

Note

1.

◦

info
This sample was tested with version 2.20.0.

Note

◦

lightbulb_2
The bnd utility lets you create OSGi bundles for libraries that do not support OSGi.

Tip

2.

3.

4.

5.

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 239

https://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html#bnced
https://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html#bnced
https://activemq.apache.org/components/artemis/download/
https://activemq.apache.org/components/artemis/download/
https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
https://bnd.bndtools.org/
https://bnd.bndtools.org/

version=2.20.0
Export-Package: *;version=${version}
Import-Package: !org.apache.log4j.*,!org.apache.log.*,!org.apache.avalon.framework.logger.*,!
org.apache.avalon.framework.logger.*,!org.glassfish.json.*,!org.conscrypt.*,!
org.apache.logging.*,!org.bouncycastle.jsse.*,!org.eclipse.*,!sun.security.*,!reactor.*,!
org.apache.activemq.artemis.shaded.*,!com.aayushatharva.*,!com.github.luben.zstd,!
com.jcraft.jzlib,!com.ning.compress,!com.ning.compress.lzf,!com.ning.compress.lzf.util,!
com.oracle.svm.core.annotate,!lzma.*,!net.jpountz.*,*
Bundle-Name: ActiveMQArtemis :: Client
Bundle-SymbolicName: org.apache.activemq
Bundle-Version: ${version}

Your tmp/ directory should now contain the following files:

ls -1 ~/Downloads/tmp/
activemq.bnd
artemis-jms-client-all-2.20.0.jar
biz.aQute.bnd-version.jar

In the same directory, create the OSGi bundle archive file. For example:

java -jar biz.aQute.bnd-version.jar wrap \
--properties activemq.bnd \
--output artemis-jms-client-all-2.20.0-osgi.jar \
artemis-jms-client-all-2.20.0.jar

Copy the resulting artemis-jms-client-all-2.20.0-osgi.jar file to the openidm/bundle directory:

cp artemis-jms-client-all-2.20.0-osgi.jar /path/to/openidm/bundle/

Configure SSL for Apache ActiveMQ Artemis

For information on configuring Apache ActiveMQ Artemis security features, including SSL, refer to the ActiveMQ Artemis
Documentation:

Security

Configuring the Transport

Configure a secure port for JMS messages

If you configured SSL for ActiveMQ Artemis, edit /path/to/openidm/samples/audit-jms/conf/audit.json , and replace the
java.naming.provider.url :

"java.naming.provider.url" : "ssl://localhost:61617?daemon=true"

2.

6.

•

•

Samples PingIDM

240 Copyright © 2025 Ping Identity Corporation

https://activemq.apache.org/components/artemis/documentation/2.2.0/security.html
https://activemq.apache.org/components/artemis/documentation/2.2.0/security.html
https://activemq.apache.org/components/artemis/documentation/2.2.0/configuring-transports.html
https://activemq.apache.org/components/artemis/documentation/2.2.0/configuring-transports.html

Start the ActiveMQ Artemis broker and IDM

With the appropriate bundles in the /path/to/openidm/bundle/ directory, you can start the ActiveMQ Artemis message broker,
and then start IDM with the configuration for this sample.

Navigate to the directory where you unpacked the ActiveMQ Artemis binary and run the following command to create the
Artemis broker:

cd ~/Downloads/apache-artemis-2.20.0/bin
./artemis create fr-audit
Creating ActiveMQ Artemis instance at: /path/to/Downloads/apache-artemis-2.20.0/bin/fr-audit
...

Start the newly created ActiveMQ Artemis broker:

./fr-audit/bin/artemis run

Start IDM with the sample configuration:

cd /path/to/openidm/
./startup.sh -p samples/audit-jms

Configure and use a JMS consumer application

To take advantage of the ActiveMQ Artemis event broker, the JMS audit sample includes a Java consumer in the following
directory: /path/to/openidm/samples/audit-jms/consumer/

Assuming you have Apache Maven installed on the local system, you can compile the sample consumer with the following
commands:

cd /path/to/openidm/samples/audit-jms/consumer/
mvn clean install

When the build process is complete, you’ll see a BUILD SUCCESS message:

emergency_home
For a full list of ActiveMQ Artemis setup options, refer to Using the Server in the ActiveMQ Artemis Documentation.

Important

1.

2.

3.

info
If you see the following error in the OSGi console, make sure that you have installed all the required
dependencies and that you have started the ActiveMQ Artemis broker.

SEVERE: Unable to create JmsAuditEventHandler 'jms': null

Note

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 241

https://activemq.apache.org/components/artemis/documentation/latest/using-server.html
https://activemq.apache.org/components/artemis/documentation/latest/using-server.html

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 22.852 s
[INFO] Finished at: 2017-02-17T17:21:35+02:00
[INFO] Final Memory: 18M/148M
[INFO] --

When the consumer is compiled, run one of the following commands in the same directory to output audit messages
related to IDM actions:

If you haven’t configured ActiveMQ Artemis on a secure port:

mvn \
exec:java \
-Dexec.mainClass="consumer.src.main.java.SimpleConsumer" \
-Dexec.args="org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory tcp://localhost:
61616"

If you’ve configured ActiveMQ Artemis on a secure port:

MAVEN_OPTS="-Djavax.net.ssl.trustStore=/path/to/openidm/security/truststore" \
mvn \
exec:java \
-Dexec.mainClass="consumer.src.main.java.SimpleConsumer" \
-Dexec.args="org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory ssl://localhost:
61617?daemon=true"

Try some actions on IDM, either in a different console or in the admin UI. Watch the output in the SimpleConsumer
console. For example:

--------Message Wed 2022.05.11 at 15:47:07.007 PDT--------
{"auditTopic":"authentication","event":{"_id":"1c25a7d3-e04b-4e4f-ba02-
dfca7b2b0dbd-2883","timestamp":"2022-05-11T22:47:06.375Z","eventName":"SESSION","transactionId":"1c25a7d3-
e04b-4e4f-ba02-dfca7b2b0dbd-2880","trackingIds":["d7cd0e66-4d48-4e71-90ec-357c93938c82","1cab8896-9af1-431a-
aee8-45b5696e8e52"],"userId":"openidm-admin","principal":["openidm-admin"],"entries":
[{"moduleId":"JwtSession","result":"SUCCESSFUL","info":{"org.forgerock.authentication.principal":"openidm-
admin"}}],"result":"SUCCESSFUL","provider":null,"method":"JwtSession"},"_topic":"authentication"}
--

info
You might see [WARNING] messages during the build. As long as the messages end with BUILD SUCCESS , you
can proceed with the JMS consumer application.

Note

2.

◦

◦

lightbulb_2
Look for the message READY, listening for messages.

Tip

3.

Samples PingIDM

242 Copyright © 2025 Ping Identity Corporation

Synchronize data between MongoDB and IDM

This sample uses the Groovy Connector Toolkit to implement a scripted connector that interacts with a MongoDB database. You
can use the connector to provision MongoDB database users and roles from an IDM managed repository.

The Groovy Connector Toolkit is bundled with IDM in the JAR openidm/connectors/groovy-connector-1.5.20.29.jar .

Sample overview

The Groovy scripts required for the sample are bundled within the MongoDB connector. If you want to customize these scripts,
you can specify different scripts by adjusting the scriptRoots property and script names in provisioner.openicf-
mongodb.json .

This sample lets you to synchronize from IDM Managed User to an external MongoDB database.

While not demonstrated in this sample, the MongoDB connector can also:

Synchronize from a dedicated store of IDM Managed MongoDB Roles to an external MongoDB database.

Synchronize from an external MongoDB database to a dedicated IDM store of Managed MongoDB Roles.

Configure the MongoDB database

This sample assumes a MongoDB database, running on the localhost system. Follow these steps to install and configure the
MongoDB database:

Use the instructions for downloading and installing MongoDB in the MongoDB Manual. For the supported version of
MongoDB, refer to MongoDB connector.

Set up MongoDB, based on the configurationProperties described in MongoDB connector. By default, MongoDB
listens on localhost, port 27017. For the purpose of this sample, set up an administrative user of myUserAdmin with a
password of Passw0rd in the admin database. Then create a database in MongoDB named hrdb .

If want to use an existing MongoDB instance that runs on a different host or port, or you want to change the database
credentials, adjust the configurationProperties in the connector configuration file
(samples/sync-with-mongodb/conf/provisioner.openicf-mongodb.json) before you start the sample, as described in
Configure the MongoDB connector.

Set up the MongoDB database, with which IDM will synchronize its managed user repository, by:

Enabling authentication, as described in the following MongoDB document: Enable Auth.

info
There is currently no way to synchronize passwords from an external MongoDB database to IDM. Because of this, it is
recommended that IDM be used for user creation and password management.

Note

•

•

1.

2.

info
The MongoDB administrative user must have the userAdminAnyDatabase role, or attempts to update users will
fail.

Note

3.

◦

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 243

https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.pingidentity.com/openicf/connector-reference/mongodb.html
https://docs.pingidentity.com/openicf/connector-reference/mongodb.html
https://docs.pingidentity.com/openicf/connector-reference/mongodb.html
https://docs.pingidentity.com/openicf/connector-reference/mongodb.html
https://docs.pingidentity.com/openicf/connector-reference/mongodb.html#configuring-mongodb-connector
https://docs.pingidentity.com/openicf/connector-reference/mongodb.html#configuring-mongodb-connector
https://docs.mongodb.com/manual/tutorial/enable-authentication/
https://docs.mongodb.com/manual/tutorial/enable-authentication/

Setting up users and roles, as described in this MongoDB document: Manage Users and Roles.

Run the sample

In this section, you will start IDM with the sample configuration, test the connection to the MongoDB database, and populate the
database with sample data.

The mapping configuration file (sync.json) for this sample includes one mapping: managedUser_systemMongodbAccount . You
will use this mapping to synchronize users between the IDM repository and the MongoDB database:

Update samples/sync-with-mongodb/conf/provisioner.openicf-mongodb.json with the credentials and database
information you created when configuring MongoDB. In our example, database would be set to hrdb , while user would
be myUserAdmin with userDatabase set to admin .

Start IDM with the configuration for the MongoDB sample:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-mongodb

Create at least one assignment and role to assign roles to users. In this example, we are creating a role to assign read
privileges to users. The role created is conditional, and only assigned to active users:

◦

1.

2.

3.

Samples PingIDM

244 Copyright © 2025 Ping Identity Corporation

https://docs.mongodb.com/manual/tutorial/manage-users-and-roles/
https://docs.mongodb.com/manual/tutorial/manage-users-and-roles/

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-type: application/json" \
--request POST \
--data '{
 "name" : "MongoDB Read Access",
 "description": "Basic Read Access to HRDB",
 "mapping" : "managedUser_systemMongodbAccount",
 "attributes": [
 {
 "name": "roles",
 "value": [
 {
 "role": "read",
 "db": "hrdb"
 }
],
 "assignmentOperation" : "mergeWithTarget",
 "unassignmentOperation" : "removeFromTarget"
 }
]
 }' \
"http://localhost:8080/openidm/managed/assignment?_action=create"
{
 "_id": "fb98f4a5-0f4d-4e22-9e17-79c45c11fe20",
 "_rev": "000000005c2da0eb",
 "name": "MongoDB Read Access",
 "description": "Basic Read Access to HRDB",
 "mapping": "managedUser_systemMongodbAccount",
 "attributes": [
 {
 "name": "roles",
 "value": [
 {
 "role": "read",
 "db": "hrdb"
 }
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 245

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "name" : "MongoDB Read Access",
 "description": "Role for accounts with read access in MongoDB.",
 "condition": "/accountStatus eq \"active\"",
 "assignments": [
 {
 "_ref": "managed/assignment/fb98f4a5-0f4d-4e22-9e17-79c45c11fe20",
 "_refResourceCollection": "managed/assignment",
 "_refResourceId": "fb98f4a5-0f4d-4e22-9e17-79c45c11fe20"
 }
]
 }' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "5f16238e-39e1-4f8c-8b16-27d39dc64dc3",
 "_rev": "0000000011e566a2",
 "name": "MongoDB Read Access",
 "description": "Role for accounts with read access in MongoDB.",
 "condition": "/accountStatus eq \"active\""
}

Create new users in IDM. Note that MongoDB requires user name, password, and roles properties to successfully create a
user. In this example, the read role is assigned to new users automatically.

Reconcile the managed user repository with the external MongoDB database.

To reconcile the repository using the admin UI:

Log in to the admin UI at the URL https://localhost:8443/admin as the default administrative user
(openidm-admin) with password openidm-admin .

Select Configure > Mappings.

The Mappings page shows one mapping: From the IDM Managed User repository to the MongoDB
database (managedUser_systemMongodbAccount).

Select the managedUser_systemMongodbAccount mapping, and choose the Reconcile option.

To reconcile the repository by using the command-line, launch the reconciliation operation with the following
command:

4.

5.

◦

1.

2.

3.

◦

Samples PingIDM

246 Copyright © 2025 Ping Identity Corporation

https://localhost:8443/admin
https://localhost:8443/admin

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=managedUser_systemMongodbAccount&waitForCompletion=true"
{
 "_id": "e5bf074e-4da6-4ea7-8203-d4ec6f5a814a-24344",
 "state": "SUCCESS"
}

The reconciliation operation creates MongoDB users from the users found in managed/user .

Synchronize data between IDM and HubSpot

This sample demonstrates bidirectional synchronization between IDM managed users and HubSpot contacts.

Prepare the sample

The sample assumes that you have a client app in HubSpot, with the corresponding clientID , clientSecret , and
refreshToken , and that you already have some contacts stored in HubSpot.

Get the refresh token

Browse to the following URL:

https://app.hubspot.com/oauth/authorize?client_id=clientID&scope=contacts&redirect_uri=your-domain

On the resulting page, select your user account in HubSpot. You are redirected to a URL similar to the following:

https://your-domain/?code=860c1867-9e4b-4761-82c4-1a5a4caf5224

Copy the code in this URL (860c1867-9e4b-4761-82c4-1a5a4caf5224 from the above example). You will need the code
for the following step.

Send the following POST request, substituting your clientID and clientSecret :

curl \
--request POST \
--header 'Cache-Control: no-cache' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data 'grant_type=authorization_code&client_id=your-id&client_secret=your-secret&redirect_uri=your-
domain&code=code' \
 "https://api.hubapi.com/oauth/v1/token"
{
 "refresh_token": "f37e1132-xxxx-xxxx-xxxx-xxxx",
 "access_token": "CKbm...VaE",
 "expires_in": 21600
}

1.

2.

3.

4.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 247

The output of the POST request includes the refresh_token required to configure the connector.

Run the sample

In this section, you will do the following:

Download and install the HubSpot connector.

Start IDM with the sample configuration.

Configure the HubSpot connector and test your connection to HubSpot.

Reconcile your HubSpot contacts with the IDM managed user repository.

Change a user in IDM and reconcile the changes back to HubSpot.

The mapping configuration file (sync.json) for this sample includes two mappings: systemHubspotContact_managedUser and
managedUser_systemHubspotContact . You will use these mappings to reconcile users between IDM and HubSpot.

To install the HubSpot connector, download the connector jar from the Backstage download site site and place it in
the /path/to/openidm/connectors directory:

mv ~/Downloads/hubspot-connector-1.5.2.0.jar /path/to/openidm/connectors/

Start IDM with the configuration for the HubSpot sample:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-hubspot

To configure the HubSpot connector, do one of the following:

Update samples/sync-with-hubspot/conf/provisioner.openicf-hubspot.json with your HubSpot clientID ,
clientSecret , and refreshToken , and setting "enabled" : true .

Use the admin UI to configure the connector.

Select Configure > Connectors, and select the HubSpot connector.

Complete at least the Base Connector Details and enable the connector.

Test the connection to HubSpot by running the following command:

info
The redirect_uri must be URL-encoded in this request, for example,
redirect_uri=https%3A%2F%2Fwww.example.com%2F.

Note

1.

2.

3.

4.

5.

1.

2.

3.

◦

◦

1.

2.

4.

Samples PingIDM

248 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system?_action=test"
[
 {
 "name": "hubspot",
 "enabled": true,
 "config": "config/provisioner.openicf/hubspot",
 "connectorRef": {
 "bundleVersion": "[1.5.0.0,1.6.0.0)",
 "bundleName": "org.forgerock.openicf.connectors.hubspot-connector",
 "connectorName": "org.forgerock.openicf.connectors.hubspot.HubspotConnector"
 },
 "displayName": "Hubspot Connector",
 "objectTypes": [
 "company",
 "contactProperties",
 "__ALL__",
 "companyProperties",
 "contact"
],
 "ok": true
 }
]

A status of "ok": true indicates that the connector can connect to HubSpot.

To reconcile your HubSpot contacts with the IDM managed user repository, do one of the following:

Run the command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemHubspotContact_managedUser&waitForCompletion=true"
{
 "_id": "1f148024-45b9-4dc1-9c3f-29976e02db00-3768",
 "state": "SUCCESS"
}

In the admin UI, select Configure > Mappings, and then select Reconcile on the
systemHubspotContact_managedUser mapping.

info
If you configured the connector through the admin UI, the connection is tested as soon as you select Save.

Note

5.

◦

◦

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 249

In the admin UI, select Manage > User, and verify that your HubSpot contacts have been created as IDM managed users.

In the admin UI, select Manage > User, select a user to edit, and change one of the user properties.

To reconcile the managed user repository with your HubSpot contacts, do one of the following:

Run the command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=managedUser_systemHubspotContact&waitForCompletion=true"
{
 "_id": "1f148024-45b9-4dc1-9c3f-29976e02db00-8700",
 "state": "SUCCESS"
}

In the admin UI, select Configure > Mappings, and then select Reconcile on the
managedUser_systemHubspotContact mapping.

In HubSpot, verify that the contact was updated.

For more information about the HubSpot connector, refer to HubSpot connector.

Synchronize data between IDM and DocuSign

This sample demonstrates bidirectional synchronization between IDM managed users and DocuSign accounts.

The sample assumes that you have downloaded and installed the DocuSign connector and its dependencies, as described in
Install the DocuSign connector. The sample also assumes that you have the DocuSign account information required to
configure the connector, as described in Before you start.

Run the sample

In this section, you will do the following:

Start IDM with the sample configuration.

Configure the DocuSign connector and test your connection to DocuSign.

Reconcile your DocuSign service accounts with the IDM managed user repository.

Change a user in IDM and reconcile the changes back to DocuSign.

6.

7.

8.

◦

◦

9.

emergency_home
This sample only works with DocuSign connector version 1.5.20.21 and lower. For more information, refer to the
OpenICF documentation.

Important

1.

2.

3.

4.

Samples PingIDM

250 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/hubspot.html
https://docs.pingidentity.com/openicf/connector-reference/hubspot.html
https://docs.pingidentity.com/openicf/connector-release-notes/changed-functionality.html#1_5_20_22
https://docs.pingidentity.com/openicf/connector-release-notes/changed-functionality.html#1_5_20_22
https://docs.pingidentity.com/openicf/connector-reference/docusign.html#docusign-install
https://docs.pingidentity.com/openicf/connector-reference/docusign.html#docusign-install
https://docs.pingidentity.com/openicf/connector-reference/docusign.html#docusign-before-you-install
https://docs.pingidentity.com/openicf/connector-reference/docusign.html#docusign-before-you-install

The mapping configuration file (sync.json) for this sample includes two mappings: systemDocusignAccount_managedUser and
managedUser_systemDocusignAccount . You will use these mappings to reconcile users between IDM and DocuSign.

Start IDM with the configuration for the DocuSign sample:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-docusign

To configure the DocuSign connector, do one of the following:

Update samples/sync-with-docusign/conf/provisioner.openicf-docusign.json with your DocuSign account
details.

Use the admin UI to configure the connector.

Follow one of the procedures in Install the DocuSign connector to configure the connector.

Test the connection to DocuSign:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system?_action=test"
[
 {
 "name": "docusign",
 "enabled": true,
 "config": "config/provisioner.openicf/docusign",
 "connectorRef": {
 "bundleVersion": "1.5.0.0",
 "bundleName": "org.forgerock.openicf.connectors.docusign-connector",
 "connectorName": "org.forgerock.openicf.connectors.docusign.DocuSignConnector"
 },
 "displayName": "DocuSign Connector",
 "objectTypes": [
 "userSignature",
 "signingGroup",
 "__ALL__",
 "account",
 "contact"
],
 "ok": true
 }
]

A status of "ok": true indicates that the connector can connect to DocuSign.

1.

2.

◦

◦

3.

info
If you configured the connector through the admin UI, the connection is tested as soon as you select Save.

Note

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 251

https://docs.pingidentity.com/openicf/connector-reference/docusign.html#docusign-install
https://docs.pingidentity.com/openicf/connector-reference/docusign.html#docusign-install

To reconcile your existing DocuSign users with the IDM managed user repository, do one of the following:

Run the command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemDocusignAccount_managedUser&waitForCompletion=true"
{
 "_id": "7dac3ea9-c6be-4ff9-ae46-d8a0431949b3-7745",
 "state": "SUCCESS"
}

In the admin UI, select Configure > Mappings, and then select Reconcile on the
systemDocusignAccount_managedUser mapping.

In the admin UI, select Manage > User, and verify that your DocuSign users have been created as IDM managed users.

In the admin UI, select Manage > User, select a user to edit, and change some user properties.

To reconcile the users in the managed user repository with your DocuSign users, do one of the following:

Run the command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=managedUser_systemDocusignAccount&waitForCompletion=true"
{
 "_id": "1f148024-45b9-4dc1-9c3f-29976e02db00-8700",
 "state": "SUCCESS"
}

In the admin UI, select Configure > Mappings, and then select Reconcile on the
managedUser_systemDocusignAccount mapping.

In DocuSign, verify that the contact was updated.

For more information about the DocuSign connector, refer to DocuSign connector.

Synchronize data between IDM and a SCIM provider

This sample demonstrates bidirectional synchronization between IDM and accounts configured to the System for Cross-domain
Identity Management. As noted on their website, "The System for Cross-domain Identity Management (SCIM) specification is
designed to make managing user identities in cloud-based applications and services easier."

4.

◦

◦

5.

6.

7.

◦

◦

8.

Samples PingIDM

252 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/docusign.html
https://docs.pingidentity.com/openicf/connector-reference/docusign.html
http://www.simplecloud.info/
http://www.simplecloud.info/
http://www.simplecloud.info/

While this sample has been built to comply with SCIM 2.0 standards, it’s been tested with a SCIM 1.1 provider.

This sample assumes you’ve configured SCIM on a third-party system. From that system you’ll need the following configuration
properties:

OAuth 2.0 Client ID

OAuth 2.0 Client Secret

OAuth 2.0 Token

SCIM Endpoint

SCIM Version

Properties that you want to reconcile from the SCIM provider

For more information on the SCIM connector, including properties for the provisioner.openicf-scim.json file, refer to SCIM
connector.

Run the sample

In this section, you will do the following:

Start IDM with the sample configuration.

Configure the SCIM connector and test your connection to the third-party SCIM provider.

Reconcile your SCIM accounts with the IDM managed user repository.

Change a user in IDM and reconcile the changes back to the third-party SCIM provider.

Reconcile your SCIM roles with the IDM managed role repository.

The mapping configuration file (sync.json) for this sample includes four mappings, which you’ll use to reconcile users and roles:

systemScimAccount_managedUser

managedUser_systemScimAccount

systemScimGroup_managedRole

managedRole_systemScimGroup

Start IDM with the configuration for the SCIM sample:

cd /path/to/openidm/
./startup.sh -p samples/sync-with-scim

•

•

•

•

•

•

info
Depending on your provider, you may want to modify the sync.json file for this sample to match the properties
from the SCIM provider to appropriate properties for IDM.

Note

•

•

•

•

•

•

•

•

•

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 253

https://docs.pingidentity.com/openicf/connector-reference/scim.html#scim
https://docs.pingidentity.com/openicf/connector-reference/scim.html#scim
https://docs.pingidentity.com/openicf/connector-reference/scim.html#scim

Configure the SCIM connector, in the following configuration file: samples/sync-with-scim/conf/provisioner.openicf-
scim.json .

Test the connection to your third-party SCIM provider with the following command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system?_action=test"
[
 {
 "name": "scim",
 "enabled": true,
 "config": "config/provisioner.openicf/scim",
 "connectorRef": {
 "bundleVersion": "1.5.20.29",
 "bundleName": "org.forgerock.openicf.connectors.scim-connector",
 "connectorName": "org.forgerock.openicf.connectors.scim.ScimConnector"
 },
 "displayName": "Scim Connector",
 "objectTypes": [
 "__ALL__",
 "account",
 "group"
],
 "ok": true
 }
]

A status of "ok": true indicates that the connector can connect to your third-party SCIM provider.

To reconcile your existing third-party SCIM users with the IDM managed user repository, do one of the following:

Run the command:

2.

info
Depending on the requirements of your third-party SCIM provider, it may be acceptable to have a null value
for properties such as user, password, and tokenEndpoint.

Note

3.

4.

◦

Samples PingIDM

254 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemScimAccount_managedUser&waitForCompletion=true"
{
 "_id": "bdba3003-0c8a-4543-9efb-26269c78fa8b-96949",
 "state": "SUCCESS"
}

In the admin UI, select Configure > Mappings, and select Reconcile on the systemScimAccount_managedUser
mapping.

In the admin UI, select Manage > User and verify that the users from the third-party SCIM provider have been created as
IDM managed users.

In the admin UI, select Manage > User, select a user to edit, and change one of the user properties.

To reconcile the users in the managed user repository with your SCIM users, do one of the following:

Run the command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=managedUser_systemScimAccount&waitForCompletion=true"
{
 "_id": "bdba3003-0c8a-4543-9efb-26269c78fa8b-104117",
 "state": "SUCCESS"
}

In the admin UI, select Configure > Mappings, and then select Reconcile on the managedUser_systemScimAccount
mapping.

Verify that the contact was updated on your third-party SCIM provider.

Repeat the process with roles. To reconcile existing third-party SCIM roles with IDM managed roles, do one of the
following:

Run the command:

◦

5.

6.

7.

◦

◦

8.

9.

◦

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 255

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemScimGroup_managedRole&waitForCompletion=true"
{
 "_id": "7dac3ea9-c6be-4ff9-ae46-d8a0431949b3-7745",
 "state": "SUCCESS"
}

In the admin UI, select Configure > Mappings, and select Reconcile on the systemScimGroup_managedRole
mapping.

In the admin UI, select Manage > Role, select a role to edit, and add a user to that role.

To reconcile the roles in the managed user repository with your SCIM users, do one of the following:

Run the command::

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=managedRole_systemScimGroup&waitForCompletion=true"
{
 "_id": "bdba3003-0c8a-4543-9efb-26269c78fa8b-112074",
 "state": "SUCCESS"
}

In the admin UI, select Configure > Mappings, and select Reconcile on the managedRole_systemScimGroup
mapping.

Verify that the role was updated on your third-party SCIM provider.

Subscribe to JMS messages

IDM can subscribe to Java Messaging Service (JMS) messages using the Messaging Service’s JMS Subscriber. In an event-driven
architecture, also known as a message-driven architecture, there are publishers and subscribers. When a publisher sends a
message over JMS, that message is broadcast. All active and subscribed clients receive that message. This sample shows how IDM
can act as a JMS message subscriber, using the ActiveMQ Artemis JMS message broker.

◦

10.

11.

◦

◦

12.

info
For more information on how IDM can publish JMS messages using the JMS Audit Event Handler, refer to Direct audit
information to a JMS broker

Note

Samples PingIDM

256 Copyright © 2025 Ping Identity Corporation

Sample overview

With the scripted message handler shown in this sample, you can configure scripts to parse the contents of JMS messages, and
act on that content.

The script in this sample, crudpaqTextMessageHandler.js , shows how JMS can handle ForgeRock REST operations. If you
customize a script to manage JMS messages, you must also modify the conf/messaging.json file.

This sample uses ActiveMQ Artemis, a JMS message broker. With the ActiveMQ Artemis UI, you can act as the JMS message
provider. This sample demonstrates how you can input REST payloads using the Artemis UI.

Dependencies for JMS messaging

The JMS audit event handler requires Apache ActiveMQ Artemis and additional dependencies bundled with the ActiveMQ Artemis
delivery. This section lists the dependencies, and where they must be installed in the IDM instance. If you use a different
ActiveMQ version, you may need to download the corresponding dependencies separately.

Download the following files:

Apache ActiveMQ Artemis.

The most recent bnd JAR file from https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/.

Unpack the ActiveMQ Artemis archive. For example:

tar -zxvf ~/Downloads/apache-artemis-2.20.0-bin.tar.gz

Create a temporary directory, and then change to that directory:

mkdir ~/Downloads/tmp
cd ~/Downloads/tmp/

Move the ActiveMQ Artemis Client and bnd JAR files to the temporary directory.

mv ~/Downloads/apache-artemis-2.20.0/lib/client/artemis-jms-client-all-2.20.0.jar ~/Downloads/tmp/
mv ~/Downloads/biz.aQute.bnd-version.jar ~/Downloads/tmp/

Create an OSGi bundle:

In a text editor, create a BND file named activemq.bnd with the following contents, and save it to the current
directory:

1.

◦

info
This sample was tested with version 2.20.0.

Note

◦

lightbulb_2
The bnd utility lets you create OSGi bundles for libraries that do not support OSGi.

Tip

2.

3.

4.

5.

1.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 257

https://activemq.apache.org/components/artemis/download/
https://activemq.apache.org/components/artemis/download/
https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
https://bnd.bndtools.org/
https://bnd.bndtools.org/

version=2.20.0
Export-Package: *;version=${version}
Import-Package: !org.apache.log4j.*,!org.apache.log.*,!org.apache.avalon.framework.logger.*,!
org.apache.avalon.framework.logger.*,!org.glassfish.json.*,!org.conscrypt.*,!
org.apache.logging.*,!org.bouncycastle.jsse.*,!org.eclipse.*,!sun.security.*,!reactor.*,!
org.apache.activemq.artemis.shaded.*,!com.aayushatharva.*,!com.github.luben.zstd,!
com.jcraft.jzlib,!com.ning.compress,!com.ning.compress.lzf,!com.ning.compress.lzf.util,!
com.oracle.svm.core.annotate,!lzma.*,!net.jpountz.*,*
Bundle-Name: ActiveMQArtemis :: Client
Bundle-SymbolicName: org.apache.activemq
Bundle-Version: ${version}

Your tmp/ directory should now contain the following files:

ls -1 ~/Downloads/tmp/
activemq.bnd
artemis-jms-client-all-2.20.0.jar
biz.aQute.bnd-version.jar

In the same directory, create the OSGi bundle archive file. For example:

java -jar biz.aQute.bnd-version.jar wrap \
--properties activemq.bnd \
--output artemis-jms-client-all-2.20.0-osgi.jar \
artemis-jms-client-all-2.20.0.jar

Copy the resulting artemis-jms-client-all-2.20.0-osgi.jar file to the openidm/bundle directory:

cp artemis-jms-client-all-2.20.0-osgi.jar /path/to/openidm/bundle/

Configure SSL for Apache ActiveMQ Artemis

For information on configuring Apache ActiveMQ Artemis security features, including SSL, refer to the ActiveMQ Artemis
Documentation:

Security

Configuring the Transport

Configure a secure port for JMS messages

If you configured SSL for ActiveMQ Artemis, edit /path/to/openidm/samples/scripted-jms-subscriber/conf/messaging.json ,
and replace the java.naming.provider.url :

"java.naming.provider.url" : "ssl://localhost:61617?daemon=true"

2.

6.

•

•

Samples PingIDM

258 Copyright © 2025 Ping Identity Corporation

https://activemq.apache.org/components/artemis/documentation/2.2.0/security.html
https://activemq.apache.org/components/artemis/documentation/2.2.0/security.html
https://activemq.apache.org/components/artemis/documentation/2.2.0/configuring-transports.html
https://activemq.apache.org/components/artemis/documentation/2.2.0/configuring-transports.html

Start the ActiveMQ Artemis broker and IDM

With the appropriate bundles in the /path/to/openidm/bundles directory, you’re ready to start the ActiveMQ Artemis message
broker, as well as IDM with the JMS Audit Sample.

Navigate to the directory where you unpacked the ActiveMQ Artemis binary and run the following command to create the
Artemis broker:

cd ~/Downloads/apache-artemis-2.20.0/bin
./artemis create fr-scripted-jms
Creating ActiveMQ Artemis instance at: /path/to/Downloads/apache-artemis-2.20.0/bin/fr-scripted-jms
...

Start the newly created ActiveMQ Artemis broker:

./fr-scripted-jms/bin/artemis run

Start IDM, with the configuration for this sample:

cd /path/to/openidm/
./startup.sh -p samples/scripted-jms-subscriber

Verify you can access the Artemis management console at http://localhost:8161/console .

Use the ActiveMQ Artemis UI to access the REST interface

In this section, you will use the ActiveMQ Artemis UI to send REST requests.

Log in to the Artemis management console (http://localhost:8161/console).

From the navigation menu, click Artemis.

emergency_home
For a full list of ActiveMQ Artemis setup options, refer to Using the Server in the Artemis Documentation.

Important

1.

2.

3.

4.

1.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 259

https://activemq.apache.org/components/artemis/documentation/latest/using-server.html
https://activemq.apache.org/components/artemis/documentation/latest/using-server.html
https://activemq.apache.org/components/artemis/documentation/latest/management-console.html
https://activemq.apache.org/components/artemis/documentation/latest/management-console.html
http://localhost:8161/console
http://localhost:8161/console
http://localhost:8161/console
http://localhost:8161/console

From the tree view, select the addresses node.

On the addresses page, click the Create address tab.

Fill out the Create Address form, and then click Create Address:

3.

4.

info
Depending on your window size, the Create address tab may be located under the More menu.

Note

5.

Samples PingIDM

260 Copyright © 2025 Ping Identity Corporation

Address name: idmQ

Routing type: Anycast

From the tree view, expand the addresses node, and click idmQ.

On the idmQ page, click the Send message tab.

◦

◦

6.

7.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 261

On the Send Message page, paste the following text into the Body field. This request creates a new user with a user ID of
mgr1 :

{
 "operation" : "CREATE",
 "resourceName" : "/managed/user",
 "newResourceId" : "mgr1",
 "content" : {
 "mail" : "mgr1@example.com",
 "sn" : "Sanchez",
 "givenName" : "Jane",
 "password" : "Password1",
 "employeenumber" : 100,
 "accountStatus" : "active",
 "roles" : [],
 "userName" : "mgr1"
 },
 "params" : {},
 "fields" : []
}

info
Depending on your window size, the Send message tab may be located under the More menu.

Note

8.

Samples PingIDM

262 Copyright © 2025 Ping Identity Corporation

For comparison, the following equivalent REST call would create the same user:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "mail" : "mgr1@example.com",
 "sn" : "Sanchez",
 "givenName" : "Jane",
 "password" : "Password1",
 "employeenumber" : 100,
 "accountStatus" : "active",
 "roles" : [],
 "userName" : "mgr1",
 "params" : {},
 "fields" : []
}' \
"http://localhost:8080/openidm/managed/user?_action=create"

Click Send Message.

The OSGi console displays the message request and response:

9.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 263

**************request received*************
Parsed JMS JSON =
{
 "operation": "CREATE",
 "resourceName": "/managed/user",
 "newResourceId": "mgr1",
 "content": {
 "mail": "mgr1@example.com",
 "sn": "Sanchez",
 "givenName": "Jane",
 "password": "Password1",
 "employeenumber": 100,
 "accountStatus": "active",
 "roles": [],
 "userName": "mgr1"
 },
 "params": {},
 "fields": []
}
Message response is...
{
 "accountStatus": "active",
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": { <encryptedValue> }
 }
 },
 "mail": "mgr1@example.com",
 "employeenumber": 100,
 "givenName": "Jane",
 "sn": "Sanchez",
 "userName": "mgr1",
 "effectiveRoles": [],
 "memberOfOrgIDs": [],
 "effectiveAssignments": [],
 "_rev": "17273eca-d14b-4647-b850-1e3733ba1830-116",
 "_id": "mgr1"
}
**************END MESSAGE*************

Confirm the user details:10.

Samples PingIDM

264 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/mgr1"
{
 "_id": "mgr1",
 "_rev": "17273eca-d14b-4647-b850-1e3733ba1830-116",
 "accountStatus": "active",
 "mail": "mgr1@example.com",
 "employeenumber": 100,
 "givenName": "Jane",
 "sn": "Sanchez",
 "userName": "mgr1",
 "effectiveRoles": [],
 "memberOfOrgIDs": [],
 "effectiveAssignments": []
}

You can repeat the process using different REST operations in the Artemis UI. For example, enter the following payload on
the Send Message page to change the first name (givenName) of the mgr1 user to Donna :

{
 "operation": "PATCH",
 "resourceName": "/managed/user/mgr1",
 "value": [
 {
 "operation": "replace",
 "field": "/givenName",
 "value": "Donna"
 }
]
}

Confirm the updated givenName for mgr1 :

11.

12.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 265

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/mgr1"
{
 "_id": "mgr1",
 "_rev": "17273eca-d14b-4647-b850-1e3733ba1830-315",
 "accountStatus": "active",
 "mail": "mgr1@example.com",
 "employeenumber": 100,
 "givenName": "Donna",
 "sn": "Sanchez",
 "userName": "mgr1",
 "effectiveRoles": [],
 "memberOfOrgIDs": [],
 "effectiveAssignments": []
}

Customize the scripted JMS sample

If you set up a custom script to parse and process JMS messages, store that script in the script/ subdirectory. Assume the script
is named myCustomScript.js .

Edit the messaging.json file in the conf/ subdirectory, and point it to the custom file:

Samples PingIDM

266 Copyright © 2025 Ping Identity Corporation

{
 "subscribers" : [
 {
 "name" : "IDM CREST Queue Subscriber",
 "instanceCount": 3,
 "enabled" : true,
 "type" : "JMS",
 "handler" : {
 "type" : "SCRIPTED",
 "properties" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "myCustomScript.js"
 }
 }
 },
 "properties" : {
 "sessionMode" : "CLIENT",
 "jndi" : {
 "contextProperties" : {
 "java.naming.factory.initial" : "org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory",
 "java.naming.provider.url" : "tcp://127.0.0.1:61616?daemon=true",
 "queue.idmQ" : "idmQ"
 },
 "destinationName" : "idmQ",
 "connectionFactoryName" : "ConnectionFactory"
 }
 }
 }
]
}

You’ll find some of these properties in JMS audit event handler properties. Despite the name of the table and the different
configuration file, the properties are the same.

Other messaging.json notable properties:

JMS messaging.json Configuration Properties

messaging.json Property Description

subscribers Needed to subscribe to incoming JMS message requests.

name Arbitrary name for the subscriber.

instanceCount Each instanceCount manages a single connection between IDM and the
messaging channel. Supports multithreading throughput. If subscribing to a queue,
such as queue.idmQ , the message is handled by a single instance. If subscribing to
a topic, all instances receive and handle the same message.

handler Parses the JMS message, then processes it, possibly through a script.

queue.idmQ One of the JNDI context properties. Name of the JMS queue in the Artemis UI.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 267

Authenticate using a trusted servlet filter

This sample demonstrates how to use a custom servlet filter and the Trusted Request Attribute Authentication Module to allow IDM
to authenticate through another service.

To configure authentication using ForgeRock Access Management, refer to the sample platform setup documentation.

Prepare the sample

Before you start this sample, complete the following steps:

Prepare a fresh IDM installation, as described in Prepare IDM.

Download and install the Apache Maven build tool.

Build the custom servlet filter bundle file:

cd /path/to/openidm/samples/trusted-servlet-filter/filter
mvn clean install

Copy the newly built servlet bundle file to the openidm/bundle directory:

cp target/sample-trusted-servletfilter-1.0.jar /path/to/openidm/bundle

The sample servlet filter

In the previous section, you built a bundle file from the Java file named SampleTrustedServletFilter.java , located in the
directory /path/to/openidm/samples/trusted-servlet-filter/filter/src/main/java/org/forgerock/openidm/sample/
trustedservletfilter .

The following line from the file looks for the X-Special-Trusted-User header, to identify a specific User ID as a "trusted" user.

final String specialHeader = ((HttpServletRequest) servletRequest).getHeader("X-Special-Trusted-User");

The next line sets the special Servlet attribute X-ForgeRock-AuthenticationId to this trusted User ID.

servletRequest.setAttribute("X-ForgeRock-AuthenticationId", specialHeader);

The rest of the servlet filter chain continues request processing:

messaging.json Property Description

destinationName JNDI lookup name for message delivery.

1.

2.

3.

4.

Samples PingIDM

268 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/preface.html
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/preface.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html

filterChain.doFilter(servletRequest, servletResponse);

This sample includes a servletfilter-trust.json file that calls the compiled IDM trusted servlet filterClass :

{
 "classPathURLs" : [],
 "systemProperties" : { },
 "requestAttributes" : { },
 "scriptExtensions" : { },
 "initParams" : { },
 "urlPatterns" : [
 "/*"
],
 "filterClass" : "org.forgerock.openidm.sample.trustedservletfilter.SampleTrustedServletFilter"
}

Run the sample

In this section, you will demonstrate the servlet filter by configuring it with the special header described in the previous section.
Normally, a servlet filter used for authentication does not let a client masquerade as any user. This sample demonstrates a basic
use of a servlet filter by establishing the authentication ID.

Start IDM with the configuration for the trusted filter sample:

cd /path/to/openidm/
./startup.sh -p samples/trusted-servlet-filter

Create a new managed user, Barbara Jensen, with userName bjensen :

1.

2.

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 269

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '
 {
 "userName": "bjensen",
 "telephoneNumber": "6669876987",
 "givenName": "Barbara",
 "sn": "Jensen",
 "description": "Example User",
 "mail": "bjensen@example.com",
 "authzRoles" : [
 {
 "_ref" : "internal/role/openidm-authorized"
 }
]
 }' \
"http://localhost:8080/openidm/managed/user"
{
 "_id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "_rev": "000000004988917b",
 "userName": "bjensen",
 "telephoneNumber": "6669876987",
 "givenName": "Barbara",
 "sn": "Jensen",
 "description": "Example User",
 "mail": "bjensen@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": [],
 "memberOfOrgIDs": [],
 "effectiveAssignments": []
}

Note the ID of the new user—you will need it in the steps that follow.

Use the special request header X-Special-Trusted-User to authenticate bjensen (specifying her ID as the header value).3.

Samples PingIDM

270 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-Special-Trusted-User: 9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/info/login?_fields=authenticationId,authorization"
{
 "_id": "login",
 "authenticationId": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "authorization": {
 "userRolesProperty": "authzRoles",
 "component": "managed/user",
 "authLogin": false,
 "authenticationIdProperty": "userName",
 "roles": [
 "internal/role/openidm-authorized"
],
 "ipAddress": "127.0.0.1",
 "id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "moduleId": "TRUSTED_ATTRIBUTE"
 }
}

Note that the output includes the user’s authentication and authorization details. In this case, bjensen, with ID
9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb is authenticated with the openidm-authorized role.

Customize the sample for an external system

To customize this sample for an external authentication/authorization system, you need a servlet filter which authenticates
against that external system. You may use a third-party supplied filter, or develop your own filter, using the one in this sample as
a model.

The filter you use should have at least the following capabilities:

Perform REST calls to another system.

Search through databases.

Inspect headers related to authentication and authorization requests.

This servlet filter must set the username of the authenticated user in a special request attribute. You need to configure that same
attribute name in the TRUSTED_ATTRIBUTE authentication module, specifically the value of authenticationIdAttribute .

It is helpful if you have a filter that returns an object with the userRoles property. If your filter does not support queries using
the following parameter:

queryOnResource + "/" + authenticationId

You will need to provide a security context augmentation script that populates the following authorization properties in the
"security" object:

security.authorization.component

•

•

•

•

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 271

security.authorization.roles

The value for the security.authorization.component is automatically set to the value specified in any existing
queryOnResource property.

Create a custom endpoint

Scriptable custom endpoints let you launch arbitrary scripts using the IDM REST URI. For information about how custom
endpoints are configured, refer to Create custom endpoints to launch scripts.

The example endpoint provided in /path/to/openidm/samples/example-configurations/custom-endpoint illustrates the
configuration of a custom endpoint, and the structure of custom endpoint scripts.

The purpose of this custom endpoint is to return a list of variables available to each method used in a script. The scripts show the
complete set of methods that can be used. These methods map to the standard HTTP verbs - create, read, update, delete, patch,
query, and action. A sample JavaScript and Groovy script are provided.

Run the sample

Copy the endpoint configuration file (samples/example-configurations/custom-endpoint/conf/endpoint-echo.json)
to your project’s conf directory.

Copy either the JavaScript file (samples/example-configurations/custom-endpoint/script/echo.js) or Groovy script
file (samples/example-configurations/custom-endpoint/script/echo.groovy) to your project’s script directory.

Open the endpoint configuration file in a text editor:

{
 "file" : "echo.groovy",
 "type" : "groovy",
 "_file" : "echo.js",
 "_type" : "text/javascript",
 ...
}

The configuration file contains a reference to the endpoint scripts. In this case, the JavaScript script is commented out
(with an underscore before the file and type properties). If you want to use the JavaScript endpoint script, uncomment
these lines and comment out the lines that correspond to the Groovy script in the same way.

Endpoint configuration files can include a context property that specifies the route to the endpoint, for example:

"context" : "endpoint/linkedView/*"

If no context is specified, the route to the endpoint is taken from the file name, in this case endpoint/echo .

•

1.

2.

3.

Samples PingIDM

272 Copyright © 2025 Ping Identity Corporation

Test each method in succession to return the expected request structure of that method. The following examples show
the request structure of the read, create and patch methods. The configuration file has been edited to use the JavaScript
file, rather than the Groovy file. The output shown in these examples has been cropped for legibility. For a description of
each parameter, refer to Custom Endpoint Scripts.

The following command performs a read on the echo endpoint and returns the request structure of a read request:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/endpoint/echo"
{
 "_id": "",
 "method": "read",
 "context": {
 "class": "org.forgerock.http.routing.ApiVersionRouterContext",
 "name": "apiVersionRouter",
 "defaultVersionBehaviour": "LATEST",
 "warningEnabled": false,
 "resourceVersion": "1.0",
 "parent": {
 "class": "org.forgerock.http.routing.UriRouterContext",
 "name": "router",
 ...
 }
 },
 "resourceName": "",
 "parameters": {}
}

The following command performs a query on the echo endpoint and returns the request structure of a query
request:

4.

◦

◦

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 273

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/endpoint/echo?_queryFilter=true"
{
 "result": [
 {
 "method": "query",
 "pageSize": 0,
 "queryFilter": "true",
 "resourceName": "",
 "pagedResultsOffset": 0,
 "pagedResultsCookie": null,
 "parameters": {},
 "content": null,
 "queryId": null
 "content": null,
 "context": {
 ...
 }
 }
],
 ...
}

The following command sends a create request to the echo endpoint. No user is actually created. The endpoint
script merely returns the request structure of a create request. The content parameter in this case provides the
JSON object that was sent with the request:

◦

Samples PingIDM

274 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--data '{
 "userName":"steve",
 "givenName":"Steve",
 "sn":"Carter",
 "telephoneNumber":"0828290289",
 "mail":"scarter@example.com",
 "password":"Passw0rd"
 }' \
--request POST \
"http://localhost:8080/openidm/endpoint/echo?_action=create"
{
 "_id": "",
 "method": "create",
 "resourceName": "",
 "newResourceId": null,
 "parameters": {},
 "content": {
 "userName": "steve",
 "givenName": "Steve",
 "sn": "Carter",
 "telephoneNumber": "0828290289",
 "mail": "scarter@example.com",
 "password": "Passw0rd"
 },
 "context": {
 ...
 }
}

The following command sends a patch request to the echo endpoint.◦

PingIDM Samples

Copyright © 2025 Ping Identity Corporation 275

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--data '[
 {
 "operation":"replace",
 "field":"/givenName",
 "value":"Steven"
 }
]' \
--request PATCH \
"http://localhost:8080/openidm/endpoint/echo"
{
 "_id": "",
 "method": "patch",
 "resourceName": "",
 "revision": null,
 "patch": [
 {
 "operation": "replace",
 "field": "/givenName",
 "value": "Steven"
 }
],
 "parameters": {},
 "context": {
 ...
 }
}

Samples PingIDM

276 Copyright © 2025 Ping Identity Corporation

Installation

Guide to installing, and uninstalling ForgeRock® Identity Management software. This software offers flexible services for
automating management of the identity life cycle.

This guide shows you how to install ForgeRock Identity Management services for identity management, provisioning, and
compliance. You do not need a complete understanding of ForgeRock Identity Management software to learn something from
this guide, although a background in identity management and maintaining web application software can help. You do need
some background in managing services on your operating systems and in your web application containers. Unless you are
planning an evaluation or test installation, read the Release notes before you get started.

Quick Start

Install IDM

Download the IDM software and get a minimal
deployment up and running.

Interact with IDM

Introduction to the IDM REST API and browser-
based user interface.

Repository

Configure IDM to use your selected production
repository.

Startup Configuration

Learn about the startup configuration and how
to verify system health.

Installation PingIDM

278 Copyright © 2025 Ping Identity Corporation

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Java requirements

Before you start, follow these steps to ensure that your Java environment is suitable:

Verify that your computer has a supported Java version installed:

Install in a Cluster

IDM in a cluster for availability.

Jetty Configuration

Configure the embedded Jetty server.

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

1.

Supported Java Versions

Vendor Versions

OpenJDK, including OpenJDK-based distributions:
AdoptOpenJDK/Eclipse Temurin
Amazon Corretto
Azul Zulu
Red Hat OpenJDK

17**

◦

◦

◦

◦

info
ForgeRock tests most extensively with AdoptOpenJDK/Eclipse Temurin. ForgeRock
recommends using the HotSpot JVM.

Note

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 279

https://www.forgerock.com
https://www.forgerock.com

** Version 17.0.9 or higher.

Read the pre-installation requirements.

Set the JAVA_HOME environment variable:

Locate the JRE installation directory (typically, C:\Program Files\Java\).

Click Start > Control Panel > System and Security > System.

Click Advanced System Settings.

Click Environment Variables.

Under System Variables, click New.

Enter the Variable name (JAVA_HOME) and set the Variable value to the JRE installation directory; for example C:
\Program Files\Java\jre8 .

Click OK.

Open the user shell configuration file found in your home directory.

Add the JAVA_HOME variable to the user shell configuration file, setting the value to /usr . In Bash, this would
appear as export JAVA_HOME="/usr" .

Install and run IDM

Use the procedures in this section to install, start, run, and stop IDM.

Follow these steps to install IDM:

Make sure you have an appropriate version of Java installed:

java -version
openjdk version "11.0.20.1" 2023-08-24
OpenJDK Runtime Environment Temurin-11.0.20.1+1 (build 11.0.20.1+1)
OpenJDK 64-Bit Server VM Temurin-11.0.20.1+1 (build 11.0.20.1+1, mixed mode)

For a description of the Java requirements, refer to Before you install.

Download IDM from Backstage. Releases on Backstage are thoroughly validated for ForgeRock customers who run the
software in production deployments, and for those who want to try or test a given release.

Unpack the contents of the .zip file into the install directory:

Vendor Versions

Oracle Java 17**

2.

3.

1.

2.

3.

4.

5.

6.

7.

1.

2.

1.

2.

3.

Installation PingIDM

280 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads/
https://backstage.forgerock.com/downloads/

unzip ~/Downloads/IDM-7.4.2.zip
Archive: IDM-7.4.2.zip
 inflating: openidm/.checksums.csv
 creating: openidm/bundle/
 extracting: openidm/bundle/openidm-audit-7.4.2.jar
...

By default, IDM listens for HTTP and HTTPS connections on ports 8080 and 8443, respectively. To change these port
numbers, edit the following settings in your resolver/boot.properties file:

openidm.port.http

openidm.port.https

When you deploy IDM in production, you must set openidm.host to the URL of your deployment, in the same resolver/
boot.properties file. Otherwise, calls to the /admin endpoint are not properly redirected.

Deployment URLs will vary, depending on whether you’re using a load balancer. While IDM documentation does not
specify how you’d configure a load balancer, you’ll need to configure IDM in a cluster as described in IDM cluster
configuration, and specifically in Deploy Securely Behind a Load Balancer.

Before running IDM in production, replace the default embedded DS repository with a supported repository.

For more information, refer to Select a repository.

Follow these steps to run IDM interactively:

Start the Felix container, load all services, and start a command shell to allow you to manage the container:

/path/to/openidm/startup.sh
Using OPENIDM_HOME: /path/to/openidm
Using PROJECT_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
-> OpenIDM version "7.4.2"
OpenIDM ready

4.

◦

◦

5.

1.

Bash

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 281

\path\to\openidm\startup.bat
"Using OPENIDM_HOME: \path\to\openidm"
"Using PROJECT_HOME: \path\to\openidm"
"Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Dfile.encoding=UTF-8"
"Using LOGGING_CONFIG: -
Djava.util.logging.config.file=\path\to\openidm\conf\logging.properties"
-> OpenIDM version "7.4.2"
OpenIDM ready

At the OSGi console → prompt, you can enter commands such as help for usage, or ps to view the bundles installed.

Startup errors and messages are logged to the console by default. You can also view these messages in the log files at /
path/to/openidm/logs .

You can also start IDM as a background process on UNIX and Linux systems. Follow these steps, preferably before you start IDM
for the first time:

If you have already started the server, shut it down and remove the Felix cache files under openidm/felix-cache/ :

shutdown
...
rm -rf felix-cache/*

Start the server in the background. The nohup survives a logout, and the 2>&1& redirects standard output and standard
error to the noted console.out file:

nohup ./startup.sh > logs/console.out 2>&1&
[1] 2343

To stop the server running as a background process, use the shutdown.sh script:

./shutdown.sh
Stopping OpenIDM (2343)

You can stop IDM from the -> prompt in the OSGi console.

In the OSGi console, enter the shutdown command at the -> prompt.

PowerShell

2.

1.

2.

info
Although installations on macOS systems are not supported in production, you might want to run IDM on macOS in a
demo or test environment. To run IDM in the background on a macOS system, take the following additional steps:

Remove the org.apache.felix.shell.tui-*.jar bundle from the openidm/bundle directory.
Disable ConsoleHandler logging.

Note

•
•

•

Installation PingIDM

282 Copyright © 2025 Ping Identity Corporation

On Unix systems, you can stop IDM by using the shutdown.sh script:

/path/to/openidm/shutdown.sh
Stopping OpenIDM (31391)

Stop the server if it is running, as described in Stop IDM.

Remove the directory where you installed the software:

rm -rf /path/to/openidm

If you use a JDBC database for the repository, drop the openidm database.

To debug custom libraries, start the server with the Java Platform Debugger Architecture (JPDA):

Start IDM with the jpda option:

/path/to/openidm/startup.sh jpda
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Djava.compiler=NONE -Xnoagent -Xdebug
 -Xrunjdwp:transport=dt_socket,address=5005,server=y,suspend=n
Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Listening for transport dt_socket at address: 5005
Using boot properties at /path/to/openidm/resolver/boot.properties
-> OpenIDM version "7.4.2" (revision: xxxx)
OpenIDM ready

The relevant JPDA options are listed in the startup script (startup.sh).

In your IDE, attach a Java debugger to the JVM via socket on port 5005.

Interact with IDM

There are two primary ways to interact with IDM; programmatically, using REST to access IDM’s API endpoints, or using the
browser-based user interfaces.

REST interface introduction

IDM provides RESTful access to users in its repository, and to its configuration. To access the repository over REST, you can use a
browser-based REST client, such as the Simple REST Client for Chrome, or RESTClient for Firefox. You can also use applications such
as Postman to create, run, and manage collections of REST calls. Alternatively you can use the curl command-line utility,
included with most operating systems. For more information about curl , refer to https://github.com/curl/curl.

•

1.

2.

3.

1.

2.

error
This interface is internal and subject to change. If you depend on this interface, contact support.

Caution

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 283

https://github.com/curl/curl
https://github.com/curl/curl

IDM is accessible over the regular and secure HTTP ports of the Jetty Servlet container, 8080, and 8443. Most of the command-line
examples in this documentation set use the regular HTTP port, so that you don’t have to use certificates just to test IDM. In a
production deployment, install a CA-signed certificate and restrict REST access to a secure (HTTPS) port.

To run curl over the secure port, 8443, you must either include the --insecure option, or follow the instructions in Restrict
REST Access to the HTTPS Port. You can use those instructions with the self-signed certificate that is generated when IDM starts,
or with a *.crt file provided by a certificate authority.

Use the following REST query to list all users in the IDM repository:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/?_queryFilter=true&_fields=_id"

When you first install IDM with an empty repository, no users exist.

Create a user joe by sending a RESTful POST.

The following curl command creates a managed user in the repository, and set the user’s ID to jdoe :

info
Some of the examples in this documentation set use client-assigned IDs (such as bjensen and scarter) when
creating objects because it makes the examples easier to read. If you create objects using the admin UI, they are
created with server-assigned IDs (such as 55ef0a75-f261-47e9-a72b-f5c61c32d339). Generally, immutable server-
assigned UUIDs are used in production environments.

Note

1.

2.

Installation PingIDM

284 Copyright © 2025 Ping Identity Corporation

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "userName": "joe",
 "givenName": "joe",
 "sn": "smith",
 "mail": "joe@example.com",
 "telephoneNumber": "555-123-1234",
 "password": "TestPassw0rd",
 "description": "My first user",
 "_id": "joe"
}' \
http://localhost:8080/openidm/managed/user?_action=create
{
 "_id": "joe",
 "_rev": "00000000c03fd7aa",
 "userName": "joe",
 "givenName": "joe",
 "sn": "smith",
 "mail": "joe@example.com",
 "telephoneNumber": "555-123-1234",
 "description": "My first user",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Bash

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 285

curl `
--header "Content-Type: application/json" `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--request POST `
--data '{
 "userName": "joe",
 "givenName": "joe",
 "sn": "smith",
 "mail": "joe@example.com",
 "telephoneNumber": "555-123-1234",
 "password": "TestPassw0rd",
 "description": "My first user",
 "_id": "joe"
}' `
http://localhost:8080/openidm/managed/user?_action=create
{
 "_id": "joe",
 "_rev": "00000000c03fd7aa",
 "userName": "joe",
 "givenName": "joe",
 "sn": "smith",
 "mail": "joe@example.com",
 "telephoneNumber": "555-123-1234",
 "description": "My first user",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Fetch the newly created user from the repository with a RESTful GET:

PowerShell

3.

Installation PingIDM

286 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
http://localhost:8080/openidm/managed/user/joe
{
 "_id": "joe",
 "_rev": "00000000c03fd7aa",
 "userName": "joe",
 "givenName": "joe",
 "sn": "smith",
 "mail": "joe@example.com",
 "telephoneNumber": "555-123-1234",
 "description": "My first user",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

curl `
--header "X-OpenIDM-Username: openidm-admin" `
--header "X-OpenIDM-Password: openidm-admin" `
--header "Accept-API-Version: resource=1.0" `
--request GET `
http://localhost:8080/openidm/managed/user/joe
{
 "_id": "joe",
 "_rev": "00000000c03fd7aa",
 "userName": "joe",
 "givenName": "joe",
 "sn": "smith",
 "mail": "joe@example.com",
 "telephoneNumber": "555-123-1234",
 "description": "My first user",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Format REST output for readability

By default, curl -based REST calls return the JSON object on one line, which can be difficult to read. For example:

Bash

PowerShell

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 287

{"mail":"joe@example.com","sn":"smith","passwordAttempts":"0",
"lastPasswordAttempt":"Mon Apr 14 2014 11:13:37 GMT-0800 (GMT-08:00)",
"givenName":"joe","effectiveRoles":["internal/role/openidm-authorized"],
"password":{"$crypto":{"type":"x-simple-encryption","value":{"data":
"OBFVL9cG8uaLoo1N+SMJ3g==","cipher":"AES/CBC/PKCS5Padding","iv":
"7rlV4EwkwdRHkt19F8g22A==","key":"openidm-sym-default"}}},"country":"",
"city":"","_rev": "00000000c03fd7aa","lastPasswordSet":"","postalCode":"",
"_id":"joe3","description":"My first user","accountStatus":"active","telephoneNumber":
"555-123-1234","roles":["internal/role/openidm-authorized"],"effectiveAssignments":{},
"postalAddress":"","stateProvince":"","userName":"joe3"}

At least two options are available to clean up this output:

The standard way to format JSON output is with a JSON parser such as jq. jq is not installed by default on most operating
systems, but you can install it and then "pipe" the output of a REST call to jq , as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/joe" \
| jq .

The ForgeRock REST API includes an optional _prettyPrint request parameter. The default value is false . To use the
ForgeRock REST API to format output, add a parameter such as ?_prettyPrint=true or &_prettyPrint=true , depending on
whether it is added to the end of an existing request parameter. In this case, the following command would return formatted
output:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/joe?_prettyPrint=true"

IDM user interfaces

IDM provides UIs at two different endpoints; / and /admin . The administrative tools available at /admin are called the admin
UI. The End User UI enables end users to manage certain aspects of their own accounts.

For information about the admin UI, refer to IDM user interface .

For information about the End User UI, refer to Self-service end user UI.

info
Most command-line examples in this guide do not show this parameter, but the output is formatted for readability.

Note

Installation PingIDM

288 Copyright © 2025 Ping Identity Corporation

http://stedolan.github.io/jq/
http://stedolan.github.io/jq/

IDM as a service

IDM as a Linux service

IDM provides a script that can generate SysV or Systemd service initialization scripts. You can start the script as the root user, or
configure it to start during the boot process.

When IDM runs as a service, logs are written to the installation directory.

If you have not yet installed IDM, follow the steps in Install IDM.

Review the options by running the following script:

/path/to/openidm/bin/create-openidm-rc.sh
Usage: ./create-openidm-rc.sh --[systemd|chkconfig|lsb]
Outputs OpenIDM init file to stdout for the given system

--systemd Generate Systemd init script. This is preferred for all modern distros.
--chkconfig Generate SysV init script with chkconfig headers (RedHat/CentOS)
--lsb Generate SysV init script with LSB headers (Debian/Ubuntu)
...

These examples describe how to create each of these scripts:

If you’re running relatively standard versions of Red Hat Enterprise Linux (CentOS Linux) version 7.x, or Ubuntu 16.04 and later,
you’ll want to set up a systemd service script. To set up such a script, navigate to the /path/to/openidm/bin directory, and run
the following command:

/path/to/openidm/bin/create-openidm-rc.sh --systemd

As noted in the output, you can set up the IDM service on a standard systemd-based Linux distribution with the following
commands:

/path/to/openidm/bin/create-openidm-rc.sh --systemd > openidm.service
sudo cp openidm.service /etc/systemd/system/
systemctl enable openidm
systemctl start openidm

To stop the IDM service, run the following command:

systemctl stop openidm

You can modify the openidm.service script. The following excerpt would run IDM with a startup script in the /home/idm/
project directory:

1.

2.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 289

[Unit]
Description=ForgeRock OpenIDM
After=network.target auditd.target

[Service]
Type=simple
SuccessExitStatus=143
Environment=JAVA_HOME=/usr
User=testuser
ExecStart=/root/openidm/startup.sh -p /home/idm/project
ExecStop=/root/openidm/shutdown.sh

[Install]
WantedBy=multi-user.target

Run the following command to reload the configuration and then start the IDM service script:

systemctl daemon-reload
systemctl start openidm

If you are running standard versions of Red Hat Enterprise Linux (CentOS Linux) version 6.x, set up a SysV service script with
runlevels controlled through the chkconfig command. To set up such a script, run the following command:

/path/to/openidm/bin/create-openidm-rc.sh --chkconfig

You can then set up and start the IDM service on a Linux distribution that uses SysV init scripts, with the following commands:

/path/to/openidm/bin/create-openidm-rc.sh --chkconfig > openidm
sudo cp openidm /etc/init.d/
sudo chmod u+x /etc/init.d/openidm
sudo chkconfig --add openidm
sudo chkconfig openidm on
sudo service openidm start

To stop the IDM service, run the following command:

sudo service openidm stop

You can modify the /etc/init.d/openidm script. The following excerpt would run IDM with the startup.sh script in the /path/
to/openidm directory:

START_CMD="PATH=$JAVA_BIN_PATH:$PATH;nohup $OPENIDM_HOME/startup.sh >$OPENIDM_HOME/logs/server.out 2>&1 &"

You can modify this line to point to some /path/to/production directory:

Installation PingIDM

290 Copyright © 2025 Ping Identity Corporation

START_CMD="PATH=$JAVA_BIN_PATH:$PATH;nohup $OPENIDM_HOME/startup.sh -p /path/to/production >$OPENIDM_HOME/
logs/server.out 2>&1 &"

Run the following command to reload the configuration and then start the IDM service script:

sudo service openidm start

If you run Linux with SELinux enabled, change the file context of the newly copied script with the following command:

sudo restorecon /etc/init.d/openidm

Verify the change to SELinux contexts with the ls -Z /etc/init.d command. For consistency, change the user context to match
other scripts in the same directory with the sudo chcon -u system_u /etc/init.d/openidm command.

If you’re running an older version of Ubuntu Linux that supports SysV services, set up a SysV service script, with runlevels
controlled through the update-rc.d command. To set up such a script, run the following command:

/path/to/openidm/bin/create-openidm-rc.sh --lsb

You can then set up and start the IDM service on a Linux distribution that uses SysV init scripts, with the following commands:

/path/to/openidm/bin/create-openidm-rc.sh --lsb > openidm
sudo cp openidm /etc/init.d/
sudo chmod u+x /etc/init.d/openidm
sudo update-rc.d openidm defaults
sudo service openidm start

To stop the IDM service, run the following command:

sudo service openidm stop

You can modify the /etc/init.d/openidm script. The following excerpt would run IDM with the startup.sh script in the /path/
to/openidm directory:

START_CMD="PATH=$JAVA_BIN_PATH:$PATH;nohup $OPENIDM_HOME/startup.sh >$OPENIDM_HOME/logs/server.out 2>&1 &"

You can modify this line to point to some /path/to/production directory:

START_CMD="PATH=$JAVA_BIN_PATH:$PATH;nohup $OPENIDM_HOME/startup.sh -p /path/to/production >$OPENIDM_HOME/
logs/server.out 2>&1 &"

You can then run the following command to reload the configuration and then start the IDM service script:

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 291

sudo service openidm restart

IDM as a Windows service

You can install IDM to run as a Windows service so that it automatically starts and stops with Windows. You must be logged in as
an administrator to install a Windows service.

Unpack the IDM-7.4.2.zip file, as described previously, and navigate to the install-directory\bin directory:

C:\> cd openidm\bin
C:\openidm\bin>

Run the service.bat command with the /install option, specifying the name that the service should run as:

C:\openidm\bin> service.bat /install openidm
ForgeRock Identity Management Server successfully installed as "openidm" service

Use the Windows Service manager to manage the IDM service.

Figure 1. Running as a Windows Service

info
On a 64-bit Windows server, you must have a 64-bit Java version installed to start the service. If a 32-bit Java version is
installed, you will be able to install IDM as a service, but starting the service will fail.
Before you launch the service.bat file, which registers the service within the Windows registry, make sure that your
JAVA_HOME environment variable points to a valid 64-bit version of the JRE or JDK. If you have already installed the
service with the JAVA_HOME environment variable pointing to a 32-bit JRE or JDK, delete the service first, then reinstall
the service.

Note

1.

2.

3.

Installation PingIDM

292 Copyright © 2025 Ping Identity Corporation

By default, the IDM service is run by Local System , which is a system-level service account built in to Windows. Before
you deploy IDM in production, you should switch to an account with fewer permissions. The account running the IDM
service must be able to read, write, and execute only the directories related to IDM.

Use the Windows Service Manager to start, stop, or restart the service.

If you want to uninstall the IDM service, first use the Windows Service Manager to stop IDM and then run the following
command:

C:\install-directory\openidm\bin> service.bat /uninstall openidm
Service "openidm" removed successfully

If desired, you can then set up IDM with a specific project directory:

C:\install-directory\openidm\bin> service.bat /install openidm -p C:\project-directory
ForgeRock Identity Management Server successfully installed as "openidm" service

You can also manage configuration details with the Procrun monitor application. IDM includes the associated prunmgr.exe
executable in the C:\install-directory\openidm\bin directory.

For example, you can open the Windows service configuration application for IDM with the following command, where ES stands
for Edit Service Configuration

C:\install-directory\openidm\bin> prunmgr.exe //ES/openidm

4.

5.

6.

7.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 293

The prunmgr.exe executable also includes the monitor application functionality described in the following Apache Commons
page on the: Procrun monitor Application. However, IDM does not include the Procrun service application.

For example, if you’ve configured IDM as a Windows service, you can start and stop it with the following commands:

C:\install-directory\openidm\bin> prunmgr.exe //MR/openidm
C:\install-directory\openidm\bin> prunmgr.exe //MQ/openidm

In these commands, MR is the option to Monitor and Run IDM, and MQ stands for Monitor Quit, which stops the IDM service.

Start a new project

When you extract the IDM .zip file, you have a default project under /path/to/openidm .

Set up a new project as follows:

Create a directory for your new project:

mkdir /path/to/my-project

Set up a minimal configuration:

If your project will be similar to any of the sample configurations, copy the contents of the sample to your new
project.

For example:

cp -r /path/to/openidm/samples/sync-with-ldap/* /path/to/my-project/

You can then customize the sample configuration according to your requirements.

If you do not want to start with one of the sample configurations, copy the conf/ and script/ directories from
the default project to your new project directory:

cp -pr /path/to/openidm/conf /path/to/my-project/
cp -pr /path/to/openidm/script /path/to/my-project/

You can then customize the default configuration according to your requirements.

Start your new project as follows:

/path/to/openidm/startup.sh -p /path/to/my-project

emergency_home
You can use this project to test customizations, but you should not run the default project in production.

Important

1.

2.

◦

◦

3.

Installation PingIDM

294 Copyright © 2025 Ping Identity Corporation

https://commons.apache.org/proper/commons-daemon/procrun.html
https://commons.apache.org/proper/commons-daemon/procrun.html

Select a repository

By default, IDM uses an embedded ForgeRock Directory Services (DS) instance for its internal repository. This means that you
don’t need to install a database to evaluate the software. Before you use IDM in production, you must replace the embedded DS
repository with a supported repository. For supported versions, refer to Supported Repositories:

External DS instance

MySQL

MariaDB

Microsoft SQL

PostgreSQL

Oracle Database (Oracle DB)

IBM DB2 Database

You must also decide how IDM should map objects to the tables in a JDBC database or to organizational units in DS:

Generic mapping, which allows you to store arbitrary objects without special configuration or administration.

Explicit mapping, which maps specific objects and properties to tables and columns in the JDBC database or to
organizational units in DS.

By default, IDM uses a generic mapping for user-definable objects, for both a JDBC and a DS repository. A generic mapping
speeds up initial deployment, and can make system maintenance more flexible by providing a stable database structure. In a test
environment, generic tables let you modify the user and object model easily, without database access, and without the need to
constantly add and drop table columns. However, generic mapping does not take full advantage of the underlying database
facilities, such as validation within the database and flexible indexing. Using an explicit mapping generally results in a substantial
performance improvement. It is therefore strongly advised that you change to an explicit mapping before deploying in a
production environment. If you are integrating IDM with AM, and using a shared DS repository, you must use an explicit schema
mapping.

IDM provides a sample configuration, for each JDBC repository, that sets up an explicit mapping for the managed user object, and
a generic mapping for all other managed objects. This configuration is defined in the files named /path/to/openidm/db/
repository/conf/repo.jdbc-repository-explicit-managed-user.json . To use this configuration, copy the file that
corresponds to your repository to your project’s conf/ directory, and rename it repo.jdbc.json . Run the sample-explicit-
managed-user.sql data definition script (in the path/to/openidm/db/repository/scripts directory) to set up the
corresponding tables when you configure your JDBC repository.

•

emergency_home
DS repositories do not support storage of audit or workflow data. Do not enable logging to the repository if you
are using a DS repository.

Important

•

•

info
The MySQL repository instructions are also applicable to MariaDB.

Note

•

•

•

•

•

•

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 295

This section describes how to set up IDM to work with each of the supported repositories, and lists the minimum rights required
for database installation and operation.

For information about the repository configuration, refer to Store managed objects in the repository. For more information
about generic and explicit mappings, refer to Object mappings.

Embedded DS repository

By default, IDM uses the conf/repo.ds.json file to start an embedded DS instance. The embedded DS repository is not
supported in production environments.

The embedded DS server uses the embedded DS keystore, and has the following configuration by default:

hostname - localhost

ldapPort - 31389

ldapsPort - 31636

bindDN - uid=admin

bindPassword - str0ngAdm1nPa55word

adminPort - 34444

You can query the embedded repository directly by using the LDAP command-line utilities provided with DS:

This command returns all the objects in the repository of a default IDM project:

•

•

•

•

•

•

Installation PingIDM

296 Copyright © 2025 Ping Identity Corporation

/path/to/opendj/bin/ldapsearch \
--hostname localhost \
--port 31636 \
--bindDN uid=admin \
--bindPassword str0ngAdm1nPa55word \
--baseDN "dc=openidm,dc=forgerock,dc=com" \
--useSSL \
--trustAll \
"(objectclass=*)"
dn: dc=openidm,dc=forgerock,dc=com
objectClass: domain
objectClass: top
dc: openidm

dn: ou=links,dc=openidm,dc=forgerock,dc=com
objectClass: organizationalUnit
objectClass: top
ou: links

dn: ou=internal,dc=openidm,dc=forgerock,dc=com
objectClass: organizationalUnit
objectClass: top
ou: internal

dn: ou=users,ou=internal,dc=openidm,dc=forgerock,dc=com
objectClass: organizationalUnit
objectClass: top
ou: users
...

For more information about the DS command-line utilities, refer to the DS Tools Reference.

To change the administrative port of the embedded DS server, add an adminPort property to your project’s conf/repo.ds.json
file before you start IDM. To change any of the other default values, add an ldapConnectionFactories property, as shown in the
following example.

This excerpt of a repo.ds.json sets the administrative port to 4444 . The example changes the bind password to MyPassw0rd
but shows the structure of the entire ldapConnectionFactories property for reference:

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 297

https://docs.pingidentity.com/pingds/7.4/tools-reference
https://docs.pingidentity.com/pingds/7.4/tools-reference

{
 "embedded": true,
 "maxConnectionAttempts" : 5,
 "adminPort": 4444,
 "ldapConnectionFactories": {
 "bind": {
 "primaryLdapServers": [{ "hostname": "localhost", "port": 31389 }]
 },
 "root": {
 "authentication": {
 "simple": { "bindDn": "uid=admin", "bindPassword": "MyPassw0rd" }
 }
 }
 },
 ...
}

It is not necessary to add the entire ldapConnectionFactories block to your configuration file, but you must respect the JSON
structure. For example, to change only the hostname , you would need to add at least the following:

{
 ...
 "ldapConnectionFactories": {
 "bind": {
 "primaryLdapServers": [{ "hostname": "my-hostname" }]
 }
 },
 ...
}

If you don’t include an ldapConnectionFactories object, IDM installs an embedded DS server with the default configuration.

External DS repository

IDM supports the following deployment scenarios with a DS repository:

Single external DS instance

Two DS instances in an active/passive configuration

IDM supports two replicated DS instances for backup/availabilty purposes only. Using multiple replicated DS instances as
repositories (in a multimaster DS deployment) is not supported.

Configure a single external DS instance as a repository

If you have not yet installed DS, download it from the Backstage download site and extract the .zip archive.

emergency_home
If you are using IDM with a DS repository, ForgeRock recommends using mTLS to authenticate to DS to better facilitate
credential rotation.

Important

•

•

1.

Installation PingIDM

298 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

Install DS according to the instructions in the DS Installation Guide:

If you are planning to use a generic object mapping for managed users, install DS with the idm-repo profile (see
Install DS as an IDM Repository).

If you are planning to use an explicit object mapping for managed users, install DS with both the idm-repo and
am-identity-store profiles (see Install DS as an IDM Repository and Install DS for AM Identities).

This example configures DS on the localhost, listening on the following ports:

LDAP port: 31389

Admin port: 34444

LDAPS port: 31636

We’ve used these ports to avoid a port conflict with the default ports used in the LDAP samples. You can use any host and
available ports in the setup. If you use a different host and ports, change the primaryLdapServers property in your
repo.ds-external.json file accordingly.

In your IDM installation, remove the default DS repository configuration file (repo.ds.json) from your project’s conf/
directory. For example:

cd /path/to/openidm/my-project/conf/
rm repo.ds.json

Copy the external DS repository configuration file (repo.ds-external.json) to your project’s conf directory and rename
it repo.ds.json :

cp /path/to/openidm/db/ds/conf/repo.ds-external.json my-project/conf/repo.ds.json

Enable IDM to trust the DS server certificate for your deployment.

For example, in the default case, where DS servers use TLS key pairs generated using a deploymentId and
deploymentIdPassword, import the deploymentId-based CA certificate into the IDM truststore:

/path/to/opendj/bin/dskeymgr \
export-ca-cert \
--deploymentId your-deployment-ID \
--deploymentIdPassword password \
--outputFile ds-ca-cert.pem

2.

◦

◦

▪

▪

▪

info
Every DS deployment requires a deploymentId and a deploymentIdPassword to secure network connections. The
deploymentId is a random string generated by DS software. The deploymentIdPassword is a secret string that
you choose. It must be at least 8 characters long. The deploymentId and deploymentIdPassword automate key
pair generation and signing without storing the CA private key. For more information, refer to Deployment IDs
 in the DS Security Guide.

Note

3.

4.

5.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 299

https://docs.pingidentity.com/pingds/7.4/install-guide
https://docs.pingidentity.com/pingds/7.4/install-guide
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-idm-repo.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-idm-repo.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-idm-repo.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-idm-repo.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-am-idrepo.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-am-idrepo.html
https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys
https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys
https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys

keytool \
-importcert \
-alias ds-ca-cert \
-keystore /path/to/openidm/security/truststore \
-storepass:file /path/to/openidm/security/storepass \
-file ds-ca-cert.pem
Owner: CN=Deployment key, O=ForgeRock.com
Issuer: CN=Deployment key, O=ForgeRock.com
...
Trust this certificate? [no]: yes
Certificate was added to keystore

Adjust the connection settings from IDM to DS in the IDM repository configuration file, repo.ds.json :

If your DS instance is not running on the localhost and listening for LDAP connections on port 31389 , adjust the
primaryLdapServers property in that file to match your DS setup.

Make sure the password for the DS directory superuser (uid=admin) matches the DS root user password in the
IDM configuration.

For details about the connection settings, refer to the information in Gateway LDAP Connections in the DS HTTP User
Guide. (IDM shares these configuration settings with the DS REST to LDAP Gateway.)

Start IDM with the configuration for your project. For example:

/path/to/openidm/startup.sh -p my-project
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using PROJECT_HOME: /path/to/my-project
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/my-project/conf/logging.properties
-> OpenIDM version "7.4.2"
OpenIDM ready

(Optional) Verify that IDM successfully connects to DS:

6.

◦

◦

7.

8.

Installation PingIDM

300 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#config-json
https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#config-json

grep 31389 /path/to/opendj/logs/ldap-access.audit.json | tail -n 1 | jq .
{
 "eventName": "DJ-LDAP",
 "client": {
 "ip": "127.0.0.1",
 "port": 35874
 },
 "server": {
 "ip": "127.0.0.1",
 "port": 31389
 },
 "request": {
 "protocol": "LDAP",
 "operation": "SEARCH",
 "connId": 1,
 "msgId": 232,
 "dn": "ou=triggers,ou=scheduler,dc=openidm,dc=forgerock,dc=com",
 "scope": "one",
 "filter": "(&(&(fr-idm-json:caseIgnoreJsonQueryMatch:=/state eq \"NORMAL\")(!(fr-idm-
json:caseIgnoreJsonQueryMatch:=/nodeId pr)))(objectClass=uidObject)(objectClass=fr-idm-generic-obj)
(objectClass=top))",
 "attrs": [
 "objectClass",
 "uid",
 "etag",
 "createTimestamp",
 "modifyTimestamp",
 "fr-idm-json"
]
 },
 "transactionId": "transaction-id",
 "response": {
 "status": "SUCCESSFUL",
 "statusCode": "0",
 "elapsedTime": 1,
 "elapsedTimeUnits": "MILLISECONDS",
 "nentries": 0
 },
 "timestamp": "timestamp",
 "_id": "id"
}

Configure two DS repositories in an active/passive deployment

With this configuration, IDM fails over to the secondary DS instance if the primary instance becomes unavailable. When the
primary DS instance is restarted, that instance again becomes the target of all requests.

Download DS from the Backstage download site, and extract the .zip archive.

Install two DS servers, according to the instructions in the DS Installation Guide.

1.

2.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 301

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads
https://docs.pingidentity.com/pingds/7.4/install-guide
https://docs.pingidentity.com/pingds/7.4/install-guide

If you are planning to use a generic object mapping for managed users, install DS with the idm-repo profile (see
Install DS as an IDM Repository).

If you are planning to use an explicit object mapping for managed users, install DS with both the idm-repo and
am-identity-store profiles (see Install DS as an IDM Repository and Install DS for AM Identities).

In your IDM installation, remove the default DS repository configuration file (repo.ds.json) from your project’s conf/
directory. For example:

cd /path/to/openidm/my-project/conf/
rm repo.ds.json

Copy the external DS repository configuration file (repo.ds-external.json) to your project’s conf directory and rename
it repo.ds.json :

cp /path/to/openidm/db/ds/conf/repo.ds-external.json my-project/conf/repo.ds.json

Enable IDM to trust each DS server certificate for your deployment.

For example, in the default case, where DS servers use TLS key pairs generated using a deploymentId and
deploymentIdPassword, import the deploymentId-based CA certificate for each server into the IDM truststore.

You will need to give the CA certificate of the second server a different alias.

emergency_home
When you set up each server, specify a replicationPort and bootstrapReplicationServer so that both
servers are installed as replicas. For information on these setup options, refer to setup in the DS Tools
Reference.

Important

◦

◦

info
Every DS deployment requires a deploymentId and a deploymentIdPassword to secure network connections. The
deploymentId is a random string generated by DS software. The deploymentIdPassword is a secret string that
you choose. It must be at least 8 characters long. The deploymentId and deploymentIdPassword automate key
pair generation and signing without storing the CA private key. For more information, refer to Deployment IDs
 in the DS Security Guide.

Note

3.

4.

5.

Installation PingIDM

302 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/7.4/tools-reference/setup.html
https://docs.pingidentity.com/pingds/7.4/tools-reference/setup.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-idm-repo.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-idm-repo.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-idm-repo.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-idm-repo.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-am-idrepo.html
https://docs.pingidentity.com/pingds/7.4/install-guide/profile-am-idrepo.html
https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys
https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys
https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys

/path/to/opendj/bin/dskeymgr \
export-ca-cert \
--deploymentId your-deployment-ID \
--deploymentIdPassword password \
--outputFile ds-ca-cert.pem keytool \
-importcert \
-alias ds-ca-cert \
-keystore /path/to/openidm/security/truststore \
-storepass:file /path/to/openidm/security/storepass \
-file ds-ca-cert.pem
Owner: CN=Deployment key, O=ForgeRock.com
Issuer: CN=Deployment key, O=ForgeRock.com
...
Trust this certificate? [no]: yes
Certificate was added to keystore

Specify the connection settings from IDM to the two DS servers in the ldapConnectionFactories property of the
repository configuration file (repo.ds.json).

This example assumes that the first DS server runs on the host ds1.example.com , and the second DS server runs on the
host ds2.example.com :

"ldapConnectionFactories": {
 "bind": {
 "connectionSecurity": "startTLS",
 "heartBeatIntervalSeconds": 60,
 "heartBeatTimeoutMilliSeconds": 10000,
 "primaryLdapServers": [{ "hostname": "ds1.example.com", "port": 31389 }],
 "secondaryLdapServers": [{ "hostname": "ds2.example.com", "port": 31389 }]
}

Adjust the settings to match your DS server setup.

For details about the connection settings, refer to the information in Gateway LDAP Connections in the DS HTTP User
Guide. (IDM shares these configuration settings with the DS REST to LDAP Gateway.)

Also in the repo.ds.json file, check the authentication settings:

"root": {
 "inheritFrom": "bind",
 "authentication": {
 "simple": { "bindDn": "uid=admin", "bindPassword": "str0ngAdm1nPa55word" }
 }
}

Make sure that the bindDn and bindPassword match the bind details of the DS superuser.

Start IDM, and verify that the connection to the primary DS server is successful.

(Optional) Shut down the primary DS server, and verify that the failover to the secondary server occurs, as expected.

6.

7.

8.

9.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 303

https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#config-json
https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#config-json

Configure mTLS

After you have configured DS using one of the above methods, you can enable mTLS between DS and IDM. The following
procedure uses a self-signed certificate—adjust it for an official certificate authority (CA) certificate.

Install and configure DS:

Configure a single external DS instance as a repository

Configure two DS repositories in an active/passive deployment

Create a self-signed, TLS key-pair with the subject DN: cn=IDM service account,dc=example,dc=com .

keytool \
-genkey \
-alias client-cert \
-dname "cn=IDM service account,dc=example,dc=com" \
-storetype JCEKS \
-keystore /path/to/openidm/security/keystore.jceks \
-storepass changeit \
-keyalg RSA \
-keysize 2048 \
-validity 360

Export the certificate:

keytool \
-exportcert \
-alias client-cert \
-file idm-client.crt \
-storetype JCEKS \
-keystore /path/to/openidm/security/keystore.jceks \
-storepass changeit

Import the certificate into the DS keystore:

keytool \
-importcert \
-noprompt \
-alias client-cert \
-file idm-client.crt \
-storetype PKCS12 \
-keystore /path/to/ds/config/keystore \
-storepass $DEPLOYMENT_KEY

Use ldapmodify to map the uid=admin user in DS to the generated certificate:

1.

◦

◦

2.

info
You can use any name for the cert alias, but you must update the sslCertAlias property in the repo.ds.json
file to match the value you specify here.

Note

3.

4.

5.

Installation PingIDM

304 Copyright © 2025 Ping Identity Corporation

/path/to/ds/bin/ldapmodify \
--hostname localhost \
--port 31389 \
--useStartTls \
--trustAll \
--bindDN uid=admin \
--bindPassword str0ngAdm1nPa55word << EOF
dn: uid=admin
changetype: modify
add: objectclass
objectclass: ds-certificate-user
-
replace: ds-certificate-subject-dn
ds-certificate-subject-dn: cn=IDM service account,dc=example,dc=com
EOF

Enable IDM to trust DS certificates:

/path/to/ds/bin/dskeymgr export-ca-cert \
--deploymentKey $DEPLOYMENT_KEY \
--deploymentKeyPassword $DEPLOYMENT_KEY_PASSWORD \
--outputFile ds-ca-cert.pem

keytool \
-importcert \
-alias ds-ca-cert \
-keystore /path/to/idm/security/truststore \
-storepass:file /path/to/idm/security/storepass \
-file ds-ca-cert.pem

Make the following changes to the repo.ds.json file:

...
 "ldapConnectionFactories" : {
 "bind" : {
 "connectionSecurity" : "ssl",
 "sslCertAlias": "client-cert", (1)
 ...
 "root" : {
 "inheritFrom" : "bind",
 "authentication": {
 "policy": "sasl-external"
 }
 }
 ...

6.

7.

1 Make sure to use the alias value you specified when creating the certificate.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 305

MySQL repository

This procedure assumes that you have installed MySQL on the local host. Follow the MySQL documentation that corresponds
to your MySQL version. For supported MySQL versions, refer to Supported Repositories.

Configure IDM to use the new repository before you start IDM for the first time. This procedure assumes that a password has
already been set for the MySQL root user:

Download MySQL Connector/J version 8.0 or later.

Unpack the downloaded file, and copy the JAR file to openidm/bundle/ :

cp mysql-connector-java-version.jar /path/to/openidm/bundle/

Make sure that IDM is stopped:

/path/to/openidm/shutdown.sh
OpenIDM is not running, not stopping.

Remove the default DS repository configuration file (repo.ds.json) from your project’s conf/ directory:

rm my-project/conf/repo.ds.json

Copy the MySQL database connection configuration file (datasource.jdbc-default.json) and the database table
configuration file (repo.jdbc.json) to your project’s conf directory:

cp /path/to/openidm/db/mysql/conf/datasource.jdbc-default.json my-project/conf/
cp /path/to/openidm/db/mysql/conf/repo.jdbc.json my-project/conf/

If you have previously set up a MySQL repository for IDM, you must drop the openidm database and users before you
continue:

mysql> drop database openidm;
Query OK, 21 rows affected (0.63 sec)mysql> drop user openidm;
Query OK, 0 rows affected (0.02 sec)mysql> drop user openidm@localhost;
Query OK, 0 rows affected (0.00 sec)

Import the IDM database and tables:

1.

emergency_home
Do not use Connector/J versions 8.0.23 through 8.0.25. Why?

Important

2.

3.

4.

5.

6.

7.

Installation PingIDM

306 Copyright © 2025 Ping Identity Corporation

https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://bugs.mysql.com/bug.php?id=102372
https://bugs.mysql.com/bug.php?id=102372

cd /path/to/mysql
mysql -u root -p < /path/to/openidm/db/mysql/scripts/openidm.sql
Enter password:

Create the IDM database user.

Run the following script:

cd /path/to/mysql
mysql -u root -p < /path/to/openidm/db/mysql/scripts/createuser.sql
Enter password:

Run the following script:

cd /path/to/mysql
mysql -u root -p < /path/to/openidm/db/mysql/scripts/createuser.mysql57.sql
Enter password:

Run the script that creates the tables required by the workflow engine:

cd /path/to/mysql
mysql -D openidm -u root -p < /path/to/openidm/db/mysql/scripts/flowable.mysql.all.create.sql
Enter password:

If you are planning to direct audit logs to this repository, run the script that sets up the audit tables:

mysql -D openidm -u root -p < /path/to/openidm/db/mysql/scripts/audit.sql
Enter password:

Update the connection configuration to reflect your MySQL deployment. The default connection configuration (in the
conf/datasource.jdbc-default.json file) is:

info
If errors like Access denied for user 'root'@'localhost' display, and you are deploying on a new
installation of Ubuntu 16.04 or later, the UNIX_SOCKET plugin may be installed, which applies Linux root
credentials to MySQL. In that case, substitute sudo mysql -u root for mysql -u root -p in the commands in
this section.

Note

8.

9.

10.

11.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 307

{
 "driverClass" : "com.mysql.cj.jdbc.Driver",
 "jdbcUrl" : "jdbc:mysql://&{openidm.repo.host}:&{openidm.repo.port}/openidm?
allowMultiQueries=true&characterEncoding=utf8&serverTimezone=UTC",
 "databaseName" : "openidm",
 "username" : "openidm",
 "password" : "openidm",
 "connectionTimeout" : 30000,
 "connectionPool" : {
 "type" : "hikari",
 "minimumIdle" : 20,
 "maximumPoolSize" : 50
 }
}

Specify the values for openidm.repo.host and openidm.repo.port in one of the following ways:

Set the values in resolver/boot.properties or your project’s conf/system.properties file. For example:

openidm.repo.host=localhost
openidm.repo.port=3306

These lines are commented out by default in resolver/boot.properties .

The default MySQL port is 3306 . You can use the netstat -tlnp command to check which port your MySQL instance is
running on.

Set the properties in the OPENIDM_OPTS environment variable and export that variable before startup. You must include
the JVM memory options when you set this variable. For example:

export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -Dopenidm.repo.port=3306"
/path/to/openidm/startup.sh -p my-project
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using PROJECT_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -Dopenidm.repo.port=3306
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/resolver/boot.properties
-> OpenIDM version "7.4.2"
OpenIDM ready

Make sure that the server starts without errors.

info
In a production environment, set up SSL as described in the MySQL Connector Developer Guide. The
default configuration expects SSL, which is strongly advised in a production environment. If you are
running this in a test environment, you can bypass the SSL requirement:

The default configuration expects SSL, unless you add &useSSL=false to the end of the url .
If you are running MySQL 8.0.11+, add &allowPublicKeyRetrieval=true to the end of the url .

Note

◦

▪

▪

12.

13.

Installation PingIDM

308 Copyright © 2025 Ping Identity Corporation

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-using-ssl.html
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-using-ssl.html

Microsoft SQL repository

Install Microsoft SQL Server and associated tools

Install Microsoft SQL Server:

On the Installation has completed successfully! page of the installer, click Customize to launch the SQL Server
Setup application.

Select the server instance you just created, and continue through setup. On the Feature Selection step, select at
least the following options:

SQL Server Replication

Full-Text and Semantic Extractions for Search

Continue through the setup and verify that the required options were successfully installed, as displayed on the
Complete page.

Download and install SQL Server Management Studio (SSMS).

Restart the server.

info
These instructions are specific to Microsoft SQL Server 2017 Evaluation Edition, running on Windows Server 2019, and
may require adjustments for other environments.

Note

1.

◦

◦

▪

▪

◦

2.

3.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 309

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Launch SSMS, and connect to the SQL server instance.

From the Object Explorer , right-click the SQL server instance, and then click Properties .

On the Security page, in the Server authentication area, select SQL Server and Windows Authentication Mode, and then
click OK.

From the Object Explorer, right-click the SQL server instance, and then click Restart.

Configure TCP/IP:

Launch SQL Server Configuration Manager .

From the left pane, expand the SQL Server Network Configuration node, and click Protocols for serverName.

Double-click TCP/IP.

In the TCP/IP Properties window, from the Protocol tab, click the Enable drop-down menu, and select Yes.

Click the IP Addresses tab, and make the following changes under IPAll, and then click OK:

In the TCP Dynamic Ports field, enter 0 .

In the TCP Port field, enter 1433 .

From the left pane, click SQL Server Services, right-click SQL Server (serverName), and then click Restart.

Configure the firewall to allow IDM to access the SQL Server.

Configure IDM to Use the SQL Repository

Install IDM.

Import the IDM data definition language script into Microsoft SQL:

Launch SSMS.

In the Connect to Server window, click Windows Authentication, and click Connect.

From the main menu, click File > Open > File, navigate to the data definition language script (C:
\path\to\openidm\db\mssql\scripts\openidm.sql), and click Open.

Click Execute.

SSMS displays a message in the Messages tab:

Commands completed successfully.

Completion time: 2020-11-02709:26:39.1548666-08:00

4.

5.

6.

7.

8.

◦

◦

◦

◦

◦

▪

▪

◦

◦

1.

warning
Do not start IDM.

Warning

2.

◦

◦

◦

◦

Installation PingIDM

310 Copyright © 2025 Ping Identity Corporation

https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access
https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access

Executing the openidm.sql script creates an openidm database for use as the internal repository, and an
openidm user with password openidm who has all the required privileges to update the database. You may need
to refresh the view in SSMS to see the openidm database in the Object Explorer.

If you expand Databases > openidm > Tables, the IDM tables in the openidm database display:

Execute the script that creates the tables required by the workflow engine. For example:

sqlcmd -S localhost -d openidm ^
-i C:\path\to\openidm\db\mssql\scripts\flowable.mssql.all.create.sql
(1 rows affected)
(1 rows affected)
(0 rows affected)
...

3.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 311

If you are going to direct audit logs to this repository, run the script that sets up the audit tables:

sqlcmd -S localhost -d openidm ^
-i C:\path\to\openidm\db\mssql\scripts\audit.sql

Download the Microsoft JDBC Drivers for SQL Server:

Download the JDBC Drivers from Microsoft’s download site. IDM requires at least version 7.2 of the driver, which
supports OSGi by default.

Extract the driver JAR files.

Copy the JAR file that corresponds to your Java environment to the C:\path\to\openidm\bundle directory. For
example:

copy mssql-jdbc-7.4.1.jre11.jar C:\path\to\openidm\bundle

Download the JDBC OSGi Service Package JAR and place it in the C:\path\to\openidm\bundle directory.

Remove the default DS repository configuration file (repo.ds.json) from your project’s conf/ directory. For example:

cd C:\path\to\openidm\my-project\conf\
del repo.ds.json

Copy the database connection configuration file for Microsoft SQL (datasource.jdbc-default.json) and the database
table configuration file (repo.jdbc.json) to your project’s configuration directory. For example:

cd C:\path\to\openidm
copy db\mssql\conf\datasource.jdbc-default.json my-project\conf\
copy db\mssql\conf\repo.jdbc.json my-project\conf\

Update the connection configuration to reflect your Microsoft SQL deployment. The default connection configuration in
the datasource.jdbc-default.json file is as follows:

info
When you run the flowable.mssql.all.create.sql script, the following warning in the log may display:

Warning! The maximum key length is 900 bytes. The index 'ACT_UNIQ_PROCDEF' has maximum
length of 1024 bytes. For some combination of large values, the insert/update operation
will fail.

It is very unlikely that the key length will be an issue in your deployment, and you can safely ignore this
warning.

Note

4.

5.

◦

◦

◦

6.

info
IDM was tested with version 1.0.0 of the service package.

Note

7.

8.

9.

Installation PingIDM

312 Copyright © 2025 Ping Identity Corporation

https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-ver15
https://mvnrepository.com/artifact/org.osgi/org.osgi.service.jdbc/1.0.0
https://mvnrepository.com/artifact/org.osgi/org.osgi.service.jdbc/1.0.0

{
 "driverClass" : "com.microsoft.sqlserver.jdbc.SQLServerDriver",
 "jdbcUrl" : "jdbc:sqlserver://
&{openidm.repo.host}:&{openidm.repo.port};instanceName=default;databaseName=openidm;applicationName=OpenIDM",
 "databaseName" : "openidm",
 "username" : "openidm",
 "password" : "openidm",
 "connectionTimeout" : 30000,
 "connectionPool" : {
 "type" : "hikari",
 "minimumIdle" : 20,
 "maximumPoolSize" : 50
 }
}

Specify the values for openidm.repo.host and openidm.repo.port in one of the following ways:

Set the values in resolver/boot.properties or your project’s conf/system.properties file. For example:

openidm.repo.host=localhost
openidm.repo.port=1433

Set the properties in the OPENIDM_OPTS environment variable before startup. You must include the JVM memory options
when you set this variable. For example:

set:OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -Dopenidm.repo.port=1433"

Start IDM.

Oracle DB repository

Before you set up Oracle DB as the IDM repository, confer with your Oracle DBA to create the database schema, tables, and
users. This section assumes that you have configured an Oracle DB with Local Naming Parameters (tnsnames.ora) and a
service user for IDM.

Set up Oracle as an IDM repository

As the appropriate schema owner, import the IDM schema using the data definition language script (/path/to/openidm/
db/oracle/scripts/openidm.sql).

10.

emergency_home
IDM supports two connection pools for an Oracle DB:

Hikari Connection Pool (HikariCP), described in the HikariCP GitHub Repository.
Oracle Universal Connection Pool (Oracle UCP), described in the Universal Connection Pool for JDBC
Developer’s Guide.

Many steps in this procedure will depend on your connection pool type.

Important

•
•

1.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 313

http://docs.oracle.com/cd/B28359_01/network.111/b28317/tnsnames.htm
http://docs.oracle.com/cd/B28359_01/network.111/b28317/tnsnames.htm
https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP
https://docs.oracle.com/cd/E11882_01/java.112/e12265/intro.htm
https://docs.oracle.com/cd/E11882_01/java.112/e12265/intro.htm
https://docs.oracle.com/cd/E11882_01/java.112/e12265/intro.htm

Use the Oracle SQL Developer Data Modeler to run the script that creates the tables required by the workflow engine:

/path/to/openidm/db/oracle/scripts/flowable.oracle.all.create.sql

If you are planning to direct audit logs to this repository, run the script that sets up audit tables.

Use the Oracle SQL Developer Data Modeler to run the following script:

/path/to/openidm/db/oracle/scripts/audit.sql

Set the host and port of the Oracle DB instance, either in the resolver/boot.properties file or through the
OPENIDM_OPTS environment variable.

If you use the resolver/boot.properties file, set values for the following variables:

openidm.repo.host = localhost

openidm.repo.port = 1521

If you use the OPENIDM_OPTS environment variable, include the JVM memory options when you set the repo host and port.
For example:

export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -Dopenidm.repo.port=1521"

Remove the default DS repository configuration file (repo.ds.json) from your project’s conf/ directory. For example:

rm /path/to/openidm/my-project/conf/repo.ds.json

Copy the Oracle DB repository configuration file (repo.jdbc.json) to your project’s configuration directory:

cp /path/to/openidm/db/oracle/conf/repo.jdbc.json my-project/conf/

Edit the repo.jdbc.json file as follows:

{
 "dbType" : "ORACLE",
 "useDataSource" : "ucp-oracle",
 ...
}

Copy the connection configuration file to your project’s configuration directory and edit the file for your Oracle DB
deployment. The connection configuration file depends on the connection pool that you use:

Copy the following file:

2.

3.

4.

◦

◦

5.

6.

7.

1.

Installation PingIDM

314 Copyright © 2025 Ping Identity Corporation

http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/11g/r2/prod/appdev/sqldev/datamodel1moddb/datamodel1moddb_otn.htm
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/11g/r2/prod/appdev/sqldev/datamodel1moddb/datamodel1moddb_otn.htm

cp /path/to/openidm/db/oracle/conf/datasource.jdbc-default.json my-project/conf/

Edit the file to reflect your deployment. The default configuration for a HikariCP connection pool is as follows:

{
 "driverClass" : "oracle.jdbc.OracleDriver",
 "jdbcUrl" : "jdbc:oracle:thin:@//&{openidm.repo.host}:&{openidm.repo.port}/DEFAULTCATALOG",
 "databaseName" : "openidm",
 "username" : "openidm",
 "password" : "openidm",
 "connectionTimeout" : 30000,
 "connectionPool" : {
 "type" : "hikari",
 "minimumIdle" : 20,
 "maximumPoolSize" : 50
 }
}

The jdbcUrl corresponds to the URL of the Oracle DB listener, including the service name, based on your
configured Local Naming Parameters tnsnames.ora . Set this parameter according to your database environment.

The DEFAULTCATALOG refers to the SID (system identifier); for example, orcl .

The username and password correspond to the credentials of the service user that connects from IDM.

Copy the following file:

cp /path/to/openidm/db/oracle/conf/datasource.jdbc-ucp-oracle.json my-project/conf/

Edit the file to reflect your deployment. The default connection configuration for an Oracle UCP connection pool is
as follows:

{
 "databaseName" : "openidm",
 "jsonDataSource" : {
 "class" : "oracle.ucp.jdbc.PoolDataSourceImpl",
 "settings" : {
 "connectionFactoryClassName" : "oracle.jdbc.pool.OracleDataSource",
 "url" : "jdbc:oracle:thin:@&{openidm.repo.host}:&{openidm.repo.port}:SID",
 "user" : "openidm",
 "password" : "openidm",
 "connectionTimeout" : 30000,
 "minPoolSize" : 20,
 "maxPoolSize" : 50
 }
 }
}

The url corresponds to the URL of the Oracle DB listener, including the service ID (SID), based on your
configured Local Naming Parameters tnsnames.ora . Set this property to the appropriate value for your
environment; for example: jdbc:oracle:thin:@localhost:1521:orcl .

1.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 315

The user and password correspond to the credentials of the service user that connects from IDM.

Create an OSGi bundle for the Oracle DB driver, as follows:

Download the JDBC drivers for your Oracle DB version.

The files that you download depend on your Oracle DB version, and on whether you are using HikariCP or Oracle
UCP. Because the version numbers change with minor updates, you must search for the precise corresponding
files on oracle.com :

Download the ojdbc*.jar file that corresponds to your Oracle DB version.

Download the most recent bnd JAR file from https://repo1.maven.org/maven2/biz/aQute/bnd/
biz.aQute.bnd/. The bnd utility lets you create OSGi bundles for JDBC libraries that do not yet support
OSGi.

Download the following additional files:

ucp.jar

ons.jar

Copy the downloaded files to the /path/to/openidm/db/oracle/scripts directory.

The /path/to/openidm/db/oracle/scripts directory includes an ojdbc8.bnd file that specifies the version
information for your JDBC driver.

Edit the driver version in that file if necessary. The default file is as follows:

version=12.2.0.1
Export-Package: *;version=${version}
Bundle-Name: Oracle Database 12.2.0.1 JDBC Driver
Bundle-SymbolicName: oracle.jdbc.OracleDriver
Bundle-Version: ${version}
Import-Package: *;resolution:=optional

From the /path/to/openidm/db/oracle/scripts directory, run the following command to create the OSGi
bundle, replacing the * with your Oracle DB driver version:

java -jar biz.aQute.bnd-version.jar wrap --properties ojdbc*.bnd --output ojdbc*-osgi.jar
ojdbc*.jar

Create bnd files for the ucp.jar and ons.jar files. The following examples assume version 12.2.0
Oracle JDBC drivers:

ucp.bnd

8.

◦

▪

▪

1.

▪

▪

◦

info
Do not include trailing zeros in the version number. For example, for Oracle 12.2.0.1.0, set the
version string to version=12.2.0.1 .
Oracle DB 12cR2 (12.2.0.1) uses the drivers in ojdbc8.jar .

Note

▪

▪

◦

1.

▪

Installation PingIDM

316 Copyright © 2025 Ping Identity Corporation

https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
http://bnd.bndtools.org/
http://bnd.bndtools.org/

version=12.2.0
Export-Package: oracle.ucp.*;version=${version}
Bundle-Name: Oracle Universal Connection Pool
Bundle-SymbolicName: oracle.ucp
Bundle-Version: ${version}
Import-Package: *;resolution:=optional
DynamicImport-Package: *

ons.bnd

version=12.2.0
Export-Package: *;version=${version}
Bundle-Name: Oracle ONS
Bundle-SymbolicName: oracle.ons
Bundle-Version: ${version}
Import-Package: *;resolution:=optional

Save the bnd files in the /path/to/openidm/db/oracle/scripts directory, then run the following
commands to create the corresponding OSGi bundles:

cd /path/to/openidm/db/oracle/scripts
java -jar biz.aQute.bnd-version.jar wrap --properties ucp.bnd --output ucp-osgi.jar
ucp.jar
java -jar biz.aQute.bnd-version.jar wrap --properties ons.bnd --output ons-osgi.jar
ons.jar

You can ignore any private references warnings that are logged when you build these bundles.

Move all the OSGi bundle files to the openidm/bundle directory.

When you have set up Oracle DB for use as the internal repository, make sure that the server starts without errors.

PostgreSQL repository

Configure the PostgreSQL Repository and IDM

Configure Searchable Array Fields

Configure the PostgreSQL repository and IDM

This procedure assumes that a supported version of PostgreSQL is installed and running on the local host. Before starting IDM for
the first time, configure the server to use a PostgreSQL repository.

▪

◦

9.

•

•

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 317

Edit the Postgres client authentication configuration file, pg_hba.conf . Add the following entries for the following users:
postgres and openidm :

local all openidm trust
local all postgres trust

As the postgres user, execute the createuser.pgsql script as follows:

psql -U postgres < /path/to/openidm/db/postgresql/scripts/createuser.pgsql
CREATE DATABASE
CREATE ROLE
GRANT

Run the openidm.pgsql script as the new openidm user that you created in the first step:

psql -U openidm < /path/to/openidm/db/postgresql/scripts/openidm.pgsql
CREATE SCHEMA
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE INDEX
CREATE INDEX
...
START TRANSACTION
INSERT 0 1
INSERT 0 1
COMMIT
CREATE INDEX
CREATE INDEX

Your database has now been initialized.

Run the script that creates the tables required by the workflow engine:

psql -d openidm -U openidm < /path/to/openidm/db/postgresql/scripts/flowable.postgres.all.create.sql

If you plan to direct audit logs to this repository, run the script that sets up the audit tables:

info
The path/to/openidm/db/postgresql/scripts/createuser.pgsql script creates an openidm database and role,
with a default password of openidm . The script also grants the appropriate permissions.
Edit this script if you want to change the password of the openidm role, for example:

create database openidm encoding 'utf8';
create role openidm with LOGIN NOSUPERUSER NOCREATEDB NOCREATEROLE inherit password 'newPassword';
grant all privileges on database openidm to openidm;

Note

1.

2.

3.

4.

5.

Installation PingIDM

318 Copyright © 2025 Ping Identity Corporation

psql -d openidm -U openidm < /path/to/openidm/db/postgresql/scripts/audit.pgsql

Remove the default DS repository configuration file (repo.ds.json) from your project’s conf/ directory. For example:

cd /path/to/openidm/my-project/conf/
rm repo.ds.json

Copy the database connection configuration file for PostgreSQL (datasource.jdbc-default.json) and the database table
file (repo.jdbc.json) to your project’s configuration directory. For example:

cp /path/to/openidm/db/postgresql/conf/datasource.jdbc-default.json my-project/conf/
cp /path/to/openidm/db/postgresql/conf/repo.jdbc.json my-project/conf/

Update the connection configuration to reflect your PostgreSQL deployment. The default connection configuration in the
datasource.jdbc-default.json file is as follows:

{
 "driverClass" : "org.postgresql.Driver",
 "jdbcUrl" : "jdbc:postgresql://&{openidm.repo.host}:&{openidm.repo.port}/openidm",
 "databaseName" : "openidm",
 "username" : "openidm",
 "password" : "openidm",
 "connectionTimeout" : 30000,
 "connectionPool" : {
 "type" : "hikari",
 "minimumIdle" : 20,
 "maximumPoolSize" : 50
 }
}

If you changed the password in step 1 of this procedure, edit the datasource.jdbc-default.json file to set the value for
the password field to whatever password you set for the openidm user.

Specify the values for openidm.repo.host and openidm.repo.port in one of the following ways:

Set the values in your resolver/boot.properties file:

openidm.repo.host = localhost
openidm.repo.port = 5432

Set the properties in the OPENIDM_OPTS environment variable and export that variable before startup. You must include
the JVM memory options when you set this variable. For example:

6.

7.

8.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 319

export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -Dopenidm.repo.port=5432"
/path/to/openidm/startup.sh -p my-project
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using PROJECT_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -Dopenidm.repo.port=5432
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/resolver/boot.properties
-> OpenIDM version "7.4.2"
OpenIDM ready

PostgreSQL is now set up for use as the internal repository. Make sure that the server starts without errors.

Set up indexes to tune the PostgreSQL repository according to your specific deployment.

IDM includes a /path/to/openidm/db/postgresql/scripts/default_schema_optimization.pgsql script that sets up a
number of indexes. This script includes extensive comments on the indexes that are being created. Review the script
before you run it to ensure that all the indexes are suitable for your deployment.

When you have refined the script for your deployment, execute the script as a user with superuser privileges, so that the
required extensions can be created. By default, this is the postgres user:

psql -U postgres openidm < /path/to/openidm/db/postgresql/scripts/default_schema_optimization.pgsql
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX

Configure Array Fields

Optionally, you can configure arrays in order to perform REST queries. This feature only works for genericMapping objects.

Edit the repo.jdbc.json file to identify which fields/properties are stored as JSON_LIST arrays:

9.

10.

emergency_home
No indexes are set by default. If you do not tune the repository correctly by creating the required indexes, the
performance of your service can be severely impacted. For example, setting too many indexes can have an
adverse effect on performance during managed object creation. Conversely, not indexing fields that are
searched will severely impact search performance.

Important

1.

Installation PingIDM

320 Copyright © 2025 Ping Identity Corporation

"genericMapping" : {
 "managed/*" : {
 "mainTable" : "managedobjects"
 },
 "managed/role" : {
 "mainTable": "managedobjects",
 "properties" : {
 "/stringArrayField" : {
 "type" : "JSON_LIST"
 }
 }
 },
...

Edit the managed.json file and add the properties to role :

"stringArrayField" : {
 "description" : "An array of strings",
 "title" : "String array field",
 "viewable" : true,
 "returnByDefault" : false,
 "type" : "array",
 "items" : {
 "type" : "string",
 "title" : "Some strings"
 }
}

IBM DB2 repository

This section makes the following assumptions about the DB2 environment. If these assumptions do not match your DB2
environment, adapt the subsequent instructions accordingly.

DB2 is running on the localhost, and is listening on the default port (50000).

The user db2inst1 is configured as the DB2 instance owner, and has the password Passw0rd1 .

You are using a supported version of DB2. Refer to Supported repositories.

This section assumes that you will use basic username/password authentication. You can also configure Kerberos authentication
with a DB2 repository.

Before you start, make sure that the server is stopped.

/path/to/openidm/shutdown.sh
OpenIDM is not running, not stopping.

Configure IDM to use the DB2 repository, as described in the following steps:

Download the DB2 JDBC driver for your database version from the IBM download site and place it in the openidm/
bundle directory.

2.

•

•

•

1.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 321

https://www-01.ibm.com/support/docview.wss?uid=swg21363866
https://www-01.ibm.com/support/docview.wss?uid=swg21363866

Remove the default DS repository configuration file (repo.ds.json) from your project’s conf/ directory. For example:

cd /path/to/openidm/my-project/conf/
rm repo.ds.json

Copy the database connection configuration file for DB2 (datasource.jdbc-default.json) and the database table
configuration file (repo.jdbc.json) to your project’s configuration directory. For example:

cp /path/to/openidm/db/db2/conf/datasource.jdbc-default.json my-project/conf/
cp /path/to/openidm/db/db2/conf/repo.jdbc.json my-project/conf/

Update the connection configuration to reflect your DB2 deployment. The default connection configuration in the
datasource.jdbc-default.json file is as follows:

{
 "driverClass" : "com.ibm.db2.jcc.DB2Driver",
 "jdbcUrl" : "jdbc:db2://&{openidm.repo.host}:&{openidm.repo.port}/
dopenidm:retrieveMessagesFromServerOnGetMessage=true;",
 "databaseName" : "sopenidm",
 "username" : "openidm",
 "password" : "openidm",
 "connectionTimeout" : 30000,
 "connectionPool" : {
 "type" : "hikari",
 "minimumIdle" : 20,
 "maximumPoolSize" : 50
 }
}

Specify the values for openidm.repo.host and openidm.repo.port in one of the following ways:

Set the values in resolver/boot.properties or your project’s conf/system.properties file, for example:

openidm.repo.host = localhost
openidm.repo.port = 50000

Set the properties in the OPENIDM_OPTS environment variable and export that variable before startup. You must include
the JVM memory options when you set this variable. For example:

info
ForgeRock recommends using the db2jcc4.jar driver, as the db2jcc.jar driver is deprecated. For more
information, refer to the DB2 JDBC Driver Versions.
For a list of supported DB2 versions, refer to Supported repositories.

Note

2.

3.

4.

Installation PingIDM

322 Copyright © 2025 Ping Identity Corporation

https://www-01.ibm.com/support/docview.wss?uid=swg21363866
https://www-01.ibm.com/support/docview.wss?uid=swg21363866

export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -Dopenidm.repo.port=50000"
/path/to/openidm/startup.sh -p my-project
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using PROJECT_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -Dopenidm.repo.port=50000
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/resolver/boot.properties
-> OpenIDM version "7.4.2"
OpenIDM ready

Create a user database for IDM (dopenidm).

db2 create database dopenidm

Import the IDM data definition language script into your DB2 instance.

cd /path/to/openidm
db2 -i -tf db/db2/scripts/openidm.sql

The database schema is defined in the SOPENIDM database.

You can show the list of tables in the repository, using the db2 list command, as follows:

db2 LIST TABLES for all
Table/View Schema Type Creation time
------------------------------- --------------- ----- --------------------------
CLUSTEROBJECTPROPERTIES SOPENIDM T 2015-10-01-11.58.05.968933
CLUSTEROBJECTS SOPENIDM T 2015-10-01-11.58.05.607075
CONFIGOBJECTPROPERTIES SOPENIDM T 2015-10-01-11.58.01.039999
CONFIGOBJECTS SOPENIDM T 2015-10-01-11.58.00.570231
GENERICOBJECTPROPERTIES SOPENIDM T 2015-10-01-11.57.59.583530
GENERICOBJECTS SOPENIDM T 2015-10-01-11.57.59.152221
INTERNALUSER SOPENIDM T 2015-10-01-11.58.04.060990
LINKS SOPENIDM T 2015-10-01-11.58.01.349194
MANAGEDOBJECTPROPERTIES SOPENIDM T 2015-10-01-11.58.00.261556
MANAGEDOBJECTS SOPENIDM T 2015-10-01-11.57.59.890152
...

Connect to the openidm database, and run the script that creates the tables required by the workflow engine:

db2 connect to dopenidm
db2 -i -tf /path/to/openidm/db/db2/scripts/flowable.db2.all.create.sql

If you plan to direct audit logs to this repository, run the script that sets up the audit tables:

5.

6.

7.

8.

9.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 323

db2 -i -tf /path/to/openidm/db/db2/scripts/audit.sql

When you have set up DB2 for use as the internal repository, make sure that the server starts without errors.

Kerberos authentication with a DB2 repository

By default, IDM uses the username and password configured in the repository connection configuration file (conf/
datasource.jdbc-default.json) to connect to the DB2 repository. You can configure IDM to use Kerberos authentication
instead.

In this scenario, IDM acts as a client and requests a Kerberos ticket for a service, which is DB2, through the JDBC driver.

This section assumes that you have configured DB2 for Kerberos authentication. If that is not the case, follow the instructions in
the corresponding DB2 documentation before you read this section.

The following diagram shows how the ticket is obtained and how the keytab is referenced from IDM’s jaas.conf file.

Figure 1. Using Kerberos to Connect to a DB2 Repository

Create a keytab file, specifically for use by IDM.1.

Installation PingIDM

324 Copyright © 2025 Ping Identity Corporation

https://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.admin.sec.doc/doc/c0058525.html
https://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.admin.sec.doc/doc/c0058525.html

A Kerberos keytab file (krb5.keytab) is an encrypted copy of the host’s key. The keytab enables DB2 to validate the
Kerberos ticket that it receives from IDM. You must create a keytab file on the host that IDM runs on. The keytab file must
be secured in the same way that you would secure any password file. Specifically, only the user running IDM should have
read and write access to this file.

Create a keytab for DB2 authentication, in the file openidm/security/idm.keytab/ :

kadmin -p kadmin/admin -w password
kadmin: ktadd -k /path/to/openidm/security/idm.keytab db2/idm.example.com

Make sure that the DB2 user has read access to the keytab.

Copy the DB2 Java Authentication and Authorization Service (JAAS) configuration file to the IDM security directory:

cp /path/to/openidm/db/db2/conf/jaas.conf /path/to/openidm/security/

By default, IDM assumes that the keytab is in the file openidm/security/idm.keytab and that the principal identity is
db2/idm.example.com@EXAMPLE.COM . Change the following lines in the jaas.conf file if you are using a different keytab:

keyTab="security/idm.keytab"
principal="db2/idm.example.com@EXAMPLE.COM"

Adjust the authentication details in your DB2 connection configuration file (conf/datasource.jdbc-default.json) to
remove the password field and change the username to the instance owner (db2). The following excerpt shows the
modified file:

{
 ...
 "databaseName" : "sopenidm",
 "username" : "db2",
 "connectionTimeout" : 30000,
 ...
}

Edit your project’s conf/system.properties file, to add the required Java options for Kerberos authentication.

In particular, add the following two lines to that file:

db2.jcc.securityMechanism=11
java.security.auth.login.config=security/jaas.conf

Restart IDM.

JDBC repository configuration

2.

3.

4.

5.

6.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 325

JDBC database access rights

In general, IDM requires minimal access rights to the JDBC repository for daily operation. This section lists the minimum
permissions required, and suggests a strategy for restricting database access in your deployment.

The JDBC repository used by IDM requires only one relevant user — the service account that is used to create the tables.
Generally, the details of this account are configured in the repository connection file (datasource.jdbc-default.json). By
default, the username and password for this account are openidm and openidm , regardless of the database type.

All other users are created by the db/database-type/scripts/openidm.sql script. The openidm user account must have
SELECT, UPDATE, INSERT, and DELETE permissions on all the openidm tables that are created by this script, by the scripts that
create the tables specific to the Flowable workflow engine, and by the script that sets up the audit tables if you are using the
repository audit event handler.

Case insensitivity for a JDBC repo

A DS repository is case-insensitive by default. The supported JDBC repositories are generally case-sensitive by default. Case-
sensitivity can cause issues if queries expect results to be returned, regardless of case.

For example, with the default configuration of a MySQL database, a search for an email address of scarter@example.com might
return a result, while a search for scarter@EXAMPLE.COM might return an Unable to find account error.

If you need to support case-insensitive queries, you must configure a case-insensitive collation in your JDBC repository, on the
specific columns that require it. For example:

For a generic managed object mapping in MySQL or MariaDB, change the default collation of the
managedobjectproperties.propvalue column to utf8_general_ci . Note that this changes case-sensitivity for all
managed object properties. To change case-sensitivity for all the properties of a specific object, specify a different table for
the propertiesTable entry in your repo.jdbc.json for that object, and adjust the collation on that table. To change
case-sensitivity only for certain properties of an object, use an explicit mapping.

For a PostgreSQL repository, use an explicit table structure if you require case-insensitivity. Managing case-insensitivity at
scale with generic tables in PostgreSQL is not supported. For more information about object mappings, refer to Mappings
with a JDBC repository.

For an Oracle DB repository, refer to the corresponding Oracle documentation.

For a SQL Server repository, refer to the corresponding Windows documentation.

For a DB2 repository, refer to the corresponding DB2 documentation.

info
The following topic only applies if you have set up a JDBC repository, as described in Select a repository.

Note

info
The following topic only applies if you have set up a JDBC repository, as described in Select a repository

Note

•

•

•

•

•

Installation PingIDM

326 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/database/121/NLSPG/ch5lingsort.htm#NLSPG0051
https://docs.oracle.com/database/121/NLSPG/ch5lingsort.htm#NLSPG0051
https://docs.microsoft.com/en-us/sql/t-sql/statements/windows-collation-name-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/windows-collation-name-transact-sql?view=sql-server-2017
https://developer.ibm.com/articles/making-db2-case-insensitive/
https://developer.ibm.com/articles/making-db2-case-insensitive/

JDBC over SSL

This procedure assumes that you have already set up your JDBC repository, as described in the previous sections. The exact steps
to connect to a JDBC repository over SSL depend on your repository. This procedure describes the steps for a MySQL 8 repository.
If you are using a different JDBC repository, use the corresponding documentation for that repository, and adjust the steps
accordingly.

Change the jdbcUrl property in your repository connection configuration file (conf/datasource.jdbc-default.json).

The exact value of the jdbcUrl property will depend on your JDBC database, and on the version of your JDBC driver:

"jdbcUrl" : "jdbc:mysql://&{openidm.repo.host}:&{openidm.repo.port}/openidm?
allowMultiQueries=true&characterEncoding=utf8&useSSL=true&verifyServerCertificate=true&requireSSL=true"

"jdbcUrl" : "jdbc:mysql://&{openidm.repo.host}:&{openidm.repo.port}/openidm?
allowMultiQueries=true&characterEncoding=utf8&sslMode=VERIFY_CA&requireSSL=true"

Create and verify the SSL certificate and key files required to support encrypted connections to the JDBC repository.

For MySQL 8, use one of the procedures in the MySQL docs.

Configure the JDBC repository to use encrypted connections.

For MySQL 8, follow the MySQL docs.

Check that the connection to the database is over SSL by running a command similar to the following:

mysql -u root -P 3306 -p
mysql> show variables like "%have_ssl%";
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+
1 row in set (0.00 sec)

Convert your MySQL client key and certificate files to a PKCS #12 archive. For example:

info
The following topic only applies if you have set up a JDBC repository, as described in Select a repository

Note

1.

info
For Azure MySQL, JDBC Driver Version 8.0.17+ is required.

Note

2.

3.

4.

5.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 327

https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-rsa-files.html
https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-rsa-files.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html

openssl pkcs12 -export \
-in client-cert.pem \
-inkey client-key.pem \
-name "mysqlclient" \
-passout pass:changeit \
-out client-keystore.p12

Import the client-keystore.p12 into the IDM keystore:

keytool \
-importkeystore \
-srckeystore client-keystore.p12 \
-srcstoretype pkcs12 \
-srcstorepass changeit \
-destkeystore /path/to/openidm/security/keystore.jceks \
-deststoretype jceks \
-deststorepass changeit

Import your MySQL CA certificate into the IDM truststore.

keytool \
-importcert \
-trustcacerts \
-file ca-cert.pem \
-alias "DB cert" \
-keystore /path/to/openidm/security/truststore

You are prompted for a keystore password. You must use the same password as is shown in your resolver/
boot.properties file. The default truststore password is:

openidm.truststore.password=changeit

After entering a keystore password, you are prompted with the following question. Assuming you have included an
appropriate ca-cert.pem file, enter yes .

Trust this certificate? [no]:

6.

emergency_home
For AWS RDS MySQL and Azure MySQL, no client certificates are provided. In this case, you must create an
empty keystore for client certificates, and add the following to the jdbcUrl property in your repository
connection configuration file (conf/datasource.jdbc-default.json):

&clientCertificateKeyStoreUrl=file:/opt/idm/security/
empty.jks&clientCertificateKeyStorePassword=changeit

Important

7.

Installation PingIDM

328 Copyright © 2025 Ping Identity Corporation

Open your project’s conf/system.properties file. Add the following line to that file. If appropriate, substitute the path to
your own truststore:

Set the truststore
javax.net.ssl.trustStore=&{idm.install.dir}/security/truststore

Even if you are setting up this instance of IDM as part of a cluster, you must configure this initial truststore. After this
instance joins a cluster, the SSL keys in this particular truststore are replaced.

Configuration and monitoring

Startup configuration

By default, IDM starts with the configuration, script, and binary files in the openidm/conf , openidm/script , and openidm/bin
directories. You can launch IDM with a different set of configuration, script, and binary files for test purposes, to manage different
projects, or to run one of the included samples.

The startup.sh script enables you to specify the following elements of a running instance:

-p | --project-location {/path/to/project/directory}

The project location specifies the directory that contains the configuration and script files that IDM will use.

All configuration objects and any artifacts that are not in the bundled defaults (such as custom scripts) must be included in
the project location. These objects include all files otherwise included in the openidm/conf and openidm/script
directories.

For example, the following command starts the server with the configuration of the sync-with-csv sample (located in /
path/to/openidm/samples/sync-with-csv):

./startup.sh -p /path/to/openidm/samples/sync-with-csv

If you do not provide an absolute path, the project location path is relative to the system property, user.dir . IDM sets
idm.instance.dir to that relative directory path. Alternatively, if you start the server without the -p option, IDM sets
idm.instance.dir to /path/to/openidm .

-w |--working-location {/path/to/working/directory}

The working location specifies the directory in which the embedded DS instance is installed, and the directory to which
IDM writes its database cache, audit logs, and Felix cache. The working location includes everything that is in the default
db/ , audit/ , and felix-cache/ subdirectories.

The following command specifies that IDM writes its database cache and audit data to /Users/admin/openidm/storage :

8.

info
In this documentation, "your project" refers to the value of idm.instance.dir.

Note

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 329

./startup.sh -w /Users/admin/openidm/storage

If you do not provide an absolute path, the path is relative to the system property, user.dir . IDM sets idm.data.dir to
that relative directory path. If you do not specify a working location, IDM sets idm.data.dir to /path/to/openidm . This
means the default working location data is located in the openidm/db , openidm/felix-cache , and openidm/audit
directories.

Note that this property does not affect the location of the IDM system logs. To change the location of these logs, edit the
conf/logging.properties file.

You can also change the location of the Felix cache, by editing the conf/config.properties file, or by starting the server
with the -s option, described later in this section.

-c | --config {/path/to/config/file}

A customizable startup configuration file (named launcher.json) enables you to specify how the OSGi framework is
started.

Unless you are working with a highly customized deployment, you should not modify the default framework configuration.

-P {property=value}

Any properties passed to the startup script with the -P option are used when the server loads the launcher.json
startup configuration file.

Options specified here have the lowest order of precedence when the configuration is loaded. If the same property is
defined in any other configuration source, the value specified here is ignored.

-s | --storage {/path/to/storage/directory}

Specifies the OSGi storage location of the cached configuration files.

You can use this option to redirect output if you are installing on a read-only filesystem volume, or if you are testing
different configurations. Sometimes, when you start the server with two different configurations, one after the other, the
cached configurations are merged and cause problems. Specifying a storage location puts the cached configuration files in
that location, and avoids conflicts with cached files from previous startups.

Additionally, IDM sets the system property idm.install.dir to the location IDM is installed in. For example, if IDM was installed
in /Users/admin/openidm/ , that is what idm.install.dir will be set to.

For information about changing the startup configuration by substituting property values, refer to Property Value Substitution.

Monitor server health

Because IDM is highly modular and configurable, it is often difficult to assess whether a system has started up successfully, or
whether the system is ready and stable after dynamic configuration changes have been made.

The health check service lets you monitor the status of internal resources.

To monitor the status of external resources, such as LDAP servers and external databases, use the commands described in Check
external system status over REST.

Installation PingIDM

330 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/systems-over-rest.html
https://docs.pingidentity.com/openicf/connector-reference/systems-over-rest.html
https://docs.pingidentity.com/openicf/connector-reference/systems-over-rest.html

Basic health checks

The health check service reports on the state of the server and outputs this state to the OSGi console and to the log files. The
server can be in one of the following states:

STARTING - the server is starting up

ACTIVE_READY - all of the specified requirements have been met to consider the server ready

ACTIVE_NOT_READY - one or more of the specified requirements have not been met and the server is not considered ready

STOPPING - the server is shutting down

To verify the current server state, use the following REST call:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/info/ping"
{
 "_id": "",
 "_rev": "",
 "shortDesc": "OpenIDM ready",
 "state": "ACTIVE_READY"
}

Session information

To obtain information about the current IDM session, beyond basic health checks, use the following REST call:

•

•

•

•

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 331

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/info/login"
{
 "_id": "login",
 "authenticationId": "openidm-admin",
 "authorization": {
 "userRolesProperty": "authzRoles",
 "component": "internal/user",
 "authLogin": false,
 "authenticationIdProperty": "username",
 "roles": [
 "internal/role/openidm-admin",
 "internal/role/openidm-authorized"
],
 "ipAddress": "0:0:0:0:0:0:0:1",
 "authenticationId": "openidm-admin",
 "id": "openidm-admin",
 "moduleId": "INTERNAL_USER",
 "queryId": "credential-internaluser-query"
 }
}

Health check service

The configurable health check service verifies the status of the modules and services required for an operational system. During
system startup, IDM checks that these modules and services are available and reports on any requirements that have not been
met. If dynamic configuration changes are made, IDM rechecks that the required modules and services are functioning, to allow
ongoing monitoring of system operation.

IDM checks all required modules. Examples of those modules are shown here:

info
The precise output of this command depends on the authentication module responsible for authenticating the user.
For more information about authentication modules, refer to Authentication and Session Modules

Note

Installation PingIDM

332 Copyright © 2025 Ping Identity Corporation

"org.forgerock.openicf.framework.connector-framework"
"org.forgerock.openicf.framework.connector-framework-internal"
"org.forgerock.openicf.framework.connector-framework-osgi"
"org.forgerock.openidm.audit"
"org.forgerock.openidm.core"
"org.forgerock.openidm.enhanced-config"
"org.forgerock.openidm.external-email"
...
"org.forgerock.openidm.system"
"org.forgerock.openidm.ui"
"org.forgerock.openidm.util"
"org.forgerock.commons.org.forgerock.json.resource"
"org.forgerock.commons.org.forgerock.util"
"org.forgerock.openidm.security-jetty"
"org.forgerock.openidm.jetty-fragment"
"org.forgerock.openidm.quartz-fragment"
"org.ops4j.pax.web.pax-web-extender-whiteboard"
"org.forgerock.openidm.scheduler"
"org.ops4j.pax.web.pax-web-jetty"
"org.forgerock.openidm.repo-jdbc"
"org.forgerock.openidm.repo-ds"
"org.forgerock.openidm.config"
"org.forgerock.openidm.crypto"

IDM checks all required services. Examples of those services are shown here:

"org.forgerock.openidm.config"
"org.forgerock.openidm.provisioner"
"org.forgerock.openidm.provisioner.openicf.connectorinfoprovider"
"org.forgerock.openidm.external.rest"
"org.forgerock.openidm.audit"
"org.forgerock.openidm.policy"
"org.forgerock.openidm.managed"
"org.forgerock.openidm.script"
"org.forgerock.openidm.crypto"
"org.forgerock.openidm.recon"
"org.forgerock.openidm.info"
"org.forgerock.openidm.router"
"org.forgerock.openidm.scheduler"
"org.forgerock.openidm.scope"
"org.forgerock.openidm.taskscanner"

You can replace the list of required modules and services, or add to it, by adding the following lines to your resolver/
boot.properties file. Bundles and services are specified as a list of symbolic names, separated by commas:

openidm.healthservice.reqbundles - overrides the default required bundles.

openidm.healthservice.reqservices - overrides the default required services.

openidm.healthservice.additionalreqbundles - specifies required bundles (in addition to the default list).

openidm.healthservice.additionalreqservices - specifies required services (in addition to the default list).

•

•

•

•

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 333

Installed modules and features

You can query the enabled features over REST at the info/features endpoint. The feature availability service determines the set
of possible features from the active bundles and provides the following information:

The name and _id of the feature

Whether the feature is enabled

If the feature is enabled, the REST endpoint on which that feature can be accessed

info
By default, the server is given 15 seconds to start up all the required bundles and services before system readiness is
assessed. This is not the total start time, but the time required to complete the service startup after the framework
has started. You can change this default by setting the value of the servicestartmax property (in milliseconds) in
your resolver/boot.properties file. This example sets the startup time to five seconds:

openidm.healthservice.servicestartmax=5000

Note

•

•

•

Installation PingIDM

334 Copyright © 2025 Ping Identity Corporation

Example

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/info/features?_queryFilter=true"
{
 "result": [
 {
 "_id": "retrieveUsername",
 "name": "retrieveUsername",
 "enabled": false,
 "endpoints": []
 },
 {
 "_id": "identityProviders",
 "name": "identityProviders",
 "enabled": true,
 "endpoints": [
 "identityProviders"
]
 },
 {
 "_id": "workflow",
 "name": "workflow",
 "enabled": true,
 "endpoints": [
 "workflow*"
]
 },
 {
 "_id": "passwordReset",
 "name": "passwordReset",
 "enabled": false,
 "endpoints": []
 },
 {
 "_id": "registration",
 "name": "registration",
 "enabled": true,
 "endpoints": [
 "selfservice/registration"
]
 },
 {
 "_id": "email",
 "name": "email",
 "enabled": false,

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 335

 "endpoints": []
 }
],
 ...
}

IDM in a cluster

To ensure that your identity management service remains available in the event of system failure, you can deploy multiple IDM
instances in a cluster. In a clustered environment, each instance points to the same external repository.

If one instance in a cluster shuts down or fails to check in with the cluster management service, a second instance will detect the
failure. For example, if an instance named instance1 loses connectivity while executing a scheduled task, the cluster manager
notifies the scheduler service that instance1 is not available. The scheduler service then attempts to clean up any jobs that
instance1 was running at that time. Note that clustered instances claim scheduled tasks in a random order. For more
information, refer to Scheduled tasks across a cluster.

Consistency and concurrency across cluster instances is ensured using multi-version concurrency control (MVCC). MVCC provides
consistency because each instance updates only the particular revision of the object that was specified in the update.

All instances in a cluster run simultaneously. When a clustered deployment is configured with a load balancer, the deployment
works as an active-active high availability cluster. If the database is also clustered, IDM points to the database cluster as a single
system.

IDM requires a single, consistent view of all the data it manages, including the user store, roles, schedules, and configuration. If
you can guarantee this consistent view, the number and locations of IDM nodes in a cluster will be limited only by your network
latency and other network factors that affect performance.

The following diagram shows an IDM deployment where both the IDM instances and the databases are clustered, and accessed
through a load balancer:

Installation PingIDM

336 Copyright © 2025 Ping Identity Corporation

This chapter describes the changes required to configure multiple IDM instances in a single cluster. It does not include
instructions on configuring the various third-party load balancing options.

IDM cluster configuration

Setting up multiple IDM instances in a cluster involves the following main steps:

Ensure that each instance is shut down.

Configure each instance to use the same external repository and the same keystore and truststore.

Set a unique node ID for each instance.

Configure the entire clustered system to use a load balancer or reverse proxy.

emergency_home
A clustered deployment relies on system heartbeats to assess the cluster state. For the heartbeat mechanism to work,
you must synchronize the system clocks of all the machines in the cluster using a time synchronization service that
runs regularly. The system clocks must be within one second of each other. For information on how you can achieve
this using the Network Time Protocol (NTP) daemon, refer to the NTP RFC.
Note that VM guests do not necessarily keep the same time as the host. You should therefore run a time
synchronization service such as NTP on every VM.

Important

1.

2.

3.

4.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 337

https://www.rfc-editor.org/rfc/rfc7822.html
https://www.rfc-editor.org/rfc/rfc7822.html

To configure an IDM instance as a part of a clustered deployment, follow these steps:

Shut down the server if it is running.

If you have not already done so, set up a supported repository, as described in Select a repository.

Each instance in the cluster must be configured to use the same repository; that is, the database connection configuration
file (datasource.jdbc-default.json) for each instance must point to the same port number and IP address for the
database.

Do not run the data definition language script file in Select a repository for each instance in the cluster—run it just once to
set up the tables required for IDM.

Specify a unique node ID (openidm.node.id) for each instance, in one of the following ways:

Set the value of openidm.node.id in the resolver/boot.properties file of the instance. For example:

openidm.node.id = node1

Set the value in the OPENIDM_OPTS environment variable and export that variable before starting the instance. You
must include the JVM memory options when you set this variable. For example:

export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dopenidm.node.id=node1" ./startup.sh
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using PROJECT_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Dopenidm.node.id=node1
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/resolver/boot.properties
-> OpenIDM version "7.4.2"
OpenIDM ready

You can set any value for the openidm.node.id , as long as the value is unique within the cluster. The cluster
manager detects unavailable instances by their node ID.

You must set a node ID for each instance, otherwise the instance fails to start. The default resolver/
boot.properties file sets the node ID to openidm.node.id=node1 .

Set the cluster configuration in the conf/cluster.json file.

By default, configuration changes are persisted in the repository so changes that you make in this file apply to all nodes in
the cluster.

1.

2.

info
The configuration file datasource.jdbc-default.json must be the same on all nodes.

Note

emergency_home
If an instance is not participating in the cluster, it must not share a repository with nodes that are participating
in the cluster. Having non-clustered nodes use the same repository as clustered nodes will result in
unexpected behavior.

Important

3.

◦

◦

4.

Installation PingIDM

338 Copyright © 2025 Ping Identity Corporation

The default version of the cluster.json file assumes that the cluster management service is enabled:

{
 "instanceId" : "&{openidm.node.id}",
 "instanceTimeout" : 30000,
 "instanceRecoveryTimeout" : 30000,
 "instanceCheckInInterval" : 5000,
 "instanceCheckInOffset" : 0,
 "enabled" : true
}

instanceId

The ID of this node in the cluster. By default, this is set to the value of the instance’s openidm.node.id that you set
in the previous step.

instanceTimeout

The length of time (in milliseconds) that a member of the cluster can be "down" before the cluster manager
considers that instance to be in recovery mode.

Recovery mode indicates that the instanceTimeout of an instance has expired, and that another instance in the
cluster has detected that event. The scheduler component of the second instance then moves any incomplete jobs
into the queue for the cluster.

instanceRecoveryTimeout

Specifies the time (in milliseconds) that an instance can be in recovery mode before it is considered to be offline.

This property sets a limit after which other members of the cluster stop trying to access an unavailable instance.

instanceCheckInInterval

Specifies the frequency (in milliseconds) that instances check in with the cluster manager to indicate that they are
still online.

instanceCheckInOffset

Specifies an offset (in milliseconds) for the check-in timing, when multiple instances in a cluster are started
simultaneously.

The check-in offset prevents multiple instances from checking in simultaneously, which would strain the cluster
manager resource.

enabled

Specifies whether the cluster management service is enabled when you start the server. This property is set to
true by default.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 339

Specify how the instance reads configuration changes. For more information, refer to How IDM Instances Read
Configuration Changes.

If you are using scheduled tasks, configure persistent schedules so that jobs and tasks are launched only once across the
cluster.

Configure each node in the cluster to work with host headers. If you’re using a load balancer, adjust the default
jetty.xml configuration, as described in Deploy Securely Behind a Load Balancer

Make sure that each node in the cluster has the same keystore and truststore. You can do this in one of the following
ways:

When the first instance has been started, copy the initialized keystore (/path/to/openidm/security/
keystore.jceks) and truststore (/path/to/openidm/security/truststore) to all other instances in the cluster.

Use a single keystore that is shared between all the nodes. The shared keystore might be on a mounted filesystem,
a Hardware Security Module (HSM) or something similar. If you use this method, set the following properties in the
resolver/boot.properties file of each instance to point to the shared keystore:

openidm.keystore.location=path/to/keystore
openidm.truststore.location=path/to/truststore

For information on configuring IDM to use an HSM device, refer to Configuring IDM For a Hardware Security
Module (HSM) Device.

The configuration file secrets.json in the /path/to/openidm/conf directory must be the same on all the nodes.

Start each instance in the cluster.

emergency_home
If you disable the cluster manager while clustered nodes are running (by setting "enabled" : false in
an instance’s cluster.json file), the following happens:

The cluster manager thread that causes instances to check in is not deactivated.
Nodes in the cluster no longer receive cluster events, which are used to broadcast configuration
changes when they occur over the REST interface.
Nodes are unable to detect and attempt to recover failed instances within the cluster.
Persisted schedules associated with failed instances cannot be recovered by other nodes.

Important

◦

◦

◦

◦

5.

6.

7.

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s
subject and returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you
must ensure your IDM server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

8.

◦

◦

▪

◦

9.

Installation PingIDM

340 Copyright © 2025 Ping Identity Corporation

Configuration updates in a cluster

IDM can read its configuration from the following locations:

Repository. Each instance reads its configuration from the configobjects and configobjectproperties tables in a JDBC
repository, or from the ou=config,dc=openidm,dc=forgerock,dc=com baseDN in a DS repository.

Filesystem. Each instance reads its configuration from the JSON files under its conf directory and stores the configuration
locally in memory.

In a clustered deployment, file-based configuration changes must be applied manually across all instances.

Memory. The configuration can diverge if an instance is cut from its cluster due to a networking issue or a misconfigured
load balancer. In this case, configuration changes made in the repository might not be detected and the configuration in
memory will not be updated.

There are two properties in the conf/system.properties file that determine how configuration changes are handled for each
instance:

openidm.config.repo.enabled

When this property is set to true , the instance reads configuration changes from the repository.

The default setting (# openidm.config.repo.enabled=false) indicates that the parameter is true. Uncomment that line
to prevent the instance from reading configuration changes from the repository.

openidm.fileinstall.enabled

When this property is set to true , the instance reads its configuration from the files in its conf/ directory.

The default setting (# openidm.fileinstall.enabled=false) indicates that the parameter is true. Uncomment that line
to prevent the instance from reading file-based configuration changes.

Repository-based configuration

Traditional clustered deployments share a mutable configuration that is read from a shared repository. The repository initially
loads the configuration from the JSON files in the conf directory of the first instance that is configured in the cluster. However
configuration changes are made, they are written to the repository, and the repository is the authoritative configuration source.

emergency_home
The audit service logs configuration changes only on the modified instance. Although configuration changes are
persisted in the repository, and replicated on other instances by default, those changes are not logged separately for
each instance.
Configuration changes are persisted by default, but changes to workflows and scripts, and extensions to the UI are
not. Any changes that you make in these areas must be manually copied to each node in the cluster.

Important

•

•

•

emergency_home
Every node in the cluster must have the identical configuration setting. For example, if you set
openidm.config.repo.enabled=true, openidm.fileinstall.enabled=false on one node, you must set exactly the
same options on every node in the cluster.

Important

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 341

Therefore, a traditional clustered deployment generally has the following configuration:

openidm.config.repo.enabled=true
openidm.fileinstall.enabled=false

File-based configuration

A file-based configuration lets you store the system configuration in a version-controlled filesystem and push a new version out to
all nodes when the configuration changes. This makes versioning and rolling out new configuration easier than pushing it out
over REST.

Container deployments often require an immutable configuration that is read from a filesystem (such as a Docker image) and
stored in memory. The filesystem is the authoritative configuration source and configuration changes are not written to the
repository.

For more information on building an IDM Docker image, refer to Manage configuration with Docker.

A typical container deployment includes the following configuration:

openidm.config.repo.enabled=false
openidm.fileinstall.enabled=true

If file-based configuration is used, you must ensure that the configuration across instances remains consistent. Because the file-
based configuration is not shared between instances, changes made to one node’s configuration must be applied manually to all
nodes across the cluster.

By default, IDM polls JSON configuration files in each conf/ directory for changes. ForgeRock recommends you disable automatic
polling of configuration files to prevent untested configuration changes from disrupting your identity service.

For more information, refer to Disable automatic configuration updates.

Manage configuration with Docker

Docker is a set of products that allows you to run IDM instances in containers. A container is a software package that can be
virtualized. Containerization is one way to use a file-based configuration strategy to manage IDM clusters in a repeatable and
reliable way.

You can download Docker from the official Docker homepage.

Build a base image

After you have downloaded and installed Docker, you must build a base image for IDM. ForgeRock supplies a
Custom.Dockerfile , which contains our expected structure. To build a base image with it, do the following:

As a prerequisite, you must build the java-17 base image:

Clone the https://github.com/ForgeRock/forgeops-extras.git repository.

Build the java-17 base image from the forgeops-extras/images/java-17 directory:

1.

1.

2.

Installation PingIDM

342 Copyright © 2025 Ping Identity Corporation

https://www.docker.com
https://www.docker.com
https://github.com/ForgeRock/forgeops-extras.git
https://github.com/ForgeRock/forgeops-extras.git

cd /path/to/forgeops-extras/images/java-17
docker build --tag my-repo/java-17 .

 => [internal] load .dockerignore 0.0s
 => => transferring context: 2B 0.0s
 ...
 => => writing image sha256:7674…f7f5 0.0s
 => => naming to docker.io/.my-repo/java-17 0.0s

Build the base image for IDM:

Download the latest version of the IDM .zip file from the ForgeRock Download Center.

Unzip the IDM .zip file.

Edit the Custom.Dockerfile in the openidm/bin directory. Change the line:

FROM gcr.io/forgerock-io/java-17:latest

to:

FROM my-repo/java-17

Build the IDM base image from the openidm/bin directory:

cd /path/to/openidm/bin
docker build . --file bin/Custom.Dockerfile --tag my-repo/idm:7.3.0

 => [internal] load build definition from Custom.Dockerfile 0.0s
 => => transferring dockerfile: 648B 0.0s
 ...
 => => writing image sha256:9550…5788 0.0s
 => => naming to my-repo/idm:7.3.0 0.0s

Run the docker images command to verify that you built the base images:

docker images | grep my-repo

REPOSITORY TAG IMAGE ID CREATED SIZE
my-repo/idm 7.3.0 0cc1b7f70ce6 1 hour ago 387MB
my-repo/java-17 latest 76742b285ddf 1 hour ago 146MB

2.

1.

2.

3.

4.

3.

info
If you use IDM as part of a platform deployment, refer to Base Docker images in the ForgeOps
documentation.

Note

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 343

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads
https://docs.pingidentity.com/forgeops/7.4/how-to/base-docker-images.html
https://docs.pingidentity.com/forgeops/7.4/how-to/base-docker-images.html

After you build your base images, you can push them to your Docker repository. Refer to your registry provider documentation
for detailed instructions.

Scheduled tasks across a cluster

In a clustered environment, the scheduler service looks for pending jobs and handles them as follows:

Non-persistent (in-memory) jobs execute only on the node that created it.

Persistent scheduled jobs are picked up and executed by any available node in the cluster that has been configured to
execute persistent jobs.

Jobs that are configured as persistent but not concurrent run on only one instance in the cluster at a time. That job will not
run again at the scheduled time, on any instance in the cluster, until the current job is complete.

For example, a reconciliation operation that runs for longer than the time between scheduled intervals will not trigger a
duplicate job while it is still running.

In clustered environments, the scheduler service obtains an instanceID , and check-in and timeout settings from the cluster
management service (defined in the project-dir/conf/cluster.json file).

IDM instances in a cluster claim jobs in a random order. If one instance fails, the cluster manager automatically reassigns
unstarted jobs that were claimed by that failed instance.

For example, if instance A claims a job but does not start it, and then loses connectivity, instance B can claim that job. If instance A
claims a job, starts it, and then loses connectivity, other instances in the cluster cannot claim that job. If the failed instance does
not complete the task, the next action depends on the misfire policy, defined in the scheduler configuration.

You can override this behavior with an external load balancer.

If a LiveSync operation leads to multiple changes, a single instance processes all changes related to that operation.

Because all nodes in a cluster read their configuration from a single repository, you must use an instance’s resolver/
boot.properties file to define a specific scheduler configuration for that instance. Settings in the boot.properties file are not
persisted in the repository, so you can use this file to set different values for a property across different nodes in the cluster.

For example, if your deployment has a four-node cluster and you want only two of those nodes to execute persisted schedules,
you can disable persisted schedules in the boot.properties files of the remaining two nodes. If you set these values directly in
the scheduler.json file, the values are persisted to the repository and are therefore applied to all nodes in the cluster.

By default, instances in a cluster are able to execute persistent schedules. The setting in the boot.properties file that governs
this behavior is:

openidm.scheduler.execute.persistent.schedules=true

To prevent a specific instance from claiming pending jobs, or processing clustered schedules, set
openidm.scheduler.execute.persistent.schedules=false in the boot.properties file of that instance.

•

•

•

Installation PingIDM

344 Copyright © 2025 Ping Identity Corporation

For more information about persistent schedules, refer to Persistent schedules.

Manage nodes in a cluster

You can manage clusters and nodes over the REST interface, or using the admin UI.

Manage nodes over REST

You can manage clusters and individual nodes over the REST interface, at the endpoint openidm/cluster/ . These sample REST
commands demonstrate the cluster information that is available over REST:

The following REST request displays the nodes configured in the cluster, and their status.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/cluster?_queryFilter=true"
{
 "result": [
 {
 "_id": "node1",
 "state": "running",
 "instanceId": "node1",
 "startup": "2017-09-16T15:37:04.757Z",
 "shutdown": ""
 },
 {
 "_id": "node2",
 "state": "running",
 "instanceId": "node2",
 "startup": "2017-09-16T15:45:05.652Z",
 "shutdown": ""
 }
]
}

To check the status of a specific node, include its node ID in the URL. For example:

error
Changing the value of the openidm.scheduler.execute.persistent.schedules property in the boot.properties
file changes the scheduler that manages scheduled tasks on that node. Because the persistent and in-memory
schedulers are managed separately, a situation can arise where two separate schedules have the same schedule
name.

Caution

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 345

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/cluster/node1"
{
 "_id": "node1",
 "instanceId": "node1",
 "startup": "2017-09-16T15:37:04.757Z",
 "shutdown": "",
 "state": "running"
}

Manage Nodes Using the admin UI

The admin UI provides a status widget that lets you monitor the activity and status of all nodes in a cluster.

To add the widget to a Dashboard, click Add Widget then scroll down to System Status > Cluster Node Status and click Add.

The cluster node status widget shows the current status and number of running jobs of each node.

Select Status to obtain more information on the latest startup and shutdown times of that node. Select Jobs to obtain detailed
information on the tasks that the node is running.

The widget can be managed in the same way as any other dashboard widget. For more information, refer to Manage
Dashboards.

Remove Nodes

IDM automatically addresses cluster node removal. Shut down the instance to remove, and IDM no longer utilizes the node.

Considerations when removing an existing node from the cluster:

Ensure a clustered reconciliation is not taking place when removing the node as this could cause unexpected behavior.

Remnants of the node will still exist in the chosen IDM database. For example, you may refer to the removed node still
appearing in the cluster node status widget in the Dashboard (for more context on this, refer to Manage nodes using the
admin UI).

•

•

Installation PingIDM

346 Copyright © 2025 Ping Identity Corporation

Shut down all instances of IDM.

Delete the old instance record from DS:

Locate the DN of the node using the ldapsearch command:

./ldapsearch -D "uid=admin" -w password -h localhost -p 1389 -b
"dc=openidm,dc=forgerock,dc=com" "uid=node1"

dn: uid=node1,ou=states,ou=cluster,dc=openidm,dc=forgerock,dc=com
objectClass: uidObject
objectClass: fr-idm-generic-obj
objectClass: top
fr-idm-json: {"recoveryAttempts":
1,"detectedDown":"0000001660588116038","type":"state","recoveryFinished":"0000001660588116096","instanceId":"node1","startup":"0000001660588118032","recoveringInstanceId":"node2","state":
3,"recoveringTimestamp":"0000001660588116038","recoveryStarted":"0000001660588116038","shutdown":"0000001660588563707","timestamp":"0000001660588563018"}
uid: node1

Delete the node record:

./ldapdelete -D "uid=admin" -w password -h localhost -p 1389 -b
"dc=openidm,dc=forgerock,dc=com"
"uid=node1,ou=states,ou=cluster,dc=openidm,dc=forgerock,dc=com"

DELETE operation successful for DN
uid=node1,ou=states,ou=cluster,dc=openidm,dc=forgerock,dc=com

Start all operational IDM nodes.

Example using DS

1.

2.

1.

info
The name of the node instance can be found in the openidm/resolver/boot.properties file by
the value of the openidm.node.id attribute.

Note

2.

3.

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 347

Shut down all instances of IDM.

Delete references to the old instance from clusterobjects and the associated rows from
clusterobjectproperties in the database:

Locate the name of the node, in this case node1 :

SELECT * FROM clusterobjects;

|--|
id	objecttypes_id	objectid	rev	fullobject
1	2	node1	43789	{"redacted"}
----	----------------	----------	-------	-----------

Delete the references of the old node from the clusterobjects table:

DELETE FROM openidm.clusterobjects WHERE objectid = 'node1';

|-------------------|-----------------------|-------------------|---------------------|
clusterobjects_id	propkey	proptype	propvalue
1	/recoveryAttempts	java.lang.Integer	0
1	/_rev	java.lang.String	43790
1	/detectedDown	java.lang.String	0000000000000000000
-------------------	-----------------------	-------------------	---------------------

Delete references of the old node from the clusterobjectproperties table:

DELETE FROM openidm.clusterobjectproperties WHERE clusterobjects_id = 'node1';

Start all operational IDM nodes.

Host and port information

To change the default IDM hostname or listening ports, edit the applicable entry in openidm/resolver/boot.properties :

Example using Oracle database

1.

2.

1.

2.

3.

3.

Installation PingIDM

348 Copyright © 2025 Ping Identity Corporation

openidm.port.http=8080
openidm.port.https=8443
openidm.port.mutualauth=8444
openidm.host=localhost

openidm.auth.clientauthonlyports=8444

8080

HTTP access to the REST API, requiring IDM authentication. This port is not secure, exposing clear text passwords and all
data that is not encrypted. This port is therefore not suitable for production use.

8443

HTTPS access to the REST API, requiring IDM authentication

8444

HTTPS access to the REST API, requiring SSL mutual authentication. Clients that present certificates found in the truststore
(openidm/security/) are granted access to the system.

Property files

This section lists the *.properties files used to configure IDM. Apart from the boot.properties file, these files are located in
your project’s conf/ directory. This section does not include the *.properties files associated with OpenICF connectors.

boot.properties

The boot.properties file is the property resolver file used for property substitution, and it is located in the /path/to/openidm/
resolver directory. This file lets you set variables used in other configuration files, including config.properties and
system.properties.

config.properties

The config.properties file is used for two purposes:

To set OSGi bundle properties.

To set Apache Felix properties.

For more information about each item in config.properties , refer to Apache Felix Framework Configuration Properties.

logging.properties

The logging.properties file configures JDK logging for IDM.

emergency_home
After making changes to any *.properties file, you must restart IDM for the changes to take effect.

Important

•

•

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 349

https://felix.apache.org/documentation/subprojects/apache-felix-framework/apache-felix-framework-configuration-properties.html
https://felix.apache.org/documentation/subprojects/apache-felix-framework/apache-felix-framework-configuration-properties.html

system.properties

The system.properties file is used to bootstrap java system properties such as:

Jetty log settings, based on the Jetty container bundled with IDM. IDM bundles Jetty version 12.0.19.

Configuration Changes

Quartz updates, as described in Quartz Best Practices documentation.

org.terracotta.quartz

A common transaction ID, as described in Configure the audit service.

Embedded Jetty configuration

IDM includes an embedded Jetty web server.

To configure the embedded Jetty server, edit openidm/conf/jetty.xml . IDM delegates most of the connector configuration to
jetty.xml . OSGi and PAX web specific settings for connector configuration therefore do not have an effect. This lets you take
advantage of all Jetty capabilities, as the web server is not configured through an abstraction that might limit some options.

The Jetty configuration can reference configuration properties (such as port numbers and keystore details) from your resolver/
boot.properties file.

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

•

•

•

•

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

Installation PingIDM

350 Copyright © 2025 Ping Identity Corporation

https://jetty.org/docs/jetty/12/programming-guide/troubleshooting/logging.html
https://jetty.org/docs/jetty/12/programming-guide/troubleshooting/logging.html
https://github.com/quartz-scheduler/quartz/blob/master/docs/best-practices.adoc
https://github.com/quartz-scheduler/quartz/blob/master/docs/best-practices.adoc

IDM configuration properties in Jetty

IDM exposes a Param class that you can use in jetty.xml to include IDM-specific configuration. The Param class exposes Bean
properties for common Jetty settings and generic property access for other, arbitrary settings.

Explicit Bean properties

To retrieve an explicit Bean property, use the following syntax in jetty.xml :

<Get class="org.forgerock.openidm.jetty.Param" name="<bean property name>"/>

For example, to set a Jetty property for keystore password:

<Set name="password">
 <Get class="org.forgerock.openidm.jetty.Param" name="keystorePassword"/>
</Set>

Also refer to the bundled jetty.xml for further examples.

The following explicit Bean properties are available; they map either to the boot.properties in the openidm/resolver/
subdirectory, or the secrets.json file in your project’s conf/ subdirectory.

port

Maps to openidm.port.http

port

Maps to openidm.port.https

port

Maps to openidm.port.mutualauth

keystoreType

Maps to `mainKeyStore `storeType

keystoreProvider

Maps to `mainKeyStore `providerName

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 351

keystoreLocation

Maps to `mainKeyStore `file

keystorePassword

Maps to `mainKeyStore `storePassword

truststoreLocation

Maps to `mainTrustStore `file

truststorePassword

Maps to `mainTrustStore `storePassword

Generic Properties

<Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>org.forgerock.openidm.some.sample.property</Arg>
</Call>

Jetty default settings

By default, the embedded Jetty server uses the following settings:

The HTTP, SSL, and Mutual Authentication ports defined in IDM.

The same keystore and truststore settings as IDM.

Trivial sample realm, openidm/security/realm.properties to add users.

The default settings are intended for evaluation only. Adjust them according to your production requirements.

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

•

•

•

Installation PingIDM

352 Copyright © 2025 Ping Identity Corporation

Additional servlet filters

You can register generic servlet filters in the embedded Jetty server to perform additional filtering tasks on requests to or
responses from IDM. For example, you might want to use a servlet filter to protect access to IDM with an access management
product. Servlet filters are configured in files named openidm/conf/servletfilter-name.json . These servlet filter configuration
files define the filter class, required libraries, and other settings.

A sample servlet filter configuration is provided in the servletfilter-cors.json file in the /path/to/openidm/conf directory.

The sample servlet filter configuration file is shown below:

{
 "classPathURLs" : [],
 "systemProperties" : { },
 "requestAttributes" : { },
 "scriptExtensions" : { }.
 "initParams" : {
 "allowedOrigins" : "https://localhost:&{openidm.port.https}",
 "allowedMethods" : "GET,POST,PUT,DELETE,PATCH",
 "allowedHeaders" : "accept,x-openidm-password,x-openidm-nosession,
 x-openidm-username,content-type,origin,
 x-requested-with",
 "allowCredentials" : true,
 "chainPreflight" : false
 },
 "urlPatterns" : [
 "/*"
],
 "filterClass" : "org.eclipse.jetty.ee10.servlets.CrossOriginFilter"
}

The sample configuration includes the following properties:

classPathURLs

The URLs to any required classes or libraries that should be added to the classpath used by the servlet filter class.

systemProperties

Any additional Java system properties required by the filter.

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 353

requestAttributes

The HTTP Servlet request attributes that will be set when the filter is invoked. IDM expects certain request attributes to be
set by any module that protects access to it, so this helps in setting these expected settings.

scriptExtensions

Optional script extensions to IDM. Currently only augmentSecurityContext is supported. A script that is defined in
augmentSecurityContext is executed after a successful authentication request. The script helps to populate the expected
security context. For example, the login module (servlet filter) might select to supply only the authenticated user name,
while the associated roles and user ID can be augmented by the script.

Supported script types include "text/javascript" and "groovy" . The script can be provided inline ("source":script
source) or in a file ("file":filename). The sample filter extends the filter interface with the functionality in the script
script/security/populateContext.js .

filterClass

The servlet filter that is being registered.

The following additional properties can be configured for the filter:

httpContextId

The HTTP context under which the filter should be registered. The default is "openidm" .

servletNames

A list of servlet names to which the filter should apply. The default is "OpenIDM REST" .

urlPatterns

A list of URL patterns to which the filter applies. The default is ["/*"] .

initParams

Filter configuration initialization parameters that are passed to the servlet filter init method. For more information, refer
to http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html.

Secure protocol configuration

The Jetty configuration for inbound connections to IDM supports a number of protocols and cipher suites.

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

Installation PingIDM

354 Copyright © 2025 Ping Identity Corporation

http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html
http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html

Enabled protocols are explicitly listed in the includeProtocols list in the conf/jetty.xml file. Only TLSv1.2 and TLSv1.3 are
enabled by default:

...
<Array id= "includedProtocols" type="java.lang.String">
 <!-- Only support TLS v1.2 and v1.3 -->
 <Item>TLSv1.2</Item>
 <Item>TLSv1.3</Item>
</Array>
...

To disable a particular protocol, remove it from the includedProtocols list. To add support for a weaker protocol, add it to the
list. For example:

...
<Array id= "includedProtocols" type="java.lang.String">
 <Item>TLSv1.2</Item>
 <Item>TLSv1.3</Item>
 <Item>SSLv3.0</Item>
</Array>
...

Enabled cipher suites for each protocol are listed in the includedCipherSuites list in conf/jetty.xml :

...
<Array id="includedCipherSuites" type="java.lang.String">
 <!-- TLS 1.3 cipher suites -->
 <Item>TLS_AES_128_GCM_SHA256</Item>
 <Item>TLS_AES_256_GCM_SHA384</Item>
 <Item>TLS_CHACHA20_POLY1305_SHA256</Item>

 <!-- TLS 1.2 cipher suites -->
 <Item>TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384</Item>
 <Item>TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256</Item>
 <Item>TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256</Item>
 <Item>TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384</Item>
 <Item>TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256</Item>
 <Item>TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256</Item>
 <Item>TLS_DHE_RSA_WITH_AES_256_GCM_SHA384</Item>
 <Item>TLS_DHE_RSA_WITH_AES_128_GCM_SHA256</Item>
</Array>
...

To add support for additional cipher suites, add them as <Item> s in this list.

emergency_home
It is highly recommended that you do not enable weaker protocols such as SSL, and TLS versions prior to 1.2. These
protocols use outdated algorithms and are generally considered insecure.

Important

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 355

Jetty thread settings

To change the Jetty thread pool settings, add the following excerpt to your project’s conf/config.properties file:

Jetty maxThreads (default 200)
org.ops4j.pax.web.server.maxThreads=${org.ops4j.pax.web.server.maxThreads}
Jetty minThreads (default 8)
org.ops4j.pax.web.server.minThreads=${org.ops4j.pax.web.server.minThreads}
Jetty idle-thread timeout milliseconds (default 60000)
org.ops4j.pax.web.server.idleTimeout=${org.ops4j.pax.web.server.idleTimeout}

To override these defaults, set a corresponding OPENIDM_OPTS variable when you start IDM. For example:

export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dorg.ops4j.pax.web.server.maxThreads=768" /path/to/openidm/
startup.sh
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using PROJECT_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Dorg.ops4j.pax.web.server.maxThreads=768
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
-> OpenIDM version "8.0.0" (revision: unknown)
OpenIDM ready

Gzip compression for HTTP responses

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

emergency_home
You cannot use property substitution to set these properties.
You cannot adjust Jetty’s thread settings in the conf/jetty.xml file. If you uncomment the excerpt of jetty.xml
that starts with <!--<Arg name="threadpool">... , errors display in the IDM log.

Important

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

Installation PingIDM

356 Copyright © 2025 Ping Identity Corporation

IDM uses the Jetty Gzip handler to compress HTTP responses. The default Gzip handler configuration, in conf/jetty.xml , is as
follows:

...
<Call name="insertHandler">
 <Arg>
 <New id="GzipHandler" class="org.eclipse.jetty.server.handler.gzip.GzipHandler">
 <Set name="minGzipSize"><Property name="jetty.gzip.minGzipSize" default="2048"/></Set>
 <Set name="inflateBufferSize"><Property name="jetty.gzip.inflateBufferSize" default="0"/></Set>
 <Set name="syncFlush"><Property name="jetty.gzip.syncFlush" default="false" /></Set>
 <Set name="includedMethodList"><Property name="jetty.gzip.includedMethodList" default="GET" /></Set>
 <Set name="excludedMethodList"><Property name="jetty.gzip.excludedMethodList" default="" /></Set>
 </New>
 </Arg>
</Call>
...

Adjust this configuration if the default does not suit your deployment. Configuration properties are as follows:

minGzipSize

Content is compressed only if the content length is unknown or is greater than the minGzipSize . By default, content is
compressed only if the response is greater than 2048MB.

inflateBufferSize

Number of bytes in the request decompression buffer. The default setting is -1 , which disables this feature. Use this
feature only if you want to compress large POST/PUT request payloads. Be aware that this setting exposes a potential Zip
bomb risk.

syncFlush

By default, this setting is false , which lets the deflater determine how much data to accumulate, before it produces
output. This achieves the best compression. When true , this setting forces flushing of the buffer of data to compress.
This can result in poor compression.

includedMethodList

A list of HTTP methods to compress. By default, only GET requests are compressed.

excludedMethodList

A list of HTTP methods that should not be compressed.

emergency_home
In Jetty 12, the compressionLevel and excludedAgentPatterns properties have been removed from the Gzip handler.
Learn more in Discontinued functionality.

Important

PingIDM Installation

Copyright © 2025 Ping Identity Corporation 357

https://en.wikipedia.org/wiki/Zip_bomb
https://en.wikipedia.org/wiki/Zip_bomb
https://en.wikipedia.org/wiki/Zip_bomb

Upgrade

This guide shows you how to upgrade an existing deployment to the latest ForgeRock® Identity Management release.

Quick Start

The upgrade process is largely dependent on your deployment and on the extent to which you have customized IDM. Engage
ForgeRock Support Services for help in upgrading an existing deployment. Also, read the Release notes before you start an
upgrade; specifically, Incompatible changes.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

About upgrades

The automated update process available with previous IDM versions is no longer supported. This chapter describes the manual
process required to upgrade an existing IDM deployment. At a high level, the manual update process involves the following steps:

Install IDM 7.4.

Migrate Configuration

Migrate an existing IDM configuration to IDM
7.4.

Update Repository

Update an existing repository or install a new
repository for IDM 7.4.

Migrate Data

Move the data in an existing IDM repository to
an updated deployment.

1.

PingIDM Upgrade

Copyright © 2025 Ping Identity Corporation 359

https://www.forgerock.com/support/support-services
https://www.forgerock.com/support/support-services
https://www.forgerock.com
https://www.forgerock.com

Migrate your existing IDM configuration to the new installation.

Update your repository.

Test your scripts and customizations work as expected.

Migrate existing data to the new installation.

Supported upgrade paths

The following table contains information about the supported upgrade paths to IDM 7.4:

Before you upgrade

Fulfill these requirements before you upgrade IDM, especially before upgrading the software in a production environment. Also
refer to the requirements listed in Before you install and the changes listed in Incompatible changes.

Before you start, verify that you have a supported Java version installed:

2.

3.

4.

5.

Upgrade Paths

Version Upgrade Supported to IDM 7.4

IDM 7.3.x YES

IDM 7.2.x YES

IDM 7.1.x YES

IDM 7.0.x YES

IDM 6.5.x YES

IDM 6.0.x YES

IDM 5.5.x YES

IDM 5.0.x YES

emergency_home
Depending on how you have customized your deployment, there might be incompatible configuration changes when
you upgrade from versions prior to IDM 6.5.x. Read the upgrade documentation for each interim release and apply all
required script and configuration changes.

Important

Upgrade PingIDM

360 Copyright © 2025 Ping Identity Corporation

** Version 17.0.9 or higher.

If the server uses an older version that is no longer supported, install a newer Java version before you update, and follow the
instructions in Java requirements.

Then, follow these steps:

Back up your existing deployment by archiving the openidm directory and creating a backup of the repository and all
other applicable databases.

To save a record of the audit logs from your existing IDM installation, manually copy the log files from the /path/to/
openidm/audit/ directory, before you start the upgrade.

Download and extract IDM-7.4.2.zip from the Backstage download site.

Migrate your configuration

This chapter covers the steps required to migrate your IDM configuration to IDM 7.4.

There is no automated way to migrate a customized configuration to IDM 7.4, so you must migrate customized configuration files
manually. Assuming you are upgrading from IDM 7.3.x, there are three ways to do this:

Use the new IDM 7.4 configuration files as a base, and copy any customizations you have made to the new files.

This is the preferred option, particularly if you have used version control on your configuration and can determine the
exact changes you have applied.

Use your existing configuration files as a base, and add any new IDM 7.4 configuration to your existing files.

Supported Java Versions

Vendor Versions

OpenJDK, including OpenJDK-based distributions:

AdoptOpenJDK/Eclipse Temurin
Amazon Corretto
Azul Zulu
Red Hat OpenJDK

17**

Oracle Java 17**

•
•
•
•

info
ForgeRock tests most extensively with AdoptOpenJDK/Eclipse Temurin. ForgeRock recommends
using the HotSpot JVM.

Note

1.

info
If you use workflow, you must manually dump the workflow database tables, and then import them before you
start the new instance of IDM for the first time. The workflow database tables start with the prefix ACT_. For
information on how to dump/import individual tables, refer to the documentation for your database.

Note

2.

3.

•

•

PingIDM Upgrade

Copyright © 2025 Ping Identity Corporation 361

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

Use your existing configuration "as is" with no IDM 7.4 changes.

In most cases, a customized IDM 7.3.x configuration will work without further modification on IDM 7.4.

Migrate configuration files

For customized files in your project’s conf/ directory, check that the customizations are compatible with the changes outlined in
Incompatible changes. If there are no incompatible changes, either copy your old configuration files to your IDM 7.4 installation,
or copy any customization into the corresponding new configuration files.

Migrate boot.properties

On the IDM 7.4 installation, edit the resolver/boot.properties file to match any customizations that you made on your IDM
7.3.x server. Specifically, check the following elements:

The HTTP, HTTPS, and mutual authentication ports.

If you changed the default ports in your IDM 7.3.x deployment, make those same changes in the new boot.properties
file.

Check that the keystore and truststore passwords match the current passwords for the keystore and truststore of your
existing IDM deployment.

Migrate security settings

Copy the contents of your IDM 7.3.x security/ folder to the IDM 7.4 installation.

Migrate custom scripts

Migrate any custom scripts or default scripts that you have modified to the script directory of your IDM 7.4 instance. In general,
custom and customized scripts should be located in the openidm/script directory of your existing IDM deployment.

For custom scripts, review Incompatible changes. If you are confident that the scripts will work as intended on IDM 7.4, copy
these scripts to the new instance.

If you modified a default IDM script, compare the default versions of the IDM 7.3.x and IDM 7.4 scripts. If nothing has changed
between the default versions, review your customizations against Incompatible changes. If a default script has changed since the
IDM 7.3.x release, test that your customizations work with the new default script. If you are confident that your changes will work
as intended on the new version, copy the customized scripts to the new script directory.

•

info
If you create custom configuration files, ForgeRock recommends not using spaces or special characters in the
filenames, in accordance with the OSGi specification.

Note

•

•

warning
If you do not copy your old truststore and keystore files to your new instance, you will be unable to decrypt anything
that was encrypted by your old instance of IDM.

Warning

Upgrade PingIDM

362 Copyright © 2025 Ping Identity Corporation

https://docs.osgi.org/specification/osgi.core/8.0.0/framework.service.html#i3043166
https://docs.osgi.org/specification/osgi.core/8.0.0/framework.service.html#i3043166

Migrate custom bundles

If your existing deployment includes any custom JAR files in the bundles directory, migrate these to the new deployment. Pay
particular attention to any files that support JDBC database drivers.

Migrate provisioner files

Change any customized provisioner configurations in your existing deployment to point to the connectors that are provided with
IDM 7.4. Specifically, make sure that the connectorRef properties reflect the new connector versions, where applicable. For
example:

"connectorRef" : {
 "bundleName": "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion": "[1.4.0.0,1.6.0.0)",
 "connectorName": "org.identityconnectors.ldap.LdapConnector"
},

Alternatively, copy the connector .jar files from your existing deployment into the openidm/connectors directory of the new
installation.

Migrate UI customizations

If you have customized the admin UI, review any custom UI files from your IDM 7.3.x deployment (generally in the openidm/ui/
admin/extension directory), and compare them against the corresponding IDM 7.4 files.

For each customized file, copy the corresponding default IDM 7.4 UI files to a openidm/ui/admin/extension directory on the new
instance.

Apply your customizations to files in the new openidm/ui/admin/extension directory.

Update the repository

When you have migrated your configuration to the new IDM installation, you need to handle the data that is stored in your
repository. There are two options to update a repository:

Upgrade your existing IDM 7.x repository.

Create a new IDM 7.4 repository, then migrate your data to the new repository.

When you have upgraded the repository, or created a new repository, start the IDM server and test that all your scripts are
working as expected, before migrating your data.

info
If you modify any shell scripts, such as startup.sh , you must migrate your changes manually to the new version of
the script.

Note

•

•

PingIDM Upgrade

Copyright © 2025 Ping Identity Corporation 363

Upgrade an existing repository

Upgrading an existing repository means that you do not need to migrate data. However, you must run a series of scripts that
modify the repository, to use the new features in IDM 7.4.

Prepare an existing repository for IDM 7.4 as follows:

Shut down IDM, if it is running.

Clear all configobjects related tables. For example, in MySQL run:

DELETE FROM openidm.configobjects;
DELETE FROM openidm.configobjectproperties;

If you are using workflow, you must run the Flowable upgrade scripts for your database type. These upgrade scripts are
incremental and must be run in order, starting with the correct script based on your current Flowable version.

To determine your current Flowable version, check the /path/to/openidm/bundle/flowable-engine-
versionNumber.jar file in your old IDM installation.

Run the upgrade scripts from /path/to/openidm/db/database-type/scripts/updates/ in order, starting with
your current flowable version:

flowable.database-type.upgradestep.6.6.0.to.6.7.0.all.sql

flowable.database-type.upgradestep.6.7.0.to.6.7.1.all.sql

flowable.database-type.upgradestep.6.7.1.to.6.7.2.all.sql

flowable.database-type.upgradestep.6.7.2.to.6.8.0.all.sql

Launch IDM and run the following Groovy script to clear the reconprogressstate data in your repository:

emergency_home
Because the repository upgrade scripts are incremental, you must review each major version upgrade after your
current release. For example, when upgrading from 6.5.x to 7.4.x, review the upgrade process and scripts for 7.0.x,
7.1.x, 7.2.x, 7.3.x, and 7.4.x (this version).
Repository upgrade procedures:

Upgrade an existing repository (7.0.x)

Upgrade an existing repository (7.1.x)

Upgrade an existing repository (7.2.x)

Upgrade an existing repository (7.3.x)

Important

•
•
•
•

1.

2.

3.

1.

2.

1.

2.

3.

4.

4.

Upgrade PingIDM

364 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/idm/7/upgrade-guide/update-repo.html#upgrade-existing-repository
https://backstage.forgerock.com/docs/idm/7/upgrade-guide/update-repo.html#upgrade-existing-repository
https://backstage.forgerock.com/docs/idm/7.1/upgrade-guide/update-repo.html#upgrade-existing-repository
https://backstage.forgerock.com/docs/idm/7.1/upgrade-guide/update-repo.html#upgrade-existing-repository
https://backstage.forgerock.com/docs/idm/7.2/upgrade-guide/update-repo.html#upgrade-existing-repository
https://backstage.forgerock.com/docs/idm/7.2/upgrade-guide/update-repo.html#upgrade-existing-repository
https://backstage.forgerock.com/docs/idm/7.3/upgrade-guide/update-repo.html#upgrade-existing-repository
https://backstage.forgerock.com/docs/idm/7.3/upgrade-guide/update-repo.html#upgrade-existing-repository

def result = openidm.query(
 "repo/reconprogressstate", ["_queryFilter" : "true", "_fields" : "_id"]).result;
for (item in result) {
 openidm.delete("repo/reconprogressstate/" + item["_id"], null);
}
return result.size() + " reconprogressstate records deleted";

This script works for all repository types and can be sent as a REST call. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "type":"groovy",
 "source":"def result = openidm.query(\"repo/reconprogressstate\", [\"_queryFilter\" : \"true\",
\"_fields\" : \"_id\"]).result; for (item in result) { openidm.delete(\"repo/reconprogressstate/
\" + item[\"_id\"], null); }; return result.size() + \" reconprogressstate records deleted\";"
}' \
"http://localhost:8080/openidm/script?_action=eval"
"1 reconprogressstate records deleted"

Verify that all scripts and functions behave as expected.

Create a new repository

Set up a new repository, following the steps in Select a repository. A new repository is already configured for all the new
capabilities in IDM, but does require migrating existing data to that repository.

If you create a new repository, you must still update your configuration files to use the new features.

After you have set up the new repository, migrate your data to that repository.

Migrate data

The data migration service helps you move information stored in an IDM repository to a new deployment. You can use this
service when you are upgrading to a new version, or when you are migrating to a different repository type. The migration service
is off by default. To enable it, copy migration.json from samples/example-configurations/conf/ into your conf/ directory,
and set "enabled": true .

Migration is run from your new installation through IDM’s recon service, using your previous deployment as a data source. The
data migration service supports importing information from IDM instances back to version 4. If you are migrating from a version
of IDM earlier than that, you will need to follow previous update instructions to get your deployment into a state where it can be
migrated using this service.

5.

1.

2.

PingIDM Upgrade

Copyright © 2025 Ping Identity Corporation 365

Internal Roles

Internal Users

Internal User Metadata

Managed Roles

Managed Users

Managed Assignments

Links and Relationships

Scheduler jobs

If you have additional object types (for example, managed devices), modify migration.json to include these objects.

Configure the Migration Service

The data migration service is configured through migration.json . The default file assumes a default schema; modify the file if
you have added custom managed data. The migration.json file can have the following properties:

enabled

Boolean, true or false . Enables the migration service.

connection

Configures the connection to the source IDM instance you are migrating from. Available properties:

instanceUrl

The URI for the source IDM instance.

authType

The authentication mechanism to the source IDM instance. Can be basic (username/password) or bearer
(authentication using AM bearer tokens).

info
Because the migration service migrates information that may be encrypted, such as passwords, you must make sure
you have copied the truststore and keystore files from your previous deployment before you start the migration.

Note

•

•

•

•

•

•

•

•

info
If you are migrating scheduler jobs from IDM 4.0 or 4.5, you will need to modify the entry in migration.json
to be:

{
 "source" : "scheduler",
 "target" : "scheduler/job"
}

Note

Upgrade PingIDM

366 Copyright © 2025 Ping Identity Corporation

userName

Used for authenticating to the source IDM instance, if the authType is basic .

password

Used for authenticating to the source IDM instance, if the authType is basic .

clientId

Used for authenticating to the source IDM instance, if the authType is bearer .

clientSecret

Used for authenticating to the source IDM instance, if the authType is bearer .

tokenEndpoint

Used for authenticating to the source IDM instance, if the authType is bearer .

scope (optional)

List of OAuth scopes.

scopeDelimiter (optional)

Delimiter for the list of OAuth scopes.

tlsVersion (optional)

Lets you override the default TLS version.

connectionTimeout (optional)

Timeout for connecting to the source IDM instance (defaults to 10s).

reuseConnections (optional)

Lets you override the default setting (defaults to true).

retryRequests (optional)

Lets you override the default setting (defaults to true).

hostnameVerifier (optional)

The SSL hostname verification policy. Specifies whether the host name presented by the remote server certificate is
verified upon establishing new SSL connections (defaults to STRICT). Possible values:

STRICT : Requires that the host name match the host name presented in the certificate. Wild-cards only
match a single domain.

ALLOW_ALL : Accepts any host name (disables host name verification).

•

•

PingIDM Upgrade

Copyright © 2025 Ping Identity Corporation 367

maxConnections (optional)

Lets you override the default maximum number of connections (default is 64).

proxy (optional)

Lets you specify connection through a proxy server. Includes the following properties:

proxyUri

The proxy host and port to which IDM should connect.

userName

The user account to connect to the remote proxy.

password

The password of the proxy user.

socketTimeout

The TCP socket timeout, when waiting for HTTP responses. If you do not set a duration, the default is no timeout.

Example valid duration values:

4 days

59 minutes and 1 millisecond

1 minute and 10 seconds

42 millis

unlimited

none

zero

mappings

A list of the endpoints that will be migrated from your old IDM instance to your new instance, expressed as mappings
between the old and new instances. The complete list of mapping properties is the same as any regular synchronization
mapping. Properties with particular significance for data migration include the following:

allowEmptySourceSet

Specifies whether the migration service should continue if it encounters an empty source mapping. This is enabled
by default.

correlationQuery

You can specify a custom correlation query. By default, this is:

•

•

•

•

•

•

•

Upgrade PingIDM

368 Copyright © 2025 Ping Identity Corporation

"var map = {'_queryFilter': '_id eq \"' + source._id + '\"'}; map;"

For more information about writing correlation queries, refer to Correlate source objects with existing target
objects.

enableLinking

Specifies whether links are maintained between source and target objects. If enableLinking is set to false , links
are not maintained. This is the default behavior for the migration service, where it is expected that you will run the
migration only once. If you intend to run the migration more than once, set this parameter to true .

onCreate

The script used by the migration service for creating the data that is being migrated to the new installation. By
default, this points to a Groovy script: update/mapLegacyObject.groovy .

onUpdate

The script used by the migration service for updating the data that is being migrated in the new installation. By
default, this points to a Groovy script: update/mapLegacyObject.groovy .

policies

An array of policies to apply to the data being migrated.

properties

An array of properties to perform additional actions on, such as modifying the contents of a property during the
migration. This follows the pattern you would find in a standard reconciliation. For more information about
transforming data during a reconciliation, refer to Transform Attributes in a Mapping.

reconSourceQueryPageSize

Specifies the number of results to return per page, if paging is turned on. By default, 1000 results per page are
returned.

reconSourceQueryPaging

Specifies whether the migration service should use paging when querying the source IDM instance. By default, this
is set to false . Turn paging on if you have a large data set and are concerned about memory usage.

For large data sets, you might be able to improve migration performance by turning paging on and increasing the
query page size (using reconSourceQueryPageSize). The most effective page size will vary, depending on the
available resources.

runTargetPhase

Specifies whether the migration should run the target phase of reconciliation. By default, this is set to false as
there is no data in the target repository.

PingIDM Upgrade

Copyright © 2025 Ping Identity Corporation 369

source

This is the only property that is required for data migration. The source should be the path to the resource within
the repo; for example, repo/managed/user .

sourceQuery

The query on the source system, used to find all objects to be migrated. Defaults to "_queryFilter" :
"true&fields=_id" , which returns the IDs of all source objects.

You can improve migration performance by returning the whole source entry (setting the sourceQuery to
"_queryFilter" : "true").

sourceQueryFullEntry

(Optional). Specifies whether the defined source query returns full object data (true) or IDs only (false). Defaults
to true .

If you do not set this parameter, IDM attempts to detect whether the full object is returned, based on the query
results.

target

The path to the resource within the target repository. By default, this will be the same as the source path.

validSource

You can specify a script to validate the source object prior to migration. By default, this property is empty.

endpoint

By default, the migration service endpoint is migration . You can use the endpoint property to change this if needed.

emergency_home
By default, the migration services use the repo endpoint, rather than the managed endpoint for both the
source and the target. Create, read, update, and delete operations will therefore not trigger an implicit
synchronization to the target resource.

Important

emergency_home
If you are migrating from IDM 6.5.x
Any explicitly mapped resource coming from repo/<mappingName> must include:

"sourceQuery": {
 "_queryFilter": "true",
 "_fields": ""
}

Important

Upgrade PingIDM

370 Copyright © 2025 Ping Identity Corporation

Run the Data Migration

Before you run your migration, make sure that you have done the following:

Paused any scheduled jobs on the source deployment.

Configured your conf/migration.json and update/mapLegacyObject.groovy files on the new IDM installation.

Moved your configuration files from the old deployment to the new one.

If you use workflow, you must manually dump the workflow database tables, and then import them before you start the
new instance of IDM for the first time. The workflow database tables start with the prefix ACT_ . For information on how to
dump/import individual tables, refer to the documentation for your database.

When you launch the new IDM installation, a new migration endpoint should be available. This endpoint supports the following
actions:

migrate : Triggers a migration of all legacy objects from the remote system. Optionally takes a mapping parameter in
order to specify a specific mapping to migrate. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/migration?_action=migrate&mapping=repoManagedUser_repoManagedUser"

status : Returns the last status for all reconciliations triggered by the migration service.

mappingConfigurations : Returns the full list of migration mapping configurations.

mappingNames : Returns the list of migration mapping names.

The period of time a migration takes will depend on the amount of information being migrated. Migrated data will retain the
same object IDs they had in the previous deployment.

info
Because the data migration service performs a reconciliation between your old installation and your new installation,
the general reconciliation optimizations also apply to the data migration service. For more information about
reconciliation optimization, refer to Tuning reconciliation performance.

Note

•

•

•

•

•

•

•

•

info
If requests sent to the source server include an X-Requested-With header, the value of the header will be set to
RemoteIDMProxy.

Note

PingIDM Upgrade

Copyright © 2025 Ping Identity Corporation 371

Upgrade a clustered deployment

Follow these general steps when you are updating servers in a cluster:

Redirect client traffic to a different IDM system or cluster.

Shut down every node in the cluster.

Update one node in the cluster.

Clone the first node to the other nodes in that cluster.

Update to a maintenance release

The maintenance releases incorporate a collection of fixes and minor RFEs. IDM 7.4.2 is the latest maintenance release for IDM
7.4. To upgrade an existing IDM 7.4.x deployment, follow these steps:

Download and extract the IDM 7.4.2 binary from the Backstage download site.

Copy any customized configuration files, scripts, or workflow definitions from your existing deployment to the comparable
directory in your 7.4.2 deployment.

If you’re still running an earlier version of IDM 7.4.x, copy the conf/authentication.json file from your existing
deployment to the conf/ directory in your 7.4.2 deployment.

Copy the keystore and truststore from your existing deployment to the 7.4.2 deployment. For example:

cp -r /path/to/openidm74x/security /path/to/openidm742

Configure the IDM 7.4.2 server to point to your existing repository:

If you’re using an external DS repository, verify the accuracy of the conf/repo.ds.json file in your new
deployment.

If you’re using a JDBC repository, verify the accuracy of the following files in your new deployment:

conf/repo.jdbc.json

conf/datasource.jdbc-default.json

resolve/boot.properties (particularly the values for openidm.repo.host and openidm.repo.port)

If you’re using workflow, you must run the Flowable upgrade scripts for your database type. These upgrade scripts are
incremental and must be run in order, starting with the correct script based on your current Flowable version.

To determine your current Flowable version, check the /path/to/openidm/bundle/flowable-engine-
versionNumber.jar file in your old IDM installation.

1.

2.

3.

4.

emergency_home
IDM 7.4.2 and later requires Java 17. Learn more in Incompatible changes.

Important

1.

2.

3.

4.

5.

◦

◦

▪

▪

▪

6.

1.

Upgrade PingIDM

372 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

Run the upgrade scripts from /path/to/openidm/db/database-type/scripts/updates/ in order, starting with
your current flowable version:

flowable.database-type.upgradestep.6.6.0.to.6.7.0.all.sql

flowable.database-type.upgradestep.6.7.0.to.6.7.1.all.sql

flowable.database-type.upgradestep.6.7.1.to.6.7.2.all.sql

flowable.database-type.upgradestep.6.7.2.to.6.8.0.all.sql

Shut down your existing IDM 7.4.x server.

Start your IDM 7.4.2 server.

2.

1.

2.

3.

4.

7.

8.

PingIDM Upgrade

Copyright © 2025 Ping Identity Corporation 373

Setup

In this guide, you will learn about the core ForgeRock Identity Management (IDM) IDM architecture, the IDM configuration model,
and how to get a basic IDM deployment up and running after installation.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Architectural overview

This topic introduces the IDM architecture, and describes component modules and services, such as:

How IDM uses the OSGi framework as a basis for its modular architecture.

How the infrastructure modules provide the features required for IDM’s core services.

What those core services are and how they fit in to the overall architecture.

How IDM provides access to the resources it manages.

Architecture

IDM architecture, component modules, and
services.

Configuration

IDM configuration.

Command-Line Interface

IDM command-line interface (CLI) and utilities.

User Interface

IDM’s user interfaces.

•

•

•

•

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 375

https://www.forgerock.com
https://www.forgerock.com

Modular framework

IDM implements infrastructure modules that run in an OSGi framework. It exposes core services through RESTful APIs to client
applications.

Figure 1. Modular Architecture Overview

The IDM framework is based on OSGi:

OSGi

OSGi is a module system and service platform for the Java programming language that implements a complete and
dynamic component model. For more information, refer to What is OSGi? IDM runs in Apache Felix, an
implementation of the OSGi Framework and Service Platform.

Servlet

The Servlet layer provides RESTful HTTP access to the managed objects and services. IDM embeds the Jetty Servlet
Container, which can be configured for either HTTP or HTTPS access.

Infrastructure modules

The infrastructure modules provide the underlying features needed for core services:

Setup PingIDM

376 Copyright © 2025 Ping Identity Corporation

https://www.osgi.org/resources/what-is-osgi/
https://www.osgi.org/resources/what-is-osgi/
https://felix.apache.org/
https://felix.apache.org/

BPMN 2.0 Workflow Engine

The embedded workflow and business process engine is based on Flowable and the Business Process Model and Notation
(BPMN) 2.0 standard.

For more information, refer to Workflow.

Task Scanner

The task scanner performs a batch scan for a specified property, on a scheduled interval, then executes a task when the
value of that property matches a specified value.

Scheduler

The scheduler supports Quartz cron triggers and simple triggers. Use the scheduler to trigger regular reconciliations,
liveSync, and scripts, to collect and run reports, to trigger workflows, and to perform custom logging.

Script Engine

The script engine is a pluggable module that provides the triggers and plugin points for IDM.

IDM supports JavaScript and Groovy.

Policy Service

An extensible policy service applies validation requirements to objects and properties, when they are created or updated.

Audit Logging

Auditing logs all relevant system activity to the configured log stores. This includes the data from reconciliation as a basis
for reporting, as well as detailed activity logs to capture operations on the internal (managed) and external (system)
objects.

For more information, refer to Configure audit logging.

Repository

The repository provides a common abstraction for a pluggable persistence layer. IDM supports reconciliation and
synchronization with several major external data stores in production, including relational databases, LDAP servers, and
even flat CSV and XML files.

The repository API uses a JSON-based object model with RESTful principles consistent with the other IDM services. To
facilitate testing, IDM includes an embedded instance of ForgeRock Directory Services (DS). In production, you must use a
supported repository, as described in Select a repository.

Core services

The core services are the heart of the resource-oriented unified object model and architecture:

Object Model

Artifacts handled by IDM are Java object representations of the JavaScript object model as defined by JSON. The object
model supports interoperability and potential integration with many applications, services, and programming languages.

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 377

IDM can serialize and deserialize these structures to and from JSON as required. IDM also exposes a set of triggers and
functions that you can define in scripts, which can natively read and modify these JSON-based object model structures.

Managed Objects

A managed object is an object that represents the identity-related data managed by IDM. Managed objects are
configurable, JSON-based data structures that IDM stores in its pluggable repository. The default managed object
configuration includes users and roles, but you can define any kind of managed object, for example, groups or devices.

You can access managed objects over the REST interface with a query similar to the following:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/..."

System Objects

System objects are pluggable representations of objects on external systems. For example, a user entry that is stored in an
external LDAP directory is represented as a system object in IDM.

System objects follow the same RESTful resource-based design principles as managed objects. They can be accessed over
the REST interface with a query similar to the following:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/..."

There is a default implementation for the OpenICF framework, that allows any connector object to be represented as a
system object.

Mappings

Mappings define policies between source and target objects and their attributes during synchronization and reconciliation.
Mappings can also define triggers for validation, customization, filtering, and transformation of source and target objects.

For more information, refer to Resource mapping.

Reconciliation and Automatic Synchronization

Reconciliation enables on-demand and scheduled resource comparisons between the managed object repository and the
source or target systems. Comparisons can result in different actions, depending on the mappings defined between the
systems.

Automatic synchronization enables creating, updating, and deleting resources from a source to a target system, either on
demand or according to a schedule.

For more information, refer to Synchronization types.

Setup PingIDM

378 Copyright © 2025 Ping Identity Corporation

Access layer

The access layer provides the user interfaces and public APIs for accessing and managing the repository and its functions:

RESTful Interfaces

IDM provides REST APIs for CRUD operations, for invoking synchronization and reconciliation, and to access several other
services.

For more information, refer to the REST API reference.

User Interfaces

User interfaces provide access to most of the functionality available over the REST API.

Server configuration

This chapter describes how IDM loads and stores its configuration, and how to modify it.

The configuration is a combination of .properties files, container configuration files, and dynamic configuration objects. Most
of the configuration files are stored in your project’s conf/ directory.

Configuration objects

IDM exposes internal configuration objects in JSON format. Configuration elements can be either single instance or multiple
instance for an IDM installation.

Single instance configuration objects

Single instance configuration objects correspond to services that have at most one instance per installation. JSON file views of
these configuration objects are named object-name.json .

The following list describes the single instance configuration objects:

info
If you create custom configuration files, ForgeRock recommends not using spaces or special characters in the
filenames, in accordance with the OSGi specification.

Note

audit Specifies how to log audit events.
authentication Controls REST access.
cluster Defines a clustered IDM instance.
endpoint Controls custom REST endpoints.
managed Defines managed objects and their schemas.
policy Defines the policy validation service.
process-access Defines access to configured workflows.
repo.repo-type Defines the IDM repository; for example, repo.ds or repo.jdbc .
router Specifies filters to apply for specific operations.

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 379

https://docs.osgi.org/specification/osgi.core/8.0.0/framework.service.html#i3043166
https://docs.osgi.org/specification/osgi.core/8.0.0/framework.service.html#i3043166

Multiple instance configuration objects

Multiple instance configuration objects correspond to services that can have many instances per installation. Multiple instance
configuration objects are named objectname/instancename ; for example, provisioner.openicf/csvfile . JSON file views of
these configuration objects are named objectname-instancename.json , for example, provisioner.openicf-csvfile.json.

IDM provides the following multiple instance configuration objects:

Multiple schedule configurations can run reconciliations and other tasks on different schedules.

Multiple provisioner.openicf configurations correspond to connected resources.

Multiple servletfilter configurations can be used for different servlet filters such as the Cross Origin and GZip filters.

Configuration changes

When you change configuration objects, take the following points into account:

IDM’s authoritative configuration source is its repository. Although the JSON files provide a view of the configuration
objects, they do not represent the authoritative source.

Unless you have disabled file writes, IDM updates JSON files after you make configuration changes over REST. You can also
edit those JSON files directly. For information on disabling file writes, refer to Disable automatic configuration updates.

While running, IDM recognizes changes to JSON files. The server must be running when you delete configuration objects,
even if you do so by editing the JSON files.

The openidm.config.file.encoding property sets the encoding to be used when reading from, or writing to
configuration files. The default encoding is UTF-8. Acceptable values include:

US-ASCII

ISO-8859-1

UTF-8

UTF-16BE

UTF-16LE

UTF-16

script Defines the parameters that are used when compiling, debugging, and running JavaScript and Groovy scripts.
sync Defines the mappings that IDM uses when it synchronizes and reconciles managed objects.
ui Defines the configurable aspects of the default user interfaces.
workflow Defines the configuration of the workflow engine.

•

•

•

•

•

•

◦

◦

◦

◦

◦

◦

info
All configuration files are encoded using UTF-8 by default. If you change the encoding to a different character
set, you must re-encode the files before you restart IDM with the new encoding. Failure to do so will result in
errors on IDM startup.

Note

Setup PingIDM

380 Copyright © 2025 Ping Identity Corporation

Avoid editing configuration objects directly in the repository. Rather, edit the configuration over the REST API, or in the
configuration JSON files to ensure consistent behavior and that operations are logged.

By default, IDM stores its configuration in the repository. If you remove an IDM instance and do not specifically drop the
repository, the configuration remains in effect for a new instance that uses that repository. You can disable this persistent
configuration in your project’s conf/system.properties file by setting the following property:

openidm.config.repo.enabled=false

Disabling persistent configuration means that IDM stores its configuration in memory only.

Default REST context

By default, IDM objects are accessible over REST at the context path /openidm/* , where * indicates the remainder of the
context path; for example, /openidm/managed/user . You can change the default REST context (/openidm) by setting the
openidm.servlet.alias property in your project’s resolver/boot.properties file.

The following change to the boot.properties file sets the REST context to /example :

openidm.servlet.alias=/example

After this change, objects are accessible at the /example context path, for example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/example/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "bjensen",
 "_rev": "0000000042b1dcd2"
 },
 {
 "_id": "scarter",
 "_rev": "000000009b54de8a"
 }
],
 ...
}

To use the admin UI, you must also change the following files, so that the UI is accessible at the new context path:

In the /path/to/openidm/ui/admin/default/index.html file, change the context . For example, if your new REST
context is example , adjust that file as follows:

•

•

•

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 381

...
<script>
 const context = "/example";
...
</script>
...

In the /path/to/openidm/ui/admin/default/org/forgerock/openidm/ui/common/util/Constants.js file, change the
value of the commonConstants.context property. For example:

commonConstants.context = window.context || "/example";

Note that changing the REST context impacts the API Explorer. To use the API Explorer with the new REST context, change the
baseUrl property in the /path/to/openidm/ui/api/default/index.html file.

Based on the change to the REST context earlier in this section, you’d set the following:

//base URL for accessing the OpenAPI JSON endpoint
var baseURL = '/example/';

HTTP I/O buffer

When HTTP I/O requests exceed the memory limit, caching switches to a temporary file. The following lines from
boot.properties display the default values related to buffer size:

initial size of the in-memory I/O buffer for HTTP requests
#openidm.temporarystorage.initialLength.bytes=8192

maximum size of the in-memory I/O buffer for HTTP requests
#openidm.temporarystorage.memoryLimit.bytes=65536

maximum size of the filesystem I/O buffer for HTTP requests, for when memoryLimit is exceeded
#openidm.temporarystorage.fileLimit.bytes=1073741824

absolute directory path of filesystem I/O buffer for HTTP requests, and uses system property java.io.tmpdir by
default
#openidm.temporarystorage.directory=/var/tmp

openidm.temporarystorage.initialLength.bytes

Initial size of the memory buffer in bytes.

Default: 8192 bytes (8 KB). Maximum: The value of openidm.temporarystorage.memoryLimit.bytes .

openidm.temporarystorage.memoryLimit.bytes

Maximum size of the in-memory I/O buffer for HTTP requests. When the memory buffer is full, the content is transferred
to a temporary file.

•

Setup PingIDM

382 Copyright © 2025 Ping Identity Corporation

Default: 65536 bytes (64 KB). Maximum: 2147483647 bytes (2 GB).

openidm.temporarystorage.fileLimit.bytes

Maximum size of the temporary storage file. If the downloaded file is larger than this value, IDM throws the exception
HTTP 413 Payload Too Large .

Default: 1073741824 bytes (1 GB). Maximum: 2147483647 bytes (2 GB).

openidm.temporarystorage.directory

The absolute directory path of the filesystem I/O buffer for HTTP requests.

Default: The value of the system property java.io.tmpdir .

Configure the server over REST

IDM exposes configuration objects under the /openidm/config context path.

The optional waitForCompletion parameter is available to the config endpoint for create, update, and patch requests.
Requests to the endpoint with waitForCompletion=true delay the response until an OSGi service event confirms the change has
been consumed by the corresponding service or the request times out.

The following server properties support additional configuration of the waitForCompletion behavior. For more information,
refer to Property value substitution.

openidm.config.waitByDefault

Default Value: false

Specifies whether to wait for the OSGi service event if the waitForCompletion parameter is missing from the request.

openidm.config.waitTimeout

Default Value: 5000

The amount of time, in milliseconds, to wait for OSGi service events before timing out.

To list the configuration on the local host, perform a GET request on http://localhost:8080/openidm/config .

The following REST call includes excerpts of the default configuration for an IDM instance started with the sync-with-csv
sample:

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 383

http://localhost:8080/openidm/config
http://localhost:8080/openidm/config

curl \
--request GET \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \

http://localhost:8080/openidm/config

{
 "_id": "",
 "configurations": [
 {
 "_id": "router",
 "pid": "router",
 "factoryPid": null
 },
 {
 "_id": "info/login",
 "pid": "info.f01fc3ed-5871-408d-a5f0-bef00ccc4c8f",
 "factoryPid": "info"
 },
 {
 "_id": "provisioner.openicf/csvfile",
 "pid": "provisioner.openicf.9009f4a1-ea47-4227-94e6-69c345864ba7",
 "factoryPid": "provisioner.openicf"
 },
 {
 "_id": "endpoint/usernotifications",
 "pid": "endpoint.e2751afc-d169-4a23-a88e-7211d340bccb",
 "factoryPid": "endpoint"
 },
 ...
]
}

Single instance configuration objects are located under openidm/config/object-name .

The following example shows the audit configuration of the sync-with -csv sample.

Setup PingIDM

384 Copyright © 2025 Ping Identity Corporation

http://localhost:8080/openidm/config
http://localhost:8080/openidm/config

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
"http://localhost:8080/openidm/config/audit"
{
 "_id": "audit",
 "auditServiceConfig": {
 "handlerForQueries": "json",
 "availableAuditEventHandlers": [
 "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "org.forgerock.audit.handlers.jms.JmsAuditEventHandler",
 "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "org.forgerock.openidm.audit.impl.RepositoryAuditEventHandler",
 "org.forgerock.openidm.audit.impl.RouterAuditEventHandler",
 "org.forgerock.audit.handlers.syslog.SyslogAuditEventHandler"
],
 "filterPolicies": {
 "field": {
 "excludeIf": [],
 "includeIf": []
 }
 },
 "caseInsensitiveFields": [
 "/access/http/request/headers",
 "/access/http/response/headers"
]
 },
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config": {
 "name": "json",
 "enabled": {
 "$bool": "&{openidm.audit.handler.json.enabled|true}"
 },
 "logDirectory": "&{idm.data.dir}/audit",
 "buffering": {
 "maxSize": 100000,
 "writeInterval": "100 millis"
 },
 "topics": [
 "access",
 "activity",
 "sync",
 "authentication",
 "config"
]
 }
 },
 {
 "class": "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "config": {

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 385

 "name": "stdout",
 "enabled": {
 "$bool": "&{openidm.audit.handler.stdout.enabled|false}"
 },
 "topics": [
 "access",
 "activity",
 "sync",
 "authentication",
 "config"
]
 }
 },
 {
 "class": "org.forgerock.openidm.audit.impl.RepositoryAuditEventHandler",
 "config": {
 "name": "repo",
 "enabled": {
 "$bool": "&{openidm.audit.handler.repo.enabled|false}"
 },
 "topics": [
 "access",
 "activity",
 "sync",
 "authentication",
 "config"
]
 }
 }
],
 "eventTopics": {
 "config": {
 "filter": {
 "actions": [
 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 }
 },
 "activity": {
 "filter": {
 "actions": [
 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 },
 "watchedFields": [],
 "passwordFields": [
 "password"

Setup PingIDM

386 Copyright © 2025 Ping Identity Corporation

]
 }
 },
 "exceptionFormatter": {
 "type": "text/javascript",
 "file": "bin/defaults/script/audit/stacktraceFormatter.js"
 }
}

Multiple instance configuration objects are found under openidm/config/object-name/instance-name .

The following example shows the configuration for the CSV connector from the sync-with-csv sample.

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 387

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
"http://localhost:8080/openidm/config/provisioner.openicf/csvfile"
{
 "_id": "provisioner.openicf/csvfile",
 "connectorRef": {
 "bundleName": "org.forgerock.openicf.connectors.csvfile-connector",
 "bundleVersion": "[1.5.19.0,1.6.0.0)",
 "connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector"
 },
 "operationTimeout": {
 "CREATE": -1,
 "VALIDATE": -1,
 "TEST": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCHEMA": -1,
 "DELETE": -1,
 "UPDATE": -1,
 "SYNC": -1,
 "AUTHENTICATE": -1,
 "GET": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "SEARCH": -1
 },
 "configurationProperties": {
 "csvFile": "&{idm.instance.dir}/data/csvConnectorData.csv"
 },
 "resultsHandlerConfig": {
 "enableAttributesToGetSearchResultsHandler": true
 },
 "syncFailureHandler": {
 "maxRetries": 5,
 "postRetryAction": "logged-ignore"
 },
 "objectTypes": {
 "account": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "ACCOUNT",
 "type": "object",
 "nativeType": "ACCOUNT",
 "properties": {
 "description": {
 "type": "string",
 "nativeName": "description",
 "nativeType": "string"
 },
 "firstname": {
 "type": "string",
 "nativeName": "firstname",
 "nativeType": "string"
 },
 "email": {

Setup PingIDM

388 Copyright © 2025 Ping Identity Corporation

 "type": "string",
 "nativeName": "email",
 "nativeType": "string"
 },
 "name": {
 "type": "string",
 "required": true,
 "nativeName": "NAME",
 "nativeType": "string"
 },
 "lastname": {
 "type": "string",
 "required": true,
 "nativeName": "lastname",
 "nativeType": "string"
 },
 "mobileTelephoneNumber": {
 "type": "string",
 "required": true,
 "nativeName": "mobileTelephoneNumber",
 "nativeType": "string"
 },
 "roles": {
 "type": "string",
 "required": false,
 "nativeName": "roles",
 "nativeType": "string"
 }
 }
 }
 },
 "operationOptions": {}
}

You can change the configuration over REST by using an HTTP PUT or HTTP PATCH request to modify the required configuration
object.

The following example uses a PUT request to modify the configuration of the scheduler service, increasing the maximum number
of threads that are available for the concurrent execution of scheduled tasks:

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 389

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--request PUT \
--data '{
 "threadPool": {
 "threadCount": 20
 },
 "scheduler": {
 "executePersistentSchedules": {
 "$bool": "&{openidm.scheduler.execute.persistent.schedules}"
 }
 }
}' \
"http://localhost:8080/openidm/config/scheduler"
{
 "_id": "scheduler",
 "threadPool": {
 "threadCount": 20
 },
 "scheduler": {
 "executePersistentSchedules": {
 "$bool": "&{openidm.scheduler.execute.persistent.schedules}"
 }
 }
}

The following example uses a PATCH request to reset the number of threads to their original value.

Setup PingIDM

390 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation" : "replace",
 "field" : "/threadPool/threadCount",
 "value" : 10
 }
]' \
"http://localhost:8080/openidm/config/scheduler"
{
 "_id": "scheduler",
 "threadPool": {
 "threadCount": 10
 },
 "scheduler": {
 "executePersistentSchedules": {
 "$bool": "&{openidm.scheduler.execute.persistent.schedules}"
 }
 }
}

For more information about using the REST API to update objects, refer to the REST API Reference.

Property value substitution

Property value substitution lets you achieve the following:

Define a configuration that is specific to a single instance; for example, setting the location of the keystore on a particular
host.

Define a configuration whose parameters vary between different environments; for example, the URLs and passwords for
test, development, and production environments.

Disable certain capabilities on specific nodes. For example, you might want to disable the workflow engine on specific
instances.

Property value substitution uses configuration expressions to introduce variables into the server configuration. You set
configuration expressions as the values of configuration properties. The effective property values can be evaluated in a number
of ways. For more information about property evaluation, refer to Expression Resolvers.

info
Multi-version concurrency control (MVCC) is not supported for configuration objects so you do not need to specify a
revision during updates to the configuration, and no revision is returned in the output.

Note

•

•

•

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 391

Configuration expressions have the following characteristics:

To distinguish them from static values, configuration expressions are preceded by an ampersand and enclosed in braces.
For example: &{openidm.port.http} . The configuration token in the example is openidm.port.http . The . serves as
the separator character.

You can use a default value in a configuration expression by including it after a vertical bar following the token.

For example, the following expression sets the default HTTP port value to 8080: &{openidm.port.http|8080} .

With this configuration, the server attempts to substitute openidm.port.http with a defined configuration token. If no
token definition is found, the server uses the default value, 8080 .

A configuration property can include a mix of static values and expressions.

For example, suppose hostname is set to ds . Then, &{hostname}.example.com evaluates to ds.example.com .

Configuration token evaluation is recursive.

For example, suppose port is set to &{port.prefix}389 , and port.prefix is set to 2 . Then &{port} evaluates to
2389 .

You can define nested properties (that is a property definition within another property definition) and you can combine system
properties, boot properties, and environment variables.

Expression resolvers

At server startup, expression resolvers evaluate property values to determine the effective configuration. You must define
expression values before you start the IDM server that uses them.

When configuration tokens are resolved, the result is always a string. However, you can coerce the output type of the evaluated
token to match the type that is required by the property. Ultimately, the expression must return the appropriate data type for the
configuration property. For example, the port property takes an integer. If you set it using an expression, the result of the
evaluated expression must be an integer. If the type is wrong, the server fails to start due to a syntax error. For more information
about data type coercion, refer to Transforming Data Types.

Expression resolvers can obtain values from the following sources:

Environment variables

You set an environment variable to hold the property value.

For example: export OPENIDM_PORT_HTTP=8080 .

The environment variable name must be composed of uppercase characters and underscores. The name maps to the expression
token as follows:

Uppercase characters are converted to lowercase.

Underscores (_) are replaced with . characters.

•

•

•

•

emergency_home
Property substitution is not available for any configuration not processed by the IDM backend, such as ui-
themeconfig or any user-supplied configuration.

Important

•

•

Setup PingIDM

392 Copyright © 2025 Ping Identity Corporation

In other words, the value of OPENIDM_PORT_HTTP replaces &{openidm.port.http} in the server configuration.

Java system properties

You set a Java system property to hold the value.

Java system property names must match expression tokens exactly. In other words, the value of the openidm.repo.port system
property replaces &{openidm.repo.port} in the server configuration.

Java system properties can be set in a number of ways. One way of setting system properties for IDM servers is to pass them
through the OPENIDM_OPTS environment variable.

For example: export OPENIDM_OPTS="-Dopenidm.repo.port=3306"

System properties can also be declared in your project’s conf/system.properties .

This example uses property value substitution with a standard system property. The example modifies the audit configuration,
changing the audit.json file to redirect JSON audit logs to the user’s home directory. The user.home property is a default Java
System property:

"eventHandlers" : [
 {
 "class" : "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config" : {
 "name" : "json",
 "logDirectory" : "&{user.home}/audit",
 ...
 }
 },
 ...
]

Expression files

You set a key in a .json or .properties file to hold the value. To use an expression file, set the IDM_ENVCONFIG_DIRS
environment variable, or the idm.envconfig.dirs Java system property as described below. By default, IDM sets
idm.envconfig.dirs to &{idm.install.dir}/resolver/ .

The default property resolver file in IDM is resolver/boot.properties but you can specify additional files that might hold
property values.

Keys in .properties files must match expression tokens exactly. In other words, the value of the openidm.repo.port key
replaces &{openidm.repo.port} in the server configuration.

The following example expression properties file sets the repository port:

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 393

openidm.repo.port=1389

JSON expression files can contain nested objects.

JSON field names map to expression tokens as follows:

The JSON path name matches the expression token.

The . character serves as the JSON path separator character.

The following example JSON expression file uses property value substitution to set the host in the LDAP connector configuration:

{
 "openidm" : {
 "provisioner" : {
 "ldap" : {
 "host" : "ds.example.com"
 }
 }
 }
 }
 }

To substitute this value in the configuration, the LDAP provisioner file would include the following:

{
 ...
 "configurationProperties" : {
 "host" : &{openidm.provisioner.ldap.host|localhost},
 ...
 }
}

If the server does not find a configuration token for the host name, it substitutes the default (localhost).

To use expression files, set the environment variable, IDM_ENVCONFIG_DIRS , or the Java system property, idm.envconfig.dirs ,
to a comma-separated list of the directories containing the expression files.

When reading these files, the server browses the directories in the order specified. It reads all the files with .json
and .properties extensions, and attempts to use them to evaluate expression tokens.

For example, if you define idm.envconfig.dirs=/directory1,/directory2 and a configuration token is defined in both
directory1 and directory2 , the resolved value will be the value defined in directory1 . If the configuration token is defined
only in directory2 , the resolved value will be the value defined in directory2 .

•

•

Setup PingIDM

394 Copyright © 2025 Ping Identity Corporation

Framework configuration properties

You can use the conf/config.properties file to override values used by the OSGI framework.

Configuration files

All the properties declared in the .json files in your project’s conf/ directory.

Evaluation order of precedence

The following list displays the order of precedence, from greatest to least:

Environment variables override system properties, default token settings, and settings in expression files.

System properties override default token settings, and any settings in expression files.

Default token settings.

If IDM_ENVCONFIG_DIRS or idm.envconfig.dirs is set, the server uses the settings found in expression files.

Framework configuration properties.

Hardcoded property values.

Properties passed to the startup script with options such as: -P, -w, and -s.

Transforming data types

When configuration tokens are resolved, the result is always a string. However, you can transform or coerce the output type of the
evaluated token to match the type that is required by the property.

You transform a property’s data type by setting $type before the property value.

info
Using expression files are subject to the following constraints:

Although IDM scans the directories in a specified order, within a directory IDM scans the files in a
nondeterministic order.
IDM does not scan subdirectories.
Do not define the same configuration token more than once in a file.
If you define the same property twice in the same file, one definition will be used and the other will be ignored.
The server will not throw an error, but because files are scanned in a nondeterministic order, you have no way
of knowing which value will be used.
You cannot define the same configuration token in more than one file in a single directory. The server
generates an error in this case.

If the same token occurs once in several files that are located in different directories, IDM uses the first value
that is read.

Note

•

•
•

•

emergency_home
This constraint implies that you cannot have backup .properties and .json files, in a single
directory if they define the same tokens.

Important

•

1.

2.

3.

4.

5.

6.

7.

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 395

The following coercion types are supported:

array ($array)

boolean ($bool)

decodeBase64 ($base64:decode)

Transforms a base64-encoded string into a decoded string.

encodeBase64 ($base64:encode)

Transforms a string into a base64-encoded string.

integer ($int)

list ($list)

number ($number)

This type can coerce integers, doubles, longs, and floats.

object ($object)

This type can coerce a JSON object such as an encrypted password.

This example JSON expression file sets the value of the port in the LDAP connector configuration:

{
 "openidm" : {
 "provisioner" : {
 "ldap" : {
 "port" : 6389
 }
 }
 }
}

When the expression is evaluated, the port is evaluated as a string value, (which would cause an error). To coerce the port
value to an integer, substitute the value in the LDAP provisioner file as follows:

{
 ...
 "configurationProperties" : {
 "port" : {
 "$int" : "&{openidm.provisioner.ldap.port|1389}",
 },
 ...
 }
}

With this configuration, the server evaluates the LDAP port property to the integer 6389 . If the server does not find a
configuration token for the port, it substitutes the default (1389).

This example JSON expression file sets a value for the failover servers in an LDAP connector configuration:

•

•

•

•

•

•

•

•

Setup PingIDM

396 Copyright © 2025 Ping Identity Corporation

"openidm" : {
 "provisioner" : {
 "ldap" : {
 "failover" : ["ldap://host1.domain.com:1389", "ldap://host2.domain.com:1389"]
 }
 }
}

When the expression is evaluated, the URLs would be evaluated as a single string . To coerce the value to an array, substitute
the value in the LDAP provisioner file as follows:

{
 ...
 "configurationProperties" : {
 "failover" : {
 "$array":"&{openidm.provisioner.ldap.failover}"
 },
 ...
 }
}

The $list function is similar to $array , but lets you specify values in a .properties file as a list of strings, separated by a
comma (,).

For example, you could list the LDAP failover servers in boot.properties as follows:

openidm.provisioner.ldap.failover=ldap://host1.domain.com:1389,ldap://host2.domain.com:1389

To coerce the value to an array, your property definition in the LDAP provisioner file would be:

{
 ...
 "configurationProperties" : {
 "failover" : {
 "$list":"&{openidm.provisioner.ldap.failover}",
 },
 ...
 }
}

This configuration would be converted to:

info
If you set the failover URLs in a .properties file, instead of in a .json file, you must escape the JSON object. This
example sets the failover servers array in the boot.properties file:

openidm.provisioner.ldap.failover=[\"ldap://host1.domain.com:1389\",\"ldap://host2.domain.com:1389\"]

Note

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 397

"openidm" : {
 "provisioner" : {
 "ldap" : {
 "failover" : ["ldap://host1.domain.com:1389", "ldap://host2.domain.com:1389"]
 }
 }
}

Configuration property value storage

The values of configuration properties that are set explicitly (in conf/*.json files) are stored in the repository. You can manage
these configuration objects over REST or by using the JSON files themselves.

Properties that use value substitution are stored in the repository as variables. You store the value of each variable
in .properties files. You can use different .properties files to change the configuration for multiple nodes in a cluster.

The following table shows how specific configuration properties can be set:

You can access configuration properties in scripts using identityServer.getProperty() . For more information, refer to The
identityServer Variable.

Limitations of property value substitution

Property value substitution is limited in the following areas:

In the admin UI

Support for property value substitution in the admin UI is limited to the following categories:

String substitution, where &{some.property|DefaultValue}

Configuration Property Variables

Variable Description Environment
Variables

System Variables boot.properties

idm.install.dir Directory of files from
unpacked IDM binary

YES YES YES

idm.data.dir Working location
directory

YES YES YES

idm.instance.dir Project directory with
IDM configuration files

YES YES YES

idm.envconfig.dirs Directory with
environment files,
including
boot.properties

YES YES

•

Setup PingIDM

398 Copyright © 2025 Ping Identity Corporation

Number and integer substitution, including:

"$number" : "&{openidm.port|1234}"

"$int" : "&{openidm.port|5678}"

Base64 substitution, such as: "$base64:decode" : "&{some.property|YWRtaW4=}"

Cryptographic substitution, where for passwords and client secrets, IDM substitutes "********" for $crypto

In connector configurations

You cannot use property substitution for connector reference (connectorRef) properties. For example, the following
configuration is not valid:

"connectorRef" : {
 "connectorName" : "&{connectorName}",
 "bundleName" : "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion" : "&{LDAP.BundleVersion}"
 ...
}

The connectorName must be the precise string from the connector configuration. To specify multiple connector version numbers,
use a range of versions. For example:

"connectorRef" : {
 "connectorName" : "org.identityconnectors.ldap.LdapConnector",
 "bundleName" : "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion" : "[1.5.0.0,2.0.0.0)",
 ...
}

HTTP clients

Several IDM modules, such as the external REST service and identity provider service, need to make HTTP(S) requests to external
systems.

HTTP client settings can be configured through any expression resolver (in resolver/boot.properties , environment variables,
or Java system properties). Configuration for specific clients can be set in that client’s JSON configuration file. For example, conf/
external.rest.json configures the external REST service and properties set there override the expression resolvers. For more
information on property resolution, refer to Expression Resolvers and Order of Precedence.

You can set the following properties for HTTP clients:

openidm.http.client.sslAlgorithm

The cipher to be used when making SSL/TLS connections, for example, AES , CBC , or PKCS5Padding . Defaults to the
system SSL algorithm.

•

◦

◦

•

•

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 399

openidm.http.client.socketTimeout

The TCP socket timeout, in seconds, when waiting for HTTP responses. The default timeout is 10 seconds.

openidm.http.client.connectionTimeout

The TCP connection timeout for new HTTP connections, in seconds. The default timeout is 10 seconds.

openidm.http.client.reuseConnections (true or false)

Specifies whether HTTP connections should be kept alive and reused for additional requests. By default, connections will
be reused if possible.

openidm.http.client.retryRequests (true or false)

Specifies whether requests should be retried if a failure is detected. By default requests will be retried.

openidm.http.client.maxConnections (integer)

The maximum number of connections that should be pooled by the HTTP client. At most 64 connections will be pooled by
default.

openidm.http.client.hostnameVerifier (string)

Specifies whether the client should check that the hostname to which it has connected is allowed by the certificate that is
presented by the server.

The property can take the following values:

STRICT - hostnames are validated

ALLOW_ALL - the external REST service does not attempt to match the URL hostname to the SSL certificate
Common Name, as part of its validation process

If you do not set this property, the behavior is to validate hostnames (the equivalent of setting "hostnameVerifier":
"STRICT"). In production environments, you should set this property to STRICT .

openidm.http.client.proxy.uri

Specifies that the client should make its HTTP(S) requests through the specified proxy server.

openidm.http.client.proxy.userName

The username of the account for the specified proxy.

openidm.http.client.proxy.password

The password of the account for the specified proxy.

openidm.http.client.proxy.useSystem (true or false)

If true , specifies a system-wide proxy with the JVM system properties, http.proxyHost , http.proxyPort , and
(optionally) http.nonProxyHosts .

If openidm.http.client.proxy.uri is set, and not empty, that setting overrides the system proxy setting.

•

•

Setup PingIDM

400 Copyright © 2025 Ping Identity Corporation

Command-line interface

This chapter describes the basic command-line interface (CLI). The CLI includes a number of utilities for managing an IDM
instance.

All of the utilities are subcommands of the cli.sh (UNIX) or cli.bat (Windows) scripts. To use the utilities, you can either run
them as subcommands, or launch the cli script first, and then run the utility. For example, to run the encrypt utility on a UNIX
system:

/path/to/openidm/cli.sh
Using boot properties at /path/to/openidm/resolver/boot.properties
openidm# encrypt

The command-line utilities run with the security properties defined in your project’s conf/secrets.json file.

If you run the cli.sh command by itself, it opens an IDM-specific shell prompt:

openidm#

The following topics describe the subcommands and their use. Examples assume you are running the commands on a UNIX
system. For Windows systems, use cli.bat instead of cli.sh .

For a list of subcommands available from the openidm# prompt, run the cli.sh help command. The help and exit options
shown below are self-explanatory. The other subcommands are explained in the subsections that follow.

local:secureHash Hash the input string.
local:keytool Export or import a SecretKeyEntry. The Java Keytool does not allow for exporting or
importing SecretKeyEntries.
local:encrypt Encrypt the input string.
local:validate Validates all json configuration files in the configuration (default: /conf) folder.
basic:help Displays available commands.
basic:exit Exit from the console.
remote:configureconnector Generate connector configuration.
remote:configexport Exports all configurations.
remote:configimport Imports the configuration set from local file/directory.

The following options are common to the configexport , configimport , and configureconnector subcommands:

-u or --user USER[:PASSWORD]

Allows you to specify the server user and password. Specifying a username is mandatory. If you do not specify a
username, the following error is output to the OSGi console: Remote operation failed: Unauthorized . If you do not
specify a password, you are prompted for one. This option is used by all three subcommands.

info
For more information about startup and shutdown scripts, refer to Startup configuration.

Note

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 401

--url URL

The URL of the REST service. The default URL is http://localhost:8080/openidm/ . This can be used to import
configuration files from a remote running IDM instance. This option is used by all three subcommands.

-P or --port PORT

The port number associated with the REST service. If specified, this option overrides any port number specified with the
--url option. The default port is 8080 . This option is used by all three subcommands.

configexport

The configexport subcommand exports all configuration objects to a specified location, enabling you to reuse a system
configuration in another environment. For example, you can test a configuration in a development environment, then export it
and import it into a production environment. This subcommand also enables you to inspect the active configuration of an IDM
instance.

OpenIDM must be running when you execute this command.

Usage is as follows:

./cli.sh configexport --user username:password export-location

For example:

./cli.sh configexport --user openidm-admin:openidm-admin /tmp/conf

On Windows systems, the export-location must be provided in quotation marks, for example:

C:\openidm\cli.bat configexport --user openidm-admin:openidm-admin "C:\temp\openidm"

Configuration objects are exported as .json files to the specified directory. The command creates the directory if needed.
Configuration files that are present in this directory are renamed as backup files, with a timestamp; for example, audit.json.
2014-02-19T12-00-28.bkp , and are not overwritten. The following configuration objects are exported:

The internal repository table configuration (repo.ds.json or repo.jdbc.json) and the datasource connection
configuration, for JDBC repositories (datasource.jdbc-default.json)

The script configuration (script.json)

The log configuration (audit.json)

The authentication configuration (authentication.json)

The cluster configuration (cluster.json)

The configuration of the outbound email service (external.email.json)

Custom configuration information (info-name.json)

•

•

•

•

•

•

•

Setup PingIDM

402 Copyright © 2025 Ping Identity Corporation

http://localhost:8080/openidm/
http://localhost:8080/openidm/

The managed object configuration (managed.json)

The connector configuration (provisioner.openicf-*.json)

The router service configuration (router.json)

The scheduler service configuration (scheduler.json)

Any configured schedules (schedule-*.json)

Standard security questions (selfservice.kba.json)

The mapping configuration

If workflows are defined, the configuration of the workflow engine (workflow.json) and the workflow access
configuration (process-access.json)

Any configuration files related to the user interface (ui-*.json)

The configuration of any custom endpoints (endpoint-*.json)

The configuration of servlet filters (servletfilter-*.json)

The policy configuration (policy.json)

configimport

The configimport subcommand imports configuration objects from the specified directory, enabling you to reuse a system
configuration from another environment. For example, you can test a configuration in a development environment, then export it
and import it into a production environment.

The command updates the existing configuration from the import-location over the REST interface. By default, if configuration
objects are present in the import-location and not in the existing configuration, these objects are added. If configuration objects
are present in the existing location but not in the import-location, these objects are left untouched in the existing configuration.

The subcommand takes the following options:

-r, --replaceall, --replaceAll

Replaces the entire list of configuration files with the files in the specified import location.

--retries (integer)

This option specifies the number of times the command should attempt to update the configuration if the server is not
ready.

Default value : 10

--retryDelay (integer)

This option specifies the delay (in milliseconds) between configuration update retries if the server is not ready.

•

•

•

•

•

•

•

•

•

•

•

•

warning
This option wipes out the existing configuration and replaces it with the configuration in the import-location.
Objects in the existing configuration that are not present in the import-location are deleted.

Warning

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 403

Default value : 500

Usage is as follows:

./cli.sh configimport --user username:password [--replaceAll] [--retries integer] [--retryDelay integer] import-
location

For example:

./cli.sh configimport --user openidm-admin:openidm-admin --retries 5 --retryDelay 250 --replaceAll /tmp/conf

On Windows systems, the import-location must be provided in quotation marks, for example:

C:\openidm\cli.bat configimport --user openidm-admin:openidm-admin --replaceAll "C:\temp\openidm"

Configuration objects are imported as .json files from the specified directory to the conf directory. The configuration objects
that are imported are the same as those for the export command, described in the previous section.

configureconnector

The configureconnector subcommand generates a configuration for an OpenICF connector.

Usage is as follows:

./cli.sh configureconnector --user username:password --name connector-name

Select the type of connector that you want to configure. The following example configures a new CSV connector:

Setup PingIDM

404 Copyright © 2025 Ping Identity Corporation

./cli.sh configureconnector --user openidm-admin:openidm-admin --name myCsvConnector
Executing ./cli.sh...
Starting shell in /path/to/openidm
Mar 26, 2020 06:08:52 PM org.forgerock.openidm.core.FilePropertyAccessor loadProps
0. SSH Connector version 1.5.20.29
1. ServiceNow Connector version 1.5.20.29
2. Scripted SQL Connector version 1.5.20.29
3. Scripted REST Connector version 1.5.20.29
4. Scim Connector version 1.5.20.29
5. Salesforce Connector version 1.5.20.29
6. MSGraphAPI Connector version 1.5.20.29
7. MongoDB Connector version 1.5.20.29
8. Marketo Connector version 1.5.20.29
9. LDAP Connector version 1.5.20.29
10. Kerberos Connector version 1.5.20.29
11. Scripted Poolable Groovy Connector version 1.5.20.29
12. Scripted Groovy Connector version 1.5.20.29
13. GoogleApps Connector version 1.5.20.29
14. Database Table Connector version 1.5.20.29
15. CSV File Connector version 1.5.20.29
16. Adobe Marketing Cloud Connector version 1.5.20.29
17. Exit
Select [0..17]: 15
Edit the configuration file and run the command again. The configuration was saved to
 /path/to/openidm/temp/provisioner.openicf-myCsvConnector.json

The basic configuration is saved in a file named /openidm/temp/provisioner.openicf-connector-name.json . Edit at least the
configurationProperties parameter in this file to complete the connector configuration. For example, for a CSV connector:

"configurationProperties" : {
 "headerPassword" : "password",
 "csvFile" : "&{idm.instance.dir}/data/csvConnectorData.csv",
 "newlineString" : "\n",
 "headerUid" : "uid",
 "quoteCharacter" : "\"",
 "fieldDelimiter" : ",",
 "syncFileRetentionCount" : 3
}

For more information about the connector configuration properties, refer to Configure connectors.

When you have modified the file, run the configureconnector command again so that IDM can pick up the new connector
configuration:

./cli.sh configureconnector --user openidm-admin:openidm-admin --name myCsvConnector
Executing ./cli.sh...
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/resolver/boot.properties
Configuration was found and read from: /path/to/openidm/temp/provisioner.openicf-myCsvConnector.json

You can now copy the new provisioner.openicf-myCsvConnector.json file to your project’s conf/ subdirectory.

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 405

https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html

You can also configure connectors over the REST interface or through the admin UI. For more information, refer to Configure
connectors.

encrypt

The encrypt subcommand encrypts an input string, or JSON object, provided at the command line. This subcommand can be
used to encrypt passwords, or other sensitive data, to be stored in the repository. The encrypted value is output to standard
output and provides details of the cryptography key that is used to encrypt the data.

Usage is as follows:

./cli.sh encrypt [-j] string

If you do not enter the string as part of the command, the command prompts for the string to be encrypted. If you enter the
string as part of the command, special characters such as quotation marks, must be escaped.

-j or --json

Indicates that the string to be encrypted is a JSON object, and validates the object. If the object is malformed JSON and you
use the -j option, the command throws an error. It is easier to input JSON objects in interactive mode. If you input the
JSON object on the command-line, the object must be surrounded by quotes, and any special characters, including curly
braces, must be escaped. The rules for escaping these characters are fairly complex. For more information, refer to the
OSGi specification.

For example:

./cli.sh encrypt \
--json '\{\"password\":\"myPassw0rd\"\}'

The following example encrypts a normal string value:

Setup PingIDM

406 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
https://docs.osgi.org/specification/
https://docs.osgi.org/specification/

./cli.sh encrypt \
mypassword
Executing ./cli.sh...
Starting shell in /path/to/openidm
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "vdz6bUztiT6QsExNrZQAEA==",
 "data" : "RgMLRbX0guxF80nwrtaZkkoFFGqSQdNWF7Ve0zS+N1I=",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "R9w1TcWfbd9FPmOjfvMhZQ==",
 "mac" : "9pXtSKAt9+dO3Mu0NlrJsQ=="
 }
 }
}
------END ENCRYPTED VALUE------

The following example prompts for a JSON object to be encrypted:

./cli.sh encrypt --json
Using boot properties at /path/to/openidm/resolver/boot.properties
Enter the Json value

> Press ctrl-D to finish input
Start data input: {"password":"myPassw0rd"}
^D
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "vdz6bUztiT6QsExNrZQAEA==",
 "data" : "RgMLRbX0guxF80nwrtaZkkoFFGqSQdNWF7Ve0zS+N1I=",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "R9w1TcWfbd9FPmOjfvMhZQ==",
 "mac" : "9pXtSKAt9+dO3Mu0NlrJsQ=="
 }
 }
}
------END ENCRYPTED VALUE------

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 407

secureHash

The secureHash subcommand hashes an input string, or JSON object, using the specified hash algorithm configuration. Use this
subcommand to hash password values, or other sensitive data, to be stored in the repository. The hashed value is output to
standard output and provides details of the algorithm configuration that was used to hash the data.

Usage is as follows:

/path/to/openidm/cli.sh secureHash --algorithm --config [--json] string

-a or --algorithm

Specifies the hash algorithm to use.

-c or --config

Lets you provide additional hashing configuration options, as a JSON object. For a list of supported hash algorithms and
their configuration, refer to Salted Hash Algorithms.

-j or --json

Indicates that the string to be encrypted is a JSON object, and validates the object. If the object is malformed JSON and you
use the -j option, the command throws an error. It is easier to input JSON objects in interactive mode. If you input the
JSON object on the command-line, the object must be surrounded by quotes, and any special characters, including curly
braces, must be escaped. The rules for escaping these characters are fairly complex. For more information, refer to the
OSGi specification.

For example:

/path/to/openidm/cli.sh secureHash \
--algorithm SHA-384 \
--json '\{\"password\":\"myPassw0rd\"\}'

If you do not enter the string as part of the command, the command prompts for the string to be hashed. If you enter the string
as part of the command, any special characters, for example quotation marks, must be escaped.

The following example hashes a password value (mypassword) using the PBKDF2 algorithm:

Setup PingIDM

408 Copyright © 2025 Ping Identity Corporation

https://docs.osgi.org/specification/
https://docs.osgi.org/specification/

/path/to/openidm/cli.sh secureHash \
--algorithm PBKDF2 \
--config '{\"hashLength\":16\,\"saltLength\":16\,\"iterations\":20000\,\"hmac\":\"SHA3-256\"}' \
"mypassword"
Executing ./cli.sh...
Starting shell in /path/to/openidm
...
-----BEGIN HASHED VALUE-----
{
 "$crypto" : {
 "value" : {
 "algorithm" : "PBKDF2",
 "data" : "9/1IIaAVxAMFdCzlMGtkXMmotKqBafIdx2KFUeKHX0k=",
 "config" : {
 "hashLength" : 16,
 "saltLength" : 16,
 "iterations" : 20000,
 "hmac" : "SHA3-256"
 }
 },
 "type" : "salted-hash"
 }
}
------END HASHED VALUE------

The following example prompts for a JSON object to be hashed:

/path/to/openidm/cli.sh secureHash --algorithm SHA-384 --json
Executing ./cli.sh...
Executing ./cli.sh...
Starting shell in /path/to/openidm
Nov 14, 2017 1:24:26 PM org.forgerock.openidm.core.FilePropertyAccessor loadProps
INFO: Using properties at /path/to/openidm/resolver/boot.properties
Enter the Json value

> Press ctrl-D to finish input
Start data input: {"password":"myPassw0rd"}
^D
-----BEGIN HASHED VALUE-----
{
 "$crypto" : {
 "value" : {
 "algorithm" : "SHA-384",
 "data" : "7Caabx7d+vOZ7d3VMwdQObQJdTQ3uGOItsX5AwR4ViygUfARR/XuxRIBQt1LRq58ZOQXFwuw+3rvzK7Kld8pSg=="
 },
 "type" : "salted-hash"
 }
}
------END HASHED VALUE------

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 409

keytool

The keytool subcommand exports or imports secret key values.

The Java keytool command enables you to export and import public keys and certificates, but not secret or symmetric keys. The
IDM keytool subcommand provides this functionality.

Usage is as follows:

./cli.sh keytool [--export, --import] alias

For example, to export the default IDM symmetric key, run the following command:

./cli.sh keytool --export openidm-sym-default
Executing ./cli.sh...
Starting shell in /home/idm/openidm
Use KeyStore from: /openidm/security/keystore.jceks
Please enter the password:
[OK] Secret key entry with algorithm AES
AES:606d80ae316be58e94439f91ad8ce1c0

The default keystore password is changeit . For security reasons, you must change this password in a production environment.
For information about changing the keystore password, refer to The IDM keystore.

To import a new secret key named my-new-key, run the following command:

./cli.sh keytool --import my-new-key
Using boot properties at /openidm/resolver/boot.properties
Use KeyStore from: /openidm/security/keystore.jceks
Please enter the password:
Enter the key:
AES:606d80ae316be58e94439f91ad8ce1c0

If a secret key with that name already exists, IDM returns the following error:

"KeyStore contains a key with this alias"

validate

The validate subcommand validates all .json configuration files in your project’s conf/ directory.

Usage is as follows:

Setup PingIDM

410 Copyright © 2025 Ping Identity Corporation

./cli.sh validate
Executing ./cli.sh
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/resolver/boot.properties
...
[Validating] Load JSON configuration files from:
[Validating] /path/to/openidm/conf
[Validating] audit.json SUCCESS
[Validating] authentication.json SUCCESS
 ...
[Validating] sync.json SUCCESS
[Validating] ui-configuration.json SUCCESS
[Validating] ui-countries.json SUCCESS
[Validating] workflow.json SUCCESS

IDM user interface

IDM provides two customizable, browser-based user interfaces: an Administrative User Interface (admin UI) and an End User
interface (End User UI).

The admin UI provides a graphical interface for most aspects of the IDM configuration. If IDM is installed on the local system,
access the admin UI at https://localhost:8443/admin . The admin UI lets you configure and manage users and roles, set up
synchronization between resources, configure connectors, and more.

The End User UI provides role-based access to tasks based on BPMN2 workflows, and allows users to manage certain aspects of
their own accounts, including configurable self-service registration. End users access the UI at a URL you specify. As an
administrator, if IDM is installed on the local system, you can access the End User UI at https://localhost:8443/ . All users,
including openidm-admin , can change their password through the End User UI. The End User UI is described in Self-service end
user UI.

Manage dashboards

Dashboards let you make shortcuts to frequently-required tasks. The Quick Start dashboard displays by default when you log in
to the admin UI. You can create additional dashboards, or add and remove widgets from the existing dashboards.

Default dashboards

To display all configured dashboards, select Dashboards > Manage Dashboards. The following dashboards are provided by
default.

Quick start dashboard

Quick Start cards support one-click access to common administrative tasks:

error
Browser ad blocker extensions can inadvertently block some UI functionality, particularly if your configuration
includes strings such as ad . For example, a connection to an Active Directory server might be configured at the
endpoint system/ad . To avoid problems related to blocked UI functionality, remove the extension, or configure a
safelist to ensure access to the targeted endpoints.

Caution

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 411

https://localhost:8443/admin
https://localhost:8443/admin
https://localhost:8443/
https://localhost:8443/

Add Connector

Configure connections to external resources.

Create Mapping

Configure mappings to synchronize objects
between resources.

Manage Roles

Set up provisioning or authorization roles.

Add Device

Configure managed objects, including users,
groups, roles, and devices.

Configure Registration

Configure user self-registration.

Configure Password Reset

Configure user self-service password reset.

Setup PingIDM

412 Copyright © 2025 Ping Identity Corporation

link:https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
link:https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
link:https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
link:https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
link:https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
link:https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
link:https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html

System monitoring dashboard

The System Monitoring Dashboard includes information about:

Audit Events

Includes information on audit data, organized by date.

Cluster Node Status

Includes information on cluster nodes.

Manage Users

Manage users in the repository.

Configure System Preferences

Configure server settings for Audit, Workflow,
and more.

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 413

System Health

Includes information on system resource usage.

Last Reconciliation

Includes data from the most recent data reconciliation.

Setup PingIDM

414 Copyright © 2025 Ping Identity Corporation

Resource report

Show Me

The Resource Report includes widgets that show the number of active users, configured roles, and active connectors.

The Resources widget shows all configured connectors, mappings, and managed object types.

Business report

Show Me

•

•

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 415

The Business Report includes widgets related to login and registration activity.

Custom dashboards

You can set up additional dashboards for customized views of the admin UI.

Create a new dashboard

To create a new dashboard, select Dashboards > New Dashboard. Enter a dashboard name and select whether this dashboard
should be the default board that is displayed when you load the admin UI.

For a customized view of the admin UI, select Widgets as the Dashboard Type, click Create Dashboard, and add the widgets that
you want exposed in that view.

You can also customize the view by starting with an existing dashboard. In the upper-right corner of the UI, next to the Add
Widget button, click the overflow menu > widget, and select Rename or Duplicate.

Add and move widgets

To add a widget to a dashboard, click Add Widget and select the widget type. Widgets are grouped in categories. Scroll down to
the category of the widget you want to add.

To change the position of a widget on a dashboard, click and drag the move button .

Setup PingIDM

416 Copyright © 2025 Ping Identity Corporation

To add a new Quick Start widget, select the overflow menu > widget in the upper right corner of the widget, and click Settings.

To embed an admin UI sub-widget in the Quick Start widget, specify the destination URL. If you are linking to a specific page in
the admin UI, the destination URL can be the part of admin UI address. For example, to create a quick start link to the Audit
Configuration tab, at {secureHostname}/admin/#settings/audit/ , enter #settings/audit in the destination URL text box.

Any changes to the dashboards are persisted in your project’s conf/ui-dashboard.json file, which has the following properties:

Admin UI widgets

The following tables list the available widgets:

admin UI reporting widgets

admin UI Widget Properties in ui-dashboard.json

Property Values Description

name String Dashboard name.

isDefault true or false Default dashboard. You can only set one default.

widgets Different attributes based on type Attributes that define the widget.

type lastRecon , resourceList , quickStart ,
userRelationship

Widget type.

size x-small , small , medium , or large Width of widget, based on a 12-column grid system,
where x-small=4, small=6, medium=8, and large=12.
For more information, refer to Bootstrap CSS.

barchart true or false Reconciliation bar chart; applies only to the Last
Reconciliation widget.

Name Description

Audit Events Graphical display of audit events.

Count Widget A count widget that provides an instant display of the number
of specific objects; for example, active managed users, and
enabled social providers.

Dropwizard Table With Graph Does not appear in the list of widgets unless metrics are
active.

Graph Widget Provides a graphical view of a specific managed resource; for
example, managed users, based on some metric.

Last Reconciliation Shows statistics from the most recent reconciliation, shown
on the System Monitoring dashboard.

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 417

https://getbootstrap.com/css/
https://getbootstrap.com/css/

Social widgets

System status widgets

Utility widgets

Name Description

New Registrations The number of users that have self-registered that week. To
display data using this widget, you must enable user self-
registration.

Password Resets The number of password resets that week. To display data
using this widget, you must enable password reset.

Resources Connectors, mappings, managed objects; shown in
Administration dashboard.

Sign-Ins The number of managed users that have signed in to the
service that week.

Name Description

Daily Social Logins Graphical display of logins through social identity providers.

Social Registration (year) Graphical display of social registrations over the past year.

Name Description

Memory Usage (JVM Heap) Displays the JVM memory usage. Refer to API metrics.

Memory Usage (JVM NonHeap) Displays the JVM non-heap memory usage. Refer to API
metrics.

System Health Includes information on system resource usage.

CPU Usage Displays the system CPU usage.

System Health Includes information on system resource usage.

Cluster Node Status Lists the instances in a cluster, with their status.

Name Description

Quick Start Links to common tasks; shown in the Administration
dashboard.

Setup PingIDM

418 Copyright © 2025 Ping Identity Corporation

Customize the admin UI

This section shows you how to customize the admin UI for your deployment.

The default admin UI configuration files are located in openidm/ui/admin/default . To customize the UI, copy this directory to
openidm/ui/admin/extension :

cd /path/to/openidm/ui/admin
cp -r default/. extension

You can now edit the custom files in the extension subdirectory. The admin UI templates in openidm/ui/admin/default/
templates can help you get started.

Default UI subdirectories

The admin UI config files are located in separate subdirectories:

config/

Top-level configuration directory of JavaScript files. Customizable subdirectories include errorhandlers/ with HTTP error
messages and messages/ with info and error messages. For actual messages, refer to the translation.json file in the
locales/en/ subdirectory.

css/ and libs/

If you use a different bootstrap theme, replace the files in these directories and subdirectories.

fonts/

The font files in this directory are based on the Font Awesome CSS toolkit.

images/ and img/

IDM uses the image files in these directories. You can replace these images with your own.

locales/

The translation.json file (in the en/ subdirectory by default) contains the UI labels and messages.

org/

Source files for the admin UI.

Name Description

Identity Relationships Graphical display of relationships between identities.

Managed Objects Relationship Diagram Graphical diagram with connections between managed
object properties; also refer to View the Relationship
Configuration in the UI.

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 419

partials/

Includes partial components of HTML pages in the admin UI, for assignments, authentication, connectors, dashboards,
email, basic forms, login buttons, and so on.

templates/

The HTML templates for various UI pages. Note that these files are used by the UI. Do not change the template files in ui/
admin/default/ .

Customize the UI theme

You can configure a few features of the UI in the ui-themeconfig.json file in your project’s conf directory. However, to change
most theme-related features of the UI, you must copy target files to the appropriate extension subdirectory, and then modify
them as discussed in Customize the admin UI.

By default, the UI reads the stylesheets and images from the openidm/ui/admin/default directory. Do not modify the files in
this directory. Your changes may be overwritten the next time you update or even patch your system.

To customize your UI, first set up matching subdirectories in (openidm/ui/admin/extension). For example, openidm/ui/admin/
extension/libs and openidm/ui/admin/extension/css .

You might also need to update the "stylesheets" listing in the ui-themeconfig.json file for your project, in the project-dir/
conf directory.

"stylesheets" : [
 "css/bootstrap-3.4.1-custom.css",
 "css/structure.css",
 "css/theme.css"
],

The default stylesheets contain:

bootstrap-3.4.1-custom.css —Includes custom settings that you can get from various Bootstrap configuration sites,
such as the Bootstrap Customize and Download site. This site lets you upload a config.json file that makes it easier to
create a customized Bootstrap file. The ForgeRock version of this file is in ui/admin/default/css/common/structure/ .
You can use this file as a starting point for your customization.

structure.css —For configuring structural elements of the UI.

theme.css —Includes customizable options for UI themes such as colors, buttons, and navigation bars.

To set up custom versions of these files, copy them to the extension/css subdirectories.

Change the default logo

The default UI logo is in openidm/ui/admin/default/images . To change the logo, place your custom image in the openidm/ui/
admin/extension/images directory. You should see the changes after refreshing your browser.

To specify a different file name, or to control the size, and other properties of the logo image file, adjust the logo property in the
UI theme configuration file for your project (conf/ui-themeconfig.json) .

•

•

•

Setup PingIDM

420 Copyright © 2025 Ping Identity Corporation

https://getbootstrap.com/customize/
https://getbootstrap.com/customize/

The following change to the UI theme configuration file points to an image file named example-logo.png , in the openidm/ui/
admin/extension/images directory:

...
"loginLogo" : {
 "src" : "images/example-logo.png",
 "title" : "Example.com",
 "alt" : "Example.com",
 "height" : "104px",
 "width" : "210px"
},
...

Refresh your browser window for the new logo to appear.

Create project-specific themes

You can create different UI themes for projects and then point a particular UI instance to a defined theme on startup. To create a
complete custom theme, follow these steps:

Shut down the IDM instance.

Copy the entire default admin UI theme to an accessible location. For example:

cp -r /path/to/openidm/ui/admin/default /path/to/openidm/admin-project-theme

In the copied theme, modify the required elements, as described in the previous sections. Note that nothing is copied to
the extension folder in this case—changes are made in the copied theme.

In the conf/ui.context-admin.json file, modify the values for defaultDir and extensionDir to the directory with
your new-project-theme :

{
 "enabled" : true,
 "cacheEnabled" : true,
 "urlContextRoot" : "/",
 "defaultDir" : "&{idm.install.dir}/ui/admin/default",
 "extensionDir" : "&{idm.install.dir}/ui/admin/extension",
 "responseHeaders" : {
 "X-Frame-Options" : "DENY"
 }
}

Restart the server.

Relaunch the UI in your browser.

The UI displays with the new custom theme.

1.

2.

3.

4.

5.

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 421

Set custom response headers

You can specify custom response headers for your UI by using the responseHeaders property in UI context configuration files
such as conf/ui.context-admin.json . For example, the X-Frame-Options header is a security measure used to prevent a web
page from being embedded within the frame of another page. For more information about response headers, refer to the MDN
page on HTTP Headers.

Because the responseHeaders property is specified in the configuration file for each UI context, you can set different custom
headers for different UIs. For example, you might set different security headers included for the Admin and End User UIs.

Disable the Admin and End User UIs

The UIs are packaged as separate bundles that can be disabled in the configuration before server startup.

To disable the registration of the UI servlets, edit the project-dir/conf/ui.context-ui.json files, setting the enabled
property to false. For example, to disable the End User UI, set "enabled" : false, in project-dir/conf/ui.context-
enduser.json

Protect custom static web resources

By default, custom static web resources are publicly accessible. To require authentication to access these resources, add the
following line to the applicable project-dir/conf/ui.context-ui.json files:

"authEnabled" : true,

Cache static UI files in memory

By default, static UI files are cached in memory for all but the API Explorer. To disable the caching of specific UI files, set
"cacheEnabled": false in the applicable project-dir/conf/ui.context-ui.json file.

When caching is enabled, all static files are cached in-memory, but off-heap, when they are first accessed. When caching is
disabled, the files are streamed from disk.

Reset user passwords

When working with end users, administrators frequently have to reset their passwords. You can do so directly, through the admin
UI. Alternatively, you can configure an external system for that purpose, or set up password reset, as described in Password
reset.

Change user passwords through the admin UI

From the navigation bar, click Manage > User, and click a user.

Click the Password tab, and change the password.

error
UI asset directories that contain large files should not enable caching. You can reduce RAM usage by disabling caching
where it is not required.

Caution

1.

2.

Setup PingIDM

422 Copyright © 2025 Ping Identity Corporation

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

Use an external password reset system

By default, the Password Reset mechanism is handled within IDM. You can reroute Password Reset in the event that a user has
forgotten their password, by specifying an external URL to which Password Reset requests are sent. Note that this URL applies to
the Password Reset link on the login page only, not to the security data change facility that is available after a user has logged in.

To set an external URL to handle Password Reset, set the passwordResetLink parameter in conf/ui-configuration.json . The
following example sets the passwordResetLink to https://accounts.example.com/account/reset-password :

passwordResetLink: "https://accounts.example.com/reset-password"

The passwordResetLink parameter takes either an empty string as a value (which indicates that no external link is used) or a full
URL to the external system that handles Password Reset requests.

info
External Password Reset and security questions for internal Password Reset are mutually exclusive. Therefore, if you
set a value for the passwordResetLink parameter, users will not be prompted with any security questions, regardless
of the setting of the securityQuestions parameter.

Note

PingIDM Setup

Copyright © 2025 Ping Identity Corporation 423

Object modeling

Guide to creating and managing objects in ForgeRock® Identity Management.

IDM provides a default schema for typical managed object types, such as users, roles, and groups, but does not control the
structure of objects that you store in the repository. This section shows you how to change and add to the managed object
schema, how to establish relationships between objects, and how to use policies to validate objects. You will also learn how to
access IDM objects using queries.

Quick start

Managed objects

Learn about the IDM architecture, component
modules, and services.

Users

Understand the default user object.

Relationships

Configure relationships between object types.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 425

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Managed objects

IDM provides a default schema for typical managed object types, such as users and roles, but does not control the structure of
objects that you store in the repository. You can modify or extend the schema for the default object types. You can also create
new managed object types for any item that can be collected in a data set. For example, with the right schema, you can set up any
device associated with the Internet of Things (IoT).

These topics describe how to work with managed object types. For more information about the IDM object model, refer to Data
models and objects reference.

Define the Schema

Create and modify object types

Virtual properties

Run scripts on managed objects

Track user metadata

Define the schema

Managed objects and their properties are defined in the managed object configuration.

The default managed object configuration is not a comprehensive list of all the properties that can be stored in IDM. If you use a
generic object mapping, you can create a managed object with any arbitrary property, and that property will be stored in IDM.
However, if you create an object with properties that are not defined in the managed object configuration, those properties are
not visible in the UI. In addition, you won’t be able to configure the "sub-properties" that are described in the following section.

Roles

Learn about the role object, a specific
relationship type.

Policies

Apply validation requirements to objects and
properties.

•

•

•

•

•

Object modeling PingIDM

426 Copyright © 2025 Ping Identity Corporation

https://www.forgerock.com
https://www.forgerock.com

For explicit object mappings, the schema must be mapped to tables and columns in the JDBC database or to organizational units
in DS. For more information about explicit and generic object mappings, refer to Object mappings.

Create and modify object types

If the managed object types provided in the default configuration are not sufficient for your deployment, you can create new
managed object types. The easiest way to create a new managed object type is to use the admin UI, as follows:

Select Configure > Managed Objects > New Managed Object.

On the New Managed Object page, enter a name and readable title for the object, make optional changes, as necessary,
and click Save. The readable title specifies what the object will be called in the UI.

On the Properties tab, specify the schema for the object type (the properties that make up the object).

On the Scripts tab, specify any scripts that will be applied on events associated with that object type. For example, scripts
that will be run when an object of that type is created, updated, or deleted.

You can also create a new managed object type by editing your managed object configuration.

emergency_home
The admin UI depends on the presence of specific core schema elements, such as users, roles, and
assignments (and the default properties nested within them). If you remove such schema elements, and you
use the admin UI to configure IDM, you must modify the admin UI code accordingly. For example, if you
remove the entire assignment object from the managed object configuration, the UI will throw exceptions
wherever it queries this schema element.
Managed object properties that contain an underscore (_) are reserved for internal use. Do not create new
properties that contain underscores, and do not include these properties in update requests.

Important

•

•

1.

2.

3.

4.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 427

{
 "name": "Phone",
 "schema": {
 "$schema": "http://forgerock.org/json-schema#",
 "type": "object",
 "properties": {
 "brand": {
 "description": "The supplier of the mobile phone",
 "title": "Brand",
 "viewable": true,
 "searchable": true,
 "userEditable": false,
 "policies": [],
 "returnByDefault": false,
 "pattern": "",
 "isVirtual": false,
 "type": [
 "string",
 "null"
]
 },
 "assetNumber": {
 "description": "The asset tag number of the mobile device",
 "title": "Asset Number",
 "viewable": true,
 "searchable": true,
 "userEditable": false,
 "policies": [],
 "returnByDefault": false,
 "pattern": "",
 "isVirtual": false,
 "type": "string"
 },
 "model": {
 "description": "The model number of the mobile device, such as 6 plus, Galaxy S4",
 "title": "Model",
 "viewable": true,
 "searchable": false,
 "userEditable": false,
 "policies": [],
 "returnByDefault": false,
 "pattern": "",
 "isVirtual": false,
 "type": "string"
 }
 },
 "required": [],
 "order": [
 "brand",
 "assetNumber",
 "model"
]
 }
}

Every managed object type has a name and a schema that describes the properties associated with that object. The name can
only include the characters a-z , A-Z , 0-9 , and _ (underscore). You can add any arbitrary properties to the schema.

Object modeling PingIDM

428 Copyright © 2025 Ping Identity Corporation

A property definition typically includes the following fields:

title

The name of the property, in human-readable language, used to display the property in the UI.

description

A brief description of the property.

viewable

Specifies whether this property is viewable in the object’s profile in the UI. Boolean, true or false (true by default).

searchable

Specifies whether this property can be searched in the UI. A searchable property is visible within the Managed Object data
grid in the End User UI.

For a property to be searchable in the UI, it must be indexed in the repository configuration. For information on indexing
properties in a repository, refer to Object mappings.

Boolean, true or false (false by default).

userEditable

Specifies whether users can edit the property value in the UI. This property applies in the context of the End User UI,
where users are able to edit certain properties of their own accounts. Boolean, true or false (false by default).

isProtected

Specifies whether reauthentication is required if the value of this property changes.

For certain properties, such as passwords, changing the value of the property should force an end user to reauthenticate.
These properties are referred to as protected properties. Depending on how the user authenticates (which authentication
module is used), the list of protected properties is added to the user’s security context. For example, if a user logs in with
the login and password of their managed user entry (MANAGED_USER authentication module), their security context will
include this list of protected properties. The list of protected properties is not included in the security context if the user
logs in with a module that does not support reauthentication (such as through a social identity provider).

pattern

Any specific pattern to which the value of the property must adhere. For example, a property whose value is a date might
require a specific date format.

lightbulb_2
Avoid using the dash character in property names (like last-name) because dashes in names make JavaScript syntax
more complex. Rather use "camel case" (lastName). If you cannot avoid dash characters, write
source['last-name'] instead of source.last-name in your JavaScript.

Tip

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 429

policies

Any policy validation that must be applied to the property. For more information on managed object policies, refer to
Default policy for managed objects.

required

Specifies whether the property must be supplied when an object of this type is created. Boolean, true or false .

type

The data type for the property value; can be string , array , boolean , integer , number , object , Resource
Collection , or null .

isVirtual

Specifies whether the property takes a static value, or whether its value is calculated "on the fly" as the result of a script.
Boolean, true or false .

returnByDefault

For non-core attributes (virtual attributes and relationship fields), specifies whether the property will be returned in the
results of a query on an object of this type if it is not explicitly requested. Virtual attributes and relationship fields are not
returned by default. Boolean, true or false . When the property is in an array within a relationship, always set to false .

relationshipGrantTemporalConstraintsEnforced

For attributes with relationship fields. Specifies whether this relationship should have temporal constraints enforced.
Boolean, true or false . For more information about temporal constraints, refer to Use Temporal Constraints to Restrict
Effective Roles.

emergency_home
The required policy is assessed only during object creation, not when an object is updated. You can effectively
bypass the policy by updating the object and supplying an empty value for that property. To prevent this
inconsistency, set both required and notEmpty to true for required properties. This configuration indicates
that the property must exist, and must have a value.

Important

info
If any user might not have a value for a specific property (such as a telephoneNumber), you must include null
as one of the property types. You can set a null property type in the admin UI (Configure > Managed Objects >
User, select the property, and under the Details tab, Advanced Options, set Nullable to true).
You can also set a null property type in your managed object configuration by setting "type" :
'["string","null"]' for that property (where string can be any other valid property type. This
information is validated by the policy service, as described in Validate Managed Object Data Types.
If you’re configuring a data type of array through the admin UI, you’re limited to two values.

Note

Object modeling PingIDM

430 Copyright © 2025 Ping Identity Corporation

default

Specifies a default value if the object is created without passing a value. Default values are available for the following data
types, and arrays of those types:

boolean

number

object

string

Default values

You can specify default values in the managed object configuration. If you omit a default value when creating an object, the
default value is automatically applied to the object. You can have default values for the following data types, and arrays of those
types:

boolean

number

object

string

For example, the default managed object configuration includes a default value that makes accountStatus:active , which
effectively replaces the onCreate script that was previously used to achieve the same result. The following excerpt from the
managed object configuration displays the default value for accountStatus :

"accountStatus" : {
 "title" : "Status",
 "description" : "Status",
 "viewable" : true,
 "type" : "string",
 "searchable" : true,
 "userEditable" : false,
 "usageDescription" : "",
 "isPersonal" : false,
 "policies" : [
 {
 "policyId": "regexpMatches",
 "params": {
 "regexp": "^(active|inactive)$"
 }
 }
],
 "default" : "active"
}

•

•

•

•

info
IDM assumes all default values are valid for the schema.

Note

•

•

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 431

Virtual properties

Properties can be derived from other properties within an object. This lets computed and composite values be created in the
object. Such derived properties are named virtual properties. The value of a virtual property can be calculated in two ways:

Using a script called by the onRetrieve script hook. This script then calculates the current value of the virtual property
based on the related properties.

Using a query to identify the relationship fields to traverse to reach the managed objects whose state is included in the
virtual property, and the fields in these managed objects to include in the value of the virtual property.

These properties are called relationship-derived virtual properties.

Virtual properties using onRetrieve scripts

The onRetrieve script hook lets you run a script when the object is retrieved. In the case of virtual properties, this script gets the
data from related properties and uses it to calculate a value for the virtual property. For more information about running scripts
on managed objects, refer to Run scripts on managed objects.

Relationship-derived virtual properties

Virtual properties can be calculated by IDM based on relationships and relationship notifications. This means that, rather than
calculating the current state when retrieved, the managed object that contains the virtual property is notified of changes in a
related object, and the virtual property is recalculated when this notification is received. To configure virtual properties to use
relationship notifications, there are two areas that need to be configured:

The related managed objects must be configured to use relationship notifications. This lets IDM know where to send
notifications of changes in related objects.

To calculate the value of a virtual property, you must configure which relationships to check, and in which order, a
notification of a change in a related object is received. You configure this using the queryConfig property.

The queryConfig property tells IDM the sequence of relationship fields it should traverse in order to calculate (or recalculate) a
virtual property, and which fields it should return from that related object. This is done using the following fields:

referencedRelationshipFields is an array listing a sequence of relationship fields connecting the current object with
the related objects you want to calculate the value of the virtual property from. The first field in the array is a relationship
field belonging to the same managed object as the virtual property. The second field is a relationship in the managed
object referenced by the first field, and so on.

For example, the referencedRelationshipFields for effectiveAssignments is ["roles","assignments"] . The first
field refers to the roles relationship field in managed/user , which references the managed/role object. It then refers to
the assignments relationship in managed/role , which references the managed/assignment object. Changes to either
related object (managed/role or managed/assignment) will cause the virtual property value to be recalculated, due to the

info
IDM assumes all default values are valid for the schema. Although IDM skips policy validation for objects with default
values, you can force validation on property values.

Note

•

•

•

•

•

Object modeling PingIDM

432 Copyright © 2025 Ping Identity Corporation

notify , notifySelf , and notifyRelationships configurations on managed user, role, and assignment. These
configurations ensure that any changes in the relationships between a user and their roles, or their roles, and their
assignments, as well as any relevant changes to the roles or assignments themselves, such as the modification of temporal
constraints on roles, or attributes on assignments, will be propagated to connected users, so their effectiveRoles and
effectiveAssignments can be recalculated and potentially synced.

referencedObjectFields is an array of object fields that should be returned as part of the virtual property. If this
property is not included, the returned properties will be a reference for the related object. To return the entire related
object, use * .

flattenProperties is a boolean that specifies whether relationship-derived virtual properties should be returned as
plain fields rather than as JSON objects with an _id and a _rev . This property is false by default.

With flattenProperties set to false , and referencedObjectFields set to name , the response to a query on a user’s
effectiveAssignments might look something like this:

"effectiveAssignments": [
 {
 "name": "MyFirstAssignment",
 "_id": "02b166cc-d7ed-46b7-813f-5ed103145e76",
 "_rev": "2"
 },
 {
 "name": "MySecondAssignment",
 "_id": "7162ddd4-591a-413e-a30b-3a5864bee5ec",
 "_rev": "0"
 }
]

With flattenProperties set to true , and referencedObjectFields set to name , the response to the same query looks
like this:

"effectiveAssignments": [
 "MyFirstAssignment",
 "MySecondAssignment"
]

Setting flattenProperties to true also lets singleton relationship-derived virtual properties be initialized to null .

Using queryConfig , the virtual property is recalculated when it receives a notice that changes occurred in the related objects.
This can be significantly more efficient than recalculating whenever an object is retrieved, while still ensuring the state of the
virtual property is correct.

•

•

info
When you change which fields to return using referencedObjectFields , changes are not reflected until there is a
change in the related object that would trigger the virtual property to be recalculated (as specified by the notify ,
notifySelf , and notifyRelationships configurations). The calculated state of the virtual property is still correct,
but since a change is necessary for the state to be updated, the returned fields will still be based on the previous
configuration.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 433

The effectiveAssignments property in managed.json is an example of a relationship-derived virtual property:

"effectiveAssignments" : {
 "type" : "array",
 "title" : "Effective Assignments",
 "description" : "Effective Assignments",
 "viewable" : false,
 "returnByDefault" : true,
 "isVirtual" : true,
 "queryConfig" : {
 "referencedRelationshipFields" : ["roles", "assignments"],
 "referencedObjectFields" : ["*"]
 },
 "usageDescription" : "",
 "isPersonal" : false,
 "items" : {
 "type" : "object",
 "title" : "Effective Assignments Items"
 }
}

Run scripts on managed objects

A number of script hooks let you manipulate managed objects using scripts. Scripts can be triggered during various stages of the
lifecycle of the managed object, and are defined in the managed object schema.

You can trigger scripts when a managed object is created (onCreate), updated (onUpdate), retrieved (onRetrieve), deleted
(onDelete), validated (onValidate), or stored in the repository (onStore). You can also trigger a script when a change to a managed
object triggers an implicit synchronization operation (onSync).

Post-action scripts let you manipulate objects after they are created (postCreate), updated (postUpdate), and deleted
(postDelete).

For more information, refer to:

Scripting guide

Script triggers defined in the managed object configuration

Managed objects reference

Track user metadata

Some self-service features, such as progressive profile completion, privacy and consent, and terms and conditions acceptance,
rely on user metadata that tracks information related to a managed object state. Such data might include when the object was
created, or the date of the most recent change, for example. This metadata is not stored within the object itself, but in a separate
resource location.

emergency_home
Before implementing a script, it’s highly recommended that you validate the script over REST. Use scripts in a test
environment before deploying them to a production environment.

Important

•

•

•

Object modeling PingIDM

434 Copyright © 2025 Ping Identity Corporation

Because object metadata is stored outside the managed object, state change situations (such as the time of an update) are
separate from object changes (the update itself). This separation reduces unnecessary synchronization to targets when the only
data that has changed is metadata. Metadata is not returned in a query unless it is specifically requested. Therefore, the volume
of data that is retrieved when metadata is not required, is reduced.

To specify which metadata you want to track for an object, add a meta stanza to the object definition in your managed object
configuration. The following default configuration tracks the createDate and lastChanged date for managed user objects:

{
 "objects" : [
 {
 "name" : "user",
 ...
 "schema" : {
 ...
 },
 "meta" : {
 "property" : "_meta",
 "resourceCollection" : "internal/usermeta",
 "trackedProperties" : [
 "createDate",
 "lastChanged"
]
 },
 ...
 },
 ...
]
}

The metadata configuration includes the following properties:

property

The property that will be dynamically added to the managed object schema for this object.

resourceCollection

The resource location in which the metadata will be stored.

Adjust your repository to match the location you specify here. It’s recommended that you use an internal object path
and define the storage in your repo.jdbc.json or repo.ds.json file.

For a JDBC repository, metadata is stored in the metaobjects table by default. The metaobjectproperties table is used
for indexing.

For a DS repository, metadata is stored under ou=usermeta,ou=internal,dc=openidm,dc=forgerock,dc=com by default.

User objects stored in a DS repository must include the ou specified in the preceding dnTemplate attribute. For example:

emergency_home
If you are not using the self-service features that require metadata, you can remove the meta stanza from the user
object in your managed object configuration. Preventing the creation and tracking of metadata where it is not
required will improve performance in that scenario.

Important

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 435

dn: ou=usermeta,ou=internal,dc=openidm,dc=forgerock,dc=com
objectclass: organizationalunit
objectclass: top
ou: usermeta

trackedProperties

The properties that will be tracked as metadata for this object. In the previous example, the createDate (when the object
was created) and the lastChanged date (when the object was last modified) are tracked.

You cannot search on metadata and it is not returned in the results of a query unless it is specifically requested. To return all
metadata for an object, include _fields=,_meta/* in your request. The following example returns a user entry without
requesting the metadata:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen"
{
 "_id": "bjensen",
 "_rev": "000000000444dd1a",
 "mail": "bjensen@example.com",
 "givenName": "Barbara",
 "sn": "Jensen",
 "description": "Created By CSV",
 "userName": "bjensen",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

The following example returns the same user entry, with their metadata:

Object modeling PingIDM

436 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen?_fields=,_meta/*"
{
 "_id": "bjensen",
 "_rev": "000000000444dd1a",
 "mail": "bjensen@example.com",
 "givenName": "Barbara",
 "sn": "Jensen",
 "description": "Created By CSV",
 "userName": "bjensen",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
 "_meta": {
 "_ref": "internal/usermeta/284273ff-5e50-4fa4-9d30-4a3cf4a5f642",
 "_refResourceCollection": "internal/usermeta",
 "_refResourceId": "284273ff-5e50-4fa4-9d30-4a3cf4a5f642",
 "_refProperties": {
 "_id": "30076e2e-8db5-4b4d-ab91-5351d2da4620",
 "_rev": "000000001ad09f00"
 },
 "createDate": "2018-04-12T19:53:19.004Z",
 "lastChanged": {
 "date": "2018-04-12T19:53:19.004Z"
 },
 "loginCount": 0,
 "_rev": "0000000094605ed9",
 "_id": "284273ff-5e50-4fa4-9d30-4a3cf4a5f642"
 }
}

The request also returns a _meta property that includes relationship information. IDM uses the relationship model to store the
metadata. When the meta stanza is added to the user object definition, the attribute specified by the property ("property" :
"_meta", in this case) is added to the schema as a uni-directional relationship to the resource collection specified by
resourceCollection . In this example, the user object’s _meta field is stored as an internal/usermeta object. The _meta/_ref
property shows the full resource path to the internal object where the metadata for this user is stored.

Users

User objects that are managed by IDM are called managed users.

info
Apart from the createDate and lastChanged shown previously, the request also returns the loginCount . This
property is stored by default for all objects, and increments with each login request based on password or social
authentication. If the object for which metadata is tracked is not an object that "logs in," this field will remain 0.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 437

For a JDBC repository, IDM stores managed users in the managedobjects table. A second table, managedobjectproperties ,
serves as the index table.

IDM provides RESTful access to managed users, at the context path /openidm/managed/user . You can add, change, and delete
managed users using the admin UI or over the REST interface. To use the admin UI, select Manage > User.

If you are viewing users through the admin UI, the User List page supports specialized filtering with the Advanced Filter option.
This lets you build many of the queries shown in Define and call data queries.

Managed users examples

The following examples show how to add, change, and delete users over the REST interface. For a reference of all managed user
endpoints and actions, refer to the Managed users endpoint.

You can also use the REST API Explorer as a reference to the managed object REST API.

Retrieve the IDs of all managed users in the repository

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "bjensen",
 "_rev": "0000000079b78ace"
 },
 {
 "_id": "scarter",
 "_rev": "0000000070e587a7"
 },
 ...
],
 ...
}

Query managed users for a specific user

The _queryFilter requires double quotes, or the URL-encoded equivalent (%22), around the search term. This example uses
the URL-encoded equivalent:

info
Some examples in this documentation use client-assigned IDs (such as bjensen and scarter) when creating objects
because it makes the examples easier to read. If you create objects using the admin UI, they are created with server-
assigned IDs (such as 55ef0a75-f261-47e9-a72b-f5c61c32d339). Generally, immutable server-assigned UUIDs are
used in production environments.

Note

Object modeling PingIDM

438 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+%22scarter%22"
{
 "result": [
 {
 "_id": "scarter",
 "_rev": "0000000070e587a7",
 "userName": "scarter",
 "givenName": "Sam",
 "sn": "Carter",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "scarter@example.com",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
 }
],
 ...
}

This example uses single quotes around the URL to avoid conflicts with the double quotes around the search term:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+"scarter"'
{
 "result": [
 {
 "_id": "scarter",
 "_rev": "0000000070e587a7",
 "userName": "scarter",
 "givenName": "Sam",
 "sn": "Carter",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "scarter@example.com",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
 }
],
 ...
}

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 439

Retrieve a managed user by their ID

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "0000000070e587a7",
 "userName": "scarter",
 "givenName": "Sam",
 "sn": "Carter",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "scarter@example.com",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

Add a user with a specific user ID

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "If-None-Match: *" \
--request PUT \
--data '{
 "userName": "bjackson",
 "sn": "Jackson",
 "givenName": "Barbara",
 "mail": "bjackson@example.com",
 "telephoneNumber": "082082082",
 "password": "Passw0rd"
}' \
"http://localhost:8080/openidm/managed/user/bjackson"
{
 "_id": "bjackson",
 "_rev": "0000000055c185c5",
 "userName": "bjackson",
 "sn": "Jackson",
 "givenName": "Barbara",
 "mail": "bjackson@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

Object modeling PingIDM

440 Copyright © 2025 Ping Identity Corporation

Add a user with a system-generated ID

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "userName": "pjensen",
 "sn": "Jensen",
 "givenName": "Pam",
 "mail": "pjensen@example.com",
 "telephoneNumber": "082082082",
 "password": "Passw0rd"
}' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "9d92cdc8-8b22-4037-a344-df960ea66194",
 "_rev": "00000000a4bf9006",
 "userName": "pjensen",
 "sn": "Jensen",
 "givenName": "Pam",
 "mail": "pjensen@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

Update a user

This example checks whether user bjensen exists, then replaces her telephone number with the new data provided in the
request body:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 441

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '[
 {
 "operation": "replace",
 "field": "/telephoneNumber",
 "value": "0763483726"
 }
]' \
"http://localhost:8080/openidm/managed/user?_action=patch&_queryFilter=userName+eq+'bjackson'"
{
 "userName": "bjackson",
 "sn": "Jackson",
 "givenName": "Barbara",
 "mail": "bjackson@example.com",
 "telephoneNumber": "0763483726",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": [],
 "_rev": "000000008c0f8617",
 "_id": "bjackson"
}

Delete a user

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/user/bjackson"
{
 "_id": "bjackson",
 "_rev": "000000008c0f8617",
 "userName": "bjackson",
 "sn": "Jackson",
 "givenName": "Barbara",
 "mail": "bjackson@example.com",
 "telephoneNumber": "0763483726",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

Object modeling PingIDM

442 Copyright © 2025 Ping Identity Corporation

Relationships between objects

Relationships are references between managed objects. Roles and Organizations are implemented using relationships, but you
can create relationships between any managed object type.

Define a relationship type

Relationships are defined in your managed object configuration. The default configuration includes a relationship named
manager that lets you configure a management relationship between two managed users. The manager relationship is a good
example from which to understand how relationships work.

The default manager relationship is configured as follows:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 443

"manager" : {
 "type" : "relationship",
 "validate" : true,
 "reverseRelationship" : true,
 "reversePropertyName" : "reports",
 "description" : "Manager",
 "title" : "Manager",
 "viewable" : true,
 "searchable" : false,
 "usageDescription" : "",
 "isPersonal" : false,
 "properties" : {
 "_ref" : {
 "description" : "References a relationship from a managed object",
 "type" : "string"
 },
 "_refProperties" : {
 "description" : "Supports metadata within the relationship",
 "type" : "object",
 "title" : "Manager _refProperties",
 "properties" : {
 "_id" : {
 "description" : "_refProperties object ID",
 "type" : "string"
 }
 }
 }
 },
 "resourceCollection" : [
 {
 "path" : "managed/user",
 "label" : "User",
 "query" : {
 "queryFilter" : "true",
 "fields" : [
 "userName",
 "givenName",
 "sn"
]
 }
 }
],
 "userEditable" : false
},

Most of these properties apply to any managed object type. Relationships have the following specific configurable properties:

type (string)

The object type. Must be relationship for a relationship object.

returnByDefault (boolean true, false)

Specifies whether the relationship should be returned as part of the response. The returnByDefault property is not
specific to relationships. This flag applies to all managed object types. However, relationship properties are not returned
by default, unless explicitly requested.

Object modeling PingIDM

444 Copyright © 2025 Ping Identity Corporation

reverseRelationship (boolean true, false)

Specifies whether this is a bidirectional relationship.

reversePropertyName (string)

The corresponding property name, in the case of a bidirectional relationship. For example, the manager property has a
reversePropertyName of reports .

_ref (JSON object)

Specifies how the relationship between two managed objects is referenced.

In the relationship definition, the value of this property is { "type" : "string" } . In a managed user entry, the value of
the _ref property is the reference to the other resource. The _ref property is described in more detail in Create a
relationship between two objects.

_refProperties (JSON object)

Any required properties from the relationship that should be included in the managed object. The _refProperties field
includes a unique ID (_id) and the revision (_rev) of the object. _refProperties can also contain arbitrary fields to
support metadata within the relationship.

resourceCollection (JSON object)

The collection of resources (objects) on which this relationship is based (for example, managed/user objects).

Create a relationship between two objects

When you have defined a relationship type, (such as the manager relationship, described in the previous section), you can
reference one managed user from another, using the _ref* relationship properties. Three properties make up a relationship
reference:

_refResourceCollection specifies the container of the referenced object (for example, managed/user).

_refResourceId specifies the ID of the referenced object. This is generally a system-generated UUID, such as
9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb . For clarity, this section uses client-assigned IDs such as bjensen and psmith .

_ref is a derived path that is a combination of _refResourceCollection and a URL-encoded _refResourceId .

For example, imagine that you are creating a new user, psmith, and that psmith’s manager will be bjensen. You would add
psmith’s user entry, and reference bjensen’s entry with the _ref property, as follows:

•

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 445

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "If-None-Match: *" \
--header "Content-Type: application/json" \
--request PUT \
--data '{
 "sn":"Smith",
 "userName":"psmith",
 "givenName":"Patricia",
 "displayName":"Patti Smith",
 "description" : "psmith - new user",
 "mail" : "psmith@example.com",
 "phoneNumber" : "0831245986",
 "password" : "Passw0rd",
 "manager" : {"_ref" : "managed/user/bjensen"}
}' \
"http://localhost:8080/openidm/managed/user/psmith"
{
 "_id": "psmith",
 "_rev": "00000000ec41097c",
 "sn": "Smith",
 "userName": "psmith",
 "givenName": "Patricia",
 "displayName": "Patti Smith",
 "description": "psmith - new user",
 "mail": "psmith@example.com",
 "phoneNumber": "0831245986",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Note that relationship information is not returned by default. To show the relationship in psmith’s entry, you must explicitly
request her manager entry, as follows:

Object modeling PingIDM

446 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/psmith?_fields=manager"
{
 "_id": "psmith",
 "_rev": "00000000ec41097c",
 "manager": {
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "ffc6f0f3-93db-4939-b9eb-1f8389a59a52",
 "_rev": "0000000081aa991a"
 }
 }
}

If a relationship changes, you can query the updated relationship state when any referenced managed objects are queried. So,
after creating user psmith with manager bjensen, a query on bjensen’s user entry will show a reference to psmith’s entry in her
reports property (because the reports property is configured as the reversePropertyName of the manager property). The
following query shows the updated relationship state for bjensen:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen?_fields=reports"
{
 "_id": "bjensen",
 "_rev": "0000000057b5fe9d",
 "reports": [
 {
 "_ref": "managed/user/psmith",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "psmith",
 "_refProperties": {
 "_id": "ffc6f0f3-93db-4939-b9eb-1f8389a59a52",
 "_rev": "0000000081aa991a"
 }
 }
]
}

IDM maintains referential integrity by deleting the relationship reference, if the object referred to by that relationship is deleted.
In our example, if bjensen’s user entry is deleted, the corresponding reference in psmith’s manager property is removed.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 447

Configure relationship change notification

A relationship exists between two managed objects. By default, when a relationship changes (when it is created, updated, or
deleted), the managed objects on either side of the relationship are not notified of that change. This means that the state of each
object with respect to that relationship field is not recalculated until the object is read. This default behavior improves
performance, especially in the case where many objects are affected by a single relationship change.

For roles , a special kind of relationship, change notification is configured by default. The purpose of this default configuration is
to notify managed users when any of the relationships that link users, roles, and assignments are manipulated. For more
information about relationship change notification in the specific case of managed roles, refer to Roles and relationship change
notification.

To change the default configuration, or to set up notification for other relationship changes, use the notify* properties in the
relationship definition, as described in this section.

A relationship exists between an origin object and a referenced object. These terms reflect which managed object is specified in
the URL (for example managed/user/psmith), and which object is referenced by the relationship (_ref*) properties. For more
information about the relationship properties, refer to Create a relationship between two objects.

In the previous example, a PUT on managed/user/psmith with "manager" : {_ref : "managed/user/bjensen"} , causes
managed/user/psmith to be the origin object, and managed/user/bjensen to be the referenced object for that relationship, as
shown in the following illustration:

Figure 1. Relationship Objects

Note that for the reverse relationship (a PUT on managed/user/bjensen with
"reports" : [{_ref = "managed/user/psmith"}]) managed/user/bjensen would be the origin object, and managed/user/
psmith would be the referenced object.

By default, when a relationship changes, neither the origin object nor the referenced object is notified of the change. So, with the
PUT on managed/user/psmith with "manager" : {_ref : "managed/user/bjensen"} , neither psmith’s object nor bjensen’s
object is notified.

To configure relationship change notification, set the notify and notifySelf properties in your managed object schema. These
properties specify whether objects that reference relationships are notified of a relationship change:

notifySelf

Notifies the origin object of the relationship change.

managed/user/psmith

("manager" : {_ref : "managed/user/bjensen"})

origin object

relationship

managed/user/bjensen

referenced object

info
Auditing is not tied to relationship change notification and is always triggered when a relationship changes. Therefore,
relationship changes are audited, regardless of the notify and notifySelf properties.

Note

Object modeling PingIDM

448 Copyright © 2025 Ping Identity Corporation

In our example, if the manager definition includes "notifySelf" : true , and if the relationship is changed through a
URL that references psmith, then psmith’s object would be notified of the change. For example, for a CREATE, UPDATE or
DELETE request on the psmith/manager , psmith would be notified, but the managed object referenced by this
relationship (bjensen) would not be notified.

If the relationship were manipulated through a request to bjensen/reports , then bjensen would only be notified if the
reports relationship specified "notifySelf" : true .

notify

Notifies the referenced object of the relationship change. Set this property on the resourceCollection of the
relationship property.

In our example, assume that the manager definition has a resourceCollection with a path of managed/user , and that
this object specifies "notify" : true . If the relationship changes through a CREATE, UPDATE, or DELETE on the URL
psmith/manager , then the reference object (managed/user/bjensen) would be notified of the change to the relationship.

notifyRelationships

This property controls the propagation of notifications out of a managed object when one of its properties changes
through an update or patch, or when that object receives a notification through one of these fields.

The notifyRelationships property takes an array of relationships as a value; for example, "notifyRelationships" :
["relationship1", "relationship2"] . The relationships specified here are fields defined on the managed object type
(which might itself be a relationship).

Notifications are propagated according to the recipient’s notifyRelationships configuration. If a managed object type is
notified of a change through one if its relationship fields, the notification is done according to the configuration of the
recipient object. To illustrate, look at the attributes property in the default managed/assignment object:

{
 "name" : "assignment",
 "schema" : {
 ...
 "properties" : {
 ...
 "attributes" : {
 "description" : "The attributes operated on by this assignment.",
 "title" : "Assignment Attributes",
 ...
 "notifyRelationships" : ["roles"]
 },
...

This configuration means that if an assignment is updated or patched, and the assignment’s attributes change in some
way, all the roles connected to that assignment are notified. Because the role managed object has
"notifyRelationships" : ["members"] defined on its assignments field, the notification that originated from the
change to the assignment attribute is propagated to the connected roles , and then out to the members of those roles.

So, the role is notified through its assignments field because an attribute in the assignment changed. This
notification is propagated out of the members field because the role definition has "notifyRelationships" :
["members"] on its assignments field.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 449

By default, roles , assignments , and members use relationship change notification to ensure that relationship changes are
accurately provisioned.

For example, the default user object includes a roles property with notifySelf set to true :

{
 "name" : "user",
 ...
 "schema" : {
 ...
 "properties" : {
 ...
 "roles" : {
 "description" : "Provisioning Roles",
 ...
 "items" : {
 "type" : "relationship",
 ...
 "reverseRelationship" : true,
 "reversePropertyName" : "members",
 "notifySelf" : true,
 ...
 }
...

In this case, notifySelf indicates the origin or user object. If any changes are made to a relationship referencing a role through
a URL that includes a user, the user will be notified of the change. For example, if there is a CREATE on managed/user/psmith/
roles which specifies a set of references to existing roles, user psmith will be notified of the change.

Similarly, the role object includes a members property. That property includes the following schema definition:

{
 "name" : "role",
 ...
 "schema" : {
 ...
 "properties" : {
 ...
 "members" : {
 ...
 "items" : {
 "type" : "relationship",
 ...
 "properties" : {
 ...
 "resourceCollection" : [
 {
 "notify" : true,
 "path" : "managed/user",
 "label" : "User",
 ...
 }
]
 }
...

Object modeling PingIDM

450 Copyright © 2025 Ping Identity Corporation

Notice the "notify" : true setting on the resourceCollection . This setting indicates that if the relationship is created,
updated, or deleted through a URL that references that role, all objects in that resource collection (in this case, managed/user
objects) that are identified as members of that role must be notified of the change.

Validate relationships between objects

Optionally, you can specify that a relationship between two objects must be validated when the relationship is created. For
example, you can indicate that a user cannot reference a role, if that role does not exist.

When you create a new relationship type, validation is disabled by default, because it involves an expensive query to the
relationship that is not always required.

To configure validation of a referenced relationship, set "validate": true in the managed object configuration. The default
schema enables validation for the following relationships:

For user objects—roles, managers, and reports

For role objects—members and assignments

For assignment objects—roles

The following configuration of the manager relationship enables validation, and prevents a user from referencing a manager that
has not already been created:

"manager" : {
 "type" : "relationship",
 ...
 "validate" : true,

emergency_home
To notify an object at the end of a relationship that the relationship has changed (using the notify property),
the relationship must be bidirectional ("reverseRelationship" : true).
When an object is notified of a relationship state change (create, delete, or update), part of that notification
process involves calculating the changed object state with respect to the changed relationship field. For
example, if a managed user is notified that a role has been created, the user object calculates its base state,
and the state of its roles field, before and after the new role was created. This before and after state is then
reconciled. An object that is referenced by a forward (unidirectional) relationship does not have a field that
references that relationship; the object is "pointed-to", but does not "point-back". Because this object cannot
calculate its before and after state with respect to the relationship field, it cannot be notified.
Similarly, relationships that are notified of changes to the objects that reference them must be bidirectional
relationships.
If you configure relationship change notification on a unidirectional relationship, IDM throws an exception.
You cannot configure relationship change notification in the admin UI; you must update the managed object
configuration directly.

Important

•

•

•

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 451

Create bidirectional relationships

In most cases, you define a relationship between two objects in both directions. For example, a relationship between a user and
his manager might indicate a reverse relationship between the manager and her direct report. Reverse relationships are
particularly useful for queries. You might want to query jdoe’s user entry to discover who his manager is, or query bjensen’s user
entry to discover all the users who report to bjensen.

You declare a reverse relationship as part of the relationship definition. Consider the following sample excerpt of the default
managed object configuration:

"reports" : {
 "description" : "Direct Reports",
 "title" : "Direct Reports",
 ...
 "type" : "array",
 "returnByDefault" : false,
 "items" : {
 "type" : "relationship",
 "reverseRelationship" : true,
 "reversePropertyName" : "manager",
 "validate" : true,
 ...
 }
...

The reports property is a relationship between users and managers. So, you can refer to a managed user’s reports by
referencing the reports . However, the reports property is also a reverse relationship ("reverseRelationship" : true) which
means that you can list all users that reference that report.

You can list all users whose manager property is set to the currently queried user.

The reverse relationship includes an optional resourceCollection that lets you query a set of objects, based on specific fields:

"resourceCollection" : [
 {
 "path" : "managed/user",
 "label" : "User",
 "query" : {
 "queryFilter" : "true",
 "fields" : [
 "userName",
 "givenName",
 "sn"
]
 }
 }
]

The path property of the resourceCollection points to the set of objects to be queried. If this path is not in the local
repository, the link expansion can incur a significant performance cost. Although the resourceCollection is optional, the same
performance cost is incurred if the property is absent.

Object modeling PingIDM

452 Copyright © 2025 Ping Identity Corporation

The query property indicates how you will query this resource collection to configure the relationship. In this case,
"queryFilter" : "true", indicates that you can search on any of the properties listed in the fields array when you are
assigning a manager to a user or a new report to a manager.

To configure these relationships from the admin UI, refer to Manage relationships using the admin UI.

Grant relationships conditionally

Relationships can be granted dynamically, based on a specified condition. In order to conditionally grant a relationship, the
schemas for the resources you are creating a relationship between need to be configured to support conditional association. To
do this, three fields in the schema are used:

conditionalAssociation

Boolean. This property is applied to the resourceCollection for the grantor of the relationship. For example, the
members relationship on managed/role specifies that there is a conditional association with the managed/user resource:

"resourceCollection" : [
 {
 "notify" : true,
 "conditionalAssociation" : true,
 "path" : "managed/user",
 "label" : "User",
 "query" : {
 "queryFilter" : "true",
 "fields" : [
 "userName",
 "givenName",
 "sn"
]
 }
 }
]

conditionalAssociationField

This property is a string, specifying the field used to determine whether a conditional relationship is granted. The field is
applied to the resourceCollection of the grantee of the relationship. For example, the roles relationship on managed/
user specifies that the conditional association with managed/role is defined by the condition field in managed/role :

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 453

"resourceCollection" : [
 {
 "path" : "managed/role",
 "label" : "Role",
 "conditionalAssociationField" : "condition",
 "query" : {
 "queryFilter" : "true",
 "fields" : [
 "name"
]
 }
 }
]

The field name specified will usually be condition if you are using default schema, but can be any field that evaluates a
condition and has been flagged as isConditional .

isConditional

Boolean. This is applied to the field you wish to check to determine whether membership in a relationship is granted. Only
one field on a resource can be marked as isConditional . For example, in the relationship between managed/user and
managed/role , conditional membership in the relationship is determined by the query filter specified in the managed/
role condition field:

"condition" : {
 "description" : "A conditional filter for this role",
 "title" : "Condition",
 "viewable" : false,
 "searchable" : false,
 "isConditional" : true,
 "type" : "string"
}

Conditions support both properties and virtual properties derived from other relationships, if the query property has been
configured. Conditions are a powerful tool for dynamically creating relationships between two objects. An example of conditional
relationships in use is covered in Grant a Role Based on a Condition.

View relationships over REST

By default, information about relationships is not returned as the result of a GET request on a managed object. You must
explicitly include the relationship property in the request, for example:

Object modeling PingIDM

454 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/psmith?_fields=manager"
{
 "_id": "psmith",
 "_rev": "0000000014c0b68d",
 "manager": {
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "42418f09-ad6c-4b77-bf80-2a12d0c44678",
 "_rev": "00000000288b921e"
 }
 }
}

To obtain more information about the referenced object (psmith’s manager, in this case), you can include additional fields from
the referenced object in the query, using the syntax object/property (for a simple string value) or object/*/property (for an
array of values).

The following example returns the email address and contact number for psmith’s manager:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/psmith?_fields=manager/mail,manager/telephoneNumber"
{
 "_id": "psmith",
 "_rev": "0000000014c0b68d",
 "manager": {
 "_rev": "000000005bac8c10",
 "_id": "bjensen",
 "telephoneNumber": "12345678",
 "mail": "bjensen@example.com",
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "42418f09-ad6c-4b77-bf80-2a12d0c44678",
 "_rev": "00000000288b921e"
 }
 }
}

To query all the relationships associated with a managed object, query the reference (*_ref) property of that object. For
example, the following query shows all the objects that are referenced by psmith’s entry:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 455

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/psmith?_fields=*_ref"
{
 "_id": "psmith",
 "_rev": "0000000014c0b68d",
 "reports": [],
 "manager": {
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "42418f09-ad6c-4b77-bf80-2a12d0c44678",
 "_rev": "00000000288b921e"
 }
 },
 "roles": [],
 "_meta": {
 "_ref": "internal/usermeta/601a3086-8c64-4966-b33c-7a213b13d859",
 "_refResourceCollection": "internal/usermeta",
 "_refResourceId": "601a3086-8c64-4966-b33c-7a213b13d859",
 "_refProperties": {
 "_id": "9de71bd7-1e1b-462e-b565-ac0a7d2f9269",
 "_rev": "0000000037f79a00"
 }
 },
 "authzRoles": [],
 "_notifications": [
 {
 "_ref": "internal/notification/3000bb64-4619-490a-8c4b-50ae7ca6b20c",
 "_refResourceCollection": "internal/notification",
 "_refResourceId": "3000bb64-4619-490a-8c4b-50ae7ca6b20c",
 "_refProperties": {
 "_id": "f54b6f84-7d3f-4486-a7c1-676fca03eeab",
 "_rev": "00000000748da107"
 }
 }
]
}

To expand that query to show all fields within each relationship, add a wildcard as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/psmith?_fields=*_ref/*"

Object modeling PingIDM

456 Copyright © 2025 Ping Identity Corporation

Which outputs the following:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 457

{
 "_id": "psmith",
 "_rev": "0000000014c0b68d",
 "reports": [],
 "manager": {
 "_rev": "000000005bac8c10",
 "_id": "bjensen",
 "userName": "bjensen",
 "givenName": "Babs",
 "sn": "Jensen",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "bjensen@example.com",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": [],
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "42418f09-ad6c-4b77-bf80-2a12d0c44678",
 "_rev": "00000000288b921e"
 }
 },
 "roles": [],
 "_meta": {
 "_rev": "0000000079e86d8d",
 "_id": "601a3086-8c64-4966-b33c-7a213b13d859",
 "createDate": "2020-07-29T08:52:20.061794Z",
 "lastChanged": {
 "date": "2020-07-29T11:52:16.424167Z"
 },
 "loginCount": 0,
 "_ref": "internal/usermeta/601a3086-8c64-4966-b33c-7a213b13d859",
 "_refResourceCollection": "internal/usermeta",
 "_refResourceId": "601a3086-8c64-4966-b33c-7a213b13d859",
 "_refProperties": {
 "_id": "9de71bd7-1e1b-462e-b565-ac0a7d2f9269",
 "_rev": "0000000037f79a00"
 }
 },
 "authzRoles": [],
 "_notifications": [
 {
 "_rev": "00000000d93a6598",
 "_id": "3000bb64-4619-490a-8c4b-50ae7ca6b20c",
 "notificationType": "info",
 "message": "Your profile has been updated.",
 "createDate": "2020-07-29T11:52:16.517200Z",
 "_ref": "internal/notification/3000bb64-4619-490a-8c4b-50ae7ca6b20c",
 "_refResourceCollection": "internal/notification",
 "_refResourceId": "3000bb64-4619-490a-8c4b-50ae7ca6b20c",
 "_refProperties": {
 "_id": "f54b6f84-7d3f-4486-a7c1-676fca03eeab",
 "_rev": "00000000748da107"
 }
 }
]
}

Object modeling PingIDM

458 Copyright © 2025 Ping Identity Corporation

View relationships in graph form

The Identity Relationships widget gives a visual display of the relationships between objects.

Add the Identity Relationships widget to a dashboard

This widget is not displayed on any dashboard by default. You can add it as follows:

Log in to the admin UI.

From the navigation bar, click Dashboards, and select a dashboard. Alternatively, create a dashboard.

On the applicable dashboard page, click Add Widget.

In the Add Widget window, click the drop-down menu, scroll down to the Utilities item, and select Identity Relationships.

Click Settings, and make selections from the following drop-down menus:

Widget Size—Select from Small, Medium, or Large.

Chart Type:

Collapsible Tree Layout:

Radial Layout:

Default Object—Select the object for which to display relationships; for example, User.

Display/Search Property—Select one or more properties to search on the default object that will be displayed in
the widget; for example, userName and city.

info
Metadata is implemented using the relationships mechanism so when you request all relationships for a user (with
_ref/), you will also get all the metadata for that user, if metadata is being tracked. For more information, refer to
Track user metadata.

Note

1.

2.

3.

4.

5.

◦

◦

▪

▪

◦

◦

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 459

Optionally, click Preview to view a widget preview.

Click Add to add the widget to the dashboard.

Use the Identity Relationships widget

To use the Identity Relationships widget:

Select a user within the widget.

The following example shows relationships for imartinez, including Manager and Direct Reports:

You can interact with the graph in multiple ways:

Select or clear Data Types to filter information.

Click and drag the graph for a different view.

Double-click a user to view their profile.

Manage relationships using the admin UI

This section describes how to set up relationships between managed objects by using the admin UI. You can set up a relationship
between any object types. The examples in this section demonstrate how to set up a relationship between users and devices,
such as IoT devices.

For illustration purposes, these examples assume that you have started IDM and already have some managed users. If this is not
the case, start the server with the sample configuration described in Synchronize data from a CSV file to IDM, and run a
reconciliation to populate the managed user repository.

6.

7.

1.

2.

◦

◦

◦

Object modeling PingIDM

460 Copyright © 2025 Ping Identity Corporation

In the following procedures, you will:

Create a new managed object type named Device and add a few devices, each with unique serial numbers (see Create a
New Device Object Type).

Set up a bidirectional relationship between the Device object and the managed User object (see Configure the
Relationship Between a Device and a User).

Demonstrate the relationships, assign devices to users, and show relationship validation (see Demonstrate the
Relationship).

Create a new Device object type

This procedure illustrates how to set up a new Device managed object type, and add properties to collect information such as
model, manufacturer, and serial number for each device.

From the navigation bar, click Configure > Managed Objects.

On the Managed Objects page, click New Managed Object.

On the New Managed Object page, enter information in the following fields, and click Save:

The Managed Objects > Device page displays.

Click the Properties tab.

For each following property, click Add a Property, enter the information, and click Save:

•

•

•

1.

2.

3.

Field Value

Managed Object Name Device

Readable Title Device

Managed Object Icon fa-mobile-phone

Material Design Icon phone

Description Devices

4.

5.

Property Name Label Type Required

model Model String

serialNumber Serial Number String

manufacturer Manufacturer String

description Description String

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 461

After you finish, the properties list should look like this:

From the navigation bar, click Manage > Device.

For each of the following devices, on the Device List page, click New Device, enter the applicable information, and click
Save:

Property Name Label Type Required

category Category String

6.

7.

Object modeling PingIDM

462 Copyright © 2025 Ping Identity Corporation

Device 1

Field Value

Model Generic Phone

Serial Number Phone-1

Manufacturer PhoneCo

Description Entry level phone

Category Smart Phone

Device 2

Field Value

Model Generic Watch

Serial Number Watch-1

Manufacturer WatchCo

Description Entry level watch

Category Smart Watch

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 463

From the navigation bar, click Manage > Device.

The Device List page should look similar to the following:

Device 3

Field Value

Model Special Phone

Serial Number Phone-2

Manufacturer PhoneCo

Description Intermediate level phone

Category Smart Phone

Device 4

Field Value

Model Special Watch

Serial Number Watch-2

Manufacturer WatchCo

Description Intermediate level watch

Category Smart Watch

8.

Object modeling PingIDM

464 Copyright © 2025 Ping Identity Corporation

Configure the relationship between a device and a user

To set up a relationship between the Device object type and the User object type, you must identify the specific property on each
object that will form the basis of the relationship. For example, a device must have an owner and a user can own one or more
devices. The property type for each of these must be relationship.

In this procedure, you will update the managed Device object type to add a new Relationship type property named owner . You
will then link that property to a new property on the managed User object, named device . At the end of the procedure, the
updated object types will look as follows:

info
The other procedures in this topic assume that you have added these devices.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 465

Figure 1. Relationship Properties on User and Device Objects

Create a new relationship property on the Device object:

From the navigation bar, click Configure > Managed Objects, and select the Device object.

On the Managed Objects > Device page, click the Properties tab.

Click Add a Property, enter the information, and click Save

Click the owner property row.

The Details tab displays the current Relationship Configuration:

1.

◦

◦

2.

Property Name Label Type Required

owner Owner Relationship

info
You cannot change the property Type after creation. If you create a property with an incorrect Type, you must
delete the property and recreate it.

Note

3.

Object modeling PingIDM

466 Copyright © 2025 Ping Identity Corporation

Click the + Related Resource area.

In the Add Resource window, select user from the Resource drop-down list.

This sets up a relationship between the Device object and the managed user object.

From the Display Properties drop-down list, select the user object properties to display when viewing a user’s devices in
the UI. For example, you may want to access a user’s userName, mail, and telephoneNumber.

Click Show advanced options. Notice that the Query Filter field is set to true. This setting lets you search on any selected
Display Properties when assigning a device to a user.

Click Save.

4.

5.

6.

7.

8.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 467

The Managed > Device > owner page now displays the one-way relationship between a device and a user.

Click Save.

To configure the reverse relationship, click + Two-way Relationship:

In the Reverse Relationship pop-up, select Has Many. This indicates a single user can have more than one device.

The Configure Reverse Relationship window displays.

9.

10.

1.

Object modeling PingIDM

468 Copyright © 2025 Ping Identity Corporation

In the Reverse property name field, enter the new property name that will be created in the managed user object
type, device for this example.

From the Display Properties drop-down list, select the properties of the device object to display when viewing a
user in the UI. For example, you might want to access the model and serialNumber of each device.

Click Show advanced options. Notice that the Query Filter field is set to true. This setting allows you to search on
any of the selected Display Properties when assigning a device to a user.

Enable Validate relationship.

This setting ensures the relationship is valid when a device is assigned to a user. IDM verifies the user and device
objects exist, and that the device has not already been assigned to another user.

Click Save.

The Managed > Device > owner page now displays the two-way relationship showing that a user objects can have
many devices.

2.

3.

4.

5.

6.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 469

Click Save.

From the navigation bar, click Configure > Managed Objects.

On the Managed Objects page, click User.

On The Managed Objects > user page, click the Properties tab.

Notice the device property was created automatically when you configured the relationship.

Demonstrate the relationship

This procedure demonstrates how devices can be assigned to users, based on the relationship configuration that you set up in
the previous procedures.

From the navigation bar, click Manage > User.

On the User List page, click a user entry.

On the User > userName page, click the Device tab, and then click Add Device.

In the Add Device window, click the Device field to display the list of devices that you added in the previous procedure.

Select two devices, and click Add.

The Device tab displays the added devices.

7.

11.

12.

13.

1.

2.

3.

4.

5.

Object modeling PingIDM

470 Copyright © 2025 Ping Identity Corporation

Click the Show Chart button.

A graphical representation of the relationship between the user and her devices is displayed:

You can also assign an owner to a device.

From the navigation bar, click Manage > Device, and click a device that you did not assign in the previous step.

On the Device > model page, click Add Owner.

In the Add Owner window, select a user, and click Add.

Click Save.

6.

7.

8.

9.

10.

lightbulb_2
To demonstrate the relationship validation, try to assign a device that has already been assigned to a different user.
The UI displays the error message Conflict with Existing Relationship.

Tip

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 471

View the relationship configuration in the UI

The Managed Objects Relationship Diagram provides a visual display of the relationship configuration between managed objects.
Unlike the Identity Relationships widget, described in View relationships in graph form, this widget does not show the actual
relationship data, but rather shows the configured relationship types.

This widget is not displayed on any dashboard by default. You can add it as follows:

Log in to the admin UI.

From the navigation bar, click Dashboards, and select a dashboard. Alternatively, create a dashboard.

On the applicable dashboard page, click Add Widget.

In the Add Widget window, click the drop-down menu, scroll down to the Utilities item, and select Managed Objects
Relationship Diagram.

The Preview button shows the current relationship configuration. The following image shows the relationship
configuration for a basic IDM installation with no specific configuration:

The legend indicates which relationships are required, optional, one-to-one, and one-to-many.

Roles

The managed role object is a default managed object type that uses the relationships mechanism. You should understand how
relationships work before you read about IDM roles.

1.

2.

3.

4.

info
There are no configurable settings for this widget.

Note

5.

Object modeling PingIDM

472 Copyright © 2025 Ping Identity Corporation

IDM role types

IDM supports two types of roles:

Provisioning roles : used to specify how objects are provisioned to an external system.

Provisioning roles are created as managed roles, at the context path openidm/managed/role/role-name , and are granted
to managed users as values of the user’s roles property.

Authorization roles : used to specify the authorization rights of a managed object internally, within IDM.

Authorization roles are created as internal roles, at the context path openidm/internal/role/role-name , and are
granted to managed users as values of the user’s authzRoles property.

Provisioning roles and authorization roles use relationships to link the role to the managed object to which it applies.
Authorization roles can also be granted statically, during authentication, with the defaultUserRoles property.

For more information, refer to Authentication and roles.

Managed roles

Managed roles are defined like any other managed object, and are granted to users through the relationships mechanism. A
managed role can be granted manually, as a static value of the user’s roles attribute, or dynamically, as a result of a condition or
script. For example, a user might be granted a role such as sales-role dynamically, if that user is in the sales organization.

A user’s roles attribute takes an array of references as a value, where the references point to the managed roles. For example, if
user bjensen has been granted two roles (employee and supervisor), the value of bjensen’s roles attribute would look
something like the following:

•

•

info
For information about internal authorization roles, and how IDM controls authorization to its own endpoints, refer to
Authorization and roles.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 473

"roles": [
 {
 "_ref": "managed/role/employee",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "employee",
 "_refProperties": {
 "_grantType": "",
 "_id": "bb399428-21a9-4b01-8b74-46a7ac43e0be",
 "_rev": "00000000e43e9ba7"
 }
 },
 {
 "_ref": "managed/role/supervisor",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "supervisor",
 "_refProperties": {
 "_grantType": "",
 "_id": "9f7d124b-c7b1-4bcf-9ece-db4900e37c31",
 "_rev": "00000000e9c19d26"
 }
 }
]

The _refResourceCollection is the container that holds the role. The _refResourceId is the ID of the role. The _ref property
is a resource path that is derived from the _refResourceCollection and the URL-encoded _refResourceId . _refProperties
provides more information about the relationship.

Manipulate roles

These sections show the REST calls to create, read, update, and delete managed roles, and to grant roles to users. For information
about using roles to provision users to external systems, refer to Use assignments to provision users.

Create a role

Use the admin UI

From the navigation bar, click Manage > Role.

On the Roles page, click New Role.

On the New Role page, enter a name and description, and click Save.

emergency_home
Some of the examples in this documentation set use client-assigned IDs (such as bjensen and scarter) for the user
objects because it makes the examples easier to read. If you create objects using the admin UI, they are created with
server-assigned IDs (such as 55ef0a75-f261-47e9-a72b-f5c61c32d339). This particular example uses a client-
assigned role ID that is the same as the role name. All other examples in this chapter use server-assigned IDs.
Generally, immutable server-assigned UUIDs are used for all managed objects in production environments.

Important

1.

2.

3.

Object modeling PingIDM

474 Copyright © 2025 Ping Identity Corporation

Optionally, do any of the following, and click Save:

To restrict the role grant to a set time period, enable Temporal Constraint, and set the Timezone Offset, Start
Date, and End Date.

To define a query filter that dynamically grants the role to members, enable Condition, and define the query.

For more information, refer to Use temporal constraints to restrict effective roles and Grant Roles Dynamically.

Use REST

To create a role, send a PUT or POST request to the /openidm/managed/role context path. The following example creates a
managed role named employee :

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "name": "employee",
 "description": "Role granted to workers on the company payroll"
}' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "5790220a-719b-49ad-96a6-6571e63cbaf1",
 "_rev": "0000000079c6644f",
 "name": "employee",
 "description": "Role granted to workers on the company payroll"
}

This employee role has no corresponding assignments. Assignments are what enables the provisioning logic to the external
system. Assignments are created and maintained as separate managed objects, and are referred to within role definitions. For
more information about assignments, refer to Use assignments to provision users.

List roles

To list all managed roles over REST, query the openidm/managed/role endpoint. The following example shows the employee role
that you created in the previous example:

4.

◦

◦

info
By default, the role name must be unique. To change this behavior, adjust the policy validation on the role property
in your managed object configuration.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 475

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/role?_queryFilter=true"
{
 "result": [
 {
 "_id": "5790220a-719b-49ad-96a6-6571e63cbaf1",
 "_rev": "0000000079c6644f",
 "name": "employee",
 "description": "Role granted to workers on the company payroll"
 }
],
 ...
}

To display all configured managed roles in the admin UI, select Manage > Role.

If you have a large number of roles, select Advanced Filter to build a more complex query filter to display only the roles you want.

Grant roles to a user

You grant roles to users through the relationship mechanism. Relationships are essentially references from one managed object
to another; in this case, from a user object to a role object. For more information about relationships, refer to Relationships
between objects.

You can grant roles statically or dynamically.

To grant a role statically, you must do one of the following:

Update the value of the user’s roles property to reference the role.

Update the value of the role’s members property to reference the user.

Dynamic role grants use the result of a condition or script to update a user’s list of roles.

Grant roles statically

Grant a role to a user statically using the REST interface or the admin UI as follows:

Use REST

Use one of the following methods to grant a role to a user over REST:

Add the user as a role member. The following example adds user scarter as a member of the role
(5790220a-719b-49ad-96a6-6571e63cbaf1):

•

•

•

Object modeling PingIDM

476 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "_ref":"managed/user/scarter",
 "_refProperties":{}
}' \
"http://localhost:8080/openidm/managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1/members?
_action=create"
{
 "_id": "4c32ae53-abed-45f8-bc84-c367e2b0e194",
 "_rev": "00000000c67a99ce",
 "_ref": "managed/user/scarter",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "scarter",
 "_refProperties": {
 "_id": "4c32ae53-abed-45f8-bc84-c367e2b0e194",
 "_rev": "00000000c67a99ce"
 }
}

Update the user’s roles property to refer to the role.

The following example grants the employee role (5790220a-719b-49ad-96a6-6571e63cbaf1) to user scarter:

info
This preferred method does not incur an unnecessary performance cost when working with a role that
contains many members.

Note

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 477

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/roles/-",
 "value": {"_ref" : "managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1"}
 }
]' \
"http://localhost:8080/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "000000003be825ce",
 "mail": "scarter@example.com",
 "givenName": "Steven",
 "sn": "Carter",
 "description": "Created By CSV",
 "userName": "scarter",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [
 {
 "_ref": "managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1"
 }
],
 "effectiveAssignments": []
}

Note that scarter’s effectiveRoles attribute has been updated with a reference to the new role. For more information
about effective roles and effective assignments, refer to Effective roles and effective assignments.

When you update a user’s existing roles array, use the - special index to add the new value to the set. For more
information, refer to Set semantic arrays in Patch Operation: Add.

Update the role’s members property to refer to the user.

The following sample command makes scarter a member of the employee role:

•

Object modeling PingIDM

478 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/members/-",
 "value": {"_ref" : "managed/user/scarter"}
 }
]' \
"http://localhost:8080/openidm/managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1"
{
 "_id": "5790220a-719b-49ad-96a6-6571e63cbaf1",
 "_rev": "0000000079c6644f",
 "name": "employee",
 "description": "Role granted to workers on the company payroll"
}

The members property of a role is not returned by default in the output. To show all members of a role, you must
specifically request the relationship properties (*_ref) in your query. The following example lists the members of the
employee role (currently only scarter):

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1?_fields=*_ref,name"
{
 "_id": "5790220a-719b-49ad-96a6-6571e63cbaf1",
 "_rev": "0000000079c6644f",
 "name": "employee",
 "assignments": [],
 "members": [
 {
 "_ref": "managed/user/scarter",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "scarter",
 "_refProperties": {
 "_id": "7ad15a7b-6806-487b-900d-db569927f56d",
 "_rev": "0000000075e09cbf"
 }
 }
]
}

You can replace an existing role grant with a new one by using the replace operation in your patch request.•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 479

The following command replaces scarter’s entire roles entry (that is, overwrites any existing roles) with a single entry, the
reference to the employee role (ID 5790220a-719b-49ad-96a6-6571e63cbaf1):

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "replace",
 "field": "/roles",
 "value": [
 {"_ref":"managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1"}
]
 }
]' \
"http://localhost:8080/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "00000000da112702",
 "mail": "scarter@example.com",
 "givenName": "Steven",
 "sn": "Carter",
 "description": "Created By CSV",
 "userName": "scarter",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [
 {
 "_ref": "managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1"
 }
],
 "effectiveAssignments": []
}

Use the admin UI

Use one of the following UI methods to grant a role to a user:

Update the user entry:

Select Manage > User, and select the user to whom you want to grant the role.

Select the Provisioning Roles tab, and select Add Provisioning Roles.

Select the role from the drop-down list, and select Add.

1.

2.

3.

Object modeling PingIDM

480 Copyright © 2025 Ping Identity Corporation

Update the role entry:

Select Manage > Role, and select the role that you want to grant.

Select the Role Members tab, and select Add Role Members.

Select the user from the drop-down list, and select Add.

Grant roles dynamically

Grant a role dynamically by using one of the following methods:

Use a condition, expressed as a query filter, in the role definition. If the condition is true for a particular member, that
member is granted the role. Conditions can be used in both managed and internal roles.

Use a custom script to define a more complex role-granting strategy.

Grant a role based on a condition

A role that is granted based on a defined condition is called a conditional role. To create a conditional role, include a query filter in
the role definition.

To create a conditional role by using the admin UI, select Condition on the role Details page, then define the query filter that will
be used to assess the condition.

To create a conditional role over REST, include the query filter as a value of the condition property in the role definition. The
following example creates a role, fr-employee , that will be granted only to those users who live in France (whose country
property is set to FR):

1.

2.

3.

•

•

emergency_home
Properties that are used as the basis of a conditional role query must be configured as searchable and must be
indexed in the repository configuration. To configure a property as searchable , update the property definition in
your managed object configuration. For more information, refer to Create and modify object types.

Important

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 481

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "name": "fr-employee",
 "description": "Role granted to employees resident in France",
 "condition": "/country eq \"FR\""
}' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "eb18a2e2-ee1e-4cca-83fb-5708a41db94f",
 "_rev": "000000004085704c",
 "name": "fr-employee",
 "description": "Role granted to employees resident in France",
 "condition": "/country eq \"FR\""
}

When a conditional role is created or updated, IDM automatically assesses all managed users, and recalculates the value of their
roles property, if they qualify for that role. When a condition is removed from a role, that is, when the role becomes an
unconditional role, all conditional grants are removed. So, users who were granted the role based on the condition, have that role
removed from their roles property.

Query a user’s roles

To query user roles over REST, query the user’s roles property. The following example shows that scarter has been granted two
roles—an employee role, and an fr-employee role:

error
When a conditional role is defined in an existing data set, every user entry (including the mapped entries on remote
systems) must be updated with the assignments implied by that conditional role. The time that it takes to create a
new conditional role is impacted by the following items:

The number of managed users affected by the condition.
The number of assignments related to the conditional role.
The average time required to provision updates to all remote systems affected by those assignments.

In a data set with a very large number of users, creating a new conditional role can therefore incur a significant
performance cost when you create it. Ideally, you should set up your conditional roles at the beginning of your
deployment to avoid performance issues later.

Caution

•
•
•

Object modeling PingIDM

482 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/scarter/roles?_queryFilter=true&_fields=_ref/*,name"
{
 "result": [
 {
 "_id": "5a023862-654d-4d7f-b9d0-7c151b8dede5",
 "_rev": "00000000baa999c1",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refResourceRev": "0000000027a959cf",
 "name": "employee",
 "_ref": "managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refProperties": {
 "_id": "5a023862-654d-4d7f-b9d0-7c151b8dede5",
 "_rev": "00000000baa999c1"
 }
 },
 {
 "_id": "b281ffdf-477e-4211-a112-84476435bab2",
 "_rev": "00000000d612a248",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "01ee6191-75d8-4d4b-9291-13a46592c57a",
 "_refResourceRev": "000000000cb0794d",
 "name": "fr-employee",
 "_ref": "managed/role/01ee6191-75d8-4d4b-9291-13a46592c57a",
 "_refProperties": {
 "_grantType": "conditional",
 "_id": "b281ffdf-477e-4211-a112-84476435bab2",
 "_rev": "00000000d612a248"
 }
 }
],
 ...
}

Note that the fr-employee role indicates a _grantType of conditional . This property indicates how the role was granted to
the user. If no _grantType is listed, the role was granted statically.

Querying a user’s roles in this way does not return any roles that would be in effect as a result of a custom script, or of any
temporal constraint applied to the role. To return a complete list of all the roles in effect at a specific time, query the user’s
effectiveRoles property, as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/scarter?_fields=effectiveRoles"

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 483

Alternatively, to check which roles have been granted to a user, either statically or dynamically, look at the user’s entry in the
admin UI:

Select Manage > User, then select the user whose roles you want to see.

Select the Provisioning Roles tab.

If you have a large number of managed roles, use the Advanced Filter option on the Role List page to build a custom
query.

Delete a user’s roles

To remove a statically granted role from a user entry, do one of the following:

Update the value of the user’s roles property to remove the reference to the role.

Update the value of the role’s members property to remove the reference to that user.

Over REST

Use one of the following methods to remove a role grant from a user:

DELETE the role from the user’s roles property, including the reference ID (the ID of the relationship between the user
and the role) in the delete request.

The following example removes the employee role from user scarter. The role ID is
b8783543-869a-4bd4-907e-9c1d89f826ae , but the ID required in the DELETE request is the reference ID
(5a023862-654d-4d7f-b9d0-7c151b8dede5):

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/user/scarter/roles/5a023862-654d-4d7f-b9d0-7c151b8dede5"
{
 "_id": "5a023862-654d-4d7f-b9d0-7c151b8dede5",
 "_rev": "00000000baa999c1",
 "_ref": "managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refProperties": {
 "_id": "5a023862-654d-4d7f-b9d0-7c151b8dede5",
 "_rev": "00000000baa999c1"
 }
}

1.

2.

3.

•

•

emergency_home
A delegated administrator must use PATCH to add or remove relationships.
Roles that have been granted as the result of a condition can only be removed when the condition is changed or
removed, or when the role itself is deleted.

Important

•

Object modeling PingIDM

484 Copyright © 2025 Ping Identity Corporation

PATCH the user entry to remove the role from the array of roles, specifying the value of the role object in the JSON
payload.

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request PATCH \
--data '[
 {
 "operation" : "remove",
 "field" : "/roles",
 "value" : {
 "_ref": "managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refProperties": {
 "_id": "5a023862-654d-4d7f-b9d0-7c151b8dede5",
 "_rev": "00000000baa999c1"
 }
 }
 }
]' \
"http://localhost:8080/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "000000007b78257d",
 "mail": "scarter@example.com",
 "givenName": "Steven",
 "sn": "Carter",
 "description": "Created By CSV",
 "userName": "scarter",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [
 {
 "_ref": "managed/role/01ee6191-75d8-4d4b-9291-13a46592c57a"
 }
],
 "effectiveAssignments": [],
 "preferences": {
 "updates": false,
 "marketing": false
 },
 "country": "France"
}

•

error
When you remove a role in this way, you must include the entire object in the value, as shown in the following
example:

Caution

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 485

DELETE the user from the role’s members property, including the reference ID (the ID of the relationship between the user
and the role) in the delete request.

The following example first queries the members of the employee role, to obtain the ID of the relationship, then removes
bjensen’s membership from that role:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae/members?
_queryFilter=true"
{
 "result": [
 {
 "_id": "a5a4bf94-6425-4458-aae4-bbd6ad094f72",
 "_rev": "00000000c25d994a",
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "a5a4bf94-6425-4458-aae4-bbd6ad094f72",
 "_rev": "00000000c25d994a"
 }
 }
],
 ...
}

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae/members/
a5a4bf94-6425-4458-aae4-bbd6ad094f72"
{
 "_id": "a5a4bf94-6425-4458-aae4-bbd6ad094f72",
 "_rev": "00000000c25d994a",
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "a5a4bf94-6425-4458-aae4-bbd6ad094f72",
 "_rev": "00000000c25d994a"
 }
}

Use the admin UI

Use one of the following methods to remove a user’s roles:

•

Object modeling PingIDM

486 Copyright © 2025 Ping Identity Corporation

Method 1:

Select Manage > User, and select the user whose roles you want to remove.

Select the Provisioning Roles tab, select the role that you want to remove, then select Remove Selected Provisioning
Roles.

Method 2:

Select Manage > Role, and select the role whose members you want to remove.

Select the Role Members tab, select the members that you want to remove, then select Remove Selected Role Members.

Delete a role definition

To delete a role over the REST interface, simply delete that managed object. The following command deletes the employee role
created in the previous section:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae"
{
 "_id": "b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_rev": "0000000027a959cf",
 "privileges": [],
 "name": "employee",
 "description": "All employees"
}

To delete a role through the admin UI, select Manage > Role, select the role you want to remove, then click Delete Selected.

1.

2.

1.

2.

info
You cannot delete a role that is currently granted to users. If you attempt to delete a role that is granted to a user
(either over the REST interface, or by using the admin UI), IDM returns an error. The following example attempts to
remove a role that is still granted to a user:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/role/01ee6191-75d8-4d4b-9291-13a46592c57a"
{
 "code": 409,
 "reason": "Conflict",
 "message": "Cannot delete a role that is currently granted"
}

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 487

Use temporal constraints to restrict effective roles

Temporal constraints restrict the period that a role is effective. You can apply temporal constraints to managed and internal
roles, and to role grants (for individual users).

For example, you might want a role, contractors-2020 , to apply to all contract employees for the year 2020. In this case, you
would set the temporal constraint on the role. Alternatively, you might want to assign a contractors role that applies to an
individual user only for the period of their contract of employment.

The following examples show how to set temporal constraints on role definitions, and on individual role grants.

Add a temporal constraint to a role

When you create a role, you can include a temporal constraint in the role definition that restricts the validity of the role,
regardless of how that role is granted. Temporal constraints are expressed as a time interval in ISO 8601 date and time format.
For more information on this format, refer to the ISO 8601 standard.

The following example adds a contractor role over the REST interface. The role is effective from March 1st, 2020 to August 31st,
2020:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "name": "contractor",
 "description": "Role granted to contract workers for 2020",
 "temporalConstraints": [
 {
 "duration": "2020-03-01T00:00:00.000Z/2020-08-31T00:00:00.000Z"
 }
]
}' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "ed761370-b24f-4e21-8e58-a3230942da67",
 "_rev": "000000007429750e",
 "name": "contractor",
 "description": "Role granted to contract workers for 2020",
 "temporalConstraints": [
 {
 "duration": "2020-03-01T00:00:00.000Z/2020-08-31T00:00:00.000Z"
 }
]
}

This example specifies the time zone as Coordinated Universal Time (UTC) by appending Z to the time. If no time zone
information is provided, the time zone is assumed to be local time. To specify a different time zone, include an offset (from UTC)
in the format ±hh:mm . For example, an interval of 2020-03-01T00:00:00.000-07:00/2020-08-31T00:00:00.000-07:00 specifies
a time zone that is seven hours behind UTC.

Object modeling PingIDM

488 Copyright © 2025 Ping Identity Corporation

https://en.wikipedia.org/wiki/ISO_8601#Time_intervals
https://en.wikipedia.org/wiki/ISO_8601#Time_intervals

When the period defined by the constraint has ended, the role object remains in the repository, but the effective roles script will
not include the role in the list of effective roles for any user.

The following example assumes that user scarter has been granted a role contractor-march . A temporal constraint has been
included in the contractor-march role definition, specifying that the role should be applicable only during the month of March
2020. At the end of this period, a query on scarter’s entry shows that his roles property still includes the contractor-march
role (with ID 0face495-772d-4d36-a30d-8594618aba0d), but his effectiveRoles property does not:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/scarter?_fields=_id,userName,roles,effectiveRoles"
{
 "_id": "scarter",
 "_rev": "00000000e5fdeb51",
 "userName": "scarter",
 "effectiveRoles": [],
 "roles": [
 {
 "_ref": "managed/role/0face495-772d-4d36-a30d-8594618aba0d",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "0face495-772d-4d36-a30d-8594618aba0d",
 "_refProperties": {
 "_id": "5f41d5a5-19b4-4524-a4b1-445790ff14da",
 "_rev": "00000000cb339810"
 }
 }
]
}

The role is still in place but is no longer effective.

To restrict the period during which a role is valid by using the admin UI, select Temporal Constraint on the role Details tab, then
select a timezone offset relative to GMT and the start and end dates for the required period.

Add a temporal constraint to a role grant

To restrict the validity of a role for individual users, apply a temporal constraint at the grant level, rather than as part of the role
definition. In this case, the temporal constraint is taken into account per user, when the user’s effective roles are calculated.
Temporal constraints that are defined at the grant level can be different for each user who is a member of that role.

To apply a temporal constraint to a grant over the REST interface, include the constraint as one of the _refProperties of the
relationship between the user and the role. The following example assumes a contractor role, with ID ed761370-
b24f-4e21-8e58-a3230942da67 . The command adds user bjensen as a member of that role, with a temporal constraint that
specifies that she be a member of the role for one year only, from January 1st, 2020 to January 1st, 2021:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 489

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/members/-",
 "value": {
 "_ref": "managed/user/bjensen",
 "_refProperties": {
 "temporalConstraints": [{"duration": "2020-01-01T00:00:00.000Z/2021-01-01T00:00:00.000Z"}]
 }
 }
 }
]' \
"http://localhost:8080/openidm/managed/role/ed761370-b24f-4e21-8e58-a3230942da67"
{
 "_id": "ed761370-b24f-4e21-8e58-a3230942da67",
 "_rev": "000000007429750e",
 "name": "contractor",
 "description": "Role granted to contract workers for 2020",
 "temporalConstraints": [
 {
 "duration": "2020-03-01T00:00:00.000Z/2020-08-31T00:00:00.000Z"
 }
]
}

A query on bjensen’s roles property shows that the temporal constraint has been applied to this grant:

Object modeling PingIDM

490 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen/roles?_queryFilter=true"
{
 "result": [
 {
 "_id": "40600260-111d-4695-81f1-450365025784",
 "_rev": "00000000173daedb",
 "_ref": "managed/role/ed761370-b24f-4e21-8e58-a3230942da67",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "ed761370-b24f-4e21-8e58-a3230942da67",
 "_refProperties": {
 "temporalConstraints": [
 {
 "duration": "2020-01-01T00:00:00.000Z/2021-01-01T00:00:00.000Z"
 }
],
 "_id": "40600260-111d-4695-81f1-450365025784",
 "_rev": "00000000173daedb"
 }
 }
],
 ...
}

To restrict the period during which a role grant is valid using the admin UI, set a temporal constraint when you add the member
to the role.

For example, to specify that bjensen be added to a Contractor role only for the period of her employment contract, select
Manage > Role, select the Contractor role, then select Add Role Members. On the Add Role Members screen, select bjensen
from the list, then enable the Temporal Constraint, and specify the start and end date of her contract.

Use assignments to provision users

Authorization roles control access to IDM itself. Provisioning roles define rules for how attribute values are updated on external
systems. These rules are configured through assignments attached to a provisioning role definition. The purpose of an assignment
is to provision an attribute or set of attributes based on an object’s role membership.

The synchronization mapping configuration between two resources provides the logic governing how an account is mapped from
a source to a target system. Role assignments provide additional provisioning logic not covered in the basic mapping
configuration. The attributes and values updated by using assignments may include group membership, access to specific
external resources, and so on. A group of assignments can collectively represent a role.

Assignment objects are created, updated, and deleted like any other managed object. They are attached to a role using the
relationships mechanism. Assignments are accessible at the context path /openidm/managed/assignment .

This section describes how to manipulate assignments over the REST interface and the admin UI. When you have created an
assignment and attached it to a role definition, all user objects that reference that role definition will reference the corresponding
assignment in their effectiveAssignments attribute.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 491

Create an Assignment

You can create assignments over the REST interface or using the admin UI:

Over REST

To create a new assignment over REST, send a PUT or POST request to the /openidm/managed/assignment context path.

The following example creates a new managed assignment named employee . The JSON payload in this example shows
the following:

The assignment is applied for the mapping managedUser_systemLdapAccounts . Attributes are updated on the
external LDAP system specified in this mapping.

The name of the attribute on the external system with a value to be set is employeeType . It will be set to
Employee .

When the assignment is applied during a sync operation, the attribute value Employee is added to any existing
values for that attribute. When the assignment is removed (such as if the user is no longer a member of that role),
the attribute value Employee is also removed.

emergency_home
If you have mapped roles and assignments to properties on a target system, and you are preloading the result set into
memory, make sure that your targetQuery returns the mapped property. For example, if you have mapped a
specific role to the ldapGroups property on the target system, the target query must include the ldapGroups
property when it returns the object.
The following mapping excerpt indicates the target query must return the _id of the object and its ldapGroups
property:

"targetQuery": {
 "_queryFilter": true,
 "_fields": "_id,ldapGroups"
}

For more information about preloading the result set for reconciliation operations, refer to Improve Reconciliation
Query Performance.

Important

•

•

•

Object modeling PingIDM

492 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}' \
"http://localhost:8080/openidm/managed/assignment?_action=create"
{
 "_id": "1a6a3af3-024f-4cf1-b4f6-116b98053816",
 "_rev": "00000000b2329649",
 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}

Note that at this stage, the assignment is not linked to any role, so no user can make use of the assignment. You
must add the assignment to a role, as described in Add an Assignment to a Role.

Using the admin UI

Select Manage > Assignment > New Assignment.

Enter a name and description for the new assignment.

Select the mapping to which the assignment should apply. The mapping indicates the target resource, that is, the
resource on which the attributes specified in the assignment will be adjusted.

Select Save to add the assignment.

1.

2.

3.

4.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 493

Select the Attributes tab and select the attribute or attributes whose values will be adjusted by this assignment.
The attribute you select here will determine what is displayed next:

Regular text field—specify what the value of the attribute should be, when this assignment is applied.

Item button—specify a managed object type, such as an object, relationship, or string.

Properties button—specify additional information, such as an array of role references.

Select the assignment operation from the dropdown list:

Merge With Target : the attribute value will be added to any existing values for that attribute. This
operation merges the existing value of the target object attribute with the value(s) from the assignment. If
duplicate values are found (for attributes that take a list as a value), each value is included only once in the
resulting target. This assignment operation is used only with complex attribute values like arrays and
objects, and does not work with strings or numbers.

Replace Target : the attribute value will overwrite any existing values for that attribute. The value from the
assignment becomes the authoritative source for the attribute.

Select the unassignment operation from the drop-down list:

Remove From Target : the attribute value is removed from the system object when the user is no longer a
member of the role, or when the assignment itself is removed from the role definition.

No Operation : removing the assignment from the user’s effectiveAssignments has no effect on the
current state of the attribute in the system object.

Select the Events tab to specify any scriptable events associated with this assignment.

The assignment and unassignment operations described in the previous step operate at the attribute level. That is,
you specify what should happen with each attribute affected by the assignment when the assignment is applied to
a user, or removed from a user.

The scriptable On assignment and On unassignment events operate at the assignment level, rather than the attribute
level. Define scripts here to apply additional logic or operations that should be performed when a user (or other
object) receives or loses an entire assignment. This logic can be anything that is not restricted to an operation on a
single attribute.

For information about the variables available to these scripts, refer to Variables available to role assignment
scripts.

Select the Roles tab to attach this assignment to an existing role definition.

Attribute encryption on assignments

Assignment attributes are encrypted if the corresponding connector attribute indicates confidentiality, based on the attribute’s
nativeType (such as JAVA_TYPE_GUARDEDSTRING or JAVA_TYPE_GUARDED_BYTE_ARRAY).

The managed assignment object includes the following property:

"attributeEncryption" : { }

5.

◦

◦

◦

6.

◦

◦

7.

◦

◦

8.

9.

Object modeling PingIDM

494 Copyright © 2025 Ping Identity Corporation

If attributeEncryption is not present on managed/assignment, the assignment attributes are not encrypted. If the property is
present but empty, it defaults to IDM’s default encryption cipher. To specify a different cipher, add the cipher property. For
example:

"attributeEncryption" : {
 "cipher" : "AES/CBC/PKCS5Padding"
}

This functionality uses the idm.assignment.attribute.encryption secret. For more information, refer to Secret stores.

Add an assignment to a role

After you have created a role and an assignment, you create a relationship between the assignment and the role in much the
same way as a user references a role.

Update a role definition to include one or more assignments over the REST interface or by using the admin UI:

Over REST

Update the role definition to include a reference to the ID of the assignment in the assignments property of the role. The
following example adds the employee assignment (ID 1a6a3af3-024f-4cf1-b4f6-116b98053816) to an existing
employee role (ID 2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4):

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/assignments/-",
 "value": { "_ref": "managed/assignment/1a6a3af3-024f-4cf1-b4f6-116b98053816" }
 }
]' \
"http://localhost:8080/openidm/managed/role/2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4"
{
 "_id": "2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4",
 "_rev": "00000000e85263c7",
 "privileges": [],
 "name": "employee",
 "description": "Roll granted to all permanent employees"
}

To check that the assignment was added successfully, query the role’s assignments property:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 495

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/role/2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4/assignments?
_queryFilter=true&_fields=_ref/*,name,assignments"
{
 "result": [
 {
 "_id": "d15822f0-05bc-464a-927d-8e5018a234d3",
 "_rev": "0000000010eea343",
 "_refResourceCollection": "managed/assignment",
 "_refResourceId": "1a6a3af3-024f-4cf1-b4f6-116b98053816",
 "_refResourceRev": "00000000b2329649",
 "name": "employee",
 "_ref": "managed/assignment/1a6a3af3-024f-4cf1-b4f6-116b98053816",
 "_refProperties": {
 "_id": "d15822f0-05bc-464a-927d-8e5018a234d3",
 "_rev": "0000000010eea343"
 }
 }
],
 ...
}

Note that the assignments property references the assignment that you created in the previous step.

To remove an assignment from a role definition, remove the reference to the assignment from the role’s assignments
property.

Using the admin UI

Select Manage > Role, and select the role to which you want to add an assignment.

Select the Managed Assignments tab, and select Add Managed Assignments.

Select the assignment that you want to add to the role, then select Add.

Delete an assignment

Delete assignments over the REST interface, or by using the admin UI:

Over REST

To delete an assignment over the REST interface, simply delete that object. The following example deletes the employee
assignment created in the previous example:

1.

2.

3.

Object modeling PingIDM

496 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/assignment/1a6a3af3-024f-4cf1-b4f6-116b98053816"
{
 "_id": "1a6a3af3-024f-4cf1-b4f6-116b98053816",
 "_rev": "00000000b2329649",
 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}

Using the admin UI

To delete an assignment by using the admin UI, select Manage > Assignment.

Select the assignment you want to remove, then select Delete.

Effective roles and effective assignments

Effective roles and effective assignments are virtual properties of a user object. Their values are calculated by IDM, using
relationships between related objects to know when to recalculate when changes occur. The relationships between objects are
configured using the notify , notifySelf , and notifyRelationships settings for managed/user , managed/role , and
managed/assignment . Which related objects to traverse for calculation is configured using queryConfig . Calculation or
recalculation is triggered when the roles or assignments for a managed user are added, removed, or changed, including by
changes from temporal constraints, and notification of that change is sent to the related objects.

The following excerpt of the managed object configuration file shows how these two virtual properties are constructed for each
managed user object:

info
You can delete an assignment, even if it is referenced by a managed role. When the assignment is removed,
any users to whom the corresponding roles were granted will no longer have that assignment in their list of
effectiveAssignments. For more information about effective roles and effective assignments, refer to
Effective roles and effective assignments.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 497

"effectiveRoles" : {
 "type" : "array",
 "title" : "Effective Roles",
 "description" : "Effective Roles",
 "viewable" : false,
 "returnByDefault" : true,
 "isVirtual" : true,
 "queryConfig" : {
 "referencedRelationshipFields" : ["roles"]
 },
 "usageDescription" : "",
 "isPersonal" : false,
 "items" : {
 "type" : "object",
 "title" : "Effective Roles Items"
 }
},
"effectiveAssignments" : {
 "type" : "array",
 "title" : "Effective Assignments",
 "description" : "Effective Assignments",
 "viewable" : false,
 "returnByDefault" : true,
 "isVirtual" : true,
 "queryConfig" : {
 "referencedRelationshipFields" : ["roles", "assignments"],
 "referencedObjectFields" : ["*"]
 },
 "usageDescription" : "",
 "isPersonal" : false,
 "items" : {
 "type" : "object",
 "title" : "Effective Assignments Items"
 }
}

When a role references an assignment, and a user references the role, that user automatically references the assignment in its
list of effective assignments.

effectiveRoles uses the roles relationship to calculate the grants that are currently in effect, including any qualified by
temporal constraints.

effectiveAssignments uses the roles relationship, and the assignments relationship for each role, to calculate the current
assignments in effect for that user. The synchronization engine reads the calculated value of the effectiveAssignments
attribute when it processes the user. The target system is updated according to the configured assignmentOperation for each
assignment.

When a user’s roles or assignments are updated, IDM calculates the effectiveRoles and effectiveAssignments for that user
based on the current value of the user’s roles property, and the assignments property of any roles referenced by the roles
property. The previous set of examples showed the creation of a role employee that referenced an assignment employee and
was granted to user bjensen. Querying that user entry would show the following effective roles and effective assignments:

Object modeling PingIDM

498 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen?
_fields=userName,roles,effectiveRoles,effectiveAssignments"
{
 "_id": "ca8855fd-a404-42c7-88b7-02f8a8a825b2",
 "_rev": "0000000081eebe1a",
 "userName": "bjensen",
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4"
 "_ref": "managed/role/2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4"
 }
],
 "effectiveAssignments": [
 {
 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "assignmentOperation": "mergeWithTarget",
 "name": "employeeType",
 "unassignmentOperation": "removeFromTarget",
 "value": [
 "employee"
]
 }
],
 "_rev": "0000000087d5a9a5",
 "_id": "46befacf-a7ad-4633-864d-d93abfa561e9"
 "_refResourceCollection": "managed/assignment",
 "_refResourceId": "46befacf-a7ad-4633-864d-d93abfa561e9",
 "_ref": "managed/assignment/46befacf-a7ad-4633-864d-d93abfa561e9"
 }
],
 "roles": [
 {
 "_ref": "managed/role/2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4",
 "_refProperties": {
 "_id": "93552530-10fa-49a4-865f-c942dffd2801",
 "_rev": "0000000081ed9f2b"
 }
 }
]
}

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 499

In this example, synchronizing the managed/user repository with the external LDAP system defined in the mapping populates
user bjensen’s employeeType attribute in LDAP with the value employee .

Roles and relationship change notification

Before you read this section, refer to Configure relationship change notification to understand the notify and
notifyRelationships properties, and how change notification works for relationships in general. In the case of roles, the
change notification configuration exists to ensure that managed users are notified when any of the relationships that link users,
roles, and assignments are manipulated (that is, created, updated, or deleted).

Consider the situation where a user has role R . A new assignment A is created that references role R . Ultimately, we want to
notify all users that have role R so that their reconciliation state will reflect any attributes in the new assignment A . We achieve
this notification with the following configuration:

In the managed object schema, the assignment object definition has a roles property that includes a resourceCollection .
The path of this resource collection is managed/role and "notify" : true for the resource collection:

{
 "name" : "assignment",
 "schema" : {
 ...
 "properties" : {
 ...
 "roles" : {
 ...
 "items" : {
 ...
 "resourceCollection" : [
 {
 "notify" : true,
 "path" : "managed/role",
 "label" : "Role",
 "query" : {
 "queryFilter" : "true",
 "fields" : [
 "name"
]
 }
 }
 ...
}

With this configuration, when assignment A is created, with a reference to role R , role R is notified of the change. However, we
still need to propagate that notification to any users who are members of role R . To do this, we configure the role object as
follows:

Object modeling PingIDM

500 Copyright © 2025 Ping Identity Corporation

{
 "name" : "role",
 "schema" : {
 ...
 "properties" : {
 ...
 "assignments" : {
 ...
 "notifyRelationships" : ["members"]
 }
 ...
}

When role R is notified of the creation of a new relationship to assignment A , the notification is propagated through the
assignments property. Because "notifyRelationships" : ["members"] is set on the assignments property, the notification is
propagated across role R to all members of role R .

Managed role script hooks

Like any other managed object, you can use script hooks to configure role behavior.

Map roles to external groups

A user’s access to IDM is based on one or more authorization roles. Authorization roles are cumulative, and are calculated for a
user in the following order:

Roles set specifically in the user’s userRoles property

Group roles — based on group membership in an external system

Group roles are controlled with the following properties in the authentication configuration:

groupMembership : the property on the external system that represents group membership. In a DS directory
server, that property is ldapGroups by default. In an Active Directory server, the property is memberOf by default.
For example:

"groupMembership" : "ldapGroups"

Note that the value of the groupMembership property must be the OpenICF property name defined in the
provisioner file, rather than the property name on the external system.

groupRoleMapping : a mapping between an IDM role and a group on the external system. Setting this property
ensures that if a user authenticates through pass-through authentication, they are given specific IDM roles
depending on their membership in groups on the external system. In the following example, users who are
members of the group cn=admins,ou=Groups,dc=example,dc=com are given the internal openidm-admin role
when they authenticate:

1.

2.

◦

◦

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 501

"groupRoleMapping" : {
 "internal/role/openidm-admin" : ["cn=admins,ou=Groups,dc=example,dc=com"]
}

groupComparisonMethod : the method used to check whether the authenticated user’s group membership matches
one of the groups mapped to an IDM role (in the groupRoleMapping property).

The groupComparisonMethod can be one of the following:

equals : a case-sensitive equality check

caseInsensitive : a case-insensitive equality check

ldap : a case-insensitive and whitespace-insensitive equality check. Because LDAP directories do not take
case or whitespace into account in group DNs, you must set the groupComparisonMethod if you are using
pass-through authentication with an LDAP directory.

Organizations

Organization objects let you arrange and manage users in hierarchical trees. Organizations also let you give users fine-grained
administrative privileges to various parts of the tree based on their location in that tree. For example, an administrator of one
organization might have full access to the users within that organization but no access to the users in an adjacent organization.

An organization object (defined in the managed object configuration) contains a set of relationship properties that reference the
parent, child, owners, admins, and members of an organization. These relationship properties enable a hierarchical
organizational model.

Users and organizations have a set of relationship-derived virtual properties used by the delegated administration filters to
provide the visibility and access constraints that underpin the organization model. Users have the ids of all the organizations of
which they are members, and organizations have the ids of all their admin and owner users.

Only IDM administrative users can create top-level organizations. Within organizations, there are various levels of privileges,
depending on how a user is related to the organization.

The following diagram gives a high-level overview of how privileges are assigned to various entities in the organization hierarchy:

◦

▪

▪

▪

info
To control access to external systems, use provisioning roles and assignments, as described in Use assignments to
provision users.

Note

Object modeling PingIDM

502 Copyright © 2025 Ping Identity Corporation

An organization owner can manipulate all organizations, members, and admins in their ownership area. The ownership area
includes any part of the tree in or beneath the organization that they own. So, in the preceding image, the owner of Org A
can do the following anywhere within their ownership area (the pale green region):

Add and update members.

Add and update sub-organizations, such as Org B and Org C.

Give an organization member the admin privilege for the parent organization or any sub-organizations.

An organization owner cannot create additional owners in their root organization.

•

◦

info
Organization owners only have access to the members in their ownership area. So, an owner can create
a new user as a member of their organization, but cannot add an existing managed user to their
organization if that user is outside of their ownership area (that is, in any part of the tree not in or
beneath the organization that they own).

Note

◦

◦

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 503

An organization admin has control over their administrative area. The administrative area includes any part of the tree in or
beneath the organization that they administer. In the preceding diagram, the administrative area of Admin A is shaded
red. The administrative areas of Admins B and C are shaded grey. An admin can do the following in their administrative
area:

Add and update members.

Add and update sub-organizations of the organization they administer.

Notice that Admin B and C are outside of the administrative area of Admin A. An organization admin cannot create
additional admins in their administrative areas.

An organization admin must be a member of the organization, so must either be an existing member of the
organization, or must be given the memberOfOrg relationship at the time they are created.

Organization members are regular users, with no special privileges in the organization hierarchy.

Managed users have a memberOfOrgIDs virtual property that lists the organizations to which the user belongs (either
directly, or through any parent organizations).

Parent and child organizations are essentially relationships between an organization and existing organizations in the tree.

error
An organization owner does not have to be a member of the organization. If the organization owner is a
member of the organization, that owner is automatically in the administrative area of any admins of
that organization, and can therefore be manipulated by an organization admin. To avoid accidentally
giving organization admins privileges over an organization owner, do not make the owner a member of
the organization.

Caution

•

◦

info
Organization admins only have access to the members in their administrative area. So, an admin can
create a new user as a member of their organization, but cannot add an existing managed user to their
organization if that user is outside of their administrative area (that is, in any part of the tree not in or
beneath the organization that they administer).

Note

◦

•

•

Object modeling PingIDM

504 Copyright © 2025 Ping Identity Corporation

Manage organizations over REST

IDM provides RESTful access to managed organizations, at the context path /openidm/managed/organization . You can add,
change, and delete organizations by using the admin UI or over the REST interface. To use the admin UI, select Manage >
Organization.

The following examples show how to add, change, and delete organizations over the REST interface. For a reference of all
managed organization endpoints and actions, refer to Managed organizations.

You can also use the REST API Explorer as a reference to the managed object REST API.

Only IDM administrators can create top level organizations.

emergency_home
Organizations rely on the privilege mechanism. To use organizations effectively, you must therefore enable dynamic
role calculation, as required by the privilege model.

Select Configure > Authentication > Session > Enable Dynamic Roles in the admin UI or set the
enableDynamicRoles property to true in the sessionModule in your conf/authentication.json file:

"sessionModule" : {
 "name" : "JWT_SESSION",
 "properties" : {
 "maxTokenLifeMinutes" : 120,
 "tokenIdleTimeMinutes" : 30,
 "sessionOnly" : true,
 "isHttpOnly" : true,
 "enableDynamicRoles" : true
 }
}

For more information about dynamic role calculation, refer to Dynamic Role Calculation.

Important

info
This is not required if you are authenticating through AM, using the rsFilter authentication module.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 505

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "If-None-Match: *" \
--request PUT \
--data '{
 "name": "example-org"
}' \
"http://localhost:8080/openidm/managed/organization/example-org"
{
 "_id": "example-org",
 "_rev": "00000000bc9871c8",
 "adminIDs": [],
 "ownerIDs": [],
 "parentAdminIDs": [],
 "parentIDs": [],
 "parentOwnerIDs": [],
 "name": "example-org"
}

IDM administrators can create owners for an organization. This example makes bjensen the owner of the organization created
previously. The example assumes that the managed user bjensen already exists:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{"_ref":"managed/user/bjensen"}' \
"http://localhost:8080/openidm/managed/organization/example-org/owners?_action=create"
{
 "_id": "fcb0f4d0-dad2-4138-a80c-62407a8e831e",
 "_rev": "00000000496d9920",
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "fcb0f4d0-dad2-4138-a80c-62407a8e831e",
 "_rev": "00000000496d9920"
 }
}

This example lists the organizations of which bjensen is an owner:

Object modeling PingIDM

506 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen/ownerOfOrg?_queryFilter=true"
{
 "result": [
 {
 "_id": "fcb0f4d0-dad2-4138-a80c-62407a8e831e",
 "_rev": "00000000496d9920",
 "_ref": "managed/organization/example-org",
 "_refResourceCollection": "managed/organization",
 "_refResourceId": "example-org",
 "_refProperties": {
 "_id": "fcb0f4d0-dad2-4138-a80c-62407a8e831e",
 "_rev": "00000000496d9920"
 }
 }
],
 ...
}

Organization owners can create members in the organizations that they own. In this example bjensen creates user scarter and
makes him a member of the organization created previously:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Th3Password" \
--header "Accept-API-Version: resource=1.0" \
--request PUT \
--data '{
 "userName": "scarter",
 "sn": "Carter",
 "givenName": "Steven",
 "mail": "scarter@example.com",
 "password": "Th3Password",
 "memberOfOrg": [{"_ref": "managed/organization/example-org"}]
}' \
"http://localhost:8080/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "00000000eac81c23"
}

Organization owners can view the members of the organizations that they own. In this example, bjensen lists the members of
example-org:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 507

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Th3Password" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/organization/example-org/members?_queryFilter=true"
{
 "result": [
 {
 "_id": "b71e8dd9-6224-466f-9630-4358a69c69fd",
 "_rev": "0000000038ea999e",
 "_ref": "managed/user/scarter",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "scarter",
 "_refProperties": {
 "_id": "b71e8dd9-6224-466f-9630-4358a69c69fd",
 "_rev": "0000000038ea999e"
 }
 }
],
 ...
}

Organization owners can create admins of the organizations that they own. An organization admin must be a member of the
organization. In this example, bjensen makes scarter an admin of example-org:

Object modeling PingIDM

508 Copyright © 2025 Ping Identity Corporation

curl \
--header 'Content-Type: application/json' \
--header "Accept-API-Version: resource=1.0" \
--header 'X-OpenIDM-Username: bjensen' \
--header 'X-OpenIDM-Password: Th3Password' \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/admins/-",
 "value": {
 "_ref": "managed/user/scarter"
 }
 }
]' \
"http://localhost:8080/openidm/managed/organization/example-org"
{
 "_id": "example-org",
 "_rev": "000000009c248a4a",
 "adminIDs": [
 "scarter"
],
 "ownerIDs": [
 "bjensen"
],
 "parentAdminIDs": [],
 "parentIDs": [],
 "parentOwnerIDs": [],
 "name": "example-org"
}

An organization owner or admin can only access the organizations that they own or administer. In this example, the admin
scarter lists the organizations, and accesses only those of which they are an admin:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 509

curl \
--header "X-OpenIDM-Username: scarter" \
--header "X-OpenIDM-Password: Th3Password" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/organization?_queryFilter=true"
{
 "result": [
 {
 "_id": "example-org",
 "_rev": "000000009c248a4a",
 "adminIDs": [
 "scarter"
],
 "ownerIDs": [
 "bjensen"
],
 "parentAdminIDs": [],
 "parentIDs": [],
 "parentOwnerIDs": [],
 "name": "example-org"
 }
],
 ...
}

Organization admins can also add members to the organizations they administer. In this example, the organization admin,
scarter, creates a new member, jsanchez, and makes her a member of example-org:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: scarter" \
--header "X-OpenIDM-Password: Th3Password" \
--header "Accept-API-Version: resource=1.0" \
--request PUT \
--data '{
 "userName": "jsanchez",
 "sn": "Sanchez",
 "givenName": "Juanita",
 "mail": "jsanchez@example.com",
 "password": "Th3Password",
 "memberOfOrg": [{"_ref": "managed/organization/example-org"}]
}' \
"http://localhost:8080/openidm/managed/user/jsanchez"
{
 "_id": "jsanchez",
 "_rev": "00000000f9341bd6"
}

Organization owners and admins can list the organizations of which a user is a member, as long as those organizations are
owned or administrated by them. In this example, scarter lists the organizations of which jsanchez is a member:

Object modeling PingIDM

510 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: scarter" \
--header "X-OpenIDM-Password: Th3Password" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/jsanchez?_fields=memberOfOrg"
{
 "_id": "jsanchez",
 "_rev": "00000000f9341bd6",
 "memberOfOrg": [
 {
 "_ref": "managed/organization/example-org",
 "_refResourceCollection": "managed/organization",
 "_refResourceId": "example-org",
 "_refProperties": {
 "_id": "078d14b2-e5f1-4b21-9801-041138e691f4",
 "_rev": "00000000ac2e9927"
 }
 }
]
}

The organization established by the previous set of examples can be represented as follows:

In this organization, both bjensen and scarter can create and delete sub-organizations, also known as child organizations, of
example-org, and can create and delete members within these child organizations.

The following example shows how to add and delete child organizations over the REST interface:

Organization owners and admins can create and manage child organizations of the organizations that they own or administer. In
this example, the organization owner, bjensen, creates a new organization named example-child-org , and makes it a child
organization of example-org :

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 511

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Th3Password" \
--header "Accept-API-Version: resource=1.0" \
--header "If-None-Match: *" \
--request PUT \
--data '{
 "name": "example-child-org",
 "parent": {"_ref": "managed/organization/example-org"}
}' \
"http://localhost:8080/openidm/managed/organization/example-child-org"
{
 "_id": "example-child-org",
 "_rev": "00000000db852a9d"
}

Organization owners and admins have access to any organizations that are child organizations of their own orgs. In this example,
admin scarter lists his visible organizations again:

info
The organization model is based on delegated administration. As with delegated administration, you cannot explicitly
change the relationship endpoints. So, for example, so you cannot create, update, delete, or patch relationship edges.
The following type of request is therefore not possible with the organization model:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Th3Password" \
--header "Accept-API-Version: resource=1.0" \
--header "If-None-Match: *" \
--request PUT \
--data '{
"name": "example-child-org",
"parent": {"_ref": "managed/organization/example-org"}
}' \
"http://localhost:8080/openidm/managed/organization/children?_action=create"

Note

Object modeling PingIDM

512 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: scarter" \
--header "X-OpenIDM-Password: Th3Password" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/organization?_queryFilter=true"
{
 "result": [
 {
 "_id": "example-org",
 "_rev": "000000009c248a4a",
 "adminIDs": [
 "scarter"
],
 "ownerIDs": [
 "bjensen"
],
 "parentAdminIDs": [],
 "parentIDs": [],
 "parentOwnerIDs": [],
 "name": "example-org"
 },
 {
 "_id": "example-child-org",
 "_rev": "00000000db852a9d",
 "adminIDs": [],
 "ownerIDs": [],
 "parentAdminIDs": [
 "scarter"
],
 "parentIDs": [
 "example-org"
],
 "parentOwnerIDs": [
 "bjensen"
],
 "name": "example-child-org"
 }
],
 ...
}

Notice that scarter can now access the example-child-org that bjensen created in the previous example.

Organizations in high latency environments

The relationship-derived virtual properties that support the organization model are generally calculated in response to
relationship signals that travel down the organization tree hierarchy. Imagine, for example, that a new root organization is added
to an existing organization hierarchy (or that a new admin or owner is added to the root of an existing organization hierarchy).
The relationship signals that trigger relationship-derived virtual property calculation are propagated down the organization
hierarchy, and to all members of the organizations in this hierarchy. This, in turn, updates their relationship-derived virtual
property state.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 513

If there are many thousands of members of the organizations in the hierarchy, this operation can take a long time to complete. It
is therefore best practice to grow an organization hierarchy downwards, adding new organizations as leaves to an existing
hierarchy, and adding new admins and members to the leaves in the hierarchy tree. This is preferable to growing the hierarchy
upwards, starting with the leaves, and growing the hierarchy up towards the root.

If you must add a new root to an existing organization hierarchy with many organizations and many members, or a new admin or
owner to an organization near the top of the hierarchy, rather perform this request over the command-line, using the examples
provided in the previous section.

Use policies to validate data

IDM provides an extensible policy service that lets you apply specific validation requirements to various components and
properties. This chapter describes the policy service, and provides instructions on configuring policies for managed objects.

The policy service provides a REST interface for reading policy requirements and validating the properties of components against
configured policies. Objects and properties are validated automatically when they are created, updated, or patched. Policies are
generally applied to user passwords, but can also be applied to any managed or system object, and to internal user objects.

The policy service lets you accomplish the following tasks:

Read the configured policy requirements of a specific component.

Read the configured policy requirements of all components.

Validate a component object against the configured policies.

Validate the properties of a component against the configured policies.

The router service limits policy application to managed and internal user objects. To apply policies to additional objects, such as
the audit service, modify your project’s router configuration. For more information about the router service, refer to Script
triggers defined in the router configuration.

A configurable default policy applies to all managed objects.

You can extend the policy service by supplying your own scripted policies.

Default policy for managed objects

Policies applied to managed objects are configured in two places:

A policy script that defines each policy and specifies how policy validation is performed.

For more information, refer to Policy Script.

A managed object policy element, defined in your managed object configuration, that specifies which policies are
applicable to each managed resource. For more information, refer to Policy Configuration Element.

•

•

•

•

info
For DS repositories, objects are subject to a combination of IDM password policies and any configured DS password
policies, when they are created or updated.

Note

•

•

Object modeling PingIDM

514 Copyright © 2025 Ping Identity Corporation

Policy script

The policy script file (openidm/bin/defaults/script/policy.js) separates policy configuration into two parts:

A policy configuration object, which defines each element of the policy. For more information, refer to Policy Configuration
Objects.

A policy implementation function, which describes the requirements that are enforced by that policy.

Together, the configuration object and the implementation function determine whether an object is valid in terms of the applied
policy. The following excerpt of a policy script file configures a policy that specifies that the value of a property must contain a
certain number of capital letters:

...
{ "policyId": "at-least-X-capitals",
 "policyExec": "atLeastXCapitalLetters",
 "clientValidation": true,
 "validateOnlyIfPresent": true,
 "policyRequirements": ["AT_LEAST_X_CAPITAL_LETTERS"]
},
...

policyFunctions.atLeastXCapitalLetters = function(fullObject, value, params, property) {
 var isRequired = _.find(this.failedPolicyRequirements, function (fpr) {
 return fpr.policyRequirement === "REQUIRED";
 }),
 isString = (typeof(value) === "string"),
 valuePassesRegexp = (function (v) {
 var test = isString ? v.match(/[A-Z]/g) : null;
 return test !== null && test.length >= params.numCaps;
 }(value));

 if ((isRequired || isString) && !valuePassesRegexp) {
 return [{ "policyRequirement" : "AT_LEAST_X_CAPITAL_LETTERS", "params" : {"numCaps": params.numCaps} }];
 }

 return [];
}
...

To enforce user passwords that contain at least one capital letter, the policyId from the preceding example is applied to the
appropriate resource (managed/user/*). The required number of capital letters is defined in the policy configuration element of
the managed object configuration file (see Policy Configuration Element).

Policy configuration objects

Each element of the policy is defined in a policy configuration object. The structure of a policy configuration object is as follows:

info
The policy configuration determines which policies apply to resources other than managed objects. The default
policy configuration includes policies that are applied to internal user objects, but you can extend the
configuration to apply policies to system objects.

Note

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 515

{
 "policyId": "minimum-length",
 "policyExec": "minLength",
 "clientValidation": true,
 "validateOnlyIfPresent": true,
 "policyRequirements": ["MIN_LENGTH"]
}

Policy implementation functions

Each policy ID has a corresponding policy implementation function that performs the validation. Implementation functions take
the following form:

function <name>(fullObject, value, params, propName) {
<implementation_logic>

}

fullObject is the full resource object that is supplied with the request.

value is the value of the property that is being validated.

params refers to the params array that is specified in the property’s policy configuration.

propName is the name of the property that is being validated.

The following example shows the implementation function for the required policy:

policyId A unique ID that enables the policy to be referenced by component objects.

policyExec The name of the function that contains the policy implementation. For more information,
refer to Policy Implementation Functions.

clientValidation Indicates whether the policy decision can be made on the client. When
"clientValidation": true , the source code for the policy decision function is returned
when the client requests the requirements for a property.

validateOnlyIfPresent Notes that the policy is to be validated only if the field within the object being validated
exists.

policyRequirements An array containing the policy requirement ID of each requirement that is associated with
the policy. Typically, a policy will validate only one requirement, but it can validate more
than one.

•

•

•

•

Object modeling PingIDM

516 Copyright © 2025 Ping Identity Corporation

function required(fullObject, value, params, propName) {
 if (value === undefined) {
 return [{ "policyRequirement" : "REQUIRED" }];
 }
 return [];
}

Default policy reference

IDM includes the following default policies and parameters:

Policy Id Parameters

required

The property is required; not optional.

not-empty

The property can’t be empty.

not-null

The property can’t be null.

unique

The property must be unique.

valid-username

Tests for uniqueness and internal user conflicts.

no-internal-user-conflict

Tests for internal user conflicts.

regexpMatches

Matches a regular expression.
regexp

flags

The regular expression pattern.

valid-type

Tests for the specified types.
types

valid-query-filter

Tests for a valid query filter.

valid-array-items

Tests for valid array items.

valid-date

Tests for a valid date.

valid-formatted-date

Tests for a valid date format.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 517

Policy Id Parameters

valid-time

Tests for a valid time.

valid-datetime

Tests for a valid date and time.

valid-duration

Tests for a valid duration format.

valid-email-address-format

Tests for a valid email address.

valid-name-format

Tests for a valid name format.

valid-phone-format

Tests for a valid phone number format.

at-least-X-capitals

The property must contain the minimum
specified number of capital letters.

numCaps Minimum number of capital letters.

at-least-X-numbers

The property must contain the minimum
specified number of numbers.

numNums Minimum number of numbers.

validNumber

Tests for a valid number.

minimumNumber

The property value must be greater than the
minimum .

minimum The minimum value.

maximumNumber

The property value must be less than the
maximum .

maximum The maximum value.

minimum-length

The property’s minimum string length.
minLength The minimum string length.

maximum-length

The property’s maximum string length.
maxLength The maximum string length.

cannot-contain-others

The property cannot contain values of the
specified fields.

disallowedFields A comma-separated list of the fields to check
against. For example, the default managed user
password policy specifies
userName,givenName,sn as disallowed fields.

Object modeling PingIDM

518 Copyright © 2025 Ping Identity Corporation

Policy configuration element

Properties defined in the managed object configuration can include a policies element that specifies how policy validation
should be applied to that property. The following excerpt of the default managed object configuration shows how policy
validation is applied to the password and _id properties of a managed/user object.

Policy Id Parameters

cannot-contain-characters

The property cannot contain the specified
characters.

forbiddenChars A comma-separated list of disallowed
characters. For example, the default managed
user userName policy specifies / as a
disallowed character.

cannot-contain-duplicates

The property cannot contain duplicate
characters.

mapping-exists

A sync mapping must exist for the property.

valid-permissions

Tests for valid permissions.

valid-accessFlags-object

Tests for valid access flags.

valid-privilege-path

Tests for a valid privilege path.

valid-temporal-constraints

Tests for valid temporal constraints.

info
You can only declare policies on top-level managed object attributes. Nested attributes (those within an array or
object) cannot have policy declared on them.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 519

{
 "name" : "user",
 "schema" : {
 "id" : "http://jsonschema.net",
 "properties" : {
 "_id" : {
 "description" : "User ID",
 "type" : "string",
 "viewable" : false,
 "searchable" : false,
 "userEditable" : false,
 "usageDescription" : "",
 "isPersonal" : false,
 "policies" : [
 {
 "policyId" : "cannot-contain-characters",
 "params" : {
 "forbiddenChars" : [
 "/"
]
 }
 }
]
 },
 "password" : {
 "title" : "Password",
 "description" : "Password",
 "type" : "string",
 "viewable" : false,
 "searchable" : false,
 "userEditable" : true,
 "encryption" : {
 "purpose" : "idm.password.encryption"
 },
 "scope" : "private",
 "isProtected": true,
 "usageDescription" : "",
 "isPersonal" : false,
 "policies" : [
 {
 "policyId" : "minimum-length",
 "params" : {
 "minLength" : 8
 }
 },
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 },
 {
 "policyId" : "at-least-X-numbers",
 "params" : {
 "numNums" : 1
 }
 },
 {
 "policyId" : "cannot-contain-others",
 "params" : {

Object modeling PingIDM

520 Copyright © 2025 Ping Identity Corporation

 "disallowedFields" : [
 "userName",
 "givenName",
 "sn"
]
 }
 }
]
 }
 }
 }
}

Note that the policy for the _id property references the function cannot-contain-characters , that is defined in the
policy.js file. The policy for the password property references the functions minimum-length , at-least-X-capitals , at-
least-X-numbers , and cannot-contain-others , that are defined in the policy.js file. The parameters that are passed to
these functions (number of capitals required, and so forth) are specified in the same element.

Validate managed object data types

The type property of a managed object specifies the data type of that property, for example, array , boolean , number , null ,
object , or string . For more information about data types, refer to the JSON Schema Primitive Types section of the JSON
Schema standard.

The type property is subject to policy validation when a managed object is created or updated. Validation fails if data does not
match the specified type , such as when the data is an array instead of a string . The default valid-type policy enforces the
match between property values and the type defined in the managed object configuration.

IDM supports multiple valid property types. For example, you might have a scenario where a managed user can have more than
one telephone number, or a null telephone number (when the user entry is first created and the telephone number is not yet
known). In such a case, you could specify the accepted property type as follows in your managed object configuration:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 521

https://json-schema.org/latest/json-schema-core.html
https://json-schema.org/latest/json-schema-core.html

"telephoneNumber" : {
 "type" : "string",
 "title" : "Telephone Number",
 "description" : "Telephone Number",
 "viewable" : true,
 "userEditable" : true,
 "pattern" : "^\\+?([0-9\\- \\(\\)])*$",
 "usageDescription" : "",
 "isPersonal" : true,
 "policies" : [
 {
 "policyId" : "minimum-length",
 "params" : {
 "minLength" : 1
 }
 },
 {
 "policyId": "maximum-length",
 "params": {
 "maxLength": 255
 }
 }
]
}

In this case, the valid-type policy from the policy.js file checks the telephone number for an accepted type and pattern ,
either for a real telephone number or a null entry.

Configure policy validation using the admin UI

To configure policy validation for a managed object type using the admin UI, update the configuration of the object type—a high-
level overview:

Go to the managed object, and edit or create a property.

Click the Validation tab, and add the policy.

1.

2.

Object modeling PingIDM

522 Copyright © 2025 Ping Identity Corporation

From the navigation bar, click Configure > Managed Objects.

On the Managed Objects page, edit or create a managed object.

On the Managed Object NAME page, do one of the following:

To edit an existing property, click the property.

To create a property, click Add a Property, enter the required information, and click Save.

Now click the property.

From the Validation tab, click Add Policy.

In the Add/Edit Policy window, enter information in the following fields, and click Add or Save:

Policy Id

Refers to the unique PolicyId in the policy.js file.

For a list of the default policies, refer to Policy Reference.

Parameter Name

Refers to the parameters for the PolicyId . For a list of the default policy parameters, refer to Policy Reference.

1.

2.

3.

◦

◦

▪

4.

5.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 523

Value

The parameter’s value to validate.

Extend the policy service

You can extend the policy service by adding custom scripted policies, and by adding policies that are applied only under certain
conditions.

Add custom scripted policies

If your deployment requires additional validation functionality that is not supplied by the default policies, you can add your own
policy scripts to your project’s script directory, and reference them in your project’s policy configuration.

Do not modify the default policy script file (openidm/bin/defaults/script/policy.js) as doing so might result in
interoperability issues in a future release.

To reference additional policy scripts, set the additionalFiles property in you policy configuration.

The following example creates a custom policy that rejects properties with null values. The policy is defined in a script named
mypolicy.js :

var policy = { "policyId" : "notNull",
 "policyExec" : "notNull",
 "policyRequirements" : ["NOT_NULL"]
}

addPolicy(policy);

function notNull(fullObject, value, params, property) {
 if (value == null) {
 var requireNotNull = [
 {"policyRequirement": "NOT_NULL"}
];
 return requireNotNull;
 }
 return [];
}

The mypolicy.js policy is referenced in the policy.json configuration file as follows:

emergency_home
Be cautious when using Validation Policies. If a policy relates to an array of relationships, such as between a user and
multiple devices, Return by Default should always be set to false . You can verify this in your managed object
configuration. Any managed object that has items of "type" : "relationship" , must also have
"returnByDefault" : false .

Important

Object modeling PingIDM

524 Copyright © 2025 Ping Identity Corporation

{
 "type" : "text/javascript",
 "file" : "policy.js",
 "additionalFiles" : ["script/mypolicy.js"],
 "resources" : [
 {
 ...
 }
]
}

Add conditional policy definitions

You can extend the policy service to support policies that are applied only under specific conditions. To apply a conditional policy
to managed objects, add the policy to your project’s managed object configuration. To apply a conditional policy to other objects,
add it to your project’s policy configuration.

The following managed object configuration shows a sample conditional policy for the password property of managed user
objects. The policy indicates that sys-admin users have a more lenient password policy than regular employees:

info
In cases where you are using the admin UI, both policy.js and mypolicy.js will be run within the client, and then
again by the the server. When creating new policies, be aware that these policies may be run in both contexts.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 525

{
 "objects" : [
 {
 "name" : "user",
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 "type" : "string",
 ...
 "conditionalPolicies" : [
 {
 "condition" : {
 "type" : "text/javascript",
 "source" : "(fullObject.org === 'sys-admin')"
 },
 "dependencies" : ["org"],
 "policies" : [
 {
 "policyId" : "max-age",
 "params" : {
 "maxDays" : ["90"]
 }
 }
]
 },
 {
 "condition" : {
 "type" : "text/javascript",
 "source" : "(fullObject.org === 'employees')"
 },
 "dependencies" : ["org"],
 "policies" : [
 {
 "policyId" : "max-age",
 "params" : {
 "maxDays" : ["30"]
 }
 }
]
 }
],
 "fallbackPolicies" : [
 {
 "policyId" : "max-age",
 "params" : {
 "maxDays" : ["7"]
 }
 }
]
 }
 ...
}

To understand how a conditional policy is defined, examine the components of this sample policy. For more information on the
policy function, refer to Policy Implementation Functions.

Object modeling PingIDM

526 Copyright © 2025 Ping Identity Corporation

There are two distinct scripted conditions (defined in the condition elements). The first condition asserts that the user object,
contained in the fullObject argument, is a member of the sys-admin org. If that assertion is true, the max-age policy is
applied to the password attribute of the user object, and the maximum number of days that a password may remain unchanged
is set to 90 .

The second condition asserts that the user object is a member of the employees org. If that assertion is true, the max-age policy
is applied to the password attribute of the user object, and the maximum number of days that a password may remain
unchanged is set to 30 .

In the event that neither condition is met (the user object is not a member of the sys-admin org or the employees org), an
optional fallback policy can be applied. In this example, the fallback policy also references the max-age policy and specifies that
for such users, their password must be changed after 7 days.

The dependencies field prevents the condition scripts from being run at all, if the user object does not include an org attribute.

Disable policy enforcement

Policy enforcement is the automatic validation of data when it is created, updated, or patched. In certain situations you might want
to disable policy enforcement temporarily. You might, for example, want to import existing data that does not meet the validation
requirements with the intention of cleaning up this data at a later stage.

You can disable policy enforcement by setting openidm.policy.enforcement.enabled to false in your resolver/
boot.properties file. This setting disables policy enforcement in the back-end only, and has no impact on direct policy validation
calls to the Policy Service (which the UI makes to validate input fields). So, with policy enforcement disabled, data added directly
over REST is not subject to validation, but data added with the UI is still subject to validation.

You should not disable policy enforcement permanently, in a production environment.

Manage policies over REST

Manage the policy service over the REST interface at the openidm/policy endpoint.

List the defined policies

The following REST call displays a list of all the policies defined in policy.json (policies for objects other than managed objects).
The policy objects are returned in JSON format, with one object for each defined policy ID:

info
This example assumes that a custom max-age policy validation function has been defined, as described in Add
Custom Scripted Policies.

Note

lightbulb_2
These scripted conditions do not apply to progressive profiling.

Tip

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 527

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/policy"
{
 "_id": "",
 "resources": [
 ...
 {
 "resource": "internal/user/*",
 "properties": [
 {
 "name": "_id",
 "policies": [
 {
 "policyId": "cannot-contain-characters",
 "params": {
 "forbiddenChars": ["/"]
 },
 "policyFunction": "\nfunction (fullObject, value, params, property) {\n ...",
 "policyRequirements": [
 "CANNOT_CONTAIN_CHARACTERS"
]
 }
],
 "policyRequirements": [
 "CANNOT_CONTAIN_CHARACTERS"
]
 }
 ...
]
 ...
 }
]
}

To display the policies that apply to a specific resource, include the resource name in the URL. For example, the following REST
call displays the policies that apply to managed users:

Object modeling PingIDM

528 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/policy/managed/user/*"
{
 "_id": "*",
 "resource": "managed/user/*",
 "properties": [
 {
 "policyRequirements": [
 "VALID_TYPE",
 "CANNOT_CONTAIN_CHARACTERS"
],
 "fallbackPolicies": null,
 "name": "_id",
 "policies": [
 {
 "policyRequirements": [
 "VALID_TYPE"
],
 "policyId": "valid-type",
 "params": {
 "types": [
 "string"
]
 }
 },
 {
 "policyId": "cannot-contain-characters",
 "params": {
 "forbiddenChars": ["/"]
 },
 "policyFunction": "...",
 "policyRequirements": [
 "CANNOT_CONTAIN_CHARACTERS"
]
 }
],
 "conditionalPolicies": null
 }
 ...
]
}

Validate objects and properties over REST

To verify that an object adheres to the requirements of all applied policies, include the validateObject action in the request.

The following example verifies that a new managed user object is acceptable, in terms of the policy requirements. Note that the
ID in the URL (test in this example) is ignored—the action simply validates the object in the JSON payload:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 529

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "sn": "Jones",
 "givenName": "Bob",
 "telephoneNumber": "0827878921",
 "passPhrase": null,
 "mail": "bjones@example.com",
 "accountStatus": "active",
 "userName": "bjones@example.com",
 "password": "123"
}' \
"http://localhost:8080/openidm/policy/managed/user/test?_action=validateObject"
{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "MIN_LENGTH",
 "params": {
 "minLength": 8
 }
 }
],
 "property": "password"
 },
 {
 "policyRequirements": [
 {
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS",
 "params": {
 "numCaps": 1
 }
 }
],
 "property": "password"
 }
]
}

The result (false) indicates that the object is not valid. The unfulfilled policy requirements are provided as part of the response -
in this case, the user password does not meet the validation requirements.

Use the validateProperty action to verify that a specific property adheres to the requirements of a policy.

The following example checks whether a user’s new password (12345) is acceptable:

Object modeling PingIDM

530 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "password": "12345"
}' \
"http://localhost:8080/openidm/policy/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb?
_action=validateProperty"
{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "MIN_LENGTH",
 "params": {
 "minLength": 8
 }
 }
],
 "property": "password"
 },
 {
 "policyRequirements": [
 {
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS",
 "params": {
 "numCaps": 1
 }
 }
],
 "property": "password"
 }
]
}

The result (false) indicates that the password is not valid. The unfulfilled policy requirements are provided as part of the
response - in this case, the minimum length and the minimum number of capital letters.

Validating a property that fulfills the policy requirements returns a true result, for example:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 531

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "password": "1NewPassword"
}' \
"http://localhost:8080/openidm/policy/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb?
_action=validateProperty"
{
 "result": true,
 "failedPolicyRequirements": []
}

Validate field removal

To validate field removal, specify the fields to remove when calling the policy validateProperty action. You cannot remove fields
that:

Are required in the required schema array.

Have a required policy.

Have a default value.

The following example validates the removal of the fields description and givenName :

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "_remove": ["description", "givenName"]
}' \
"http://localhost:8080/openidm/policy/managed/user/ca5a3196-2ed3-4a76-8881-30403dee70e9?
_action=validateProperty"

Because givenName is a required field, IDM returns a failed policy validation:

•

•

•

Object modeling PingIDM

532 Copyright © 2025 Ping Identity Corporation

{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "REQUIRED"
 }
],
 "property": "givenName"
 }
]
}

Force validation of default values

IDM does not perform policy validation for default values specified in the managed objects schema. It may be necessary to force
validation when validating properties for an object that does not yet exist. To force validation, include forceValidate=true in
the request URL.

Validate properties to unknown resource paths

To perform a validateProperty action to a path that is unknown (*), such as managed/user/* or managed/user/
userDoesntExistYet , the payload must include:

An object field that contains the object details.

A properties field that contains the properties to be evaluated.

Pre-registration validation example

A common use case for validating properties for unknown resources is prior to object creation, such as during pre-registration.

Always pass the object and properties content in the POST body because IDM has no object to look up.

Use any placeholder id in the request URL, as * has no special meaning in the API.

This example uses a conditional policy for any object with the description test1 :

•

•

1.

2.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 533

"password" : {
 ...
 "conditionalPolicies" : [
 {
 "condition" : {
 "type" : "text/javascript",
 "source" : "(fullObject.description === 'test1')"
 },
 "dependencies" : ["description"],
 "policies" : [
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 }
]
 }
],

Using the above conditional policy, you could perform a validateProperty action to managed/user/* with the request:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "object": {
 "description": "test1"
 },
 "properties": {
 "password": "passw0rd"
 }
}' \
"http://localhost:8080/openidm/policy/managed/user/*?_action=validateProperty"
{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "params": {
 "numCaps": 1
 },
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS"
 }
],
 "property": "password"
 }
]
}

3.

Object modeling PingIDM

534 Copyright © 2025 Ping Identity Corporation

Store managed objects in the repository

IDM stores managed objects, internal users, and configuration objects in a repository. By default, the server uses an embedded
ForgeRock Directory Services (DS) instance as its repository.

In production, you must replace this embedded instance with an external DS instance, or with a JDBC repository, as described in
Select a repository.

These topics describe the repository configuration, and how objects are mapped in the repository.

Repository configuration files

Configuration files for all supported repositories are located in the /path/to/openidm/db/database/conf directory. For JDBC
repositories, the configuration is defined in two files:

datasource.jdbc-default.json specifies the connection to the database.

repo.jdbc.json specifies the mapping between IDM resources and database tables.

For a DS repository, the repo.ds.json file specifies the resource mapping and, in the case of an external repository, the
connection details to the LDAP server.

For both DS and JDBC, the conf/repo.init.json file specifies IDM’s initial internal roles and users.

Copy the configuration files for your specific database type to your project’s conf/ directory.

JDBC connection configuration

The default database connection configuration file for a MySQL database follows:

{
 "driverClass" : "com.mysql.cj.jdbc.Driver",
 "jdbcUrl" : "jdbc:mysql://&{openidm.repo.host}:&{openidm.repo.port}/openidm?
allowMultiQueries=true&characterEncoding=utf8&serverTimezone=UTC",
 "databaseName" : "openidm",
 "username" : "openidm",
 "password" : "openidm",
 "connectionTimeout" : 30000,
 "connectionPool" : {
 "type" : "hikari",
 "minimumIdle" : 20,
 "maximumPoolSize" : 50
 }
}

The configuration file includes the following properties:

driverClass

"driverClass" : string

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 535

To use the JDBC driver manager to acquire a data source, set this property, as well as jdbcUrl , username , and password .
The driver class must be the fully-qualified class name of the database driver to use for your database.

Using the JDBC driver manager to acquire a data source is the most likely option, and the only one supported "out of the
box". The remaining options in the sample repository configuration file assume that you are using a JDBC driver manager.

Example: "driverClass" : "com.mysql.cj.jdbc.Driver"

jdbcUrl

The connection URL to the JDBC database. The URL should include all parameters required by your database. For example,
to specify the encoding in MySQL use 'characterEncoding=utf8' .

Specify the values for openidm.repo.host and openidm.repo.port in one of the following ways:

Set the values in resolver/boot.properties or your project’s conf/system.properties file, for example:

openidm.repo.host = localhost
openidm.repo.port = 3306

Set the properties in the OPENIDM_OPTS environment variable and export that variable before startup. You must
include the JVM memory options when you set this variable. For example:

export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -
Dopenidm.repo.port=3306"
/path/to/openidm/startup.sh
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using PROJECT_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -
Dopenidm.repo.port=3306
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/resolver/boot.properties
-> OpenIDM version "8.0.0"
OpenIDM ready

databaseName

The name of the database, used in SQL queries. For example:

select * from databaseName.managedobjects

In addition to the SQL queries that are generated by IDM, any queries defined in the repo.jdbc.json file replace
{_dbSchema} with the value of the databaseName property. For example, the following query in the repo.jdbc.json file
replaces the {_dbSchema} with the value of the databaseName :

"delete-mapping-links" : "DELETE FROM ${_dbSchema}.${_table} WHERE linktype = ${mapping}",

•

•

Object modeling PingIDM

536 Copyright © 2025 Ping Identity Corporation

username

The username with which to access the JDBC database.

password

The password with which to access the JDBC database. IDM automatically encrypts clear string passwords. To replace an
existing encrypted value, replace the whole crypto-object value, including the brackets, with a string of the new
password.

connectionTimeout

The period of time, in milliseconds, after which IDM should consider an attempted connection to the database to have
failed. The default period is 30000 milliseconds (30 seconds).

connectionPool

Database connection pooling configuration. The default connection pool library is HikariCP:

"connectionPool" : {
 "type" : "hikari"
}

IDM uses the default HikariCP configuration, except for the following parameters. You might need to adjust these
parameters, according to your database workload:

minimumIdle

This property controls the minimum number of idle connections that HikariCP maintains in the connection pool. If
the number of idle connections drops below this value, HikariCP attempts to add additional connections.

By default, HikariCP runs as a fixed-sized connection pool, that is, this property is not set. The connection
configuration files provided with IDM set the minimum number of idle connections to 20 .

maximumPoolSize

This property controls the maximum number of connections to the database, including idle connections and
connections that are being used.

By default, HikariCP sets the maximum number of connections to 10 . The connection configuration files provided
with IDM set the maximum number of connections to 50 .

For information about the HikariCP configuration parameters, refer to the HikariCP Project Page.

JDBC database table configuration

An excerpt of a MySQL database table configuration file follows:

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 537

https://github.com/brettwooldridge/HikariCP#gear-configuration-knobs-baby
https://github.com/brettwooldridge/HikariCP#gear-configuration-knobs-baby

{
 "dbType" : "MYSQL",
 "useDataSource" : "default",
 "maxBatchSize" : 100,
 "maxTxRetry" : 5,
 "queries" : {...},
 "commands" : {...},
 "resourceMapping" : {...}
}

The configuration file includes the following properties:

dbType : string, optional

The type of database. The database type might affect the queries used and other optimizations. Supported database types
include the following:
DB2

SQLSERVER (for Microsoft SQL Server)
MYSQL

ORACLE

POSTGRESQL

useDataSource : string, optional

This option refers to the connection details that are defined in the configuration file, described previously. The default
configuration file is named datasource.jdbc-default.json . This is the file that is used by default (and the value of the
"useDataSource" is therefore "default"). You might want to specify a different connection configuration file, instead of
overwriting the details in the default file. In this case, set your connection configuration file datasource.jdbc-name.json
and set the value of "useDataSource" to whatever name you have used.

maxBatchSize

The maximum number of SQL statements that will be batched together. This parameter lets you optimize the time taken
to execute multiple queries. Certain databases do not support batching, or limit how many statements can be batched. A
value of 1 disables batching.

maxTxRetry

The maximum number of times that a specific transaction should be attempted before that transaction is aborted.

queries

Any custom queries that can be referenced from the configuration.

Options supported for query parameters include the following:

A default string parameter, for example:

openidm.query("managed/user", { "_queryId": "for-userName", "uid": "jdoe" });

For more information about the query function, refer to openidm.query.

•

Object modeling PingIDM

538 Copyright © 2025 Ping Identity Corporation

A list parameter (${list:propName}).

Use this parameter to specify a set of indeterminate size as part of your query. For example:

WHERE targetObjectId IN (${list:filteredIds})

A boolean parameter (${bool:propName}).

Use this parameter to query boolean values in the database.

Numeric parameters for integers (${int:propName}), large integers (${long:propName}), and decimal values ($
{num:propName}).

Use these parameters to query numeric values in the database, corresponding to the column data type in your
repository.

commands

Specific commands configured to manage the database over the REST interface. Currently, the following default
commands are included in the configuration:

purge-by-recon-expired

purge-by-recon-number-of

delete-mapping-links

delete-target-ids-for-recon

These commands assist with removing stale reconciliation audit information from the repository, and preventing the
repository from growing too large. The commands work by executing a query filter, then performing the specified
operation on each result set. Currently the only supported operation is DELETE , which removes all entries that match the
filter.

resourceMapping

Defines the mapping between IDM resource URIs (for example, managed/user) and JDBC tables. The structure of the
resource mapping is as follows:

"resourceMapping" : {
 "default" : {
 "mainTable" : "genericobjects",
 "propertiesTable" : "genericobjectproperties",
 "searchableDefault" : true
 },
 "genericMapping" : {...},
 "explicitMapping" : {...}
}

The default mapping object represents a default generic table in which any resource that does not have a more specific
mapping is stored.

The generic and explicit mapping objects are described in the following section.

•

•

•

•

•

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 539

DS repository configuration

An excerpt of a DS repository configuration file follows:

{
 "embedded" : false,
 "maxConnectionAttempts" : 5,
 "security" : {...},
 "ldapConnectionFactories" : {...},
 "queries" : {...},
 "commands" : {...},
 "rest2LdapOptions" : {...},
 "indices" : {...},
 "schemaProviders" : {...},
 "resourceMapping" : {...}
}

The configuration file includes the following properties:

embedded : boolean

Specifies an embedded or external DS instance.

IDM uses an embedded DS instance by default. The embedded instance is not supported in production.

maxConnectionAttempts : integer

Specifies the number of times IDM should attempt to connect to the DS instance. On startup, IDM will attempt to connect
to DS indefinitely. The maxConnectionAttempts parameter controls the number of reconnection attempts in the event of
a failure during normal operation, for example, if an attempt to access the DS repository times out.

By default, IDM will attempt to reconnect to the DS instance 5 times.

security

Specifies the keystore and truststore for secure connections to DS.

"security": {
 "trustManager": "file",
 "fileBasedTrustManagerType": "JKS",
 "fileBasedTrustManagerFile": "&{idm.install.dir}/security/truststore",
 "fileBasedTrustManagerPasswordFile": "&{idm.install.dir}/security/storepass"
}

In the default case, where DS servers use TLS key pairs generated using a deploymentId and deploymentIdPassword, you
must import the deploymentId-based CA certificate into the IDM truststore. For more information, refer to External DS
repository.

Note that the security settings have no effect for an embedded DS repository. Embedded DS is not supported in
production, and is meant for evaluation or testing purposes only.

Object modeling PingIDM

540 Copyright © 2025 Ping Identity Corporation

ldapConnectionFactories

For an external DS repository, configures the connection to the DS instance. For example:

"ldapConnectionFactories": {
 "bind": {
 "connectionSecurity": "startTLS",
 "heartBeatIntervalSeconds": 60,
 "heartBeatTimeoutMilliSeconds": 10000,
 "primaryLdapServers": [
 {
 "hostname": "localhost",
 "port": 31389
 }
],
 "secondaryLdapServers": []
 },
 "root": {
 "inheritFrom": "bind",
 "authentication": {
 "simple": { "bindDn": "uid=admin", "bindPassword": "password" }
 }
 }
}

The connection to the DS repository uses the DS REST2LDAP gateway and the ldapConnectionFactories property sets the
gateway configuration. For example, the secondaryLdapServers property specifies an array of LDAP servers that the
gateway can contact if the primary LDAP servers cannot be contacted.

For information on all the gateway configuration properties, refer to Gateway Configuration in the DS REST API Guide.

queries

Predefined queries that can be referenced from the configuration. For a DS repository, all predefined queries are really
filtered queries (using the _queryFilter parameter), for example:

"query-all-ids": {
 "_queryFilter": "true",
 "_fields": "_id,_rev"
}

The queries are divided between those for generic mappings and those for explicit mappings, but the queries
themselves are the same for both mapping types.

commands

Specific commands configured to manage the repository over the REST interface. Currently, only two commands are
included by default:

delete-mapping-links

delete-target-ids-for-recon

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 541

https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#config-json
https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#config-json

Both of these commands assist with removing stale reconciliation audit information from the repository, and preventing
the repository from growing too large.

rest2LdapOptions

Specifies the configuration for accessing the LDAP data stored in DS. For more information, refer to Gateway REST2LDAP
Configuration in the DS REST API Guide.

indices

For generic mappings, enables you to set up LDAP indices on custom object properties. For more information, refer to
Improving Generic Mapping Search Performance (DS).

schemaProviders

For generic mappings, enables you to list custom objects whose properties should be indexed. For more information, refer
to Improving Generic Mapping Search Performance (DS).

resourceMapping

Defines the mapping between IDM resource URIs (for example, managed/user) and the DS directory tree. The structure of
the resource mapping object is as follows:

{
 "resourceMapping" : {
 "defaultMapping": {
 "dnTemplate": "ou=generic,dc=openidm,dc=forgerock,dc=com"
 },
 "explicitMapping" : {...},
 "genericMapping" : {...}
 }
}

The default mapping object represents a default generic organizational unit (ou) in which any resource that does not have
a more specific mapping is stored.

The generic and explicit mapping objects are described in Object mappings.

Object mappings

You can map IDM objects to the tables in a JDBC database or to organizational units in DS using:

Generic Mapping

Lets you store arbitrary objects without special configuration or administration.

Explicit Mapping

Maps specific objects and properties to tables and columns in the JDBC database or to organizational units in DS.

Object modeling PingIDM

542 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#rest2ldap-json
https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#rest2ldap-json
https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#rest2ldap-json

Hybrid Mapping

Similar to Generic Mapping, except some objects and properties are mapped explicitly.

By default, IDM uses a generic mapping for user-definable objects, for both a JDBC and a DS repository. A generic mapping
speeds up initial deployment, and can make system maintenance more flexible by providing a stable database structure. In a test
environment, generic tables let you modify the user and object model easily, without database access, and without the need to
constantly add and drop table columns. However, generic mapping does not take full advantage of the underlying database
facilities, such as validation within the database and flexible indexing. Using an explicit mapping generally results in a substantial
performance improvement. It is therefore strongly advised that you change to an explicit mapping before deploying in a
production environment. If you are integrating IDM with AM, and using a shared DS repository, you must use an explicit schema
mapping.

Mapping strategies are discussed in the following sections, with separate topics for JDBC DS repositories.

Mappings with a JDBC repository

Generic, explicit, and hybrid, oh my!

Reasons for choosing generic or hybrid over explicit mappings include:

Generic and hybrid mapped objects offer the flexibility to add and subtract non-searchable properties without having to
modify the Database Data Definition Language (DDL) or IDM object configuration.

The properties table for generic objects can grow large quickly.

Consider that a single object with 10 searchable properties would populate 10 rows within the generic properties table.
Performance can be increased if commonly searched properties are mapped to a single column in the object table. In
addition, the datatype of the property value can be enforced by the DDL of the column, or perhaps a required field could
be marked as NOT NULL . However, once a property is mapped to an explicit column, future changes to the property
mapping may require a DDL change and possibly, a migration effort.

Generic mappings (JDBC)

Generic mapping speeds up development, and can make system maintenance more flexible by providing a stable database
structure. However, generic mapping can have a performance impact and does not take full advantage of the database facilities
(such as validation within the database and flexible indexing). In addition, queries can be more difficult to set up.

In a generic table, the entire object content is stored in a single large-character field named fullobject in the mainTable for
the object. To search on specific fields, you can read them by referring to them in the corresponding properties table for that
object. The disadvantage of generic objects is that, because every property you might like to filter by is stored in a separate table,
you must join to that table each time you need to filter by anything.

The following diagram shows a pared down database structure for the default generic tables, when using a MySQL repository.
The diagram indicates the relationship between the main table and the corresponding properties table for each object.

•

•

info
PostgreSQL offers JSON capabilities that automatically makes all properties searchable. Although indexes will likely
still need to be created for properties that need a performance boost.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 543

Figure 1. Generic Tables Entity Relationship Diagram

These separate tables can make the query syntax particularly complex. For example, a simple query to return user entries based
on a user name would need to be implemented as follows:

SELECT obj.objectid, obj.rev, obj.fullobject FROM ${_dbSchema}.${_mainTable} obj
INNER JOIN ${_dbSchema}.${_propTable} prop ON obj.id = prop.${_mainTable}_id
INNER JOIN ${_dbSchema}.objecttypes objtype ON objtype.id = obj.objecttypes_id
WHERE prop.propkey='/userName' AND prop.propvalue = ${uid} AND objtype.objecttype = ${_resource}

The query can be broken down as follows:

Select the full object, the object ID, and the object revision from the main table:

SELECT obj.objectid, obj.rev, obj.fullobject FROM ${_dbSchema}.${_mainTable} obj

Join to the properties table and locate the object with the corresponding ID:

INNER JOIN ${_dbSchema}.${_propTable} prop ON obj.id = prop.${_mainTable}_id

1.

2.

Object modeling PingIDM

544 Copyright © 2025 Ping Identity Corporation

Join to the object types table to restrict returned entries to objects of a specific type. For example, you might want to
restrict returned entries to managed/user objects, or managed/role objects:

INNER JOIN ${_dbSchema}.objecttypes objtype ON objtype.id = obj.objecttypes_id

Filter records by the userName property, where the userName is equal to the specified uid and the object type is the
specified type (in this case, managed/user objects):

WHERE prop.propkey='/userName'
 AND prop.propvalue = ${uid}
 AND objtype.objecttype = ${_resource}

The value of the uid field is provided as part of the query call, for example:

openidm.query("managed/user", { "_queryId": "for-userName", "uid": "jdoe" });

Tables for user definable objects use a generic mapping by default.

The following sample generic mapping object illustrates how managed/ objects are stored in a generic table:

"genericMapping" : {
 "managed/*" : {
 "mainTable" : "managedobjects",
 "propertiesTable" : "managedobjectproperties",
 "searchableDefault" : true,
 "properties" : {
 "/picture" : {
 "searchable" : false
 }
 }
 }
}

mainTable (string, mandatory)

Indicates the main table in which data is stored for this resource.

The complete object is stored in the fullobject column of this table. The table includes an objecttypes foreign key that
is used to distinguish the different objects stored within the table. In addition, the revision of each stored object is tracked,
in the rev column of the table, enabling multiversion concurrency control (MVCC). For more information, refer to
Manipulating Managed Objects Programmatically.

propertiesTable (string, mandatory)

Indicates the properties table, used for searches.

3.

4.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 545

The contents of the properties table is a defined subset of the properties, copied from the character large object (CLOB)
that is stored in the fullobject column of the main table. The properties are stored in a one-to-many style separate
table. The set of properties stored here is determined by the properties that are defined as searchable .

The stored set of searchable properties makes these values available as discrete rows that can be accessed with SQL
queries, specifically, with WHERE clauses. It is not otherwise possible to query specific properties of the full object.

The properties table includes the following columns:

${_mainTable}_id corresponds to the id of the full object in the main table, for example, manageobjects_id , or
genericobjects_id .

propkey is the name of the searchable property, stored in JSON pointer format (for example /mail).

proptype is the data type of the property, for example java.lang.String . The property type is obtained from the
Class associated with the value.

propvalue is the value of property, extracted from the full object that is stored in the main table.

Regardless of the property data type, this value is stored as a string, so queries against it should treat it as such.

searchableDefault (boolean, optional)

Specifies whether all properties of the resource should be searchable by default. Properties that are searchable are stored
and indexed. You can override the default for individual properties in the properties element of the mapping. The
preceding example indicates that all properties are searchable, with the exception of the picture property.

For large, complex objects, having all properties searchable implies a substantial performance impact. In such a case, a
separate insert statement is made in the properties table for each element in the object, every time the object is updated.
Also, because these are indexed fields, the recreation of these properties incurs a cost in the maintenance of the index.
You should therefore enable searchable only for those properties that must be used as part of a WHERE clause in a
query.

properties

Lists any individual properties for which the searchable default should be overridden.

Note that if an object was originally created with a subset of searchable properties, changing this subset (by adding a
new searchable property in the configuration, for example) will not cause the existing values to be updated in the
properties table for that object. To add the new property to the properties table for that object, you must update or
recreate the object.

info
PostgreSQL repositories do not use these properties tables to access specific properties. Instead, the
PostgreSQL json_extract_path_text() function achieves this functionality.

Note

•

•

•

•

info
PostgreSQL repositories do not use the searchableDefault property.

Note

Object modeling PingIDM

546 Copyright © 2025 Ping Identity Corporation

Improve generic mapping search performance (JDBC)

All properties in a generic mapping are searchable by default. In other words, the value of the searchableDefault property is
true unless you explicitly set it to false. Although there are no individual indexes in a generic mapping, you can improve search
performance by setting only those properties that you need to search as searchable . Properties that are searchable are created
within the corresponding properties table. The properties table exists only for searches or look-ups, and has a composite index,
based on the resource, then the property name.

The sample JDBC repository configuration files (db/database/conf/repo.jdbc.json) restrict searches to specific properties by
setting the searchableDefault to false for managed/user mappings. You must explicitly set searchable to true for each
property that should be searched. The following sample extract from repo.jdbc.json indicates searches restricted to the
userName property:

"genericMapping" : {
 "{managed_user}" : {
 "mainTable" : "manageduserobjects",
 "propertiesTable" : "manageduserobjectproperties",
 "searchableDefault" : false,
 "properties" : {
 "/userName" : {
 "searchable" : true
 }
 }
 }
}

With this configuration, IDM creates entries in the properties table only for userName properties of managed user objects.

If the global searchableDefault is set to false, properties that do not have a searchable attribute explicitly set to true are not
written in the properties table.

Explicit mappings (JDBC)

Explicit mapping is more difficult to set up and maintain, but can take complete advantage of the native database facilities.

An explicit table offers better performance and simpler queries. There is less work in the reading and writing of data, because the
data is all in a single row of a single table. In addition, it is easier to create different types of indexes that apply to only specific
fields in an explicit table. The disadvantage of explicit tables is the additional work required in creating the table in the schema.
Also, because rows in a table are inherently more simple, it is more difficult to deal with complex objects. Any non-simple
key:value pair in an object associated with an explicit table is converted to a JSON string and stored in the cell in that format. This
makes the value difficult to use, from the perspective of a query attempting to search within it.

You can have a generic mapping configuration for most managed objects, and an explicit mapping that overrides the default
generic mapping in certain cases.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 547

IDM provides a sample configuration, for each JDBC repository, that sets up an explicit mapping for the managed user object, and
a generic mapping for all other managed objects. This configuration is defined in the files named /path/to/openidm/db/
repository/conf/repo.jdbc-repository-explicit-managed-user.json . To use this configuration, copy the file that
corresponds to your repository to your project’s conf/ directory, and rename it repo.jdbc.json . Run the sample-explicit-
managed-user.sql data definition script (in the path/to/openidm/db/repository/scripts directory) to set up the
corresponding tables when you configure your JDBC repository.

IDM uses explicit mapping for internal system tables, such as the tables used for auditing.

Depending on the types of usage your system is supporting, you might find that an explicit mapping performs better than a
generic mapping. Operations such as sorting and searching (such as those performed in the default UI) tend to be faster with
explicitly-mapped objects, for example.

The following sample explicit mapping object illustrates how internal/user objects are stored in an explicit table:

"explicitMapping" : {
 "internal/user" : {
 "table" : "internaluser",
 "objectToColumn" : {
 "_id" : "objectid",
 "_rev" : { "column" : "rev", "isNotNull" : true },
 "password" : "pwd"
 }
 },
 ...
}

resource-uri (string, mandatory)

Indicates the URI for the resources to which this mapping applies; for example, internal/user .

table (string, mandatory)

The name of the database table in which the object (in this case internal users) is stored.

objectToColumn (string, mandatory)

The way in which specific managed object properties are mapped to columns in the table.

The mapping can be a simple one to one mapping, for example "userName": "userName" , or a more complex JSON map
or list. When a column is mapped to a JSON map or list, the syntax is as shown in the following examples:

"messageDetail" : { "column" : "messagedetail", "type" : "JSON_MAP" }

"roles" : { "column" : "roles", "type" : "JSON_LIST" }

Available column data types you can specify are STRING (the default), NUMBER , JSON_MAP , JSON_LIST , and FULLOBJECT .

You can also prevent a column from accepting a NULL value, by setting the property isNotNull to true . This property is
optional; if the property is omitted, it will default to false . Specifying which columns do not allow a null value can
improve performance when sorting and paginating large queries. The syntax is similar to when specifying a column type:

Object modeling PingIDM

548 Copyright © 2025 Ping Identity Corporation

"createDate" : { "column" : "createDate", "isNotNull" : true }

Hybrid mappings (JDBC)

Hybrid mappings are similar to generic mappings, except some object fields are mapped directly to a column, and therefore not
stored in the Entity–attribute–value (EAV) properties table. The fullobject column still holds all the object data and is used for
object constitution. The combination of the explicit field columns and the EAV properties table is used for searching.

Object type conversion

You can use the migration service to convert objects from one type to another.

error
Pay particular attention to the following caveats when you map properties to explicit columns in your database:

Support for data types in columns is restricted to numeric values (NUMBER), strings (STRING), and boolean
values (BOOLEAN). Although you can specify other data types, IDM handles all other data types as strings. Your
database will need to convert these types from a string to the alternative data type. This conversion is not
guaranteed to work.
If the conversion does work, the format might not be the same when the data is read from the database as it
was when it was saved. For example, your database might parse a date in the format 12/12/2012 and return
the date in the format 2012-12-12 when the property is read.
Passwords are encrypted before they are stored in the repository. The length of the password column must be
long enough to store the encrypted password value, which can vary depending on how it is encrypted and
whether it is also hashed.
The sample-explicit-managed-user.sql file referenced in this section sets the password column to a length
of 511 characters (VARCHAR(511) to account for the additional space an encrypted password requires. For
more information about IDM encryption and an example encrypted password value, refer to encrypt and
Secure sensitive values.
If your data objects include virtual properties, you must include columns in which to store these properties. If
you don’t explicitly map the virtual properties, you will encounter errors similar to the following when you
attempt to create the corresponding object:

{
 "code":400,
 "reason":"Bad Request",
 "message":"Unmapped fields [/property-name/0] for type managed/user and table
openidm.managed_user"
}

To recalculate virtual property values in a query, you must set executeOnRetrieve to true in the query
request parameters. For more information, refer to Property Storage Triggers.

Caution

•

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 549

Convert an explicit mapped object to a hybrid mapped object (JDBC)

This procedure demonstrates how to migrate data to a different storage configuration within the same system using the
migration service to convert the object data. After you finish the conversion, the converted objects are technically hybrid objects
—generically mapped objects that have certain fields that are mapped to explicit columns.

This procedure assumes that the repository configuration includes explicitly mapped object types, and that such objects already
exist in the corresponding tables. For example:

"explicitMapping" : {
...
"managed/objectToConvert" : {
 "table" : "objecttoconvert",
 "objectToColumn" : {
 "_id" : "objectid",
 "_rev" : "rev",
 "desc" : "descr"
 }
}

Create the new generic table and associated properties table. Adjust the following example to match your repository
requirements, as needed:

emergency_home
Considerations before you start:

After you complete the process, object resource paths must stay the same to maintain relationship references.
You must migrate data to an empty table. Unlike generic tables, explicit mapped objects expect the table to
contain records from a single object type.
Changes made to the source object during migration might not be transferred to the new object. To ensure
everything is migrated correctly, run the migration during idle time, or when the system is least busy.

Important

•
•

•

1.

Object modeling PingIDM

550 Copyright © 2025 Ping Identity Corporation

CREATE TABLE `openidm`.`objecttoconvert_gen` (
`id` BIGINT UNSIGNED NOT NULL AUTO_INCREMENT ,
`objecttypes_id` BIGINT UNSIGNED NOT NULL ,
`objectid` VARCHAR(255) NOT NULL ,
`rev` VARCHAR(38) NOT NULL ,
`descr` VARCHAR(255) NOT NULL ,
`fullobject` MEDIUMTEXT NULL ,
PRIMARY KEY (`id`) ,
UNIQUE INDEX `idx-objecttoconvert_object` (`objecttypes_id` ASC, `objectid` ASC) ,
INDEX `fk_objecttoconvert_objectypes` (`objecttypes_id` ASC) ,
CONSTRAINT `fk_objecttoconvert_objectypes`
 FOREIGN KEY (`objecttypes_id`)
 REFERENCES `openidm`.`objecttypes` (`id`)
 ON DELETE CASCADE
 ON UPDATE NO ACTION)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS `openidm`.`objecttoconvert_genproperties` (
`objecttoconvert_gen_id` BIGINT UNSIGNED NOT NULL ,
`propkey` VARCHAR(255) NOT NULL ,
`proptype` VARCHAR(32) NULL ,
`propvalue` VARCHAR(2000) NULL ,
`propindex` BIGINT NOT NULL DEFAULT 0,
PRIMARY KEY (`objecttoconvert_gen_id`, `propkey`, `propindex`),
INDEX `fk_objecttoconvertproperties_managedobjects` (`objecttoconvert_gen_id` ASC) ,
INDEX `idx_objecttoconvertproperties_propkey` (`propkey` ASC) ,
INDEX `idx_objecttoconvertproperties_propvalue` (`propvalue`(255) ASC) ,
CONSTRAINT `fk_objecttoconvertproperties_objecttoconvert`
FOREIGN KEY (`objecttoconvert_gen_id`)
REFERENCES `openidm`.`objecttoconvert_gen` (`id`)
ON DELETE CASCADE
ON UPDATE NO ACTION)
ENGINE = InnoDB;

Modify conf/repo.jdbc.json to map the object path in the generic mapping section to the empty generic table. If the
migrated data will have additional searchable columns, add them now.

Create a conf/migration.json file with the following details:

Update the authentication settings to match the system configuration.

Modify the instanceUrl to point to the same system.

For example:

2.

3.

◦

◦

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 551

{
 "enabled" : true,
 "endpoint" : "",
 "connection" : {
 "instanceUrl" : "http://localhost:8080/openidm/",
 "authType" : "basic",
 "userName" : "openidm-admin",
 "password" : "openidm-admin"
 },
 "mappings" : [
 {
 "target" : "repo/managed/objectToConvert_gen",
 "source" : "repo/managed/objectToConvert"
 }
]
}

Call the migration service to view the mapping name that was generated:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header 'Accept-API-Version: resource=1.0' \
--request POST 'http://localhost:8080/openidm/migration?_action=mappingNames'
[
 [
 "repoManagedObjecttoconvert_repoManagedObjecttoconvertGen"
]
]

Start the migration:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/migration?
_action=migrate&mapping=repoManagedObjecttoconvert_repoManagedObjecttoconvertGen"
{
 "migrationResults": {
 "recons": [
 {
 "name": "repoManagedObjecttoconvert_repoManagedObjecttoconvertGen",
 "status": "PENDING"
 }
]
 }
}

You must wait until the migration is completed. To check the status of the migration:

4.

5.

6.

Object modeling PingIDM

552 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header 'Accept-API-Version: resource=1.0' \
--request POST 'http://localhost:8080/openidm/migration?_action=status'

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 553

{
 "migrationResults": {
 "recons": [
 {
 "name": "repoManagedObjecttoconvert_repoManagedObjecttoconvertGen",
 "status": {
 "_id": "820a1c66-6f1a-41d8-82a4-fc5a2d246326-424",
 "mapping": "repoManagedObjecttoconvert_repoManagedObjecttoconvertGen",
 "state": "SUCCESS",
 "stage": "COMPLETED_SUCCESS",
 "stageDescription": "reconciliation completed.",
 "progress": {
 "source": {
 "existing": {
 "processed": 0,
 "total": "9"
 }
 },
 "target": {
 "existing": {
 "processed": 0,
 "total": "?"
 },
 "created": 0,
 "unchanged": 0,
 "updated": 0,
 "deleted": 0
 },
 "links": {
 "existing": {
 "processed": 0,
 "total": "0"
 },
 "created": 0
 }
 },
 "situationSummary": {
 "SOURCE_IGNORED": 0,
 "FOUND_ALREADY_LINKED": 0,
 "UNQUALIFIED": 0,
 "ABSENT": 0,
 "TARGET_IGNORED": 0,
 "MISSING": 0,
 "ALL_GONE": 0,
 "UNASSIGNED": 0,
 "AMBIGUOUS": 0,
 "CONFIRMED": 0,
 "LINK_ONLY": 0,
 "SOURCE_MISSING": 0,
 "FOUND": 0
 },
 "statusSummary": {
 "SUCCESS": 0,
 "FAILURE": 9
 },
 "durationSummary": {
 "sourceObjectQuery": {
 "min": 26,
 "max": 33,
 "mean": 30,

Object modeling PingIDM

554 Copyright © 2025 Ping Identity Corporation

 "count": 9,
 "sum": 277,
 "stdDev": 2
 },
 "sourceQuery": {
 "min": 37,
 "max": 37,
 "mean": 37,
 "count": 1,
 "sum": 37,
 "stdDev": 0
 },
 "auditLog": {
 "min": 0,
 "max": 1,
 "mean": 0,
 "count": 11,
 "sum": 9,
 "stdDev": 0
 },
 "linkQuery": {
 "min": 4,
 "max": 4,
 "mean": 4,
 "count": 1,
 "sum": 4,
 "stdDev": 0
 },
 "correlationQuery": {
 "min": 8,
 "max": 18,
 "mean": 15,
 "count": 9,
 "sum": 139,
 "stdDev": 4
 },
 "sourcePhase": {
 "min": 113,
 "max": 113,
 "mean": 113,
 "count": 1,
 "sum": 113,
 "stdDev": 0
 }
 },
 "parameters": {
 "sourceQuery": {
 "resourceName": "external/migration/repo/managed/objectToConvert",
 "queryFilter": "true",
 "_fields": "_id"
 },
 "targetQuery": {
 "resourceName": "repo/managed/objectToConvert_gen",
 "queryFilter": "true",
 "_fields": "_id"
 }
 },
 "started": "2021-01-20T18:22:34.026Z",
 "ended": "2021-01-20T18:22:34.403Z",
 "duration": 377,
 "sourceProcessedByNode": {}

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 555

 }
 }
]
 }
}

The data is now migrated to the new tables, but IDM is still referencing the previous mapping.

Edit the repo.jdbc.json file:

Remove the old mapping from explicitMapping :

"explicitMapping" : {
...
"managed/objectToConvert" : {
 "table" : "objecttoconvert",
 "objectToColumn" : {
 "_id" : "objectid",
 "_rev" : "rev",
 "desc" : "descr"
 }
}

Modify the newly added genericMapping to point to the old resource path:

"genericMapping" : {
 ...
 "managed/objectToConvert" : {
 "mainTable" : "objecttoconvert_gen",
 "propertiesTable" : "objecttoconvert_genproperties",
 "searchableDefault" : false,
 "objectToColumn" : {
 "_id" : "objectid",
 "_rev" : "rev",
 "desc" : "descr"
 },
 "properties": {
 "/stringArrayField" : {
 "searchable" : true
 }
 }
 },
}

Run a SQL update statement so that the objecttypes table points the temporary object type to the original object type.
Adjust the following example to match your repository requirements, as needed:

info
Optionally, you can run the migration again to account for changes that may have occurred during the original
migration.

Note

7.

◦

◦

8.

Object modeling PingIDM

556 Copyright © 2025 Ping Identity Corporation

update openidm.objecttypes set objecttype = 'managed/objectToConvert' where objecttype = 'managed/
objectToConvert_gen';

Convert a generic mapped object to an explicit mapped object (JDBC)

This procedure demonstrates how to migrate data to a different storage configuration within the same system using the
migration service to convert the object data.

This procedure assumes an existing generic object resource path of managed/objectToConvert , with objects stored in the
generic objects table genericobjects . A sample object might be:

{
 "_id" : "4213-2134-23423",
 "_rev" : "AB231A",
 "name" : "Living room camera",
 "properties": { "location" : "45.123N100.123W", "uptime" : 123123 },
 "otherProperties" : { "bla": "blabla", "blahdee" : "da"}
}

Before you start, consider the following:

Make sure to map a column to each field of your object.

Fields that are objects, not simple scalar values, will be stored as serialized JSON, and won’t be easily searchable.

Object instances are constituted by selecting the mapped columns and putting the data in the JSON object using the field
path that the column is mapped to.

Create table indexes that are inline with your system’s usage of searches and sorting of the column data. For example,
modify or add indexes to include all newly created columns for any fields that were configured as searchable.

Create the new explicit table:

emergency_home
Considerations before you start:

After you complete the process, object resource paths must stay the same to maintain relationship references.
You must migrate data to an empty table. Unlike generic tables, explicit mapped objects expect the table to
contain records from a single object type.
During the migration, changes made to the source object might not be transferred to the new object. To
ensure everything is migrated correctly, run the migration during idle time, or when the system is least busy.

Important

•
•

•

•

•

•

•

1.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 557

CREATE TABLE `openidm`.`objectToConvert` (
 `objectid` VARCHAR(255) NOT NULL ,
 `rev` VARCHAR(38) NOT NULL ,
 `name` VARCHAR(255) NOT NULL ,
 `location` VARCHAR(38) NULL ,
 `uptime` BIGINT NULL ,
 `misc` MEDIUMTEXT NULL,
PRIMARY KEY (`objectid`));

Modify conf/repo.jdbc.json to add a new mapping for the object type in the explicitMapping node. To avoid conflict
with the generically mapped object path, slightly modify the resource path. A new explicit mapping example:

"explicitMapping" : {
 ...
 "managed/objectToConvert_explicit": {
 "table": "objectToConvert",
 "objectToColumn" : {
 "_id" : "objectid",
 "_rev" : { "column" : "rev", "isNotNull" : true },
 "name" : { "column" : "name", "isNotNull" : true },
 "properties/location" : { "column": "location" },
 "properties/uptime" : { "column" : "uptime" },
 "otherProperties" : {
 "column" : "misc",
 "type" : "JSON_MAP"
 }
 }
 }
 ...
 ...
}

Create a conf/migration.json file with the following details:

Update the authentication settings to match the system configuration.

Modify the instanceUrl to point to the same system.

For example:

2.

3.

◦

◦

Object modeling PingIDM

558 Copyright © 2025 Ping Identity Corporation

{
 "enabled" : true,
 "endpoint" : "",
 "connection" : {
 "instanceUrl" : "http://localhost:8080/openidm/",
 "authType" : "basic",
 "userName" : "openidm-admin",
 "password" : "openidm-admin"
 },
 "mappings" : [
 {
 "target" : "repo/managed/objectToConvert_explicit",
 "source" : "repo/managed/objectToConvert"
 }
]
}

Call the migration service to view the mapping name that was generated:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header 'Accept-API-Version: resource=1.0' \
--request POST 'http://localhost:8080/openidm/migration?_action=mappingNames'

IDM returns something similar to:

[
 [
 "repoManagedObjecttoconvert_repoManagedObjecttoconvertExplicit"
]
]

Start the migration:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/migration?
_action=migrate&mapping=repoManagedObjecttoconvert_repoManagedObjecttoconvertExplicit"

IDM returns something similar to:

4.

5.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 559

{
 "migrationResults": {
 "recons": [
 {
 "name": "repoManagedObjecttoconvert_repoManagedObjecttoconvertExplicit",
 "status": "PENDING"
 }
]
 }
}

You must wait until the migration completes. To check the status of the migration:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header 'Accept-API-Version: resource=1.0' \
--request POST 'http://localhost:8080/openidm/migration?_action=status'

IDM returns something similar to:

6.

Object modeling PingIDM

560 Copyright © 2025 Ping Identity Corporation

{
 "migrationResults": {
 "recons": [
 {
 "name": "repoManagedObjecttoconvert_repoManagedObjecttoconvertExplicit",
 "status": {
 "_id": "820a1c66-6f1a-41d8-82a4-fc5a2d246326-424",
 "mapping": "repoManagedObjecttoconvert_repoManagedObjecttoconvertExplicit",
 "state": "SUCCESS",
 "stage": "COMPLETED_SUCCESS",
 "stageDescription": "reconciliation completed.",
 "progress": {
 "source": {
 "existing": {
 "processed": 0,
 "total": "9"
 }
 },
 "target": {
 "existing": {
 "processed": 0,
 "total": "?"
 },
 "created": 0,
 "unchanged": 0,
 "updated": 0,
 "deleted": 0
 },
 "links": {
 "existing": {
 "processed": 0,
 "total": "0"
 },
 "created": 0
 }
 },
 "situationSummary": {
 "SOURCE_IGNORED": 0,
 "FOUND_ALREADY_LINKED": 0,
 "UNQUALIFIED": 0,
 "ABSENT": 0,
 "TARGET_IGNORED": 0,
 "MISSING": 0,
 "ALL_GONE": 0,
 "UNASSIGNED": 0,
 "AMBIGUOUS": 0,
 "CONFIRMED": 0,
 "LINK_ONLY": 0,
 "SOURCE_MISSING": 0,
 "FOUND": 0
 },
 "statusSummary": {
 "SUCCESS": 0,
 "FAILURE": 9
 },
 "durationSummary": {
 "sourceObjectQuery": {
 "min": 26,
 "max": 33,
 "mean": 30,

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 561

 "count": 9,
 "sum": 277,
 "stdDev": 2
 },
 "sourceQuery": {
 "min": 37,
 "max": 37,
 "mean": 37,
 "count": 1,
 "sum": 37,
 "stdDev": 0
 },
 "auditLog": {
 "min": 0,
 "max": 1,
 "mean": 0,
 "count": 11,
 "sum": 9,
 "stdDev": 0
 },
 "linkQuery": {
 "min": 4,
 "max": 4,
 "mean": 4,
 "count": 1,
 "sum": 4,
 "stdDev": 0
 },
 "correlationQuery": {
 "min": 8,
 "max": 18,
 "mean": 15,
 "count": 9,
 "sum": 139,
 "stdDev": 4
 },
 "sourcePhase": {
 "min": 113,
 "max": 113,
 "mean": 113,
 "count": 1,
 "sum": 113,
 "stdDev": 0
 }
 },
 "parameters": {
 "sourceQuery": {
 "resourceName": "external/migration/repo/managed/objectToConvert",
 "queryFilter": "true",
 "_fields": "_id"
 },
 "targetQuery": {
 "resourceName": "repo/managed/objectToConvert_explicit",
 "queryFilter": "true",
 "_fields": "_id"
 }
 },
 "started": "2021-01-20T18:22:34.026Z",
 "ended": "2021-01-20T18:22:34.403Z",
 "duration": 377,
 "sourceProcessedByNode": {}

Object modeling PingIDM

562 Copyright © 2025 Ping Identity Corporation

 }
 }
]
 }
}

The data is now migrated to the new tables, but IDM is still referencing the previous mapping and generic table.

Edit the repo.jdbc.json file:

If the mapping of the generic resource had a mapping, it should be removed. If the generic resource was included
in the managed/* path, as in the example, there is nothing to remove.

Modify the object path from managed/objectToConvert_explicit to managed/objectToConvert .

Save the repo.jdbc.json file.

Until IDM processes the configuration change, REST requests are unavailable.

Once IDM finishes processing the configuration change, it is safe to delete the object data from the original generic table.
Using a proper delete cascade, the searchable properties of the generic object are automatically deleted from the generic
properties table. For example:

delete
from
 managedobjects
where
 objecttypes_id = (
 select
 o2.id
 from
 objecttypes o2
 where
 objecttype = "managed/objectToConvert");

Convert a generic mapped object to a hybrid mapped object (JDBC)

This procedure demonstrates how to convert a generically stored property to an explicitly stored property; moving property value
storage out of the object’s property table, and into a new column on the object table. After you finish the conversion, the
converted objects are technically hybrid objects—generically mapped objects that have certain fields that are mapped to explicit
columns.

info
Optionally, you can run the migration again to account for changes that may have occurred during the original
migration.

Note

7.

◦

◦

8.

9.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 563

This procedure assumes an existing generic object resource path as: managed/objectToConvert , with objects stored in the
generic objects table objecttoconvertobjects . A sample object might be:

{
 "_id" : "4213-2134-23423",
 "_rev" : "AB231A",
 "name" : "Living room camera",
 "properties": { "location" : "45.123N100.123W", "uptime" : 123123 },
 "otherProperties" : { "bla": "blabla", "blahdee" : "da"}
}

Create a new database column for the explicit field data:

alter table openidm.objecttoconvertobjects add column `name` varchar(255);

Edit the genericMapping section of the conf/repo.jdbc.json file:

For each object to convert, add the objectToColumn configuration for the fields to explicitly map to a column. For
example:

"genericMapping" : {
 ...
 "managed/objectToConvert": {
 "mainTable" : "objecttoconvertobjects",
 "propertiesTable" : "objecttoconvertobjectsproperties",
 "searchableDefault" : true,
 "objectToColumn" : {
 "name" : "name"
 }
 }
 ...
}

If the object is defined with a wildcard mapping, such as managed/* , create a new mapping specifically for the
object conversion.

Save the conf/repo.jdbc.json file.

Until IDM processes the configuration change, REST requests are unavailable.

For any added columns to be usable, they must be reindexed and populated.

emergency_home
Considerations before you start:

Changes made to the source object during migration might not be transferred to the new object. To ensure
everything is migrated correctly, run the migration during idle time, or when the system is least busy.

Important

•

1.

2.

◦

◦

3.

4.

Object modeling PingIDM

564 Copyright © 2025 Ping Identity Corporation

The rewriteObjects.js script can read and rewrite object data to match the config from the conf/repo.jdbc.json file.
The script reads one page of data at a time, and then writes out each object, one at a time. Consider the page size and
queryFilter to efficiently process the data by splitting the data into groups that can run in parallel. The request will not
return until ALL pages have been processed.

For example, to run the rewriteObjects.js script with 1000 objects per page:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header 'Accept-API-Version: resource=1.0' \
--header 'content-type: application/json' \
--request POST \
--data-raw '{
 "type":"text/javascript",
 "file":"bin/defaults/script/update/rewriteObjects.js",
 "globals" : {
 "rewriteConfig" :{
 "queryFilter": "true",
 "pageSize": 1000,
 "objectPaths": [
 "repo/managed/objectToConvert"
]
 }
 }
}' \
"http://localhost:8080/openidm/script?_action=eval"

Now that the new column contains data, edit or create new indexes so that the new column can be queried efficiently. For
example:

alter table openidm.objecttoconvertobjects add index `idx_obj_name` (`name`);

Mappings with a DS repository

For both generic and explicit mappings, IDM maps object types using a dnTemplate property. The dnTemplate is effectively a
pointer to where the object is stored in DS. For example, the following excerpt of the default repo.ds.json file shows how
configuration objects are stored under the DN ou=config,dc=openidm,dc=forgerock,dc=com :

"config": {
 "dnTemplate": "ou=config,dc=openidm,dc=forgerock,dc=com"
}

Generic mappings (DS)

By default, IDM uses a generic mapping for all objects except the following:

Internal users, roles, and privileges

Links

5.

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 565

Clustered reconciliation target IDs

Locks

Objects related to queued synchronization

With a generic mapping, all the properties of an object are stored as a single JSON blob in the fr-idm-json attribute. To create a
new generic mapping, you need only specify the dnTemplate ; that is, where the object will be stored in the directory tree.

You can specify a wildcard mapping, that stores all nested URIs under a particular branch of the directory tree, for example:

"managed/*": {
 "dnTemplate": "ou=managed,dc=openidm,dc=forgerock,dc=com"
}

With this mapping, all objects under managed/ , such as managed/user and managed/device , will be stored in the branch
ou=managed,dc=openidm,dc=forgerock,dc=com . You do not have to specify separate mappings for each of these objects. The
mapping creates a new ou for each object. So, for example, managed/user objects will be stored under the DN
ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com and managed/device objects will be stored under the DN
ou=device,ou=managed,dc=openidm,dc=forgerock,dc=com .

In cases where you want to improve external DS search performance, you can configure indexing for your resources within DS.
For more information on indexing in DS, refer to Indexes in the DS documentation.

Explicit mappings (DS)

The default configuration uses a generic mapping for managed user objects. To use an explicit mapping for managed user
objects, change the repository configuration before you start IDM for the first time.

To set up an explicit mapping:

Copy the repo.ds-explicit-managed-user.json file to your project’s conf directory, and rename that file
repo.ds.json :

cp /path/to/openidm/db/ds/conf/repo.ds-explicit-managed-user.json project-dir/conf/repo.ds.json

•

info
Clustered reconciliation is not supported with a DS repository.

Note

•

•

1.

emergency_home
This file is configured for an embedded DS repository by default. To set up an explicit mapping for an external
DS repository, change the value of the embedded property to false and add the following properties:

Important

Object modeling PingIDM

566 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/7.4/config-guide/indexing.html
https://docs.pingidentity.com/pingds/7.4/config-guide/indexing.html

"security": {
 "trustManager": "file",
 "fileBasedTrustManagerType": "JKS",
 "fileBasedTrustManagerFile": "&{idm.install.dir}/security/truststore",
 "fileBasedTrustManagerPasswordFile": "&{idm.install.dir}/security/storepass"
},
"ldapConnectionFactories": {
 "bind": {
 "connectionSecurity": "startTLS",
 "heartBeatIntervalSeconds": 60,
 "heartBeatTimeoutMilliSeconds": 10000,
 "primaryLdapServers": [
 {
 "hostname": "localhost",
 "port": 31389
 }
],
 "secondaryLdapServers": []
 },
 "root": {
 "inheritFrom": "bind",
 "authentication": {
 "simple": {
 "bindDn": "uid=admin",
 "bindPassword": "password"
 }
 }
 }
}

For more information on these properties, refer to DS Repository Configuration.

Start IDM.

IDM uses the DS REST to LDAP gateway to map JSON objects to LDAP objects stored in the directory. To create additional explicit
mappings, you must specify the LDAP objectClasses to which the object is mapped, and how each property maps to its
corresponding LDAP attributes. Specify at least the property type and the corresponding ldapAttribute . For relationships
between objects, you must explicitly define those objects in the repository configuration.

The following excerpt shows an example of an explicit managed user object mapping:

2.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 567

"managed/user" : {
 "dnTemplate": "ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com",
 "objectClasses": [
 "person",
 "organizationalPerson",
 "inetOrgPerson",
 "fr-idm-managed-user-explicit",
 "inetuser"
],
 "properties": {
 "_id": {
 "type": "simple", "ldapAttribute": "uid", "isRequired": true, "writability": "createOnly"
 },
 "userName": {
 "type": "simple", "ldapAttribute": "cn"
 },
 "password": {
 "type": "json", "ldapAttribute": "fr-idm-password"
 },
 "accountStatus": {
 "type": "simple", "ldapAttribute": "fr-idm-accountStatus"
 },
 "roles": {
 "type": "json", "ldapAttribute": "fr-idm-role", "isMultiValued": true
 },
 "effectiveRoles": {
 "type": "json", "ldapAttribute": "fr-idm-effectiveRole", "isMultiValued": true
 },
 "effectiveAssignments": {
 "type": "json", "ldapAttribute": "fr-idm-effectiveAssignment", "isMultiValued": true
 },
 ...
 }
}

You do not need to map the _rev (revision) property of an object as this property is implicit in all objects and maps to the DS
etag operational attribute.

If your data objects include virtual properties, you must include property mappings for these properties. If you don’t explicitly map
the virtual properties, you will encounter errors similar to the following when you attempt to create the corresponding object:

{
 "code": 400,
 "reason": "Bad Request",
 "message": "Unmapped fields..."
}

For more information about the REST to LDAP property mappings, refer to Mapping Configuration in the DS REST API Guide.

For performance reasons, the DS repository does not apply unique constraints to links. This behavior is different to the JDBC
repositories, where uniqueness on link objects is enforced.

Object modeling PingIDM

568 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#mappings-json
https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#mappings-json

Specify how IDM IDs map to LDAP entry names

The DS REST2LDAP configuration lets you set a namingStrategy that specifies how LDAP entry names are mapped to JSON
resources. When IDM stores its objects in a DS repository, this namingStrategy determines how the IDM _id value maps to the
Relative Distinguished Name (RDN) of the corresponding DS object.

The namingStrategy is specified as part of the explicitMapping of an object in the repo.ds.json file. The following example
shows a naming strategy configuration for an explicit managed user mapping:

"resourceMapping": {
 "defaultMapping": {
 "dnTemplate": "ou=generic,dc=openidm,dc=forgerock,dc=com"
 },
 ...
 "explicitMapping": {
 "managed/user": {
 "dnTemplate": "ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com",
 "objectClasses": [
 "person",
 "organizationalPerson",
 "inetOrgPerson",
 "fr-idm-managed-user-explicit"
],
 "namingStrategy": {
 "type": "clientDnNaming",
 "dnAttribute": "uid"
 },
 ...
 }
 }
}

The namingStrategy can be one of the following:

clientDnNaming - IDM provides an _id to DS and that _id is used to generate the DS RDN. In the following example,
the IDM _id maps to the LDAP uid attribute:

emergency_home
DS currently has a default index entry limit of 4000. Therefore, you cannot query more than 4000 records unless you
create a Virtual List View (VLV) index. A VLV index is designed to help DS respond to client applications that need to
browse through a long list of objects.
You cannot create a VLV index on a JSON attribute. For generic mappings, IDM avoids this restriction by using client-
side sorting and searching. However, for explicit mappings you must create a VLV index for any filtered or sorted
results, such as results displayed in a UI grid. To configure a VLV index, use the dsconfig command described in
Virtual List View Index in the DS Configuration Guide.

Important

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 569

https://docs.pingidentity.com/pingds/7.4/config-guide/indexing.html#configure-vlv
https://docs.pingidentity.com/pingds/7.4/config-guide/indexing.html#configure-vlv

{
 "namingStrategy": {
 "type": "clientDnNaming",
 "dnAttribute": "uid"
 }
}

With this default configuration, entries are stored in DS with a DN similar to the following:

"uid=idm-uuid,ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com"

clientNaming - IDM provides an _id to DS but the DS RDN is derived from a different user attribute in the LDAP entry. In
the following example, the RDN is the cn attribute. The _id that IDM provides for the object maps to the LDAP uid
attribute:

{
 "namingStrategy": {
 "type": "clientNaming",
 "dnAttribute": "cn",
 "idAttribute": "uid"
 }
}

With this configuration, entries are stored in DS with a DN similar to the following:

"cn=username,ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com"

Specifying a namingStrategy is optional. If you do not specify a strategy, the default is clientDnNaming with the following
configuration:

info
If these default DNs are suitable in your deployment, you do not have to change anything with regard to the
naming strategy.

Note

•

Object modeling PingIDM

570 Copyright © 2025 Ping Identity Corporation

{
 "namingStrategy" : {
 "type" : "clientDnNaming",
 "dnAttribute" : "uid"
 },
 "properties: : {
 "_id": {
 "type": "simple",
 "ldapAttribute": "uid",
 "isRequired": true,
 "writability": "createOnly"
 },
 ...
 }
}

Relationship properties in a DS repository

The IDM object model lets you define relationships between objects. In a DS repository, relationships are implemented using the
reference and reverseReference REST to LDAP property types. For more information about the reference and
reverseReference property types, read the JSON property mapping section of the DS HTTP User Guide.

Relationship properties must be defined in the repository configuration (repo.ds.json), for both generic and explicit object
mappings.

The following property definitions for a managed/user object show how the relationship between a manager and their reports
is defined in the repository configuration:

"managed/user" : {
 "dnTemplate" : "ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com",
 ...
 "properties" : {
 ...
 "reports" : {
 "type" : "reverseReference",
 "resourcePath" : "managed/user",
 "propertyName" : "manager",
 "isMultiValued" : true
 },
 "manager" : {
 "type" : "reference",
 "ldapAttribute" : "fr-idm-managed-user-manager",
 "primaryKey" : "uid",
 "resourcePath" : "managed/user",
 "isMultiValued" : false
 },
 ...
 }
}

info
If you do not set a dnAttribute as part of the naming strategy, the value of the dnAttribute is taken from the value
of the ldapAttribute on the _id property.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 571

https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#mappings-json-properties
https://backstage.forgerock.com/docs/ds/7.3/rest-guide/rest2ldap.html#mappings-json-properties

This configuration sets the reports property as a reverseReference , or reverse relationship of the manager property. This
means that if you add a manager to a user, the user automatically becomes one of the reports of that manager.

Note the ldapAttribute defined in the relationship object (fr-idm-managed-user-manager in this case). Your DS schema must
include this attribute, and an object class that contains this attribute. Relationship attributes in the DS schema must use the
Name and JSON with id syntax.

The following example shows the DS schema definition for the IDM manager property:

attributeTypes: (1.3.6.1.4.1.36733.2.3.1.69
 NAME 'fr-idm-managed-user-manager'
 DESC 'Reference to a users manager'
 SINGLE-VALUE
 SYNTAX 1.3.6.1.4.1.36733.2.1.3.12
 EQUALITY nameAndOptionalCaseIgnoreJsonIdEqualityMatch
 X-STABILITY 'Internal')

Access Data Objects

Access data objects using scripts

IDM’s uniform programming model means that all objects are queried and manipulated in the same way, using the Resource API.
The URL or URI that is used to identify the target object for an operation depends on the object type. For more information about
scripts and the objects available to scripts, refer to Scripting.

You can use the Resource API to obtain managed, system, configuration, and repository objects, as follows:

emergency_home
If you define a relationship in the managed object configuration and you do not define that relationship as a reference
or reverse reference in the repository configuration (repo.ds.json), you will be able to query the relationships, but
filtering and sorting on those queries will not work. This is the case when you define relationship objects in the admin
UI—the relationship is defined only in the managed object configuration and not in the repository configuration.
In this case, queries such as the following are not supported:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/_id/managedOrgs?
_pageSize=50&_sortKeys=_id&_totalPagedResultsPolicy=ESTIMATE&_queryFilter=true"

This restriction includes delegated admin privilege filters.

Important

Object modeling PingIDM

572 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/7.4/schemaref/s-NameandJSONwithid.html
https://docs.pingidentity.com/pingds/7.4/schemaref/s-NameandJSONwithid.html

val = openidm.read("managed/organization/mysampleorg")
val = openidm.read("system/mysystem/account")
val = openidm.read("config/custom/mylookuptable")
val = openidm.read("repo/custom/mylookuptable")

For information about constructing an object ID, refer to URI Scheme.

You can update entire objects with the update() function, as follows:

openidm.update("managed/organization/mysampleorg", rev, object)
openidm.update("system/mysystem/account", rev, object)

You can apply a partial update to a managed or system object by using the patch() function:

openidm.patch("managed/organization/mysampleorg", rev, value)

The create() , delete() , and query() functions work the same way.

Access data objects using the REST API

IDM provides RESTful access to data objects through the ForgeRock Common REST API. To access objects over REST, you can use
a browser-based REST client, such as the Simple REST Client for Chrome, or RESTClient for Firefox. Alternatively, you can use the
curl command-line utility.

For a comprehensive overview of the REST API, refer to the REST API reference.

To obtain a managed object through the REST API, depending on your security settings and authentication configuration, perform
an HTTP GET on the corresponding URL, for example http://localhost:8080/openidm/managed/organization/mysampleorg .

By default, the HTTP GET returns a JSON representation of the object.

In general, you can map any HTTP request to the corresponding openidm.method call. The following example shows how the
parameters provided in an openidm.query request correspond with the key-value pairs that you would include in a similar HTTP
GET request:

Reading an object using the Resource API:

openidm.query("managed/user", { "_queryFilter": "true" }, ["userName","sn"])

Reading an object using the REST API:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 573

https://curl.se/
https://curl.se/

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=userName,sn"

Access data objects by remote proxy

You can proxy REST requests to a remote IDM or Identity Cloud instance using the openidm/external/idm/instanceName
endpoint.

This functionality lets you treat any other IDM or Identity Cloud instance as a resource within the one you are managing. You can
then use it in a sync mapping, call actions on it, use it within scripts, or use it in any other way that you might use a resource in
IDM. You can call any endpoint in the remote IDM system using this proxy.

A few situations where this feature may be useful include:

Situations where some, but not all, data needs to be migrated from an older version to a newer release.

Situations where a development or testing environment has data that needs to be synced into the production
environment.

Situations where data is deployed in geographically diverse data centers and changes need to be kept in sync with one
another.

Situations where a new instance needs to sync data between existing on-premises and cloud instances.

This feature does not support liveSync/implicit sync from the remote IDM resources. This means that you will be limited to using
recon when it comes to pulling data from a remote system.

How to determine the value for instanceName

The instanceName is a fragment of the external configuration’s name. You can determine the value for instanceName using
REST or the filesystem:

Using the filesystem

Go to /path/to/openidm/conf/ .

Locate the file named external.idm-instanceName.json .

emergency_home
For more information on determining the exact value for instanceName, refer to How to determine the value for
instanceName.

Important

•

•

•

•

info
If requests sent to the source server include an X-Requested-With header, the value of the header will be set to
RemoteIDMProxy.

Note

1.

2.

Object modeling PingIDM

574 Copyright © 2025 Ping Identity Corporation

For example, a file named external.idm-name1.json would be available as a remote system at the openidm/external/
idm/name1 endpoint.

Using REST

Get the configurations:

Request

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"https://localhost:8443/openidm/config/"

Locate the external configuration:

Return

{
 "_id": "",
 "configurations": [
 ...
 {
 "_id": "emailTemplate/welcome",
 "pid": "emailTemplate.212e...f7a",
 "factoryPid": "emailTemplate"
 },
 ...
 {
 "_id": "external.idm/name1", (1)
 "pid": "external.idm.29cd...f4a",
 "factoryPid": "external.idm"
 },
 ...
]
}

Prerequisites

To connect to a remote instance over SSL, you must import the remote instance’s server certificate into your local instance’s
truststore. For example:

1.

2.

1
In this example, the external configuration "_id": "external.idm/name1" would be available as a remote system at
the openidm/external/idm/name1 endpoint.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 575

keytool \
-import \
-alias fr-platform \
-keystore security/truststore \
-file ~/fr-platform.pem

Mapping

To use the remote IDM proxy in a synchronization mapping, add the following to your sync.json file or individual mapping file
(updating the values as necessary):

{
 "name" : "onprem_user_to_fidc_alpha_user",
 "source" : "external/idm/65/managed/user",
 "target" : "external/idm/fidc/managed/alpha_user"
}

Authentication

Authentication against the remote IDM instance is supported via basic authentication, or bearer token authentication when
IDM is configured to use rsFilter. The authentication strategy determines some of the parameters required for the request.

Property Required? Definition

enabled No The enable state of the service. Default
is true .

scope No The requested OAuth2 scope(s).

scopeDelimiter No The scope delimiter to use. Defaults to
space.

authtype Yes The authentication strategy to use.
Either basic or bearer .

instanceUrl Yes The URL of the remote instance to relay
the request to.

userName With basic auth The basic authentication user name.

password With basic auth The basic authentication password.

clientId With bearer auth The clientId used to request an access
token from the token endpoint.

clientSecret With bearer auth The client secret used to request an
access token from the token endpoint.

tokenEndpoint With bearer auth The OAuth2 token endpoint.

Object modeling PingIDM

576 Copyright © 2025 Ping Identity Corporation

Examples

Basic authentication

{
 "enabled" : true,
 "authType" : "basic",
 "instanceUrl" : "https://localhost:8443/openidm/",
 "userName" : "openidm-admin",
 "password" : "openidm-admin"
}

Bearer/Oauth2 authentication

{
 "enabled" : true,
 "authType" : "bearer",
 "instanceUrl" : "https://fr-platform.iam.example.com/openidm/",
 "clientId" : "idm-provisioning",
 "clientSecret" : "password",
 "scope" : [],
 "tokenEndpoint" : "https://fr-platform.iam.example.com/am/oauth2/realms/root/access_token",
 "scopeDelimiter" : " "
}

REST request

Request

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--insecure \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'https://localhost:8443/openidm/external/idm/platform/managed/user?_queryFilter=true'

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 577

Return

{
 "result": [
 {
 "_id": "95b2b43c-621e-4bca-8a97-efc768f17751",
 "_rev": "00000000f20217df",
 "userName": "testUser",
 "accountStatus": "active",
 "givenName": "Test",
 "sn": "User",
 "mail": "testUser@test.com"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Script

openidm.query("external/idm/fidc/managed/alpha_user", {"_queryFilter": "userName eq 'bjensen'"});

Define and call data queries

An advanced query model enables you to define queries and to call them over the REST or Resource API. The following types of
queries are supported, on both managed, and system objects:

Common filter expressions

Parameterized, or predefined queries

Native query expressions

Queries on object array properties (JDBC)

Support for queries on object array properties requires the following:

A JDBC repository with generic object mapping. Queries on arrays are not supported with explicit mappings. If you need to
convert from explicitly mapped objects to generic, refer to Convert an Explicit Mapped Object to a Hybrid Mapped Object
(JDBC).

For PostgreSQL only, you must configure array fields. Additional information about PostgreSQL JSON functions.

•

•

•

lightbulb_2
For limits on queries in progressive profiling, refer to Custom Progressive Profile Conditions.

Tip

•

•

Object modeling PingIDM

578 Copyright © 2025 Ping Identity Corporation

https://www.postgresql.org/docs/9.5/functions-json.html
https://www.postgresql.org/docs/9.5/functions-json.html

For JDBC repositories other than PostgreSQL, the array property must be configured as searchable. If you add additional
properties as searchable after the initial install/migration of IDM, run the /path/to/openidm/bin/defaults/script/
update/rewriteObjects.js script, specifying the new objectPaths of properties to make searchable:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header 'X-OpenIDM-NoSession: true' \
--request POST \
--data-raw '{
 "type": "text/javascript",
 "file": "/path/to/openidm/bin/defaults/script/update/rewriteObjects.js",
 "globals": {
 "rewriteConfig": {
 "queryFilter": "true",
 "pageSize": 1000,
 "objectPaths": [
 "repo/config",
 "repo/internal/usermeta",
 "repo/managed/role",
 "repo/managed/user",
 "repo/reconprogressstate",
 "repo/relationships",
 "repo/scheduler/triggers"
]
 }
 }
}' \
"http://localhost:8080/openidm/script/?_action=eval"

Do not use array fields in a sortKey .

Special characters in queries

JavaScript query invocations are not subject to the same URL-encoding requirements as GET requests. Because JavaScript
supports the use of single quotes, it is not necessary to escape the double quotes from most examples in this guide. Make sure to
protect against pulling in data that could contain special characters, such as double-quotes ("). The following example shows one
method of handling special characters:

"correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var qry = {'_queryFilter': org.forgerock.util.query.QueryFilter.equalTo('uid',
source.userName).toString()}; qry"
}

Common filter expressions

The ForgeRock REST API defines common filter expressions that enable you to form arbitrary queries using a number of
supported filter operations. This query capability is the standard way to query data if no predefined query exists, and is
supported for all managed and system objects.

Common filter expressions are useful in that they do not require knowledge of how the object is stored and do not require
additions to the repository configuration.

•

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 579

Common filter expressions are called with the _queryFilter keyword. The following example uses a common filter expression
to retrieve managed user objects whose user name is Smith:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
'http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+"smith"'

The filter is URL encoded in this example. The corresponding filter using the resource API would be:

openidm.query("managed/user", { "_queryFilter" : '/userName eq "smith"' });

Note that, this JavaScript invocation is internal and is not subject to the same URL-encoding requirements that a GET request
would be. Also, because JavaScript supports the use of single quotes, it is not necessary to escape the double quotes in this
example.

Parameterized queries

You can access managed objects in JDBC repositories using custom parameterized queries. Define these queries in your JDBC
repository configuration, (repo.*.json), and call them by their _queryId .

A typical query definition is as follows:

"query-all-ids" : "SELECT objectid FROM ${_dbSchema}.${_table} LIMIT ${int:_pageSize} OFFSET $
{int:_pagedResultsOffset}",

To call this query, you would reference its ID, as follows:

?_queryId=query-all-ids

The following example calls query-all-ids over the REST interface:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
"http://localhost:8080/openidm/managed/user?_queryId=query-all-ids"

emergency_home
Parameterized queries are not supported for system objects, or for DS repositories.
All internal queries are filtered queries. Internal queries that reference a queryId are translated to filtered
queries.

Important

•
•

Object modeling PingIDM

580 Copyright © 2025 Ping Identity Corporation

Native query expressions

Native query expressions are supported for system objects only, and can be called directly.

You should only use native queries in situations where common query filters or parameterized queries are insufficient. For
example, native queries are useful if the query needs to be generated dynamically.

The query expression is specific to the target resource and uses the native query language of that system resource.

Native queries are made using the _queryExpression keyword.

Construct queries

The openidm.query function lets you query managed and system objects. The query syntax is openidm.query(id, params) ,
where id specifies the object on which the query should be performed, and params provides the parameters that are passed to
the query (the _queryFilter). For example:

var equalTo = org.forgerock.util.query.QueryFilter.equalTo;
queryParams = {
 "_queryFilter": equalTo("uid", value).toString()
};
openidm.query("managed/user", queryParams)

Over the REST interface, the query filter is specified as _queryFilter=filter , for example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+"Smith"'

When called over REST, you must URL encode the filter expression. The following examples show the filter expressions using the
resource API and the REST API, but do not show the URL encoding, to make them easier to read.

For generic mappings, any fields that are included in the query filter (for example userName in the previous query), must be
explicitly defined as searchable, if you have set the global searchableDefault to false. For more information, refer to Improving
Generic Mapping Search Performance (JDBC).

info
In repo.jdbc.json , the queries configuration object has a property, validInRelationshipQuery , which is an array
specifying the IDs of queries that use relationships. If you define parameterized queries that you expect to use as part
of a relationship query, you must add the query ID to this array. If no query IDs are specified or if the property is
absent, relationship information is not returned in query results, even if requested. For more information about
relationships, refer to Relationships between objects.

Note

info
In _queryFilter expressions, string values must use double-quotes. Numeric and boolean expressions should not
use quotes.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 581

The filter expression is constructed from the building blocks shown in this section. In these expressions the simplest json-pointer
is a field of the JSON resource, such as userName or id . A JSON pointer can, however, point to nested elements.

Comparison expressions

You can use comparison query filters for objects and object array properties that:

This is the associated JSON comparison expression: json-pointer eq json-value .

Example 1

"_queryFilter" : '/givenName eq "Dan"'

The following REST call returns the user name and given name of all managed users whose first name (givenName) is "Dan":

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=givenName+eq+"Dan"&_fields=userName,givenName'
{
 "result": [
 {
 "givenName": "Dan",
 "userName": "dlangdon"
 },
 {
 "givenName": "Dan",
 "userName": "dcope"
 },
 {
 "givenName": "Dan",
 "userName": "dlanoway"
 }
],
 ...
}

Example 2

"_queryFilter" : "/stringArrayField eq 'foo'"

The following REST call returns role entries where a value within the stringArrayField array equals "foo":

info
You can also use the negation operator (!) in query construction. For example, a _queryFilter=!
(userName+eq+"jdoe") query would return every userName except for jdoe .

Note

Object modeling PingIDM

582 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/role?_queryFilter=stringArrayField+eq+"foo"'
{
 "result": [
 {
 "_id": "admin2",
 "_rev": "0",
 "name": "admin2",
 "stringArrayField": [
 "foo",
 "bar"
]
 }
],
 ...
}

Additional information about PostgreSQL JSON functions.

This is the associated JSON comparison expression: json-pointer co json-value .

Example

"_queryFilter" : '/givenName co "Da"'

The following REST call returns the user name and given name of all managed users whose first name (givenName) contains "Da":

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 583

https://www.postgresql.org/docs/9.5/functions-json.html
https://www.postgresql.org/docs/9.5/functions-json.html

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=givenName+co+"Da"&_fields=userName,givenName'
{
 "result": [
 {
 "givenName": "Dave",
 "userName": "djensen"
 },
 {
 "givenName": "David",
 "userName": "dakers"
 },
 {
 "givenName": "Dan",
 "userName": "dlangdon"
 },
 {
 "givenName": "Dan",
 "userName": "dcope"
 },
 {
 "givenName": "Dan",
 "userName": "dlanoway"
 },
 {
 "givenName": "Daniel",
 "userName": "dsmith"
 },
 ...
],
 "resultCount": 10,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

This is the associated JSON comparison expression: json-pointer sw json-value .

Example

"_queryFilter" : '/sn sw "Jen"'

The following REST call returns the user names of all managed users whose last name (sn) starts with "Jen":

Object modeling PingIDM

584 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=sn+sw+"Jen"&_fields=userName'
{
 "result": [
 {
 "userName": "bjensen"
 },
 {
 "userName": "djensen"
 },
 {
 "userName": "cjenkins"
 },
 {
 "userName": "mjennings"
 }
],
 "resultCount": 4,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

This is the associated JSON comparison expression: json-pointer lt json-value .

Example

"_queryFilter" : '/employeeNumber lt 5000'

The following REST call returns the user names of all managed users whose employeeNumber is lower than 5000:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 585

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?
_queryFilter=employeeNumber+lt+5000&_fields=userName,employeeNumber'
{
 "result": [
 {
 "employeeNumber": 4907,
 "userName": "jnorris"
 },
 {
 "employeeNumber": 4905,
 "userName": "afrancis"
 },
 {
 "employeeNumber": 3095,
 "userName": "twhite"
 },
 {
 "employeeNumber": 3921,
 "userName": "abasson"
 },
 {
 "employeeNumber": 2892,
 "userName": "dcarter"
 },
 ...
],
 "resultCount": 4999,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

This is the associated JSON comparison expression: json-pointer le json-value .

Example

"_queryFilter" : '/employeeNumber le 5000'

The following REST call returns the user names of all managed users whose employeeNumber is 5000 or less:

Object modeling PingIDM

586 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?
_queryFilter=employeeNumber+le+5000&_fields=userName,employeeNumber'
{
 "result": [
 {
 "employeeNumber": 4907,
 "userName": "jnorris"
 },
 {
 "employeeNumber": 4905,
 "userName": "afrancis"
 },
 {
 "employeeNumber": 3095,
 "userName": "twhite"
 },
 {
 "employeeNumber": 3921,
 "userName": "abasson"
 },
 {
 "employeeNumber": 2892,
 "userName": "dcarter"
 },
 ...
],
 "resultCount": 5000,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

This is the associated JSON comparison expression: json-pointer gt json-value

Example

"_queryFilter" : '/employeeNumber gt 5000'

The following REST call returns the user names of all managed users whose employeeNumber is higher than 5000:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 587

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?
_queryFilter=employeeNumber+gt+5000&_fields=userName,employeeNumber'
{
 "result": [
 {
 "employeeNumber": 5003,
 "userName": "agilder"
 },
 {
 "employeeNumber": 5011,
 "userName": "bsmith"
 },
 {
 "employeeNumber": 5034,
 "userName": "bjensen"
 },
 {
 "employeeNumber": 5027,
 "userName": "cclarke"
 },
 {
 "employeeNumber": 5033,
 "userName": "scarter"
 },
 ...
],
 "resultCount": 1458,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

This is the associated JSON comparison expression: json-pointer ge json-value .

Example

"_queryFilter" : '/employeeNumber ge 5000'

The following REST call returns the user names of all managed users whose employeeNumber is 5000 or greater:

Object modeling PingIDM

588 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?
_queryFilter=employeeNumber+ge+5000&_fields=userName,employeeNumber'
{
 "result": [
 {
 "employeeNumber": 5000,
 "userName": "agilder"
 },
 {
 "employeeNumber": 5011,
 "userName": "bsmith"
 },
 {
 "employeeNumber": 5034,
 "userName": "bjensen"
 },
 {
 "employeeNumber": 5027,
 "userName": "cclarke"
 },
 {
 "employeeNumber": 5033,
 "userName": "scarter"
 },
 ...
],
 "resultCount": 1457,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Presence expressions

The following examples show how you can build filters using a presence expression, shown as pr . The presence expression is a
filter that returns all records with a given attribute.

A presence expression filter evaluates to true when a json-pointer pr matches any object in which the json-pointer is
present, and contains a non-null value. Consider the following expression:

"_queryFilter" : '/mail pr'

info
Although specific system endpoints also support EndsWith and ContainsAllValues queries, such queries are not
supported for managed objects and have not been tested with all supported OpenICF connectors.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 589

The following REST call uses that expression to return the mail addresses for all managed users with a mail property:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=mail+pr&_fields=mail'
{
 "result": [
 {
 "mail": "jdoe@exampleAD.com"
 },
 {
 "mail": "bjensen@example.com"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Depending on the connector, you can apply the presence filter on system objects. The following query returns the email address
of all users in a CSV file who have the email attribute in their entries:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/system/csvfile/account?_queryFilter=email+pr&_fields=email'
{
 "result": [
 {
 "_id": "bjensen",
 "email": "bjensen@example.com"
 },
 {
 "_id": "scarter",
 "email": "scarter@example.com"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": "MA%3D%3D",
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Object modeling PingIDM

590 Copyright © 2025 Ping Identity Corporation

Literal expressions

A literal expression is a boolean:

true matches any object in the resource.

false matches no object in the resource.

For example, you can list the _id of all managed objects as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=_id'
{
 "result": [
 {
 "_id": "d2e29d5f-0d74-4d04-bcfe-b1daf508ad7c"
 },
 {
 "_id": "709fed03-897b-4ff0-8a59-6faaa34e3af6"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

In expression clause

IDM provides limited support for the in expression clause. You can use this clause for queries on singleton string properties or
arrays. The in query expression is not supported through the admin UI or for use by delegated administrators.

The in operator is shorthand for multiple OR conditions.

info
Not all connectors support the presence filter. In most cases, you can replicate the behavior of the presence filter with
an "equals" (eq) query such as _queryFilter=email+eq"*"

Note

•

•

info
The following example command includes escaped characters. For readability, the non-escaped URL syntax is:

http://localhost:8080/openidm/managed/user?_pageSize=1000&_fields=userName&_queryFilter=/userName in
'["user4a","user3a"]'

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 591

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?
_pageSize=1000&_fields=userName&_queryFilter=userName%20in%20'%5B%22user4a%22%2C%22user3a%22%5D'"
{
 "result": [
 {
 "_id": "e32f9a3d-0039-4cb0-82d7-347cb808672e",
 "_rev": "000000000ae18357",
 "userName": "user3a"
 },
 {
 "_id": "120625c5-cfe7-48e7-b66a-6a0a0f9d2901",
 "_rev": "000000005ad98467",
 "userName": "user4a"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Filter expanded relationships

You can use _queryFilter to directly filter expanded relationships from a collection, such as authzRoles . The following
example queries the manager-int authorization role of a user:

Object modeling PingIDM

592 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/b70293db-8743-45a7-9215-1ca8fd8a0073/authzRoles?
_queryFilter=name+eq+'manager-int'&_fields=*"
{
 "result": [
 {
 "_id": "b1d78144-7029-4135-8e73-85efe0a40b6b",
 "_rev": "00000000d4b8ab97",
 "_ref": "internal/role/c0a38233-c0f2-477d-8f18-f5485b7d002f",
 "_refResourceCollection": "internal/role",
 "_refResourceId": "c0a38233-c0f2-477d-8f18-f5485b7d002f",
 "_refProperties": {
 "_grantType": "",
 "_id": "b1d78144-7029-4135-8e73-85efe0a40b6b",
 "_rev": "00000000d4b8ab97"
 },
 "name": "manager-int",
 "description": "manager-int-desc",
 "temporalConstraints": null,
 "condition": null,
 "privileges": null
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Complex expressions

You can combine expressions using the boolean operators and , or , and ! (not). The following example queries managed user
objects located in London, with last name Jensen:

warning
You can use _queryFilter on fields within _refProperties when using DS as your repository. This functionality is
not available if you are using a JDBC repository.

Warning

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 593

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user/?
_queryFilter=city+eq+"London"and+sn+eq"Jensen"&_fields=userName,givenName,sn'
{
 "result": [
 {
 "sn": "Jensen",
 "givenName": "Clive",
 "userName": "cjensen"
 },
 {
 "sn": "Jensen",
 "givenName": "Dave",
 "userName": "djensen"
 },
 {
 "sn": "Jensen",
 "givenName": "Margaret",
 "userName": "mjensen"
 }
],
 "resultCount": 3,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Filter objects in arrays

Use query grouping to perform your query on properties within an array. For example, to query effectiveRoles for users who
have the testManagedRole , check the _refResourceId inside the effectiveRoles array:

Object modeling PingIDM

594 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user/?_queryFilter=/effectiveRoles\[/
_refResourceId+eq+"testManagedRole"]&_fields=userName,givenName,sn,effectiveRoles'
{
 "result": [
 {
 "_id": "917bc052-ef39-4add-ae05-0a278e2de9c0",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1565",
 "userName": "scarter",
 "sn": "Carter",
 "givenName": "Steven",
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "testManagedRole",
 "_ref": "managed/role/testManagedRole"
 }
]
 },
 {
 "_id": "aca0042c-9f4c-4ad5-8cf7-aca0adeb3470",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1545",
 "userName": "jdoe",
 "sn": "Doe",
 "givenName": "John",
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "testManagedRole",
 "_ref": "managed/role/testManagedRole"
 }
]
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

info
Because curl uses brackets ([] , {}) for processing, you need to escape your brackets with a \ . This may be
unnecessary in cases where you are using a different method to call IDM.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 595

Page query results

The common filter query mechanism supports paged query results for managed objects, and for some system objects, depending
on the system resource. There are two ways to page objects in a query:

Using a cookie based on the value of a specified sort key.

Using an offset that specifies how many records should be skipped before the first result is returned.

These methods are implemented with the following query parameters:

_pagedResultsCookie

Opaque cookie used by the server to keep track of the position in the search results. The format of the cookie is a base-64
encoded version of the value of the unique sort key property. The value of the returned cookie is URL-encoded to prevent
values such as + from being incorrectly translated.

You cannot page results without sorting them (using the _sortKeys parameter). If you do not specify a sort key, the _id
of the record is used as the default sort key. At least one of the specified sort key properties must be a unique value
property, such as _id .

The server provides the cookie value on the first request. You should then supply the cookie value in subsequent requests
until the server returns a null cookie, meaning that the final page of results has been returned.

The _pagedResultsCookie parameter is supported only for filtered queries, that is, when used with the _queryFilter
parameter. You cannot use the _pagedResultsCookie with a _queryId .

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and cannot be used together.

Paged results are enabled only if the _pageSize is a non-zero integer.

_pagedResultsOffset

Specifies the index within the result set of the number of records to be skipped before the first result is returned. The
format of the _pagedResultsOffset is an integer value. When the value of _pagedResultsOffset is greater than or
equal to 1, the server returns pages, starting after the specified index.

This request assumes that the _pageSize is set, and not equal to zero.

For example, if the result set includes 10 records, the _pageSize is 2, and the _pagedResultsOffset is 6, the server skips
the first 6 records, then returns 2 records, 7 and 8. The _remainingPagedResults value would be 2, the last two records
(9 and 10) that have not yet been returned.

emergency_home
This syntax is only available when using DS or PostgreSQL as your repository.
When using a PostgreSQL repository and querying an array, properties that are a string, boolean, number, or object
are supported. However, arrays are not supported (you can’t filter on an array within an array).

Important

•

•

lightbulb_2
For paged searches on generic mappings, you should sort on the _id property, because this is the only
property that is stored outside of the JSON blob. If you sort on something other than _id, the search will incur
a performance hit because IDM effectively has to pull the entire result set, and then sort it.

Tip

Object modeling PingIDM

596 Copyright © 2025 Ping Identity Corporation

If the offset points to a page beyond the last of the search results, the result set returned is empty.

_pageSize

An optional parameter indicating that query results should be returned in pages of the specified size. For all paged result
requests other than the initial request, a cookie should be provided with the query request.

The default behavior is not to return paged query results. If set, this parameter should be an integer value, greater than
zero.

When a _pageSize is specified, and non-zero, the server calculates the totalPagedResults , in accordance with the
totalPagedResultsPolicy , and provides the value as part of the response. If a count policy is specified
(_totalPagedResultsPolicy=EXACT , The totalPagedResults returns the total result count. If no count policy is specified
in the query, or if _totalPagedResultsPolicy=NONE , result counting is disabled, and the server returns a value of -1 for
totalPagedResults . The following example shows a query that requests two results with a totalPagedResultsPolicy of
EXACT :

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 597

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?
_queryFilter=true&_pageSize=2&_totalPagedResultsPolicy=EXACT"
{
 "result": [
 {
 "_id": "adonnelly",
 "_rev": "0",
 "userName": "adonnelly",
 "givenName": "Abigail",
 "sn": "Donnelly",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "adonnelly@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
 },
 {
 "_id": "bjensen",
 "_rev": "0",
 "userName": "bjensen",
 "givenName": "Babs",
 "sn": "Jensen",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "bjensen@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
 }
],
 "resultCount": 2,
 "pagedResultsCookie": "eyIvX2lkIjoiYm11cnJheSJ9",
 "totalPagedResultsPolicy": "EXACT",
 "totalPagedResults": 22,
 "remainingPagedResults": -1
}

The totalPagedResults and _remainingPagedResults parameters are not supported for all queries. Where they are not
supported, their returned value is always -1 . In addition, counting query results using these parameters is not currently
supported for a ForgeRock Directory Services (DS) repository.

Requesting the total result count (with _totalPagedResultsPolicy=EXACT) incurs a performance cost on the query.

Queries that return large data sets will have a significant impact on heap requirements, particularly if they are run in
parallel with other large data requests. To avoid out of memory errors, analyze your data requirements, set the heap
configuration appropriately, and modify access controls to restrict requests on large data sets.

Object modeling PingIDM

598 Copyright © 2025 Ping Identity Corporation

Sort query results

For common filter query expressions, you can sort the results of a query using the _sortKeys parameter. This parameter takes a
comma-separated list as a value and orders the way in which the JSON result is returned, based on this list.

The _sortKeys parameter is not supported for predefined queries.

The following query returns all users with the givenName Dan, and sorts the results alphabetically, according to surname (sn):

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/system/ldap/account?
_queryFilter=givenName+eq+"Dan"&_fields=givenName,sn&_sortKeys=sn'
{
 "result": [
 {
 "sn": "Cope",
 "givenName": "Dan"
 },
 {
 "sn": "Langdon",
 "givenName": "Dan"
 },
 {
 "sn": "Lanoway",
 "givenName": "Dan"
 }
],
 "resultCount": 3,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

info
When using DS as a repo:

Pagination using _pageSize is recommended if you intend to use _sortKeys . If you do not paginate your
query, the data you are querying must be indexed in DS.
When viewing data that is persisted in DS and sorted by un-indexed _sortKeys , the _pageSize parameter
must be less than or equal to the index-entry-limit as configured in DS (default value is 4000).

For more information about how to set up indexes in DS, refer to Indexes in the DS Configuration Guide.

Note

•

•

info
When you query a relationship field, fields that belong to the related object are not available as _sortKeys . For
example, if you query a list of a manager’s reports, you cannot sort by the reports' last names. This is because the
available _sortKeys are based on the object being queried, which, in the case of relationships, is actually a list of
references to other objects, not the objects themselves.

Note

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 599

https://docs.pingidentity.com/pingds/7.4/config-guide/indexing.html
https://docs.pingidentity.com/pingds/7.4/config-guide/indexing.html

Recalculate virtual property values in queries

For managed objects IDM includes an onRetrieve script hook that enables you to recalculate property values when an object is
retrieved as the result of a query. To use the onRetrieve trigger, the query must include the executeOnRetrieve parameter, for
example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=sn+eq+"Jensen"&executeOnRetrieve=true'

If a query includes executeOnRetrieve , the query recalculates virtual property values, based on the current state of the system.
The result of the query will be the same as a read on a specific object, because reads always recalculate virtual property values.

If a query does not include executeOnRetrieve , the query returns the virtual properties of an object, based on the value that is
persisted in the repository. Virtual property values are not recalculated.

For performance reasons, executeOnRetrieve is false by default.

Upload files to the server

IDM provides a generic file upload service that lets you upload and save files either to the filesystem or to the repository. The
service uses the multipart/form-data Content-Type to accept file content, store it, and return that content when it is called over
the REST interface.

To configure the file upload service, add one or more file-description.json files to your project’s conf directory, where
description provides an indication of the purpose of the upload service. For example, you might create a file-images.json
configuration file to handle uploading image files. Each file upload configuration file sets up a separate instance of the upload
service. The description in the filename also specifies the endpoint at which the file service will be accessible over REST. In the
previous example, file-images.json , the service would be accessible at the endpoint openidm/file/images .

A sample file upload service configuration file is available in the /path/to/openidm/samples/example-configurations/conf
directory. The configuration is as follows:

{
 "enabled" : true,
 "fileHandler" : {
 "type" : file handler type,
 "root" : directory
 }
}

info
Virtual properties that use queryConfig for calculation instead of an onRetrieve script are not recalculated by
executeOnRetrieve . These properties are recalculated only when there is a change (such as adding or removing a
role affecting effectiveRoles , or a temporal constraint being triggered or changed).

Note

Object modeling PingIDM

600 Copyright © 2025 Ping Identity Corporation

The service supports two file handlers— file and repo . The file handlers are configured as follows:

"type" : "file" specifies that the uploaded content will be stored in the filesystem. If you use the file type, you must
specify a root property to indicate the directory (relative to the IDM installation directory) in which uploaded content is
stored. In the following example, uploaded content is stored in the /path/to/openidm/images directory:

{
 "enabled" : true,
 "fileHandler" : {
 "type" : "file",
 "root" : "images"
 }
}

You cannot use the file upload service to access any files outside the configured root directory.

"type" : "repo" specifies that the uploaded content will be stored in the repository. The root property does not apply
to the repository file handler so the configuration is as follows:

{
 "enabled" : true,
 "fileHandler" : {
 "type" : "repo"
 }
}

The file upload service performs a multi-part CREATE operation. Each upload request includes two --form options. The first
option indicates that the uploaded file content will be converted to a base 64-encoded string and inserted into the JSON object as
a field named content with the following structure:

{
 "content" : {
 "$ref" : "cid:filename#content"
 }
}

The second --form option specifies the file to be uploaded, and the file type. The request loads the entire file into memory, so
file size will be constrained by available memory.

You can upload any mime type using this service; however, you must specify a safelist of mime types that can be retrieved over
REST. If you specify a mime type that is not in the safelist during retrieval of the file, the response content defaults to
application/json . To configure the list of supported mime types, specify a comma-separated list as the value of the
org.forgerock.json.resource.http.safemimetypes property in the conf/system.properties file. For example:

•

warning
If root is configured to be an empty string, do not grant access to the file upload service to end users. When
type is configured as file, ensure that root is configured to be a directory.

Warning

•

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 601

org.forgerock.json.resource.http.safemimetypes=application/json,application/pkix-cert,application/x-pem-file

You can only select from the following list:

image/*

text/plain

text/css

text/csv

application/json

application/pkix-cert

application/x-pem-file

The following request uploads an image (PNG) file named test.png to the filesystem. The file handler configuration file provides
the REST endpoint. In this case openidm/file/images references the configuration in the file-images.json file:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--form 'json={"content" : {"$ref" : "cid:test#content"}};type=application/json' \
--form 'test=@test.png;type=image/png' \
--request PUT \
"http://localhost:8080/openidm/file/images/test.png"
{
 "_id": "test.png",
 "content": "aW1hZ2UvcG5n"
}

Note that the resource ID is derived directly from the upload filename — system-generated IDs are not supported.

The following request uploads a stylesheet (css) file named test.css to the same location on the filesystem as the previous
request:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--form 'json={"content" : {"$ref" : "cid:test#content"}};type=application/json' \
--form '@test.css;type=text/css' \
--request PUT \
"http://localhost:8080/openidm/file/images/test.css"
{
 "_id": "test.css",
 "content": "aW1hZ2UvY3N2"
}

•

•

•

•

•

•

•

Object modeling PingIDM

602 Copyright © 2025 Ping Identity Corporation

Files uploaded to the repository are stored as JSON objects in the openidm.files table. The following request uploads the same
image (PNG) file (test.png) to the repository:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--form 'json={"content" : {"$ref" : "cid:test#content"}};type=application/json' \
--form 'test=@test.png;type=image/png' \
--request PUT \
"http://localhost:8080/openidm/file/repo/test.png"
{
 "_id": "test.png",
 "_rev": "00000000970b4454",
 "content": "aW1hZ2UvcG5n"
}

Note that the preceding example assumes the following file upload service configuration (in file-repo.json :

{
 "enabled" : true,
 "fileHandler" : {
 "type" : "repo"
 }
}

The file type is not stored with the file. By default, a READ on uploaded file content returns the content as a base 64-encoded
string within the JSON object. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/file/repo/test.png"
{
 "_id": "test.png",
 "_rev": "00000000970b4454",
 "content": "aW1hZ2UvcG5n"
}

Your client can retrieve the file in the correct format by specifying the content and mimeType parameters in the read request.
For example:

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 603

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/file/repo/test.css?_fields=content&_mimeType=text/css"

To delete uploaded content, send a DELETE request as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/file/repo/test.png"
{
 "_id": "test.png",
 "_rev": "00000000970b4454",
 "content": "aW1hZ2UvcG5n"
}

Data models and objects reference

You can customize a variety of objects that can be addressed via a URL or URI. IDM can perform a common set of functions on
these objects, such as CRUDPAQ (create, read, update, delete, patch, action, and query).

Depending on how you intend to use them, different object types are appropriate.

Object Types

Object Type Intended Use Special Functionality

Managed objects Serve as targets and sources for
synchronization, and to build virtual
identities.

Provide appropriate auditing, script hooks,
declarative mappings and so forth in addition
to the REST interface.

Configuration objects Ideal for look-up tables or other custom
configuration, which can be configured
externally like any other system
configuration.

Adds file view, REST interface, and so forth

Repository objects The equivalent of arbitrary database table
access. Appropriate for managing data purely
through the underlying data store or
repository API.

Persistence and API access

Object modeling PingIDM

604 Copyright © 2025 Ping Identity Corporation

Managed objects reference

A managed object is an object that represents the identity-related data managed by IDM. Managed objects are stored in the IDM
repository. All managed objects are JSON-based data structures.

Managed object schema

IDM provides a default schema for typical managed object types, such as users and roles, but does not control the structure of
objects that you store in the repository. You can modify or extend the schema for the default object types, and you can set up a
new managed object type for any item that can be collected in a data set.

The _rev property of a managed object is reserved for internal use, and is not explicitly part of its schema. This property
specifies the revision of the object in the repository. This is the same value that is exposed as the object’s ETag through the REST
API. The content of this attribute is not defined. No consumer should make any assumptions of its content beyond equivalence
comparison. This attribute may be provided by the underlying data store.

Schema validation is performed by the policy service and can be configured according to the requirements of your deployment.

Properties can be defined to be strictly derived from other properties within the object. This allows computed and composite
values to be created in the object. Such properties are named virtual properties. The value of a virtual property is computed only
when that property is retrieved.

Data consistency

Single-object operations are consistent within the scope of the operation performed, limited by the capabilities of the underlying
data store. Bulk operations have no consistency guarantees. IDM does not expose any transactional semantics in the managed
object access API.

For information on conditional header access through the REST API, refer to Conditional Operations.

Managed object triggers

Triggers are user-definable functions that validate or modify object or property state.

State triggers

Managed objects are resource-oriented. A set of triggers is defined to intercept the supported request methods on managed
objects. Such triggers are intended to perform authorization, redact, or modify objects before the action is performed. The object
being operated on is in scope for each trigger, meaning that the object is retrieved by the data store before the trigger is fired.

Object Type Intended Use Special Functionality

System objects Representation of target resource objects,
such as accounts, but also resource objects
such as groups.

Audit objects Houses audit data in the repository.

Links Defines a relation between two objects.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 605

If retrieval of the object fails, the failure occurs before any trigger is called. Triggers are executed before any optimistic
concurrency mechanisms are invoked. The reason for this is to prevent a potential attacker from getting information about an
object (including its presence in the data store) before authorization is applied.

onCreate

Called upon a request to create a new object. Throwing an exception causes the create to fail.

postCreate

Called after the creation of a new object is complete.

onRead

Called upon a request to retrieve a whole object or portion of an object. Throwing an exception causes the object to not be
included in the result. This method is also called when lists of objects are retrieved via requests to its container object; in
this case, only the requested properties are included in the object. Allows for uniform access control for retrieval of
objects, regardless of the method in which they were requested.

onUpdate

Called upon a request to store an object. The oldObject and newObject variables are in-scope for the trigger. The
oldObject represents a complete object, as retrieved from the data store. The trigger can elect to change newObject
properties. If, as a result of the trigger, the values of the oldObject and newObject are identical (that is, update is
reverted), the update ends prematurely, but successfully. Throwing an exception causes the update to fail.

postUpdate

Called after an update request is complete.

onDelete

Called upon a request to delete an object. Throwing an exception causes the deletion to fail.

postDelete

Called after an object is deleted.

onSync

Called when a managed object is changed, and the change triggers an implicit synchronization operation. The implicit
synchronization operation is triggered by calling the sync service, which attempts to go through all the configured
managed-system mappings. The sync service returns either a response or an error. For both the response and the error,
the script that is referenced by the onSync hook is called.

You can use this hook to inject business logic when the sync service either fails or succeeds to synchronize all applicable
mappings. For an example of how the onSync hook is used to revert partial successful synchronization operations, refer
to Synchronization Failure Compensation.

Object storage triggers

An object-scoped trigger applies to an entire object. Unless otherwise specified, the object itself is in scope for the trigger.

Object modeling PingIDM

606 Copyright © 2025 Ping Identity Corporation

onValidate

Validates an object prior to its storage in the data store. If an exception is thrown, the validation fails and the object is not
stored.

onStore

Called just prior to when an object is stored in the data store. Typically used to transform an object just prior to its storage
(for example, encryption).

Property storage triggers

A property-scoped trigger applies to a specific property within an object. Only the property itself is in scope for the trigger. No
other properties in the object should be accessed during execution of the trigger. Unless otherwise specified, the order of
execution of property-scoped triggers is intentionally left undefined.

onValidate

Validates a given property value after its retrieval from and prior to its storage in the data store. If an exception is thrown,
the validation fails and the property is not stored.

onRetrieve

Called on all requests that return a single object: read, create, update, patch, and delete.

onRetrieve is called on queries only if executeOnRetrieve is set to true in the query request parameters. If
executeOnRetrieve is not passed, or if it is false , the query returns previously persisted values of the requested fields.
This behavior avoids performance problems when executing the script on all results of a query.

onStore

Called before an object is stored in the data store. Typically used to transform a given property before its object is stored.

Storage trigger sequences

Triggers are executed in the following order:

Object Retrieval Sequence

Retrieve the raw object from the data store

The executeOnRetrieve boolean is used to check whether property values should be recalculated. The sequence
continues if the boolean is set to true .

Call object onRetrieve trigger

Per-property within the object, call property onRetrieve trigger

Object Storage Sequence

Per-property within the object:

Call property onValidate trigger

Call object onValidate trigger

1.

2.

3.

4.

1.

◦

◦

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 607

Per-property trigger within the object:

Call property onStore trigger

Call object onStore trigger

Store the object with any resulting changes to the data store

Managed object encryption

Sensitive object properties can be encrypted prior to storage, typically through the property onStore trigger. The trigger has
access to configuration data, which can include arbitrary attributes that you define, such as a symmetric encryption key. Such
attributes can be decrypted during retrieval from the data store through the property onRetrieve trigger.

Managed object configuration

Configuration of managed objects is provided through an array of managed object configuration objects.

{
 "objects": [managed-object-config object, ...]
}

objects

array of managed-object-config objects, required

Specifies the objects that the managed object service manages.

Managed-object-config object properties

Specifies the configuration of each managed object.

2.

◦

◦

◦

Object modeling PingIDM

608 Copyright © 2025 Ping Identity Corporation

{
 "name" : string,
 "actions" : script object,
 "onCreate" : script object,
 "onDelete" : script object,
 "onRead" : script object,
 "onRetrieve": script object,
 "onStore" : script object,
 "onSync" : script object,
 "onUpdate" : script object,
 "onValidate": script object,
 "postCreate": script object,
 "postDelete": script object,
 "postUpdate": script object,
 "schema" : {
 "id" : urn,
 "icon" : string,
 "mat-icon" : string,
 "order" : [list of properties],
 "properties": { property-configuration objects },
 "$schema" : "http://json-schema.org/draft-03/schema",
 "title" : "User",
 "viewable" : true
 }
}

name

string, required

The name of the managed object. Used to identify the managed object in URIs and identifiers.

actions

script object, optional

A custom script that initiates an action on the managed object. For more information, refer to Register custom scripted
actions.

onCreate

script object, optional

A script object to trigger when the creation of an object is being requested. The object to be created is provided in the root
scope as an object property. The script can change the object. If an exception is thrown, the create aborts with an
exception.

onDelete

script object, optional

A script object to trigger when the deletion of an object is being requested. The object being deleted is provided in the root
scope as an object property. If an exception is thrown, the deletion aborts with an exception.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 609

onRead

script object, optional

A script object to trigger when the read of an object is being requested. The object being read is provided in the root scope
as an object property. The script can change the object. If an exception is thrown, the read aborts with an exception.

onRetrieve

script object, optional

A script object to trigger when an object is retrieved from the repository. The object that was retrieved is provided in the
root scope as an object property. The script can change the object. If an exception is thrown, then object retrieval fails.

onStore

script object, optional

A script object to trigger when an object is about to be stored in the repository. The object to be stored is provided in the
root scope as an object property. The script can change the object. If an exception is thrown, then object storage fails.

onSync

script object, optional

A script object to trigger when a change to a managed object triggers an implicit synchronization operation. The script has
access to the syncResults object, the request object, the state of the object before the change (oldObject) and the
state of the object after the change (newObject). The script can change the object.

onUpdate

script object, optional

A script object to trigger when an update to an object is requested. The old value of the object being updated is provided
in the root scope as an oldObject property. The new value of the object being updated is provided in the root scope as a
newObject property. The script can change the newObject . If an exception is thrown, the update aborts with an
exception.

onValidate

script object, optional

A script object to trigger when the object requires validation. The object to be validated is provided in the root scope as an
object property. If an exception is thrown, the validation fails.

postCreate

script object, optional

A script object to trigger after an object is created, but before any targets are synchronized.

postDelete

script object, optional

Object modeling PingIDM

610 Copyright © 2025 Ping Identity Corporation

A script object to trigger after a delete of an object is complete, but before any further synchronization. The value of the
deleted object is provided in the root scope as an oldObject property.

postUpdate

script object, optional

A script object to trigger after an update to an object is complete, but before any targets are synchronized. The value of
the object before the update is provided in the root scope as an oldObject property. The value of the object after the
update is provided in the root scope as a newObject property.

schema

json-schema object, optional

The schema to use to validate the structure and content of the managed object, and how the object is displayed in the UI.
The schema-object format is defined by the JSON Schema specification.

The schema property includes the following additional elements:

icon

string, optional

The name of the Font Awesome icon to display for this object in the UI. Only applies to standalone IDM.

mat-icon

string, optional

The name of the Material Design Icon to display for this object in the UI. Only applies to IDM as part of the
ForgeRock Identity Platform.

id

urn, optional

The URN of the managed object, for example, urn:jsonschema:org:forgerock:openidm:managed:api:Role .

order

list of properties, optional

The order in which properties of this managed object are displayed in the UI.

properties

list of property configuration objects, optional

A list of property specifications. For more information, refer to Property Configuration Properties.

$schema

url, optional

Link to the JSON schema specification.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 611

https://material.io/resources/icons/
https://material.io/resources/icons/

title

string, optional

The title of this managed object in the UI.

viewable

boolean, optional

Whether this object is visible in the UI.

Property configuration properties

Each managed object property, identified by its property-name , can have the following configurable properties:

"property-name" : {
 "comparison" : string,
 "description" : string,
 "encryption" : property-encryption object,
 "isPersonal" : boolean true/false,
 "isProtected" : boolean true/false,
 "isVirtual" : boolean true/false,
 "items" : {
 "id" : urn,
 "properties" : property-config object,
 "resourceCollection" : property-config object,
 "reversePropertyName" : string,
 "reverseRelationship" : boolean true/false,
 "title" : string,
 "type" : string,
 "validate" : boolean true/false,
 },
 "onRetrieve" : script object,
 "onStore" : script object,
 "onValidate" : script object,
 "pattern" : string,
 "policies" : policy object,
 "required" : boolean true/false,
 "returnByDefault" : boolean true/false,
 "scope" : string,
 "searchable" : boolean true/false,
 "secureHash" : property-hash object,
 "title" : string,
 "type" : data type,
 "usageDescription": string,
 "userEditable" : boolean true/false,
 "viewable" : boolean true/false,
}

comparison

string, optional

Object modeling PingIDM

612 Copyright © 2025 Ping Identity Corporation

Specifies whether to use array ordered or unordered comparison for synchronization. The value can be either "ordered"
or "unordered" . The "ordered" value indicates that the array order matters with regard to detecting changes for sync.
The "unordered" value indicates that the array order does not matter with regard to detecting changes for sync.

Relationship and virtual property array fields default to unordered comparisons. All other fields default to ordered
comparisons.

If you’re using explicit mappings with a DS repository, you can’t use ordered array comparisons.

description

string, optional

A brief description of the property.

encryption

property-encryption object, optional

Specifies the configuration for encryption of the property in the repository. If omitted or null, the property is not
encrypted.

isPersonal

boolean, true/false

Designed to highlight personally identifying information. By default, isPersonal is set to true for userName and
postalAddress .

isProtected

boolean, true/false

Specifies whether reauthentication is required if the value of this property changes.

isVirtual

boolean, true/false

Specifies whether the property takes a static value, or whether its value is calculated dynamically as the result of a script.

The most recently calculated value of a virtual property is persisted by default. The persistence of virtual property values
allows IDM to compare the new value of the property against the last calculated value, and therefore to detect change
events during synchronization.

Virtual property values are not persisted by default if you’re using an explicit mapping.

items

property-configuration object, optional

For array type properties, defines the elements in the array. items can include the following sub-properties:

id

urn, optional

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 613

The URN of the property, for example,
urn:jsonschema:org:forgerock:openidm:managed:api:Role:members:items .

properties

property configuration object, optional

A list of properties, and their configuration, that make up this items array. For example, for a relationship type
property:

"properties" : {
 "_ref" : {
 "description" : "References a relationship from a managed object",
 "type" : "string"
 },
 "_refProperties" : {
 "description" : "Supports metadata within the relationship",
 ...
 }
}

resourceCollection

property configuration object, optional

The collection of resources (objects) on which this relationship is based (for example, managed/user objects).

reversePropertyName

string, optional

For relationship type properties, specifies the corresponding property name in the case of a reverse
relationship. For example, a roles property might have a reversePropertyName of members .

reverseRelationship

boolean, true or false.

For relationship type properties, specifies whether the relationship exists in both directions.

title

string, optional

The title of array items, as displayed in the UI, for example Role Members Items .

type

string, optional

The array type, for example relationship .

validate

boolean, true/false

Object modeling PingIDM

614 Copyright © 2025 Ping Identity Corporation

For reverse relationships, specifies whether the relationship should be validated.

onRetrieve

script object, optional

A script object to trigger once a property is retrieved from the repository. That property may be one of two related
variables: property and propertyName . The property that was retrieved is provided in the root scope as the
propertyName variable; its value is provided as the property variable. If an exception is thrown, then object retrieval
fails.

onStore

script object, optional

A script object to trigger when a property is about to be stored in the repository. That property may be one of two related
variables: property and propertyName . The property that was retrieved is provided in the root scope as the
propertyName variable; its value is provided as the property variable. If an exception is thrown, then object storage fails.

onValidate

script object, optional

A script object to trigger when the property requires validation. The value of the property to be validated is provided in the
root scope as the property property. If an exception is thrown, validation fails.

pattern

string, optional

Any specific pattern to which the value of the property must adhere. For example, a property whose value is a date might
require a specific date format. Patterns specified here must follow regular expression syntax.

policies

policy object, optional

Any policy validation that must be applied to the property.

required

boolean, true/false

Specifies whether the property must be supplied when an object of this type is created.

returnByDefault

boolean, true/false

For virtual properties, specifies whether the property will be returned in the results of a query on an object of this type if it
is not explicitly requested. Virtual attributes are not returned by default.

scope

string, optional

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 615

Specifies whether the property should be filtered from HTTP/external calls. The value can be either "public" or
"private" . "private" indicates that the property should be filtered, "public" indicates no filtering. If no value is set,
the property is assumed to be public and thus not filtered.

searchable

boolean, true/false

Specifies whether this property can be used in a search query on the managed object. A searchable property is visible in
the End User UI. False by default.

secureHash

property-hash object, optional

Specifies the configuration for hashing of the property value in the repository. If omitted or null, the property is not
hashed.

title

string, required

A human-readable string, used to display the property in the UI.

type

data type, required

The data type for the property value; can be String, Array, Boolean, Number, Object, or Resource Collection.

usageDescription

string, optional

Designed to help end users understand the sensitivity of a property such as a telephone number.

userEditable

boolean, true/false

Specifies whether users can edit the property value in the UI. This property applies in the context of the End User UI, in
which users are able to edit certain properties of their own accounts. False by default.

viewable

boolean, true/false

Specifies whether this property is viewable in the object’s profile in the UI. True by default.

Object modeling PingIDM

616 Copyright © 2025 Ping Identity Corporation

Script Object Properties

{
 "type" : "text/javascript",
 "source": string
}

type

string, required

IDM supports "text/javascript" and "groovy" .

source, file

string, required (only one, source or file is required)

Specifies the source code of the script to be executed (if the keyword is "source"), or a pointer to the file that contains the
script (if the keyword is "file").

Property Encryption Object

{
 "cipher": string,
 "key" : string
}

cipher

string, optional

The cipher transformation used to encrypt the property. If omitted or null, the default cipher of "AES/CBC/PKCS5Padding"
is used.

key

string, required

The alias of the key in the IDM cryptography service keystore used to encrypt the property.

Property Hash Object

{
 "algorithm" : string,
 "type" : string
}

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 617

algorithm

string, required

The algorithm that should be used to hash the value.

For a list of supported hash algorithms, refer to Salted Hash Algorithms.

type

string, optional

The type of hashing. Currently only salted hash is supported. If this property is omitted or null, the default "salted-hash"
is used.

Custom managed objects

Managed objects are inherently fully user definable and customizable. Like all objects, managed objects can maintain
relationships to each other in the form of links. Managed objects are intended for use as targets and sources for synchronization
operations to represent domain objects, and to build up virtual identities. The name managed objects comes from the intention
that IDM stores and manages these objects, as opposed to system objects that are present in external systems.

IDM can synchronize and map directly between external systems (system objects), without storing intermediate managed objects.
Managed objects are appropriate, however, as a way to cache the data—for example, when mapping to multiple target systems,
or when decoupling the availability of systems—to more fully report and audit on all object changes during reconciliation, and to
build up views that are different from the original source, such as transformed and combined or virtual views. Managed objects
can also be allowed to act as an authoritative source if no other appropriate source is available.

Other object types exist for other settings that should be available to a script, such as configuration or look-up tables that do not
need audit logging.

Set up a managed object type

To set up a managed object, you define the object in your project’s managed object configuration. This simple example adds a
foobar object declaration after the user object type:

{
 "objects": [
 {
 "name": "user"
 },
 {
 "name": "foobar"
 }
]
}

Manipulate managed objects declaratively

By mapping an object to another object, either an external system object or another internal managed object, you automatically
tie the object life cycle and property settings to the other object. For more information, refer to Resource mapping.

Object modeling PingIDM

618 Copyright © 2025 Ping Identity Corporation

Manipulate managed objects programmatically

You can address managed objects as resources using URLs or URIs with the managed/ prefix. This works whether you address
the managed object internally as a script running in IDM or externally through the REST interface.

You can use all resource API functions in script objects for create, read, update, delete operations, and also for arbitrary queries
on the object set, but not currently for arbitrary actions. For more information, refer to Scripting.

IDM supports concurrency through a multi version concurrency control (MVCC) mechanism. Each time an object changes, IDM
assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers, strings, and booleans as
defined in JSON.

Create objects

The following script example creates an object type.

openidm.create("managed/foobar", "myidentifier", mymap)

Update objects

The following script example updates an object type.

var expectedRev = origMap._rev
openidm.update("managed/foobar/myidentifier", expectedRev, mymap)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to update. You obtain the revision
from the object’s _rev property. If something else changes the object concurrently, IDM rejects the update, and you must either
retry or inspect the concurrent modification.

Patch objects

You can partially update a managed or system object using the patch method, which changes only the specified properties of the
object.

The following script example updates an object type.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 619

https://www.json.org
https://www.json.org

openidm.patch("managed/foobar/myidentifier", rev, value)

The patch method supports a revision of "null" , which effectively disables the MVCC mechanism, that is, changes are applied,
regardless of revision. In the REST interface, this matches the If-Match: "*" condition supported by patch. Alternatively, you
can omit the "If-Match: *" header.

For managed objects, the API supports patch by query, so the caller does not need to know the identifier of the object to change.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '[
 {
 "operation": "replace",
 "field": "/password",
 "value": "Passw0rd"
 }
]' \
"http://localhost:8080/openidm/managed/user?_action=patch&_queryFilter=userName+eq+'DDOE'"

Delete objects

The following script example deletes an object type.

var expectedRev = origMap._rev
openidm.delete("managed/foobar/myidentifier", expectedRev)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to update. You obtain the revision
from the object’s _rev property. If something else changes the object concurrently, IDM rejects deletion, and you must either
retry or inspect the concurrent modification.

Read objects

The following script example reads an object type.

val = openidm.read("managed/foobar/myidentifier")

Object modeling PingIDM

620 Copyright © 2025 Ping Identity Corporation

Query object sets

You can query managed objects using common query filter syntax. The following script example queries managed user objects
whose userName is smith.

var qry = {
 "_queryFilter" : "/userName eq \"smith\""
};
val = openidm.query("managed/user", qry);

For more information, refer to Define and call data queries.

Access managed objects through the REST API

IDM exposes all managed object functionality through the REST API unless you configure a policy to prevent such access. In
addition to the common REST functionality of create, read, update, delete, patch, and query, the REST API also supports patch by
query. For more information, refer to the REST API reference.

IDM requires authentication to access the REST API. The authentication configuration is specified in your project’s conf/
authentication.json file. The default authorization filter script is openidm/bin/defaults/script/router-authz.js . For more
information, refer to Authorization and roles.

Configuration objects

IDM provides an extensible configuration to allow you to leverage regular configuration mechanisms.

Unlike native the IDM configuration, which is interpreted automatically and can start new services, IDM stores custom
configuration objects and makes them available to your code through the API.

For an introduction to the standard configuration objects, refer to Server configuration.

When To use custom configuration objects

Configuration objects are ideal for metadata and settings that need not be included in the data to reconcile. Use configuration
objects for data that does not require audit logs, and does not serve directly as a target or source for mappings.

Although you can set and manipulate configuration objects programmatically and manually, configuration objects are expected to
change slowly, through both manual file updates and programmatic updates. To store temporary values that can change
frequently and that you do not expect to be updated by configuration file changes, custom repository objects might be more
appropriate.

Custom configuration object naming conventions

By convention custom configuration objects are added under the reserved context, config/custom .

You can choose any name under config/context . Be sure, however, to choose a value for context that does not clash with
future IDM configuration names.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 621

Mapping configuration objects To configuration files

If you have not disabled the file-based view for configuration, you can view and edit all configuration including custom
configuration in openidm/conf/*.json files. The configuration maps to a file named context-config-name.json , where context
for custom configuration objects is custom by convention, and config-name is the configuration object name. A configuration
object named escalation thus maps to a file named conf/custom-escalation.json .

IDM detects and automatically picks up changes to the file.

IDM also applies changes made through APIs to the file.

By default, IDM stores configuration objects in the repository. The file view is an added convenience aimed to help you in the
development phase of your project.

Configuration objects file and REST payload formats

By default, IDM maps configuration objects to JSON representations.

IDM represents objects internally in plain, native types like maps, lists, strings, numbers, booleans, null. The object model is
restricted to simple types so that mapping objects to external representations is easy.

The following example shows a representation of a configuration object with a look-up map.

{
 "CODE123" : "ALERT",
 "CODE889" : "IGNORE"
}

In the JSON representation, maps are represented with braces ({ }), and lists are represented with brackets ([]). Objects can
be arbitrarily complex, as in the following example.

{
 "CODE123" : {
 "email" : ["sample@sample.com", "john.doe@somedomain.com"],
 "sms" : ["555666777"]
 }
 "CODE889" : "IGNORE"
}

Accessing configuration objects through the REST API

You can list all available configuration objects, including system and custom configurations, using an HTTP GET on /openidm/
config .

The _id property in the configuration object provides the link to the configuration details with an HTTP GET on /openidm/
config/id-value . By convention, the id-value for a custom configuration object called escalation is custom/escalation .

IDM supports REST mappings for create, read, update, delete, patch, and query of configuration objects.

Object modeling PingIDM

622 Copyright © 2025 Ping Identity Corporation

Accessing configuration objects programmatically

You can address configuration objects as resources using the URL or URI config/ prefix both internally and also through the
REST interface. The resource API provides script object functions for create, read, update, query, and delete operations.

IDM supports concurrency through a multi version concurrency control mechanism. Each time an object changes, IDM assigns it a
new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers, strings, and booleans.

Creating objects

The following script example creates an object type.

openidm.create("config/custom", "myconfig", mymap)

Updating objects

The following script example updates a custom configuration object type.

openidm.update("config/custom/myconfig", mymap)

Deleting objects

The following script example deletes a custom configuration object type.

openidm.delete("config/custom/myconfig")

Reading objects

The following script example reads an object type.

val = openidm.read("config/custom/myconfig")

System objects

System objects are pluggable representations of objects on external systems. They follow the same RESTful resource based design
principles as managed objects. There is a default implementation for the OpenICF framework, which allows any connector object
to be represented as a system object.

Audit objects

Audit objects contain audit data selected for local storage in repository.

PingIDM Object modeling

Copyright © 2025 Ping Identity Corporation 623

Links

Link objects define relations between source objects and target objects, usually relations between managed objects and system
objects. The link relationship is established by provisioning activity that either results in a new account on a target system, or a
reconciliation or synchronization scenario that takes a LINK action.

Object modeling PingIDM

624 Copyright © 2025 Ping Identity Corporation

Authentication and authorization

This guide covers authentication, authorization, and delegated administration.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Authentication

Authentication is the process of verifying who is requesting access to a resource. The user or application making the request
presents credentials, making it possible to prove that the requester is who they claim to be. The goal is to authorize access to
specific IDM resources, depending on the confirmed identity of the user or application making the request.

IDM supports two authentication modes:

Using one or more of the classic IDM authentication modules.

Configuring IDM as an OAuth2 Resource Server in a platform deployment using AM as the Identity Provider.

Authentication

Authenticate users securely.

Authorization & roles

The authorization configuration grants rights to
users based on their roles.

Delegated administration

Use privileges to give fine-grained administrative
access to specific users.

•

•

Authentication and authorization PingIDM

626 Copyright © 2025 Ping Identity Corporation

https://www.forgerock.com
https://www.forgerock.com

IDM and HTTP basic authentication

HTTP basic authentication is a simple challenge and response mechanism whereby the client submits a user ID and password to
the server. IDM understands the authorization header of the HTTP basic authentication contract. However, it deliberately does
not use the full HTTP basic authentication contract and does not cause the browser built-in mechanism to prompt for username
and password. It also understands utilities, such as curl and Postman, that can send the username and password in the
Authorization header.

In general, the HTTP basic authentication mechanism does not work well with client side web applications, and applications that
need to render their own login screens. Because the browser stores and sends the username and password with each request,
HTTP basic authentication has significant security vulnerabilities. You can therefore send the username and password via the
authorization header, and IDM returns a token for subsequent access.

Access to the IDM REST interface requires that the client authenticate. User self-registration requires anonymous access. For this
purpose, IDM includes an anonymous user, with the password anonymous . For more information, refer to Internal Users.

The examples in this documentation use the IDM authentication headers in all REST examples, for example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
...

Password changes

Changing passwords can expose a server to potential security risks. An insecure password reset process can allow attackers to
reset the passwords of other users in order to bypass authentication and gain access to user accounts.

Re-authentication forces users or clients to confirm their identity even this identity was verified previously. When passwords are
changed over REST, using a PUT or PATCH request, IDM requires the X-OpenIDM-Reauth-Password header. If this header is
absent, the server returns a 403 error.

For example, the following password change request fails:

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 627

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "If-Match: *" \
--request PUT \
--data '{
 "userName": "bjensen",
 "givenName": "Babs",
 "sn": "Jensen",
 "mail": "babs.jensen@example.com",
 "telephoneNumber": "555-123-1234",
 "password": "NewPassw0rd"
}' \
"https://localhost:8443/openidm/managed/user/0638da14-e02e-4904-9076-b8ce8f700eb4"
{
 "code": 403,
 "reason": "Forbidden",
 "message": "Access denied"
}

The same request, including the X-OpenIDM-Reauth-Password header, succeeds:

Authentication and authorization PingIDM

628 Copyright © 2025 Ping Identity Corporation

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "X-OpenIDM-Reauth-Password: Passw0rd" \
--header "If-Match: *" \
--request PUT \
--data '{
 "userName": "bjensen",
 "givenName": "Babs",
 "sn": "Jensen",
 "mail": "babs.jensen@example.com",
 "telephoneNumber": "555-123-1234",
 "password": "NewPassw0rd"
}' \
"https://localhost:8443/openidm/managed/user/0638da14-e02e-4904-9076-b8ce8f700eb4"
{
 "_id": "0638da14-e02e-4904-9076-b8ce8f700eb4",
 "_rev": "00000000fa190282",
 "userName": "bjensen",
 "givenName": "Babs",
 "sn": "Jensen",
 "mail": "babs.jensen@example.com",
 "telephoneNumber": "555-123-1234",
 ...
}

Character encoding in authentication headers

You can use encoded characters in all three IDM authentication headers (X-OpenIDM-Username , X-OpenIDM-Password , and X-
OpenIDM-Reauth-Password). This lets you use non-ASCII characters in these header values. The RFC 5987-encoding is
automatically detected and decoded when present. The following character sets are supported:

UTF-8

ISO 8859-1

The following command shows a request for a user (openidm-admin) whose password is Passw£rd123 . The Unicode £ sign
(U+00A3) is encoded into the octet sequence C2 A3 using UTF-8 character encoding, then percent-encoded:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: UTF-8''Passw%C2%A3rd123" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/managed/user?_queryFilter=true&_fields=_id"

•

•

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 629

https://www.rfc-editor.org/rfc/rfc5987.html
https://www.rfc-editor.org/rfc/rfc5987.html

Authenticate users

IDM stores two types of users in its repository—internal users and managed users.

Internal users

Internal users are special user accounts that are stored separately from regular users to protect them from any
reconciliation or synchronization processes. When IDM first starts up, it creates three internal users in the repository by
default— openidm-admin , anonymous , and idm-provisioning :

openidm-admin

This user serves as the top-level administrator and has full access to all IDM resources. This account provides a
fallback mechanism in the event that other users are locked out of their accounts. Do not use openidm-admin for
regular tasks. Under normal circumstances, the openidm-admin account does not represent a regular user, so
audit log records for this account do not represent the actions of any real person.

The default password for the openidm-admin user is openidm-admin . In production environments, you should
change this password, as described in Change the Administrator User Password. The new password is
symmetrically encrypted as it is changed.

anonymous

This user enables anonymous access to IDM. It is used to interact with IDM in limited ways without further
authentication, such as when a user has not yet logged in and makes a login request. The anonymous user account
also allows self-registration.

The default password for the anonymous user is anonymous .

idm-provisioning

The internal user idm-provisioning is a service account used by AM to provision accounts in IDM. It has no
password, and isn’t meant to be logged in directly. If you are not planning to use AM and IDM together as a
platform, you can safely remove this user.

Managed users

Regular user accounts that are stored in IDM’s repository are called managed users because IDM effectively manages these
accounts.

Both internal and managed users must authenticate to gain access to the server. The way in which these user types are
authenticated is defined in your project’s conf/authentication.json file.

Any request to IDM will authenticate the user and return a token. To improve tracing through logs, authenticate internal
and managed users over REST by sending a POST request to the openidm/authentication endpoint, with
_action=login . The following example authenticates the openidm-admin user:

Authentication and authorization PingIDM

630 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request POST \
"https://localhost:8443/openidm/authentication?_action=login"

Attributes used for authentication

By default, the attribute names that are used to authenticate managed and internal users are username and password . You can
change the attributes that store authentication information with the propertyMapping object in the conf/authentication.json
file. The following excerpt of the authentication.json file shows the default authentication attributes:

...
 "propertyMapping" : {
 "authenticationId" : "username",
 "userCredential" : "password",
 "userRoles" : "authzRoles"
 },
...

If you change the attributes that are used for authentication, you must also change any authentication queries that use those
attributes. The following authentication queries are referenced in authentication.json :

credential-internaluser-query authenticates internal users.

credential-query authenticates managed users.

for-username

To change the authentication queries for a customized authentication attribute, create a queryFilters.json file in your project’s
conf directory. Include the authentication query IDs and the amended query filter, taking into account your changed attributes.
The default authentication queries are as follows:

{
 "credential-query": {
 "_queryFilter": "/userName eq \"${username}\" AND /accountStatus eq \"active\""
 },
 "credential-internaluser-query": {
 "_queryFilter": "/_id eq \"${username}\""
 },
 "for-userName": {
 "_queryFilter": "/userName eq \"${uid}\""
 }
}

The following example conf/queryFilters.json file shows the authentication queries adjusted to use the email attribute
instead of the username attribute:

•

•

•

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 631

{
 "credential-query": {
 "_queryFilter": "/email eq \"${email}\" AND /accountStatus eq \"active\""
 },
 "credential-internaluser-query": {
 "_queryFilter": "/_id eq \"${email}\""
 },
 "for-userName": {
 "_queryFilter": "/email eq \"${uid}\""
 }
}

Internal users

Although internal users are considered to be special user accounts, you can manage them over the REST interface as you would
any regular user in the repository.

To list the internal users over REST, query the internal/user endpoint as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/internal/user?_queryFilter=true&fields=_id"
{
 "result": [
 {
 "_id": "openidm-admin",
 "_rev": "00000000ec996921"
 },
 {
 "_id": "anonymous",
 "_rev": "00000000d95a68b1"
 },
 {
 "_id": "idm-provisioning",
 "_rev": "00000000817e3805"
 },
 {
 "_id": "connector-server-client",
 "_rev": "000000003f2a3a85"
 }
],
 ...
}

To query the details of an internal user, include the user ID in the request, for example:

Authentication and authorization PingIDM

632 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/internal/user/openidm-admin"
{
 "_id": "openidm-admin",
 "_rev": "00000000ec996921"
}

Internal users have specific authorization roles by default. These roles determine what the users can access in IDM. The
anonymous user has only the openidm-reg role by default. This role grants only the resource access required to log in, register,
and so forth. To identify the authorization roles for the openidm-admin internal user, and for information about creating and
managing other administrative users, see Administrative Users.

Change the administrator user password

The password of the openidm-admin user is openidm-admin by default. This password is set in the following excerpt of the
authentication.json file:

{
 "name" : "STATIC_USER",
 "properties" : {
 "queryOnResource" : "internal/user",
 "username" : "openidm-admin",
 "password" : "&{openidm.admin.password}",
 "defaultUserRoles" : [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled" : true
}

The password property references the openidm.admin.password property, set in resolver/boot.properties :

openidm.admin.password=openidm-admin

You can change the default administrator password in a number of ways:

Edit the resolver/boot.properties file before you start IDM (or restart IDM after you change this file).

Set the value directly in the conf/authentication.json file.

Update the authentication configuration over REST.

Get the current authentication configuration:

•

•

•

1.

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 633

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/config/authentication"
{
 "_id": "authentication",
 "serverAuthContext": {
 ...
 "authModules": [
 ...
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "openidm-admin",
 "password": "&{openidm.admin.password}",
 "defaultUserRoles": [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled": true
 },
 ...
]
 }
}

Change the password field of this STATIC_USER module and replace the authentication configuration:2.

Authentication and authorization PingIDM

634 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request PUT \
--data '{
 "_id": "authentication",
 "serverAuthContext": {
 "sessionModule": {
 "name": "JWT_SESSION",
 "properties": {
 "maxTokenLifeMinutes": 120,
 "tokenIdleTimeMinutes": 30,
 "sessionOnly": true,
 "isHttpOnly": true,
 "enableDynamicRoles": false
 }
 },
 "authModules": [
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "anonymous",
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "xBlTp67ze4Ca5LTocXOpoA==",
 "data": "mdibV6UabU2M+M5MK7bjFQ==",
 "keySize": 16,
 "purpose": "idm.config.encryption",
 "iv": "36D2+FumKbaUsndNQ+/5w==",
 "mac": "ZM8GMnh0n80QwtSH6QsNmA=="
 }
 }
 },
 "defaultUserRoles": [
 "internal/role/openidm-reg"
]
 },
 "enabled": true
 },
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "openidm-admin",
 "password": "newAdminPassword",
 "defaultUserRoles": [

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 635

 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled": true
 },
 {
 "name": "MANAGED_USER",
 "properties": {
 "augmentSecurityContext": {
 "type": "text/javascript",
 "source": "require('auth/customAuthz').setProtectedAttributes(security)"
 },
 "queryId": "credential-query",
 "queryOnResource": "{managed_user}",
 "propertyMapping": {
 "authenticationId": "username",
 "userCredential": "password",
 "userRoles": "authzRoles"
 },
 "defaultUserRoles": [
 "internal/role/openidm-authorized"
]
 },
 "enabled": true
 },
 {
 "name": "SOCIAL_PROVIDERS",
 "properties": {
 "defaultUserRoles": [
 "internal/role/openidm-authorized"
],
 "augmentSecurityContext": {
 "type": "text/javascript",
 "globals": {},
 "file": "auth/populateAsManagedUserFromRelationship.js"
 },
 "propertyMapping": {
 "userRoles": "authzRoles"
 }
 },
 "enabled": true
 }
]
 }
}' \
"{secureHostname}/openidm/config/authentication"
{
 "_id": "authentication",
 "serverAuthContext": {
 "sessionModule": {
 "name": "JWT_SESSION",
 "properties": {
 "maxTokenLifeMinutes": 120,
 "tokenIdleTimeMinutes": 30,

Authentication and authorization PingIDM

636 Copyright © 2025 Ping Identity Corporation

 "sessionOnly": true,
 "isHttpOnly": true,
 "enableDynamicRoles": false
 }
 },
 "authModules": [
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "anonymous",
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "xBlTp67ze4Ca5LTocXOpoA==",
 "data": "mdibV6UabU2M+M5MK7bjFQ==",
 "keySize": 16,
 "purpose": "idm.config.encryption",
 "iv": "36D2+FumKbaUsndNQ/+5w==",
 "mac": "ZM8GMnh0n80QwtSH6QsNmA=="
 }
 }
 },
 "defaultUserRoles": [
 "internal/role/openidm-reg"
]
 },
 "enabled": true
 },
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "openidm-admin",
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "l0trJWBzg5JKcWLzNq8QDA==",
 "data": "MKAkL9FVEq/FnWq+8a90+QcjfkEbrK7W4tIc3ORD1ck=",
 "keySize": 16,
 "purpose": "idm.config.encryption",
 "iv": "UMjU6crk332MZtEjo+wEmw==",
 "mac": "7EvTqjpmuS9PmY1aCT2s+g=="
 }
 }
 },
 "defaultUserRoles": [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 637

]
 },
 "enabled": true
 },
 {
 "name": "MANAGED_USER",
 "properties": {
 "augmentSecurityContext": {
 "type": "text/javascript",
 "source": "require(auth/customAuthz).setProtectedAttributes(security)"
 },
 "queryId": "credential-query",
 "queryOnResource": "managed/user",
 "propertyMapping": {
 "authenticationId": "username",
 "userCredential": "password",
 "userRoles": "authzRoles"
 },
 "defaultUserRoles": [
 "internal/role/openidm-authorized"
]
 },
 "enabled": true
 },
 {
 "name": "SOCIAL_PROVIDERS",
 "properties": {
 "defaultUserRoles": [
 "internal/role/openidm-authorized"
],
 "augmentSecurityContext": {
 "type": "text/javascript",
 "globals": {},
 "file": "auth/populateAsManagedUserFromRelationship.js"
 },
 "propertyMapping": {
 "userRoles": "authzRoles"
 }
 },
 "enabled": true
 }
]
 }
}

Authentication and session modules

An authentication module specifies how a user or client is authenticated. You configure authentication and session modules in
your project’s conf/authentication.json file.

IDM evaluates authentication modules in the order in which they appear in that file, and uses the first "successful" authentication
module it finds. Subsequent modules are not evaluated. In a production environment, you should remove any unused
authentication modules from your authentication.json file.

Authentication and authorization PingIDM

638 Copyright © 2025 Ping Identity Corporation

To authenticate a user or client, IDM validates the provided credentials against some resource. That resource can be either an
IDM resource such as managed/user or internal/user , or it can be an external resource such as an LDAP server or social
identity provider. You should prioritize the authentication modules that query IDM resources over those that query external
resources. Prioritizing modules that query external resources can lead to authentication problems for internal users such as
openidm-admin .

You can also configure authentication modules in the admin UI. Select Configure > Authentication, and select the Session or
Module tab. To change the order of authentication modules in the admin UI, simply drag the modules up or down so that they
appear in the order in which they should be evaluated.

IDM supports the following authentication and session modules:

JWT_SESSION

IDM supports one session module, the JSON Web Token (JWT) Session Module. When a client authenticates successfully, the JWT
Session Module creates a JWT and sets it as a cookie on the response. On subsequent requests, the module checks for the
presence of the JWT as a cookie on the request, validates the signature and decrypts it, and checks the expiration time of the JWT.

JWT sessions are entirely stateless, that is, they are not persisted in the backend. All information pertaining to the session is
encrypted in the JWT.

When a request to IDM produces a JWT, that value replaces the previous one used to send that request. In this way the JWT is
always updated to the latest copy. The idle timeout in the JWT is therefore continuously updated and active sessions are not
abruptly killed mid-session.

By default, the JWT cookie is deleted on logout. Deleting the cookie manually ends the session. You can modify what happens to
the session after a browser restart by changing the value of the sessionOnly property.

The default JWT Session Module configuration, in conf/authentication.json , is as follows:

"sessionModule" : {
 "name" : "JWT_SESSION",
 "properties" : {
 "maxTokenLifeMinutes" : 120,
 "tokenIdleTimeMinutes" : 30,
 "sessionOnly" : true,
 "isHttpOnly" : true,
 "enableDynamicRoles" : false
 }
}

info
Modifying an authentication module in the admin UI might affect your current session. In this case, IDM prompts you
with the following message:

Your current session may be invalid. Click here to logout and re-authenticate.

When you select the Click here link, IDM logs you out of any current session and returns you to the login screen.

Note

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 639

For more information about this module, refer to the Class JwtSessionModule JavaDoc.

Attempting to access IDM without the appropriate headers or session cookie results in an HTTP 401 Unauthorized, or HTTP 403
Forbidden, depending on the situation. If you authenticate using a session cookie, you must include an additional header that
indicates the origin of the request.

The following example shows a successful authentication attempt and the return of a session cookie:

curl \
--dump-header /dev/stdout \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
"https://localhost:8443/openidm/managed/user?_queryFilter=true&_fields=_id"
HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache
Set-Cookie: session-jwt=2l0zobpuk6st1b2m7gvhg5zas ...;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

The following example uses the cookie returned in the previous response, and includes the X-Requested-With header to
indicate the origin of the request. The value of the header can be any string, but should be informative for logging purposes. If
you do not include the X-Requested-With header, IDM returns HTTP 403 Forbidden:

emergency_home
In a production environment, ensure that only secure cookies are used. To do so, add the following property to
the session module configuration:

"isSecure" : true

If your authentication.json file uses a non-default cookie name for
name.openidm.csrfFilter.authCookieName , add the following property to the session module configuration:

"sessionCookieName": "customCookieName"

Important

•

•

Authentication and authorization PingIDM

640 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.4/apidocs/org/forgerock/jaspi/modules/session/jwt/JwtSessionModule.html
https://docs.pingidentity.com/pingam/7.4/apidocs/org/forgerock/jaspi/modules/session/jwt/JwtSessionModule.html

curl \
--dump-header /dev/stdout \
--header "Cookie: session-jwt=2l0zobpuk6st1b2m7gvhg5zas ..." \
--header "X-Requested-With: OpenIDM Plugin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
"https://localhost:8443/openidm/managed/user?_queryFilter=true&_fields=_id"
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

The expiration date of the JWT cookie, January 1, 1970, corresponds to the start of UNIX time. Since that time is in the past,
browsers will not store that cookie after the browser session is closed.

Authentication requests are logged in the authentication.audit.json file. A successful authentication request is logged as
follows:

{
 "_id": "389d15d3-bdd5-4521-ae3c-bf096d334405-915",
 "timestamp": "2019-08-02T11:53:31.110Z",
 "eventName": "SESSION",
 "transactionId": "389d15d3-bdd5-4521-ae3c-bf096d334405-912",
 "trackingIds": [
 "5f9f4941-bcbd-4cbc-97f7-e763808e4310",
 "88973bcf-0d60-41b8-9922-73718ce76e11"
],
 "userId": "openidm-admin",
 "principal": [
 "openidm-admin"
],
 "entries": [
 {
 "moduleId": "JwtSession",
 "result": "SUCCESSFUL",
 "info": {
 "org.forgerock.authentication.principal": "openidm-admin"
 }
 }
],
 "result": "SUCCESSFUL",
 "provider": null,
 "method": "JwtSession"
}

For information about querying this log, refer to Query the Authentication Audit Log.

Authenticate without a session

Once a client has authenticated, the JWT_SESSION takes precedence over any other authentication modules, for subsequent
requests. In some cases, you might want to force clients to re-authenticate for each request. This is the case, for example, if you
authenticate using a client certificate.

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 641

To request one-time authentication without a session, use the X-OpenIDM-NoSession header in the authentication request. For
example:

curl \
--dump-header /dev/stdout \
--header "X-OpenIDM-NoSession: true" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--cacert ca-cert.pem \
--header "Accept-API-Version: resource=1.0" \
"https://localhost:8443/openidm/managed/user?_queryFilter=true&_fields=_id"
HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

Deterministic ECDSA signatures

By default, JWTs are signed with deterministic Elliptic Curve Digital Signature Algorithm (ECDSA). In order to use this more
secure signing method, Bouncy Castle, which is included in the default IDM installation, must be installed. If Bouncy Castle is
unavailable, or the key is incompatible, IDM falls back to normal ECDSA.

STATIC_USER

The STATIC_USER module provides an authentication mechanism that avoids database lookups by hard coding a static user. IDM
includes a default anonymous static user, but you can create any static user for this module.

The following sample REST call uses STATIC_USER authentication with the anonymous user in the self-registration process:

info
If you need to turn off the use of deterministic ECDSA, set the following property in your conf/system.properties
file:

org.forgerock.secrets.preferDeterministicEcdsa=false

Note

Authentication and authorization PingIDM

642 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc6979.html
https://www.rfc-editor.org/rfc/rfc6979.html
https://www.bouncycastle.org
https://www.bouncycastle.org

curl \
--header "X-OpenIDM-Password: anonymous" \
--header "X-OpenIDM-Username: anonymous" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "userName": "steve",
 "givenName": "Steve",
 "sn": "Carter",
 "telephoneNumber": "0828290289",
 "mail": "scarter@example.com",
 "password": "Passw0rd"
}' \
"https://localhost:8443/openidm/managed/user/?_action=create"

Authenticating with the STATIC_USER module avoids the performance cost of reading the database for self-registration, certain
UI requests, and other actions that can be performed anonymously. Authenticating the anonymous user with the STATIC_USER
module is identical to authenticating the anonymous user with the INTERNAL_USER module, except that the database is not
accessed. So, STATIC_USER authentication provides an authentication mechanism for the anonymous user that avoids the
database lookups incurred when using INTERNAL_USER .

A sample STATIC_USER authentication configuration follows:

{
 "name" : "STATIC_USER",
 "enabled" : true,
 "properties" : {
 "queryOnResource" : "internal/user",
 "username" : "anonymous",
 "password" : "anonymous",
 "defaultUserRoles" : [
 "internal/role/openidm-reg"
]
 }
}

IDM also uses the STATIC_USER module to set the password and default roles of the openidm-admin internal user on startup.
The following configuration in the authentication.json file sets up the openidm-admin user:

info
This is not the same as an anonymous request that is issued without headers.

Note

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 643

{
 "name" : "STATIC_USER",
 "properties" : {
 "queryOnResource" : "internal/user",
 "username" : "openidm-admin",
 "password" : "&{openidm.admin.password}",
 "defaultUserRoles" : [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled" : true
}

Related topics:

Change the administrator user password (openidm-admin)

Secure access to RCS

TRUSTED_ATTRIBUTE

The TRUSTED_ATTRIBUTE authentication module lets you configure IDM to trust a specific HttpServletRequest attribute. To
enable this module, add it to your authentication.json file as follows:

{
 "name" : "TRUSTED_ATTRIBUTE",
 "properties" : {
 "queryOnResource" : "managed/user",
 "propertyMapping" : {
 "authenticationId" : "userName",
 "userRoles" : "authzRoles"
 },
 "defaultUserRoles" : [],
 "authenticationIdAttribute" : "X-ForgeRock-AuthenticationId",
 "augmentSecurityContext" : {
 "type" : "text/javascript",
 "file" : "auth/populateRolesFromRelationship.js"
 }
 },
 "enabled" : true
}

TRUSTED_ATTRIBUTE authentication queries the managed/user resource, and allows authentication when credentials match,
based on the username and authzRoles assigned to that user, specifically the X-ForgeRock-AuthenticationId attribute.

•

•

Authentication and authorization PingIDM

644 Copyright © 2025 Ping Identity Corporation

For a sample implementation of a custom servlet filter and the Trusted Request Attribute Authentication Module, refer to
Authenticate using a trusted servlet filter.

MANAGED_USER

MANAGED_USER authentication queries the repository and allows authentication if the credentials match. Despite the module
name, the query is not restricted to managed/user objects. The resource that is queried is configurable. The default configuration
uses the username and password of a managed user to authenticate, as shown in the following sample configuration:

lightbulb_2
To use the TRUSTED_ATTRIBUTE module with internal authz roles, you must modify the isAJAXRequest function in
bin/defaults/script/router-authz.js to check for the X-Special-Trusted-User header:

function isAJAXRequest() {
 var headers = context.http.headers;
 // one of these custom headers must be present for all HTTP-based requests, to prevent CSRF attacks

 // X-Requested-With is common from AJAX libraries such as jQuery
 if (typeof (headers["X-Requested-With"]) !== "undefined" ||
 typeof (headers["x-requested-with"]) !== "undefined" ||

 // Basic auth headers are acceptible for convenience from cURL commands;
 // We don't return the request header to prompt the browser to provide basic auth headers,
 // so it will only be present if someone explicitly provides them, as in a cURL request.
 typeof (headers["Authorization"]) !== "undefined" ||
 typeof (headers["authorization"]) !== "undefined" ||

 // The custom authn headers for OpenIDM
 typeof (headers["X-OpenIDM-Username"]) !== "undefined" ||
 typeof (headers["x-openidm-username"]) !== "undefined" ||
 typeof (headers["X-Special-Trusted-User"]) !== "undefined" ||
 typeof (headers["x-special-trusted-user"]) !== "undefined") {

 if ((headers["X-Requested-With"] || "").toLowerCase().startsWith("shockwaveflash")) {
 // prevent CSRF from Flash
 return false;
 }
 return true;
 }
 return false;
}

Tip

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 645

{
 "name" : "MANAGED_USER",
 "properties" : {
 "augmentSecurityContext": {
 "type" : "text/javascript",
 "source" : "require('auth/customAuthz').setProtectedAttributes(security)"
 },
 "queryId" : "credential-query",
 "queryOnResource" : "managed/user",
 "propertyMapping" : {
 "authenticationId" : "username",
 "userCredential" : "password",
 "userRoles" : "authzRoles"
 },
 "defaultUserRoles" : [
 "internal/role/openidm-authorized"
]
 },
 "enabled" : true
}

Use the augmentSecurityContext property to add custom properties to the security context of users who authenticate with this
module. By default, this property adds a list of protected properties to the user’s security context. These protected properties are
defined in the managed object schema. The isProtected property is described in Create and modify object types.

INTERNAL_USER

INTERNAL_USER authentication queries the internal/user objects in the repository and allows authentication if the credentials
match. An example configuration that uses the username and password of the internal user to authenticate follows:

{
 "name" : "INTERNAL_USER",
 "enabled" : true,
 "properties" : {
 "queryId" : "credential-internaluser-query",
 "queryOnResource" : "internal/user",
 "propertyMapping" : {
 "authenticationId" : "username",
 "userCredential" : "password",
 "userRoles" : "authzRoles"
 },
 "defaultUserRoles" : []
 }
}

CLIENT_CERT

Client certificate authentication (also called mutual SSL authentication) occurs as part of the SSL or TLS handshake, which takes
place before any data is transmitted in an SSL or TLS session. This authentication module is typically used when users have
secure certificates that they install in their browsers for authentication and authorization.

The client certificate module, CLIENT_CERT , authenticates by validating a client certificate, transmitted through an HTTP request.
IDM compares the subject DN of the request certificate with the subject DN of the truststore.

Authentication and authorization PingIDM

646 Copyright © 2025 Ping Identity Corporation

A sample CLIENT_CERT authentication configuration follows:

{
 "name" : "CLIENT_CERT",
 "properties" : {
 "augmentSecurityContext" : {
 "type" : "text/javascript",
 "globals" : { },
 "file" : "auth/mapUserFromClientCert.js"
 },
 "queryOnResource" : "managed/user",
 "defaultUserRoles" : [
 "internal/role/openidm-authorized"
],
 "allowedAuthenticationIdPatterns" : [
 ".*CN=localhost, O=ForgeRock.*"
]
 },
 "enabled" : true
}

When a user authenticates with a client certificate, they receive the roles listed in the defaultUserRoles property of the
CLIENT_CERT module. Privileges are calculated dynamically per request when enabled in the session module.

Test client certificate authentication

This procedure demonstrates client certificate authentication by generating a self-signed certificate, adding that certificate to the
truststore, then authenticating with the certificate. At the end of this procedure, you will verify the certificate over port 8444 as
defined in your project’s resolver/boot.properties file:

openidm.auth.clientauthonlyports=8444

The example assumes an existing managed user, bjensen, with email address bjensen@example.com .

Create a self-signed certificate for user bjensen as follows:

info
Client certificate authentication is also used when the client is a password plugin, such as those described in
Password Plugins. This process is similar to an administrative request to modify the passwords of regular users.
For password plugin clients, you must include internal/role/openidm-cert in the defaultUserRoles array (in the
authentication configuration).

Note

1.

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 647

openssl req \
-x509 \
-newkey rsa:1024 \
-keyout /path/to/key.pem \
-out /path/to/cert.pem \
-days 3650 \
-nodes
Generating a 1024 bit RSA private key
.................
..................
writing new private key to 'key.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []: US
State or Province Name (full name) []: Washington
Locality Name (eg, city) []: Vancouver
Organization Name (eg, company) []: Example.com
Organizational Unit Name (eg, section) []:
Common Name (eg, fully qualified host name) []: localhost
Email Address []: bjensen@example.com

Import the client certificate into the IDM truststore:

keytool \
-importcert \
-keystore /path/to/openidm/security/truststore \
-storetype JKS \
-storepass changeit \
-file /path/to/cert.pem \
-trustcacerts \
-noprompt \
-alias client-cert-example
Certificate was added to keystore

By default, users can authenticate only if their certificates have been issued by a Certificate Authority (CA) that is listed in
the truststore. The default truststore includes several trusted root CA certificates, and any user certificate issued by those
CAs will be trusted. Change the value of this property to restrict certificates to those issued to users in your domain, or use
some other regular expression to limit who will be trusted. If you leave this property empty, no certificates will be trusted.

Edit your project’s conf/authentication.json file. Add the CLIENT_CERT module, and add at least the email address
from the certificate subject DN to the allowedAuthenticationIdPatterns :

info
The Email Address is used by the mapUserFromClientCert.js to map the user against an existing managed
user.

Note

2.

3.

Authentication and authorization PingIDM

648 Copyright © 2025 Ping Identity Corporation

{
 "name": "CLIENT_CERT",
 "properties": {
 "augmentSecurityContext": {
 "type": "text/javascript",
 "globals": {},
 "file": "auth/mapUserFromClientCert.js"
 },
 "queryOnResource": "managed/user",
 "defaultUserRoles": [
 "internal/role/openidm-cert",
 "internal/role/openidm-authorized"
],
 "allowedAuthenticationIdPatterns": [
 ".*EMAILADDRESS=bjensen@example.com.*"
]
 },
 "enabled": true
}

Send an HTTP request with your certificate file cert.pem to the secure port:

info
The allowedAuthenticationIdPatterns property is unique to this authentication module. This property
contains a regular expression that defines which user distinguished names (DNs) are allowed to authenticate
with a certificate.

Note

4.

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 649

curl \
--insecure \
--cert-type PEM \
--key /path/to/key.pem \
--key-type PEM \
--cert /path/to/cert.pem \
--header "X-Requested-With: curl" \
--header "X-OpenIDM-NoSession: true" \
--request GET "https://localhost:8444/openidm/info/login"
{
 "_id": "login",
 "authenticationId": "EMAILADDRESS=bjensen@example.com, CN=localhost, O=Example.com, L=Vancouver,
ST=Washington, C=US",
 "authorization": {
 "userRolesProperty": "authzRoles",
 "component": "managed/user",
 "authLogin": false,
 "roles": [
 "internal/role/openidm-cert",
 "internal/role/openidm-authorized"
],
 "ipAddress": "0:0:0:0:0:0:0:1",
 "id": "aba3e666-c0db-4669-8760-0eb21f310649",
 "moduleId": "CLIENT_CERT"
 }
}

PASSTHROUGH

PASSTHROUGH authentication queries an external system, such as an LDAP server, and allows authentication if the credentials
included in the REST request match those in the external system.

The following excerpt of an authentication.json shows a pass-through authentication configuration for an LDAP system:

info
Because we have used a self-signed certificate in this example, you must include the --insecure option. You
should not include this option if you are using a CA cert.
You must use the X-Requested-With and X-OpenIDM-NoSession headers for HTTP-based requests that use
the CLIENT_CERT authentication module.

Note

•

•

Authentication and authorization PingIDM

650 Copyright © 2025 Ping Identity Corporation

"authModules" : [
 {
 "name" : "PASSTHROUGH",
 "enabled" : true,
 "properties" : {
 "augmentSecurityContext": {
 "type" : "text/javascript",
 "file" : "auth/populateAsManagedUser.js"
 },
 "queryOnResource" : "system/ldap/account",
 "propertyMapping" : {
 "authenticationId" : "uid",
 "groupMembership" : "ldapGroups"
 },
 "groupRoleMapping" : {
 "internal/role/openidm-admin" : ["cn=admins,ou=Groups,dc=example,dc=com"]
 },
 "defaultUserRoles" : [
 "internal/role/openidm-authorized"
]
 },
 },
 ...
]

For more information on authentication module properties, refer to Authentication and session module configuration.

Many of the documented samples are configured for pass-through authentication. For example, the sync-with-ldap* samples
use an external LDAP system for authentication.

SOCIAL_PROVIDERS

The SOCIAL_PROVIDERS module enables authentication through social identity providers that comply with OAuth 2.0 and OpenID
Connect 1.0 standards.

For information about configuring this module with social identity providers such as Google, LinkedIn, and Facebook, refer to
Social providers authentication module.

The /path/to/openidm/audit/authentication.audit.json log file shows the corresponding SOCIAL_AUTH module, used to
handle authentication for each social identity provider.

IWA

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

emergency_home
The IWA module is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 651

The IWA module lets users authenticate using Integrated Windows Authentication (IWA) with Kerberos instead of a username
and password.

Windows, UNIX, and Linux systems support Kerberos v5 authentication, which can operate safely on an open, unprotected
network. With Kerberos authentication, the user or client application obtains temporary credentials for a service from an
authorization server, in the form of tickets and session keys. The service server handles its part of the Kerberos mutual
authentication process.

To enable Kerberos authentication, IDM requires a specific Kerberos user account in Active Directory, and a keytab file that maps
the service principal to this user account. The client presents IDM with a Kerberos ticket. If IDM can validate the ticket, the client is
granted an encrypted session key for the IDM service. That client can then access IDM without providing a username or
password, for the duration of the session.

The complete Kerberos authentication process is shown in the following diagram:

Client Authentication to IDM Using a Kerberos Ticket

This section assumes that you have an active Kerberos server acting as a Key Distribution Center (KDC). If you are running Active
Directory, that service includes a Kerberos KDC by default.

Create a specific Kerberos user account

To authenticate IDM to the Kerberos KDC you must create a specific user entry in Active Directory whose credentials will be used
for this authentication. This Kerberos user account must not be used for anything else.

Authentication and authorization PingIDM

652 Copyright © 2025 Ping Identity Corporation

The Kerberos user account is used to generate the Kerberos keytab. If you change the password of this Kerberos user after you
have set up IWA, you must update the keytab accordingly.

Create a new user in Active Directory as follows:

Select New > User and provide a login name for the user that reflects its purpose; for example, openidm@example.com.

Enter a password for the user. Select the Password never expires checkbox, and leave all other options unselected.

If the password of this user account expires, and is reset, you must update the keytab with the new password. It is
therefore easier to create an account with a password that does not expire.

To create the user, click Finish.

Create a keytab file

A Kerberos keytab file (krb5.keytab) enables IDM to validate the Kerberos tickets that it receives from client browsers. You must
create a Kerberos keytab file for the host on which IDM is running.

This section describes the ktpass command, included in the Windows Server toolkit, to create the keytab file. Run the ktpass
command on the Active Directory domain controller.

The following command creates a keytab file (named openidm.HTTP.keytab) for the IDM service located at
openidm.example.com .

1.

2.

3.

emergency_home
The keytab file is case-sensitive, use the capitalization in this example.
You must disable UAC or run the ktpass command as a user with administrative privileges.

Important

•
•

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 653

C:\Users\Administrator>ktpass ^
-princ HTTP/openidm.example.com@EXAMPLE.COM ^
-mapUser EXAMPLE\openidm ^
-mapOp set ^
-pass Passw0rd1 ^
-crypto ALL
-pType KRB5_NT_PRINCIPAL ^
-kvno 0 ^
-out openidm.HTTP.keytab
Targeting domain controller: host.example.com
Using legacy password setting method
Successfully mapped HTTP/openidm.example.com to openidm.
Key created.
Output keytab to openidm.HTTP.keytab:
Keytab version: 0x502
keysize 79 HTTP/openidm.example.com@EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL)
 vno 0 etype 0x1 (DES-CBC-CRC) keylength 8 (0x73a28fd307ad4f83)
keysize 79 HTTP/openidm.example.com@EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL)
 vno 0 etype 0x3 (DES-CBC-MD5) keylength 8 (0x73a28fd307ad4f83)
keysize 87 HTTP/openidm.example.com@EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL)
 vno 0 etype 0x17 (RC4-HMAC) keylength 16 (0xa87f3a337d73085c45f9416be5787d86)
keysize 103 HTTP/openidm.example.com@EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL)
 vno 0 etype 0x12 (AES256-SHA1) keylength 32 (0x6df9c282abe3be787553f23a3d1fcefc
 6fc4a29c3165a38bae36a8493e866d60)
keysize 87 HTTP/openidm.example.com@EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL)
 vno 0 etype 0x11 (AES128-SHA1) keylength 16 (0xf616977f071542cd8ef3ff4e2ebcc09c)

The ktpass command takes the following options:

-princ specifies the service principal name in the format service/host-name@realm

In this example (HTTP/openidm.example.com@EXAMPLE.COM), the client browser constructs an SPN based on the following:

The service name (HTTP).

The service name for SPNEGO web authentication must be HTTP.

The FQDN of the host on which IDM runs (openidm.example.com).

This example assumes that users will access IDM at the URL https://openidm.example.com:8443 .

The Kerberos realm name (EXAMPLE.COM).

The realm name must be uppercase. A Kerberos realm defines the area of authority of the Kerberos authentication
server.

-mapUser specifies the name of the Kerberos user account to which the principal should be mapped (the account that you
created in Creating a Specific Kerberos User Account). The username must be specified in down-level logon name format
(DOMAIN\UserName). In our example, the Kerberos user name is EXAMPLE\openidm .

-mapOp specifies how the Kerberos user account is linked. Use set to set the first user name to be linked. The default
(add) adds the value of the specified local user name if a value already exists.

-pass specifies a password for the principal user name. Use * to prompt for a password.

•

◦

◦

◦

•

•

•

Authentication and authorization PingIDM

654 Copyright © 2025 Ping Identity Corporation

https://openidm.example.com:8443
https://openidm.example.com:8443

-crypto specifies the cryptographic type of the keys that are generated in the keytab file. Use ALL to specify all crypto
types.

This procedure assumes a 128-bit cryptosystem, with a default RC4-HMAC-NT cryptography algorithm. You can use the
ktpass command to view the crypto algorithm, as follows:

C:\Users\Administrator>ktpass -in .\openidm.HTTP.keytab
Existing keytab:
Keytab version: 0x502
keysize 79 HTTP/openidm.example.com@EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL)
 vno 0 etype 0x1 (DES-CBC-CRC) keylength 8 (0x73a28fd307ad4f83)
keysize 79 HTTP/openidm.example.com@EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL)
 vno 0 etype 0x3 (DES-CBC-MD5) keylength 8 (0x73a28fd307ad4f83)
keysize 87 HTTP/openidm.example.com@EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL)
 vno 0 etype 0x17 (RC4-HMAC) keylength 16 (0xa87f3a337d73085c45f9416be5787d86)
keysize 103 HTTP/openidm.example.com@EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL)
 vno 0 etype 0x12 (AES256-SHA1) keylength 32 (0x6df9c282abe3be787553f23a3d1fcefc6
 fc4a29c3165a38bae36a8493e866d60)
keysize 87 HTTP/openidm.example.com@EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL)
 vno 0 etype 0x11 (AES128-SHA1) keylength 16 (0xf616977f071542cd8ef3ff4e2ebcc09c)

-ptype Specifies the principal type. Use KRB5_NT_PRINCIPAL .

-kvno specifies the key version number. Set the key version number to 0.

-out specifies the name of the keytab file that will be generated, for example, openidm.HTTP.keytab .

For more information about the ktpass command, refer to the ktpass reference in the Windows server
documentation.

Configure IDM for IWA

To configure the IWA authentication module, add the module to your project’s conf/authentication.json file.

This section assumes that the connection from IDM to the Active Directory Server is through an LDAP connector, and that the
mapping from managed users to the users in Active Directory (in your project’s conf/sync.json file) identifies the Active
Directory target as system/ad/account . If you have named the target differently, modify the
"queryOnResource" : "system/ad/account" property accordingly.

Add the IWA authentication module towards the end of your conf/authentication.json file. For example:

•

•

•

•

info
The keys that are stored in the keytab file are similar to user passwords. You must protect the Kerberos keytab
file in the same way that you would protect a file containing passwords.

Note

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 655

http://technet.microsoft.com/en-us/library/cc753771(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc753771(v=WS.10).aspx

"authModules" : [
 ...
 {
 "name": "IWA",
 "properties": {
 "servicePrincipal": "HTTP/openidm.example.com@EXAMPLE.COM",
 "keytabFileName": "C:\\Users\\Administrator\\openidm\\security\\openidm.HTTP.keytab",
 "kerberosRealm": "EXAMPLE.COM",
 "kerberosServerName": "kdc.example.com",
 "queryOnResource": "system/ad/account",
 "maxTokenSize": 48000,
 "propertyMapping": {
 "authenticationId": "sAMAccountName",
 "groupMembership": "memberOf"
 },
 "groupRoleMapping": {
 "internal/role/openidm-admin": []
 },
 "groupComparisonMethod": "ldap",
 "defaultUserRoles": [
 "internal/role/openidm-authorized"
],
 "augmentSecurityContext": {
 "type": "text/javascript",
 "file": "auth/populateAsManagedUser.js"
 }
 },
 "enabled": true
 },
 ...
]

The IWA authentication module includes the following configurable properties:

servicePrincipal

The Kerberos principal for authentication, in the following format:

HTTP/host.domain@DC-DOMAIN-NAME

host and domain correspond to the host and domain names of the IDM server. DC-DOMAIN-NAME is the domain name of
the Windows Kerberos domain controller server. The DC-DOMAIN-NAME can differ from the domain name for the IDM
server.

keytabFileName

The full path to the keytab file for the Service Principal. On Windows systems, any backslash (\) characters in the path
must be escaped, as shown in the previous example.

kerberosRealm

The Kerberos Key Distribution Center realm. For the Windows Kerberos service, this is the domain controller server
domain name.

Authentication and authorization PingIDM

656 Copyright © 2025 Ping Identity Corporation

kerberosServerName

The fully qualified domain name of the Kerberos Key Distribution Center server, such as that of the domain controller
server.

queryOnResource

The IDM resource to check for the authenticating user; for example, system/ad/account .

maxTokenSize

During the Kerberos authentication process, the Windows server builds a token to represent the user for authorization.
This property sets the maximum size of the token, to prevent DoS attacks, if the SPENGO token in the request being made
is amended with extra data. The default maximum token size is 48000 bytes.

groupRoleMapping

Enables you to grant different roles to users who are authenticated through the IWA module.

You can use the IWA module in conjunction with the PASSTHROUGH authentication module. In this case, a failure in the IWA
module lets users revert to forms-based authentication.

To add the PASSTHROUGH module, follow PASSTHROUGH.

Authenticate through AM

ForgeRock Access Management (AM) is a ForgeRock product that provides an infrastructure for managing users, roles, and access
to resources. When you use IDM and AM together in a platform deployment, you must configure IDM to use AM bearer tokens for
authentication. This delegates all authentication to AM. In this configuration:

IDM uses an rsFilter that replaces all other authentication methods.

All IDM endpoints that require authentication are accessed using an authorization header that contains the bearer token,
instead of X-OpenIDM-Username and X-OpenIDM-Password . Endpoints that allow anonymous access can be accessed
without a token.

To use AM bearer tokens for authentication, your AM configuration must include at least the following configuration:

Two OAuth 2.0 clients: an idm-resource-server client to introspect the bearer token and an idm-provisioning client
used by AM to provision users in IDM. For information on configuring these clients, refer to Configure OAuth Clients
(separate identity stores) or Configure OAuth Clients (shared identity store) in the sample platform deployments.

An OAuth 2 provider service (separate identity stores) or OAuth 2 provider service (shared identity store).

An IDM provisioning service (separate identity stores) or IDM provisioning service (shared identity store).

Your IDM authentication configuration must include the rsFilter configuration and no other authentication methods.

emergency_home
From IDM 7.0 onwards, using AM bearer tokens for authentication is the only supported method of integrating IDM
with AM.

Important

•

•

•

•

•

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 657

https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-1.html#oauth-clients
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-1.html#oauth-clients
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-1.html#oauth-clients
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-2.html#oauth-clients-2
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-2.html#oauth-clients-2
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-1.html#oauth-service
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-1.html#oauth-service
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-2.html#oauth-service-2
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-2.html#oauth-service-2
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-1.html#idm-prov-service
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-1.html#idm-prov-service
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-2.html#idm-prov-service-2
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/am-setup-2.html#idm-prov-service-2

Sample rsFilter configuration
The following sample rsFilter configuration is also available
in /path/to/openidm/samples/example-configurations/conf/rsfilter/authentication.json :

Authentication and authorization PingIDM

658 Copyright © 2025 Ping Identity Corporation

{
 "rsFilter" : {
 "clientId" : "",
 "clientSecret" : "",
 "tokenIntrospectUrl" : "http://am.example:8080/openam/oauth2/introspect",
 "scopes" : [],
 "cache" : {
 "maxTimeout" : "300 seconds"
 },
 "augmentSecurityContext" : {
 "type" : "text/javascript",
 "source" : "require('auth/orgPrivileges').assignPrivilegesToUser(resource, security, properties,
subjectMapping, privileges, 'privileges', 'privilegeAssignments');"
 },
 "subjectMapping" : [
 {
 "resourceTypeMapping" : {
 "usr" : "managed/user"
 },
 "propertyMapping" : {
 "sub" : "_id"
 },
 "userRoles" : "authzRoles/*",
 "additionalUserFields" : [
 "adminOfOrg",
 "ownerOfOrg"
],
 "defaultRoles" : [
 "internal/role/openidm-authorized"
]
 }
],
 "staticUserMapping" : [
 {
 "subject" : "(usr!amadmin)",
 "localUser" : "internal/user/openidm-admin",
 "roles" : [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 {
 "subject" : "(age!idm-provisioning)",
 "localUser" : "internal/user/idm-provisioning",
 "roles" : [
 "internal/role/platform-provisioning"
]
 }
],
 "anonymousUserMapping" : {
 "localUser" : "internal/user/anonymous",
 "roles" : [
 "internal/role/openidm-reg"
],
 "executeAugmentationScript" : false
 }
 }
}

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 659

The rsFilter configuration includes the following properties:

clientId

The client ID of the AM OAuth 2.0 client used to introspect the bearer token (the idm-resource-server) client, in this
example).

clientSecret

The client secret of the AM OAuth 2.0 client used to introspect the bearer token. IDM encrypts this field if it isn’t already.

tokenIntrospectUrl

The URI to reach the oauth2/introspect endpoint in AM; for example, http://am.example:8080/openam/oauth2/
introspect .

scopes

Any scopes required to be present in the access token. This varies depending on your configuration. For more information
about scopes, refer to OAuth 2.0 Scopes in the AM OAuth 2.0 Guide.

cache

Sets the maxTimeout , in seconds, after which the token is removed from the cache.

augmentSecurityContext

Specifies a script that is executed only after a successful authentication request. The script helps to populate the expected
security context. For more information, refer to The augmentSecurityContext trigger.

subjectMapping

An array of mappings that let you map AM realms to IDM managed object types. For example:

lightbulb_2
You can disable execution of the script for anonymous and static user mappings using the
executeAugmentationScript property. Doing so can improve IDM’s performance for user mappings where it’s
not necessary to run the script.

Tip

Authentication and authorization PingIDM

660 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.4/oauth2-guide/oauth2-scopes.html#delegating-realm-administration-privileges
https://docs.pingidentity.com/pingam/7.4/oauth2-guide/oauth2-scopes.html#delegating-realm-administration-privileges

"subjectMapping" : [
 {
 "resourceTypeMapping" : {
 "usr" : "managed/user"
 },
 "propertyMapping" : {
 "sub" : "_id"
 },
 "userRoles" : "authzRoles/*",
 "additionalUserFields" : [
 "adminOfOrg",
 "ownerOfOrg"
],
 "defaultRoles" : [
 "internal/role/openidm-authorized"
]
 }
],

Each subjectMapping includes the following properties:

Either a resourceTypeMapping or a queryOnResource property:

resourceTypeMapping : Maps the identity type of a subject claim in AM to a resource collection in IDM. In
the access token, the subject claim is a compound identity that consists of the claim type and subject
name, separated by a ! .

To use a resourceTypeMapping , unique Oauth2 subject claims must be enabled in AM. (From AM 7.1, these
are enabled by default.) For more information about subject claims, refer to About the Subject and the
Subname Claims in the section on /oauth2/userinfo.

queryOnResource : The IDM resource to check for the authenticating user; for example, managed/user .

realm : The AM realm to which this subject mapping applies. A value of / specifies the top-level realm. If this
property is absent, the mapping can apply to any realm, which is useful if the resourceTypeMapping or
queryOnResource uses a dynamic handlebars template.

•

◦

◦

lightbulb_2
If your AM and IDM deployments use consistent realm and managed object naming, you can
configure the resourceTypeMapping and the queryOnResource properties to let a single
subject mapping match multiple realms. This uses a dynamic handlebars template, as in the
following example:

Example configuration

"resourceTypeMapping" : {
 "usr" : "managed/{{substring realm 1}}"
}

This configuration lets an access token with the realm employee map to an IDM managed/
employee , and an access token with the realm contractor map to an IDM managed/
contractor .

Tip

•

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 661

https://docs.pingidentity.com/pingam/7.4/oidc1-guide/rest-api-oidc-userinfo-endpoint.html
https://docs.pingidentity.com/pingam/7.4/oidc1-guide/rest-api-oidc-userinfo-endpoint.html

You cannot have more than one mapping for the same realm, and you cannot have more than one mapping that
has no realm in the configuration.

propertyMapping : Maps fields in the AM access token to properties in IDM. This mapping is used to construct the
query filter that locates the authenticating user. The default configuration maps the subject (sub) in the access
token to the _id in IDM.

userRoles : Determines the field to consult for locating the authorization roles; usually authzRoles , unless you
have changed how user roles are stored. This field must be a relationship field. IDM uses the _refId from the
array elements to populate the user roles in the security context.

additionalUserFields : Determines the field to consult for locating the authorization roles; usually authzRoles ,
unless you have changed how user roles are stored. This field must be a relationship field. IDM uses the _refId
from the array elements to populate the user roles in the security context.

defaultRoles : The default roles that should be applied to a user who authenticates using the rsFilter .

Although you can configure an array of subject mappings, only one mapping is selected and used during the
authentication process. If there is a realm attribute in the access token, that realm is used to select an appropriate
mapping. If no mapping is defined for the access token’s realm, or if the realm is not provided in the access token, the
authentication uses a mapping that does not define a realm .

Subject mapping with a Remote Connector Server (RCS)
If you have an RCS that is authenticating against AM, you must add a subject mapping for it.

Example configuration

{
 "subject" : "RCS-OAuth-clientId",
 "localUser" : "internal/user/idm-provisioning"
}

The subject property must be the OAuth2 client in AM set up for the remote connector server. The localUser
property can be any existing user.

staticUserMapping

Maps AM users to a matching IDM user. Can contain multiple user mappings, each with the following properties:

subject of the access token (the AM user). If you have specified a resourceTypeMapping , the static user mapping
includes the full new subject string to match service accounts or static subject mappings, for example:

"subject" : "(usr!amadmin)"

•

•

•

•

warning
Do not assign the localUser any roles. Doing so can allow the RCS bearer token to be misused.

Warning

•

Authentication and authorization PingIDM

662 Copyright © 2025 Ping Identity Corporation

localUser is the IDM user you want to associate with the AM user identified in subject . For example, if subject
is set to (usr!amadmin) , you can set the corresponding localUser to internal/user/openidm-admin .

roles the default IDM roles that this mapped user has after they authenticate.

executeAugmentationScript : a boolean value. When false , the scripts specified in augmentSecurityContext
will not run for the user mapping.

anonymousUserMapping

The default user used when no access token is included in the request. Contains the following:

localUser : the IDM user resource referenced when no specific user is identified. For example, internal/user/
anonymous .

roles : the default roles the anonymous user has, usually internal/role/openidm-reg .

executeAugmentationScript : a boolean value. When false , the scripts specified in augmentSecurityContext
will not run for the user mapping.

Test authentication through AM

Obtain a bearer token from AM. For example:

•

•

•

emergency_home
The idm-provisioning subject is a service account used by AM to provision users in IDM. You must
include this subject in your staticUserMapping , for example:

{
 "subject": "(age!idm-provisioning)",
 "localUser": "internal/user/idm-provisioning",
 "roles" : [
 "internal/role/platform-provisioning"
]
}

Important

•

•

•

1.

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 663

curl \
--header "X-OpenAM-Username: amAdmin" \
--header "X-OpenAM-Password: password" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
--request POST \
--data "grant_type=client_credentials" \
--data "client_id=idm-provisioning" \
--data "client_secret=openidm" \
--data "scope=fr:idm:*" \
"http://am.example.com:8080/am/oauth2/realms/root/access_token"
{
 "access_token": "z4uKDWiv4wnxKY7OjeG04PujG8E",
 "scope": "fr:idm:*",
 "token_type": "Bearer",
 "expires_in": 3599
}

Authenticate to IDM using that bearer token:

curl \
--request GET \
--header "Content-Type: application/json" \
--header "Authorization: Bearer z4uKDWiv4wnxKY7OjeG04PujG8E" \
'http://localhost:8080/openidm/info/login'
{
 "_id": "login",
 "authenticationId": "idm-provisioning",
 "authorization": {
 "id": "idm-provisioning",
 "roles": [
 "internal/role/platform-provisioning"
],
 "component": "internal/user"
 }
}

Refer to the sample platform setup documentation for instructions on setting up IDM to use AM bearer tokens for
authentication.

Authenticate as a different user

The X-OpenIDM-RunAs header lets an administrative user masquerade as a regular user, without needing that user’s password. To
support this header, you must add the runAsProperties object to the properties of your authentication module. For example:

2.

Authentication and authorization PingIDM

664 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/preface.html
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/preface.html

"runAsProperties" : {
 "adminRoles" : [
 "internal/role/openidm-admin"
],
 "disallowedRunAsRoles" : [
 "internal/role/openidm-admin"
],
 "defaultUserRoles" : [
 "internal/role/openidm-authorized"
],
 "queryId" : "credential-query",
 "queryOnResource" : "managed/user",
 "propertyMapping" : {
 "authenticationId" : "username",
 "userRoles" : "authzRoles"
 },
 "augmentSecurityContext" : {
 "type" : "text/javascript",
 "source" : "require('auth/customAuthz').setProtectedAttributes(security)"
 }
}

This configuration lets a user who authenticates with the openidm-admin role masquerade as any user except one with the
openidm-admin role.

If you are adding this configuration to the STATIC_USER module, and you are using Delegated administration, you must add an
additional propertyMapping to the properties of the authentication module. This mapping forces the privileges to be re-read
into the security context when the session JWT is used on subsequent requests. For example:

"propertyMapping" : {
 "authenticationId" : "username"
}

The sample authentication.json file in openidm/samples/example-configurations/conf/runas/ adds the runAsProperties
object to the STATIC_USER module. Users or clients who authenticate with this module can then masquerade as other users.

In the following example, the openidm-admin user authenticates with the STATIC_USER module, and can run REST calls as user
bjensen without that user’s password:

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 665

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "X-OpenIDM-RunAs: bjensen" \
--request GET \
"http://localhost:8080/openidm/info/login"
{
 "_id": "login",
 "authenticationId": "bjensen",
 "authorization": {
 "userRolesProperty": "authzRoles",
 "component": "managed/user",
 "authLogin": false,
 "adminUser": "openidm-admin",
 "roles": [
 "internal/role/openidm-authorized"
],
 "ipAddress": "[0:0:0:0:0:0:0:1]",
 "authenticationId": "openidm-admin",
 "protectedAttributeList": [
 "password"
],
 "id": "bjensen",
 "moduleId": "STATIC_USER",
 "queryId": "credential-query"
 }
}

The authentication output shows that the request was made as user bjensen but with an adminUser of openidm-admin . This
information is also logged in the authentication audit log.

If you were to actually authenticate as user bjensen , without the runAs header, the user is authenticated with the
MANAGED_USER authentication module. The output still shows an authenticationId of bjensen but there is no reference to an
adminUser :

Authentication and authorization PingIDM

666 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/info/login"
{
 "_id": "login",
 "authenticationId": "bjensen",
 "authorization": {
 "userRolesProperty": "authzRoles",
 "component": "managed/user",
 "authLogin": false,
 "authenticationIdProperty": "username",
 "roles": [
 "internal/role/openidm-authorized"
],
 "ipAddress": "[0:0:0:0:0:0:0:1]",
 "authenticationId": "bjensen",
 "protectedAttributeList": [
 "password"
],
 "id": "bjensen",
 "moduleId": "MANAGED_USER",
 "queryId": "credential-query"
 }
}

Authentication and roles

When a user authenticates, they are given a set of default internal roles. These roles determine how much access the user has to
IDM. IDM includes a number of default internal roles, on the openidm/internal/roles endpoint. You can configure additional
internal roles to customize how you restrict access to the server.

The following internal roles are defined by default (in conf/repo.init.json):

The following internal roles are defined by default:

openidm-admin

IDM administrator role, excluded from the reauthorization required policy definition by default.

openidm-authorized

Default role for any user who authenticates with a username and password.

openidm-cert

Default role for any user who authenticates with mutual SSL authentication.

This role applies only to mutual authentication. The shared secret (certificate) must be adequately protected. The
openidm-cert role is excluded from the reauthorization required policy definition by default.

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 667

openidm-reg

Assigned to users who access IDM with the default anonymous account.

The openidm-reg role is excluded from the reauthorization required policy definition by default.

openidm-tasks-manager

Role for users who can be assigned to workflow tasks.

platform-provisioning

Role for platform provisioning access. If you are not planning to run AM and IDM together as a platform, you can safely
remove this role.

When a user authenticates, IDM calculates that user’s roles as follows:

Each authentication module includes a defaultUserRoles property. Depending on how the user authenticates, IDM
assigns the roles listed in that module’s defaultUserRoles property to the user on authentication. The
defaultUserRoles property is specified as an array. For most authentication modules, the user obtains the openidm-
authorized role on authentication. For example:

{
 "name" : "MANAGED_USER",
 "properties" : {
 ...
 "defaultUserRoles" : [
 "internal/role/openidm-authorized"
]
 },
 ...
}

The userRoles property in an authentication module maps to an attribute (or list of attributes) in a user entry that
contains that user’s authorization roles. This attribute is usually authzRoles , unless you have changed how user roles are
stored.

Any internal roles that are conditionally applied are also calculated and included in the user’s authzRoles property at this
point.

If the authentication module includes a groupRoleMapping , groupMembership , or groupComparison property, IDM can
assign additional roles to the user, depending on the user’s group membership on an external system. For more
information, refer to Use Groups to Control Access to IDM.

•

•

•

info
The roles calculated in sequence are cumulative. Roles with temporal restrictions are not included in that list if
the current time is outside of the time assigned to the role.

Note

Authentication and authorization PingIDM

668 Copyright © 2025 Ping Identity Corporation

Dynamic role calculation

By default, IDM calculates a user’s roles only on authentication. You can configure IDM to recalculate a user’s roles dynamically,
with each request, instead of only when the user reauthenticates. To enable this feature, set enableDynamicRoles to true in the
JWT_SESSION session module in authentication.json :

To enable dynamic role calculation through the admin UI, click Configure > Authentication > Session > Enable Dynamic Roles.

Dynamic role calculation can be used independently of the privileges mechanism, but is required for privileges to work. For more
information about privileges, refer to How Privileges Restrict Administrative Access.

Roles, authentication, and the security context

The Security Context (context.security), consists of a principal (defined by the authenticationId property) and an access
control element (defined by the authorization property).

If authentication is successful, the authentication framework sets the principal. IDM stores that principal as the
authenticationId .

The authorization property includes an id , an array of roles , and a component , that specifies the resource against which
authorization is validated.

Authorization and roles

IDM provides role-based authorization that restricts direct HTTP access to REST interface URLs. This access control applies to
direct HTTP calls only. Access for internal calls (for example, calls from scripts) is not affected by this mechanism.

When a user authenticates, they are given a set of default roles, as described in Authentication and Roles. The authorization
configuration grants access rights to users, based on these roles acquired during authentication.

You can use internal and managed roles to restrict access, with the following caveats:

Internal roles are not meant to be provisioned or synchronized with external systems.

Internal roles cannot be given assignments.

Event scripts (such as onCreate) cannot be attached to internal roles.

The internal role schema is not configurable.

Authorization roles are referenced in a user’s authzRoles property by default, and are assigned when the user authenticates.

By default, managed users are assigned the openidm-authorized role when they authenticate. The following request shows the
authorization roles for user psmith when that user logs in to the server:

•

•

•

•

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 669

curl \
--header "X-OpenIDM-Username: psmith" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/info/login"
{
 "_id": "login",
 "authenticationId": "psmith",
 "authorization": {
 "userRolesProperty": "authzRoles",
 "component": "managed/user",
 "authLogin": false,
 "authenticationIdProperty": "username",
 "roles": [
 "internal/role/openidm-authorized"
],
 "ipAddress": "0:0:0:0:0:0:0:1",
 "authenticationId": "psmith",
 "protectedAttributeList": [
 "password"
],
 "id": "psmith",
 "moduleId": "MANAGED_USER",
 "queryId": "credential-query"
 }
}

The authorization implementation is configured in two files:

openidm/bin/defaults/script/router-authz.js

project-dir/conf/access.json

IDM calls the router-authz.js script for each request, through an onRequest hook defined in the router.json file. router-
authz.js references your project’s access configuration (access.json) to determine the allowed HTTP requests. If access is
denied, according to the configuration defined in access.json , the router-authz.js script throws an exception, and IDM
denies the request.

router.json also defines an onResponse script, relationshipFilter . This provides additional filtering to ensure that the user
has the appropriate access to see the data of the related object. You can change this behavior by extending or updating /bin/
defaults/script/relationshipFilter.js , or by removing the onResponse script if you don’t want additional filtering on
relationships. For more information about relationships, refer to Relationships between objects.

•

•

info
You can configure delegated administration to grant access that bypasses this access control.

Note

Authentication and authorization PingIDM

670 Copyright © 2025 Ping Identity Corporation

Modify and extend the router authorization script

The router authorization script (router-authz.js contains a number of functions that enforce access rules. For example, the
following function controls whether users with a certain role can start a specified process:

function isAllowedToStartProcess() {
 var processDefinitionId = request.content._processDefinitionId;
 var key = request.content._key;
 return isProcessOnUsersList(function (process) {
 return (process._id === processDefinitionId) || (process.key === key);
 });
}

You can extend the default authorization mechanism by defining additional functions in router-authz.js and by creating new
access control rules in access.json .

Configure access control in access.json

The access.json configuration includes a set of rules that govern access to specific endpoints. These rules are tested in the
order in which they appear in the file. You can define more than one rule for the same endpoint. If one rule passes, the request is
allowed. If all the rules fail, the request is denied.

The following rule (from a default access.json file) shows the access configuration structure:

{
 "pattern" : "system/*",
 "roles" : "internal/role/openidm-admin",
 "methods" : "action",
 "actions" : "test,testConfig,createconfiguration,liveSync,authenticate"
}

This rule specifies that users with the openidm-admin role can perform the listed actions on all system endpoints.

The parameters in each access rule are as follows:

pattern

The REST endpoint for which access is being controlled. "*" specifies access to all endpoints in that path. For example,
"managed/user/*" specifies access to all managed user objects.

roles

A comma-separated list of the roles to which this access configuration applies.

emergency_home
Some authorization-related functions in router-authz.js should not be altered, because they affect the security of
the server. Such functions are indicated in the comments in that file.

Important

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 671

The roles referenced here align with the object’s security context (security.authorization.roles). The authzRoles
relationship property of a managed user produces this security context value during authentication.

methods

A comma-separated list of the methods that can be performed with this access. Methods can include create, read,
update, delete, patch, action, query . A value of "*" indicates that all methods are allowed. A value of "" indicates
that no methods are allowed.

actions

A comma-separated list of the allowed actions. The possible actions depend on the resource (URL) that is being exposed.
Note that the actions in the default access.json file do not list all the supported actions on each resource.

A value of "*" indicates that all actions exposed for that resource are allowed. A value of "" indicates that no actions are
allowed.

customAuthz

An optional parameter that lets you define a custom function for additional authorization checks. Custom functions are
defined in router-authz.js .

excludePatterns

An optional parameter that lets you specify endpoints to which access should not be granted.

Change the access configuration over REST

You can manage the access configuration at the endpoint openidm/config/access . To change an access rule, first get the
current access configuration, amend it to change the access rule, then submit the updated configuration in a PUT request. This
example restricts access to the info endpoint to users who have authenticated:

Authentication and authorization PingIDM

672 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/config/access"
{
 "_id": "access",
 "configs": [
 {
 "pattern": "info/*",
 "roles": "*",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "authentication",
 "roles": "*",
 "methods": "read,action",
 "actions": "login,logout"
 },
 {
 "pattern": "identityProviders",
 "roles": "*",
 "methods": "action",
 "actions": "getAuthRedirect,handlePostAuth,getLogoutUrl"
 },
 {
 "pattern": "identityProviders",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "normalizeProfile"
 },
 {
 "pattern": "identityProviders",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "config/ui/themeconfig",
 "roles": "*",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "info/uiconfig",
 "roles": "*",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "config/selfservice/kbaConfig",
 "roles": "*",
 "methods": "read",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled(['registration', 'passwordReset'])"
 },
 {
 "pattern": "config/ui/dashboard",

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 673

 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "info/features",
 "roles": "*",
 "methods": "query",
 "actions": "*"
 },
 {
 "pattern": "privilege",
 "roles": "*",
 "methods": "action",
 "actions": "listPrivileges"
 },
 {
 "pattern": "privilege/*",
 "roles": "*",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "selfservice/registration",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('registration')"
 },
 {
 "pattern": "selfservice/socialUserClaim",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('registration')"
 },
 {
 "pattern": "selfservice/reset",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('passwordReset')"
 },
 {
 "pattern": "selfservice/username",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('retrieveUsername')"
 },
 {
 "pattern": "selfservice/profile",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements"
 },
 {
 "pattern": "selfservice/termsAndConditions",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements"
 },

Authentication and authorization PingIDM

674 Copyright © 2025 Ping Identity Corporation

 {
 "pattern": "selfservice/kbaUpdate",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements"
 },
 {
 "pattern": "policy/*",
 "roles": "*",
 "methods": "action",
 "actions": "validateObject",
 "customAuthz": "context.current.name === 'selfservice'"
 },
 {
 "pattern": "policy/selfservice/registration",
 "roles": "*",
 "methods": "action,read",
 "actions": "validateObject",
 "customAuthz": "checkIfAnyFeatureEnabled('registration')"
 },
 {
 "pattern": "policy/selfservice/reset",
 "roles": "*",
 "methods": "action,read",
 "actions": "validateObject",
 "customAuthz": "checkIfAnyFeatureEnabled('passwordReset')"
 },
 {
 "pattern": "selfservice/kba",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled('kba')"
 },
 {
 "pattern": "managed/user",
 "roles": "internal/role/openidm-reg",
 "methods": "create",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled('registration') && isSelfServiceRequest() &&
onlyEditableManagedObjectProperties('user', [])"
 },
 {
 "pattern": "managed/user",
 "roles": "*",
 "methods": "query",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled(['registration', 'retrieveUsername', 'passwordReset']) &&
isSelfServiceRequest()"
 },
 {
 "pattern": "managed/user/*",
 "roles": "*",
 "methods": "read",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled(['retrieveUsername', 'passwordReset']) && isSelfServiceRequest()"
 },
 {
 "pattern": "managed/user/*",
 "roles": "*",
 "methods": "patch,action",
 "actions": "patch",

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 675

 "customAuthz": "(checkIfAnyFeatureEnabled(['registration', 'passwordReset']) ||
checkIfProgressiveProfileIsEnabled()) && isSelfServiceRequest() && onlyEditableManagedObjectProperties('user', [])"
 },
 {
 "pattern": "external/email",
 "roles": "*",
 "methods": "action",
 "actions": "send",
 "customAuthz": "checkIfAnyFeatureEnabled(['registration', 'retrieveUsername', 'passwordReset']) &&
isSelfServiceRequest()"
 },
 {
 "pattern": "schema/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "consent",
 "roles": "internal/role/openidm-authorized",
 "methods": "action,query",
 "actions": "*"
 },
 {
 "pattern": "*",
 "roles": "internal/role/openidm-admin",
 "methods": "*",
 "actions": "*",
 "excludePatterns": "repo,repo/*"
 },
 {
 "pattern": "system/*",
 "roles": "internal/role/openidm-admin",
 "methods": "create,read,update,delete,patch,query",
 "actions": ""
 },
 {
 "pattern": "system/*",
 "roles": "internal/role/openidm-admin",
 "methods": "script",
 "actions": "*"
 },
 {
 "pattern": "system/*",
 "roles": "internal/role/openidm-admin",
 "methods": "action",
 "actions": "test,testConfig,createconfiguration,liveSync,authenticate"
 },
 {
 "pattern": "repo",
 "roles": "internal/role/openidm-admin",
 "methods": "*",
 "actions": "*",
 "customAuthz": "disallowCommandAction()"
 },
 {
 "pattern": "repo/*",
 "roles": "internal/role/openidm-admin",
 "methods": "*",
 "actions": "*",
 "customAuthz": "disallowCommandAction()"
 },

Authentication and authorization PingIDM

676 Copyright © 2025 Ping Identity Corporation

 {
 "pattern": "repo/link",
 "roles": "internal/role/openidm-admin",
 "methods": "action",
 "actions": "command",
 "customAuthz": "request.additionalParameters.commandId === 'delete-mapping-links'"
 },
 {
 "pattern": "managed/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "create,read,query,patch"
 },
 {
 "pattern": "internal/role/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "read,query"
 },
 {
 "pattern": "profile/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "create,read,action,update",
 "actions": "*"
 },
 {
 "pattern": "policy/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "read,action",
 "actions": "*"
 },
 {
 "pattern": "schema/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "consent",
 "roles": "internal/role/platform-provisioning",
 "methods": "action,query",
 "actions": "*"
 },
 {
 "pattern": "selfservice/kba",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "selfservice/terms",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "identityProviders",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "external/email",
 "roles": "internal/role/platform-provisioning",
 "methods": "action",
 "actions": "sendTemplate"
 },
 {

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 677

 "pattern": "policy/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,action",
 "actions": "*"
 },
 {
 "pattern": "config/ui/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "authentication",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "reauthenticate"
 },
 {
 "pattern": "*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,action,delete",
 "actions": "bind,unbind",
 "customAuthz": "ownDataOnly()"
 },
 {
 "pattern": "*",
 "roles": "internal/role/openidm-authorized",
 "methods": "update,patch,action",
 "actions": "patch",
 "customAuthz": "ownDataOnly() && onlyEditableManagedObjectProperties('user', []) &&
reauthIfProtectedAttributeChange()"
 },
 {
 "pattern": "selfservice/user/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "patch,action",
 "actions": "patch",
 "customAuthz": "(request.resourcePath === 'selfservice/user/' + context.security.authorization.id) &&
onlyEditableManagedObjectProperties('user', [])"
 },
 {
 "pattern": "endpoint/getprocessesforuser",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "endpoint/gettasksview",
 "roles": "internal/role/openidm-authorized",
 "methods": "query",
 "actions": "*"
 },
 {
 "pattern": "workflow/taskinstance/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "complete",
 "customAuthz": "isMyTask()"
 },
 {
 "pattern": "workflow/taskinstance/*",
 "roles": "internal/role/openidm-authorized",

Authentication and authorization PingIDM

678 Copyright © 2025 Ping Identity Corporation

 "methods": "read,update",
 "actions": "*",
 "customAuthz": "canUpdateTask()"
 },
 {
 "pattern": "workflow/processinstance",
 "roles": "internal/role/openidm-authorized",
 "methods": "create",
 "actions": "*",
 "customAuthz": "isAllowedToStartProcess()"
 },
 {
 "pattern": "workflow/processdefinition/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "*",
 "actions": "read",
 "customAuthz": "isOneOfMyWorkflows()"
 },
 {
 "pattern": "managed/user",
 "roles": "internal/role/openidm-cert",
 "methods": "patch,action",
 "actions": "patch",
 "customAuthz": "isQueryOneOf({'managed/user': ['for-userName']}) && restrictPatchToFields(['password'])"
 },
 {
 "pattern": "internal/usermeta/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*",
 "customAuthz": "ownRelationship()"
 },
 {
 "pattern": "internal/notification/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,delete",
 "actions": "*",
 "customAuthz": "ownRelationship()"
 },
 {
 "pattern": "managed/user/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,query",
 "actions": "*",
 "customAuthz": "ownRelationshipCollection(['idps','_meta','_notifications'])"
 },
 {
 "pattern": "notification",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "deleteNotificationsForTarget",
 "customAuthz": "request.additionalParameters.target === (context.security.authorization.component + '/' +
context.security.authorization.id)"
 },
 {
 "pattern": "managed/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 679

 "actions": "*",
 "customAuthz": "ownIDP()"
 }
]
}

Authentication and authorization PingIDM

680 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--request PUT \
--data '{
 "_id": "access",
 "configs": [
 {
 "pattern": "info/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "authentication",
 "roles": "*",
 "methods": "read,action",
 "actions": "login,logout"
 },
 {
 "pattern": "identityProviders",
 "roles": "*",
 "methods": "action",
 "actions": "getAuthRedirect,handlePostAuth,getLogoutUrl"
 },
 {
 "pattern": "identityProviders",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "normalizeProfile"
 },
 {
 "pattern": "identityProviders",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "config/ui/themeconfig",
 "roles": "*",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "info/uiconfig",
 "roles": "*",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "config/selfservice/kbaConfig",
 "roles": "*",
 "methods": "read",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled(['registration', 'passwordReset'])"
 },
 {
 "pattern": "config/ui/dashboard",

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 681

 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "info/features",
 "roles": "*",
 "methods": "query",
 "actions": "*"
 },
 {
 "pattern": "privilege",
 "roles": "*",
 "methods": "action",
 "actions": "listPrivileges"
 },
 {
 "pattern": "privilege/*",
 "roles": "*",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "selfservice/registration",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('registration')"
 },
 {
 "pattern": "selfservice/socialUserClaim",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('registration')"
 },
 {
 "pattern": "selfservice/reset",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('passwordReset')"
 },
 {
 "pattern": "selfservice/username",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('retrieveUsername')"
 },
 {
 "pattern": "selfservice/profile",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements"
 },
 {
 "pattern": "selfservice/termsAndConditions",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements"
 },

Authentication and authorization PingIDM

682 Copyright © 2025 Ping Identity Corporation

 {
 "pattern": "selfservice/kbaUpdate",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements"
 },
 {
 "pattern": "policy/*",
 "roles": "*",
 "methods": "action",
 "actions": "validateObject",
 "customAuthz": "context.current.name === 'selfservice'"
 },
 {
 "pattern": "policy/selfservice/registration",
 "roles": "*",
 "methods": "action,read",
 "actions": "validateObject",
 "customAuthz": "checkIfAnyFeatureEnabled('registration')"
 },
 {
 "pattern": "policy/selfservice/reset",
 "roles": "*",
 "methods": "action,read",
 "actions": "validateObject",
 "customAuthz": "checkIfAnyFeatureEnabled('passwordReset')"
 },
 {
 "pattern": "selfservice/kba",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled('kba')"
 },
 {
 "pattern": "managed/user",
 "roles": "internal/role/openidm-reg",
 "methods": "create",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled('registration') && isSelfServiceRequest() &&
onlyEditableManagedObjectProperties('user', [])"
 },
 {
 "pattern": "managed/user",
 "roles": "*",
 "methods": "query",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled(['registration', 'retrieveUsername', 'passwordReset']) &&
isSelfServiceRequest()"
 },
 {
 "pattern": "managed/user/*",
 "roles": "*",
 "methods": "read",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled(['retrieveUsername', 'passwordReset']) && isSelfServiceRequest()"
 },
 {
 "pattern": "managed/user/*",
 "roles": "*",
 "methods": "patch,action",
 "actions": "patch",

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 683

 "customAuthz": "(checkIfAnyFeatureEnabled(['registration', 'passwordReset']) ||
checkIfProgressiveProfileIsEnabled()) && isSelfServiceRequest() && onlyEditableManagedObjectProperties('user', [])"
 },
 {
 "pattern": "external/email",
 "roles": "*",
 "methods": "action",
 "actions": "send",
 "customAuthz": "checkIfAnyFeatureEnabled(['registration', 'retrieveUsername', 'passwordReset']) &&
isSelfServiceRequest()"
 },
 {
 "pattern": "schema/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "consent",
 "roles": "internal/role/openidm-authorized",
 "methods": "action,query",
 "actions": "*"
 },
 {
 "pattern": "*",
 "roles": "internal/role/openidm-admin",
 "methods": "*",
 "actions": "*",
 "excludePatterns": "repo,repo/*"
 },
 {
 "pattern": "system/*",
 "roles": "internal/role/openidm-admin",
 "methods": "create,read,update,delete,patch,query",
 "actions": ""
 },
 {
 "pattern": "system/*",
 "roles": "internal/role/openidm-admin",
 "methods": "script",
 "actions": "*"
 },
 {
 "pattern": "system/*",
 "roles": "internal/role/openidm-admin",
 "methods": "action",
 "actions": "test,testConfig,createconfiguration,liveSync,authenticate"
 },
 {
 "pattern": "repo",
 "roles": "internal/role/openidm-admin",
 "methods": "*",
 "actions": "*",
 "customAuthz": "disallowCommandAction()"
 },
 {
 "pattern": "repo/*",
 "roles": "internal/role/openidm-admin",
 "methods": "*",
 "actions": "*",
 "customAuthz": "disallowCommandAction()"
 },

Authentication and authorization PingIDM

684 Copyright © 2025 Ping Identity Corporation

 {
 "pattern": "repo/link",
 "roles": "internal/role/openidm-admin",
 "methods": "action",
 "actions": "command",
 "customAuthz": "request.additionalParameters.commandId === 'delete-mapping-links'"
 },
 {
 "pattern": "managed/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "create,read,query,patch"
 },
 {
 "pattern": "internal/role/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "read,query"
 },
 {
 "pattern": "profile/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "create,read,action,update",
 "actions": "*"
 },
 {
 "pattern": "policy/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "read,action",
 "actions": "*"
 },
 {
 "pattern": "schema/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "consent",
 "roles": "internal/role/platform-provisioning",
 "methods": "action,query",
 "actions": "*"
 },
 {
 "pattern": "selfservice/kba",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "selfservice/terms",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "identityProviders",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "external/email",
 "roles": "internal/role/platform-provisioning",
 "methods": "action",
 "actions": "sendTemplate"
 },
 {

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 685

 "pattern": "policy/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,action",
 "actions": "*"
 },
 {
 "pattern": "config/ui/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "authentication",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "reauthenticate"
 },
 {
 "pattern": "*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,action,delete",
 "actions": "bind,unbind",
 "customAuthz": "ownDataOnly()"
 },
 {
 "pattern": "*",
 "roles": "internal/role/openidm-authorized",
 "methods": "update,patch,action",
 "actions": "patch",
 "customAuthz": "ownDataOnly() && onlyEditableManagedObjectProperties('user', []) &&
reauthIfProtectedAttributeChange()"
 },
 {
 "pattern": "selfservice/user/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "patch,action",
 "actions": "patch",
 "customAuthz": "(request.resourcePath === 'selfservice/user/' + context.security.authorization.id) &&
onlyEditableManagedObjectProperties('user', [])"
 },
 {
 "pattern": "endpoint/getprocessesforuser",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "endpoint/gettasksview",
 "roles": "internal/role/openidm-authorized",
 "methods": "query",
 "actions": "*"
 },
 {
 "pattern": "workflow/taskinstance/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "complete",
 "customAuthz": "isMyTask()"
 },
 {
 "pattern": "workflow/taskinstance/*",
 "roles": "internal/role/openidm-authorized",

Authentication and authorization PingIDM

686 Copyright © 2025 Ping Identity Corporation

 "methods": "read,update",
 "actions": "*",
 "customAuthz": "canUpdateTask()"
 },
 {
 "pattern": "workflow/processinstance",
 "roles": "internal/role/openidm-authorized",
 "methods": "create",
 "actions": "*",
 "customAuthz": "isAllowedToStartProcess()"
 },
 {
 "pattern": "workflow/processdefinition/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "*",
 "actions": "read",
 "customAuthz": "isOneOfMyWorkflows()"
 },
 {
 "pattern": "managed/user",
 "roles": "internal/role/openidm-cert",
 "methods": "patch,action",
 "actions": "patch",
 "customAuthz": "isQueryOneOf({'managed/user': ['for-userName']}) && restrictPatchToFields(['password'])"
 },
 {
 "pattern": "internal/usermeta/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*",
 "customAuthz": "ownRelationship()"
 },
 {
 "pattern": "internal/notification/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,delete",
 "actions": "*",
 "customAuthz": "ownRelationship()"
 },
 {
 "pattern": "managed/user/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,query",
 "actions": "*",
 "customAuthz": "ownRelationshipCollection(['idps','_meta','_notifications'])"
 },
 {
 "pattern": "notification",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "deleteNotificationsForTarget",
 "customAuthz": "request.additionalParameters.target === (context.security.authorization.component + '/' +
context.security.authorization.id)"
 },
 {
 "pattern": "managed/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*",
 "customAuthz": "ownIDP()"
 }
]

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 687

}' \
"http://localhost:8080/openidm/config/access"
{
 "_id": "access",
 "configs": [
 {
 "pattern": "info/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "authentication",
 "roles": "*",
 "methods": "read,action",
 "actions": "login,logout"
 },
 {
 "pattern": "identityProviders",
 "roles": "*",
 "methods": "action",
 "actions": "getAuthRedirect,handlePostAuth,getLogoutUrl"
 },
 {
 "pattern": "identityProviders",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "normalizeProfile"
 },
 {
 "pattern": "identityProviders",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "config/ui/themeconfig",
 "roles": "*",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "info/uiconfig",
 "roles": "*",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "config/selfservice/kbaConfig",
 "roles": "*",
 "methods": "read",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled(['registration', 'passwordReset'])"
 },
 {
 "pattern": "config/ui/dashboard",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "info/features",

Authentication and authorization PingIDM

688 Copyright © 2025 Ping Identity Corporation

 "roles": "*",
 "methods": "query",
 "actions": "*"
 },
 {
 "pattern": "privilege",
 "roles": "*",
 "methods": "action",
 "actions": "listPrivileges"
 },
 {
 "pattern": "privilege/*",
 "roles": "*",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "selfservice/registration",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('registration')"
 },
 {
 "pattern": "selfservice/socialUserClaim",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('registration')"
 },
 {
 "pattern": "selfservice/reset",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('passwordReset')"
 },
 {
 "pattern": "selfservice/username",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements",
 "customAuthz": "checkIfAnyFeatureEnabled('retrieveUsername')"
 },
 {
 "pattern": "selfservice/profile",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements"
 },
 {
 "pattern": "selfservice/termsAndConditions",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements"
 },
 {
 "pattern": "selfservice/kbaUpdate",
 "roles": "*",
 "methods": "read,action",
 "actions": "submitRequirements"
 },

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 689

 {
 "pattern": "policy/*",
 "roles": "*",
 "methods": "action",
 "actions": "validateObject",
 "customAuthz": "context.current.name === 'selfservice'"
 },
 {
 "pattern": "policy/selfservice/registration",
 "roles": "*",
 "methods": "action,read",
 "actions": "validateObject",
 "customAuthz": "checkIfAnyFeatureEnabled('registration')"
 },
 {
 "pattern": "policy/selfservice/reset",
 "roles": "*",
 "methods": "action,read",
 "actions": "validateObject",
 "customAuthz": "checkIfAnyFeatureEnabled('passwordReset')"
 },
 {
 "pattern": "selfservice/kba",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled('kba')"
 },
 {
 "pattern": "managed/user",
 "roles": "internal/role/openidm-reg",
 "methods": "create",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled('registration') && isSelfServiceRequest() &&
onlyEditableManagedObjectProperties('user', [])"
 },
 {
 "pattern": "managed/user",
 "roles": "*",
 "methods": "query",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled(['registration', 'retrieveUsername', 'passwordReset']) &&
isSelfServiceRequest()"
 },
 {
 "pattern": "managed/user/*",
 "roles": "*",
 "methods": "read",
 "actions": "*",
 "customAuthz": "checkIfAnyFeatureEnabled(['retrieveUsername', 'passwordReset']) && isSelfServiceRequest()"
 },
 {
 "pattern": "managed/user/*",
 "roles": "*",
 "methods": "patch,action",
 "actions": "patch",
 "customAuthz": "(checkIfAnyFeatureEnabled(['registration', 'passwordReset']) ||
checkIfProgressiveProfileIsEnabled()) && isSelfServiceRequest() && onlyEditableManagedObjectProperties('user', [])"
 },
 {
 "pattern": "external/email",
 "roles": "*",

Authentication and authorization PingIDM

690 Copyright © 2025 Ping Identity Corporation

 "methods": "action",
 "actions": "send",
 "customAuthz": "checkIfAnyFeatureEnabled(['registration', 'retrieveUsername', 'passwordReset']) &&
isSelfServiceRequest()"
 },
 {
 "pattern": "schema/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "consent",
 "roles": "internal/role/openidm-authorized",
 "methods": "action,query",
 "actions": "*"
 },
 {
 "pattern": "*",
 "roles": "internal/role/openidm-admin",
 "methods": "*",
 "actions": "*",
 "excludePatterns": "repo,repo/*"
 },
 {
 "pattern": "system/*",
 "roles": "internal/role/openidm-admin",
 "methods": "create,read,update,delete,patch,query",
 "actions": ""
 },
 {
 "pattern": "system/*",
 "roles": "internal/role/openidm-admin",
 "methods": "script",
 "actions": "*"
 },
 {
 "pattern": "system/*",
 "roles": "internal/role/openidm-admin",
 "methods": "action",
 "actions": "test,testConfig,createconfiguration,liveSync,authenticate"
 },
 {
 "pattern": "repo",
 "roles": "internal/role/openidm-admin",
 "methods": "*",
 "actions": "*",
 "customAuthz": "disallowCommandAction()"
 },
 {
 "pattern": "repo/*",
 "roles": "internal/role/openidm-admin",
 "methods": "*",
 "actions": "*",
 "customAuthz": "disallowCommandAction()"
 },
 {
 "pattern": "repo/link",
 "roles": "internal/role/openidm-admin",
 "methods": "action",
 "actions": "command",
 "customAuthz": "request.additionalParameters.commandId === 'delete-mapping-links'"

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 691

 },
 {
 "pattern": "managed/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "create,read,query,patch"
 },
 {
 "pattern": "internal/role/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "read,query"
 },
 {
 "pattern": "profile/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "create,read,action,update",
 "actions": "*"
 },
 {
 "pattern": "policy/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "read,action",
 "actions": "*"
 },
 {
 "pattern": "schema/*",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "consent",
 "roles": "internal/role/platform-provisioning",
 "methods": "action,query",
 "actions": "*"
 },
 {
 "pattern": "selfservice/kba",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "selfservice/terms",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "identityProviders",
 "roles": "internal/role/platform-provisioning",
 "methods": "read"
 },
 {
 "pattern": "external/email",
 "roles": "internal/role/platform-provisioning",
 "methods": "action",
 "actions": "sendTemplate"
 },
 {
 "pattern": "policy/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,action",
 "actions": "*"
 },
 {

Authentication and authorization PingIDM

692 Copyright © 2025 Ping Identity Corporation

 "pattern": "config/ui/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "authentication",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "reauthenticate"
 },
 {
 "pattern": "*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,action,delete",
 "actions": "bind,unbind",
 "customAuthz": "ownDataOnly()"
 },
 {
 "pattern": "*",
 "roles": "internal/role/openidm-authorized",
 "methods": "update,patch,action",
 "actions": "patch",
 "customAuthz": "ownDataOnly() && onlyEditableManagedObjectProperties('user', []) &&
reauthIfProtectedAttributeChange()"
 },
 {
 "pattern": "selfservice/user/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "patch,action",
 "actions": "patch",
 "customAuthz": "(request.resourcePath === 'selfservice/user/' + context.security.authorization.id) &&
onlyEditableManagedObjectProperties('user', [])"
 },
 {
 "pattern": "endpoint/getprocessesforuser",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*"
 },
 {
 "pattern": "endpoint/gettasksview",
 "roles": "internal/role/openidm-authorized",
 "methods": "query",
 "actions": "*"
 },
 {
 "pattern": "workflow/taskinstance/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "complete",
 "customAuthz": "isMyTask()"
 },
 {
 "pattern": "workflow/taskinstance/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,update",
 "actions": "*",
 "customAuthz": "canUpdateTask()"
 },
 {
 "pattern": "workflow/processinstance",

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 693

 "roles": "internal/role/openidm-authorized",
 "methods": "create",
 "actions": "*",
 "customAuthz": "isAllowedToStartProcess()"
 },
 {
 "pattern": "workflow/processdefinition/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "*",
 "actions": "read",
 "customAuthz": "isOneOfMyWorkflows()"
 },
 {
 "pattern": "managed/user",
 "roles": "internal/role/openidm-cert",
 "methods": "patch,action",
 "actions": "patch",
 "customAuthz": "isQueryOneOf({'managed/user': ['for-userName']}) && restrictPatchToFields(['password'])"
 },
 {
 "pattern": "internal/usermeta/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*",
 "customAuthz": "ownRelationship()"
 },
 {
 "pattern": "internal/notification/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,delete",
 "actions": "*",
 "customAuthz": "ownRelationship()"
 },
 {
 "pattern": "managed/user/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read,query",
 "actions": "*",
 "customAuthz": "ownRelationshipCollection(['idps','_meta','_notifications'])"
 },
 {
 "pattern": "notification",
 "roles": "internal/role/openidm-authorized",
 "methods": "action",
 "actions": "deleteNotificationsForTarget",
 "customAuthz": "request.additionalParameters.target === (context.security.authorization.component + '/' +
context.security.authorization.id)"
 },
 {
 "pattern": "managed/*",
 "roles": "internal/role/openidm-authorized",
 "methods": "read",
 "actions": "*",
 "customAuthz": "ownIDP()"
 }
]
}

Authentication and authorization PingIDM

694 Copyright © 2025 Ping Identity Corporation

Grant internal authorization roles manually

Apart from the default roles that users get when they authenticate, you can grant internal authorization roles manually, over
REST or using the admin UI. This mechanism works in the same way as the granting of managed roles. For information about
granting managed roles, refer to Grant Roles to a User. To grant an internal role manually through the admin UI:

From the navigation bar, click Manage > User, and click a user.

From the Authorization Roles tab, click Add Authorization Roles.

Select Internal Role as the Type, click in the Authorization Roles field to select from the list of defined Internal Roles, and
click Add.

To manually grant an internal role over REST, add a reference to the internal role to the user’s authzRoles property. The
following command adds the openidm-admin role to user bjensen (with ID 9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb):

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/authzRoles/-",
 "value": {"_ref" : "internal/role/openidm-admin"}
 }
]' \
"https://localhost:8443/openidm/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb"
{
 "_id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "_rev": "0000000050c62938",
 "mail": "bjensen@example.com",
 "givenName": "Barbara",
 "sn": "Jensen",
 "description": "Created By CSV",
 "userName": "bjensen",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

You can also grant internal roles dynamically using conditional role grants.

1.

2.

3.

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 695

Secure access to workflows

The End User UI is integrated with the embedded Flowable workflow engine, enabling users to interact with workflows. Available
workflows are displayed under the Processes item on the Dashboard. In order for a workflow to be displayed here, the workflow
definition file must be present in the openidm/workflow directory.

A sample workflow integration with the End User UI is provided in openidm/samples/provisioning-with-workflow , and
documented in Provision users with workflow. Follow the steps in that sample for an understanding of how the workflow
integration works.

General access to workflow-related endpoints is based on the access rules defined in the conf/access.json file. The
configuration defined in conf/process-access.json specifies who can invoke workflows. By default, all users with the role
openidm-authorized or openidm-admin can invoke any available workflow. The default process-access.json file is as follows:

{
 "workflowAccess" : [
 {
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "internal/role/openidm-authorized"
 }
 },
 {
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "internal/role/openidm-admin"
 }
 }
]
}

property

Specifies the property used to identify the process definition. By default, process definitions are identified by their _id .

info
Because internal roles are not managed objects, you cannot manipulate them in the same way as managed roles.
Therefore, you cannot add a user to an internal role, as you would to a managed role.
To add users directly to an internal role, add the users as values of the role’s authzMembers property. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request POST \
--data '{"_ref":"managed/user/bjensen"}' \
"https://localhost:8443/openidm/internal/role/3042798d-37fd-49aa-bae3-52598d2c8dc4/authzMembers?
_action=create"

Note

Authentication and authorization PingIDM

696 Copyright © 2025 Ping Identity Corporation

matches

A regular expression match is performed on the process definitions, according to the specified property. The default
("matches" : ".*") implies that all process definition IDs match.

requiresRole

Specifies the authorization role that is required for users to have access to the matched process definition IDs. In the
default file, users with the role openidm-authorized or openidm-admin have access.

To extend the process action definition file, identify the processes to which users should have access, and specify the qualifying
authorization roles. For example, if you want to allow access to users with a role of ldap , add the following code block to the
process-access.json file:

{
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "ldap"
 }
}

To configure multiple roles with access to the same workflow process, simply add additional propertiesCheck objects. The
following example grants access to users with a role of doctor and nurse to the same workflows:

{
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "doctor"
 }
},
{
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "nurse"
 }
}

Secure RCS access

You can secure the openicf WebSocket endpoint used for communication between IDM and RCS client mode. Specifying the
authorization roles allowed to connect to the openicf servlet for each RCS instance ensures that RCS access to IDM is protected
can only be accessed by trusted RCS clients. The openicf servlet in your access configuration (access.json) lets you manage
authorization for the openicf endpoint.

In your authentication configuration (conf/authentication.json), add a specific role to the roles array of the RCS static
user mapping. This role authorizes access to the openicf endpoint for the specified RCS.

1.

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 697

Example

{
 "subject": "rcsclient",
 "localUser": "internal/user/idm-provisioning",
 "roles": [
 "internal/role/myrcsserver-authorized" (1)
],
 "executeAugmentationScript": false
}

Add a new rule in your access configuration (conf/access.json) to define authorization for the openicf endpoint.

Example

{
 "servlet": "openicf", (2)
 "pattern": "myrcsserver", (3)
 "roles": "internal/role/myrcsserver-authorized", (1)
 "methods": "read"
}

This rule ensures that:

Administrative users

The default IDM administrative user is openidm-admin . In a production environment, you might want to replace this user with a
managed or internal user with the same roles, specifically the openidm-admin and openidm-authorized roles.

You can create either an internal or managed user with the same roles as the default openidm-admin user. To add these roles to
an existing managed user, refer to Grant Internal Authorization Roles Manually. The following procedure creates a new
administrative internal user (admin):

Create an internal user:

1
In this example, the role internal/role/myrcsserver-authorized is added to the authenticated user’s security
context.

2.

1 only users possessing the internal/role/myrcsserver-authorized role can access the
2 openicf WebSocket endpoint
3 for the RCS named myrcsserver.

1.

Authentication and authorization PingIDM

698 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request PUT \
--data '{
 "password": "Passw0rd"
}' \
"https://localhost:8443/openidm/internal/user/admin"
{
 "_id": "admin",
 "_rev": "00000000210f6746"
}

Add a STATIC_USER authentication module to the authentication configuration:

Edit the conf/authentication.json file, and add the following:

{
 "name" : "STATIC_USER",
 "properties" : {
 "queryOnResource" : "internal/user",
 "username" : "admin",
 "password" : "Passw0rd",
 "defaultUserRoles" : [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled" : true
}

2.

info
If you are using Filesystem secret stores to secure your secrets, specify the filename where the password may
be found instead of defining it directly in authentication.json . You can do this using the $purpose
property, as follows (assuming a file name of idm.admin.password):

"password": {
 "$purpose": {
 "name": "idm.admin.password"
 }
}

Note

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 699

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/serverAuthContext/authModules/-",
 "value": {
 "name" : "STATIC_USER",
 "properties" : {
 "queryOnResource" : "internal/user",
 "username" : "admin",
 "password" : "Passw0rd",
 "defaultUserRoles" : [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled" : true
 }
 }
]' \
"https://localhost:8443/openidm/config/authentication"
{
 "_id": "authentication",
 "serverAuthContext": {
 ...
 "authModules": [
 ...
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "admin",
 "password": "{encrypted password}",
 "defaultUserRoles": [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled": true
 },
 ...
]
 }
}

To verify the changes, perform a REST call or log in to the admin UI as the new admin user. For example, query the list of
internal users:

3.

Authentication and authorization PingIDM

700 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: admin" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/internal/user?_queryFilter=true"
{
 "result": [
 {
 "_id": "admin",
 "_rev": "00000000f8e1665a"
 }
],
 ...
}

After you have verified the new admin user, you can delete or disable the openidm-admin user:

Delete the openidm-admin object:

curl \
--header "X-OpenIDM-Username: admin" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request DELETE \
"https://localhost:8443/openidm/internal/user/openidm-admin"
{
 "_id": "openidm-admin",
 "_rev": "00000000210f6746"
}

Delete the authentication module for "username" : "openidm-admin" :

Edit the conf/authentication.json file, and delete:

{
 "name" : "STATIC_USER",
 "properties" : {
 "queryOnResource" : "internal/user",
 "username" : "openidm-admin",
 "password" : "&{openidm.admin.password}",
 "defaultUserRoles" : [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled" : true
}

Get the current authentication configuration:

4.

1.

2.

1.

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 701

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/config/authentication"
{
 "_id": "authentication",
 "serverAuthContext": {
 ...
 "authModules": [
 ...
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "openidm-admin",
 "password": "&{openidm.admin.password}",
 "defaultUserRoles": [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled": true
 },
 ...
]
 }
}

Remove the authentication module for "username" : "openidm-admin" , and replace the authentication
configuration:

2.

Authentication and authorization PingIDM

702 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request PUT \
--data '{
 "_id": "authentication",
 "serverAuthContext": {
 "sessionModule": {
 "name": "JWT_SESSION",
 "properties": {
 "maxTokenLifeMinutes": 120,
 "tokenIdleTimeMinutes": 30,
 "sessionOnly": true,
 "isHttpOnly": true,
 "enableDynamicRoles": false
 }
 },
 "authModules": [
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "anonymous",
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "xBlTp67ze4Ca5LTocXOpoA==",
 "data": "mdibV6UabU2M+M5MK7bjFQ==",
 "keySize": 16,
 "purpose": "idm.config.encryption",
 "iv": "36D2+FumKbaUsndNQ+/+5w==",
 "mac": "ZM8GMnh0n80QwtSH6QsNmA=="
 }
 }
 },
 "defaultUserRoles": [
 "internal/role/openidm-reg"
]
 },
 "enabled": true
 },
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "admin",
 "password": "{encrypted password}",
 "defaultUserRoles": [

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 703

 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled": true
 },
 {
 "name": "MANAGED_USER",
 "properties": {
 "augmentSecurityContext": {
 "type": "text/javascript",
 "source": "require('auth/customAuthz').setProtectedAttributes(security)"
 },
 "queryId": "credential-query",
 "queryOnResource": "managed/user",
 "propertyMapping": {
 "authenticationId": "username",
 "userCredential": "password",
 "userRoles": "authzRoles"
 },
 "defaultUserRoles": [
 "internal/role/openidm-authorized"
]
 },
 "enabled": true
 },
 {
 "name": "SOCIAL_PROVIDERS",
 "properties": {
 "defaultUserRoles": [
 "internal/role/openidm-authorized"
],
 "augmentSecurityContext": {
 "type": "text/javascript",
 "globals": {},
 "file": "auth/populateAsManagedUserFromRelationship.js"
 },
 "propertyMapping": {
 "userRoles": "authzRoles"
 }
 },
 "enabled": true
 }
]
 }
}' \
"https://localhost:8443/openidm/config/authentication"

Prevent the openidm-admin user from being recreated on startup.

Delete the following lines from the internal/user array in conf/repo.init.json :

3.

Authentication and authorization PingIDM

704 Copyright © 2025 Ping Identity Corporation

{
 "id" : "openidm-admin",
 "password" : "&{openidm.admin.password}"
}

Change the enabled state of the authentication module for "username" : "openidm-admin" :

Edit the conf/authentication.json file:

{
 "name" : "STATIC_USER",
 "properties" : {
 "queryOnResource" : "internal/user",
 "username" : "openidm-admin",
 "password" : "&{openidm.admin.password}",
 "defaultUserRoles" : [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled" : false
}

Get the current authentication configuration:1.

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 705

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/config/authentication"
{
 "_id": "authentication",
 "serverAuthContext": {
 ...
 "authModules": [
 ...
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "openidm-admin",
 "password": "&{openidm.admin.password}",
 "defaultUserRoles": [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled": true
 },
 ...
]
 }
}

Change the enabled state of the authentication module for "username" : "openidm-admin" , and replace the
authentication configuration:

2.

Authentication and authorization PingIDM

706 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request PUT \
--data '{
 "_id": "authentication",
 "serverAuthContext": {
 "sessionModule": {
 "name": "JWT_SESSION",
 "properties": {
 "maxTokenLifeMinutes": 120,
 "tokenIdleTimeMinutes": 30,
 "sessionOnly": true,
 "isHttpOnly": true,
 "enableDynamicRoles": false
 }
 },
 "authModules": [
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "anonymous",
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "xBlTp67ze4Ca5LTocXOpoA==",
 "data": "mdibV6UabU2M+M5MK7bjFQ==",
 "keySize": 16,
 "purpose": "idm.config.encryption",
 "iv": "36D2+FumKbaUsndNQ+/+5w==",
 "mac": "ZM8GMnh0n80QwtSH6QsNmA=="
 }
 }
 },
 "defaultUserRoles": [
 "internal/role/openidm-reg"
]
 },
 "enabled": true
 },
 {
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "openidm-admin",
 "password": "&{openidm.admin.password}",
 "defaultUserRoles": [

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 707

 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
 },
 "enabled": false
 },
 {
 "name": "MANAGED_USER",
 "properties": {
 "augmentSecurityContext": {
 "type": "text/javascript",
 "source": "require('auth/customAuthz').setProtectedAttributes(security)"
 },
 "queryId": "credential-query",
 "queryOnResource": "managed/user",
 "propertyMapping": {
 "authenticationId": "username",
 "userCredential": "password",
 "userRoles": "authzRoles"
 },
 "defaultUserRoles": [
 "internal/role/openidm-authorized"
]
 },
 "enabled": true
 },
 {
 "name": "SOCIAL_PROVIDERS",
 "properties": {
 "defaultUserRoles": [
 "internal/role/openidm-authorized"
],
 "augmentSecurityContext": {
 "type": "text/javascript",
 "globals": {},
 "file": "auth/populateAsManagedUserFromRelationship.js"
 },
 "propertyMapping": {
 "userRoles": "authzRoles"
 }
 },
 "enabled": true
 }
]
 }
}' \
"https://localhost:8443/openidm/config/authentication"

Delegated administration

Delegated administration lets you give fine-grained administrative access to specific users, based on a privilege mechanism.

Authentication and authorization PingIDM

708 Copyright © 2025 Ping Identity Corporation

How privileges restrict administrative access

Privileges enable you to grant administrative access to specific endpoints and objects, without needing to grant full administrative
access to the server. For example, you might want to allow users with a help desk or support role to update the information of
another user, without allowing them to delete user accounts or change the IDM system configuration.

You can use privileges to delegate specific administrative capabilities to non-administrative users, without exposing the admin UI
to those users. If a user has been granted a privilege that allows them to access a list of users and user information, for example,
they can access this list directly through the End User UI.

The privilege mechanism requires dynamic role calculation, which is disabled by default. To enable it, set the
enableDynamicRoles property to true in your conf/authentication.json file, or select Configure > Authentication > Session
> Enable Dynamic Roles in the admin UI. For more information about dynamic role calculation, refer to Dynamic Role
Calculation.

For more information on managing privileges over REST, refer to Privileges.

Determine access privileges

IDM determines what access a user has as follows:

IDM checks the onRequest script specified in router.json . By default, this script calls router-authz.js .

If access requirements are not satisfied, IDM then checks for any privileges associated with the user’s roles.

onResponse and onFailure scripts are supported when using privileges. onFailure scripts are called only if both the
onRequest script and the privilege filter fail. onRequest , onResponse , and onFailure scripts are not required for the privilege
mechanism.

Create privileges

Privileges are assigned to internal roles. A privilege specifies the following information:

The service path where users with that internal role have access.

The methods and actions allowed on that service path.

The specific attributes of the objects at that service path where access is allowed.

You can use a query filter within a privilege so that the privilege applies to a subset of managed objects only.

The privileges property is an array and can contain multiple privileges. Each privilege can contain:

accessFlags

A list of attributes within a managed object that you want to give access to. Each attribute has two fields:

info
A delegated administrator does not have access to the same methods over REST as a regular administrator. IDM does
not allow delegated administrator requests such as POST or DELETE. To add or remove relationships, use PATCH. For
examples, refer to Managed roles.

Note

1.

2.

•

•

•

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 709

Attributes marked as "readOnly": true can be viewed, but not edited.

Attributes marked as "readOnly": false can be viewed and edited.

Attributes that aren’t listed in the accessFlags array cannot be viewed or edited.

actions

A list of the specific actions allowed if the ACTION permission has been specified.

description (optional)

A description of the privilege.

filter (optional)

This property lets you apply a static or dynamic query filter to the privilege, which can be used to limit the scope of what
the privilege allows the user to access.

Static filter example

To allow a delegated administrator to access information only about users for the stateProvince of Washington, include
a static filter, such as:

filter : "stateProvince eq \"Washington\""

Dynamic filter example

Dynamic filters insert values from the authenticated resource. To allow a delegated administrator to access information
only about users in their own stateProvince , include a dynamic filter by wrapping the parameter in curly braces:

Field Description

attribute The name of the property you are granting access to.

readOnly (boolean) Determines what level of access is allowed.

•

•

•

info
Privileges aren’t automatically aware of changes to the managed object schema. If new
properties are added, removed, or made mandatory, you must update any existing privileges to
account for these changes. When a new property is added, it has a default permission level of
NONE in existing privileges, including when the privilege is set to access all attributes.
Identity Management applies policy validation when creating or updating a privilege to ensure
that all required properties are writable when the CREATE permission is assigned. This
validation doesn’t run when schema changes are made, so you must verify that any existing
privileges adhere to defined policies.

Note

◦

◦

lightbulb_2
Allowed actions must be explicitly listed.

Tip

Authentication and authorization PingIDM

710 Copyright © 2025 Ping Identity Corporation

filter : "stateProvince eq \"{{stateProvince}}\""

Users with query filter privileges can’t edit the properties specified in the filter in ways that would cause the privilege to
lose access to the object. For example, if a user with either of the preceding example privileges attempted to edit another
user’s stateProvince field to a value not matching the query filter, the request would return a 403 Forbidden error.

name

The name of the privilege.

path

The path to the service that you want to allow members of this privilege to access. For example, managed/user .

permissions

A list of permissions this privilege allows for the given path. The following permissions are available:

Adding privileges using the admin UI

From the navigation bar, click Manage > Role.

On the Roles page, click the Internal tab, and then click an existing role or create a new role.

On the Role Name page, click the Privileges tab.

Identity Management displays the current privileges for the role.

To add privileges, click Add Privileges.

In the Add a privilege window, enter information, as necessary, and click Add.

info
Fields must be searchable by Identity Management to be used in a privilege filter. Ensure that the field you are
filtering has "searchable" : true set in the repo.jdbc.json file.
Privilege filters are an additional layer of filter to any other query filters you create. Any output must satisfy all
filters to be included.

Note

VIEW Allows reading and querying the path, such as viewing and querying managed users.
CREATE Allows creation at the path, such as creating new managed users.
UPDATE Allows updating or patching existing information, such as editing managed user details.
DELETE Allows deletion, such as deleting users from managed/user .
ACTION Allows users to perform actions at the given path, such as custom scripted actions.

emergency_home
If you use an ACTION , there can be no filters on the privilege.

Important

1.

2.

3.

4.

◦

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 711

Adding privileges using REST

The following example creates a new support role with privileges that let members view, create, and update information about
users, but not delete users:

Authentication and authorization PingIDM

712 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request PUT \
--data '{
 "name": "support",
 "description": "Support Role",
 "privileges": [{
 "name": "support",
 "description": "Support access to user information.",
 "path": "managed/user",
 "permissions": [
 "VIEW", "UPDATE", "CREATE"
],
 "actions": [],
 "filter": null,
 "accessFlags": [
 {
 "attribute" : "userName",
 "readOnly" : false
 },
 {
 "attribute" : "mail",
 "readOnly" : false
 },
 {
 "attribute" : "givenName",
 "readOnly" : false
 },
 {
 "attribute" : "sn",
 "readOnly" : false
 },
 {
 "attribute" : "accountStatus",
 "readOnly" : true
 }
]
 }]
}' \
"https://localhost:8443/openidm/internal/role/support"
{
 "_id": "support",
 "_rev": "00000000bfbac2ed",
 "name": "support",
 "description": "Support Role",
 "temporalConstraints": [],
 "condition": null,
 "privileges": [
 {
 "name": "support",

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 713

 "description": "Support access to user information.",
 "path": "managed/user",
 "permissions": [
 "VIEW",
 "UPDATE",
 "CREATE"
],
 "actions": [],
 "filter": null,
 "accessFlags": [
 {
 "attribute": "userName",
 "readOnly": false
 },
 {
 "attribute": "mail",
 "readOnly": false
 },
 {
 "attribute": "givenName",
 "readOnly": false
 },
 {
 "attribute": "sn",
 "readOnly": false
 },
 {
 "attribute": "accountStatus",
 "readOnly": true
 }
]
 }
]
}

Policies related to privileges

When creating privileges, IDM runs policies found in policy.json and policy.js , including the five policies used for validating
privileges:

valid-accessFlags-object

Verifies that accessFlag objects are correctly formatted. Only two fields are permitted in an accessFlag object:
readOnly , which must be a boolean; and attribute , which must be a string.

valid-array-items

Verifies that each item in an array contains the properties specified in policy.json , and that each of those properties
satisfies any specific policies applied to it. By default, this is used to verify that each privilege contains name , path ,
accessFlags , actions , and permissions properties, and that the filter property is valid if included.

Authentication and authorization PingIDM

714 Copyright © 2025 Ping Identity Corporation

valid-permissions

Verifies that the permissions set on the privilege are all valid and can be achieved with the accessFlags that have been
set. It checks:

CREATE permissions must have write access to all properties required to create a new object.

CREATE and UPDATE permissions must have write access to at least one property.

ACTION permissions must include a list of allowed actions, with at least one action included.

If any attributes have write access, then the privilege must also have either CREATE or UPDATE permission.

All permissions listed must be valid types of permission: VIEW , CREATE , UPDATE , ACTION , or DELETE . Also, no
permissions are repeated.

valid-privilege-path

Verifies that the path specified in the privilege is a valid object with a schema for IDM to reference. Only objects with a
schema (such as managed/user) can have privileges applied to them.

valid-query-filter

Verifies that the query filter used to filter privileges is a valid query.

For more information about policies and creating custom policies, refer to Use policies to validate data.

Get privileges on a resource

To determine which privileges a user has on a service, you can query the privilege endpoint for a given resource path or object,
based on the user you are currently logged in as. For example, if a user is a member of the support role mentioned in the
previous example, checking the user’s privileges for the managed/user resource would look like this:

•

•

•

•

•

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 715

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/privilege/managed/user"
{
 "VIEW": {
 "allowed": true,
 "properties": [
 "userName",
 "givenName",
 "sn",
 "mail",
 "accountStatus"
]
 },
 "CREATE": {
 "allowed": true,
 "properties": [
 "userName",
 "givenName",
 "sn",
 "mail"
]
 },
 "UPDATE": {
 "allowed": true,
 "properties": [
 "userName",
 "givenName",
 "sn",
 "mail"
]
 },
 "DELETE": {
 "allowed": false
 },
 "ACTION": {
 "allowed": false,
 "actions": []
 }
}

In the above example, accountStatus is listed as a property for VIEW , but not for CREATE or UPDATE , because the privilege sets
this property to be read only. Since both CREATE and UPDATE need the ability to write to a property, setting readOnly to false
applies to both permissions. If you need more granular control, split these permissions into two privileges.

In addition to checking privileges for a resource, it is also possible to check privileges for specific objects within a resource, such
as managed/user/scarter .

Authentication and authorization PingIDM

716 Copyright © 2025 Ping Identity Corporation

Create a delegated administrator

You can use the IDM REST API to create an internal/role with privileges that have object, array, and relationship type attribute
access. You can then use that role as a delegated administrator to perform operations on those attributes.

Use the following example to create a delegated administrator:

To ensure a role object exists when roles are requested, you must create a managed role.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-None-Match: *" \
--request PUT \
--data '{
 "name": "testManagedRole",
 "description": "a managed role for test"
}' \
"http://localhost:8080/openidm/managed/role/testManagedRole"
{
 "_id": "testManagedRole",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-181",
 "name": "testManagedRole",
 "description": "a managed role for test"
}

info
If you want to experiment with delegated administrators in Postman, download and import this Postman collection.

Note

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 717

https://www.postman.com/
https://www.postman.com/
file:///home/jenkins/target/_attachments/Delegated-Administration.postman_collection.json

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "password": "Passw0rd"
}' \
"http://localhost:8080/openidm/managed/user/?_action=create"
{
 "_id": "9cae97b7-3bf3-4107-96d5-39ad153629db",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1223",
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "effectiveRoles": [],
 "memberOfOrgIDs": [],
 "effectiveAssignments": []
}

In this step, you’ll create two users with the following attributes:

preferences

manager

roles

•

•

•

Authentication and authorization PingIDM

718 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "userName": "scarter",
 "sn": "Carter",
 "givenName": "Steven",
 "mail": "scarter@example.com",
 "telephoneNumber": "082082082",
 "password": "Passw0rd",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "manager": {"_ref": "managed/user/9cae97b7-3bf3-4107-96d5-39ad153629db"},
 "roles": [{"_ref": "managed/role/testManagedRole"}]
}' \
"http://localhost:8080/openidm/managed/user/?_action=create"
{
 "_id": "917bc052-ef39-4add-ae05-0a278e2de9c0",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1238",
 "userName": "scarter",
 "sn": "Carter",
 "givenName": "Steven",
 "mail": "scarter@example.com",
 "telephoneNumber": "082082082",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "accountStatus": "active",
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "testManagedRole",
 "_ref": "managed/role/testManagedRole"
 }
],
 "memberOfOrgIDs": [],
 "effectiveAssignments": []
}

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 719

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "userName": "jdoe",
 "sn": "Doe",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "082082082",
 "password": "Passw0rd",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "manager": {"_ref": "managed/user/9cae97b7-3bf3-4107-96d5-39ad153629db"},
 "roles": [{"_ref": "managed/role/testManagedRole"}]
}' \
"http://localhost:8080/openidm/managed/user/?_action=create"
{
 "_id": "aca0042c-9f4c-4ad5-8cf7-aca0adeb3470",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1267",
 "userName": "jdoe",
 "sn": "Doe",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "082082082",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "accountStatus": "active",
 "effectiveRoles": [
 {
 "_refResourceCollection": "managed/role",
 "_refResourceId": "testManagedRole",
 "_ref": "managed/role/testManagedRole"
 }
],
 "memberOfOrgIDs": [],
 "effectiveAssignments": []
}

You will delegate an internal/role with privileges to this user in the next step:

Authentication and authorization PingIDM

720 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "userName": "bjensen",
 "sn": "Jensen",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "082082082",
 "password": "Passw0rd"
}' \
"http://localhost:8080/openidm/managed/user/?_action=create"
{
 "_id": "2d726b2a-3324-44b3-ba40-91b154d4f51e",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1291",
 "userName": "bjensen",
 "sn": "Jensen",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "effectiveRoles": [],
 "memberOfOrgIDs": [],
 "effectiveAssignments": []
}

This role will have the following privileges:

A managed/user privilege with accessFlags attributes that are of types: “String” , “boolean” , and “number” ; but also for:

An object type that is not a relationship (preferences).

An object type that is a relationship (manager).

Array types that are relationships (roles , authzRoles , reports).

A managed/role privilege for viewing details of the “roles” property of a managed user.

An internal/role privilege for viewing the details of the “authzRoles” property of a managed user.

•

◦

◦

◦

•

•

info
You can populate the privilege filter field to apply a finer level of permissions for what a delegated administrator
can access or do with certain objects. The filter field is omitted in this example to allow all.
For properties that are not relationships, such as preferences , you can’t specify finer-grained permissions. For
example, you can’t set permissions on preferences/marketing .

Note

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 721

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-None-Match: *" \
--request PUT \
--data '{
 "name": "internal_role_with_object_array_and_relationship_privileges",
 "description": "an internal role that has privileges for object & array types and relationships",
 "privileges": [
 {
 "name": "managed_user_privilege",
 "path": "managed/user",
 "permissions": [
 "VIEW",
 "CREATE",
 "UPDATE",
 "DELETE"
],
 "actions": [],
 "accessFlags": [
 {
 "attribute": "userName",
 "readOnly": false
 },
 {
 "attribute": "password",
 "readOnly": false
 },
 {
 "attribute": "givenName",
 "readOnly": false
 },
 {
 "attribute": "sn",
 "readOnly": false
 },
 {
 "attribute": "mail",
 "readOnly": false
 },
 {
 "attribute": "description",
 "readOnly": false
 },
 {
 "attribute": "accountStatus",
 "readOnly": false
 },
 {
 "attribute": "telephoneNumber",
 "readOnly": false
 },
 {

Authentication and authorization PingIDM

722 Copyright © 2025 Ping Identity Corporation

 "attribute": "postalAddress",
 "readOnly": false
 },
 {
 "attribute": "city",
 "readOnly": false
 },
 {
 "attribute": "postalCode",
 "readOnly": false
 },
 {
 "attribute": "country",
 "readOnly": false
 },
 {
 "attribute": "stateProvince",
 "readOnly": false
 },
 {
 "attribute": "preferences",
 "readOnly": false
 },
 {
 "attribute": "roles",
 "readOnly": false
 },
 {
 "attribute": "manager",
 "readOnly": false
 },
 {
 "attribute": "authzRoles",
 "readOnly": false
 },
 {
 "attribute": "reports",
 "readOnly": false
 }
]
 },
 {
 "name": "managed_role_privilege",
 "path": "managed/role",
 "permissions": [
 "VIEW"
],
 "actions": [],
 "accessFlags": [
 {
 "attribute": "name",
 "readOnly": true
 },
 {
 "attribute": "description",

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 723

 "readOnly": true
 }
]
 },
 {
 "name": "internal_role_privilege",
 "path": "internal/role",
 "permissions": [
 "VIEW"
],
 "actions": [],
 "accessFlags": [
 {
 "attribute": "name",
 "readOnly": true
 },
 {
 "attribute": "description",
 "readOnly": true
 },
 {
 "attribute": "authzMembers",
 "readOnly": true
 }
]
 }
]
}' \
"http://localhost:8080/openidm/internal/role/testInternalRole"
{
 "_id": "testInternalRole",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-300",
 "name": "internal_role_with_object_array_and_relationship_privileges",
 "description": "an internal role that has privileges for object & array types and relationships",
 "temporalConstraints": [],
 "condition": null,
 "privileges": [
 {
 "name": "managed_user_privilege",
 "path": "managed/user",
 "permissions": [
 "VIEW",
 "CREATE",
 "UPDATE",
 "DELETE"
],
 "actions": [],
 "accessFlags": [
 {
 "attribute": "userName",
 "readOnly": false
 },
 {
 "attribute": "password",
 "readOnly": false

Authentication and authorization PingIDM

724 Copyright © 2025 Ping Identity Corporation

 },
 {
 "attribute": "givenName",
 "readOnly": false
 },
 {
 "attribute": "sn",
 "readOnly": false
 },
 {
 "attribute": "mail",
 "readOnly": false
 },
 {
 "attribute": "description",
 "readOnly": false
 },
 {
 "attribute": "accountStatus",
 "readOnly": false
 },
 {
 "attribute": "telephoneNumber",
 "readOnly": false
 },
 {
 "attribute": "postalAddress",
 "readOnly": false
 },
 {
 "attribute": "city",
 "readOnly": false
 },
 {
 "attribute": "postalCode",
 "readOnly": false
 },
 {
 "attribute": "country",
 "readOnly": false
 },
 {
 "attribute": "stateProvince",
 "readOnly": false
 },
 {
 "attribute": "preferences",
 "readOnly": false
 },
 {
 "attribute": "roles",
 "readOnly": false
 },
 {
 "attribute": "manager",

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 725

 "readOnly": false
 },
 {
 "attribute": "authzRoles",
 "readOnly": false
 },
 {
 "attribute": "reports",
 "readOnly": false
 }
]
 },
 {
 "name": "managed_role_privilege",
 "path": "managed/role",
 "permissions": [
 "VIEW"
],
 "actions": [],
 "accessFlags": [
 {
 "attribute": "name",
 "readOnly": true
 },
 {
 "attribute": "description",
 "readOnly": true
 }
]
 },
 {
 "name": "internal_role_privilege",
 "path": "internal/role",
 "permissions": [
 "VIEW"
],
 "actions": [],
 "accessFlags": [
 {
 "attribute": "name",
 "readOnly": true
 },
 {
 "attribute": "description",
 "readOnly": true
 },
 {
 "attribute": "authzMembers",
 "readOnly": true
 }
]
 }
]
}

Authentication and authorization PingIDM

726 Copyright © 2025 Ping Identity Corporation

In this step, assign the internal/role from step 5 to the user created in step 4 by creating a relationship:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "_ref": "managed/user/2d726b2a-3324-44b3-ba40-91b154d4f51e",
 "_refProperties": {}
}' \
"http://localhost:8080/openidm/internal/role/testInternalRole/authzMembers?_action=create"
{
 "_id": "2e21f423-f934-4ed7-b6fd-9883b69d52d8",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1304",
 "_ref": "managed/user/2d726b2a-3324-44b3-ba40-91b154d4f51e",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "2d726b2a-3324-44b3-ba40-91b154d4f51e",
 "_refProperties": {
 "_id": "2e21f423-f934-4ed7-b6fd-9883b69d52d8",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1304"
 }
}

You can now perform operations as a delegated administrator, such as:

The query results display all users' properties that are allowed by the privileges:

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 727

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_pageSize=100&_fields=*,*_ref/*"
{
 "result": [
 {
 "_id": "9cae97b7-3bf3-4107-96d5-39ad153629db",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1223",
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "reports": [
 {
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1267",
 "_id": "aca0042c-9f4c-4ad5-8cf7-aca0adeb3470",
 "userName": "jdoe",
 "sn": "Doe",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "082082082",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "accountStatus": "active",
 "_ref": "managed/user/aca0042c-9f4c-4ad5-8cf7-aca0adeb3470",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "aca0042c-9f4c-4ad5-8cf7-aca0adeb3470",
 "_refProperties": {
 "_id": "e01a922b-a60d-46c2-b6bc-2b821c1580b4",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1262"
 }
 },
 {
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1238",
 "_id": "917bc052-ef39-4add-ae05-0a278e2de9c0",
 "userName": "scarter",
 "sn": "Carter",
 "givenName": "Steven",
 "mail": "scarter@example.com",
 "telephoneNumber": "082082082",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "accountStatus": "active",
 "_ref": "managed/user/917bc052-ef39-4add-ae05-0a278e2de9c0",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "917bc052-ef39-4add-ae05-0a278e2de9c0",

Authentication and authorization PingIDM

728 Copyright © 2025 Ping Identity Corporation

 "_refProperties": {
 "_id": "5bc2c633-8ae1-4ea2-adf6-8aa7ce5f8e70",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1233"
 }
 }
],
 "manager": null,
 "roles": [],
 "authzRoles": []
 },
 {
 "_id": "917bc052-ef39-4add-ae05-0a278e2de9c0",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1238",
 "userName": "scarter",
 "sn": "Carter",
 "givenName": "Steven",
 "mail": "scarter@example.com",
 "telephoneNumber": "082082082",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "accountStatus": "active",
 "reports": [],
 "manager": {
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1223",
 "_id": "9cae97b7-3bf3-4107-96d5-39ad153629db",
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "_ref": "managed/user/9cae97b7-3bf3-4107-96d5-39ad153629db",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "9cae97b7-3bf3-4107-96d5-39ad153629db",
 "_refProperties": {
 "_id": "5bc2c633-8ae1-4ea2-adf6-8aa7ce5f8e70",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1233"
 }
 },
 "roles": [
 {
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-181",
 "_id": "testManagedRole",
 "name": "testManagedRole",
 "description": "a managed role for test",
 "_ref": "managed/role/testManagedRole",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "testManagedRole",
 "_refProperties": {
 "_id": "a33e2de0-83ff-481c-b8a7-8ffbc02d135c",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1235"
 }
 }

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 729

],
 "authzRoles": []
 },
 {
 "_id": "aca0042c-9f4c-4ad5-8cf7-aca0adeb3470",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1267",
 "userName": "jdoe",
 "sn": "Doe",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "082082082",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "accountStatus": "active",
 "reports": [],
 "manager": {
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1223",
 "_id": "9cae97b7-3bf3-4107-96d5-39ad153629db",
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "_ref": "managed/user/9cae97b7-3bf3-4107-96d5-39ad153629db",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "9cae97b7-3bf3-4107-96d5-39ad153629db",
 "_refProperties": {
 "_id": "e01a922b-a60d-46c2-b6bc-2b821c1580b4",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1262"
 }
 },
 "roles": [
 {
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-181",
 "_id": "testManagedRole",
 "name": "testManagedRole",
 "description": "a managed role for test",
 "_ref": "managed/role/testManagedRole",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "testManagedRole",
 "_refProperties": {
 "_id": "1528ab24-3ec3-4113-ac3f-26cc71a2d678",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1264"
 }
 }
],
 "authzRoles": []
 },
 {
 "_id": "2d726b2a-3324-44b3-ba40-91b154d4f51e",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1305",
 "userName": "bjensen",

Authentication and authorization PingIDM

730 Copyright © 2025 Ping Identity Corporation

 "sn": "Jensen",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "reports": [],
 "manager": null,
 "roles": [],
 "authzRoles": [
 {
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-300",
 "_id": "testInternalRole",
 "name": "internal_role_with_object_array_and_relationship_privileges",
 "description": "an internal role that has privileges for object & array types and relationships",
 "_ref": "internal/role/testInternalRole",
 "_refResourceCollection": "internal/role",
 "_refResourceId": "testInternalRole",
 "_refProperties": {
 "_id": "2e21f423-f934-4ed7-b6fd-9883b69d52d8",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1304"
 }
 }
]
 }
],
 "resultCount": 4,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--request GET \
"http://localhost:8080/openidm/managed/user/aca0042c-9f4c-4ad5-8cf7-aca0adeb3470?_fields=preferences"
{
 "_id": "aca0042c-9f4c-4ad5-8cf7-aca0adeb3470",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1267",
 "preferences": {
 "updates": true,
 "marketing": false
 }
}

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 731

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--request GET \
"http://localhost:8080/openidm/managed/user/917bc052-ef39-4add-ae05-0a278e2de9c0/roles?
_queryFilter=true&_fields=*"
{
 "result": [
 {
 "_id": "a33e2de0-83ff-481c-b8a7-8ffbc02d135c",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1235",
 "name": "testManagedRole",
 "description": "a managed role for test",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "testManagedRole",
 "_refResourceRev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-181",
 "_ref": "managed/role/testManagedRole",
 "_refProperties": {
 "_id": "a33e2de0-83ff-481c-b8a7-8ffbc02d135c",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1235"
 }
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--request GET \
"http://localhost:8080/openidm/managed/user/917bc052-ef39-4add-ae05-0a278e2de9c0/manager?_fields=*"
{
 "_id": "5bc2c633-8ae1-4ea2-adf6-8aa7ce5f8e70",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1233",
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "9cae97b7-3bf3-4107-96d5-39ad153629db",
 "_refResourceRev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1223",
 "_ref": "managed/user/9cae97b7-3bf3-4107-96d5-39ad153629db",
 "_refProperties": {
 "_id": "5bc2c633-8ae1-4ea2-adf6-8aa7ce5f8e70",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1233"
 }
}

Authentication and authorization PingIDM

732 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[{
 "operation" : "replace",
 "field" : "reports",
 "value" : [{"_ref" : "managed/user/917bc052-ef39-4add-ae05-0a278e2de9c0"}]
}]' \
"http://localhost:8080/openidm/managed/user/9cae97b7-3bf3-4107-96d5-39ad153629db"
{
 "_id": "9cae97b7-3bf3-4107-96d5-39ad153629db",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1223",
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active"
}

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "manager",
 "value": {"_ref" : "managed/user/9cae97b7-3bf3-4107-96d5-39ad153629db"}
 }
]' \
"http://localhost:8080/openidm/managed/user/aca0042c-9f4c-4ad5-8cf7-aca0adeb3470"
{
 "_id": "aca0042c-9f4c-4ad5-8cf7-aca0adeb3470",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1517",
 "userName": "jdoe",
 "sn": "Doe",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "082082082",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "accountStatus": "active"
}

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 733

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "remove",
 "field": "manager"
 }
]' \
"http://localhost:8080/openidm/managed/user/aca0042c-9f4c-4ad5-8cf7-aca0adeb3470"
{
 "_id": "aca0042c-9f4c-4ad5-8cf7-aca0adeb3470",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1545",
 "userName": "jdoe",
 "sn": "Doe",
 "givenName": "John",
 "mail": "jdoe@example.com",
 "telephoneNumber": "082082082",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "accountStatus": "active"
}

Authentication and authorization PingIDM

734 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "replace",
 "field": "manager",
 "value": {"_ref" : "managed/user/aca0042c-9f4c-4ad5-8cf7-aca0adeb3470"}
 }
]' \
"http://localhost:8080/openidm/managed/user/917bc052-ef39-4add-ae05-0a278e2de9c0"
{
 "_id": "917bc052-ef39-4add-ae05-0a278e2de9c0",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1565",
 "userName": "scarter",
 "sn": "Carter",
 "givenName": "Steven",
 "mail": "scarter@example.com",
 "telephoneNumber": "082082082",
 "preferences": {
 "updates": true,
 "marketing": false
 },
 "accountStatus": "active"
}

curl \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "Content-Type: application/json" \
--request DELETE \
"http://localhost:8080/openidm/managed/user/9cae97b7-3bf3-4107-96d5-39ad153629db"
{
 "_id": "9cae97b7-3bf3-4107-96d5-39ad153629db",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-1223",
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active"
}

Using POST:•

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 735

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--request POST \
--data '{
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "password": "Passw0rd"
}' \
"http://localhost:8080/openidm/managed/user"
{
 "_id": "1a20930b-cf61-4b43-a730-9f73af9147cb",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-571",
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active"
}

Using PUT:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: bjensen" \
--header "X-OpenIDM-Password: Passw0rd" \
--header "If-None-Match: *" \
--request PUT \
--data '{
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "password": "Passw0rd"
}' \
"http://localhost:8080/openidm/managed/user/psmith"
{
 "_id": "psmith",
 "_rev": "200bc5d6-7cc1-4648-a854-3137f3d9c103-590",
 "userName": "psmith",
 "sn": "Smith",
 "givenName": "Patricia",
 "mail": "psmith@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active"
}

•

Authentication and authorization PingIDM

736 Copyright © 2025 Ping Identity Corporation

Configure search UI for delegated administrators

The IDM End User UI support for delegated administration includes a search feature to filter a list of results. To help keep search
performant when working with large lists, you can configure the following constraints:

Set a minimum filter length.

Disable the ability to filter and sort.

Minimum filter search length

You can set minimumUIFilterLength in conf/ui-configuration.json to define when results start filtering:

"platformSettings" : {
 "managedObjectsSettings" : {
 "user" : {
 "minimumUIFilterLength" : 3
 }
 }
}

This setting prevents the UI from filtering until the user has typed at least three characters. minimumUIFilterLength can be used
with any managed object, for example:

warning
Delegated administration may not work as expected when using DS as your repository if _id is something other than
a UUID. JDBC repositories may use other forms for _id , though using a UUID is still recommended.

Warning

info
For more examples, including working with filters, refer to the Postman collection.

Note

info
All patches are done with a PATCH request. Delegated administrator operations do not currently support using POST
actions for patch requests (POST _action=patch will not work).

Note

warning
This process only applies to managed users. It will not work for internal users, as they cannot have roles.

Warning

•

•

info
These settings only affect delegated administrators.

Note

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 737

"platformSettings" : {
 "managedObjectsSettings" : {
 "user" : {
 "minimumUIFilterLength" : 3
 },
 "role" : {
 "minimumUIFilterLength" : 2
 }
 }
}

Disable sort and filter for resource collections

A resource collection is a set of objects that have a relationship with one or more other objects. For example:

All users with a particular role assignment.

All users who are members of an organization.

You can disable the ability to sort and filter resource collections using "disableRelationshipSortAndSearch" : true in conf/
ui-configuration.json . This can be beneficial when working with very large lists. For example:

"platformSettings" : {
 "managedObjectsSettings" : {
 "user" : {
 "disableRelationshipSortAndSearch" : true,
 "minimumUIFilterLength" : 3
 }
 }
}

Authentication and session module configuration

This appendix includes configuration details for the authentication modules described in Authentication and Session Modules.

Authentication modules, as configured in the authentication.json file, include a number of properties.

•

•

Session Module

Authentication Property Property as Listed in the Admin UI Description

keyAlias (not shown) Used by the Jetty Web server to service
SSL requests.

maxTokenLifeMinutes Max Token Life (in seconds) Maximum time before a session is
cancelled. Note the different units for
the property and the UI.

Authentication and authorization PingIDM

738 Copyright © 2025 Ping Identity Corporation

The following table applies to several authentication modules:

Managed User

Internal User

Client Cert

Passthrough

IWA

The IWA module includes several Kerberos-related properties listed at the end of the table.

Authentication Property Property as Listed in the Admin UI Description

tokenIdleTimeMinutes Token Idle Time (in seconds) Maximum time before an idle session is
cancelled. Note the different units for
the property and the UI.

sessionOnly Session Only Whether the session continues after
browser restarts.

Static User Module

Authentication Property Property as Listed in the Admin UI Description

enabled Module Enabled Does IDM use the module?

queryOnResource Query on Resource Endpoint hard coded to user
anonymous

username Static User Name Default for the static user, anonymous

password Static User Password Default for the static user, anonymous

defaultUserRoles Static User Role Normally set to openidm-reg for self-
registration

•

•

•

•

•

Common Module Properties

Authentication Property Property as Listed in the Admin UI Description

enabled Module Enabled Does IDM use the module?

queryOnResource Query on Resource Endpoint to query

PingIDM Authentication and authorization

Copyright © 2025 Ping Identity Corporation 739

Authentication Property Property as Listed in the Admin UI Description

queryId Use Query ID A defined queryId searches against
the queryOnResource endpoint. An
undefined queryId searches against
queryOnResource with
action=reauthenticate

defaultUserRoles Default User Roles Normally blank for managed users

authenticationId Authentication ID Defines how account credentials are
derived from a queryOnResource
endpoint

userCredential User Credential Defines how account credentials are
derived from a queryOnResource
endpoint; if required, typically
password or userPassword

userRoles User Roles Defines how account roles are derived
from a queryOnResource endpoint

groupMembership Group Membership Provides more information for
calculated roles

groupRoleMapping Group Role Mapping Provides more information for
calculated roles

groupComparisonMethod Group Comparison Method Provides more information for
calculated roles

augmentSecurityContext Augment Security Context Includes a script that is executed only
after a successful authentication
request. For more information on this
property, refer to Authenticate as a
different user.

servicePrincipal Kerberos Service Principal (IWA only) For more information, refer
to IWA

keytabFileName Keytab File Name (IWA only) For more information, refer
to IWA

kerberosRealm Kerberos Realm (IWA only) For more information, refer
to IWA

kerberosServerName Kerberos Server Name (IWA only) For more information, refer
to IWA

Authentication and authorization PingIDM

740 Copyright © 2025 Ping Identity Corporation

Synchronization

Configure synchronization between ForgeRock® Identity Management and other resources.

Synchronizing identity data between resources is one of the core services of ForgeRock Identity Management (IDM). In this guide,
you will learn about the different types of synchronization, and how to configure the flexible synchronization mechanism. This
guide is written for systems integrators building solutions based on ForgeRock Identity Management services.

Synchronization overview

Understand synchronization types and
configuration.

Mappings

Map data between resources.

Situations and actions

Learn about synchronization situations and how
to configure actions for each.

Filter synchronization data

Use filtering mechanisms to limit the
synchronized data.

Implicit sync and liveSync

Configure automatic synchronization between
resources.

Reconciliation performance

Learn about ways to improve reconciliation
performance.

Synchronization PingIDM

742 Copyright © 2025 Ping Identity Corporation

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Synchronization overview

Synchronization keeps data consistent across disparate resources. Within IDM, we refer to two resource types—managed resources
(stored in the IDM repository) and external resources. An external resource can be any system that holds identity data, such as
ForgeRock Directory Services (DS), Active Directory, a CSV file, a JDBC database, and so on.

IDM connects to external resources through connectors. Synchronization across resources happens when managed resources
change or when IDM discovers a change on a system resource. There are various synchronization mechanisms that ensure data
consistency.

Synchronization types

IDM discovers and synchronizes changes from external resources by using reconciliation and liveSync.

IDM synchronizes changes made to managed resources by using reconciliation and implicit synchronization.

Reconciliation

Reconciliation is the process of ensuring that the objects in two different data stores are consistent. Traditionally,
reconciliation applies mainly to user objects, but IDM can reconcile any objects, such as groups, roles, and devices.

In any reconciliation operation, there is a source system (the system that contains the changes) and a target system
(the system to which the changes will be propagated). The source and target system are defined in a mapping. The
IDM repository can be either the source or the target in a mapping. You can configure multiple mappings for one
IDM instance, depending on the external resources to which you are connecting.

To perform reconciliation, IDM analyzes both the source system and the target system, to discover the differences
between them. Reconciliation can therefore be a heavyweight process. When working with large data sets, finding
all changes can be more work than processing the changes.

Reconciliation is very thorough. It recognizes system error conditions and catches changes that might be missed by
liveSync, and therefore serves as the basis for compliance and reporting.

LiveSync

LiveSync captures the changes that occur on an external system, and pushes those changes to IDM. IDM uses any
defined mappings to replay those changes where they are required—to its managed objects, to another remote
system, or to both. Unlike reconciliation, liveSync uses a polling system, and is intended to react quickly to changes
as they happen.

•

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 743

https://www.forgerock.com
https://www.forgerock.com
https://docs.pingidentity.com/openicf/connector-reference/preface.html
https://docs.pingidentity.com/openicf/connector-reference/preface.html
https://docs.pingidentity.com/openicf/connector-reference/preface.html

To perform this polling, liveSync relies on a change detection mechanism on the external resource to determine
which objects have changed. The change detection mechanism is specific to the external resource, and can be a
time stamp, a sequence number, a change vector, or any other method of recording changes that have occurred
on the system. For example, ForgeRock Directory Services (DS) implements a change log that provides IDM with a
list of objects that have changed since the last request. Active Directory implements a change sequence number,
and certain databases might have a lastChange attribute.

Implicit synchronization

Implicit synchronization automatically pushes changes that are made to IDM managed objects out to external
systems.

For direct changes to managed objects, IDM immediately synchronizes those changes to all mappings configured to
use those objects as their source. A direct change can originate not only as a write request through the REST
interface, but also as an update resulting from reconciliation with another resource.

Synchronization configuration overview

This section describes the high-level steps required to set up synchronization between two resources. A basic synchronization
configuration involves the following steps:

Set up a connection between the source and target resource.

A connector configuration references a specific connector type and indicates the connection details of the external
resource. You must define a connector configuration for each external resource to which you are connecting.

For more information, refer to Connections between resources.

Map source objects to target objects.

The mapping configuration your project’s conf/sync.json file or in individual mapping files. Mappings are synchronized
in the order in which they are specified in the sync.json file. If there are multiple mapping files, the syncAfter property
dictates the order in which they are processed.

For more information, refer to Resource mapping.

Configure any scripts that are required to check source and target objects, and to manipulate attributes.

In addition to these configuration elements, IDM stores a links table in its repository. The links table maintains a record
of relationships established between source and target objects.

The following diagram illustrates the high-level synchronization configuration:

info
Implicit synchronization only synchronizes changed objects to external resources. To synchronize a
complete data set, you must run a reconciliation operation. The entire changed object is synchronized.
If you want to synchronize only the attributes that have changed, you can modify the onUpdate script
in your mapping to compare attribute values before pushing changes.

Note

1.

2.

3.

4.

Synchronization PingIDM

744 Copyright © 2025 Ping Identity Corporation

Data mapping model

IDM uses mappings to determine which data to synchronize, and how that data must be synchronized.

In general, identity management software implements one of the following data models:

A meta-directory data model, where all data are mirrored in a central repository.

The meta-directory model offers fast access at the risk of getting outdated data.

A virtual data model, where only a minimum set of attributes are stored centrally, and most are loaded on demand from
the external resources in which they are stored.

The virtual model guarantees fresh data, but pays for that guarantee in terms of performance.

IDM leaves the data model choice up to you. You determine the right trade-offs for a particular deployment. IDM does not hard
code any particular schema or set of attributes stored in the repository. Instead, you define how external system objects map
onto managed objects, and IDM dynamically updates the repository to store the managed object attributes that you configure.

Connections between resources

A connector lets you transfer data between different resource systems. The connector configuration works in conjunction with
the synchronization mapping and specifies how target object attributes map to attributes on external objects.

Connector configuration files exist in your project’s conf directory and are named provisioner.resource-name.json , where
resource-name reflects the connector technology and the external resource. For example, openicf-csv .

To create and modify connector configurations, use one of the following methods:

Configure connectors using the admin UI

From the navigation bar, click Configure > Connectors, and do one of the following.

Select an existing connector to modify.

Click New Connector, and configure the new connector.

•

•

•

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 745

https://docs.pingidentity.com/openicf/connector-reference/preface.html
https://docs.pingidentity.com/openicf/connector-reference/preface.html

Edit connector configuration files

IDM provides a number of sample provisioner files in the path/to/openidm/samples/example-configurations/provisioners
directory. To modify connector configuration files directly, edit one of the sample provisioner files that corresponds to the
resource to which you are connecting.

The following excerpt of an example LDAP connector configuration shows the attributes of an account object type. In the
attribute mapping definitions, the attribute name is mapped from the IDM managed object to the nativeName (the attribute
name used on the external resource). The lastName attribute in IDM is mapped to the sn attribute in LDAP. The homePhone
attribute is defined as an array, because it can have multiple values:

{
 ...
 "objectTypes": {
 "account": {
 "lastName": {
 "type": "string",
 "required": true,
 "nativeName": "sn",
 "nativeType": "string"
 },
 "homePhone": {
 "type": "array",
 "items": {
 "type": "string",
 "nativeType": "string"
 },
 "nativeName": "homePhone",
 "nativeType": "string"
 }
 }
 }
}

For IDM to access external resource objects and attributes, the object and its attributes must match the connector configuration.
Note that the connector file only maps IDM managed objects and attributes to their counterparts on the external resource. To
construct attributes and to manipulate their values, you use a synchronization mapping, described in Resource mapping.

Configure connectors using REST

Create connector configurations using REST with the createCoreConfig and createFullConfig actions. For more information,
refer to Configure Connectors Using REST.

Resource mapping

A synchronization mapping specifies a relationship between objects and their attributes in two data stores. The following example
shows a typical attribute mapping between objects in an external LDAP directory and an IDM managed user data store:

Synchronization PingIDM

746 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html#connector-wiz-REST
https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html#connector-wiz-REST

"source": "lastName",
"target": "sn"

In this case, the lastName source attribute is mapped to the sn (surname) attribute in the target LDAP directory.

The core synchronization configuration is defined in the mapping configuration.

You can define a single file with all your mappings (conf/sync.json), or a separate file per mapping. Individual mapping files are
named mapping-mappingName.json ; for example, mapping-managedUser_systemCsvfileAccounts.json . Individual mapping
files can be useful if your deployment includes many mappings that are difficult to manage in a single file. You can also use a
combination of individual mapping files and a monolithic sync.json file, particularly if you are adding mappings to an existing
deployment.

If you use a single sync.json file, mappings are processed in the order in which they appear within that file. If you use multiple
mapping files, mappings are processed according to the syncAfter property in the mapping. The following example indicates
that this particular mapping must be processed after the managedUser_systemCsvfileAccount mapping:

 "source" : "managed/user",
 "target" : "system/csvfile/account",
 "syncAfter" : ["managedUser_systemCsvfileAccount"],

If you use a combination of sync.json and individual mapping files, the synchronization engine processes the mappings in
sync.json first (in order), and then any mappings specified in the individual mapping files, according to the syncAfter property
in each mapping.

For a list of all mappings, use the following request:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/mappings?_queryFilter=true"

This call returns the mappings in the order in which they will be processed.

Mappings are always defined from a source resource to a target resource. To configure bidirectional synchronization, you must
define two mappings. For example, to configure bidirectional synchronization between an LDAP server and an IDM repository,
you would define the following two mappings:

LDAP Server > IDM Repository

IDM Repository > LDAP Server

info
The admin UI only shows the mappings configured in the sync.json file. Don’t use the admin UI to add or change
mappings in individual mapping files.

Note

•

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 747

Bidirectional mappings can include a links property that lets you reuse the links established between objects, for both
mappings. For more information, refer to Reuse Links Between Mappings.

You can update a mapping while the server is running. To avoid inconsistencies between data stores, don’t update a mapping
while a reconciliation is in progress for that mapping.

Specifying default fields

The defaultSourceFields and defaultTargetFields optional fields allow more control over which attributes are fetched
during read operations during synchronization and reconciliation.

When to specify

During synchronization reads: If IDM needs to read a source or target object while executing a synchronization operation
because the object isn’t already loaded in memory for that specific task, it will include the attributes listed in
defaultSourceFields or defaultTargetFields in the read request.

During reconciliation queries: If you don’t specify an explicit list of attributes in the sourceQuery or targetQuery
configuration, IDM will fall back to using defaultSourceFields or defaultTargetFields respectively. This can be more
helpful than the older behavior, where some default queries might only retrieve the object’s _id .

If you define a list of attributes within the sourceQuery or targetQuery settings, that specific list always takes precedence. The
defaultSourceFields and defaultTargetFields only act as defaults when no specific list is provided in those contexts.

When not to specify

There are a couple of situations where these fields won’t dictate the attributes loaded for a source object during a
synchronization operation:

Implicit synchronization: In implicit sync scenarios, the source object that triggered the event is usually already loaded, so
IDM doesn’t perform a new read using defaultSourceFields .

Object already loaded using explicit query: If the source or target object was already fully loaded during reconciliation
because specific attributes were requested using the higher-priority sourceQuery or targetQuery settings, then
defaultSourceFields or defaultTargetFields won’t cause another read.

Configure a resource mapping

Objects in external resources are specified in a mapping as system/name/object-type , where name is the name used in the
connector configuration, and object-type is the object defined in the connector configuration list of object types. Objects in the
repository are specified in the mapping as managed/object-type , where object-type is defined in the managed object
configuration.

1.

emergency_home
This is an efficiency feature. If an object was already loaded into memory earlier in the same overall
transaction (for instance, during reconciliation) before the sync operation needs it, IDM won’t automatically
reread the object to add the attributes specified in these default fields. The fields are primarily used when a
new read is initiated during the sync process itself.

Important

2.

•

•

Synchronization PingIDM

748 Copyright © 2025 Ping Identity Corporation

External resources, and IDM managed objects, can be the source or the target in a mapping. By convention, the mapping name is
a string of the form source_target , as shown in the following example:

{
 "mappings": [
 {
 "name": "systemLdapAccounts_managedUser",
 "source": "system/ldap/account",
 "target": "managed/user",
 "properties": [
 {
 "source": "lastName",
 "target": "sn"
 },
 {
 "source": "telephoneNumber",
 "target": "telephoneNumber"
 },
 {
 "target": "phoneExtension",
 "default": "0047"
 },
 {
 "source": "email",
 "target": "mail",
 "comment": "Set mail if non-empty.",
 "condition": {
 "type": "text/javascript",
 "source": "(object.email != null)"
 }
 },
 {
 "source": "",
 "target": "displayName",
 "transform": {
 "type": "text/javascript",
 "source": "source.lastName +', ' + source.firstName;"
 }
 },
 {
 "source" : "uid",
 "target" : "userName",
 "condition" : "/linkQualifier eq \"user\""
 }
 },
]
 }
]
}

In this example, the name of the source is the external resource (ldap), and the target is IDM’s user repository; specifically,
managed/user . The properties defined in the mapping correspond to attribute names that are defined in the IDM
configuration. For example, the source attribute uid is defined in the ldap connector configuration file, rather than on the
external resource itself.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 749

Individual mapping files do not include a name property. The mapping name is taken from the file name. For example, the
mapping shown in Basic LDAP Mapping would be in a file named mapping-systemLdapAccounts_managedUser.json , and start as
follows:

{
 "source": "system/ldap/account",
 "target": "managed/user",
 ...
}

Configure mappings using the admin UI

To set up a synchronization mapping using the admin UI:

From the navigation bar, click Configure > Mappings.

Click New Mapping.

On the New Mapping page, select a source and target resource from the configured resources at the bottom of the
window, and click Create Mapping.

You can filter these resources to display only connector configurations or managed objects.

Select Add property on the Attributes grid to map a target property to its corresponding source property.

The Property list shows all configured properties on the target resource. If the target resource is specified in a connector
configuration, the Property list shows all properties configured for this connector. If the target resource is a managed
object, the Property list shows the list of properties (defined in the managed object configuration for that object).

To test your mapping configuration on a single source entry, click the Behaviors tab and scroll down to Single Record
Reconciliation. Search for the entry to reconcile.

The UI displays a preview of the target entry after a reconciliation. You can then click Reconcile Selected Record to
perform the reconciliation on that one source entry.

Remove a mapping

To remove a mapping, delete the corresponding section from your mapping configuration. If you have configured
mappings in individual mapping files, delete the file associated with the mapping you want to remove.

To remove a mapping using the admin UI, select Configure > Mappings, and then click Delete under the mapping to
remove.

1.

2.

3.

4.

lightbulb_2
Select Add Missing Required Properties to add all the properties that are configured as required on the
target resource. You can then map these required properties individually.
Select Quick Mapping to show all source and target properties simultaneously. Drag a source property
onto its corresponding target property, or vice versa. When you’re done, click Save.

Tip

◦

◦

5.

•

•

Synchronization PingIDM

750 Copyright © 2025 Ping Identity Corporation

Transform attributes using a mapping

You can use a mapping to define attribute transformations during synchronization. In the following sample mapping excerpt, the
value of the displayName attribute on the target is set using a combination of the lastName and firstName attribute values
from the source:

{
 "source": "",
 "target": "displayName",
 "transform": {
 "type": "text/javascript",
 "source": "source.lastName +', ' + source.firstName;"
 }
},

For transformations, the source property is optional. However, a source object is only available if you specify the source
property. Therefore, in order to use source.lastName and source.firstName to calculate the displayName , the example
specifies "source" : "" .

If you set "source" : "" (not specifying an attribute), the entire object is regarded as the source, and you must include the
attribute name in the transformation script. For example, to transform the source username to lowercase, your script would be
source.mail.toLowerCase(); . If you do specify a source attribute (for example, "source" : "mail"), just that attribute is
regarded as the source. In this case, the transformation script would be source.toLowerCase(); .

Configure attribute transformation using the admin UI

From the navigation bar, click Configure > Mappings, and select a mapping.

Select the line with the target attribute value to set.

On the Transformation Script tab, select Javascript or Groovy, and enter the transformation as an Inline Script, or specify
the path to the file containing your transformation script.

When you use the UI to map a property with an encrypted value, you are prompted to set up a transformation script to decrypt
the value when that property is synchronized. The resulting mapping looks similar to the following, which shows the
transformation of a user’s password property:

info
If you delete a mapping using the admin UI, the delete-mapping-links script removes all links related to that
mapping from the repository. If you delete the mapping directly in the configuration file, no links are deleted from the
repository.

Note

1.

2.

3.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 751

{
 "target" : "userPassword",
 "source" : "password",
 "transform" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "openidm.decrypt(source);"
 },
 "condition" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "object.password != null"
 }
}

Default attribute values in a mapping

You can use a mapping to create attributes on the target resource. The following mapping excerpt creates a phoneExtension
attribute with a default value of 0047 on the target object:

{
 "target": "phoneExtension",
 "default": "0047"
},

The default property specifies a value to assign to the attribute on the target object. Before IDM determines the value of the
target attribute, it evaluates any applicable conditions, followed by any transformation scripts. If the source property and the
transform script yield a null value, IDM applies the default value in the create and update actions. The default value overrides
the target value, if one exists.

Configure default attribute values using the admin UI

From the navigation bar, click Configure > Mappings, and click the mapping to edit.

Click the Properties tab.

Expand the Attributes Grid node, and click the Target property to edit.

In the Target Property: name window, click the Default Values tab, and add or edit the default values.

Click Save.

The default value displays in the Attributes Grid.

1.

2.

3.

4.

5.

Synchronization PingIDM

752 Copyright © 2025 Ping Identity Corporation

Scriptable conditions in a mapping

By default, IDM synchronizes all attributes in a mapping. For more complex relationships between source and target objects, you
can define conditions under which IDM maps certain attributes. You can define two types of mapping conditions:

Scriptable conditions, in which an attribute is mapped only if the defined script evaluates to true .

Condition filters, a declarative filter that sets the conditions under which the attribute is mapped. Condition filters can
include a link qualifier , that identifies the type of relationship between the source object and multiple target objects. For
more information, refer to Map a Single Source Object to Multiple Target Objects.

The following list shows examples of condition filters:

"condition": "/object/country eq 'France'" —Only map the attribute if the object’s country attribute equals
France .

"condition": "/object/password pr" —Only map the attribute if the object’s password attribute is present.

"condition": "/linkQualifier eq 'admin'" —Only map the attribute if the link between this source and target
object is of type admin .

Configure mapping conditions using the admin UI

From the navigation bar, click Configure > Mappings, and click the mapping to edit.

Click the Properties tab.

Expand the Attributes Grid node, click the property to edit, click the Conditional Updates tab, and then do one of the
following:

To configure a filtered condition, click Condition Filter.

To configure a scriptable condition, click Script.

Click Save.

•

•

◦

◦

◦

1.

2.

3.

◦

◦

4.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 753

Scriptable conditions create mapping logic, based on the result of the condition script. If the script does not return true , IDM
does not manipulate the target attribute during a synchronization operation.

In the following excerpt, the value of the target mail attribute is set to the value of the source email attribute only if the source
attribute is not empty:

{
 "target": "mail",
 "comment": "Set mail if non-empty.",
 "source": "email",
 "condition": {
 "type": "text/javascript",
 "source": "(object.email != null)"
 }
...

Map a single source object to multiple target objects

In certain cases, you might have a single object in a resource that maps to more than one object in another resource. For
example, assume that managed user, bjensen, has two distinct accounts in an LDAP directory: an employee account (under
uid=bjensen,ou=employees,dc=example,dc=com) and a customer account (under
uid=bjensen,ou=customers,dc=example,dc=com). You want to map both of these LDAP accounts to the same managed user
account.

IDM uses link qualifiers to manage this one-to-many scenario. A link qualifier is essentially a label that identifies the type of link (or
relationship) between objects.

The following diagram shows two link qualifiers that let you link both of bjensen’s LDAP accounts to her managed user object:

lightbulb_2
You can add comments to JSON files. This example includes a property named comment ; however, you can use any
unique property name, as long as it is not used elsewhere in the server. IDM ignores unknown property names in
JSON configuration files.

Tip

Synchronization PingIDM

754 Copyright © 2025 Ping Identity Corporation

Link qualifiers are defined as part of the mapping. Each link qualifier must be unique within the mapping. If no link qualifier is
specified (when only one possible matching target object exists), IDM uses a default link qualifier with the value default .

Link qualifiers can be defined as a static list, or dynamically, using a script. The following excerpt of a sample mapping shows the
two static link qualifiers, employee and customer , described at the top of this topic:

{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "linkQualifiers" : ["employee", "customer"],
...

IDM evaluates the list of static link qualifiers for every source record. That is, every reconciliation processes all synchronization
operations, for each link qualifier, in turn.

info
The previous diagram displays that the link qualifier is a property of the link between the source and target object,
and not a property of the source or target object itself.

Note

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 755

A dynamic link qualifier script returns a list of link qualifiers that can be applied to each source record. For example, suppose you
have two types of managed users—employees and contractors. For employees, a single managed user (source) account can
correlate with three different LDAP (target) accounts—employee, customer, and manager. For contractors, a single managed user
account can correlate with only two separate LDAP accounts—contractor, and customer. The following diagram displays the
possible linking situations for this scenario:

In this scenario, you could write a script to generate a dynamic list of link qualifiers, based on the managed user type. For
employees, the script would return [employee, customer, manager] in its list of possible link qualifiers. For contractors, the
script would return [contractor, customer] in its list of possible link qualifiers. A reconciliation operation would then process
only the list of link qualifiers applicable to each source object.

If your source resource includes many records, you should use a dynamic link qualifier script instead of a static list of link
qualifiers. Generating the list of applicable link qualifiers dynamically avoids unnecessary additional processing for those
qualifiers that will never apply to specific source records. Therefore, synchronization performance is improved for large source
data sets.

You can include a dynamic link qualifier script inline (using the source property), or by referencing a JavaScript or Groovy script
file (using the file property). The following link qualifier script sets up the dynamic link qualifier lists described in the previous
example.

Synchronization PingIDM

756 Copyright © 2025 Ping Identity Corporation

{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "linkQualifiers" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "if (returnAll) {
 ['contractor', 'employee', 'customer', 'manager']
 } else {
 if(object.type === 'employee') {
 ['employee', 'customer', 'manager']
 } else {
 ['contractor', 'customer']
 }
 }"
 }
...

To reference an external link qualifier script, provide a link to the file in the file property:

{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "linkQualifiers" : {
 "type" : "text/javascript",
 "file" : "script/linkQualifiers.js"
 }
...

Dynamic link qualifier scripts must return all valid link qualifiers when the returnAll global variable is true. The returnAll
variable is used during the target reconciliation phase to check whether there are any target records that are unassigned, for
each known link qualifier.

If you configure dynamic link qualifiers through the UI, the complete list of dynamic link qualifiers displays in the Generated Link
Qualifiers item below the script. This list represents the values returned by the script when the returnAll variable is passed as
true . For a list of the variables available to a dynamic link qualifier script, refer to Script Triggers Defined in Mappings.

Link qualifiers have no functionality on their own, but they can be referenced in reconciliation operations to manage situations
where a single source object maps to multiple target objects. The following examples show how link qualifiers can be used in
reconciliation operations:

Use link qualifiers during object creation, to create multiple target objects per source object.

info
In this example, the source property value has been formatted across multiple lines for clarity. In general, the script
source must be formatted on a single line.

Note

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 757

The following mapping excerpt defines a transformation script that generates the value of the dn attribute on an LDAP
system. If the link qualifier is employee , the value of the target dn is set to
"uid=userName,ou=employees,dc=example,dc=com" . If the link qualifier is customer , the value of the target dn is set to
"uid=userName,ou=customers,dc=example,dc=com" . The reconciliation operation iterates through the link qualifiers for
each source record. In this case, two LDAP objects, with different dn s are created for each managed user object:

{
 "target" : "dn",
 "transform" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "if (linkQualifier === 'employee')
 { 'uid=' + source.userName + ',ou=employees,dc=example,dc=com'; }
 else
 if (linkQualifier === 'customer')
 { 'uid=' + source.userName + ',ou=customers,dc=example,dc=com'; }"
 },
 "source" : ""
}

Use link qualifiers with correlation queries. The correlation query assigns a link qualifier based on the values of an existing
target object.

During source synchronization, IDM queries the target system for every source record and link qualifier, to check if there
are any matching target records. If a match is found, the sourceId, targetId, and linkQualifier are all saved as the link.

The following excerpt of a sample mapping shows the two link qualifiers described previously (employee and customer).
The correlation query first searches the target system for the employee link qualifier. If a target object matches the query,
based on the value of its dn attribute, IDM creates a link between the source object and that target object, and assigns
the employee link qualifier to that link. This process is repeated for all source records. Then, the correlation query
searches the target system for the customer link qualifier. If a target object matches that query, IDM creates a link
between the source object and that target object and assigns the customer link qualifier to that link:

"linkQualifiers" : ["employee", "customer"],
 "correlationQuery" : [
 {
 "linkQualifier" : "employee",
 "type" : "text/javascript",
 "source" : "var query = {'_queryFilter': 'dn co \"' + uid=source.userName + 'ou=employees\"'}; query;"
 },
 {
 "linkQualifier" : "customer",
 "type" : "text/javascript",
 "source" : "var query = {'_queryFilter': 'dn co \"' + uid=source.userName + 'ou=customers\"'}; query;"
 }
]
...

For more information about correlation queries, refer to Writing Correlation Queries.

Use link qualifiers during policy validation to apply different policies based on the link type.

•

•

Synchronization PingIDM

758 Copyright © 2025 Ping Identity Corporation

The following excerpt of a sample mapping shows two link qualifiers, user and test . Depending on the link qualifier,
different actions are taken when the target record is ABSENT:

{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "linkQualifiers" : [
 "user",
 "test"
],
 "properties" : [
 ...
 "policies" : [
 {
 "situation" : "CONFIRMED",
 "action" : "IGNORE"
 },
 {
 "situation" : "FOUND",
 "action" : "UPDATE
 }
 {
 "condition" : "/linkQualifier eq \"user\"",
 "situation" : "ABSENT",
 "action" : "CREATE",
 "postAction" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('Created user: \');"
 }
 },
 {
 "condition" : "/linkQualifier eq \"test\"",
 "situation" : "ABSENT",
 "action" : "IGNORE",
 "postAction" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('Ignored user: ');"
 }
 },
 ...

With this sample mapping, the synchronization operation creates an object in the target system only if the potential match
is assigned a user link qualifier. If the match is assigned a test qualifier, no target object is created. In this way, the
process avoids creating duplicate test-related accounts in the target system.

Configure link qualifiers using the admin UI

From the navigation bar, click Configure > Mappings, and click the mapping to edit.

Click the Properties tab, and expand the Link Qualifier node.

Select Static or Dynamic, configure the link qualifier, and click Save.

1.

2.

3.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 759

Prevent the accidental deletion of a target system

If a source resource is empty, the default behavior is to exit without failure and to log a warning similar to the following:

[318] Feb 19, 2020 1:51:56.455 PM org.forgerock.openidm.sync.NonClusteredRecon dispatchRecon
WARNING: Cannot reconcile from an empty data source, unless allowEmptySourceSet is true.

The reconciliation summary is also logged in the reconciliation audit log.

This behavior prevents reconciliation operations from accidentally deleting everything in a target resource. In the event that a
source system is unavailable but erroneously reports its status as up, the absence of source objects should not result in objects
being removed on the target resource.

If you do want reconciliations of an empty source resource to proceed, override the default behavior by setting the
allowEmptySourceSet property to true in the mapping. For example:

{
 "mappings" : [
 {
 "name" : "systemCsvfileAccounts_managedUser",
 "source" : "system/csvfile/account",
 "allowEmptySourceSet" : true,
 ...

When an empty source is reconciled, the data in the target is wiped out.

Prevent accidental target deletion using the admin UI

From the navigation bar, click Configure > Mappings, and click the mapping to edit.

Click the Advanced tab, and expand the Additional Mapping Options node.

Enable Allow Reconciliations From an Empty Source.

Scripts in mappings

You can use a number of script hooks to manipulate objects and attributes during synchronization. Scripts can be triggered during
various stages of the synchronization process, and are defined as part of the mapping.

You can trigger a script when a managed or system object is created (onCreate), updated (onUpdate), or deleted (onDelete).
You can also trigger a script when a link is created (onLink) or removed (onUnlink).

In the default synchronization mapping, changes are always written to target objects, not to source objects. However, you can
explicitly include a call to an action that should be taken on the source object within the script.

lightbulb_2
For an example that uses link qualifiers in conjunction with roles, refer to Link Multiple Accounts to a Single Identity.

Tip

1.

2.

3.

Synchronization PingIDM

760 Copyright © 2025 Ping Identity Corporation

Construct and manipulate attributes

The most common use of synchronization scripts is when a target object is created or updated.

The onUpdate script is always called for an UPDATE situation, even if the synchronization process determines that there is no
difference between the source and target objects, and that the target object will not be updated.

If the onUpdate script has run and the synchronization process then determines that the target value to set is the same as its
existing value, the change is prevented from synchronizing to the target.

The following excerpt of a sample mapping derives a DN for an LDAP entry when the corresponding managed entry is created:

{
 "onCreate": {
 "type": "text/javascript",
 "source":
 "target.dn = 'uid=' + source.uid + ',ou=people,dc=example,dc=com'"
 }
}

Perform other actions

Construct and Manipulate Attributes With Scripts shows how to manipulate attributes with scripts when objects are created and
updated. You can also trigger scripts in response to other synchronization actions. For example, you might not want to delete a
managed user directly when an external account is deleted, but instead unlink the objects and deactivate the user in another
resource. Alternatively, you might delete the object in IDM and run a script to perform some subsequent action.

The following example shows a more advanced mapping configuration that exposes the script hooks available during
synchronization:

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 761

{
 "mappings": [
 {
 "name": "systemLdapAccount_managedUser",
 "source": "system/ldap/account",
 "target": "managed/user",
 "validSource": {
 "type": "text/javascript",
 "file": "script/isValid.js"
 },
 "correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var map = {'_queryFilter': 'uid eq \"' +
 source.userName + '\"'}; map;"
 },
 "properties": [
 {
 "source": "uid",
 "transform": {
 "type": "text/javascript",
 "source": "source.toLowerCase()"
 },
 "target": "userName"
 },
 {
 "source": "",
 "transform": {
 "type": "text/javascript",
 "source": "if (source.myGivenName)
 {source.myGivenName;} else {source.givenName;}"
 },
 "target": "givenName"
 },
 {
 "source": "",
 "transform": {
 "type": "text/javascript",
 "source": "if (source.mySn)
 {source.mySn;} else {source.sn;}"
 },
 "target": "familyName"
 },
 {
 "source": "cn",
 "target": "fullname"
 },
 {
 "condition": {
 "type": "text/javascript",
 "source": "var clearObj = openidm.decrypt(object);
 ((clearObj.password != null) &&
 (clearObj.ldapPassword != clearObj.password))"
 },
 "transform": {
 "type": "text/javascript",
 "source": "source.password"
 },
 "target": "__PASSWORD__"
 }
],

Synchronization PingIDM

762 Copyright © 2025 Ping Identity Corporation

 "onCreate": {
 "type": "text/javascript",
 "source": "target.ldapPassword = null;
 target.adPassword = null;
 target.password = null;
 target.ldapStatus = 'New Account'"
 },
 "onUpdate": {
 "type": "text/javascript",
 "source": "target.ldapStatus = 'OLD'"
 },
 "onUnlink": {
 "type": "text/javascript",
 "file": "script/triggerAdDisable.js"
 },
 "policies": [
 {
 "situation": "CONFIRMED",
 "action": "UPDATE"
 },
 {
 "situation": "FOUND",
 "action": "UPDATE"
 },
 {
 "situation": "ABSENT",
 "action": "CREATE"
 },
 {
 "situation": "AMBIGUOUS",
 "action": "EXCEPTION"
 },
 {
 "situation": "MISSING",
 "action": "EXCEPTION"
 },
 {
 "situation": "UNQUALIFIED",
 "action": "UNLINK"
 },
 {
 "situation": "UNASSIGNED",
 "action": "EXCEPTION"
 }
]
 }
]
}

The following list shows the properties that you can use as hooks in mapping configurations to call scripts:

Triggered by Situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object Filter

validSource, validTarget

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 763

Correlating Objects

correlationQuery

Triggered on Reconciliation

result

Scripts Inside Properties

condition, transform

Scripts can obtain data from any connected system by using the openidm.read(id) function, where id is the identifier of the
object to read.

The following example reads a managed user object from the repository:

repoUser = openidm.read("managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb");

The following example reads an account from an external LDAP resource:

externalAccount = openidm.read("system/ldap/account/uid=bjensen,ou=People,dc=example,dc=com");

Generate log messages

IDM provides a logger object that you can use from scripts defined in your mapping. These scripts can log messages to the OSGi
console and to log files. The logger object includes the following functions:

debug()

error()

info()

trace()

warn()

Consider the following mapping excerpt:

emergency_home
For illustration purposes, this query targets a DN rather than a UID as it did in the previous example. The attribute
that is used for the _id is defined in the connector configuration and, in this example, is set to "uidAttribute" :
"dn" . Although you can use a DN (or any unique attribute) for the _id , it is a best practice to use an attribute that is
both unique and immutable, such as the entryUUID .

Important

•

•

•

•

•

Synchronization PingIDM

764 Copyright © 2025 Ping Identity Corporation

{
 "mappings" : [
 {
 "name" : "systemCsvfileAccounts_managedUser",
 "source" : "system/csvfile/account",
 "target" : "managed/user",
 "correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var query = {'_queryId' : 'for-userName', 'uid' : source.name};query;"
 },
 "onCreate" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case onCreate: the source object contains: = {} ', source); source;"
 },
 "onUpdate" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case onUpdate: the source object contains: = {} ', source); source;"
 },
 "result" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case result: the source object contains: = {} ', source); source;"
 },
 "properties" : [
 {
 "transform" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case no Source: the source object contains: = {} ', source);
source;"
 },
 "target" : "sourceTest1Nosource"
 },
 {
 "source" : "",
 "transform" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case emptySource: the source object contains: = {} ', source);
source;"
 },
 "target" : "sourceTestEmptySource"
 },
 {
 "source" : "description",
 "transform" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case sourceDescription: the source object contains: = {} ', source);
source"
 },
 "target" : "sourceTestDescription"
 },
 ...
]
 }
]
}

The scripts that are defined for onCreate , onUpdate , and result log a warning message to the console whenever an object is
created or updated, or when a result is returned. The script result includes the full source object.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 765

The scripts that are defined in the properties section of the mapping log a warning message if the property in the source object
is missing or empty. The last script logs a warning message that includes the description of the source object.

During a reconciliation operation, these scripts would generate output in the OSGi console, similar to the following:

2017-02... WARN Case no Source: the source object contains: = null [9A00348661C6790E7881A7170F747F...]
2017-02... WARN Case emptySource: the source object contains: = {roles=openidm-..., lastname=Jensen...]
2017-02... WARN Case no Source: the source object contains: = null [9A00348661C6790E7881A7170F747F...]
2017-02... WARN Case emptySource: the source object contains: = {roles=openidm..., lastname=Carter,...]
2017-02... WARN Case sourceDescription: the source object contains: = null [EEE2FF4BCE9748927A1832...]
2017-02... WARN Case sourceDescription: the source object contains: = null [EEE2FF4BCE9748927A1832...]
2017-02... WARN Case onCreate: the source object contains: = {roles=openidm-..., lastname=Carter, ...]
2017-02... WARN Case onCreate: the source object contains: = {roles=openidm-..., lastname=Jensen, ...]
2017-02... WARN Case result: the source object contains: = {SOURCE_IGNORED={count=0, ids=[]}, FOUND_ALL...]

You can use similar scripts to inject logging into any aspect of a mapping. You can also call the logger functions from any
configuration file that has scripts hooks. For more information about the logger functions, refer to Log Functions.

Reuse links between mappings

When two mappings synchronize the same objects bidirectionally, use the links property in one mapping to have IDM use the
same link for both mappings. If you do not specify a links property, IDM maintains a separate link for each mapping.

The following excerpt shows two mappings, one from MyLDAP accounts to managed users, and another from managed users to
MyLDAP accounts. In the second mapping, the link property indicates that IDM should reuse the links created in the first
mapping, rather than create new links:

{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 },
 {
 "name": "managedUser_systemMyLDAPAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "links": "systemMyLDAPAccounts_managedUser"
 }
]
}

Reconcile with case-insensitive data stores

IDM is case-sensitive, which means that an uppercase ID is considered different from an otherwise identical lowercase ID during
reconciliation. Some data stores, such as ForgeRock Directory Services (DS), are case-insensitive. This can be problematic during
reconciliation, because the ID of the links created by reconciliation might not match the case of the IDs expected by IDM.

Synchronization PingIDM

766 Copyright © 2025 Ping Identity Corporation

If a mapping inherits links by using the links property, you do not need to worry about case-sensitivity, because the mapping
uses the setting of the referred links.

Alternatively, you can address case-sensitivity issues with target systems in the following ways:

Specify a case-insensitive data store. To do so, set the sourceIdsCaseSensitive or targetIdsCaseSensitive properties
to false in the mapping for those links. For example, if the source LDAP data store is case-insensitive, set the mapping
from the LDAP store to the managed user repository as follows:

"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "sourceIdsCaseSensitive" : false,
 "target" : "managed/user",
 "properties" : [
 ...

You might also need to modify the connector configuration, setting the enableFilteredResultsHandler property to
false :

"resultsHandlerConfig" :
{
 "enableFilteredResultsHandler":false
},

Use a case-insensitive option in your managed repository. For example, for a MySQL repository, change the collation of
managedobjectproperties.propvalue to utf8_general_ci . For more information, refer to Case insensitivity for a JDBC
repo.

In general, to address case-sensitivity, focus on database-, table-, or column-level collation settings. Queries performed against
repositories configured in this way are subject to the collation, and are used for comparison.

Synchronization situations and actions

The synchronization process assesses source and target objects, and the links between them, and then determines the
synchronization situation that applies to each object. The process then performs a specific action, usually on the target object,
depending on the assessed situation.

The action that is taken for each situation is defined in the policies section of your synchronization mapping.

The following excerpt of a sample mapping shows the defined actions in that sample:

•

error
Do not disable the filtered results handler for the CSV file connector. The CSV file connector does not perform
filtering. Therefore, if you disable the filtered results handler for this connector, the full CSV file will be
returned for every request.

Caution

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 767

{
 "policies": [
 {
 "situation": "CONFIRMED",
 "action": "UPDATE"
 },
 {
 "situation": "FOUND",
 "action": "LINK"
 },
 {
 "situation": "ABSENT",
 "action": "CREATE"
 },
 {
 "situation": "AMBIGUOUS",
 "action": "IGNORE"
 },
 {
 "situation": "MISSING",
 "action": "IGNORE"
 },
 {
 "situation": "SOURCE_MISSING",
 "action": "DELETE"
 },
 {
 "situation": "UNQUALIFIED",
 "action": "IGNORE"
 },
 {
 "situation": "UNASSIGNED",
 "action": "IGNORE"
 }
]
}

You can also define these actions using the admin UI:

From the navigation bar, click Configure > Mappings, and click the mapping to edit.

Click the Behaviors tab, expand the Situational Event Scripts node, and configure event actions.

Click Save.

How IDM assesses synchronization situations

IDM performs reconciliation in two phases:

Source reconciliation accounts for source objects and associated links based on the configured mapping.

Target reconciliation iterates over the target objects that were not processed in the first phase.

1.

2.

3.

info
If you do not define an action for a particular situation, IDM takes the default action for that situation.

Note

1.

2.

Synchronization PingIDM

768 Copyright © 2025 Ping Identity Corporation

For example, if a source object was deleted, the source reconciliation phase will not identify the target object that was
previously linked to that source object. Instead, this orphaned target object is detected during the second phase.

Source reconciliation

During source reconciliation and liveSync, IDM iterates through the objects in the source resource. For reconciliation, the list of
objects includes all objects that are available through the connector. For liveSync, the list contains only changed objects. IDM can
filter objects from the list by using the following:

Scripts specified in the validSource property

A query specified in the sourceCondition property

A query specified in the sourceQuery property

For each object in the list, IDM assesses the following conditions:

Is the source object valid?

Valid source objects are categorized qualifies=1 . Invalid source objects are categorized qualifies=0 . Invalid objects
include objects that were filtered out by a validSource script or sourceCondition . For more information, refer to Filter
Source and Target Objects With Scripts.

Does the source object have a record in the links table?

Source objects that have a corresponding link in the repository’s links table are categorized link=1 . Source objects that
do not have a corresponding link are categorized link=0 .

Does the source object have a corresponding valid target object?

Source objects that have a corresponding object in the target resource are categorized target=1 . Source objects that do
not have a corresponding object in the target resource are categorized target=0 .

The following diagram illustrates the categorization of four sample objects during source reconciliation. In this example, the
source is the managed user repository and the target is an LDAP directory:

Figure 1. Object Categorization During the Source Synchronization Phase

•

•

•

1.

2.

3.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 769

Based on the categorizations of source objects during the source reconciliation phase, the synchronization process assesses a
situation for each source object, and executes the action that is configured for each situation.

Not all situations are detected during all synchronization types (reconciliation, implicit synchronization, and liveSync). The
following table describes the set of synchronization situations detected during source reconciliation, the default action taken for
each situation, and valid alternative actions that can be configured for each situation:

Situations Detected During Reconciliation and Source Change Events

Source
Qualifies

Link Exists Target
Objects
Found

Situation Default Action Possible Actions

NO NO 0 SOURCE_IGNORED IGNORE source object EXCEPTION, REPORT,
NOREPORT, ASYNC

NO NO 1 UNQUALIFIED DELETE target object EXCEPTION, IGNORE,
REPORT, NOREPORT,
ASYNC

NO NO > 1 UNQUALIFIED DELETE target objects EXCEPTION, IGNORE,
REPORT, NOREPORT,
ASYNC

NO YES 0 UNQUALIFIED DELETE linked target
object [1]

EXCEPTION, REPORT,
NOREPORT, ASYNC

NO YES 1 UNQUALIFIED DELETE linked target
object

EXCEPTION, REPORT,
NOREPORT, ASYNC

NO YES > 1 UNQUALIFIED DELETE linked target
object

EXCEPTION, REPORT,
NOREPORT, ASYNC

YES NO 0 ABSENT CREATE target object EXCEPTION, IGNORE,
REPORT, NOREPORT,
ASYNC

YES NO 1 FOUND UPDATE target object EXCEPTION, IGNORE,
REPORT, NOREPORT,
ASYNC

YES NO 1 FOUND_ALREADY_LINKED
[2]

EXCEPTION IGNORE, REPORT,
NOREPORT, ASYNC

YES NO > 1 AMBIGUOUS [3] EXCEPTION REPORT, NOREPORT,
ASYNC

Synchronization PingIDM

770 Copyright © 2025 Ping Identity Corporation

Based on this table, the following situations would be assigned to the previous diagram:

Figure 2. Situation Assignment During the Source Synchronization Phase

1. In this case (and the two following cases), the DELETE action is applied to the linked target object and not necessarily to the
target object(s) found by the correlation query. If the source is no longer valid and a link existed, the correlation logic is skipped.
2. The source object qualifies for a target object and is not linked to an existing target object. There is a single target object that
correlates with this source object, according to the logic in the correlation, but that target object is already linked to a different
source object.
3. The source object qualifies for a target object, is not linked to an existing target object, but there is more than one correlated
target object (that is, more than one possible match on the target system).
4. If the action is CREATE for the situation MISSING, the orphaned link associated with the source object is updated to point to the
new target object. When a target object is deleted, the link from the target to the corresponding source object is not deleted
automatically. This lets IDM detect and report items that might have been removed without permission or might need review. If
you need to remove the corresponding link when a target object is deleted, change the action to UNLINK to remove the link, or to
DELETE to remove the target object and the link.

Target reconciliation

During source reconciliation, the synchronization process cannot detect situations where no source object exists. In this case, the
situation is detected during the second reconciliation phase, target reconciliation.

Source
Qualifies

Link Exists Target
Objects
Found

Situation Default Action Possible Actions

YES YES 0 MISSING [4] EXCEPTION CREATE, UNLINK,
DELETE, IGNORE,
REPORT, NOREPORT,
ASYNC

YES YES 1 CONFIRMED UPDATE target object IGNORE, REPORT,
NOREPORT, ASYNC

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 771

Target reconciliation iterates through the target objects that were not accounted for during source reconciliation. The process
checks each object against the validTarget filter, determines the appropriate situation, and executes the action configured for
the situation. Target reconciliation evaluates the following conditions:

Is the target object valid?

Valid target objects are categorized qualifies=1 . Invalid target objects are categorized qualifies=0 . Invalid objects
include objects that were filtered out by a validTarget script. For more information, refer to Filter Source and Target
Objects With Scripts.

Does the target object have a record in the links table?

Target objects that have a corresponding link in the links table are categorized link=1 . Target objects that do not have
a corresponding link are categorized link=0 .

Does the target object have a corresponding source object?

Target objects that have a corresponding object in the source resource are categorized source=1 . Target objects that do
not have a corresponding object in the source resource are categorized source=0 .

The following diagram illustrates the categorization of three sample objects during target reconciliation:

Figure 1. Object Categorization During the Target Synchronization Phase

Based on the categorizations of target objects during the target reconciliation phase, a situation is assessed for each remaining
target object. Not all situations are detected in all synchronization types. The following table describes the set of situations that
can be detected during the target reconciliation phase:

1.

2.

3.

Situations Detected During Target Reconciliation

Target
Qualifies

Link
Exists

Source
Exists

Source
Qualifies

Situation Default Action Possible Actions

NO n/a n/a n/a TARGET_IGNORED [1] IGNORE DELETE, UNLINK,
REPORT, NOREPORT,
ASYNC

YES NO NO n/a UNASSIGNED EXCEPTION IGNORE, REPORT,
NOREPORT, ASYNC

Synchronization PingIDM

772 Copyright © 2025 Ping Identity Corporation

Based on this table, the following situations would be assigned to the previous diagram:

Figure 2. Situation Assignment During the Target Synchronization Phase

1. During target reconciliation, the target becomes unqualified by the validTarget script.
2. Detected during reconciliation and target change events
3. Detected during reconciliation and target change events

Situations specific to implicit synchronization and liveSync

Certain situations occur only during implicit synchronization (when changes made in the repository are pushed out to external
systems) and liveSync (when IDM polls external system change logs for changes and updates the repository).

The following table shows the situations that pertain only to implicit sync and liveSync, when records are deleted from the source
or target resource.

Target
Qualifies

Link
Exists

Source
Exists

Source
Qualifies

Situation Default Action Possible Actions

YES YES YES YES CONFIRMED UPDATE target object IGNORE, REPORT,
NOREPORT

YES YES YES NO UNQUALIFIED [2] DELETE UNLINK, EXCEPTION,
IGNORE, REPORT,
NOREPORT, ASYNC

YES YES NO n/a SOURCE_MISSING [3] EXCEPTION DELETE, UNLINK,
IGNORE, REPORT,
NOREPORT, ASYNC

Situations detected during implicit sync or liveSync deletion events

Source
Qualifies

Link
Exists

Targets
Found [1]

Targets
Qualify

Situation Default Action Possible Actions

n/a YES 0 n/a LINK_ONLY EXCEPTION IGNORE, REPORT,
NOREPORT, ASYNC

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 773

1. If no link exists for the source object, IDM executes any included correlation logic. If a link exists, correlation does not apply.

Synchronization actions

When an object has been assigned a situation, the synchronization process takes the configured action on that object. If no action
is configured, the default action for that situation applies.

The following actions can be taken:

CREATE

Create and link a target object.

UPDATE

Link and update a target object.

Source
Qualifies

Link
Exists

Targets
Found [1]

Targets
Qualify

Situation Default Action Possible Actions

n/a YES 1 1 SOURCE_MISSING EXCEPTION DELETE, IGNORE,
REPORT, NOREPORT,
ASYNC

n/a YES 1 0 TARGET_IGNORED IGNORE DELETE, UNLINK,
EXCEPTION, REPORT,
NOREPORT, ASYNC

n/a NO 0 n/a ALL_GONE IGNORE EXCEPTION, REPORT,
NOREPORT, ASYNC

YES NO 0 n/a ALL_GONE IGNORE EXCEPTION, REPORT,
NOREPORT, ASYNC

YES NO 1 1 UNASSIGNED EXCEPTION REPORT, NOREPORT

YES NO > 1 > 1 AMBIGUOUS EXCEPTION IGNORE, REPORT,
NOREPORT, ASYNC

NO NO 0 n/a ALL_GONE IGNORE EXCEPTION, REPORT,
NOREPORT, ASYNC

NO NO 1 1 TARGET_IGNORED IGNORE target object DELETE, UNLINK,
EXCEPTION, REPORT,
NOREPORT, ASYNC

NO NO > 1 > 1 UNQUALIFIED DELETE target objects EXCEPTION, IGNORE,
REPORT, NOREPORT,
ASYNC

Synchronization PingIDM

774 Copyright © 2025 Ping Identity Corporation

DELETE

Delete and unlink the target object.

LINK

Link the correlated target object.

UNLINK

Unlink the linked target object.

EXCEPTION

Flag the link situation as an exception.

IGNORE

Do not change the link or target object state.

REPORT

Do not perform any action but report what would happen if the default action were performed.

NOREPORT

Do not perform any action or generate any report.

ASYNC

An asynchronous process has been started, so do not perform any action or generate any report.

Launch a script as an action

In addition to the static synchronization actions described previously, you can provide a script to run in specific synchronization
situations. The script can be either JavaScript or Groovy. You can specify the script inline (with the "source" property), or
reference it from a file, (with the "file" property).

The following excerpt of a sample mapping specifies that an inline script should be invoked when a synchronization operation
assesses an entry as ABSENT in the target system. The script checks whether the employeeType property of the corresponding
source entry is contractor . If so, the source entry is ignored. Otherwise, the entry is created on the target system:

emergency_home
Do not use this action for liveSync mappings.
In the context of liveSync, the EXCEPTION action triggers the liveSync failure handler, and the operation is
retried in accordance with the configured retry policy. This is not useful because the operation will never
succeed. If the configured number of retries is high, these pointless retries can continue for a long period of
time.
If the maximum number of retries is exceeded, the liveSync operation terminates and does not continue
processing the entry that follows the failed (EXCEPTION) entry. LiveSync is only resumed at the next liveSync
polling interval.
This behavior differs from reconciliation, where a failure to synchronize a single source-target association does
not fail the entire reconciliation.

Important

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 775

{
 "situation" : "ABSENT",
 "action" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "if (source.employeeType === 'contractor') {action='IGNORE'}
 else {action='CREATE'};action;"
 },
}

The following variables are available to a script that is called as an action:

source

target

linkQualifier

recon (where recon.actionParam contains information about the current reconciliation operation)

For more information about the variables available to scripts, refer to Script variables.

The result obtained from evaluating this script must be a string whose value is one of the synchronization actions listed in
Synchronization actions. This resulting action is shown in the reconciliation log.

To launch a script as a synchronization action using the admin UI:

From the navigation bar, click Configure > Mappings, and click the mapping to edit.

Click the Behaviors tab, and expand the Policies node.

Click the edit button for the situation action to edit.

On the Perform this Action tab, click Script, and enter the script that corresponds to the action.

Click Submit, and then click Save.

Launch a workflow as an action

The triggerWorkflowFromSync.js script launches a predefined workflow when a synchronization operation assesses a
particular situation. The mechanism for triggering this script is the same as for any other script. The script is provided in the
openidm/bin/defaults/script/workflow directory. If you customize the script, copy it to the script directory of your project
to ensure that your customizations are preserved during an upgrade.

The parameters for the workflow are passed as properties of the action parameter.

The following extract of a sample mapping specifies that, when a synchronization operation assesses an entry as ABSENT , the
workflow named managedUserApproval is invoked:

•

•

•

•

1.

2.

3.

4.

5.

Synchronization PingIDM

776 Copyright © 2025 Ping Identity Corporation

{
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
}

To launch a workflow as a synchronization action Using the admin UI:

From the navigation bar, click Configure > Mappings, and click the mapping to edit.

Click the Behaviors tab, and expand the Policies node.

Click the edit button for the situation action to edit.

On the Perform this Action tab, click Workflow, and enter the details of the workflow to launch.

Click Submit, and then click Save.

Correlate source objects with existing target objects

When a synchronization operation creates an object on a target system, it also creates a link between the source and target
object. IDM then uses that link to determine the object’s synchronization situation during later synchronization operations. For a
list of synchronization situations, refer to How IDM assesses synchronization situations.

Every synchronization operation can correlate existing source and target objects. Correlation matches source and target objects,
based on the results of a query or script, and creates links between matched objects.

Correlation queries and correlation scripts are configured as part of the mapping. Each query or script is specific to the mapping
for which it is configured.

Configure correlation using the admin UI

From the navigation bar, click Configure > Mappings.

From the Mappings page, click the mapping to correlate.

From the Mapping Detail page, click the Association tab.

Expand the Association Rules node, click the drop-down menu, and select one of the following:

Correlation Queries

Correlation Script

Build and/or write your script or query, and click Save.

1.

2.

3.

4.

5.

1.

2.

3.

4.

◦

◦

5.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 777

Correlation queries

IDM processes a correlation query by constructing a query map. The content of the query is generated dynamically, using values
from the source object. For each source object, a new query is sent to the target system, using (possibly transformed) values from
the source object for its execution.

Queries are run against target resources, either managed or system objects, depending on the mapping. Correlation queries on
system objects access the connector, which executes the query on the external resource.

You express a correlation query using a query filter (_queryFilter). For more information about query filters, refer to Define
and call data queries. The synchronization process executes the correlation query to search through the target system for objects
that match the current source object.

To configure a correlation query, define a script whose source returns a query that uses the _queryFilter , for example:

{ "_queryFilter" : "uid eq \"" + source.userName + "\"" }

Use filtered queries to correlate objects

For filtered queries, the script that is defined or referenced in the correlationQuery property must return an object with the
following elements:

The element that is being compared on the target object; for example, uid .

The element on the target object is not necessarily a single attribute. Your query filter can be simple or complex; valid
query filters range from a single operator to an entire boolean expression tree.

If the target object is a system object, this attribute must be referred to by its IDM name rather than its OpenICF
nativeName . For example, with the following provisioner configuration, the attribute to use in the correlation query would
be uid and not +NAME` :

...
 "uid" : {
 "type" : "string",
 "nativeName" : "__NAME__",
 "required" : true,
 "nativeType" : "string"
 }
...

The value to search for in the query.

This value is generally based on one or more values from the source object. However, it does not have to match the value
of a single source object property. You can define how your script uses the values from the source object to find a
matching record in the target system.

You might use a transformation of a source object property, such as toUpperCase() . You can concatenate that output
with other strings or properties. You can also use this value to call an external REST endpoint, and redirect the response to
the final "value" portion of the query.

The following correlation query matches source and target objects if the value of the uid attribute on the target is the same as
the userName attribute on the source:

•

•

Synchronization PingIDM

778 Copyright © 2025 Ping Identity Corporation

"correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var qry = {'_queryFilter': 'uid eq \"' + source.userName + '\"'}; qry"
},

The query can return zero or more objects. The situation assigned to the source object depends on the number of target objects
that are returned, and on the presence of any link qualifiers in the query. For information about synchronization situations, refer
to How Synchronization Situations Are Assessed. For information about link qualifiers, refer to Map a Single Source Object to
Multiple Target Objects.

Create Correlation Queries Using the Expression Builder

The Expression Builder is a wizard that lets you quickly build expressions using drop-down menu options.

From the navigation bar, click Configure > Mappings.

On the Mappings page, click the mapping to correlate.

From the Mapping Detail page, click the Association tab.

Expand the Association Rules node, click the drop-down menu, and select Correlation Queries.

Click Add Correlation Query.

In the Correlation Query window, click the Link Qualifier drop-down menu, and select a link qualifier.

If you do not need to correlate multiple potential target objects per source object, select the default link qualifier. For
more information about linking to multiple target objects, refer to Map a Single Source Object to Multiple Target Objects.

Select Expression Builder.

To create an expression, use the drop-down menus to add and remove items, as necessary. List the fields to use for
matching existing items in your source to items in your target.

The following example displays an Expression Builder correlation query for a mapping from managed/user to system/
ldap/accounts objects. The query creates a match between the source (managed) object and the target (LDAP) object if
the value of the givenName or the telephoneNumber of those objects is the same.

1.

2.

3.

4.

5.

6.

7.

8.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 779

After you finish building the expression, click Submit.

On the Mapping Detail page, under the Association Rules node, click Save.

The correlation query displays as follows in the mapping:

"correlationQuery" : [
 {
 "linkQualifier" : "default",
 "expressionTree" : {
 "any" : [
 "givenName",
 "telephoneNumber"
]
 },
 "mapping" : "managedUser_systemLdapAccounts",
 "type" : "text/javascript",
 "file" : "ui/correlateTreeToQueryFilter.js"
 }
]

Correlation scripts

In general, a correlation query should meet the requirements of most deployments. However, if you need a more powerful
correlation mechanism than a simple query can provide, you can write a correlation script with additional logic. Correlation
scripts can be useful if your query needs extra processing, such as fuzzy-logic matching or out-of-band verification with a third-
party service over REST. Correlation scripts are generally more complex than correlation queries, and impose no restrictions on
the methods used to find matching objects.

9.

10.

Synchronization PingIDM

780 Copyright © 2025 Ping Identity Corporation

A correlation script must execute a query and return the result of that query. The result of a correlation script is a list of maps,
each of which contains a candidate _id value. If no match is found, the script returns a zero-length list. If exactly one match is
found, the script returns a single-element list. If there are multiple ambiguous matches, the script returns a list with multiple
elements. There is no assumption that the matching target record or records can be found by a simple query on the target
system. All of the work required to find matching records is left to the script.

To invoke a correlation script, use one of the following properties:

correlationQuery

Returns a Map whose values specify the QueryFilter for the sync engine to execute.

correlationScript

Returns a List<Map> whose value is a list of correlated objects from the target.

You can invoke a correlation script inline:

"correlationScript" : {
 "type": "text/javascript",
 "source": " var resultData = openidm.query("system/ldap/account", myQuery); return resultData.result;"
}

You can also invoke a correlation script using a script file:

"correlationScript" : {
 "type": "text/javascript",
 "file": "myCustomCorrelationScript.js"
}

Correlation Script Using Link Qualifiers

The following example shows a correlation script that uses link qualifiers. The script returns resultData.result —a list of maps,
each of which has an _id entry. These entries will be the values that are used for correlation.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 781

(function () {
 var query, resultData;
 switch (linkQualifier) {
 case "test":
 logger.info("linkQualifier = test");

 query = {'_queryFilter': 'uid eq \"' + source.userName + '-test\"'};
 break;
 case "user":
 logger.info("linkQualifier = user");

 query = {'_queryFilter': 'uid eq \"' + source.userName + '\"'};
 break;
 case "default":
 logger.info("linkQualifier = default");

 query = {'_queryFilter': 'uid eq \"' + source.userName + '\"'};
 break;
 default:
 logger.info("No linkQualifier provided.");

 break;
 }
 var resultData = openidm.query("system/ldap/account", query);
 logger.info("found " + resultData.result.length + " results for link qualifier " + linkQualifier)
 for (i=0;i<resultData.result.length;i++) {
 logger.info("found target: " + resultData.result[i]._id);
 }
 return resultData.result;
} ());

Configure a correlation script using the admin UI

From the navigation bar, click Configure > Mappings.

On the Mappings page, select the mapping to correlate.

From the Mapping Detail page, click the Association tab.

Expand the Association Rules node, click the drop-down menu, and select Correlation Script.

From the Type drop-down menu, select JavaScript or Groovy.

Enter the correlation script:

To use an inline script, select Inline Script, and type the script source.

To use a script file, select File Path, and enter the path to the script.

Click Save.

Synchronization operations

1.

2.

3.

4.

5.

6.

◦

◦

lightbulb_2
To create a correlation script, use the details from the source object to find the matching record in the target
system. If you are using link qualifiers to match a single source record to multiple target records, you must also
use the value of the linkQualifier variable within your correlation script to find the target ID that applies for
that qualifier.

Tip

7.

Synchronization PingIDM

782 Copyright © 2025 Ping Identity Corporation

Manage reconciliation

To trigger, cancel, and monitor reconciliation operations over REST, use the openidm/recon REST endpoint. You can perform
most of these actions using the admin UI.

Trigger a reconciliation

The following example triggers a reconciliation operation over REST based on the systemLdapAccounts_managedUser mapping:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=recon&mapping=systemLdapAccounts_managedUser"

By default, a reconciliation run ID is returned immediately when the reconciliation operation is initiated. Clients can make
subsequent calls to the reconciliation service, using this reconciliation run ID to query its state, and to call operations on it. For an
example, refer to Reconciliation Details.

The reconciliation run initiated previously would return something similar to the following:

{
 "_id": "05f63bce-4aaa-492e-9e86-a702d5c9d6c0-1144",
 "state": "ACTIVE"
}

To complete the reconciliation operation before the reconciliation run ID is returned, set the waitForCompletion property to
true when the reconciliation is initiated:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemLdapAccounts_managedUser&waitForCompletion=true"

Cancel a reconciliation

To cancel an in progress reconciliation, specify the reconciliation run ID. The following REST call cancels the reconciliation run
initiated in the previous section:

lightbulb_2
To trigger this reconciliation using the admin UI, click Configure > Mappings, select a mapping, then click Reconcile.
If you click Cancel Reconciliation before it completes, you will need to start the reconciliation again.

Tip

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 783

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon/0890ad62-4738-4a3f-8b8e-f3c83bbf212e?_action=cancel"

The output for a reconciliation cancellation request is similar to the following:

{
 "status":"INITIATED",
 "action":"cancel",
 "_id":"0890ad62-4738-4a3f-8b8e-f3c83bbf212e"
}

If the reconciliation run is waiting for completion before its ID is returned, obtain the reconciliation run ID from the list of active
reconciliations, as described in the following section.

List reconciliation history

Display a list of reconciliation processes that have completed, and those that are in progress, by running a RESTful GET on
"http://localhost:8080/openidm/recon" .

The following example displays all reconciliation runs:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon"

The output is similar to the following, with one item for each reconciliation run:

lightbulb_2
To cancel a reconciliation run in progress using the admin UI, click Configure > Mappings, click on the mapping
reconciliation to cancel, and click Cancel Reconciliation.

Tip

Synchronization PingIDM

784 Copyright © 2025 Ping Identity Corporation

"reconciliations": [
 {
 "_id": "05f63bce-4aaa-492e-9e86-a702d5c9d6c0-1144",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "SUCCESS",
 "stage": "COMPLETED_SUCCESS",
 "stageDescription": "reconciliation completed.",
 "progress": {
 "source": {
 "existing": {
 "processed": 2,
 "total": "2"
 }
 },
 "target": {
 "existing": {
 "processed": 0,
 "total": "0"
 },
 "created": 2,
 "unchanged": 0,
 "updated": 0,
 "deleted": 0
 },
 "links": {
 "existing": {
 "processed": 0,
 "total": "0"
 },
 "created": 2
 }
 },
 "situationSummary": {
 "SOURCE_IGNORED": 0,
 "FOUND_ALREADY_LINKED": 0,
 "UNQUALIFIED": 0,
 "ABSENT": 2,
 "TARGET_IGNORED": 0,
 "MISSING": 0,
 "ALL_GONE": 0,
 "UNASSIGNED": 0,
 "AMBIGUOUS": 0,
 "CONFIRMED": 0,
 "LINK_ONLY": 0,
 "SOURCE_MISSING": 0,
 "FOUND": 0
 },
 "statusSummary": {
 "SUCCESS": 2,
 "FAILURE": 0
 },
 "durationSummary": {
 "sourceQuery": {
 "min": 42,
 "max": 42,
 "mean": 42,
 "count": 1,
 "sum": 42,
 "stdDev": 0
 },

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 785

 "auditLog": {
 "min": 0,
 "max": 1,
 "mean": 0,
 "count": 24,
 "sum": 15,
 "stdDev": 0
 },
 "linkQuery": {
 "min": 5,
 "max": 5,
 "mean": 5,
 "count": 1,
 "sum": 5,
 "stdDev": 0
 },
 "targetQuery": {
 "min": 3,
 "max": 3,
 "mean": 3,
 "count": 1,
 "sum": 3,
 "stdDev": 0
 },
 "targetPhase": {
 "min": 0,
 "max": 0,
 "mean": 0,
 "count": 1,
 "sum": 0,
 "stdDev": 0
 },
 "sourceObjectQuery": {
 "min": 6,
 "max": 34,
 "mean": 21,
 "count": 22,
 "sum": 474,
 "stdDev": 9
 },
 "postMappingScript": {
 "min": 0,
 "max": 1,
 "mean": 0,
 "count": 22,
 "sum": 17,
 "stdDev": 0
 },
 "onMappingScript": {
 "min": 0,
 "max": 4,
 "mean": 2,
 "count": 22,
 "sum": 48,
 "stdDev": 2
 },
 "sourcePhase": {
 "min": 490,
 "max": 490,
 "mean": 490,
 "count": 1,
 "sum": 490,

Synchronization PingIDM

786 Copyright © 2025 Ping Identity Corporation

 "stdDev": 0
 }
 },
 "parameters": {
 "sourceQuery": {
 "resourceName": "system/ldap/account",
 "queryFilter": "true",
 "_fields": "_id"
 },
 "targetQuery": {
 "resourceName": "managed/user",
 "queryFilter": "true",
 "_fields": "_id"
 }
 },
 "started": "2020-05-07T09:14:57.740Z",
 "ended": "2020-05-07T09:14:58.325Z",
 "duration": 585,
 "sourceProcessedByNode": {}
 }
]

You can adjust the number of reconciliation runs that are stored in IDM by adding the maxAnalysisRunsPerMapping and
maxNonAnalysisRunsPerMapping properties to your mapping:

"reconAssociation" : {
 "maxAnalysisRunsPerMapping" : 1,
 "maxNonAnalysisRunsPerMapping" : 3
}

In this context, analysis refers to reconciliation runs that are triggered with the analyze=true parameter. These runs don’t
perform any actions, but determine which actions would be performed in a real reconciliation. Non-analysis refers to a normal
reconciliation. The default value for both properties is 1 .

In contrast, the admin UI displays the results of only the most recent reconciliation. For more information, refer to View
reconciliation details using the admin UI.

Reconciliation Properties

Each reconciliation run includes the following properties:

_id

The ID of the reconciliation run.

mapping

The name of the mapping.

state

The high-level state of the reconciliation run. Values can be as follows:

ACTIVE•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 787

The reconciliation run is in progress.

CANCELED

The reconciliation run was successfully canceled.

FAILED

The reconciliation run was terminated because of failure.

SUCCESS

The reconciliation run completed successfully.

stage

The current stage of the reconciliation run. Values can be as follows:

ACTIVE_INITIALIZED

The initial stage, when a reconciliation run is first created.

ACTIVE_QUERY_ENTRIES

Querying the source, target, and possibly link sets to reconcile.

ACTIVE_RECONCILING_SOURCE

Reconciling the set of IDs retrieved from the mapping source.

ACTIVE_RECONCILING_TARGET

Reconciling any remaining entries from the set of IDs retrieved from the mapping target, that were not matched or
processed during the source phase.

ACTIVE_LINK_CLEANUP

Checking whether any links are now unused and should be cleaned up.

ACTIVE_PROCESSING_RESULTS

Post-processing of reconciliation results.

ACTIVE_CANCELING

Attempting to abort a reconciliation run in progress.

COMPLETED_SUCCESS

Successfully completed processing the reconciliation run.

COMPLETED_CANCELED

Completed processing because the reconciliation run was aborted.

COMPLETED_FAILED

Completed processing because of a failure.

•

•

•

•

•

•

•

•

•

•

•

•

•

Synchronization PingIDM

788 Copyright © 2025 Ping Identity Corporation

stageDescription

A description of the stages described previously.

progress

The progress object has the following structure (annotated here with comments):

"progress":{
 "source":{ // Progress on set of existing entries in the mapping source
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of entries in source set, if known, "?" otherwise
 }
 },
 "target":{ // Progress on set of existing entries in the mapping target
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of entries in target set, if known, "?" otherwise
 },
 "created":0 // New entries that were created
 },
 "links":{ // Progress on set of existing links between source and target
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of existing links, if known, "?" otherwise
 },
 "created":0 // Denotes new links that were created
 }
},

Reconciliation details

To display the details of a specific reconciliation over REST, include the reconciliation run ID in the URL. The following call shows
the details of the reconciliation run initiated in Trigger a reconciliation.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon/05f63bce-4aaa-492e-9e86-a702d5c9d6c0-1144"

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 789

{
 "_id": "05f63bce-4aaa-492e-9e86-a702d5c9d6c0-1144",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "SUCCESS",
 "stage": "COMPLETED_SUCCESS",
 "stageDescription": "reconciliation completed.",
 "progress": {
 "source": {
 "existing": {
 "processed": 2,
 "total": "2"
 }
 },
 "target": {
 "existing": {
 "processed": 0,
 "total": "0"
 },
 "created": 2,
 "unchanged": 0,
 "updated": 0,
 "deleted": 0
 },
 "links": {
 "existing": {
 "processed": 0,
 "total": "0"
 },
 "created": 2
 }
 },
 "situationSummary": {
 "SOURCE_IGNORED": 0,
 "FOUND_ALREADY_LINKED": 0,
 "UNQUALIFIED": 0,
 "ABSENT": 2,
 "TARGET_IGNORED": 0,
 "MISSING": 0,
 "ALL_GONE": 0,
 "UNASSIGNED": 0,
 "AMBIGUOUS": 0,
 "CONFIRMED": 0,
 "LINK_ONLY": 0,
 "SOURCE_MISSING": 0,
 "FOUND": 0
 },
 "statusSummary": {
 "SUCCESS": 2,
 "FAILURE": 0
 },
 "durationSummary": {
 "sourceQuery": {
 "min": 42,
 "max": 42,
 "mean": 42,
 "count": 1,
 "sum": 42,
 "stdDev": 0
 },
 "auditLog": {

Synchronization PingIDM

790 Copyright © 2025 Ping Identity Corporation

 "min": 0,
 "max": 1,
 "mean": 0,
 "count": 24,
 "sum": 15,
 "stdDev": 0
 },
 "linkQuery": {
 "min": 5,
 "max": 5,
 "mean": 5,
 "count": 1,
 "sum": 5,
 "stdDev": 0
 },
 "targetQuery": {
 "min": 3,
 "max": 3,
 "mean": 3,
 "count": 1,
 "sum": 3,
 "stdDev": 0
 },
 "targetPhase": {
 "min": 0,
 "max": 0,
 "mean": 0,
 "count": 1,
 "sum": 0,
 "stdDev": 0
 },
 "sourceObjectQuery": {
 "min": 6,
 "max": 34,
 "mean": 21,
 "count": 22,
 "sum": 474,
 "stdDev": 9
 },
 "postMappingScript": {
 "min": 0,
 "max": 1,
 "mean": 0,
 "count": 22,
 "sum": 17,
 "stdDev": 0
 },
 "onMappingScript": {
 "min": 0,
 "max": 4,
 "mean": 2,
 "count": 22,
 "sum": 48,
 "stdDev": 2
 },
 "sourcePhase": {
 "min": 490,
 "max": 490,
 "mean": 490,
 "count": 1,
 "sum": 490,
 "stdDev": 0

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 791

 }
 },
 "parameters": {
 "sourceQuery": {
 "resourceName": "system/ldap/account",
 "queryFilter": "true",
 "_fields": "_id"
 },
 "targetQuery": {
 "resourceName": "managed/user",
 "queryFilter": "true",
 "_fields": "_id"
 }
 },
 "started": "2020-05-07T09:14:57.740Z",
 "ended": "2020-05-07T09:14:58.325Z",
 "duration": 585,
 "sourceProcessedByNode": {}
}

View reconciliation details using the admin UI

You can display the details of the most recent reconciliation in the admin UI. Select the mapping. In the page that displays, you’ll
refer to a message similar to:

Completed: Last reconciled November 20, 2019 15:28

Clicking on the reconciliation run date displays the details of the reconciliation run. Click Reconciliation Results for additional
information.

If a reconciliation fails, select the Failure Summary tab for more information about the failure.

To view reconciliation audit logs in the UI, add an Audit widget to your dashboard. The reconciliation Audit widget shows the
same information that you get over REST.

Reconciliation association details

When performing a reconciliation run, information is reconciled between the source object and the target object. This creates an
association between the two objects, which can be recorded in IDM by including the persistAssociations=true parameter
when triggering a reconciliation. This information can then be retrieved by querying the recon/assoc endpoint.

To get a list of currently stored recon associations, run the following query:

emergency_home
The persistAssociations parameter is false by default because setting it to true can cause performance issues
when performing large reconciliations, and in extreme cases, can cause a system outage.

Important

Synchronization PingIDM

792 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon/assoc?_queryFilter=true"
{
 "result": [
 {
 "_id": "da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230",
 "_rev": "1",
 "mapping": "managedUser_systemLdapAccounts",
 "sourceResourceCollection": "managed/user",
 "targetResourceCollection": "system/ldap/account",
 "isAnalysis": "false",
 "finishTime": "2019-05-01T23:36:24.434153Z"
 },
 {
 "_id": "da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-99638",
 "_rev": "1",
 "mapping": "systemLdapAccounts_managedUser",
 "sourceResourceCollection": "system/ldap/account",
 "targetResourceCollection": "managed/user",
 "isAnalysis": "true",
 "finishTime": "2019-05-06T21:31:42.140066Z"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

You can also get information for a specific reconciliation by querying the recon ID:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon/assoc/da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230"
{
 "_id": "da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230",
 "_rev": "1",
 "mapping": "managedUser_systemLdapAccounts",
 "sourceResourceCollection": "managed/user",
 "targetResourceCollection": "system/ldap/account",
 "isAnalysis": "false",
 "finishTime": "2019-05-01T23:36:24.434153Z"
}

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 793

It is possible to also get the specific association details of each entry in the reconciliation run by appending /entry to your query:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon/assoc/da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230/entry?
_queryFilter=true"
{
 "result": [
 {
 "_id": "400d40fd-da58-41f5-857b-71855eb97bd9",
 "_rev": "0",
 "mapping": "managedUser_systemLdapAccounts",
 "reconId": "da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230",
 "situation": "CONFIRMED",
 "action": "UPDATE",
 "linkQualifier": "default",
 "sourceObjectId": "07978ba5-b31d-4f8b-9f60-506c07f68495",
 "targetObjectId": "ca8abc7f-7b97-3e96-94fb-6b27b0ec5aed",
 "sourceResourceCollection": "managed/user",
 "targetResourceCollection": "system/ldap/account",
 "status": "SUCCESS",
 "exception": null,
 "message": null,
 "messageDetail": "null",
 "ambiguousTargetObjectIds": null
 },
 ...
 {
 "_id": "08ec633c-744f-4092-b88d-fe253b1d8e52",
 "_rev": "0",
 "mapping": "managedUser_systemLdapAccounts",
 "reconId": "da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230",
 "situation": "CONFIRMED",
 "action": "UPDATE",
 "linkQualifier": "default",
 "sourceObjectId": "ee2449a8-01e6-4c0b-84d3-e65e25c3e38c",
 "targetObjectId": "67a6596e-ebfc-3542-a664-1ab1610e082a",
 "sourceResourceCollection": "managed/user",
 "targetResourceCollection": "system/ldap/account",
 "status": "SUCCESS",
 "exception": null,
 "message": null,
 "messageDetail": "null",
 "ambiguousTargetObjectIds": null
 }
],
 ...
}

Synchronization PingIDM

794 Copyright © 2025 Ping Identity Corporation

Purge reconciliation statistics

When the number of completed reconciliation runs for a given mapping reaches the number specified by
maxAnalysisRunsPerMapping or maxNonAnalysisRunsPerMapping , statistics are purged automatically. Statistics and
reconciliation run information (such as recon associations) are purged chronologically by mapping, with the oldest reconciliation
run for that mapping purged first.

You can also manually remove reconciliation statistics. To purge reconciliation statistics from the repository manually, run a
DELETE command on the reconciliation run ID. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/recon/da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230"

Manage liveSync

Because you can trigger liveSync operations using REST (or the resource API) you can use an external scheduler to trigger liveSync
operations, rather than using the IDM scheduling mechanism.

There are two ways to trigger liveSync over REST:

Use the _action=liveSync parameter directly on the resource. This is the recommended method. The following example
calls liveSync on the user accounts in an external LDAP system:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system/ldap/account?_action=liveSync"

Target the system endpoint and supply a source parameter to identify the object that should be synchronized. This
method matches the scheduler configuration and can therefore be used to test schedules before they are implemented.

The following example calls the same liveSync operation as the previous example:

info
For particularly large reconciliations, the results returned can be quite substantial, since it includes the details of every
object reconciled. We encourage using query filters to tune your queries to only return the subset of results you’re
looking for.

Note

•

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 795

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system?_action=liveSync&source=system/ldap/account"

A successful liveSync operation returns the following response:

{
 "_rev": "000000001ade755f",
 "_id": "SYSTEMLDAPACCOUNT",
 "connectorData": {
 "nativeType": "JAVA_TYPE_LONG",
 "syncToken": 1
 }
}

Do not run two identical liveSync operations simultaneously. Rather, ensure that the first operation has completed before
launching a second, similar operation.

Trigger liveSync using the admin UI

LiveSync operations are specific to a system object type (such as system/ldap/account). Apart from scheduling liveSync, as
described in Scheduling LiveSync Through the UI, you can launch a liveSync operation on demand for a particular system object
type as follows:

From the navigation bar, click Configure > Connectors.

On the Connectors page, select a connector.

On the connector-name page, click the Object Types tab.

Click the edit button adjacent to the object type to synchronize.

Click the Sync tab, and then click Sync Now.

The Sync Token field displays the current synchronization token for the object type.

Troubleshoot liveSync failures

To troubleshoot a liveSync operation that has not succeeded, include the detailedFailure parameter to return additional
information. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system/ldap/account?_action=liveSync&detailedFailure=true"

1.

2.

3.

4.

5.

Synchronization PingIDM

796 Copyright © 2025 Ping Identity Corporation

The first time liveSync is called, it does not have a synchronization token in the database to establish which changes have already
been processed. The default liveSync behavior is to locate the last existing entry in the change log, and to store that entry in the
database as the current starting position from which changes should be applied. This behavior prevents liveSync from processing
changes that might already have been processed during an initial data load. Subsequent liveSync operations will pick up and
process any new changes.

Typically, in setting up liveSync on a new system, you would load the data initially (by using reconciliation, for example) and then
enable liveSync, starting from that base point.

In the case of DS, the change log (cn=changelog) can be read only by uid=admin by default. If you are configuring liveSync with
DS, the principal that is defined in the LDAP connector configuration must have access to the change log. For information
about allowing a regular user to read the change log, refer to Allow a User or Application to Read the Change Log.

If you refer to the following error message, you might have forgotten to set changelog-read access for a regular user:

Unable to locate the DS replication change log suffix. Please make
sure it's enabled, and changelog-read access is granted.

Filter synchronization data

By default, IDM synchronizes all objects that match those defined in the connector configuration for the resource. Many
connectors let you limit the scope of objects that the connector accesses. For example, the LDAP connector lets you specify base
DNs and LDAP filters so that you do not need to access every entry in the directory.

The following sections describe other ways to filter out objects or attributes to restrict the synchronization load.

Filter source and target objects with scripts

You can filter the source or target objects that are included in a synchronization operation using the validSource , validTarget ,
or sourceCondition properties in your mapping:

validSource

A script that determines if a source object is valid to be mapped.

The script yields a boolean value: true indicates that the source object is valid; false can be used to defer mapping until
some condition is met. In the root scope, the source object is provided in the "source" property. If the script is not
specified, then all source objects are considered valid:

{
 "validSource": {
 "type": "text/javascript",
 "source": "source.ldapPassword != null"
 }
}

validTarget

A script used during the second phase of reconciliation that determines if a target object is valid to be mapped.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 797

https://docs.pingidentity.com/pingds/7.4/config-guide/replication.html#read-ecl-as-regular-user
https://docs.pingidentity.com/pingds/7.4/config-guide/replication.html#read-ecl-as-regular-user

The script yields a boolean value: true indicates that the target object is valid; false indicates that the target object
should not be included in reconciliation. In the root scope, the source object is provided in the "target" property. If a
validTarget the script is not specified, then all target objects are considered valid for mapping:

{
 "validTarget": {
 "type": "text/javascript",
 "source": "target.employeeType == 'internal'"
 }
}

sourceCondition

An additional filter that must be met for a source object to be included in a mapping.

This condition works like a validSource script. Its value can be either a queryFilter string, or a script configuration.
sourceCondition is used mainly to specify that a mapping applies only to a particular role or entitlement.

The following sourceCondition restricts synchronization to those user objects whose account status is active :

{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "sourceCondition": "/source/accountStatus eq \"active\"",
 ...
 }
]
}

During synchronization, scripts and filters have access to a source object and a target object. Examples already shown in this
section use source.attributeName to retrieve attributes from the source objects. Scripts can also write to target attributes using
target.attributeName syntax, for example:

{
 "onUpdate": {
 "type": "text/javascript",
 "source": "if (source.email != null) {target.mail = source.email;}"
 }
}

The sourceCondition filter also has the linkQualifier variable in its scope.

For more information about scripting, refer to Scripting function reference.

Restrict reconciliation by using queries

Every reconciliation operation performs a query on the source and on the target resource, to determine which records should be
reconciled. The default source and target queries are _queryFilter=true&_fields=_id , which means that all records in both the
source and the target are considered candidates for that reconciliation operation.

Synchronization PingIDM

798 Copyright © 2025 Ping Identity Corporation

You can restrict reconciliation to specific entries by defining an explicit sourceQuery or targetQuery in the mapping
configuration.

For example, to restrict reconciliation to those records whose employeeType on the source resource is Permanent , you might
specify a source query as follows:

"mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "sourceQuery" : {
 "_queryFilter" : "employeeType eq \"Permanent\""
 },
...

The format of the query can be any query type that is supported by the resource, and can include additional parameters, if
applicable. Use the _queryFilter parameter, in common filter notation.

The source and target queries send the query to the resource that is defined for that source or target, by default. You can
override the resource the query is sent to by specifying a resourceName in the query. For example, to query a specific endpoint
instead of the source resource, you might modify the preceding source query as follows:

{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "sourceQuery" : {
 "resourceName" : "endpoint/scriptedQuery"
 "_queryFilter" : "employeeType eq \"Permanent\""
 },
 ...
}

To override a source or target query that is defined in the mapping, you can specify the query when you call the reconciliation
operation. For example, to reconcile all employee entries, and not just the permanent employees, you would run the
reconciliation operation as follows:

info
The sourceQuery filter is ignored during the target phase, and the targetQuery filter is ignored during the source
phase.

Note

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 799

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{"sourceQuery": {"_queryFilter" : "true"}}' \
"http://localhost:8080/openidm/recon?_action=recon&mapping=managedUser_systemLdapAccounts"

By default, a reconciliation operation runs both the source and target phase. To avoid queries on the target resource, set
runTargetPhase to false in the mapping configuration. To prevent the target resource from being queried during the
reconciliation operation configured in the previous example, amend the mapping configuration as follows:

{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQuery" : {
 "_queryFilter" : "employeeType eq \"Permanent\""
 },
 "runTargetPhase" : false,
 ...

Restrict reconciliation queries using the admin UI

From the navigation bar, click Configure > Mappings.

On the Mappings page, select the mapping to restrict.

Click the Association tab, and expand the Reconciliation Query Filters node.

Create a source or target query, and click Save.

Restrict reconciliation to a specific ID

You can restrict reconciliation to a specific record in much the same way as you restrict reconciliation by using queries.

To restrict reconciliation to a specific ID, use the reconById action, instead of the recon action when you call the reconciliation
operation. Specify the ID with the id parameter. Reconciling more than one ID with the reconById action is not supported.

The following command reconciles only the user with ID b3c2f414-e7b3-46aa-8ce6-f4ab1e89288c , for the mapping
managedUser_systemLdapAccounts . The command synchronizes this particular user account in LDAP with the data from the
managed user repository. The example assumes that implicit synchronization has been disabled, and that a reconciliation
operation is required to copy changes made in the repository to the LDAP system:

1.

2.

3.

4.

Synchronization PingIDM

800 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=reconById&mapping=managedUser_systemLdapAccounts&id=b3c2f414-
e7b3-46aa-8ce6-f4ab1e89288c"

Reconciliation by ID takes the default reconciliation options that are specified in the mapping, so the source and target queries,
and source and target phases apply equally to reconciliation by ID.

Restrict implicit synchronization to specific property changes

For a mapping that has managed objects as the source, an implicit synchronization is triggered if any source property changes,
regardless of whether the modified property is explicitly defined as a source property in the mapping.

This default behavior is helpful in situations where no source properties are explicitly defined—any property within the object is
included as part of the mapping.

However, this behavior adds a processing overhead, because every mapping from the managed object is invoked when any
managed object property changes. If several mappings are configured from the managed object, this default behavior can cause
performance issues.

In these situations, you can restrict the properties that should trigger an implicit synchronization per mapping, using the
triggerSyncProperties attribute. This attribute contains an array of JSON pointers to the properties that must change before
an implicit synchronization to the target is triggered. If none of these properties changes, no synchronization is triggered, even if
other properties in the object change.

In the following example, implicit synchronization is triggered only if the mail , telephoneNumber , or userName of an object
changes:

{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "enableLinking" : false,
 "triggerSyncProperties" : [
 "/mail",
 "/telephoneNumber",
 "/userName"
],
 "properties" : [],
 "policies" : []
 }
]
}

If any other property changes on the managed object, no implicit synchronization is triggered.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 801

Implicit synchronization and liveSync

Implicit synchronization and liveSync refer to the automatic synchronization of changes from and to the managed object
repository.

These topics describe the mechanisms for configuring these automatic synchronization mechanisms.

Array comparison

You can choose how synchronization detects managed object array changes using unordered or ordered comparison using the
configuration property comparison in the schema. Unordered JSON array comparison ignores the order of elements and can
negate the need for certain custom scripts within mappings.

Relationship and virtual property array fields default to unordered comparisons. All other fields default to ordered comparisons.

If you’re using explicit mappings with a DS repository, you can’t use ordered array comparison.

Learn more about managed object schema properties.

Disable automatic synchronization operations

By default, all mappings are automatically synchronized. A change to a managed object is automatically synchronized to all
resources for which the managed object is configured as a source. If liveSync is enabled for a system, changes to an object on that
system are automatically propagated to the managed object repository.

To prevent automatic synchronization for a specific mapping, set the enableSync property of that mapping to false. In the
following example, implicit synchronization is disabled. This means that changes to objects in the internal repository are not
automatically propagated to the LDAP directory. To propagate changes to the LDAP directory, reconciliation must be launched
manually:

{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "enableSync" : false,
 ...
}

If enableSync is set to false for a mapping from a system resource to managed/user (for example
"systemLdapAccounts_managedUser"), liveSync is disabled for that mapping.

Configure the liveSync retry policy

If a liveSync operation fails, IDM reattempts the change an infinite number of times until the change is successful. This behavior
can increase data consistency in the case of transient failures (for example, when the connection to the database is temporarily
lost). However, in situations where the cause of the failure is permanent (for example, if the change does not meet certain policy
requirements) the change will never succeed, regardless of the number of attempts. In this case, the infinite retry behavior can
effectively block subsequent liveSync operations from starting.

Synchronization PingIDM

802 Copyright © 2025 Ping Identity Corporation

To avoid this, you can configure a liveSync retry policy to specify the number of times a failed modification should be
reattempted, and what should happen if the modification is unsuccessful after the specified number of attempts.

Generally, a scheduled reconciliation operation will eventually force consistency. However, to prevent repeated retries that block
liveSync, restrict the number of times that the same modification is attempted. You can then specify what happens to failed
liveSync changes. The failed modification can be stored in a dead letter queue , discarded, or reapplied. Alternatively, an
administrator can be notified of the failure by email or by some other means. This behavior can be scripted. The default
configuration in the samples provided with IDM is to retry a failed modification five times, and then to log and ignore the failure.

You configure the liveSync retry policy in the connector configuration. The sample connector configurations have a retry policy
defined as follows:

"syncFailureHandler" : {
 "maxRetries" : 5,
 "postRetryAction" : "logged-ignore"
},

maxRetries

Specifies the number of attempts that IDM should make to process the failed modification.

The value of this property must be a positive integer, or -1 . A value of zero indicates that failed modifications should not
be reattempted. In this case, the post-retry action is executed immediately when a liveSync operation fails. A value of -1
(or omitting the maxRetries property, or the entire syncFailureHandler from the configuration) indicates that failed
modifications should be retried an infinite number of times. In this case, no post retry action is executed.

The default retry policy relies on the scheduler, or whatever invokes liveSync. Therefore, if retries are enabled and a
liveSync modification fails, IDM will retry the modification the next time that liveSync is invoked.

postRetryAction

Indicates what should happen if the maximum number of retries has been reached (or if maxRetries has been set to
zero). The post-retry action can be one of the following:

logged-ignore

IDM should ignore the failed modification, and log its occurrence.

dead-letter-queue

IDM should save the details of the failed modification in a table in the repository (accessible over REST at repo/
synchronisation/deadLetterQueue/provisioner-name).

script

Specifies a custom script that should be executed when the maximum number of retries has been reached. For
information about using custom scripts in the configuration, refer to Scripting function reference. In addition to
the regular objects described in that section, the following objects are available in the script scope:

syncFailure

Provides details about the failed record. The structure of the syncFailure object is as follows:

•

•

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 803

https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html
https://docs.pingidentity.com/openicf/connector-reference/configure-connector.html

"syncFailure" :
 {
 "token" : the ID of the token,
 "systemIdentifier" : a string identifier that matches the "name" property in the connector
configuration,
 "objectType" : the object type being synced, one of the keys in the "objectTypes" property
in the connector configuration,
 "uid" : the UID of the object (for example uid=joe,ou=People,dc=example,dc=com),
 "failedRecord", the record that failed to synchronize
 },

To access these fields, include syncFailure.fieldname in your script.

failureCause

Provides the exception that caused the original liveSync failure.

failureHandlers

Two synchronization failure handlers are provided by default:

loggedIgnore indicates that the failure should be logged, after which no further action should be
taken.

deadLetterQueue indicates that the failed record should be written to a specific table in the
repository, where further action can be taken.

The following liveSync retry policy configuration specifies a maximum of four retries before the failed modification is sent to the
dead letter queue:

...
 "syncFailureHandler" : {
 "maxRetries" : 4,
 "postRetryAction" : dead-letter-queue
 },
...

In the case of a failed modification, a message similar to the following is output to the logs:

INFO: sync retries = 1/4, retrying

◦

◦

lightbulb_2
To invoke one of the internal failure handlers from your script, use a call similar to the following (shown here
for JavaScript):

failureHandlers.deadLetterQueue.invoke(syncFailure, failureCause);

Tip

Synchronization PingIDM

804 Copyright © 2025 Ping Identity Corporation

IDM reattempts the modification the specified number of times. If the modification is still unsuccessful, a message similar to the
following is logged:

INFO: sync retries = 4/4, retries exhausted
Jul 19, 2013 11:59:30 AM
 org.forgerock.openidm.provisioner.openicf.syncfailure.DeadLetterQueueHandler invoke
INFO: uid=jdoe,ou=people,dc=example,dc=com saved to dead letter queue

The log message indicates the entry for which the modification failed (uid=jdoe , in this example).

You can view the failed modification in the dead letter queue, over the REST interface, as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/repo/synchronisation/deadLetterQueue/ldap?_queryFilter=true&_fields=_id"
{
 "result":
 [
 {
 "_id": "4",
 "_rev": "000000001298f6a6"
 }
],
 ...
}

To view the details of a specific failed modification, include its ID in the URL:

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 805

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/repo/synchronisation/deadLetterQueue/ldap/4"
{
 "objectType": "account",
 "systemIdentifier": "ldap",
 "failureCause": "org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.objset.ConflictException:
 org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.script.ScriptException:
 ReferenceError: \"bad\" is not defined.
 (PropertyMapping/mappings/0/properties/3/condition#1)",
 "token": 4,
 "failedRecord": "complete record, in xml format"
 "uid": "uid=jdoe,ou=people,dc=example,dc=com",
 "_rev": "000000001298f6a6",
 "_id": "4"
}

Improve reliability with queued synchronization

By default, IDM implicitly synchronizes managed object changes out to all resources for which the managed object is configured
as a source. If there are several targets that must be synchronized, these targets are synchronized one at a time, one after the
other. If any of the targets is remote or has a high latency, the implicit synchronization operations can take some time, delaying
the successful return of the managed object change.

To decouple the managed object changes from the corresponding synchronizations, you can configure queued synchronization,
which persists implicit synchronization events to the IDM repository. Queued events are then read from the repository and
executed according to the queued synchronization configuration.

Because synchronization operations are performed in parallel, queued synchronization can improve performance if you have
several fast, reliable targets. However, queued synchronization is also useful when your targets are slow or unreliable, because
the managed object changes can complete before all targets have been synchronized.

The following illustration shows how synchronization operations are added to a local, in-memory queue. Note that this queue is
distinct from the repository queue for synchronization events:

info
The repo endpoint is an internal interface. Although it is used in the preceding example for the purposes of
demonstration, you should not rely on this endpoint in production.

Note

Synchronization PingIDM

806 Copyright © 2025 Ping Identity Corporation

Figure 1. Queued Synchronization
Configure queued synchronization

Queued synchronization is disabled by default. To enable it, add a queuedSync object to your mapping, as follows:

{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "links" : "systemLdapAccounts_managedUser",
 "queuedSync" : {
 "enabled" : true,
 "pageSize" : 100,
 "pollingInterval" : 1000,
 "maxQueueSize" : 20000,
 "maxRetries" : 5,
 "retryDelay" : 1000,
 "postRetryAction" : "logged-ignore"
 },
 ...
 }
]
 }

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 807

The queuedSync object has the following configuration:

enabled

Specifies whether queued synchronization is enabled for that mapping. Boolean, true , or false .

pageSize (integer)

Specifies the maximum number of events to retrieve from the repository queue within a single polling interval. The default
is 100 events.

pollingInterval (integer)

Specifies the repository queue polling interval, in milliseconds. The default is 1000 ms.

maxQueueSize (integer)

Specifies the maximum number of synchronization events that can be accepted into the in-memory queue. The default is
20000 events.

maxRetries (integer)

The number of retries to perform before invoking the postRetry action. Most sample configurations set the maximum
number of retries to 5 . To set an infinite number of retries, either omit the maxRetries property, or set it to a negative
value, such as -1 .

retryDelay (integer)

In the event of a failed queued synchronization operation, this parameter specifies the number of milliseconds to delay
before attempting the operation again. The default is 1000 ms.

postRetryAction

The action to perform after the retries have been exhausted. Possible options are logged-ignore , dead-letter-queue ,
and script . These options are described in Configure the LiveSync Retry Policy. The default action is logged-ignore .

info
These settings apply only to the implicit synchronization operations for that mapping. Reconciliation is
unaffected by queued synchronization settings. Events associated with mappings where queued
synchronization is enabled are submitted to the synchronization queue for asynchronous processing. Events
associated with mappings where queued synchronization is not enabled are processed immediately, and block
further event processing until they are complete.
During implicit synchronization, mappings are processed in the order in which they are defined, regardless of
whether queued synchronization is enabled for those mappings. If you want all queued synchronization
mappings to be processed first, you must explicitly order your mappings accordingly.
Processing the synchronization queue for a mapping is paused if either the source or target system route is
unregistered. A route is unregistered when you remove the connector configuration, set "enabled" : false in
the connector configuration, delete the mapping, or remove the managed object type from the managed
object configuration.

Note

•

•

•

Synchronization PingIDM

808 Copyright © 2025 Ping Identity Corporation

Tune queued synchronization

Queued synchronization employs a single worker thread. While implicit synchronization operations are being generated, that
worker thread should always be occupied. The occupation of the worker thread is a function of the pageSize , the
pollingInterval , the latency of the poll request, and the latency of each synchronization operation for the mapping.

For example, assume that a poll takes 500 milliseconds to complete. Your system must provide operations to the worker thread
at approximately the same rate at which the thread can consume events (based on the page size, poll frequency, and poll
latency). Operation consumption is a function of the notifyaction.execution for that particular mapping. If the system does
not provide operations fast enough, implicit synchronization will not occur as optimally as it could. If the system provides
operations too quickly, the operations in the queue could exceed the default maximum of 20000 . If the maxQueueSize is
reached, additional synchronization events will result in a RejectedExecutionException .

Depending on your hardware and workload, you might need to adjust the default pageSize , pollingInterval , and
maxQueueSize .

Monitor the queued synchronization metrics; specifically, the rejected-executions , and adjust the maxQueueSize accordingly.
Set a large enough maxQueueSize to prevent slow mappings and heavy loads from causing newly-submitted synchronization
events to be rejected.

Monitor the synchronization latency using the sync.queue.mapping-name.poll-pending-events metric.

For more information on monitoring metrics, refer to Metrics reference.

Manage the synchronization queue

You can manage queued synchronization events over the REST interface, at the openidm/sync/queue endpoint. The following
examples show the operations that are supported on this endpoint:

List all events in the synchronization queue:

info
Retries occur synchronously to the failure. For example, if the maxRetries is set to 10 , at least 10 seconds will pass
between the failing sync event and the next sync. (There are 10 retries, and the retryDelay is 1 second by default.)
These 10 seconds do not take into account the latency of the ten sync requests. Retries are configured per-mapping
and block processing of all subsequent sync events until the configured retries have been exhausted.

Note

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 809

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/queue?_queryFilter=true"
{
 "result": [
 {
 "_id": "03e6ab3b-9e5f-43ac-a7a7-a889c5556955",
 "_rev": "0000000034dba395",
 "mapping": "managedUser_systemLdapAccounts",
 "resourceId": "e6533cfe-81ad-4fe8-8104-55e17bd9a1a9",
 "syncAction": "notifyCreate",
 "state": "PENDING",
 "resourceCollection": "managed/user",
 "nodeId": null,
 "createDate": "2018-11-12T07:45:00.072Z"
 },
 {
 "_id": "ed940f4b-ce80-4a7f-9690-1ad33ad309e6",
 "_rev": "000000007878a376",
 "mapping": "managedUser_systemLdapAccounts",
 "resourceId": "28b1bd90-f647-4ba9-8722-b51319f68613",
 "syncAction": "notifyCreate",
 "state": "PENDING",
 "resourceCollection": "managed/user",
 "nodeId": null,
 "createDate": "2018-11-12T07:45:00.150Z"
 },
 {
 "_id": "f5af2eed-d83f-4b70-8001-8bc86075134f",
 "_rev": "00000000099aa321",
 "mapping": "managedUser_systemLdapAccounts",
 "resourceId": "d2691a45-0a10-4f51-aa2a-b6854b2f8086",
 "syncAction": "notifyCreate",
 "state": "PENDING",
 "resourceCollection": "managed/user",
 "nodeId": null,
 "createDate": "2018-11-12T07:45:00.276Z"
 },
 ...
],
 "resultCount": 8,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Query the queued synchronization events based on the following properties:

mapping —the mapping associated with this event. For example:•

Synchronization PingIDM

810 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/queue?_queryFilter=mapping+eq+'managedUser_systemLdapAccount'"

nodeId —the ID of the node that has acquired this event.

resourceId —the source object resource ID.

resourceCollection —the source object resource collection.

_id —the ID of this sync event.

state —the state of the synchronization event. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/queue?_queryFilter=state+eq+'PENDING'"

The state of a queued synchronization event is one of the following:

PENDING —the event is waiting to be processed.

ACQUIRED —the event is being processed by a node.

remainingRetries —the number of retries available for this synchronization event before it is abandoned. For more
information about how synchronization events are retried, refer to Configure the LiveSync Retry Policy. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/queue?_queryFilter=remainingRetries+lt+2"

syncAction —the synchronization action that initiated this event. Possible synchronization actions are notifyCreate ,
notifyUpdate , and notifyDelete . For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/queue?_queryFilter=syncAction+eq+'notifyCreate'"

•

•

•

•

•

◦

◦

•

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 811

createDate —the date that the event was created.

Recover mappings when nodes are down

Synchronization events for mappings with queued synchronization enabled are processed by a single cluster node. While a node
is present in the cluster, that node holds a lock on the specific mapping. The node can release or reacquire the mapping lock if a
balancing event occurs (see Balance Mapping Locks Across Nodes). However, the mapping lock is held across all events on that
mapping. In a stable running cluster, a single node will hold the lock for a mapping indefinitely.

It is possible that a node goes down, or is removed from the cluster, while holding a mapping lock on operations in the
synchronization queue. To prevent these operations from being lost, the queued synchronization facility includes a recovery
monitor that checks for any orphaned mappings in the cluster.

A mapping is considered orphaned in the following cases:

No active node holds a lock on the mapping.

The node that holds a lock on the mapping has an instance state of STATE_DOWN .

The node that holds a lock on the mapping does not exist in the cluster.

The recovery monitor periodically checks for orphaned mappings. When all orphaned mappings have been recovered, it attempts
to initialize new queue consumers.

The recovery monitor is enabled by default and executes every 300 seconds. To change the default behavior for a mapping, add
the following to the mapping configuration and change the parameters as required:

{
 "mappings" : [...],
 "queueRecovery" : {
 "enabled" : true,
 "recoveryInterval" : 300
 }
}

Balance mapping locks across nodes

Queued synchronization mapping locks are balanced equitably across cluster nodes. At a specified interval, each node attempts
to release and acquire mapping locks, based on the number of running cluster nodes. When new cluster nodes come online,
existing nodes release sufficient mapping locks for new nodes to pick them up, resulting in an equitable distribution of locks.

Lock balancing is enabled by default, and the interval at which nodes attempt to balance locks in the queue is 5 seconds. To
change the default configuration, add a queueBalancing object to your mapping and set the following parameters:

•

•

•

•

emergency_home
If a queued synchronization job has already been claimed by a node, and that node is shut down, IDM notifies the
entire cluster of the shutdown. This lets a different node pick up the job in progress. The recovery monitor takes over
jobs in a synchronization queue that have not been fully processed by an available cluster node, so no job should be
lost. If you have configured queued synchronization for one or more mappings, do not use the enabled flag in the
cluster configuration to remove a node from the cluster. Instead, shut down the node so that the remaining nodes in
the cluster can take over the queued synchronization jobs.

Important

Synchronization PingIDM

812 Copyright © 2025 Ping Identity Corporation

{
 "mappings" : [...],
 "queueBalancing" : {
 "enabled" : true,
 "balanceInterval" : 5
 }
}

Synchronization failure compensation

If implicit synchronization fails for a target resource (for example, due to a policy validation failure on the target, or the target
being unavailable), the synchronization operation stops at that point. In this scenario, a record might be changed in the
repository, and in the targets on which synchronization was successful, but not on the failed target, or on any targets that would
have been synchronized after the failure. This can result in disparate data sets across resources. Although a reconciliation
operation would eventually bring all targets back in sync, reconciliation can be an expensive operation with large data sets.

You can configure synchronization failure compensation to prevent data sets from becoming out of sync. This mechanism involves
reverting an implicit synchronization operation if it is not completely successful across all configured mappings.

Failure compensation ensures that either all resources are synchronized successfully, or that the original change is rolled back.
This mechanism uses an onSync script hook in the managed object configuration. The onSync hook calls a script that prevents
partial synchronization by "reverting" a partial change in the event that all resources are not synchronized.

The following sample managed object configuration shows the addition of the onSync hook:

...
"onDelete" : {
 "type" : "text/javascript",
 "file" : "onDelete-user-cleanup.js"
},
"onSync" : {
 "type" : "text/javascript",
 "file" : "compensate.js"
},
"properties" : [
 ...

With this configuration, a change to a managed object triggers an implicit synchronization for each configured mapping, in the
order in which the mappings are defined. If synchronization is successful for all configured mappings, IDM exits from the script. If
synchronization fails for a particular resource, the onSync hook invokes the compensate.js script, which attempts to revert the
original change by performing another update to the managed object. This change, in turn, triggers another implicit
synchronization operation to all external resources for which mappings are configured.

If the synchronization operation fails again, the compensate.js script is triggered a second time. This time, however, the script
recognizes that the change was originally called as a result of a compensation and aborts. IDM logs warning messages related to
the sync action (notifyCreate , notifyUpdate , notifyDelete), along with the error that caused the sync failure.

If failure compensation is not configured, any issues with connections to an external resource can result in out of sync data
stores.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 813

With the compensate.js script, any such errors will result in each data store retaining the information it had before implicit
synchronization started. That information is stored, temporarily, in the oldObject variable.

Schedule synchronization

You can schedule synchronization operations, such as liveSync and reconciliation, using Quartz triggers. IDM supports simple
triggers and cron triggers.

Use the trigger type that suits your scheduling requirements. Because simple triggers are not bound to the local timezone, they
are better suited to scenarios such as liveSync, where the requirement is to trigger the schedule at regular intervals, regardless of
the local time. For more information, refer to the Quartz documentation on SimpleTriggers and CronTriggers.

This section describes scheduling specifically for reconciliation and liveSync, and shows simple triggers in all the examples. You
can use the scheduler service to schedule any other event by supplying a script in which that event is defined. For information
about scheduling other events, refer to Schedule tasks and events.

Configure scheduled synchronization

Each scheduled reconciliation and liveSync task requires a schedule configuration, with the following format:

{
 "enabled" : boolean, true/false
 "type" : "string",
 "repeatInterval" : long integer,
 "repeatCount" : integer,
 "persisted" : boolean, true/false
 "startTime" : "(optional) time",
 "endTime" : "(optional) time",
 "schedule" : "cron expression",
 "misfirePolicy" : "optional, string",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info"
}

These properties are specific to the scheduler service, and are explained in Schedule tasks and events.

To schedule a reconciliation or liveSync task, set the invokeService property to either sync (for reconciliation) or provisioner
for liveSync.

The value of the invokeContext property depends on the type of scheduled event. For reconciliation, the properties are set as
follows:

{
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccount_managedUser"
 }
}

Synchronization PingIDM

814 Copyright © 2025 Ping Identity Corporation

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-05.html
http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-05.html
http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html
http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html

The mapping is referenced by its name in the mapping configuration.

For liveSync, the properties are set as follows:

{
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/ldap/account"
 }
}

The source property follows the convention for a pointer to an external resource object, and takes the form system/resource-
name/object-type .

Schedule liveSync using the admin UI

To configure liveSync using the admin UI, set up a liveSync schedule:

From the navigation bar, click Configure > Schedules, and then click Add Schedule.

Complete the schedule configuration, and click Save.

For more information about these fields, refer to Configure Scheduled Synchronization.

Clustered reconciliation

In a clustered deployment, you can configure reconciliation jobs to be distributed across multiple nodes in the cluster. Clustered
reconciliation is configured per mapping and can improve reconciliation performance, particularly for very large data sets.

Clustered reconciliation uses the paged reconciliation mechanism and the scheduler service to divide the source data set into
pages, and then to schedule reconciliation "sub-jobs" per page, distributing these sub-jobs across the nodes in the cluster.

emergency_home
When you schedule a reconciliation operation to run at regular intervals, do not set "concurrentExecution" : true .
This parameter enables multiple scheduled operations to run concurrently. You cannot launch multiple reconciliation
operations for a single mapping concurrently.

Important

1.

2.

info
The scheduler configuration assumes a simple trigger type by default, so the Cron-like Trigger field is
disabled. You should use simple triggers for liveSync schedules to avoid problems related to daylight savings
time. For more information, refer to Schedules and daylight savings time.
By default, the admin UI creates schedules using the scheduler service, rather than the configuration service.
To create this schedule in the configuration service, select the Save as Config Object option.
If your deployment enables writes to configuration files, this option also creates a corresponding schedule-
schedule-name.json file in your project’s conf directory.
For more information on the distinction between the scheduler service and the configuration service, refer to
Configure the scheduler service.

Note

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 815

Regular (non-clustered) reconciliation has two phases—a source phase and a target phase. Clustered reconciliation effectively has
three phases:

Source page phase

During this phase, reconciliation sub-jobs are scheduled in succession, page by page. Each source page job does the
following:

Executes a source query using the paging cookie from the invocation context.

Schedules the next source page job.

Performs the reconciliation of the source IDs returned by the query.

Writes statistics summary information which is aggregated so that you can obtain the status of the complete
reconciliation run by performing a GET on the recon endpoint.

On completion, writes the repo_id , source_id , and target_id to the repository.

Source phase completion check

This phase is scheduled when the source query returns null. This check runs, and continues to reschedule itself, as long as
source page jobs are running. When the completion check determines that all the source page jobs are complete, it
schedules the target phase.

Target phase

This phase queries the target IDs, then removes all of the IDs that correspond to the repo_id , source_id , and
target_id written by the source pages. The remaining target IDs are used to run the target phase, taking into account all
records on the target system that were not correlated to a source ID during the source phase sub-jobs.

Configure clustered reconciliation for a mapping

To specify that the reconciliation for a specific mapping should be distributed across a cluster, add the
clusteredSourceReconEnabled property to the mapping and set it to true . For example:

{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "clusteredSourceReconEnabled" : true,
 ...
}

•

•

•

•

•

info
When clustered reconciliation is enabled, source query paging is enabled automatically, regardless of the value that
you set for the reconSourceQueryPaging property in the mapping.

Note

Synchronization PingIDM

816 Copyright © 2025 Ping Identity Corporation

By default, the number of records per page is 10000. You can also enable target query paging with the reconTargetQueryPaging
property (defaults to false). To change the query page sizes, set the reconSourceQueryPageSize and
reconTargetQueryPageSize properties.

The following example enables target query paging and changes the target and source query page sizes:

{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "clusteredSourceReconEnabled" : true,
 "reconTargetQueryPaging" : true,
 "reconSourceQueryPageSize" : 12000,
 "reconTargetQueryPageSize" : 12000,
 ...
}

To set these properties using the admin UI, click Configure > Mappings, select the mapping to change, and click the Advanced
tab.

Clustered reconciliation has the following limitations:

A complete non-clustered reconciliation run is synchronous with the single reconciliation invocation.

By contrast, a clustered reconciliation is asynchronous. In a clustered reconciliation, the first execution is synchronous only
with the reconciliation of the first page. This job also schedules the subsequent pages of the clustered reconciliation to run
on other cluster nodes. When you schedule a clustered reconciliation or call the operation over REST, do not set
waitForCompletion to true , because you cannot wait for the operation to complete before the next operation starts.

Because this first execution does not encompass the entire reconciliation operation for that mapping, you cannot rely on
the Quartz concurrentExecution property to prevent two reconciliation operations from running concurrently. If you use
Quartz to schedule clustered reconciliations (as described in Configure Scheduled Synchronization), make sure that the
interval between scheduled operations exceeds the known run of the entire clustered reconciliation. The run-length of a
specific clustered reconciliation can vary. You must therefore build in appropriate buffer times between schedules, or use
a scheduled script that performs a GET on the recon/ endpoint, and dispatches the next reconciliation on a mapping only
when the previous reconciliation run has completed.

Clustered reconciliations can recover missing source pages (for example, if a cluster goes offline during a clustered
reconciliation run), except when used with a connector using server-side logic to handle paging that returns a static paging
cookie.

Clustered reconciliation progress

The sourceProcessedByNode property indicates how many records are processed by each node. You can verify the load
distribution per node by running a GET on the recon endpoint, for example:

•

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 817

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon"
...
 "started": "2017-05-11T10:04:59.563Z",
 "ended": "",
 "duration": 342237,
 "sourceProcessedByNode": {
 "node2": 21500,
 "node1": 22000
 }
}

You can also display the nodes responsible for each source page in the admin UI. Click on the relevant mapping and expand the
In Progress or Reconciliation Results item. The following image shows a clustered reconciliation in progress. The details include
the number of records that have been processed, the current duration of the reconciliation, and the load distribution, per node:

Figure 1. Clustered Reconciliation Results

Synchronization PingIDM

818 Copyright © 2025 Ping Identity Corporation

Cancel a clustered reconciliation

You cancel a clustered reconciliation in the same way as a non-clustered reconciliation, for example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon/90892122-5ceb-4bbe-86f7-94272df834ad-406025?_action=cancel"
{
 "_id": "90892122-5ceb-4bbe-86f7-94272df834ad-406025",
 "action": "cancel",
 "status": "INITIATED"
}

When the cancellation has completed, a query on that reconciliation ID will show the state and stage of the reconciliation as
follows:

{
 "_id": "90892122-5ceb-4bbe-86f7-94272df834ad-406025",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "CANCELED",
 "stage": "COMPLETED_CANCELED",
 "stageDescription": "reconciliation aborted.",
 "progress": {
 "source": {
 "existing": {
 "processed": 23500,
 "total": "23500"
 }
 },
 "target": {
 "existing": {
 "processed": 23498,
 "total": "?"
 },
 ...
}

In a clustered environment, all reconciliation operations are considered to be "cluster-friendly". This means that even if a
mapping is configured as "clusteredSourceReconEnabled" : false , you can view the in progress operation on any node in the
cluster, even if that node is not currently processing the reconciliation. You can also cancel a reconciliation in progress from any
node in the cluster.

Tuning reconciliation performance

By default, reconciliation is configured to perform optimally. In some cases, the default optimizations might not be suitable for
your deployment. The following sections describe these default optimizations, how they can be configured, and additional
methods you can use to improve reconciliation performance.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 819

Correlate empty target sets

To optimize performance, reconciliation does not correlate source objects to target objects if the set of target objects is empty
when the correlation is started. This considerably speeds up the process the first time reconciliation is run. You can change this
behavior for a specific mapping by adding the correlateEmptyTargetSet property to the mapping definition and setting it to
true . For example:

{
 "mappings": [
 {
 "name" : "systemMyLDAPAccounts_managedUser",
 "source" : "system/MyLDAP/account",
 "target" : "managed/user",
 "correlateEmptyTargetSet" : true
 },
]
}

Be aware that this setting will have a performance impact on the reconciliation process.

Prefetch links

All links are queried at the start of reconciliation and the results of that query are used. You can disable the link prefetching so
that the reconciliation process looks up each link in the database as it processes each source or target object. To disable link
prefetching, add the prefetchLinks property to your mapping, and set it to false :

{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 "prefetchLinks" : false
 }
]
}

Be aware that this setting will have a performance impact on the reconciliation process.

Parallel reconciliation threads

By default, reconciliation is multithreaded; numerous threads are dedicated to the same reconciliation run. Multithreading
generally improves reconciliation performance. The default number of threads for a single reconciliation run is 10 (plus the main
reconciliation thread). Under normal circumstances, you should not need to change this number. However the default might not
be appropriate in the following situations:

The hardware has many cores and supports more concurrent threads. As a rule of thumb for performance tuning, start
with setting the thread number to twice the number of cores.

•

Synchronization PingIDM

820 Copyright © 2025 Ping Identity Corporation

The source or target is an external system with high latency or slow response times. Threads may then spend considerable
time waiting for a response from the external system. Increasing the available threads enables the system to prepare or
continue with additional objects.

To change the number of threads, set the taskThreads property in your mapping:

"mappings" : [
 {
 "name" : "systemCsvfileAccounts_managedUser",
 "source" : "system/csvfile/account",
 "target" : "managed/user",
 "taskThreads" : 20
 ...
 }
]

A zero value runs reconciliation as a serialized process, on the main reconciliation thread.

Improve reconciliation query performance

Reconciliation operations are processed in two phases; a source phase and a target phase. In most reconciliation configurations,
source and target queries make a read call to every record on the source and target systems to determine candidates for
reconciliation. On slow source or target systems, these frequent calls can incur a substantial performance cost.

To improve query performance in these situations, you can preload the entire result set into memory on the source or target
system, or on both systems. Subsequent read queries on known IDs are made against the data in memory, rather than the data
on the remote system. For this optimization to be effective, the entire result set must fit into the available memory on the system
for which it is enabled.

The optimization works by defining a sourceQuery or targetQuery in the synchronization mapping that returns not just the ID,
but the complete object.

The following example query loads the full result set into memory during the source phase of the reconciliation. The example
uses a common filter expression, called with the _queryFilter keyword. The query returns the complete object:

"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQuery" : {
 "_queryFilter" : "true"
 },
 ...

IDM attempts to detect what data has been returned. The autodetection mechanism assumes that a result set that includes three
or more fields per object (apart from the _id and rev fields) contains the complete object.

You can explicitly state whether a query is configured to return complete objects by setting the value of sourceQueryFullEntry
or targetQueryFullEntry in the mapping. The setting of these properties overrides the autodetection mechanism.

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 821

Setting these properties to false indicates that the returned object is not the complete object. This might be required if a query
returns more than three fields of an object, but not the complete object. Without this setting, the autodetect logic would assume
that the complete object was being returned. IDM uses only the IDs from this query result. If the complete object is required, the
object is queried on demand.

Setting these properties to true indicates that the complete object is returned. This setting is typically required only for very
small objects, for which the number of returned fields does not reach the threshold required for the auto-detection mechanism
to assume that it is a full object. In this case, the query result includes all the details required to pre-load the full object.

The following excerpt indicates that the full objects are returned and that IDM should not autodetect the result set:

"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQueryFullEntry" : true,
 "sourceQuery" : {
 "_queryFilter" : "true"
 },
 ...

By default, all the attributes defined in the connector configuration are loaded into memory. If your mapping uses only a small
subset of the attributes in the connector configuration, you can restrict your query to return only those attributes required for
synchronization by using the _fields parameter with the query filter.

The following excerpt loads only a subset of attributes into memory, for all users in an LDAP directory.

"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQuery" : {
 "_queryFilter" : "true",
 "_fields" : "cn,sn,dn,uid,employeeType,mail"
 },
 ...

Paging reconciliation query results

Improve Reconciliation Query Performance describes how to improve reconciliation performance by loading all entries into
memory to avoid making individual requests to the external system for every ID. However, this optimization depends on the
entire result set fitting into the available memory on the system for which it is enabled. For particularly large data sets (for
example, data sets of hundreds of millions of users), having the entire data set in memory might not be feasible.

info
The default source query for clustered reconciliations and for paged reconciliations is a queryFilter that returns the
full source objects, not just their IDs. So, source queries for clustered and paged reconciliations are optimized for
performance by default.

Note

Synchronization PingIDM

822 Copyright © 2025 Ping Identity Corporation

To alleviate this constraint, you can use reconciliation paging, which breaks down extremely large data sets into chunks. It also
lets you specify the number of entries that should be reconciled in each chunk or page.

Reconciliation paging is disabled by default, and can be enabled per mapping. To configure reconciliation paging, set the
reconSourceQueryPaging property to true and set the reconSourceQueryPageSize in the synchronization mapping:

{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "reconSourceQueryPaging" : true,
 "reconSourceQueryPageSize" : 100,
 ...
 }

The value of reconSourceQueryPageSize must be a positive integer, and specifies the number of entries that will be processed in
each page. If reconciliation paging is enabled but no page size is set, a default page size of 1000 is used.

Asynchronous reconciliation

Reconciliation can work in tandem with workflows to provide additional business logic to the reconciliation process. You can
define scripts to determine the action that should be taken for a particular reconciliation situation. A reconciliation process can
launch a workflow after it has assessed a situation, and then perform the reconciliation or some other action.

emergency_home
If you are reconciling from a JDBC database using the Database Table connector, you must set the _sortkeys
property in the source query and ensure that the corresponding column is indexed in the database.
The following excerpt of a mapping configures paged reconciliation queries using the Database Table connector:

{
 "mappings" : [
 {
 "name" : "systemHrdb_managedUser",
 "source" : "system/db/users",
 "target" : "managed/user",
 "reconSourceQueryPaging" : true,
 "reconSourceQueryPageSize" : 1000,
 "sourceQueryFullEntry" : true,
 "sourceQuery" : {
 "_queryFilter" : "true",
 "_sortKeys" : "email"
 },
 ...
]
}

Important

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 823

For example, you might want a reconciliation process to assess new user accounts that need to be created on a target resource.
However, new user account creation might require some kind of approval from a manager before the accounts are actually
created. The initial reconciliation process can assess the accounts that need to be created, then launch a workflow to request
management approval for those accounts. The workflow performs the sync action, based upon the situation assessed during
reconciliation (and provided to the workflow through the ASYNC action). The workflow then calls the sync endpoint with the
performAction action and triggers a synchronization operation for the specified object.

In this scenario, the defined script returns ASYNC for new accounts, and the reconciliation engine does not continue processing
the given object. The script then initiates an asynchronous process which, on completion, performs an explicit sync of the source
object.

A sample configuration for this scenario is available in openidm/samples/sync-asynchronous , and described in Asynchronous
reconciliation using workflow.

Configure asynchronous reconciliation Using a workflow

Create the workflow definition file (.xml or .bar file) and place it in the openidm/workflow directory. For more
information about creating workflows, refer to Create workflows.

Modify the mapping for the situation or situations that should call the workflow. Reference the workflow name in the
configuration for that situation.

For example, the following mapping excerpt calls the managedUserApproval workflow if the situation is assessed as
ABSENT :

{
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
}

In the sample configuration, the workflow makes an explicit call to the sync endpoint with the performAction action
(openidm.action('sync', 'performAction', content, params)).

You can also use this kind of explicit synchronization to perform a specific action on a source or target record, regardless of the
assessed situation.

To call such an operation over the REST interface, specify the source, and/or target IDs, the mapping, and the action to be taken.
The action can be any one of the supported reconciliation actions: CREATE, UPDATE, DELETE, LINK, UNLINK, EXCEPTION,
REPORT, NOREPORT, ASYNC, IGNORE .

The following example calls the DELETE action on user bjensen , whose _id in the LDAP directory is
uid=bjensen,ou=People,dc=example,dc=com . The user is deleted in the target resource; in this case, the repository.

1.

2.

Synchronization PingIDM

824 Copyright © 2025 Ping Identity Corporation

The following example creates a link between a managed object and its corresponding system object. Such a call is useful in the
context of manual data association, when correlation logic has linked an incorrect object, or when IDM has been unable to
determine the correct target object.

In this example, there are two separate target accounts (scarter.user and scarter.admin) that should be mapped to the
managed object. This call creates a link to the user account and specifies a link qualifier that indicates the type of link that will be
created:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/sync?_action=performAction&action=LINK
 &sourceId=4b39f74d-92c1-4346-9322-d86cb2d828a8&targetId=scarter.user
 &mapping=managedUser_systemCsvfileAccounts&linkQualifier=user"
{
 "status": "OK"
}

For more information about linking to multiple accounts, refer to Map a Single Source Object to Multiple Target Objects.

Import bulk data

The bulk import service lets you import large numbers of external entries over REST. You import entries from a comma-separated
values (CSV) file, to a specified managed object type in the IDM repository. Bulk import works as follows:

Loads bulk CSV entries and stores them temporarily (in the IDM repository) as JSON objects

Creates a temporary mapping between those entries and the managed object store in the repository

Performs a reconciliation between the JSON objects and the objects in the repository

info
The _id must be URL-encoded in the REST call:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/sync?
_action=performAction&sourceId=uid%3Dbjensen%2Cou%3DPeople%2Cdc%3Dexample%2Cdc%3Dcom&mapping=
 systemLdapAccounts_ManagedUser&action=DELETE"
{
 "status": "OK"
}

Note

•

•

•

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 825

To import bulk CSV entries into the repository, using the REST API, follow these steps:

Generate a CSV template

The first time you upload entries, you must generate a CSV template. The template is essentially an empty CSV file with one
header row that matches the managed object type to which you are importing. In most cases, you will be importing data that fits
the managed/user object model, but you can import any managed object type, such as roles and assignments.

To generate the CSV template, send a GET request to the openidm/csv/template endpoint. The following request generates a
CSV template for the managed user object type:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/csv/template?resourceCollection=managed/user&_fields=header&_mimeType='text/
plain'"
{
 "_id": "template",
 "header": "\"userName\",\"givenName\",\"sn\",\"mail\",\"description\",\"accountStatus\",
\"telephoneNumber\",
 \"postalAddress\",\"city\",\"postalCode\",\"country\",\"stateProvince\",\"preferences/updates\",
 \"preferences/marketing\""
}

The template is generated based on the specified resourceCollection , and includes a single header row. The names of each
header column are derived from the schema of the managed object type. The template includes only a subset of managed user
properties that can be represented by CSV fields.

Only the following managed object properties are included in the header row:

Properties of type string , boolean , and number

Properties that do not start with an underscore (such as _id or _rev)

If you are importing entries to managed/user , the bulk import facility assumes that self-service password reset is enabled.
This is because the import does not support upload of hashed passwords.

Properties whose scope is not private

Set the parameters _fields=header and _mimeType=text/csv to download the template as a CSV file.

When you have generated the template, export your external data to CSV format, using the headers in the generated template.

warning
The bulk import service assumes the CSV file is the authoritative data source. If you run an import more than
once, the import overwrites all of the properties of the managed object (including timestamps) with the values
in the CSV file.
The bulk import service assumes a singular type . If an array of type attributes is submitted, it sets the type
as the last element of the array.

Warning

•

•

•

•

•

Synchronization PingIDM

826 Copyright © 2025 Ping Identity Corporation

Upload a CSV file

You can use the bulk import service with a CSV file up to 50MBytes large and less than 100,000 records. If you need to import a
larger file or more records, divide your data into chunks and import each file separately.

You can increase the maximum file size by changing the value of the maxRequestSizeInMegabytes property in your conf/
servletfilter-upload.json file.

You need to use a CSV template to perform a bulk import. For more information, refer to Generate a CSV template.

After formatting your CSV file to match your template’s structure, upload the file to the IDM repository with the following request:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--form upload=@/path/to/example-users.csv \
--request POST \
"http://localhost:8080/upload/csv/managed/user?uniqueProperty=userName"
{
 "importUUIDs": [
 "3ebd514f-bdd7-491f-928f-21b72f44e381"
]
}

--form (-F)

This option causes curl to POST data using the Content-Type multipart/form-data , which lets you upload binary files.
To indicate that the form content is a file, prefix the file name with an @ sign.

To import more than one file at once, specify multiple --form options, for example:

--form upload=@/path/to/example-users-a-j.csv \
--form upload=@/path/to/example-users-k-z.csv \

uniqueProperty (required)

This parameter lets you correlate existing entries, based on a unique value field. This is useful if you need to upload the
same file a number of times (for example, if data in the file changes, or if some entries in the file contained errors). You
can specify any unique value property here. You can also correlate on more than one property by specifying multiple,
comma-delimited unique properties.

A successful upload generates an array of importUUID s. You need these UUIDs to perform other operations on the import
records.

emergency_home
Note that the endpoint (upload/csv) is not an IDM endpoint.

Important

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 827

Query bulk imports

A query on the csv/metadata endpoint returns the import ID, the data structure (header fields in the CSV file), a recon ID, and a
number of fields indicating the status of the import:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/csv/metadata/?_queryFilter=true"
{
 "result": [
 {
 "_id": "3ebd514f-bdd7-491f-928f-21b72f44e381",
 "_rev": "000000003e8ef4f7",
 "header": [
 "userName",
 "givenName",
 "sn",
 "mail",
 "description",
 "accountStatus",
 "country"
],
 "reconId": "2e2cf41a-c4b8-4dda-9d92-6e0af65a15fe-6528",
 "filename": "example-users.csv",
 "resourcePath": "managed/user",
 "total": 1000,
 "success": 1000,
 "failure": 0,
 "created": 1000,
 "updated": 0,
 "unchanged": 0,
 "begin": "2020-04-17T16:31:02.955Z",
 "end": "2020-04-17T16:31:09.861Z",
 "cancelled": false,
 "importDeleted": false,
 "tempRecords": 0,
 "purgedTempRecords": true,
 "purgedErrorRecords": false,
 "authId": "openidm-admin",
 "authzComponent": "internal/user"
 },
 {
 "_rev": "00000000d4392fc8"
 }
],
 ...
}

Synchronization PingIDM

828 Copyright © 2025 Ping Identity Corporation

Limit query to a specific object type

Use a _queryFilter parameter to restrict your query to imports to a specific managed object type. For example, this
_queryFilter limits the query to uploads to the managed user object:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/csv/metadata/?_queryFilter=/resourcePath+eq+"managed/user"'
{
 "result": [
 {
 "_id": "82d9a643-8b03-4cec-86fc-3e09c4c2f01c",
 "_rev": "000000009b3ff60b",
 "header": [
 "userName",
 "givenName",
 "sn",
 "mail",
 "description",
 "accountStatus",
 "country"
],
 "reconId": "417dae3b-c939-4191-acbf-6eb1b9e802af-53335",
 "filename": "example-users.csv",
 "resourcePath": "managed/user",
 "total": 1001,
 "success": 1000,
 "failure": 1,
 "created": 0,
 "updated": 0,
 "unchanged": 1000,
 "begin": "2020-04-20T13:12:03.028Z",
 "end": "2020-04-20T13:12:05.222Z",
 "cancelled": false,
 "importDeleted": false,
 "tempRecords": 0,
 "purgedTempRecords": true,
 "purgedErrorRecords": false,
 "authId": "openidm-admin",
 "authzComponent": "internal/user"
 }
],
 ...
}

Handle failed import records

If a bulk import is unsuccessful for any records, the failure attribute in the result payload returned has a positive integer
value.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 829

If you encounter a failure, download the failed records, correct the failures in the CSV file, and run the import again.

To download the failed records, send a GET request to the endpoint export/csvImportFailures/importUUID , for example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
--header "Accept-API-Version: resource=1.0" \
"http://localhost:8080/export/csvImportFailures/82d9a643-8b03-4cec-86fc-3e09c4c2f01c"
userName, givenName, sn, mail, ..., _importError
emacheke, Edward, Macheke, emacheke, ..., "{code=403, reason=Forbidden, message=Policy validation
 failed, detail={result=false, failedPolicyRequirements=[{policyRequirements=[
 {policyRequirement=VALID_EMAIL_ADDRESS_FORMAT}], property=mail}]}}"

The output indicates the failed record or records, and the reason for the failure, in the _importError field. In this example, the
import failed because of a policy validation error—the email address is not the correct format.

Cancel an import in progress

If an import is taking too long or if you have noticed problems with the import data, you can cancel it. To cancel an in-progress
import, send a POST request with the cancel action to the openidm/csv/metadata/importUUID endpoint. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/csv/metadata/92971c92-67bb-4ae7-b41b-96d249b0b2aa/?_action=cancel"
{
 "status": "OK"
}

Change the HTTP request timeout

The default timeout for the bulk import servlets is 30000 milliseconds (30 seconds). This parameter is set in your resolver/
boot.properties file, as follows:

openidm.servlet.timeoutMillis=30000

If you are importing a very large number of records, you might need to increase the HTTP request timeout to prevent requests
timing out.

warning
IDM does not scan for possible CSV injection attacks on uploaded files. Do not edit the downloaded CSV file with
Microsoft Excel, as this can expose your data to CSV injection.

Warning

Synchronization PingIDM

830 Copyright © 2025 Ping Identity Corporation

https://owasp.org/www-community/attacks/CSV_Injection
https://owasp.org/www-community/attacks/CSV_Injection

In test environments, you can set this parameter to 0 to disable the request timeout. You should not disable the timeout in a
production environment because no timeout can lead to DDoS attacks where thousands of slow HTTP connections are made.

For a list of all REST endpoints related to bulk import, refer to Bulk import.

Synchronization reference

The synchronization engine is one of the core IDM services. You configure the synchronization service through a mappings
property that specifies mappings between objects that are managed by the synchronization engine.

{
 "mappings": [object-mapping object, ...]
}

Object-mapping objects

An object-mapping object specifies the configuration for a mapping of source objects to target objects. The name , source , and
target properties are mandatory. Other properties are optional or implicit (that is, they have a default value if not set).

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 831

{
 "correlationQuery" : script object,
 "correlationScript" : script object,
 "defaultSourceFields" : [list of strings],
 "defaultTargetFields" : [list of strings],
 "displayName" : string,
 "enableLinking" : boolean,
 "enableSync" : boolean,
 "linkQualifiers" : [list of strings] or script object,
 "links" : string,
 "name" : string,
 "onCreate" : script object,
 "onDelete" : script object,
 "onLink" : script object,
 "onMapping" : script object,
 "onUnlink" : script object,
 "onUpdate" : script object,
 "optimizeAssignmentSync" : boolean,
 "policies" : [policy object, ...],
 "postMapping" : script object,
 "properties" : [property object, ...],
 "queuedSync" : { property object },
 "reconAssociation" : { property object },
 "reconProgressStateUpdateInterval" : integer,
 "reconSourceQueryPageSize" : integer,
 "reconSourceQueryPaging" : boolean,
 "reconTargetQueryPageSize" : integer,
 "reconTargetQueryPaging" : boolean,
 "result" : script object,
 "runTargetPhase" : boolean,
 "source" : string,
 "sourceCondition" : script object or queryFilter string,
 "sourceIdsCaseSensitive" : boolean,
 "sourceQueryFullEntry" : boolean,
 "syncAfter" : [list of strings],
 "target" : string,
 "targetIdsCaseSensitive" : boolean,
 "targetQueryFullEntry" : boolean,
 "taskThreads" : integer,
 "triggerSyncProperties" : [list of JSON pointers],
 "validSource" : script object,
 "validTarget" : script object
}

Mapping object properties

correlationQuery

script object, optional

A script that yields a query object to query the target object set when a source object has no linked target. The syntax for
writing the query depends on the target system of the correlation. For examples of correlation queries, refer to Writing
Correlation Queries. The source object is provided in the source property in the script scope.

correlationScript

script object, optional

Synchronization PingIDM

832 Copyright © 2025 Ping Identity Corporation

A script that goes beyond a correlationQuery of a target system. Used when you need another method to determine
which records in the target system relate to the given source record. The syntax depends on the target of the correlation.
For information about defining correlation scripts, refer to Writing Correlation Scripts.

defaultSourceFields

list of strings, optional

Allows specifying which fields should be used for read and query requests made on source objects and resource
collections.

Set this value to * unless you only need a specific set of fields to be returned.

defaultTargetFields

list of strings, optional

Allows specifying which fields should be used for read and query requests made on target objects and resource
collections.

Set this value to * unless you only need a specific set of fields to be returned.

displayName

string, optional

The mapping name displayed in the UI.

enableLinking

boolean, true or false

Specifies whether links should be maintained between source and target objects for a mapping.

Default : true

enableSync

boolean, true or false

Specifies whether automatic synchronization (liveSync and implicit synchronization) should be enabled for a specific
mapping. For more information, refer to Disable Automatic Synchronization Operations.

Default : true

linkQualifiers

list of strings or script object, optional

Enables mapping of a single source object to multiple target objects.

Example: "linkQualifiers" : ["employee", "customer"] or

"linkQualifiers" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "if (returnAll) {

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 833

 ['contractor', 'employee', 'customer', 'manager']
 } else {
 if(object.type === 'employee') {
 ['employee', 'customer', 'manager']
 } else {
 ['contractor', 'customer']
 }
 }"
 }

If a script object, the script must return a list of strings.

links

string, optional

Enables reuse of the links created in another mapping. Example: "systemLdapAccounts_managedUser" reuses the links
created by a previous mapping whose name is "systemLdapAccounts_managedUser" .

name

string, required

Uniquely names the object mapping. Used in the link object identifier.

onCreate

script object, optional

A script to execute when a target object is to be created, after property mappings have been applied. In the root scope,
the source object is provided in the source property, the projected target object in the target property, and the link
situation that led to the create operation in the situation property. Properties on the target object can be modified by
the script. If a property value is not set by the script, IDM falls back on the default property mapping configuration. If the
script throws an exception, the target object creation is aborted.

onDelete

script object, optional

A script to execute when a target object is to be deleted, after property mappings have been applied. In the root scope, the
source object is provided in the source property, the target object in the target property, and the link situation that led
to the delete operation in the situation property. If the script throws an exception, the target object deletion is aborted.

onLink

script object, optional

A script to execute when a source object is to be linked to a target object, after property mappings have been applied. In
the root scope, the source object is provided in the source property, and the projected target object in the target
property.

Note that, although an onLink script has access to a copy of the target object, changes made to that copy will not be
saved to the target system automatically. If you want to persist changes made to target objects by an onLink script, you
must explicitly include a call to the action that should be taken on the target object (for example openidm.create ,
openidm.update or openidm.delete) within the script.

Synchronization PingIDM

834 Copyright © 2025 Ping Identity Corporation

In the following example, when an LDAP target object is linked, the "description" attribute of that object is updated with
the value "Active Account" . A call to openidm.update is made within the onLink script, to set the value.

"onLink" : {
 "type" : "text/javascript",
 "source" : "target.description = 'Active Account';
 openidm.update('system/ldap/account/' + target._id, null, target);"
}

If the script throws an exception, target object linking is aborted.

onMapping

script object, optional

A script that is run as part of a mapping. For example, a script that applies effective assignments as part of the mapping.
This is run after the mappings have been applied, but before onUpdate scripts are executed.

onUnlink

script object, optional

A script to execute when a source and a target object are to be unlinked, after property mappings have been applied. In
the root scope, the source object is provided in the source property, and the target object in the target property.

Although an onUnlink script has access to a copy of the target object, changes made to that copy will not be saved to the
target system automatically. If you want to persist changes made to target objects by an onUnlink script, you must
explicitly include a call to the action that should be taken on the target object (for example, openidm.create ,
openidm.update or openidm.delete) within the script.

In the following example, when an LDAP target object is unlinked, the description attribute of that object is updated
with the value Inactive Account . A call to openidm.update is made within the onUnlink script, to set the value.

"onUnlink" : {
 "type" : "text/javascript",
 "source" : "target.description = 'Inactive Account';
 openidm.update('system/ldap/account/' + target._id, null, target);"
}

If the script throws an exception, target object unlinking is aborted.

onUpdate

script object, optional

A script to execute when a target object is to be updated, after property mappings have been applied. In the root scope,
the source object is provided in the source property, the projected target object in the target property, and the link
situation that led to the update operation in the situation property. Any changes that the script makes to the target
object will be persisted when the object is finally saved to the target resource. If the script throws an exception, the target
object update is aborted.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 835

optimizeAssignmentSync

boolean

When set to true , a synchronization event is only triggered by modifications to assignments if those modifications are
relevant to that particular mapping. When set to false (the default), a synchronization event is triggered for all members
of a role or assignment if the relationships or attributes for an assignment are modified.

policies

array of policy objects, optional

Specifies a set of link conditions and associated actions to take in response.

postMapping

script object, optional

A script to execute when sync has been performed on a managed object. This is run after the source object has been
successfully synchronized with the target system.

properties

array of property-mapping objects, optional

Specifies mappings between source object properties and target object properties, with optional transformation scripts.
refer to Property Object Properties.

queuedSync

list of properties, optional

Specifies the queued synchronization configuration.

reconAssociation

list of properties, optional

Specifies the recon association configuration.

reconProgressStateUpdateInterval

integer, optional

Overrides the number of reconciliation operations required before the reconciliation progress state statistics are persisted
to the repository. A value of 50 will write statistics to the repository every 50 operations.

Default : 1024 , minimum : 1 .

emergency_home
Don’t include effectiveAssignments in triggerSyncProperties as it negates all performance improvements
provided by optimizeAssignmentSync.

Important

Synchronization PingIDM

836 Copyright © 2025 Ping Identity Corporation

reconSourceQueryPageSize

integer

Sets the page size for reconciliation source queries, if paging is enabled.

Default : 10000

reconSourceQueryPaging

boolean, true or false

Specifies whether paging should be used for reconciliation source queries.

Default for non-clustered reconciliation : false

Default for clustered reconciliation : true

reconTargetQueryPageSize

integer

Sets the page size for reconciliation target queries, if paging is enabled.

Default : 10000

reconTargetQueryPaging

boolean, true or false

Specifies whether paging should be used for reconciliation target queries.

Default for non-clustered reconciliation : false

Default for clustered reconciliation : true

result

script object, optional

A script executed after a reconciliation finishes.

The variables available to a result script are as follows:

runTargetPhase

boolean, true or false

•

•

•

•

source Provides statistics about the source phase of the reconciliation
target Provides statistics about the target phase of the reconciliation
global Provides statistics about the entire reconciliation operation
context Information related to the current operation, such as source and target.
mappingConfig A configuration object representing the mapping being processed.
reconState Provides the state of reconciliation operation; such as, success, failure, or active.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 837

Specifies whether reconciliation operations should run both the source and target phase. To avoid queries on the target
resource, set to false .

Default : true

source

string, required

Specifies the path of the source object set. Example: "managed/user" .

sourceCondition

script object or queryFilter string, optional

A script or query filter that determines if a source object should be included in the mapping. If no sourceCondition
element (or validSource script) is specified, all source objects are included in the mapping.

sourceIdsCaseSensitive

boolean, true or false

Consider case sensitivity when linking source IDs. Only effective if this mapping defines links, ignored if the mapping re-
uses another mapping’s links.

Default : true

sourceQueryFullEntry

boolean, true or false, optional

Specifies whether the defined source query returns full object data (true) or IDs only (false).

No default. If not set in the configuration, IDM will attempt to auto-detect the setting, based on the query results.

syncAfter

list of strings, optional

The specified mapping must be synchronized after all mappings in this list.

target

string, required

Specifies the path of the target object set. Example: "system/ldap/account" .

targetIdsCaseSensitive

boolean, true or false

Consider case sensitivity when linking target IDs. Only effective if this mapping defines links, ignored if the mapping re-
uses another mapping’s links.

Default : true

Synchronization PingIDM

838 Copyright © 2025 Ping Identity Corporation

targetQueryFullEntry

Boolean true or false , optional

Specifies whether the defined target query returns full object data (true) or IDs only (false).

No default. If not set in the configuration, IDM will attempt to auto-detect the setting, based on the query results.

taskThreads

integer, optional

Sets the number of threads dedicated to the same reconciliation run.

Default : 10

triggerSyncProperties

list, optional

A list of JsonPointers to fields in the source object whose changes should trigger a synchronization operation.

validSource

script object, optional

A script that determines if a source object is valid to be mapped. The script yields a boolean value: true indicates the
source object is valid; false can be used to defer mapping until some condition is met. In the root scope, the source
object is provided in the source property. If the script is not specified, then all source objects are considered valid.

validTarget

script object, optional

A script used during the target phase of reconciliation that determines if a target object is valid to be mapped. The script
yields a boolean value: true indicates that the target object is valid; false indicates that the target object should not be
included in reconciliation. In the root scope, the target object is provided in the target property. If the script is not
specified, then all target objects are considered valid for mapping.

Property objects

A property object specifies how the value of a target property is determined.

{
 "target" : string,
 "source" : string,
 "transform" : script object,
 "condition" : script object,
 "default": value
}

Property object properties

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 839

target

string, required

Specifies the path of the property in the target object to map to.

source

string, optional

Specifies the path of the property in the source object to map from. If not specified, then the target property value is
derived from the script or default value.

transform

script object, optional

A script to determine the target property value. The root scope contains the value of the source in the source property, if
specified. If the source property has a value of "" , the entire source object of the mapping is contained in the root
scope. The resulting value yielded by the script is stored in the target property.

condition

script object, optional

A script to determine whether the mapping should be executed or not. The condition has an "object" property available
in root scope, which (if specified) contains the full source object. For example "source": "(object.email != null)" .
The script is considered to return a boolean value.

default

any value, optional

Specifies the value to assign to the target property if a non-null value is not established by source or transform . If not
specified, the default value is null .

Policy objects

A policy object specifies a link condition and the associated actions to take in response.

{
 "condition" : optional, script object,
 "situation" : string,
 "action" : string or script object
 "postAction" : optional, script object
}

Policy object properties

condition

script object or queryFilter condition, optional

Applies a policy, based on the link type, for example "condition" : "/linkQualifier eq \"user\"" .

Synchronization PingIDM

840 Copyright © 2025 Ping Identity Corporation

A queryFilter condition can be expressed in two ways—as a string ("condition" : "/linkQualifier eq \"user\"") or a
map, for example:

"condition" : {
 "type" : "queryFilter",
 "filter" : "/linkQualifier eq \"user\""
}

It is generally preferable to express a queryFilter condition as a map.

A condition script has the following variables available in its scope: object and linkQualifier .

situation

string, required

Specifies the situation for which an associated action is to be defined.

action

string or script object, required

Specifies the action to perform. If a script is specified, the script is executed and is expected to yield a string containing the
action to perform.

The action script has the following variables available in its scope: source , target , sourceAction , linkQualifier ,
and recon .

postAction

script object, optional

Specifies the action to perform after the previously specified action has completed.

The postAction script has the following variables available in its scope: source , target , action , sourceAction ,
linkQualifier , and reconID . sourceAction is true if the action was performed during the source reconciliation
phase, and false if the action was performed during the target reconciliation phase. For more information, refer to How
Synchronization Situations Are Assessed.

Script Object

Script objects take the following form.

{
 "type" : "text/javascript",
 "source": string
}

info
No postAction script is triggered if the action is either IGNORE or ASYNC.

Note

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 841

type

string, required

The script type.

IDM supports "text/javascript" and "groovy" .

source

string, required

Specifies the source code of the script to be executed.

Links

By default, links are maintained between source and target objects in mappings. This behavior is governed by the
enableLinking property in the mapping. If enableLinking is set to false , links are not maintained.

You might want to disable linking in the case of a bulk import or during data migration.

To maintain links between source and target objects in mappings, IDM stores an object set in the repository. The object set
identifier follows this scheme:

links/mapping

Here, mapping represents the name of the mapping for which links are managed.

Link entries have the following structure:

{
 "_id":string,
 "_rev":string,
 "linkType":string,
 "firstId":string
 "secondId":string,
}

_id

string

The identifier of the link object.

_rev

string, required

The value of link object’s revision.

linkType

string, required

Synchronization PingIDM

842 Copyright © 2025 Ping Identity Corporation

The type of the link. Usually the name of the mapping which created the link.

firstId

string, required

The identifier of the first of the two linked objects.

secondId

string

The identifier of the second of the two linked objects.

Queries

IDM performs the following queries on a link object set:

Find link(s) for a given firstId object identifier.

SELECT * FROM links WHERE linkType = value AND firstId = value

Although a single result makes sense, this query is intended to allow multiple results so that this scenario can be handled
as an exception.

Select link(s) for a given second object identifier.

SELECT * FROM links WHERE linkType = value AND secondId = value

Although a single result makes sense, this query is intended to allow multiple results so that this scenario can be handled
as an exception.

Reconciliation stages

IDM performs reconciliation on a per-mapping basis. The process of reconciliation for a given mapping includes these stages:

Iterate through all objects for the object set specified as source . For each source object, carry out the following steps.

Look for a link to a target object in the link object set, and perform a correlation query (if defined).

Determine the link condition, as well as whether a target object can be found.

Determine the action to perform based on the policy defined for the condition.

Perform the action.

Keep track of the target objects for which a condition and action has already been determined.

Write the results.

1.

2.

1.

1.

2.

3.

4.

5.

6.

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 843

Iterate through all object identifiers for the object set specified as target . For each identifier, carry out the following
steps:

Find the target in the link object set.

Determine if the target object was handled in the first phase.

Determine the action to perform based on the policy defined for the condition.

Perform the action.

Write the results.

Iterate through all link objects, carrying out the following steps.

If the reconId is "my" , then skip the object.

If the reconId is not recognized, then the source or the target is missing.

Determine the action to perform based on the policy.

Perform the action.

Store the reconId identifer in the mapping to indicate that it was processed in this run.

REST API

External synchronized objects expose an API to request immediate synchronization. This API includes the following requests and
responses.

Request

Example:

POST /openidm/system/csvfile/account/jsmith?_action=liveSync HTTP/1.1

Response (success)

Example:

HTTP/1.1 204 No Content
...

Response (synchronization failure)

Example:

2.

1.

2.

3.

4.

3.

1.

2.

3.

4.

info
To optimize a reconciliation operation, the reconciliation process does not attempt to correlate source objects to
target objects if the set of target objects is empty when the correlation is started. For information on changing this
default behaviour, refer to Correlate Empty Target Sets.

Note

Synchronization PingIDM

844 Copyright © 2025 Ping Identity Corporation

HTTP/1.1 409 Conflict
...
[JSON representation of error]

Reconciliation duration metrics

Obtaining the Details of a Reconciliation describes how to obtain the details of a reconciliation run over REST. This section
provides more information on the metrics returned when you query the recon endpoint. Reconciliation is processed as a series
of distinct tasks. The durationSummary property indicates the period of time spent on each task. You can use this information to
address reconciliation performance bottlenecks.

The following sample output shows the kind of information returned for each reconciliation run:

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 845

{
 "_id": "3bc72717-a4bb-4871-b936-3a5a560c1a7c-37",
 "duration": 781561,
 "durationSummary": {
 "auditLog": {
 ...
 },
 ...
 "sourceObjectQuery": {
 "count": 100,
 "max": 96,
 "mean": 14,
 "min": 6,
 "stdDev": 16,
 "sum": 1450
 },
 "sourcePagePhase": {
 "count": 1,
 "max": 20944,
 "mean": 20944,
 "min": 20944,
 "stdDev": 0,
 "sum": 20944
 },
 "sourceQuery": {
 "count": 1,
 "max": 120,
 "mean": 120,
 "min": 120,
 "stdDev": 0,
 "sum": 120
 },
 "targetPhase": {
 "count": 1,
 "max": 0,
 "mean": 0,
 "min": 0,
 "stdDev": 0,
 "sum": 0
 },
 "targetQuery": {
 "count": 1,
 "max": 19657,
 "mean": 19657,
 "min": 19657,
 "stdDev": 0,
 "sum": 19657
 }
 },
 ...
}

The specific reconciliation tasks that are run depend on the configuration for that mapping. For example, the sourcePagePhase is
run only if paging is enabled. The linkQuery is run only for non-clustered reconciliation operations, because an initial query of all
links does not make sense if a single source page query is being run.

Synchronization PingIDM

846 Copyright © 2025 Ping Identity Corporation

Recon tasks

The following list describes all the possible tasks that can be run for a single reconciliation:

sourcePhase

This phase runs only for non-clustered, non-paged reconciliations. The total duration (sum) is the time spent processing all
records on the source system.

sourcePagePhase

Queries and processes individual objects in a page, based on their IDs. This phase is run only for clustered reconciliations
or for non-clustered reconciliations that have source paging configured. The total duration (sum) is the total time spent
processing source pages across all cluster nodes. This processing occurs in parallel across all cluster nodes, so it is normal
for the sourcePagePhase duration to exceed the total reconciliation duration.

sourceQuery

Obtains all IDs on the source system, or in a specific source page.

sourceObjectQuery

Queries the individual objects on the source system or page, based on their IDs.

validSourceScript

Processes any scripts that should be run to determine if a source object is valid to be mapped.

linkQuery

Queries any existing links between source and target objects.

This phase includes the following tasks:

sourceLinkQuery

Queries any existing links from source objects to target objects.

targetLinkQuery

Queries any existing links from target objects that were not processed during the sourceLinkQuery phase.

info
When the sourceQuery returns a null paging cookie, indicating that there are no more source IDs to reconcile,
the clustered reconciliation process dispatches a scheduled job named sourcePageCompletionCheck .
This job checks for remaining source page jobs on the scheduler. If there are no remaining source page jobs,
the sourcePageCompletionCheck schedules the target phase. If there are still source page jobs to process, the
sourcePageCompletionCheck schedules another instance of itself to perform these checks again after a few
seconds.
Because the target phase reconciles all IDs that were not reconciled during the source phase, it cannot start
until all of the source pages are complete. Final reconciliation statistics cannot be generated and logged until
all source page jobs have completed, so the sourcePageCompletionCheck runs even if the target phase is not
enabled.

Note

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 847

linkQualifiersScript

Runs any link qualifier scripts. For more information, refer to Map a Single Source Object to Multiple Target
Objects.

onLinkScript

Processes any scripts that should be run when source and target objects are linked.

onUnlinkScript

Processes any scripts that should be run when source and target objects are unlinked.

deleteLinkObject

Deletes any links that are no longer relevant between source and target objects.

correlationQuery

Processes any configured correlation queries. For more information, refer to Writing Correlation Queries.

correlationScript

Processes any configured correlation scripts. For more information, refer to Writing Correlation Scripts.

onMappingScript

For roles, processes the script that applies the effective assignments as part of the mapping.

activePolicyScript

Sets the action and active policy based on the current situation.

activePolicyPostActionScript

Processes any scripts configured to run after policy validation.

targetPhase

The aggregated result for time spent processing records on the target system.

targetQuery

Queries all IDs on the target system. The list of IDs is restricted to IDs that have not already been linked to a source ID
during the source phase. The target query generates a list of orphan IDs that must be reconciled if the target phase is not
disabled.

targetObjectQuery

Queries the individual objects on the target system, based on their IDs.

validTargetScript

Processes any scripts that should be run to determine if a target object is valid to be mapped.

Synchronization PingIDM

848 Copyright © 2025 Ping Identity Corporation

onCreateScript

Processes any scripts that should be run when a new target object is created.

updateTargetObject

Updates existing linked target objects, based on the configured situations and actions.

onUpdateScript

Processes any scripts that should be run when a target object is updated.

deleteTargetObject

Deletes any objects on the target resource that must be removed in accordance with the defined synchronization actions.

onDeleteScript

Processes any scripts that should be run when a target object is deleted.

resultScript

Processes the script that is executed when a reconciliation process has finished.

propertyMappingScript

Runs any scripts configured for when source and target properties are mapped.

postMappingScript

Processes any scripts that should be run when synchronization has been performed on the managed/user object.

onReconScript

Processes any scripts that should be run after source and target systems are reconciled.

auditLog

Writes reconciliation results to the audit log.

Metrics Collected

For each phase, the following metrics are collected:

count

The number of objects or records processed during that phase. For the sourcePageQuery phase, the count parameter
refers to the page size.

When the count statistic of a particular task refers to the number of records being reconciled, the sum statistic of that
task represents the total time across the total number of threads running in all nodes in the cluster. For example:

PingIDM Synchronization

Copyright © 2025 Ping Identity Corporation 849

"updateTargetObject": {
 "count": 1000000,
 "max": 1193,
 "mean": 35,
 "min": 11,
 "stdDev": 0,
 "sum": 35065991
}

max

The maximum time, in milliseconds, spent processing a record during that phase.

mean

The average time, in milliseconds, spent processing a record during that phase.

min

The minimum time, in milliseconds, spent processing a record during that phase.

stdDev

The standard deviation, which measures the variance of the individual values from the mean.

sum

The total amount of time, in milliseconds, spent during that phase.

Synchronization PingIDM

850 Copyright © 2025 Ping Identity Corporation

Security

Secure ForgeRock® Identity Management deployments.

Out-of-the-box, IDM is set up for ease of development and deployment. When you deploy IDM in production, there are specific
precautions you should take to minimize security breaches. This guide describes the IDM security mechanisms and strategies you
can use to reduce risk and mitigate threats to IDM security.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

General security considerations

This list does not provide best practices in network and system administration; rather, it suggests a number of security
mechanisms that you can expand upon.

Keep up-to-date on patches

To minimize security vulnerabilities, keep your operating systems, web and application servers, and other software up-to-
date. Malicious users will not hesitate to exploit the latest vulnerabilities.

Certificates and keys

Manage secrets, certificates, and keys.

*

Passwords

Store and manage passwords securely.

Network

Secure network connections to IDM resources.

Data

Secure IDM stored data.

Security PingIDM

852 Copyright © 2025 Ping Identity Corporation

https://www.forgerock.com
https://www.forgerock.com

ForgeRock maintains a list of security advisories you should follow. You should also follow similar lists from all of your
vendors.

Keep up-to-date on cryptographic methods and algorithms

Different cryptographic methods and algorithms are discovered and tested over time. Do not generate your keys with
outdated or insecure algorithms like RSA or SHA-1.

Turn off unnecessary features

The more features you enable, the more features you need to secure, patch, and audit. If you are not using something,
disable or uninstall it.

Limit access to the servers hosting IDM

A large part of protecting your environment is ensuring only authorized people can access your servers and applications
through the appropriate network, using the appropriate ports, and presenting strong enough credentials.

Ensure users connect to the systems through SSL/TLS and audit system access periodically.

Enforce security

Do not expect your users to follow security practices on their own; enforce it when possible by requiring secure
connections, password resets, and strong authentication methods.

Audit access and changes

Audit logs record all events that occurred. Operating systems also have audit logs to detect unauthorized login attempts
and changes to the software.

IDM has its own Audit logging service that adheres to the log structure common across the ForgeRock Identity Platform.

Secure the repository

Configuration data and, in most deployments, user data, are stored in the IDM repository. In production deployments, you must
secure access to the repository, and encrypt sensitive stored data.

For JDBC repositories, use a strong password for the connection to the repository and change at least the password of the
database user (openidm by default). When you change the database username and/or password, update your database
connection configuration file (conf/datasource.jdbc-default.json).

For a DS repository, change the bindDN and bindPassword for the directory server user in the ldapConnectionFactories
property in the repo.ds.json file.

In both cases, the password is encrypted on server startup, using the key specified in the idm.password.encryption secret ID in
conf/secrets.json .

Secure IDM data

Beyond relying on end-to-end availability of TLS/SSL to protect data, IDM also supports explicit encryption of data that goes on
the network. This can be important if the TLS/SSL termination happens prior to the final endpoint.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 853

https://backstage.forgerock.com/knowledge/kb/book/b21824339
https://backstage.forgerock.com/knowledge/kb/book/b21824339

IDM also supports encryption of data stored in the repository, using the symmetric keys specified in conf/secrets.json . This
protects against some attacks on the data store. Explicit table mapping is supported for encrypted string values.

IDM automatically encrypts sensitive data (such as passwords) in configuration files, and replaces cleartext values when the
system first reads the configuration file. Take care with configuration files that contain clear text values that IDM has not yet read
and encrypted.

Secure sensitive values

There are two ways to encode attribute values for managed objects—reversible encryption and salted hashing algorithms.
Examples of encoded attribute values include passwords, authentication questions, credit card numbers, and social security
numbers. If passwords are already encoded on the external resource, they are generally excluded from the synchronization
process. For more information, refer to Manage password policies.

You configure attribute value encoding, per schema property, in the managed object configuration. The following sections show
how to use reversible encryption and salted hash algorithms to encode attribute values.

Reversible encryption

Reversible encryption secures your data by encrypting it with a key. You should use encryption in cases where you need to
decrypt the sensitive data to synchronize it or provide it to another system.

The following managed object configuration encrypts and decrypts the password attribute using the default
idm.password.encryption purpose:

{
 "objects" : [
 {
 "name" : "user",
 ...
 "schema" : {
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 ...
 "encryption" : {
 "purpose" : "idm.password.encryption"
 },
 "scope" : "private",
 }
 ...
 }
]
}

lightbulb_2
Encryption keys are mapped to purposes in your project’s conf/secrets.json file. For more information, refer to
Secret stores.

Tip

Security PingIDM

854 Copyright © 2025 Ping Identity Corporation

You specify the encryption cipher or keysize by specifying a cipher property of the related encryption object in your
configuration.

The cipher property must be a valid transformation string as described in the javax.crypto.Cipher reference. The following
example demonstrates using the transformation AES/GCM/NoPadding :

...
 "encryption" : {
 "purpose": "idm.password.encryption",
 "cipher": "AES/GCM/NoPadding"
},

By default, IDM uses AES/CBC/PKCS5Padding —the Advanced Encryption Standard (AES) algorithm with cipher block chaining,
PKCS#5 padding, and a key size of 128.

To encrypt attribute values from the command-line, refer to encrypt.

Configure encryption using the admin UI

Select Configure > Managed Objects, and select the object type whose property values you want to encrypt (for example,
User).

On the Properties tab, select the property whose value should be encrypted and select the Encrypt checkbox.

Salted hash algorithms

To encode attribute values with salted hash algorithms, add the secureHash property to the attribute definition and define the
hashing configuration. The configuration depends on the algorithm that you choose.

If you do not specify an algorithm, SHA-256 is used by default. MD5 and SHA-1 are supported for legacy reasons, but should not
be used in production environments.

info
If you change the default cipher, you must specify the algorithm, mode, and padding. If the algorithm does not require
a mode, use NONE . If the algorithm does not require padding, use NoPadding .

Note

1.

2.

Supported Hashing Algorithms and Configuration Properties

Algorithm Config Property and Description

BCRYPT
cost

Value between 4 and 31. Default is 13 .

PingIDM Security

Copyright © 2025 Ping Identity Corporation 855

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html

Algorithm Config Property and Description

PBKDF2
hashLength

Byte-length of the generated hash. Default is 16 .

saltLength
Byte-length of the salt value. Default is 16 .

iterations
Number of cryptographic iterations. Default is 20000 .

hmac
HMAC algorithm. Default is SHA3-256 .
Supported values:

SHA-224

SHA-256

SHA-384

SHA-512

SHA3-224

SHA3-256

SHA3-384

SHA3-512

SCRYPT
hashLength

Byte-length of the generated hash, must be greater than or equal to 8. Default is
16 .

saltLength
Byte-length of the salt value. Default is 16 .

n
CPU/Memory cost. Must be greater than 1, a power of 2, and less than 2^(128 * r /
8). Default is 32768 .

p
Parallelization. Must be a positive integer less than or equal to Integer.MAX_VALUE /
(128 * r * 8). Default is 1 .

r
Block size. Must be greater than or equal to 1. Default is 8 .

SHA-256
saltLength

Byte-length of the salt value. Default is 16 .

•
•
•
•
•
•
•
•

info
This is the default hashing.
Note

Security PingIDM

856 Copyright © 2025 Ping Identity Corporation

The following list displays supported hash algorithms and example configurations:

SHA-256

"secureHash" : {
 "algorithm" : "SHA-256",
 "saltLength" : 16
}

SHA-384

"secureHash" : {
 "algorithm" : "SHA-384",
 "saltLength" : 16
}

SHA-512

"secureHash" : {
 "algorithm" : "SHA-512",
 "saltLength" : 16
}

Bcrypt

"secureHash" : {
 "algorithm" : "BCRYPT",
 "cost" : 16
}

Scrypt

"secureHash" : {
 "algorithm" : "SCRYPT",
 "hashLength" : 16,
 "saltLength" : 16,
 "n" : 32768,
 "r" : 8,
 "p" : 1
}

Algorithm Config Property and Description

SHA-384
saltLength

Byte-length of the salt value. Default is 16 .

SHA-512
saltLength

Byte-length of the salt value. Default is 16 .

PingIDM Security

Copyright © 2025 Ping Identity Corporation 857

Password-Based Key Derivation Function 2 (PBKDF2)

"secureHash" : {
 "algorithm" : "PBKDF2",
 "hashLength" : 16,
 "saltLength" : 16,
 "iterations" : 10,
 "hmac" : "SHA-256"
}

The following excerpt of a managed object configuration shows that values of the password attribute are hashed using the
SHA-256 algorithm:

{
 "objects" : [
 {
 "name" : "user",
 ...
 "schema" : {
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 ...
 "secureHash" : {
 "algorithm" : "SHA-256"
 },
 "scope" : "private",
 }
 ...
 }
]
}

To hash attribute values from the command-line, refer to secureHash.

emergency_home
Some one-way hash functions are designed to be computationally expensive. Functions such as PBKDF2, Bcrypt, and
Scrypt are designed to be relatively slow even on modern hardware. This makes them generally less susceptible to
brute force attacks. However, computationally expensive functions can dramatically increase response times. If you
use these functions, be aware of the performance impact and perform extensive testing before deploying your service
in production. Do not use functions like PBKDF2 and Bcrypt for any accounts that are used for frequent, short-lived
connections.
Hashing is a one-way operation, such that the original value cannot be recovered. Therefore, if you hash the value of
any property, you cannot synchronize that property value to an external resource. For managed object properties
with hashed values, you must either exclude those properties from the mapping or set a random default value if the
external resource requires the property.

Important

Security PingIDM

858 Copyright © 2025 Ping Identity Corporation

Configure hashing using the admin UI

You can set a property hash algorithm using the admin UI. However, only some algorithms and none of the enhanced
configuration options are supported.

Select Configure > Managed Objects, and select an object type (for example, User).

On the Properties tab, select a property to hash.

On the Property Name page, click the Privacy & Encryption tab, and select Hashed.

From the adjacent drop-down menu, select an algorithm.

Click Save.

Encrypted objects

Encrypted objects and properties, such as passwords, include a $crypto object, that has the following structure:

1.

2.

3.

4.

5.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 859

"password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "Gwi+AGrn+VBOTmyq+TTuuw==",
 "data": "+9i7XAXpWZBXYTVEOBkM+w==",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "4xtI88eFu5tgfm8ooq+yqQ==",
 "mac": "N1zsYo71M/b/G6iLOhNohA=="
 }
 }
}

Most of the properties in the encrypted object value are self-explanatory and indicate how the property was encrypted. Specific
IDM properties include the following:

The stableId indicates the key alias that was used to encrypt the property value.

The purpose refers to the secret ID used to encrypt the property value. For more information about secret IDs, refer to
Secret stores.

Encrypt and decrypt properties over REST

The openidm.encrypt and openidm.decrypt functions of the Resource API enable you to encrypt and decrypt property values.
To use these functions over the REST interface, run the ?_action=eval action on the script endpoint.

The following example uses the openidm.encrypt function to encrypt a password value:

•

•

Security PingIDM

860 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request POST \
--data '{
 "type": "text/javascript",
 "globals": {
 "val": {
 "myKey": "myPassword"
 }
 },
 "source":"openidm.encrypt(val,null,\"idm.password.encryption\");"
}' \
"https://localhost:8443/openidm/script?_action=eval"
{
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "qAS/eG7zdnFyK5H8lXvqTA==",
 "data": "zewf6hR1yjp34EFJqUGpdnzzFCPJs2IaX4V97jdQlSI=",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "A4pIiY6kG6t0uLyLmJAoWQ==",
 "mac": "sFDJqg0Mmp0Ftl+1q1Bjzw=="
 }
 }
}

The following example uses the openidm.decrypt function to decrypt the password value:

PingIDM Security

Copyright © 2025 Ping Identity Corporation 861

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request POST \
--data '{
 "type": "text/javascript",
 "globals": {
 "val": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "qAS/eG7zdnFyK5H8lXvqTA==",
 "data": "zewf6hR1yjp34EFJqUGpdnzzFCPJs2IaX4V97jdQlSI=",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "A4pIiY6kG6t0uLyLmJAoWQ==",
 "mac": "sFDJqg0Mmp0Ftl+1q1Bjzw=="
 }
 }
 }
 },
 "source":"openidm.decrypt(val);"
}' \
"https://localhost:8443/openidm/script?_action=eval"
{
 "myKey": "myPassword"
}

For more information, refer to openidm.encrypt and openidm.decrypt .

Sensitive files and directories

Protect IDM files from access by unauthorized users. In particular, prevent other users from reading files in at least the openidm/
resolver/ and openidm/security/ directories.

The objective is to limit access to the user that is running the service. Depending on the operating system and configuration, that
user might be root , Administrator , openidm , or something similar.

Protect sensitive files in Unix

Make sure that user and group ownership of the installation and project directories is limited to the user running the IDM
service.

Disable access of any sort for other users. One simple command for that purpose, from the /path/to/openidm
directory, is:

1.

2.

Security PingIDM

862 Copyright © 2025 Ping Identity Corporation

chmod -R o-rwx .

Protect sensitive files in Windows

The IDM process in Windows is typically run by the Local System service account.

If you are concerned about the security of this account, you can set up a service account that only has permissions for IDM-
related directories, then remove User access to the directories noted above. You should also configure the service account to
deny local and remote login. For more information, refer to the User Rights Assignment article in Microsoft’s documentation.

Read-only installation

One method of locking down the server is to install IDM on a read-only filesystem. To accomplish this, complete the procedure on
this page.

This procedure assumes that you have prepared the read-only volume appropriate for your Linux/UNIX installation environment
and that you have set up a regular Linux user named idm and a dedicated volume for the /idm directory.

Prep

Configure the dedicated volume device, /dev/volume in the /etc/fstab file, as follows:

/dev/volume/idm ext4 ro,defaults 1,2

When you run the mount -a command, the /dev/volume volume device is mounted on the /idm directory.

You can switch between read-write and read-only mode for the /idm volume with the following commands:

sudo mount -o remount,rw /idm
sudo mount -o remount,ro /idm

Confirm the result with the mount command, which should show that the /idm volume is mounted in read-only mode:

/dev/volumeon /idm type ext4 (ro)

Set up the /idm volume in read-write mode:

sudo mount -o remount,rw /idm

With the following commands, you can unpack the IDM binary in the /idm directory, and give user idm ownership of all
files in that directory:

1.

2.

3.

4.

5.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 863

https://technet.microsoft.com/en-us/library/dn221963.aspx
https://technet.microsoft.com/en-us/library/dn221963.aspx

sudo unzip /idm/IDM-8.0.0.zip
sudo chown -R idm.idm /idm

Redirect audit and logging data

After you have installed IDM on a read-only filesystem, redirect audit and logging data to writable volumes. This procedure
assumes a user idm with Linux administrative (superuser) privileges.

Create an external directory where IDM can send logging, auditing, and internal repository information:

sudo mkdir -p /var/log/openidm/audit
sudo mkdir /var/log/openidm/logs
sudo mkdir -p /var/cache/openidm/felix-cache
sudo mkdir /var/run/openidm

Alternatively, route audit data to a remote data store. For an example of how to send audit data to a MySQL repository,
refer to Direct audit information to MySQL.

Give the idm user ownership of the newly created directories:

sudo chown -R idm.idm /var/log/openidm
sudo chown -R idm.idm /var/cache/openidm
sudo chown -R idm.idm /var/run/openidm

Modify the following configuration files:

conf/audit.json

Make sure the handlerForQueries is the JSON audit event handler and change the logDirectory property to
the /var/log/openidm/audit subdirectory:

"eventHandlers" : [
 {
 "class" : "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config" : {
 "name" : "json",
 "logDirectory" : "/var/log/openidm/audit",
 ...
 },
 ...
 }
]

conf/logging.properties

Change the java.util.logging.FileHandler.pattern property as follows:

1.

2.

3.

Security PingIDM

864 Copyright © 2025 Ping Identity Corporation

java.util.logging.FileHandler.pattern = /var/log/openidm/logs/openidm%u.log

conf/config.properties

Activate and redirect the org.osgi.framework.storage property as follows:

If this value is not absolute, then the felix.cache.rootdir controls
how the absolute location is calculated. (See buildNext property)
org.osgi.framework.storage=&{felix.cache.rootdir|&{user.dir}}/felix-cache

The following property is used to convert a relative bundle cache
location into an absolute one by specifying the root to prepend to
the relative cache path. The default for this property is the
current working directory.
felix.cache.rootdir=/var/cache/openidm

Finishing touches

Adjust the value of the OPENIDM_PID_FILE in the startup.sh and shutdown.sh scripts. To do so for a default bash shell,
set the value of OPENIDM_PID_FILE for user idm by adding the following line to /home/idm/.bashrc :

export OPENIDM_PID_FILE=/var/run/openidm/openidm.pid

When you log in again as user idm , your OPENIDM_PID_FILE variable should redirect the process identifier file,
openidm.pid to the /var/run/openidm directory, ready for access by the shutdown.sh script.

While the volume is still mounted in read-write mode, start IDM normally:

path/to/openidm/startup.sh -p project-dir

The first startup of IDM either processes the signed certificate that you added, or generates a self-signed certificate, and
encrypts any passwords in the various configuration files.

Stop IDM.

info
Your setup may require additional redirection for the following:

Connectors. Depending on the connector, and the read-only volume, consider configuring connectors to direct
output to writable volumes.
Scripts. If you are using Groovy, examine the script configuration for your project. Make sure that output such
as to the groovy.target.directory is directed to an appropriate location, such as idm.data.dir .

Note

•

•

1.

info
For other shells, adjust your changes accordingly.

Note

2.

3.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 865

You can now mount the /idm directory in read-only mode. The configuration in /etc/fstab ensures that Linux mounts
the /idm directory in read-only mode on next system boot.

sudo mount -o remount,ro /idm

Reboot the system.

You can now start IDM, configured on a secure read-only volume.

path/to/openidm/startup.sh -p project-dir

Manage password policies

IDM provides password management features that help you enforce password policies, limit the number of passwords users
must remember, and allow users to reset and change their passwords.

Password policy

A password policy is a set of rules defining what sequence of characters constitutes an acceptable password. Acceptable
passwords generally are too complex for users or automated programs to generate or guess.

Password policies set requirements for password length, character sets that passwords must contain, dictionary words and other
values that passwords must not contain. Password policies also require that users not reuse old passwords, and that users
change their passwords on a regular basis.

IDM enforces password policy rules as part of the general policy service. The default password policy applies the following rules
to passwords as they are created and updated:

A password property is required for any user object.

The value of a password cannot be empty.

The password must include at least one capital letter.

The password must include at least one number.

The minimum length of a password is 8 characters.

The password cannot contain the user name, given name, or family name.

You can change these validation requirements, or include additional requirements, by configuring the policy for passwords.

Passwords are validated in several situations:

Password change and password reset

Password change refers to users changing their own passwords. Password reset refers to an administrator setting a user or
account password on behalf of a user.

4.

5.

6.

•

•

•

•

•

•

Security PingIDM

866 Copyright © 2025 Ping Identity Corporation

By default, IDM validates password values as they are provisioned.

Password recovery

Password recovery involves recovering a password or setting a new password when the password has been forgotten.

Password history

You can add validation to prevent reuse of previous password values. For more information, refer to Password history
policy.

Password expiration

You can use workflows to ensure that users are able to change expiring passwords or to reset expired passwords.

Password history policy

The sample described in Store multiple passwords for managed users shows how to set up a password history policy in a
scenario where users have multiple different passwords across resources. You can use the scripts provided in that sample to set
up a simple password history policy that prevents managed users from setting the same password that they used previously. The
default scripts do not evaluate the current password.

To create a password history policy based on the scripts in the multiple passwords sample, make the following changes to your
project:

Copy the pwpolicy.js script from the multiple passwords sample to your project’s script directory:

cp /path/to/openidm/samples/multiple-passwords/script/pwpolicy.js /path/to/openidm/my-project-dir/script/

The pwpolicy.js script contains an is-new policy definition that compares a new field value with the list of historical
values for that field.

The is-new policy takes a historyLength parameter that specifies the number of historical values on which the policy
should be enforced. This number must not exceed the historySize that you set in conf/managed.json to be passed to
the onCreate and onUpdate scripts.

Copy the onCreate-user-custom.js and onUpdate-user-custom.js scripts to your project’s script directory:

cp samples/multiple-passwords/script/onCreate-user-custom.js /my-project-dir/script/
cp samples/multiple-passwords/script/onUpdate-user-custom.js /my-project-dir/script/

These scripts validate the password history policy when a managed user is created or updated.

Update your policy configuration (conf/policy.json) to reference the new policy definition by adding the policy script to
the additionalFiles array:

1.

2.

3.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 867

{
 "type" : "text/javascript",
 "file" : "policy.js",
 "additionalFiles": ["script/pwpolicy.js"],
 ...
}

Update your project’s conf/managed.json file as follows:

Add a fieldHistory property to the managed user object:

"fieldHistory" : {
 "title" : "Field History",
 "type" : "object",
 "viewable" : false,
 "searchable" : false,
 "userEditable" : false,
 "scope" : "private"
}

The value of this field is a map of field names to a list of historical values for that field. These lists of values are used
by the is-new policy to determine if a new value has already been used.

Update the managed user object to call the scripts when a user is created or updated:

"name" : "user",
"onCreate" : {
 "type" : "text/javascript",
 "file" : "script/onCreate-user-custom.js",
 "historyFields" : [
 "password"
],
 "historySize" : 4
},
"onUpdate" : {
 "type" : "text/javascript",
 "file" : "script/onUpdate-user-custom.js",
 "historyFields" : [
 "password"
],
 "historySize" : 4
},
...

Add the is-new policy to the list of policies enforced on the password property of a managed user. Specify the
number of historical values that the policy should check in historyLength property:

4.

1.

2.

emergency_home
If you have any other script logic that is executed on these events, you must update the scripts to
include that logic, or add the password history logic to your current scripts.

Important

3.

Security PingIDM

868 Copyright © 2025 Ping Identity Corporation

"password" : {
 ...
 "policies" : [
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 },
 ...
 {
 "policyId" : "is-new",
 "params" : {
 "historyLength" : 4
 }
 },
 ...
]
}

You should now be able to test the password history policy by creating a new managed user, and having that user update their
password. If the user specifies the same password used within the previous four passwords, the update request is denied with a
policy error.

Multiple passwords per linked resource

You can store multiple passwords in a single managed user entry to enable synchronization of different passwords on different
external resources.

To store multiple passwords, extend the managed user schema to include additional properties for each target resource. You can
set separate policies on each of these new properties, to ensure that the stored passwords adhere to the password policies of the
specific external resources.

To use this custom managed object property and its policies to update passwords on an external resource, you must make the
corresponding configuration and script changes in your deployment. For a detailed sample that implements multiple passwords,
refer to Store multiple passwords for managed users. That sample can also help you set up password history policies.

Random passwords

In certain situations, you might want to generate a random password when users are created.

You can customize your user creation logic to include a randomly generated password that complies with the default password
policy. This functionality is included in the default crypto script, bin/defaults/script/crypto.js , but is not invoked by default.
For an example of how this functionality might be used, refer to the openidm/bin/defaults/script/onCreateUser.js script.
The following section of that file (commented out by default) means that users created through the admin UI, or directly over the
REST interface, will have a randomly generated password added to their entry:

PingIDM Security

Copyright © 2025 Ping Identity Corporation 869

if (!object.password) {

 // generate random password that aligns with policy requirements
 object.password = require("crypto").generateRandomString([
 { "rule": "UPPERCASE", "minimum": 1 },
 { "rule": "LOWERCASE", "minimum": 1 },
 { "rule": "INTEGERS", "minimum": 1 },
 { "rule": "SPECIAL", "minimum": 1 }
], 16);

}

The generated password can be encrypted or hashed, in accordance with the managed user schema, defined in conf/
managed.json . For more information, refer to Encoding Attribute Values. Synchronizing hashed passwords is not supported.

You can use this random string generation in a number of situations. Any script handler that is implemented in JavaScript can call
the generateRandomString function.

password property

To use a property other than the default password property to store passwords, you must change the following files:

policy.json

If you want to enforce password validation rules on a different property, change the password property in this file.

managed.json

Modify the password object in this file, which also includes password complexity policies.

sync.json

If you change the password property, make sure that you limit the change to the appropriate system, designated as
source or target .

selfservice-reset.json

If you are setting up self-service password reset, as described in Password reset, change the value of
identityPasswordField from password to the desired new property.

Every UI file that includes password as a property name

Whenever there’s a way for a user to enter a password, the associated HTML page will include a password entry. For
example, the LoginTemplate.html file includes the password property. A full list of default files with the password
property include:

_passwordFields.html

info
The changes made to scripts take effect after the time set in the recompile.minimumInterval, described in Script
configuration.

Note

•

Security PingIDM

870 Copyright © 2025 Ping Identity Corporation

_resetPassword.html

ConfirmPasswordDialogTemplate.html

EditPasswordPageView.html

LoginTemplate.html

MandatoryPasswordChangeDialogTemplate.html

resetStage-initial.html

UserPasswordTab.html

Email rate limiting

No rate limiting is applied to password reset emails, or any emails sent by the IDM server. This means that an attacker can
potentially spam a known user account with an infinite number of emails, filling that user’s inbox. In the case of password reset,
the spam attack can obscure an actual password reset attempt.

In a production environment, you must configure email rate limiting through the network infrastructure in which IDM runs.
Configure the network infrastructure to detect and prevent frequent repeated requests to publicly accessible web pages, such as
the password reset page. You can also handle rate limiting within your email server.

Secure network connections

This topic explains how to secure incoming connections and ports. As a general precaution in production environments, avoid
communication over insecure HTTP.

Use TLS/SSL

Use TLS/SSL to access IDM, ideally with mutual authentication so that only trusted systems can invoke each other. TLS/SSL
protects data on the network. Mutual authentication with strong certificates, imported into the truststore and keystore of each
application, provides a level of confidence for trusting application access.

Restrict REST access to the HTTPS port

In a production environment, you should restrict REST access to a secure port:

•

•

•

•

•

•

•

info
This list does not include any created custom UI files.

Note

PingIDM Security

Copyright © 2025 Ping Identity Corporation 871

Edit your project’s conf/jetty.xml file:

Comment out or delete the <Call name="addConnector"> code block that includes the openidm.port.http property.

Edit resolver/boot.properties :

Set the openidm.port.https port number.

Set the openidm.port.mutualauth port number.

Add the property openidm.https.enabled=true .

Use a certificate to secure REST access over HTTPS. You can use self-signed certificates in a test environment. In production, all
certificates should be signed by a certificate authority. The examples in this guide assume a CA-signed certificate named ca-
cert.pem .

Protect sensitive REST interface URLs

Anything attached to the router is accessible with the default policy, including the repository. If you do not need such access, deny
it in the authorization policy to reduce the attack surface.

In addition, you can deny direct HTTP access to system objects in production, particularly access to action . As a rule of thumb,
do not expose anything that is not used in production.

For an example that shows how to protect sensitive URLs, refer to Configure Access Control in access.json.

Enable HTTP Strict-Transport-Security

HTTP Strict-Transport-Security (HSTS) is a web security policy that forces browsers to make secure HTTPS connections to specified
web applications. HSTS can protect websites against passive eavesdropper and active man-in-the-middle attacks.

IDM provides an HSTS configuration, but it is disabled by default. To enable HSTS, locate the following excerpt in your conf/
jetty.xml file:

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

1.

info
Do not delete the <Call name="addConnector"> code blocks that contain the openidm.port.https and
openidm.port.mutualauth properties.

Note

2.

◦

◦

◦

Security PingIDM

872 Copyright © 2025 Ping Identity Corporation

<New id="tlsHttpConfig" class="org.eclipse.jetty.server.HttpConfiguration">
 ...
 <Call name="addCustomizer">
 <Arg>
 <New class="org.eclipse.jetty.server.SecureRequestCustomizer">
 <!-- Enable SNI Host Check when true -->
 <Arg name="sniHostCheck" type="boolean">true</Arg>
 <!-- Enable Strict-Transport-Security header and define max-age when >= 0 seconds -->
 <Arg name="stsMaxAgeSeconds" type="long">-1</Arg>
 <!-- If enabled, add includeSubDomains to Strict-Transport-Security header when true -->
 <Arg name="stsIncludeSubdomains" type="boolean">false</Arg>
 </New>
 </Arg>
 </Call>
...

Set the following arguments:

stsMaxAgeSeconds

This parameter sets the length of time, in seconds, that the browser should remember that a site can only be accessed
using HTTPS.

For example, the following setting applies the HSTS policy and remains in effect for an hour:

<Arg name="stsMaxAgeSeconds" type="long">3600</Arg>

stsIncludeSubdomains

If this parameter is true , the HSTS policy is applied to the domain of the issuing host as well as its subdomains:

<Arg name="stsIncludeSubdomains" type="boolean">true</Arg>

For more information about HSTS, click here.

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

PingIDM Security

Copyright © 2025 Ping Identity Corporation 873

https://www.tunetheweb.com/security/http-security-headers/hsts/
https://www.tunetheweb.com/security/http-security-headers/hsts/

Restrict the HTTP payload size

Restricting the size of HTTP payloads can protect the server against large payload HTTP DDoS attacks. IDM includes a servlet filter
that limits the size of an incoming HTTP request payload, and returns a 413 Request Entity Too Large response when the
maximum payload size is exceeded.

By default, the maximum payload size is 5MB. You can configure the maximum size in your project’s conf/servletfilter-
payload.json file. That file has the following structure by default:

{
 "classPathURLs" : [],
 "systemProperties" : { },
 "requestAttributes" : { },
 "scriptExtensions" : { },
 "initParams" : {
 "maxRequestSizeInMegabytes" : 5
 },
 "urlPatterns" : [
 "/*"
],
 "filterClass" : "org.forgerock.openidm.jetty.LargePayloadServletFilter"
}

Change the value of the maxRequestSizeInMegabytes property to set a different maximum HTTP payload size.

The remaining properties in this file are described in Register Additional Servlet Filters.

Deploy securely behind a load balancer

IDM prevents URL-hijacking, with the following code block in the conf/jetty.xml file:

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

Security PingIDM

874 Copyright © 2025 Ping Identity Corporation

<Call name="addCustomizer">
 <Arg>
 <New class="org.eclipse.jetty.server.SecureRequestCustomizer">
 <!-- Enable SNI Host Check when true -->
 <Arg name="sniHostCheck" type="boolean">true</Arg>
 <!-- Enable Strict-Transport-Security header and define max-age when >= 0 seconds -->
 <Arg name="stsMaxAgeSeconds" type="long">-1</Arg>
 <!-- If enabled, add includeSubDomains to Strict-Transport-Security header when true -->
 <Arg name="stsIncludeSubdomains" type="boolean">false</Arg>
 </New>
 </Arg>
</Call>

If you are deploying IDM behind a system such as a load balancer, firewall, or a reverse proxy, you must uncomment the next
section in jetty.xml , so that Jetty honors X-Forwarded-Host headers:

 <Call name="addCustomizer">
 <Arg>
 <New class="org.eclipse.jetty.server.ForwardedRequestCustomizer">
 <Set name="forcedHost">
 <Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>openidm.host</Arg>
 </Call>:<Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>openidm.port.https</Arg>
 </Call>
 </Set>
 </New>
 </Arg>
</Call>

Connect to IDM through a proxy server

Add the following JVM parameters to the value of OPENIDM_OPTS in your startup script (startup.sh or startup.bat):

-Dhttps.proxyHost

Hostname or IP address of the proxy server; for example, proxy.example.com or 192.168.0.1 .

-Dhttps.proxyPort

Port number used by IDM; for example, 8443 or 9443 .

Only set OPENIDM_OPTS if not already set
[-z "$OPENIDM_OPTS"] && OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dhttps.proxyHost=localhost -
Dhttps.proxyPort=8443"

Enable the ForwardedRequestCustomizer class so that Jetty honors X-Forwarded- headers.

To enable the class, uncomment the following excerpt in your conf/jetty.xml file:

1.

2.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 875

<Call name="addCustomizer">
 <Arg>
 <New class="org.eclipse.jetty.server.ForwardedRequestCustomizer">
 <Set name="forcedHost">
 <Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>openidm.host</Arg>
 </Call>:
 <Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>openidm.port.https</Arg>
 </Call>
 </Set>
 </New>
 </Arg>
</Call>

Learn more about this class in the Jetty documentation.

Protect against Cross-Site Request Forgery

IDM provides a filter to protect against Cross-Site Request Forgery (CSRF). The filter is disabled by default. To enable it, set the
following property in resolver/boot.properties :

openidm.csrfFilter.enabled=true

The filter requires the client to send a CSRF cookie (X-CSRF-Token) on every request. By default, this cookie is the JWT session
cookie (session-jwt), obtained on authentication. If your client uses a different cookie for authentication, set the name of that
cookie in the following property in resolver/boot.properties :

openidm.csrfFilter.authCookieName=session-jwt

If there are HTTP request paths that the CSRF filter should always allow, set these paths as comma-separated values of the
openidm.csrfFilter.pathWhitelistCSV property in resolver/boot.properties . For example:

openidm.csrfFilter.pathWhitelistCSV=/openidm/example,/openidm/my-project

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s
subject and returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you
must ensure your IDM server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

Security PingIDM

876 Copyright © 2025 Ping Identity Corporation

https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/ForwardedRequestCustomizer.html
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/ForwardedRequestCustomizer.html
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf

Stores, certificates, and keys

Encryption makes it possible to protect sensitive data. IDM depends on encryption to negotiate secure network connections and
to keep sensitive data confidential. Encryption in turn depends on keys which must be stored and secured. IDM stores keys in
secret stores, and supports the following secret store types:

File secret stores, which have one file that stores many secrets

Filesystem secret stores, which have many files that each store one secret

Property secret stores, which store secrets in properties

Hardware Security Modules (HSM) secret stores, which involve security devices (for example, a YubiKey)

Filesystem and property secret stores may be in the following formats:

PEM

PLAIN

BASE64

BASE64URL

The IDM keystore

IDM generates a number of encryption keys in a JCEKS keystore the first time the server starts up. These keys map to the secrets
defined in Mapping secretIDs to key aliases. The keystore and the keys are generated at startup and are not prepackaged. The
keys are generated only if they do not already exist. You cannot specify custom aliases for these default keys.

To use a different keystore type, such as PKCS #12, create the keystore and generate the keys before you start IDM. This prevents
IDM from generating the keys on startup. You can also convert the existing JCEKS keystore to a PKCS #12 keystore. If you use a
different keystore type, you must edit the openidm.keystore.type property (in the conf/secrets.json file) to match the new
type.

Use the keytool command to list the default encryption keys, as follows:

•

•

•

•

•

•

•

•

error
In production environments, avoid using self-signed certificates and certificates associated with insecure ciphers.

Caution

PingIDM Security

Copyright © 2025 Ping Identity Corporation 877

keytool \
-list \
-keystore /path/to/openidm/security/keystore.jceks \
-storepass changeit \
-storetype JCEKS
Keystore type: JCEKS
Keystore provider: SunJCE

Your keystore contains 5 entries

openidm-sym-default, Nov 5, 2019, SecretKeyEntry,
openidm-jwtsessionhmac-key, Nov 5, 2019, SecretKeyEntry,
selfservice, Nov 5, 2019, PrivateKeyEntry,
Certificate fingerprint (SHA-256): E9:0B:BA:FB:58:73:02:FC...:7B
openidm-selfservice-key, Nov 5, 2019, SecretKeyEntry,
openidm-localhost, Nov 5, 2019, PrivateKeyEntry,
Certificate fingerprint (SHA-256): 21:50:6C:90:C7:A7:F7:32...:1B

Change the default keystore password

The default keystore password is changeit . You should change this password in a production environment.

Shut down the server if it is running.

Use the keytool command to change the keystore password. The following command changes the keystore password to
newPassword :

keytool \
-storepasswd \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass changeit
New keystore password: newPassword
Re-enter new keystore password: newPassword

Change the passwords of the default encryption keys.

IDM uses the encryption keys listed in Mapping secretIDs to key aliases, whose passwords are also changeit by default.
The passwords of each of these keys must match the password of the keystore.

To get the list of keys in the keystore, run the following command:

info
If you are using IDM in a cluster, you must share these keys among all nodes in the cluster. The easiest way to do this
is to generate a keystore with the appropriate keys and share the keystore in some way; for example, by using a
filesystem that is shared between the nodes.

Note

emergency_home
Repeat this procedure on each node if you run multiple nodes in a cluster to ensure that the new password is present
on all nodes.

Important

1.

2.

3.

Security PingIDM

878 Copyright © 2025 Ping Identity Corporation

keytool \
-list \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Keystore type: JCEKS
Keystore provider: SunJCE

Your keystore contains 5 entries

openidm-sym-default, May 4, 2021, SecretKeyEntry,
selfservice, May 4, 2021, PrivateKeyEntry, Certificate fingerprint (SHA-256): fingerprint
openidm-jwtsessionhmac-key, May 4, 2021, SecretKeyEntry,
openidm-localhost, May 4, 2021, PrivateKeyEntry, Certificate fingerprint (SHA-256): fingerprint
openidm-selfservice-key, May 4, 2021, SecretKeyEntry,

Change the passwords of each default encryption key as follows:

keytool \
-keypasswd \
-alias openidm-localhost \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Enter key password for <openidm-localhost> changeit
New key password for <openidm-localhost>: newPassword
Re-enter new key password for <openidm-localhost>: newPassword

keytool \
-keypasswd \
-alias openidm-sym-default \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Enter key password for <openidm-sym-default> changeit
New key password for <openidm-sym-default>: newPassword
Re-enter new key password for <openidm-sym-default>: newPassword

keytool \
-keypasswd \
-alias openidm-selfservice-key \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Enter key password for <openidm-selfservice-key> changeit
New key password for <openidm-selfservice-key>: newPassword
Re-enter new key password for <openidm-selfservice-key>: newPassword

PingIDM Security

Copyright © 2025 Ping Identity Corporation 879

keytool \
-keypasswd \
-alias selfservice \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Enter key password for <selfservice> changeit
New key password for <selfservice>: newPassword
Re-enter new key password for <selfservice>: newPassword

keytool \
-keypasswd \
-alias openidm-jwtsessionhmac-key \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Enter key password for <openidm-jwtsessionhmac-key> changeit
New key password for <openidm-jwtsessionhmac-key>: newPassword
Re-enter new key password for <openidm-jwtsessionhmac-key>: newPassword

Configure a new expression resolver file to store only the keystore password:

Create a new directory in /path/to/openidm/resolver/ that will contain only the properties file for keystore
passwords. For example:

mkdir /path/to/openidm/resolver/keystore

Set the IDM_ENVCONFIG_DIRS environment variable to include the new directory:

export IDM_ENVCONFIG_DIRS=/path/to/openidm/resolver/,/path/to/openidm/resolver/keystore

Create a .json or .properties file in that secure directory, that contains the new keystore password as a
resolvable IDM property. For example, add one of the following files to that directory:

openidm.keystore.password=newPassword

4.

1.

emergency_home
Substituted properties are not encrypted by default. You must therefore secure access to this directory,
using the appropriate permissions.

Important

2.

3.

keystorepwd.properties

Security PingIDM

880 Copyright © 2025 Ping Identity Corporation

{
 "openidm" : {
 "keystore" : {
 "password" : "newPassword"
 }
 }
}

Restart IDM.

Secret stores

Secret stores are repositories for cryptographic keys and credentials. IDM supports the following secret store types:

File secret stores, which have one file that stores many secrets

Filesystem secret stores, which have many files that each store one secret

Property secret stores, which store secrets in properties

Hardware Security Module (HSM) secret stores, which involve security devices (for example, a YubiKey)

Configure secret stores

You can configure secret stores in your project’s conf/secrets.json file, which has the following default configuration:

keystorepwd.json

5.

•

•

•

•

PingIDM Security

Copyright © 2025 Ping Identity Corporation 881

{
 "stores" : [
 {
 "name" : "mainKeyStore",
 "class" : "org.forgerock.openidm.secrets.config.FileBasedStore",
 "config" : {
 "file" : "&{idm.data.dir}/security/keystore.jceks",
 "storetype" : "JCEKS",
 "providerName" : "SunJCE",
 "storePassword" : "changeit",
 "mappings" : [
 {
 "secretId" : "decrypt",
 "aliases" : [
 "openidm-sym-default"
],
 "types" : [
 "ENCRYPT",
 "DECRYPT"
]
 }
]
 }
 },
 {
 "name" : "mainTrustStore",
 "class" : "org.forgerock.openidm.secrets.config.FileBasedStore",
 "config" : {
 "file" : "&{idm.data.dir}/security/truststore",
 "storetype" : "JKS",
 "providerName" : "SUN",
 "storePassword" : "changeit",
 "mappings" : [
 {
 "secretId" : "sign",
 "aliases" : [
 "server-cert"
],
 "types" : [
 "SIGN"
]
 }
]
 }
 }
],
 "populateDefaults" : true
}

The mainKeyStore and mainTrustStore properties configure the default secret stores. IDM requires these properties in order
to start up. Do not change the property names because they are also provided to third-party products that need a single keystore
and a single truststore.

mainKeyStore

The main keystore references a Java Cryptography Extension Keystore (JCEKS) located at /path/to/openidm/security/
keystore.jceks .

Security PingIDM

882 Copyright © 2025 Ping Identity Corporation

mainTrustStore

The main truststore references a file-based truststore located at /path/to/openidm/security/truststore .

You can manage these keystores and truststores using the keytool command, included in your Java installation. For information
about the keytool command, refer to https://docs.oracle.com/en/java/javase/11/tools/keytool.html.

Each configured store has a name and class , and the following configuration properties:

file

For file-based secret stores, this property references the path to the store file, for example, &{idm.install.dir}/
security/keystore.jceks} . Hardware security modules do not have a file property.

storetype

The type of secret store. IDM supports a number of store types, including JCEKS, JKS, PKCS #11, and PKCS #12.

providerName

Sets the name of the cryptographic service provider; for example, SunPKCS11 or softHSM . If no provider is specified, the
JRE default is used.

storePassword

The password to the secret store. For the default IDM keystore and truststore, the password is changeit . You should
change this password in a production deployment, as described in Changing the default keystore password.

mappings

This object lets you map keys and certificates in the secret stores to functionality in IDM. A secrets mapping object has the
following structure:

{
 "secretId" : "idm.config.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}"]
}

secretId is the name of the secret. The secretId should indicate the purpose that the secret should be used for.
For example, idm.config.encryption indicates that the mapping is used to encrypt and decrypt sensitive
configuration properties, while idm.password.encryption indicates that the mapping is used to encrypt and
decrypt passwords.

types indicates what the keys are used for. The supported types are:

•

•

Type Definition

GENERIC Used for credentials, such as passwords

ENCRYPT Used to encrypt data

PingIDM Security

Copyright © 2025 Ping Identity Corporation 883

https://docs.oracle.com/en/java/javase/11/tools/keytool.html
https://docs.oracle.com/en/java/javase/11/tools/keytool.html

aliases are the key aliases in the secret store that are used for this purpose. You can add as many aliases as
necessary. The first alias in the list determines which alias is the active one. Active secrets are used for signature
generation and encryption.

The aliases in the default keystore are described in The IDM keystore.

The default secret IDs and the aliases they are mapped to are listed in Mapping secretIDs to key aliases.

Mapping secretIDs to key aliases

The following table describes the default secrets and their alias mappings:

Type Definition

DECRYPT Used to decrypt data

SIGN Used to sign data

VERIFY Used to verify data

•

info
All these properties have a resolvable property value by default; for example &{openidm.keystore.location} , that
allows you to use property value substitution. If no configuration expression has been set for a specific property, the
value following the vertical bar (|) is used. In the following property, the password is changeit unless you have set a
configuration expression in one of the property resolver locations:

"storePassword": "&{openidm.keystore.password|changeit}"

For more information, refer to Property value substitution.

Note

secretId alias Description Supported types

idm.default openidm-sym-default Encryption keystore for
legacy JSON objects that do
not contain a purpose value
in their $crypto block

ENCRYPT , DECRYPT

idm.config.encryption openidm-sym-default Encrypts configuration
information

ENCRYPT , DECRYPT

idm.password.encryption openidm-sym-default Encrypts managed user
passwords

ENCRYPT , DECRYPT

idm.jwt.session.module.en

cryption

openidm-localhost Encrypts JWT session tokens ENCRYPT , DECRYPT

idm.jwt.session.module.si

gning

openidm-jwtsessionhmac-

key

Signs JWT session tokens
using HMAC

SIGN , VERIFY

Security PingIDM

884 Copyright © 2025 Ping Identity Corporation

Filesystem secret stores

A filesystem secret store maps to a directory storing an arbitrary number of files that each contain one secret. When filesystem
secret stores are used, IDM reads the contents of a file with a name matching the secretId field in the secret store’s mapping
list.

Filesystem secret stores are useful to provide secrets from third-party secret stores like AWS Secrets Manager or Google Secrets
Manager. They can also be used to separate your secrets from your configuration files.

Filesystem secret stores may be encoded with the following encoding schemes:

PLAIN

PEM

BASE64

BASE64URL

The following configuration is an example of a filesystem secret store which is configured to use the /secrets directory and
contains a mapping for the idm.admin.password secret:

secretId alias Description Supported types

idm.selfservice.encryptio

n

openidm-selfservice-key Encrypts JWT self-service
tokens

ENCRYPT , DECRYPT

idm.selfservice.signing selfservice Signs JWT session tokens
using RSA

SIGN , VERIFY

idm.assignment.attribute.

encryption

openidm-sym-default Encrypts confidential
assignment attributes

ENCRYPT , DECRYPT

idm.rs.filter.client.secr

et

rsFilter/clientSecret

field in
authentication.json

The rsFilter
client_secret

GENERIC

idm.prometheus.password openidm.prometheus.passwo

rd property in
boot.properties

The password for
Prometheus

GENERIC

idm.workflow.email.passwo

rd

mail/password property in
workflow.json

The password for Workflow
emails

GENERIC

idm.http.client.proxy.pas

sword

openidm.http.client.proxy

.password property in
boot.properties

The password for the default
HTTP client proxy

GENERIC

•

•

•

•

PingIDM Security

Copyright © 2025 Ping Identity Corporation 885

{
 "name":"secretVolume",
 "class": "org.forgerock.openidm.secrets.config.FileSystemStore",
 "config": {
 "format": "PLAIN",
 "directory": "&{idm.install.dir}/secrets",
 "mappings": [
 {
 "secretId": "idm.admin.password",
 "types": [
 "GENERIC"
]
 }
]
 }
}

Example: Create a new user type

The following example creates a new type of static user, openidm-super , with a new secret, idm.super.password , kept in the
filesystem secret store. To configure the user:

In conf/authentication.json , add the following new user configuration:

{
 "name": "STATIC_USER",
 "properties": {
 "queryOnResource": "internal/user",
 "username": "openidm-super",
 "password": {
 "$purpose": {
 "name": "idm.super.password"
 }
 },
 "defaultUserRoles": [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
],
 "enabled": true
 }
}

In conf/secrets.json , add a new mapping for the idm.super.password secret:

{
 "secretId": "idm.super.password",
 "format": "PLAIN",
 "types": [
 "GENERIC"
]
}

1.

2.

Security PingIDM

886 Copyright © 2025 Ping Identity Corporation

In the directory that you have configured to be your filesystem secret store, create a file named idm.super.password and
populate it with your secret data.

Property secret stores

IDM servers can read keys and trusted certificates from properties that contain keys in Privacy-Enhanced Mail (PEM) format.

The following example configures a property-based secret store, and adds an RSA PEM secret whose purpose is to encrypt and
decrypt managed user passwords:

Add a PropertyBasedStore secret store definition to your conf/secrets.json file:

{
 "name": "pemStore",
 "class": "org.forgerock.openidm.secrets.config.PropertyBasedStore",
 "config": {
 "format": "PEM",
 "algorithm": "RSA",
 "mappings": [
 {
 "secretId": "idm.pem.purpose",
 "types": [
 "ENCRYPT",
 "DECRYPT"
]
 }
]
 }
}

Create an RSA PEM key:

openssl genrsa -out private-key.pem 3072

Display the private key. For example:

more private-key.pem
-----BEGIN RSA PRIVATE KEY-----
MIIG4w...lrDgao
-----END RSA PRIVATE KEY-----

Use a text editor to convert your certificate to a single line, replacing line breaks with newline characters (\n). For
example, on UNIX systems:

info
The format parameter is optional. It only needs to be used if the secret is encoded using a different scheme
than the rest of the secret volume.

Note

3.

1.

2.

3.

4.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 887

awk 'NF {sub(/\r/, ""); printf "%s\\n",$0;}' private-key.pem
-----BEGIN RSA PRIVATE KEY-----\nMIIG4w...lrDgao\n-----END RSA PRIVATE KEY-----\n%

Copy the single-line private key and paste it into your resolver/boot.properties file, as a value of the secretId that
you specified in Step 1. For example:

idm.pem.purpose=-----BEGIN RSA PRIVATE KEY-----\nMIIG4w...lrDgao\n-----END RSA PRIVATE KEY-----\n%

Modify the encryption purpose for the managed user password in your managed object configuration to use the
PropertyBaseStore secret store that you created in Step 1:

"password" : {
 "title" : "Password",
 "description" : "Password",
 "type" : "string",
 "viewable" : false,
 "searchable" : false,
 "userEditable" : true,
 "encryption" : {
 "purpose" : "idm.pem.purpose",
 "cipher" : "RSA/ECB/OAEPWithSHA-256AndMGF1Padding"
 }
 ...
}

IDM now encrypts and decrypts passwords with the RSA PEM key.

Hardware secret stores

This topic demonstrates how to use a PKCS #11 device, such as a hardware security module (HSM), to store the keys used to
secure communications. IDM supports retrieval of secrets from HSMs either locally or over the network.

HSM configuration

This section assumes that you have access to an HSM device (or a software emulation of an HSM device, such as SoftHSM) and
that the HSM provider has been configured and initialized.

The command-line examples in this section use SoftHSM for testing purposes. Before you start, set the correct environment
variable for the SoftHSM configuration, for example:

5.

6.

info
On Windows systems using the 64-bit JDK, the Sun PKCS #11 provider is available only from JDK version 1.8b49. If you
want to use a PKCS #11 device on Windows, use the 32-bit version of the JDK, or upgrade your 64-bit JDK to version
1.8b49 or higher.

Note

Security PingIDM

888 Copyright © 2025 Ping Identity Corporation

export SOFTHSM2_CONF=/path/to/softhsm/2.0.0/etc/softhsm2.conf

Also initialize slot 0 on the provider, with a command similar to the following:

softhsm2-util --init-token --slot 0 --label "My token 1"

This token initialization requests two PINs—an SO PIN and a user PIN. You can use the SO PIN to reinitialize the token. The user
PIN is provided to IDM so that it can interact with the token. Remember the values of these PINs because you will use them later
in this section.

The PKCS #11 standard uses a configuration file to interact with the HSM device. The following example shows a basic
configuration file for SoftHSM:

name = softHSM
library = /path/to/softhsm/2.0.0/lib/softhsm/libsofthsm2.so
slot = 1
attributes(generate, *, *) = {
 CKA_TOKEN = true
}
attributes(generate, CKO_CERTIFICATE, *) = {
 CKA_PRIVATE = false
}
attributes(generate, CKO_PUBLIC_KEY, *) = {
 CKA_PRIVATE = false
}
attributes(*, CKO_SECRET_KEY, *) = {
 CKA_PRIVATE = false
 CKA_EXTRACTABLE = true
}

Your HSM configuration file must include at least the following settings:

name

A suffix to identify the HSM provider. This example uses the softHSM provider.

library

The path to the PKCS #11 library.

slot

The slot number to use, specified as a string. Make sure that the slot you specify here has been initialized on the HSM
device.

The attributes specify additional PKCS #11 attributes that are set by the HSM. For a complete list of these attributes, refer to
the PKCS #11 Reference.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 889

https://docs.oracle.com/en/java/javase/11/security/pkcs11-reference-guide1.html#GUID-30E98B63-4910-40A1-A6DD-663EAF466991
https://docs.oracle.com/en/java/javase/11/security/pkcs11-reference-guide1.html#GUID-30E98B63-4910-40A1-A6DD-663EAF466991

HSM default encryption keys

When IDM first starts up, it generates a number of encryption keys required to encrypt specific data. If you are using an HSM
provider, you must generate these keys manually. The secret keys must use an HMAC algorithm.

The openidm-sym-default key is the default symmetric key required to encrypt the configuration. The following
command generates that key in the HSM provider. The -providerArg must point to the HSM configuration file described
in HSM configuration.

keytool \
-genseckey \
-alias openidm-sym-default \
-keyalg HmacSHA256 \
-keysize 256 \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password:

Enter the password of your HSM device. If you are using SoftHSM, enter your user PIN as the keystore password.

The openidm-selfservice-key is used by the Self-Service UI to encrypt managed user passwords and other sensitive
data. Generate the openidm-selfservice-key key:

emergency_home
If you are using the JWT Session Module, you must set CKA_EXTRACTABLE = true for secret keys in your HSM
configuration file. For example:

attributes(*, CKO_SECRET_KEY, *) = {
 CKA_PRIVATE = false
 CKA_EXTRACTABLE = true
}

The HSM provider must allow secret keys to be extractable because the authentication service serializes the JWT
Session Module key and passes it to the authentication framework as a base 64-encoded string.

Important

info
This procedure assumes that your HSM configuration file is located at /path/to/hsm/hsm.conf .

Note

1.

2.

Security PingIDM

890 Copyright © 2025 Ping Identity Corporation

keytool \
-genseckey \
-alias openidm-selfservice-key \
-keyalg HmacSHA256 \
-keysize 256 \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password: user PIN

Enter the password of your HSM device. If you are using SoftHSM, enter your user PIN as the keystore password.

The openidm-jwtsessionhmac-key is used by the JWT session module to encrypt JWT session cookies. Generate the JWT
session module key:

keytool \
-genseckey \
-alias openidm-jwtsessionhmac-key \
-keyalg HmacSHA256 \
-keysize 256 \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password: user PIN

The openidm-localhost certificate is used to support SSL/TLS. Generate the certificate:

3.

4.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 891

keytool \
-genkey \
-alias openidm-localhost \
-keyalg RSA \
-keysize 2048 \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password: user PIN
What is your first and last name?
 [Unknown]: localhost
What is the name of your organizational unit?
 [Unknown]:
What is the name of your organization?
 [Unknown]: OpenIDM Self-Signed Certificate
What is the name of your City or Locality?
 [Unknown]:
What is the name of your State or Province?
 [Unknown]:
What is the two-letter country code for this unit?
 [Unknown]:
Is CN=localhost, OU=Unknown, O=OpenIDM Self-Signed Certificate, L=Unknown, ST=Unknown, C=Unknown
correct?
 [no]: yes

The selfservice certificate secures requests from the End User UI. Generate the certificate:

keytool \
-genkey \
-alias selfservice \
-keyalg RSA \
-keysize 2048 \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password: user PIN
What is your first and last name?
 [Unknown]: localhost
What is the name of your organizational unit?
 [Unknown]:
What is the name of your organization?
 [Unknown]: OpenIDM Self Service Certificate
What is the name of your City or Locality?
 [Unknown]:
What is the name of your State or Province?
 [Unknown]:
What is the two-letter country code for this unit?
 [Unknown]:
Is CN=localhost,O=OpenIDM Self Service Certificate,OU=None,L=None,ST=None,C=None?
 [no]: yes

5.

Security PingIDM

892 Copyright © 2025 Ping Identity Corporation

If you are not using the HSM provider for the truststore, you must add the certificates generated in the previous two steps
to the default IDM truststore.

If you are using the HSM provider for the truststore, you can skip this step.

To add the openidm-localhost certificate to the IDM truststore, export the certificate from the HSM provider, then
import it into the truststore:

keytool \
-export \
-alias openidm-localhost \
-file exportedCert \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password: user PIN
Certificate stored in file exportedCert keytool \
-import \
-alias openidm-localhost \
-file exportedCert \
-keystore /path/to/openidm/security/truststore
Enter keystore password: changeit
Owner: CN=localhost, OU=Unknown, O=OpenIDM Self-Signed Certificate, L=...
Issuer: CN=localhost, OU=Unknown, O=OpenIDM Self-Signed Certificate, L=...
Serial number: 5d2554bd
Valid from: Fri Aug 19 13:11:54 SAST 2016 until: Thu Nov 17 13:11:54 SAST 2016
Certificate fingerprints:

 MD5: F1:9B:72:7F:7B:79:58:29:75:85:82:EC:79:D8:F9:8D
 SHA1: F0:E6:51:75:AA:CB:14:3D:C5:E2:EB:E5:7C:87:C9:15:43:19:AF:36
 SHA256: 27:A5:B7:0E:94:9A:32:48:0C:22:0F:BB:7E:3C:22:2A:64:B5:45:24:14:70:...
 Signature algorithm name: SHA256withRSA
 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 7B 5A 26 53 61 44 C2 5A 76 E4 38 A8 52 6F F2 89 .Z&SaD.Zv.8.Ro..
0010: 20 04 52 EE .R.
]
]
Trust this certificate? [no]: yes
Certificate was added to keystore

The default truststore password is changeit.

Configure IDM to support an HSM provider

To enable IDM to use an HSM provider, make the following configuration changes:

In your secret store configuration (conf/secrets.json), change the mainKeyStore and mainTrustStore to reference
the HSM. For example:

6.

1.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 893

{
 "stores": [
 {
 "name": "mainKeyStore",
 "class": "org.forgerock.openidm.secrets.config.HsmBasedStore",
 "config": {
 "storetype": "&{openidm.keystore.type|PKCS11}",
 "providerName": "&{openidm.keystore.provider|SunPKCS11-softHSM}",
 "storePassword": "&{openidm.keystore.password|changeit}",
 "mappings": [
 {
 "secretId" : "idm.default",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}"]
 },
 {
 "secretId" : "idm.config.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}"]
 },
 {
 "secretId" : "idm.password.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}"]
 },
 {
 "secretId" : "idm.jwt.session.module.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.https.keystore.cert.alias|openidm-localhost}"]
 },
 {
 "secretId" : "idm.jwt.session.module.signing",
 "types": ["SIGN", "VERIFY"],
 "aliases": ["&{openidm.config.crypto.jwtsession.hmackey.alias|openidm-jwtsessionhmac-key}"]
 },
 {
 "secretId" : "idm.selfservice.signing",
 "types": ["SIGN", "VERIFY"],
 "aliases": ["selfservice"]
 },
 {
 "secretId" : "idm.selfservice.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.selfservice.sharedkey.alias|openidm-selfservice-key}"]
 }
]
 }
 },
 {
 "name": "mainTrustStore",
 "class": "org.forgerock.openidm.secrets.config.HsmBasedStore",
 "config": {
 "storetype": "&{openidm.keystore.type|PKCS11}",
 "providerName": "&{openidm.keystore.provider|SunPKCS11-softHSM}",
 "storePassword": "&{openidm.keystore.password|changeit}",
 "mappings": [
]

Security PingIDM

894 Copyright © 2025 Ping Identity Corporation

 }
 }
],
 "populateDefaults": false
}

In the IDM Java security file (conf/java.security), Specify the location of your PKCS #11 configuration file. For example:

security.provider.14=SunPKCS11 /path/to/pkc11/config/pkcs11.conf

Templates for the pkcs11.conf file are included in your PKCS package.

You should now be able to start IDM with the keys in the HSM provider.

Encryption key management

Most regulatory requirements mandate that the keys used to decrypt sensitive data be rotated out and replaced with new keys
on a regular basis. The main purpose of rotating encryption keys is to reduce the amount of data encrypted with that key, so that
the potential impact of a security breach with a specific key is reduced. You can update encryption keys in several ways, including
the following:

Manual key rotation

IDM evaluates keys in secrets.json sequentially. For example, assume that you have added a new key named my-new-key to
the keystore. To use this new key to encrypt passwords, you would include my-new-key as the first alias in the
idm.password.encryption secret:

{
 "secretId" : "idm.password.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["my-new-key", "&{openidm.config.crypto.alias|openidm-sym-default}"]
}

The properties that use this key (in this case, passwords) are re-encrypted with the new key the next time the managed object is
updated. You do not need to restart the server.

emergency_home
The "populateDefaults": false turns off the default key generation. This setting is required for an HSM key
provider.

Important

2.

emergency_home
If you rotate an encryption key, the active encryption key might not be the correct key to use for decryption of
properties that have already been encrypted with a previous key.
You must therefore keep all applicable keys in secrets.json until every object that is encrypted with old keys have
been updated with the latest key.

Important

PingIDM Security

Copyright © 2025 Ping Identity Corporation 895

You can force key rotation on all managed objects by running the triggerSyncCheck action on the entire managed object data
set. The triggerSyncCheck action examines the crypto blob of each object and updates the encrypted property with the correct
key.

For example, the following command forces all managed user objects to use the new key:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/managed/user/?_action=triggerSyncCheck"
{
 "status": "OK",
 "countTriggered": 10
}

In a large managed object set, the triggerSyncCheck action can take a long time to run on only a single node. You should
therefore avoid using this action if your data set is large. An alternative to running triggerSyncCheck over the entire data set is
to iterate over the managed data set and call triggerSyncCheck on each individual managed object. You can call this action
manually or by using a script.

The following example shows the manual commands that must be run to launch the triggerSyncCheck action on all managed
users. The first command uses a query filter to return all managed user IDs. The second command iterates over the returned IDs
calling triggerSyncCheck on each ID:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
"https://localhost:8443/openidm/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "_rev": "000000004988917b"
 },
 {
 "_id": "55ef0a75-f261-47e9-a72b-f5c61c32d339",
 "_rev": "00000000dd89d671"
 },
 {
 "_id": "998a6181-d694-466a-a373-759a05840555",
 "_rev": "000000006fea54ad"
 },
 ...
]
}

Security PingIDM

896 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb?_action=triggerSyncCheck"

In large data sets, the most efficient way to achieve key rotation is to use the scheduler service to launch these commands. The
following section shows how to use the scheduler service for this purpose.

Scheduled key rotation

This example uses a script to generate multiple scheduled tasks. Each scheduled task iterates over a subset of the managed
object set (defined by the pageSize). The generated scheduled task then calls another script that launches the
triggerSyncCheck action on each managed object in that subset.

To schedule key rotation, set up a similar schedule:

Create a schedule configuration named schedule-triggerSyncCheck.json in your project’s conf directory. That
schedule should look as follows:

{
 "enabled" : true,
 "persisted" : true,
 "type" : "cron",
 "schedule" : "0 * * * * ? *",
 "concurrentExecution" : false,
 "invokeService" : "script",
 "invokeContext" : {
 "waitForCompletion" : false,
 "script": {
 "type": "text/javascript",
 "name": "sync/scheduleTriggerSyncCheck.js"
 },
 "input": {
 "pageSize": 2,
 "managedObjectPath" : "managed/user",
 "quartzSchedule" : "0 * * * * ? *"
 }
 }
}

You can change the following parameters of this schedule configuration to suit your deployment:

pageSize

The number of objects that each generated schedule will handle. This value should be high enough not to create
too many schedules. The number of schedules that is generated is equal to the number of objects in the managed
object store, divided by the page size.

For example, if there are 500 managed users and a page size of 100, five schedules will be generated (500/100).

1.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 897

managedObjectPath

The managed object set over which the scheduler iterates. For example, managed/user if you want to iterate over
the managed user object set.

quartzSchedule

The schedule at which these tasks should run. For example, to run the task every minute, this value would be
0 * * * * ? * .

The schedule calls a scheduleTriggerSyncCheck.js script, located in a directory named project-dir/script/sync .
Create the sync directory, and add the script:

var managedObjectPath = object.managedObjectPath;
var pageSize = object.pageSize;
var quartzSchedule = object.quartzSchedule;

var managedObjects = openidm.query(managedObjectPath, {
 "_queryFilter": "true",
 "_fields": "_id"
});

var numberOfManagedObjects = managedObjects.result.length;

for (var i = 0; i < numberOfManagedObjects; i += pageSize) {
 var scheduleId = java.util.UUID.randomUUID().toString();
 var ids = managedObjects.result.slice(i, i + pageSize).map(function(obj) {
 return obj._id
 });
 var schedule = newSchedule(scheduleId, ids);
 openidm.create("/scheduler", scheduleId, schedule);
}

function newSchedule(scheduleId, ids) {
 var schedule = {
 "enabled": true,
 "persisted": true,
 "type": "cron",
 "schedule": quartzSchedule,
 "concurrentExecution": false,
 "invokeService": "script",
 "invokeContext": {
 "waitForCompletion": true,
 "script": {
 "type": "text/javascript",
 "name": "sync/triggerSyncCheck.js"
 },
 "input": {
 "ids": ids,
 "managedObjectPath": managedObjectPath,
 "scheduleId": scheduleId
 }
 }
 };
 return schedule;
}

2.

Security PingIDM

898 Copyright © 2025 Ping Identity Corporation

Each generated scheduled task calls a script named triggerSyncCheck.js . Create the script in your project’s script/
sync directory:

var ids = object.ids;
var scheduleId = object.scheduleId;
var managedObjectPath = object.managedObjectPath;

for (var i = 0; i & lt; ids.length; i++) {
 openidm.action(managedObjectPath + "/" + ids[i], "triggerSyncCheck", {}, {});
}

openidm.delete("scheduler/" + scheduleId, null);

Test the key rotation:

Edit your project’s conf/managed.json file to return user passwords by default by setting "scope" : "public" .

"password" : {
 ...
 "encryption" : {
 "purpose" : "idm.password.encryption"
 },
 "scope" : "public",
 ...
}

Because passwords are not returned by default, you will not be able to refer to the new encryption on the
password unless you change the property’s scope .

Perform a GET request to return any managed user entry in your data set:

3.

4.

1.

2.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 899

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/managed/user/ccd92204-aee6-4159-879a-46eeb4362807"
{
 "_id" : "ccd92204-aee6-4159-879a-46eeb4362807",
 "_rev" : "0000000009441230",
 "preferences" : {
 "updates" : false,
 "marketing" : false
 },
 "mail" : "bjensen@example.com",
 "sn" : "Jensen",
 "givenName" : "Babs",
 "userName" : "bjensen",
 "password" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "CVrKDuzfzunXfTDbCwU1Rw==",
 "data" : "1I5tWT5aRH/12hf5DgofXA==",
 "keySize" : 16,
 "purpose" : "idm.password.encryption",
 "iv" : "LGE+jnC3ZtyvrE5pfuSvtA==",
 "mac" : "BEXQ1mftxA63dXhJO6dDZQ=="
 }
 }
 },
 "accountStatus" : "active",
 "effectiveRoles" : [],
 "effectiveAssignments" : []
}

Notice that the user’s password is encrypted with the default encryption key (openidm-sym-default).

Create a new encryption key in the IDM keystore:

keytool \
-genseckey \
-alias my-new-key \
-keyalg AES \
-keysize 128 \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype JCEKS

Shut down the server for keystore to be reloaded.

3.

4.

Security PingIDM

900 Copyright © 2025 Ping Identity Corporation

mailto:bjensen@example.com

Change your project’s conf/managed.json file to change the encryption purpose for managed user passwords:

"password" : {
 ...
 "encryption" : {
 "purpose" : "idm.password.encryption2"
 },
 "scope" : "public",
 ...
}

Add the corresponding purpose to the secrets.json file in the mainKeyStore code block:

"idm.password.encryption2": {
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": [
 {
 "alias": "my-new-key"
 }
]
}

Restart the server and wait one minute for the scheduled task to start.

Perform a GET request again to return the entry of the managed user that you returned previously:

5.

6.

7.

8.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 901

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/managed/user/ccd92204-aee6-4159-879a-46eeb4362807"
{
 "_id" : "ccd92204-aee6-4159-879a-46eeb4362807",
 "_rev" : "0000000009441230",
 "preferences" : {
 "updates" : false,
 "marketing" : false
 },
 "mail" : "bjensen@example.com",
 "sn" : "Jensen",
 "givenName" : "Babs",
 "userName" : "bjensen",
 "password" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "my-new-key",
 "salt" : "CVrKDuzfzunXfTDbCwU1Rw==",
 "data" : "1I5tWT5aRH/12hf5DgofXA==",
 "keySize" : 16,
 "purpose" : "idm.password.encryption2",
 "iv" : "LGE+jnC3ZtyvrE5pfuSvtA==",
 "mac" : "BEXQ1mftxA63dXhJO6dDZQ=="
 }
 }
 },
 "accountStatus" : "active",
 "effectiveRoles" : [],
 "effectiveAssignments" : []
}

The user password is now encrypted with my-new-key .

Change the active alias for managed object encryption

This example describes how to configure and then change the managed object encryption key with a scheduled task. You’ll create
a new key, set up a managed user, add the key to secrets.json , restart IDM, run a triggerSyncCheck , and review the result.

Create a new key for the IDM keystore in the security/keystore.jceks file:1.

Security PingIDM

902 Copyright © 2025 Ping Identity Corporation

mailto:bjensen@example.com

keytool \
-genseckey \
-alias my-new-key \
-keyalg AES \
-keysize 128 \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype JCEKS

For the purpose of this example, in managed.json , set "scope" : "public" to expose the applied password encryption
key.

Create a managed user:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "Content-Type: application/json" \
--request PUT \
--data '{
 "userName": "rsutter",
 "sn": "Sutter",
 "givenName": "Rick",
 "mail": "rick@example.com",
 "telephoneNumber": "6669876987",
 "description": "Another user",
 "country": "USA",
 "password": "Passw0rd"
}' \
"https://localhost:8443/openidm/managed/user/ricksutter"

Add the newly created my-new-key alias to your conf/secrets.json file, in the idm.password.encryption code block:

"idm.password.encryption": {
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["my-new-key", "&{openidm.config.crypto.alias|openidm-sym-default}"]
}

To apply the new key to your configuration, shut down and restart IDM.

Force IDM to update the key for your users with the triggerSyncCheck action:

2.

3.

4.

5.

6.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 903

mailto:rick@example.com

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/managed/user/?_action=triggerSyncCheck"

Review the result for the newly created user, ricksutter :

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/managed/user/ricksutter"

In the output, you should see the new my-new-key encryption key applied to that user’s password:

...
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "my-new-key",
 "salt": "bGyKG3PKmwHONOfxerr1Qg==",
 "data": "6vXZiJ3ZNN/UUnsrT7dTQw==",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "doAdtxfWfFbrPIIfubGi5g==",
 "mac": "OML6xd9qvDtD5AvMc1Tc3A=="
 }
 }
 },
...

CA-signed certificates

You can use existing CA-signed certificates to secure connections and data by importing the certificates into the keystore, and
referencing them your boot.properties file. Use the keytool command to import an existing certificate into the keystore.

Import CA-signed certificates

The following process imports a CA-signed certificate into the keystore, with the alias example-com. Replace this alias with the
alias of your certificate:

Stop the server if it is running.

7.

8.

1.

Security PingIDM

904 Copyright © 2025 Ping Identity Corporation

Back up your existing openidm/security/keystore and openidm/security/truststore files.

Use the keytool command to import your existing certificate into the keystore, substituting your specific information:

keytool \
-importkeystore \
-srckeystore example-cert.p12 \
-srcstoretype PKCS12 \
-srcstorepass changeit \
-srcalias example-com \
-destkeystore keystore.jceks \
-deststoretype JCEKS \
-destalias openidm-localhost
Importing keystore example-cert.p12 to keystore.jceks...
Enter destination keystore password: changeit

The keytool command creates a trusted certificate entry with the specified alias and associates it with the imported
certificate. The certificate is imported into the keystore with the alias openidm-localhost . If you want to use a different
alias, you must modify your resolver/boot.properties file to reference that alias, as shown in the following step.

If you specified an alias other than openidm-localhost for the new certificate, change the value of
openidm.https.keystore.cert.alias in your resolver/boot.properties file to that alias. For example, if your new
certificate alias is example-com , change the boot.properties file as follows:

openidm.https.keystore.cert.alias=example-com

Restart the server.

Delete certificates

When using CA-signed certificates for encryption, it is a best practice to delete all unused default certificates from the keystore
and truststore using the keytool command, as shown in the following examples:

To delete the openidm-localhost certificate from the keystore:

2.

3.

example-cert.p12 The name of your certificate file.
srcstorepass The certificate password.
example-com The existing certificate alias.
destination keystore password The password for the keystore.

info
The certificate entry password must be the same as the IDM keystore password. If the source certificate entry
password is different from the target keystore password, use the -destkeypass option with the same value as
the -deststorepass option to make the certificate password match the target keystore password. If you do
not make these passwords the same, no error is generated when you import the certificate (or when you read
the certificate entry in the destination keystore), but IDM will fail to start with the following exception:

java.security.UnrecoverableKeyException: Given final block not properly padded.

Note

4.

5.

•

PingIDM Security

Copyright © 2025 Ping Identity Corporation 905

keytool \
-delete \
-alias openidm-localhost \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype JCEKS \
-storepass changeit

To delete the openidm-localhost certificate from the truststore:

keytool \
-delete \
-alias openidm-localhost \
-keystore /path/to/openidm/security/truststore \
-storepass changeit

You can use similar commands to delete custom certificates from the keystore and truststore, specifying the certificate alias in
the request.

Delete root CA certificates

The Java and IDM truststore files include a number of root CA certificates. Although the probability of a compromised root CA
certificate is low, it is a best practice to delete unused root CA certificates.

To review the list of root CA certificates in the IDM truststore:

keytool \
-list \
-keystore /path/to/openidm/security/truststore \
-storepass changeit

Before making changes to Java environment keystore files, verify any Java-related cacerts files are up-to-date and that you have
a supported Java version installed.

You can delete root CA certificates with the keytool command. For example, to remove the hypothetical examplecomca2
certificate from the truststore:

keytool \
-delete \
-keystore /path/to/openidm/security/truststore \
-storepass changeit \
-alias examplecomca2

•

info
On UNIX/Linux systems, you can find additional lists of root CA certificates in files named cacerts . These include root
CA certificates associated with your Java environment, typically located in the ${JAVA_HOME}/jre/lib/security/
cacerts directory.

Note

Security PingIDM

906 Copyright © 2025 Ping Identity Corporation

FIPS 140-2 compliance

To achieve FIPS 140-2 compliance, configure the Bouncy Castle FIPS libraries with IDM. This enables the use of the Bouncy
Castle FIPS keystore and security provider in FIPS-approved mode.

Bouncy Castle FIPS is useful when dealing with government data, where meeting the FIPS 140-2 security requirement is necessary
for regulatory compliance.

To configure IDM to use Bouncy Castle FIPS:

Download the Bouncy Castle libraries.

Enable the Bouncy Castle FIPS provider in the JVM.

Create the IDM cryptographic keys.

Provide the JVM to IDM.

Configure the Bouncy Castle keystore in secrets.json .

Download the Bouncy Castle libraries

To use Bouncy Castle FIPS with IDM, download the libraries:

Download the following libraries from Bouncy Castle to the server/machine where IDM is deployed:

info
On Windows systems, you can manage certificates with the Microsoft Management Console (MMC) snap-in tool. For
more information, refer to Working With Certificates.

Note

emergency_home
In IDM 7.4.2 and later, the embedded Jetty web server supports Jetty 12. Future releases of IDM 7.4.x are only
compatible with Java 17. Jetty 12 requires this change.
When serving SSL requests, Jetty 12 checks that the incoming host header matches the server certificate’s subject and
returns a 400 Bad Request error on a mismatch. If you’re upgrading to IDM 7.4.2 or later, you must ensure your IDM
server certificate subject matches the host name used by your deployment.
Learn more in What’s new.

Important

info
Bouncy Castle FIPS is less performant than other keystores. The destroyable keys cannot be cached and must be read
from the keystore with every use.

Note

1.

2.

3.

4.

5.

emergency_home
The IDM CLI does not work when using Bouncy Castle FIPS.

Important

1.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 907

https://msdn.microsoft.com/en-us/library/ms788967(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms788967(v=vs.110).aspx
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://www.bouncycastle.org/fips-java/
https://www.bouncycastle.org/fips-java/
https://www.bouncycastle.org/fips-java/
https://www.bouncycastle.org/fips-java/

(1) The tested version is bc-fips-1.0.2.3.jar .

(2) The tested version is bcpkix-fips-1.0.7.jar .

(3) The tested version is bctls-fips-1.0.14.jar .

Copy the downloaded files to /path/to/openidm/bundle .

Restart IDM.

Enable the Bouncy Castle FIPS provider in the JVM

To enable the Bouncy Castle FIPS provider in your JVM, do one of the following:

Add Bouncy Castle providers to the existing JVM

Add Bouncy Castle providers to IDM conf/java.security

Build a distribution of the JVM that supports Bouncy Castle

Add Bouncy Castle providers to the existing JVM

If the existing JVM supports Bouncy Castle, then you can add the security providers to the JVM.

Add the Bouncy Castle security providers to $JAVA_HOME/conf/security/java.security :

security.provider.13=org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider C:HYBRID;ENABLE{All};
security.provider.14=org.bouncycastle.jsse.provider.BouncyCastleJsseProvider

Add Bouncy Castle providers to IDM conf/java.security

If the existing JVM supports Bouncy Castle, then you can add the security providers to the /path/to/openidm/conf/
java.security . This file provides additions to the $JAVA_HOME/conf/security/java.security file.

Add the Bouncy Castle security providers to /path/to/openidm/conf/java.security :

File Description

bc-fips-latestVersionNumber.jar (1) Contains the Bouncy Castle FIPS security provider
implementation.

bcpkix-fips-latestVersionNumber.jar (2) Provides FIPS support for cert generation.

bctls-fips-latestVersionNumber.jar (3) Provides TLS support using FIPS compliance.

2.

3.

•

•

•

info
The security.provider.13 and security.provider.14 keys are JVM specific and must be the next 2 values in the
security providers list.

Note

Security PingIDM

908 Copyright © 2025 Ping Identity Corporation

security.provider.13=org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider C:HYBRID;ENABLE{All};
security.provider.14=org.bouncycastle.jsse.provider.BouncyCastleJsseProvider

Build a distribution of the JVM that supports Bouncy Castle

If the existing JVM doesn’t support Bouncy Castle, you must create a new JVM distribution.

Build a new distribution:

$JAVA_HOME/bin/jlink \
--no-header-files \
--no-man-pages \
--compress=2 \
--module-path /Users/bjensen/Downloads \
--add-modules
java.base,java.compiler,java.datatransfer,java.desktop,java.instrument,java.logging,java.management,java.manag
ement.rmi,java.naming,java.net.http,java.prefs,java.rmi,java.scripting,java.se,java.security.jgss,java.securit
y.sasl,java.smartcardio,java.sql,java.sql.rowset,java.transaction.xa,java.xml,java.xml.crypto,jdk.accessibilit
y,jdk.aot,jdk.attach,jdk.charsets,jdk.compiler,jdk.crypto.cryptoki,jdk.crypto.ec,jdk.dynalink,jdk.editpad,jdk.
hotspot.agent,jdk.httpserver,jdk.internal.ed,jdk.internal.jvmstat,jdk.internal.le,jdk.internal.opt,jdk.interna
l.vm.ci,jdk.internal.vm.compiler,jdk.internal.vm.compiler.management,jdk.jartool,jdk.javadoc,jdk.jcmd,jdk.jcon
sole,jdk.jdeps,jdk.jdi,jdk.jdwp.agent,jdk.jfr,jdk.jlink,jdk.jshell,jdk.jsobject,jdk.jstatd,jdk.localedata,jdk.
management,jdk.management.agent,jdk.management.jfr,jdk.naming.dns,jdk.naming.ldap,jdk.naming.rmi,jdk.net,jdk.p
ack,jdk.rmic,jdk.scripting.nashorn,jdk.scripting.nashorn.shell,jdk.sctp,jdk.security.auth,jdk.security.jgss,jd
k.unsupported,jdk.unsupported.desktop,jdk.xml.dom,jdk.zipfs,org.bouncycastle.fips.core,org.bouncycastle.fips.t
ls \
--output /location/to/bouncy/castle/jvm --ignore-signing-information

A customized JVM is created at the output location /location/to/bouncy/castle/jvm you specified.

Add the Bouncy Castle security providers to /location/to/bouncy/castle/jvm/conf/security/java.security :

security.provider.13=org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider C:HYBRID;ENABLE{All};
security.provider.14=org.bouncycastle.jsse.provider.BouncyCastleJsseProvider

Create the IDM Bouncy Castle keystore and cryptographic keys

info
The security.provider.13 and security.provider.14 keys are JVM specific and must be the next 2 values in the
security providers list.

Note

1.

2.

info
The security.provider.13 and security.provider.14 keys are JVM specific and must be the next 2 values in
the security providers list.

Note

info
Before you create the cryptographic keys, you must Enable the Bouncy Castle FIPS provider in the JVM.

Note

PingIDM Security

Copyright © 2025 Ping Identity Corporation 909

To create the necessary IDM cryptographic keys:

Create the Bouncy Castle keystore. This can be done in conjunction with creating the first cryptographic key:

keytool \
-genseckey \
-alias openidm-sym-default \
-keyalg aes \
-keysize 256 \
-keystore /location/to/keystore.bcfks \
-storepass changeit -storetype BCFKS \
-provider org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider

This creates the openidm-sym-default key in a keystore called /location/to/keystore.bcfks while also creating that
keystore if it does not exist.

Create the remaining keys:

Create the openidm-selfservice-key

keytool \
-genseckey \
-alias openidm-selfservice-key \
-keyalg aes \
-keysize 256 \
-keystore /location/to/keystore.bcfks \
-storepass changeit \
-storetype BCFKS \
-provider org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider

1.

info
You must use the JVM specific keytool that the Bouncy Castle security provider uses.
For example, if you enable the security providers in the system default JVM, you must use the system default
keytool command. If you create a custom JVM, you must use the keytool command for where that JVM is
located.
The keytool command is in the bin directory of the JVM Java home.
Failure to use the keytool command you configure for Bouncy Castle results in the following error:

keytool error: java.lang.Exception: Provider
"org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider" not found

Note

2.

Security PingIDM

910 Copyright © 2025 Ping Identity Corporation

Create the openidm-jwtsessionhmac-key

keytool \
-genseckey \
-alias openidm-jwtsessionhmac-key \
-keyalg aes \
-keysize 256 \
-keystore /location/to/keystore.bcfks \
-storepass changeit \
-storetype BCFKS \
-provider org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider

Create the openidm-localhost key

keytool \
-genkey \
-alias openidm-localhost \
-keyalg RSA \
-keysize 2048 \
-keystore /location/to/keystore.bcfks \
-storepass changeit \
-storetype BCFKS \
-provider org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider

Create the selfservice key

keytool \
-genkey \
-alias selfservice \
-keyalg RSA \
-keysize 2048 \
-keystore /location/to/keystore.bcfks \
-storepass changeit \
-storetype BCFKS \
-provider org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider

Provide the JVM to IDM

If you create a custom JVM location, you must to provide that JVM to IDM in the /path/to/openidm/startup.sh file.

By default, IDM uses the system Java and falls back to using the JAVA_HOME if the system Java is not defined:

PingIDM Security

Copyright © 2025 Ping Identity Corporation 911

Default startup.sh file

if which java &>/dev/null; then
 JAVA=java
elif [-n "$JAVA_HOME"] && [-x "$JAVA_HOME/bin/java"]; then
 JAVA="$JAVA_HOME/bin/java"
else
 echo JAVA_HOME not available, Java is needed to run IDM
 echo Please install Java and set JAVA_HOME accordingly
 exit 1
fi

To configure IDM to use the JAVA_HOME you set, change the startup.sh file to the following:

Modified startup.sh file

if [-n "$JAVA_HOME"] && [-x "$JAVA_HOME/bin/java"]; then
 JAVA="$JAVA_HOME/bin/java"
else
 echo JAVA_HOME not available, Java is needed to run IDM
 echo Please install Java and set JAVA_HOME accordingly
 exit 1
fi

Configure the Bouncy Castle keystore in secrets.json

After you add the Bouncy Castle security providers and create the keystore and keys, you must replace the default IDM keystore
with the new Bouncy Castle keystore in /path/to/openidm/conf/secrets.json :

Security PingIDM

912 Copyright © 2025 Ping Identity Corporation

 {
 "name" : "mainKeyStore",
 "class" : "org.forgerock.openidm.secrets.config.FileBasedStore",
 "config" : {
 "file" : "&{idm.install.dir}/security/keystore.bcfks",
 "storetype" : "BCFKS",
 "providerName" : "BCFIPS",
 "storePassword" : "changeit",
 "mappings" : [
 {
 "secretId" : "idm.default",
 "types" : [
 "ENCRYPT",
 "DECRYPT"
],
 "aliases" : [
 "&{openidm.config.crypto.alias|openidm-sym-default}"
]
 },
 {
 "secretId" : "idm.config.encryption",
 "types" : [
 "ENCRYPT",
 "DECRYPT"
],
 "aliases" : [
 "&{openidm.config.crypto.alias|openidm-sym-default}"
]
 },
 {
 "secretId" : "idm.password.encryption",
 "types" : [
 "ENCRYPT",
 "DECRYPT"
],
 "aliases" : [
 "&{openidm.config.crypto.alias|openidm-sym-default}"
]
 },
 {
 "secretId" : "idm.assignment.attribute.encryption",
 "types" : [
 "ENCRYPT",
 "DECRYPT"
],
 "aliases" : [
 "&{openidm.config.crypto.alias|openidm-sym-default}"
]
 }
]
 }
 },

IDM is now configured to start using the Bouncy Castle keystore.

Disable Bouncy Castle FIPS-approved mode

By default, IDM turns on Bouncy Castle in FIPS-approved mode. This makes Bouncy Castle FIPS 140-2 compliant.

PingIDM Security

Copyright © 2025 Ping Identity Corporation 913

IDM sets the configuration in /path/to/openidm/startup.sh and /path/to/openidm/bin/docker-entrypoint.sh using the
following property:

org.bouncycastle.fips.approved_only=true

To disable FIPS-approved mode, change org.bouncycastle.fips.approved_only to false .

Hide unused REST endpoints

The two main use cases for IDM are data synchronization and user self-service.

If you are using IDM only to synchronize data sources, do not expose the server externally. In this case, IDM initiates all
connections.

If you are using IDM only for user self-service, ensure that the server is behind a firewall or proxy, such as ForgeRock Identity
Gateway. At a minimum, hide the /admin endpoint in the web interface via the proxy. Use the conf/access.json file as a guide
for proxy or firewall rules.

If you are using IDM for data synchronization and user self-service, it is preferable to run two IDM servers or clusters, each with its
own security model. Because the two use cases have very different load characteristics and security implications, running them
on separate servers can help to prevent synchronization activity from impacting the performance on end-user systems.

Secure the API Explorer

The REST API Explorer serves up interactive REST API documentation. The API Explorer can help you identify endpoints, and run
REST calls against those endpoints. To protect production servers from unauthorized API descriptor requests, IDM requires
authentication, by default. The property authEnabled protects static web resources from public view.

info
In startup.sh and docker-entrypoint.sh there is also the property org.bouncycastle.jca.enable_jks=true .
This property enables the Java keystore (JKS format) for FIPS. In order to maintain compliance, the keystore can only
be used for reading a Java keystore that contains certificates. IDM sets this property to true by default.

Note

info
These settings must take place early in the IDM start process per Bouncy Castle’s documentation.

Note

Security PingIDM

914 Copyright © 2025 Ping Identity Corporation

https://www.bouncycastle.org/fips-java/
https://www.bouncycastle.org/fips-java/
https://docs.pingidentity.com/pinggateway/8.0
https://docs.pingidentity.com/pinggateway/8.0
https://docs.pingidentity.com/pinggateway/8.0

Default ui.context-api.json file

{
 "enabled" : true,
 "authEnabled" : true,
 "urlContextRoot" : "/api",
 "defaultDir" : "&{idm.install.dir}/ui/api/default",
 "extensionDir" : "&{idm.install.dir}/ui/api/extension"
}

To disable the API Explorer, set the following property in your resolver/boot.properties file:

openidm.apidescriptor.enabled=false

Adjust log levels

In production, set log levels to INFO to ensure that you capture enough information to help diagnose issues, but do not expose
unnecessary information. For more information, refer to Server logs.

At startup and shutdown, INFO can produce many messages. During stable operation, INFO generally results in log messages
only when coarse-grain operations such as scheduled reconciliation start or stop.

Disable automatic configuration updates

By default, IDM monitors files in the conf directory periodically for any changes to the configuration. This functionality is
configured in the following properties in your conf/system.properties file:

openidm.fileinstall.poll

Sets the interval at which files are polled for changes. 2000 milliseconds by default.

openidm.fileinstall.enabled

Specifies whether files should be monitored. true by default. In a production system, you should disable automatic
polling for updates to prevent untested configuration changes from disrupting your identity service. Setting this property
to false also disables the file-based configuration view, which means that IDM reads its configuration only from the
repository.

emergency_home
The default IDM log formatter encodes all control characters (such as newline characters) using URL-encoding, to
protect against log forgery. For more information, refer to Server logs.

Important

emergency_home
If automatic polling is enabled, IDM immediately uses changes to scripts called from a JSON configuration file.

Important

PingIDM Security

Copyright © 2025 Ping Identity Corporation 915

openidm.config.bootstrap.enabled

Allows IDM to start up and load configuration when there aren’t currently any configs stored in the repository. true by
default.

openidm.fileinstall.filter

Specify which file types should be monitored (if openidm.fileinstall.enabled=true). File types are specified in a pipe-
separated list, for example:

openidm.fileinstall.filter=.*\\.cfg|.*\\.json

Disable configuration file writes

To disable writes to configuration files, set the following property to false in your conf/config.properties file:

felix.fileinstall.enableConfigSave=false

This setting is suitable for read-only installations.

Security PingIDM

916 Copyright © 2025 Ping Identity Corporation

Scripting

Guide to scripting for ForgeRock® Identity Management.

Scripting lets you extend IDM functionality. For example, you can provide custom logic between source and target mappings,
define correlation rules, filters, triggers, and so on. This guide shows you how to use scripts in IDM and provides reference
information on the script engine.

IDM supports scripts written in JavaScript and Groovy, and uses the following libraries:

Rhino version 1.7.14 to run JavaScript.

Groovy version 3.0.9 for Groovy script support.

Lodash 3.10.1 and Handlebars 4.7.7 for Rhino scripting.

Script Configuration

Modify the parameters to compile, debug, and
run scripts.

Custom Endpoints

Run arbitrary scripts through the REST URI.

Script Triggers

Learn where and how you can trigger scripts.

Script Variables

Learn about the variables available to scripts.

•

info
Rhino has limited support for ES6 / ES2015 (JavaScript version 1.7). For more information, refer to Rhino
ES2015 Support.

Note

•

•

Scripting PingIDM

918 Copyright © 2025 Ping Identity Corporation

https://mozilla.github.io/rhino/compat/engines.html
https://mozilla.github.io/rhino/compat/engines.html
https://mozilla.github.io/rhino/compat/engines.html

BouncyCastle 1.70 for signing JWTs.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Script configuration

To modify the parameters used for compiling, debugging, and running scripts, edit the script configuration.

Script Configuration Parameters

properties

Any custom properties.

ECMAScript

JavaScript debug and compile options. JavaScript is an ECMAScript language.

javascript.optimization.level - The current optimization level. Expected integer range is from -1 to 9. For
more information about optimization level, refer to Rhino Optimization.

info
Using Handlebars JS in server-side JS scripts requires synchronization; for example:

var Handlebars = require("lib/handlebars");
var result = new Packages.org.mozilla.javascript.Synchronizer(function() {
 var template = Handlebars.compile("Handlebars {{doesWhat}}");
 return template({ doesWhat: "rocks!" });
}, Handlebars)();
console.log(result);

Note

•

info
The BouncyCastle .JAR file that is bundled with IDM includes the org.bouncycastle.asn1.util.Dump
command-line utility. Although this utility is not used directly by IDM, it is possible to reference the utility in
your scripts. Due to a security vulnerability in this utility, you should not reference it in your scripts. For more
information, refer to the corresponding BouncyCastle issue.

Note

emergency_home
Script options and locations are defined in the script configuration.
Default scripts are located in (/path/to/openidm/bin/defaults/script/). Do not modify the scripts in this directory.
Rather copy the default scripts to a different location, make the changes, and update the referenced scripts in the
applicable conf/ file. You can put custom scripts in any of the locations referenced in the sources property in conf/
script.json .

Important

•

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 919

https://github.com/bcgit/bc-java/issues/634
https://github.com/bcgit/bc-java/issues/634
https://www.forgerock.com
https://www.forgerock.com
https://rhino.github.io/docs/configuration/#optimization-levels
https://rhino.github.io/docs/configuration/#optimization-levels

The default value is 9 .

javascript.recompile.minimumInterval - The minimum time between script recompile.

The default value is 60000 , or 60 seconds. This means that any changes made to scripts will not get picked up for
up to 60 seconds. If you are developing scripts, reduce this parameter to around 100 (100 milliseconds).

If you set the javascript.recompile.minimumInterval to -1 , or remove this property from the script
configuration, IDM does not poll JavaScript files to check for changes.

Groovy

Compilation and debugging options related to Groovy scripts. Many of these options are commented out in the default
script configuration file. Remove the comments to set these properties:

groovy.warnings - The Groovy script log level. Possible values are none , likely , possible , and paranoia .

groovy.source.encoding - The Groovy script encoding format. Possible values are UTF-8 and US-ASCII .

groovy.target.directory - The compiled Groovy class output directory. The default directory is install-dir/
classes .

groovy.target.bytecode - The Groovy script bytecode version. The default version is 1.5 .

groovy.classpath - The directory where the compiler should look for compiled classes. The default classpath is
install-dir/lib .

To call an external library from a Groovy script, you must specify the complete path to the .jar file or files, as a value
of this property. For example:

"groovy.classpath" : "/&{idm.install.dir}/lib/http-builder-0.7.1.jar:
 /&{idm.install.dir}/lib/json-lib-2.3-jdk15.jar:
 /&{idm.install.dir}/lib/xml-resolver-1.2.jar:
 /&{idm.install.dir}/lib/commons-collections-3.2.1.jar",

groovy.output.verbose - Verbosity of stack traces. Boolean, true or false .

groovy.output.debug - Whether to output debug messages. Boolean, `true ` or false .

groovy.errors.tolerance - The number of non-fatal errors that can occur before a compilation is aborted. The
default is 10 errors.

groovy.script.extension - Groovy script file extension. The default is .groovy .

groovy.script.base - Groovy script base class. By default, any class extends groovy.lang.Script .

groovy.recompile - Whether scripts can be recompiled. Boolean, true or false , with default true .

groovy.recompile.minimumInterval - Groovy script minimum recompile interval.

•

•

•

•

•

•

info
If you’re deploying on Microsoft Windows, use a semicolon (;) instead of a colon to separate directories
in the groovy.classpath.

Note

•

•

•

•

•

•

•

Scripting PingIDM

920 Copyright © 2025 Ping Identity Corporation

The default value is 60000 , or 60 seconds. Using the default value, any changes made to scripts may not be in
effect for up to 60 seconds. If you are developing scripts, reduce this parameter to 100 (100 milliseconds).

groovy.target.indy - Whether to use a Groovy indy test. Boolean, true or false , with default true .

groovy.disabled.global.ast.transformations - A list of disabled Abstract Syntax Transformations (ASTs).

sources

The directories where IDM looks for referenced scripts.

Excerpt of a script configuration displaying default directories:

"sources" : {
 "default" : {
 "directory" : "&{idm.install.dir}/bin/defaults/script"
 },
 "install" : {
 "directory" : "&{idm.install.dir}"
 },
 "project" : {
 "directory" : "&{idm.instance.dir}"
 },
 "project-script" : {
 "directory" : "&{idm.instance.dir}/script"
}

Call a script from the IDM configuration

To call a script from the IDM configuration, edit the configuration object. For example:

•

•

info
IDM loads scripts from sources in reverse order (bottom to top).

Note

info
By default, debug information (for example, file name and line number) is excluded from JavaScript and Groovy
exceptions. To troubleshoot script exceptions, you can include debug information by changing the following settings
to true in resolver/boot.properties :

javascript.exception.debug.info=false
groovy.exception.debug.info=false

Including debug information in a production environment is not recommended.

Note

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 921

http://docs.groovy-lang.org/latest/html/documentation/invokedynamic-support.html
http://docs.groovy-lang.org/latest/html/documentation/invokedynamic-support.html

Provide a script source

{
 "type" : "text/javascript",
 "source": "scriptSource",
 "resourceBindings" : [{
 "resource" : "resourceName",
 "version" : "1.0",
 "binding" : "customName"
 }]
}

or

Provide a file reference

{
 "type" : "text/javascript",
 "file" : "file location"
}

Script variables are not necessarily simple key:value pairs, and can be any arbitrarily complex JSON object.

type

string, required

The script type.

IDM supports "text/javascript" and "groovy" .

source

string, required if file is not specified

Specifies the source code of the script to be executed.

resourceBindings

JSON object, optional

Allows specifying a resource, a vanity binding for that resource, and the API version the script should use. For example:

Scripting PingIDM

922 Copyright © 2025 Ping Identity Corporation

{
 "source" : "var response = consent.action(\"getConsentMappings\", {}); response[0];",
 "resourceBindings" : [{
 "resource" : "consent",
 "version" : "1.0",
 "binding" : "consent"
 }],
 "type" : "text/javascript"
}

This can improve the legibility of your scripts, by no longer needing to pass additional information within your script
function.

file

string, required if source is not specified

Specifies the file containing the source code of the script to execute. The file path must be relative to project-dir. Absolute
paths are not supported.

Examples

The following example script (in the mapping configuration) determines whether to include or ignore a target object in the
reconciliation process based on an employeeType of true :

"validTarget" : {
 "type" : "text/javascript",
 "source" : "target.employeeType == 'external'"
}

The following example script (in the mapping configuration) sets the __PASSWORD__ attribute to defaultpwd when IDM creates a
target object:

lightbulb_2
In general, you should namespace variables passed into scripts with the globals map. Passing variables in this way
prevents collisions with the top-level reserved words for script maps, such as source , file , and type . This example
uses the globals map to namespace the variables passed in the previous example.

"script": {
 "type" : "text/javascript",
 "file" : "script/triggerEmailNotification.js",
 "globals" : {
 "fromSender" : "admin@example.com",
 "toEmail" : "user@example.com"
 }
}

Tip

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 923

"onCreate" : {
 "type" : "text/javascript",
 "source" : "target.__PASSWORD__ = 'defaultpwd'"
}

Often, script files are reused in different contexts. You can pass variables to your scripts to provide these contextual details at
runtime. You pass variables to the scripts that are referenced in configuration files by declaring the variable name in the script
reference.

The following scheduled task configuration calls a script that triggers an email notification, but sets the sender and recipient of
the email in the schedule configuration, rather than in the script itself:

{
 "enabled" : true,
 "type" : "cron",
 "schedule" : "0 0/1 * * * ?",
 "persisted" : true,
 "invokeService" : "script",
 "invokeContext" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "script/triggerEmailNotification.js",
 "fromSender" : "admin@example.com",
 "toEmail" : "user@example.com"
 }
 }
}

Validate scripts over REST

IDM exposes a script endpoint over which scripts can be validated, by specifying the script parameters as part of the JSON
payload. This functionality lets you test how a script will operate in your deployment, with complete control over the inputs and
outputs. Testing scripts in this way can be useful in debugging.

In addition, the script registry service supports calls to other scripts. For example, you might have logic written in JavaScript, but
also some code available in Groovy. Ordinarily, it would be challenging to interoperate between these two environments, but this
script service lets you call one from the other on the IDM router.

The script endpoint supports two actions - eval and compile .

The eval action evaluates a script, by taking any actions referenced in the script, such as router calls to affect the state of an
object. For JavaScript scripts, the last statement that is executed is the value produced by the script, and the expected result of
the REST call.

The following REST call attempts to evaluate the autoPurgeAuditRecon.js script (provided in openidm/bin/defaults/script/
audit), but provides an incorrect purge type ("purgeByNumOfRecordsToKeep" instead of "purgeByNumOfReconsToKeep"). The
error is picked up in the evaluation. The example assumes that the script exists in the directory reserved for custom scripts
(openidm/script):

Scripting PingIDM

924 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "type": "text/javascript",
 "file": "script/autoPurgeAuditRecon.js",
 "globals": {
 "input": {
 "mappings": ["%"],
 "purgeType": "purgeByNumOfRecordsToKeep",
 "numOfRecons": 1
 }
 }
}' \
"http://localhost:8080/openidm/script?_action=eval"
"Must choose to either purge by expired or number of recons to keep"

The compile action compiles a script, but does not execute it. A successful compilation returns true . An unsuccessful
compilation returns the reason for the failure.

The following REST call tests whether a transformation script will compile:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "type":"text/javascript",
 "source":"source.mail ? source.mail.toLowerCase() : null"
}' \
"http://localhost:8080/openidm/script?_action=compile"
True

If the script is not valid, the action returns an indication of the error, for example:

lightbulb_2
The variables passed into this script are namespaced with the globals map. It is preferable to namespace variables
passed into scripts in this way, to avoid collisions with the top-level reserved words for script maps, such as file ,
source , and type .

Tip

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 925

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "type":"text/javascript",
 "source":"source.mail ? source.mail.toLowerCase()"
}' \
"http://localhost:8080/openidm/script?_action=compile"
{
 "code": 400,
 "reason": "Bad Request",
 "message": "missing : in conditional expression (386...BF2#1)in 386...BF2 at line number 1 at column
number 39"
}

Create custom endpoints to launch scripts

Custom endpoints let you run arbitrary scripts through the REST API.

A custom endpoint configuration includes an inline script or script file reference in JavaScript or Groovy. The script provides the
endpoint functionality.

Scripting PingIDM

926 Copyright © 2025 Ping Identity Corporation

{
 "type" : "text/javascript",
 "source" : "<script>",
 "apiDescription" : {
 "title" : "Echo",
 "description" : "Service that echo's your HTTP requests.",
 "mvccSupported" : false,
 "create" : {
 "description" : "Echo a CREATE request.",
 "mode" : "ID_FROM_SERVER",
 "singleton" : false
 },
 "read" : { "description" : "Echo a READ request." },
 "update" : { "description" : "Echo an UPDATE request." },
 "delete" : { "description" : "Echo a DELETE request." },
 "patch" : {
 "description" : "Echo a PATCH request.",
 "operations" : ["ADD", "REMOVE", "REPLACE", "INCREMENT", "COPY", "MOVE", "TRANSFORM"]
 },
 "actions" : [
 {
 "description" : "Echo an ACTION request.",
 "name" : "echo",
 "request" : { "type" : "object" },
 "response" : {
 "title" : "Echo action response",
 "type" : "object",
 "properties" : {
 "method" : {
 "type" : "string",
 "enum" : ["action"]
 },
 "action" : { "type" : "string" },
 "content" : { "type" : "object" },
 "parameters" : { "type" : "object" },
 "context" : { "type" : "object" }
 }
 }
 }
],
 "queries" : [
 {
 "description" : "Echo a query-filter request.",
 "type" : "FILTER",
 "queryableFields" : ["*"]
 },
 {
 "description" : "Echo a query-all request.",
 "type" : "ID",
 "queryId" : "query-all"
 },
 {
 "description" : "Echo a query-all-ids request.",
 "type" : "ID",
 "queryId" : "query-all-ids"
 }
],
 "resourceSchema" : {
 "title" : "Echo resource",
 "type" : "object",

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 927

 "properties" : {
 "method" : {
 "title" : "CREST method",
 "type" : "string"
 },
 "resourceName" : { "type" : "string" },
 "parameters" : { "type" : "object" },
 "context" : { "type" : "object" }
 }
 }
 }
}

Scripting PingIDM

928 Copyright © 2025 Ping Identity Corporation

(function(){
 if (request.method === "create") {
 return {
 method: "create",
 resourceName: request.resourcePath,
 newResourceId: request.newResourceId,
 parameters: request.additionalParameters,
 content: request.content,
 context: context.current
 };
 } else if (request.method === "read") {
 return {
 method: "read",
 resourceName: request.resourcePath,
 parameters: request.additionalParameters,
 context: context.current
 };
 } else if (request.method === "update") {
 return {
 method: "update",
 resourceName: request.resourcePath,
 revision: request.revision,
 parameters: request.additionalParameters,
 content: request.content,
 context: context.current
 };
 } else if (request.method === "patch") {
 return {
 method: "patch",
 resourceName: request.resourcePath,
 revision: request.revision,
 parameters: request.additionalParameters,
 patch: request.patchOperations,
 context: context.current
 };
 } else if (request.method === "query") {
 // query results must be returned as a list of maps
 return [{
 method: "query",
 resourceName: request.resourcePath,
 pagedResultsCookie: request.pagedResultsCookie,
 pagedResultsOffset: request.pagedResultsOffset,
 pageSize: request.pageSize,
 queryId: request.queryId,
 queryFilter: request.queryFilter.toString(),
 parameters: request.additionalParameters,
 content: request.content,
 context: context.current
 }];
 } else if (request.method === "delete") {
 return {
 method: "delete",
 resourceName: request.resourcePath,
 revision: request.revision,
 parameters: request.additionalParameters,
 context: context.current
 };
 } else if (request.method === "action") {
 return {
 method: "action",

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 929

 action: request.action,
 content: request.content,
 parameters: request.additionalParameters,
 context: context.current
 };
 } else {
 throw { code : 500, message : "Unknown request type " + request.method };
 }
})();

A sample custom endpoint configuration is provided in the openidm/samples/example-configurations/custom-endpoint
directory. The sample includes three files:

conf/endpoint-echo.json

Provides the configuration for the endpoint.

script/echo.js

Provides the endpoint functionality in JavaScript.

script/echo.groovy

Provides the endpoint functionality in Groovy.

Custom endpoint configuration

A custom endpoint configuration has the following structure:

{
 "context" : "context path",
 "type" : "script language",
 "source" : "script source" | "file" : "script file",
 "apiDescription" : "API descriptor object"
}

context

string, optional

The root URL path for the endpoint, in other words, the route to the endpoint. An endpoint with the context endpoint/
test is addressable over REST at the URL http://localhost:8080/openidm/endpoint/test or by using a script such as
openidm.read("endpoint/test") .

Endpoint contexts support wild cards, as shown in the preceding example. The endpoint/linkedview/* route matches
the following patterns:

info
This sample endpoint is described in detail in the sample: Create a custom endpoint.

Note

Scripting PingIDM

930 Copyright © 2025 Ping Identity Corporation

endpoint/linkedView/managed/user/bjensen
endpoint/linkedView/system/ldap/account/bjensen
endpoint/linkedView/
endpoint/linkedView

The context parameter is not mandatory in the endpoint configuration file. If you do not include a context , the route to
the endpoint is identified by the name of the file. For example, in the sample endpoint configuration provided in openidm/
samples/example-configurations/custom-endpoint/conf/endpoint-echo.json , the route to the endpoint is endpoint/
echo .

type

string, required

The script type.

IDM supports "text/javascript" and "groovy" .

file or source

The path to the script file, or the script itself, inline.

For example:

"file" : "workflow/gettasksview.js"

or

"source" : "require('linkedView').fetch(request.resourcePath);"

apiDescription

JSON object, optional

Describes the custom endpoint and includes its documentation in the REST API Explorer.

Custom endpoint scripts

The custom endpoint script files in the samples/example-configurations/custom-endpoint/script directory demonstrate all
the HTTP operations that can be called by a script.

Each HTTP operation is associated with a method . Allowed methods are:

create

info
Custom endpoints do not support versioning.
You must set authorization for any custom endpoints that you add, for example, by restricting the methods to the
appropriate roles. For more information, refer to Authorization and Roles.

Note

•

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 931

read

update

delete

patch

action

query

Requests sent to the custom endpoint return a list of the variables available to each method.

All scripts are invoked with a global request variable in their scope. This request structure carries all the information about the
request.

Custom endpoint scripts must return a JSON object. The structure of the return object depends on the method in the request.

The following example shows the create method in the echo.js file:

if (request.method === "create") {
 return {
 method: "create",
 resourceName: request.resourcePath,
 newResourceId: request.newResourceId,
 parameters: request.additionalParameters,
 content: request.content,
 context: context.current
 }
}

The following example shows the query method in the echo.groovy file:

•

•

•

•

•

•

warning
Read requests on custom endpoints must not modify the state of the resource, either on the client or the server, as
this can make them susceptible to Cross-Site Request Forgery (CSRF) exploits.
Endpoints which only read data without modifying state are inherently safe from CSRF attacks. This is consistent with
the US National Security Agency’s Guidelines for Implementation of REST, which states, "... CSRF protections need only
be applied to endpoints that will modify information in some way."

Warning

Scripting PingIDM

932 Copyright © 2025 Ping Identity Corporation

else if (request instanceof QueryRequest) {
 // query results must be returned as a list of maps
 return [
 [
 method: "query",
 resourceName: request.resourcePath,
 pagedResultsCookie: request.pagedResultsCookie,
 pagedResultsOffset: request.pagedResultsOffset,
 pageSize: request.pageSize,
 queryId: request.queryId,
 queryFilter: request.queryFilter.toString(),
 parameters: request.additionalParameters,
 context: context.toJsonValue().getObject()
]
]
}

Depending on the method, the variables available to the script can include the following:

resourceName

The name of the resource without the endpoint/ prefix, such as echo .

newResourceId

The identifier of the new object available as the results of a create request.

revision

The revision of the object.

parameters

Any additional parameters provided in the request. The sample code returns request parameters from an HTTP GET
with ?param=x , as "parameters":{"param":"x"} .

content

Content based on the latest revision of the object, using getObject .

context

The context of the request, including headers and security. For more information, refer to Request context chain.

Paging parameters

The pagedResultsCookie , pagedResultsOffset , and pageSize parameters are specific to query methods. For more
information refer to Page Query Results.

Query parameters

The queryId and queryFilter parameters are specific to query methods. For more information, refer to Construct
Queries.

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 933

Script exceptions

Some custom endpoint scripts require exception-handling logic. To return meaningful messages in REST responses and in logs,
you must comply with the language-specific method of throwing errors.

A script written in JavaScript should comply with the following exception format:

throw {
 "code": 400, // any valid HTTP error code
 "message": "custom error message",
 "detail" : {
 "var": parameter1,
 "complexDetailObject" : [
 "detail1",
 "detail2"
]
 }
}

Exception objects include the specified HTTP error code, the corresponding HTTP error message (such as Bad Request), a
custom error message, and additional details that may be helpful to determine what actions need to be taken to fix the error.

A script written in Groovy should comply with the following exception format:

import org.forgerock.json.resource.ResourceException
import org.forgerock.json.JsonValue

throw new ResourceException(404, "Your error message").setDetail(new JsonValue([
 "var": "parameter1",
 "complexDetailObject" : [
 "detail1",
 "detail2"
]
]))

Write an API descriptor for a custom endpoint

Most IDM endpoints are described in the REST API Explorer. Documentation is not generated automatically for custom endpoints.

To generate the documentation for your custom endpoint in the API Explorer, add an apiDescription object to your custom
endpoint configuration file. The apiDescription object includes the following properties:

title

The endpoint name that expresses its purpose, for example, Audit , or Authentication .

description

A description of the endpoint.

Scripting PingIDM

934 Copyright © 2025 Ping Identity Corporation

mvccSupported

A Boolean value that indicates whether object versioning is supported. To enable If-None-Match or If-Match headers in
read, delete, and patch requests, this property must be true .

Operations

An object that describes each operation supported on that endpoint (create , read , update , delete , patch , actions ,
and queries).

resourceSchema

The schema for the objects at this endpoint.

To refer to examples of the API descriptors included in IDM, log in to the admin UI, then point your browser to http://localhost:
8080/openidm?_crestapi.

Compare the descriptors at that URL with what you refer to in the API Explorer.

In addition, the sample configuration file (openidm/samples/example-configurations/custom-endpoint/conf/endpoint-
echo.json) shows how API descriptors must be constructed:

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 935

http://localhost:8080/admin
http://localhost:8080/admin
http://localhost:8080/openidm?_crestapi
http://localhost:8080/openidm?_crestapi
http://localhost:8080/openidm?_crestapi
http://localhost:8080/admin/#apiExplorer
http://localhost:8080/admin/#apiExplorer

{
 "apiDescription" : {
 "title" : "Echo",
 "description" : "Service that echo's your HTTP requests.",
 "mvccSupported" : false,
 "create" : {
 "description" : "Echo a CREATE request.",
 "mode" : "ID_FROM_SERVER",
 "singleton" : false
 },
 "read" : { "description" : "Echo a READ request." },
 "update" : { "description" : "Echo an UPDATE request." },
 "delete" : { "description" : "Echo a DELETE request." },
 "patch" : {
 "description" : "Echo a PATCH request.",
 "operations" : ["ADD", "REMOVE", "REPLACE", "INCREMENT", "COPY", "MOVE", "TRANSFORM"]
 },
 "actions" : [
 {
 "description" : "Echo an ACTION request.",
 "name" : "echo",
 "request" : { "type" : "object" },
 "response" : {
 "title" : "Echo action response",
 "type" : "object",
 "properties" : {
 "method" : {
 "type" : "string",
 "enum" : ["action"]
 },
 "action" : { "type" : "string" },
 "content" : { "type" : "object" },
 "parameters" : { "type" : "object" },
 "context" : { "type" : "object" }
 }
 }
 }
],
 "queries" : [
 {
 "description" : "Echo a query-filter request.",
 "type" : "FILTER",
 "queryableFields" : ["*"]
 },
 {
 "description" : "Echo a query-all request.",
 "type" : "ID",
 "queryId" : "query-all"
 },
 {
 "description" : "Echo a query-all-ids request.",
 "type" : "ID",
 "queryId" : "query-all-ids"
 }
],
 "resourceSchema" : {
 "title" : "Echo resource",
 "type" : "object",
 "properties" : {
 "method" : {

Scripting PingIDM

936 Copyright © 2025 Ping Identity Corporation

 "title" : "CREST method",
 "type" : "string"
 },
 "resourceName" : { "type" : "string" },
 "parameters" : { "type" : "object" },
 "context" : { "type" : "object" }
 }
 }
 }
}

This object generates API documentation in the API explorer that looks like this:

Register custom scripted actions

You can register custom scripts that initiate some arbitrary action on a managed object endpoint. You can declare any number of
actions in your managed object schema and associate those actions with a script.

The return value of a custom scripted action is ignored. The managed object is returned as the response of the scripted action,
whether that object has been updated by the script or not.

Custom scripted actions have access to the following variables:

context•

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 937

request

resourcePath

object

Example scenario

In this scenario, you want your managed users to have the option to receive update notifications. You can define an action that
toggles the value of a specific property on the user object.

Add an updates property to the managed object configuration:

"properties": {
 ...
 "updates": {
 "title": "Automatic Updates",
 "viewable": true,
 "type": "boolean",
 "searchable": true,
 "userEditable": true
 },
 ...
}

Add a toggleUpdates action to the managed user object definition:

{
 "objects" : [
 {
 "name" : "user",
 "onCreate" : {
 ...
 },
 ...
 "actions" : {
 "toggleUpdates" : {
 "type" : "text/javascript",
 "source" : "openidm.patch(resourcePath, null, [{ 'operation' : 'replace', 'field' : '/
updates', 'value' : !object.updates }])"
 }
 },
 ...
 }
]
}

To call the script, specify the ID of the action in a POST request on the user object:

•

•

•

1.

2.

info
The toggleUpdates action calls a script that changes the value of the user’s updates property.

Note

3.

Scripting PingIDM

938 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/managed/user/ID?_action=toggleUpdates"

You can now test the functionality.

Create a managed user, bjensen , with an updates property set to true :

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "userName":"bjensen",
 "sn":"Jensen",
 "givenName":"Barbara",
 "mail":"bjensen@example.com",
 "telephoneNumber":"5556787",
 "description":"Created by OpenIDM REST.",
 "updates": true,
 "password":"Passw0rd"
}' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "_rev": "0000000050c62938",
 "userName": "bjensen",
 "sn": "Jensen",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "5556787",
 "description": "Created by OpenIDM REST.",
 "updates": true,
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Run the toggleUpdates action on bjensen :

4.

5.

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 939

mailto:bjensen@example.com
mailto:bjensen@example.com

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb?
_action=toggleUpdates"
{
 "_id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "_rev": "00000000a92657c7",
 "userName": "bjensen",
 "sn": "Jensen",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "5556787",
 "description": "Created by OpenIDM REST.",
 "updates": false,
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Request context chain

The context chain of any request is established as follows:

The request starts with a root context, associated with a specific context ID.

The root context is wrapped in the security context that includes the authentication and authorization detail for the
request.

The security context is further wrapped by the HTTP context, with the target URI. The HTTP context is associated with the
normal parameters of the request, including a user agent, authorization token, and method.

The HTTP context is wrapped by one or more server/router context(s), with an endpoint URI. The request can have several
layers of server and router contexts.

Script triggers

info
Note in the command output that this action has set bjensen’s updates property to false.

Note

1.

2.

3.

4.

lightbulb_2
For more information about the variables available to scripts, refer to Script variables.

Tip

Scripting PingIDM

940 Copyright © 2025 Ping Identity Corporation

mailto:bjensen@example.com

Scripts can be triggered in different places, and by different events. The following list indicates the configuration files in which
scripts can be referenced, the events upon which the scripts can be triggered, and the actual scripts that can be triggered on each
of these files.

Scripts called in mappings
Triggered by situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object filter

validSource, validTarget

Triggered when correlating objects

correlationQuery, correlationScript

Triggered on any reconciliation

result

Scripts inside properties

condition, transform

sync.json supports only one script per hook. If multiple scripts are defined for the same hook, only the last one is
kept.

Scripts inside policies

condition

Within a synchronization policy, you can use a condition script to apply different policies based on the link type,
for example:

"condition" : {
 "type" : "text/javascript",
 "source" : "linkQualifier == \"user\""
}

Scripts called in the managed object configuration

onCreate, onRead, onUpdate, onDelete, onValidate, onRetrieve, onStore, onSync, postCreate, postUpdate, and postDelete

The managed object configuration supports only one script per hook. If multiple scripts are defined for the same hook,
only the last one is kept.

Scripts called in the router configuration

onRequest, onResponse, onFailure

The router configuration supports multiple scripts per hook.

managed object configuration">

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 941

Script triggers defined in the managed object configuration

For information about how managed objects are handled and the available script triggers, refer to Managed objects reference.

Managed object configuration object

Trigger Variable

onCreate , postCreate
object: The content of the object being created.
newObject: The object after the create operation is
complete.
context: Information related to the current request,
such as client, end user, and routing.
resourceName: The resource path of the object of the
query. For example, if you create a managed user with
ID 42f8a60e-2019-4110-a10d-7231c3578e2b ,
resourceName returns managed/user/
42f8a60e-2019-4110-a10d-7231c3578e2b .
request: Information related to the request, such as
headers, credentials, and the desired action. Also
includes the endpoint, and payload to be processed.

onUpdate , postUpdate
Returns JSON object object: The content of the object being updated.

oldObject: The state of the object, before the update.
newObject: Changes to be applied to the object. May
continue with the onUpdate trigger.
context: Information related to the current request,
such as client, end user, and routing.
resourceName: The resource path of the object the
query.
request: Information related to the request, such as
headers, credentials, and the desired action. Also
includes the endpoint, and payload to be processed.

onDelete , onRetrieve , onRead
Returns JSON object. object: The content of the object.

context: Information related to the current request,
such as client, end user, and routing.
resourceName: The resource path of the object the
query.
request: Information related to the request, such as
headers, credentials, and the desired action. Also
includes the endpoint, and payload to be processed.

•
•

•

•

•

•
•
•

•

•

•

•
•

•

•

Scripting PingIDM

942 Copyright © 2025 Ping Identity Corporation

Trigger Variable

postDelete

Returns JSON object. oldObject: Represents the deleted object.
context: Information related to the current request,
such as client, end user, and routing.
resourceName: The resource path of the object the
query is performed upon.
request: Information related to the request, such as
headers, credentials, and the desired action. Also
includes the endpoint, and payload to be processed.

onSync

Returns JSON object oldObject: Represents the object prior to sync. If sync
has not been run before, the value will be null .
newObject: Represents the object after sync is
completed.
context: Information related to the current request,
such as client, end user, and routing.
request: Information related to the request, such as
headers, credentials, and the desired action. Also
includes the endpoint, and payload to be processed.
resourceName: An object representing the resource
path the query is performed upon.
syncResults: A map containing the results and details
of the sync, including:

success (boolean): Success or failure of the
sync operation.
action: Returns the name of the action
performed as a string.
syncDetails: The mappings attempted during
synchronization.

onStore , onValidate
Returns JSON object object: Represents the object being stored or

validated.
value: The content to be stored or validated for the
object.
context: Information related to the current request,
such as client, end user, and routing.
resourceName: The resource path of the object the
query is performed upon.
request: Information related to the request, such as
headers, credentials, and the desired action. Also
includes the endpoint, and payload to be processed.

•
•

•

•

•

•

•

•

•

•

◦

◦

◦

•

•

•

•

•

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 943

Property object

Script triggers defined in mappings

For information about how managed objects in mappings are handled, and the script triggers available, refer to Object-Mapping
Objects.

Object-mapping object

Trigger Variable

onRetrieve , onStore
Returns JSON object object: Represents the object being operated upon.

property: The value of the property being retrieved or
stored.
propertyName: The name of the property being
retrieved or stored.
context: Information related to the current request,
such as client, end user, and routing.
resourceName: The resource path of the object the
query is performed upon.
request: Information related to the request, such as
headers, credentials, and the desired action. Also
includes the endpoint, and payload to be processed.

onValidate

Returns JSON object property: The value of the property being validated.
context: Information related to the current request,
such as client, end user, and routing.
resourceName: The resource path of the object the
query is performed upon.
request: Information related to the request, such as
headers, credentials, and the desired action. Also
includes the endpoint, and payload to be processed.

•
•

•

•

•

•

•
•

•

•

Trigger Variable

correlationQuery , correlationScript
Returns JSON object source: Represents the source object.

linkQualifier: The link qualifier associated with the
current sync.
context: Information related to the current request,
such as source and target.

•
•

•

Scripting PingIDM

944 Copyright © 2025 Ping Identity Corporation

Trigger Variable

linkQualifiers

Returns JSON object mapping: The name of the current mapping.
object: The value of the source object. During a
DELETE event, that source object may not exist, and
may be null.
oldValue: The former value of the deleted source
object, if any. If the source object is new, oldValue will
be null. When there are deleted objects, oldValue is
populated only if the source is a managed object.
returnAll (boolean): Link qualifier scripts must return
every valid link qualifier when returnAll is true,
independent of the source object. If returnAll is true,
the script must not attempt to use the object variable,
because it will be null. It’s best practice to configure
scripts to start with a check for the value of returnAll.
context: Information related to the current request,
such as source and target.

onCreate

Returns JSON object source: Represents the source object.
target: Represents the target object.
situation: The situation associated with the current
sync operation.
linkQualifier: The link qualifier associated with the
current sync operation.
context: Information related to the current sync
operation.
sourceId: The object ID for the source object.
targetId: The object ID for the target object.
mappingConfig: A configuration object representing
the mapping being processed.

•
•

•

•

•

•
•
•

•

•

•
•
•

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 945

Trigger Variable

onDelete , onUpdate
Returns JSON object source: Represents the source object.

target: Represents the target object.
oldTarget: Represents the target object prior to the
DELETE or UPDATE action.
situation: The situation associated with the current
sync operation.
linkQualifier: The link qualifier associated with the
current sync.
context: Information related to the current sync
operation.
sourceId: The object ID for the source object.
targetId: The object ID for the target object.
mappingConfig: A configuration object representing
the mapping being processed.

onLink , onUnlink
Returns JSON object source: Represents the source object.

target: Represents the target object.
linkQualifier: The link qualifier associated with the
current sync operation.
context: Information related to the current sync
operation.
sourceId: The object ID for the source object.
targetId: The object ID for the target object.
mappingConfig: A configuration object representing
the mapping being processed.

•
•
•

•

•

•

•
•
•

•
•
•

•

•
•
•

Scripting PingIDM

946 Copyright © 2025 Ping Identity Corporation

Trigger Variable

onError

Returns JSON object source: Represents the source object.
target: Represents the target object.
linkQualifier: The link qualifier associated with the
current sync operation.
context: Information related to the current sync
operation.
situation: The situation associated with the current
sync operation.
sourceId: The object ID for the source object.
targetId: The object ID for the target object.
oldSource: Available during UPDATE and DELETE
operations performed through implicit sync. With
implicit synchronization, the synchronization
operation is triggered by a specific change to the
source object. As such, implicit sync can populate the
old value within the oldSource variable and pass it
on to the sync engine.
error: The result of the resource exception, as a JSON
object.
mappingConfig: A configuration object representing
the mapping being processed.

result

Returns JSON object of reconciliation results source: Provides statistics about the source phase of
the reconciliation.
target: Provides statistics about the target phase of
the reconciliation.
context: Information related to the current operation,
such as source and target.
global: Provides statistics about the entire
reconciliation operation.
mappingConfig: A configuration object representing
the mapping being processed.
reconState: Provides the state of reconciliation
operation; such as, success, failure, or active.

validSource

Returns boolean source: Represents the source object.
linkQualifier: The link qualifier associated with the
current sync operation.
context: Information related to the current sync
operation.

•
•
•

•

•

•
•
•

•

•

•

•

•

•

•

•

•
•

•

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 947

Property object

Trigger Variable

validTarget

Returns boolean target: Represents the target object.
linkQualifier: The link qualifier associated with the
current sync operation.
context: Information related to the current sync
operation.

•
•

•

Trigger Variable

condition

Returns boolean object: The current object being mapped.
context: Information related to the current operation,
such as source and target.
linkQualifier: The link qualifier associated with the
current sync operation.
target: Represents the target object.
oldTarget: Represents the target object prior to any
changes.
oldSource: Available during UPDATE and DELETE
operations performed through implicit sync. With
implicit synchronization, the synchronization
operation is triggered by a specific change to the
source object. As such, implicit sync can populate the
old value within the oldSource variable and pass it
on to the sync engine.
During reconciliation operations oldSource will be
undefined. A reconciliation operation cannot populate
the value of the oldSource variable as it has no
awareness of the specific change to the source object. 
Reconciliation simply synchronizes the static source
object to the target.

transform

Returns JSON object source: Represents the source object.
linkQualifier: The link qualifier associated with the
current sync operation.
context: Information related to the current sync
operation.

•
•

•

•
•

•

•
•

•

Scripting PingIDM

948 Copyright © 2025 Ping Identity Corporation

Policy object

Trigger Variable

action

Returns string OR JSON object source: Represents the source object.
target: Represents the target object.
sourceAction (boolean): Indicates whether the action
is being processed during the source or target
synchronization phase (true if performed during a
source synchronization, false if performed during a
target synchronization).
linkQualifier: The link qualifier used for this operation
(default if no other link qualifier is specified).
context: Information related to the current sync
operation.
recon: Represents the reconciliation operation.
The recon.actionParam object contains information
about the current reconciliation operation and
includes the following variables:

reconId : The ID of the reconciliation
operation.
mapping : The mapping for which the
reconciliation was performed, for example,
systemLdapAccounts_managedUser .
situation : The situation encountered, for
example, AMBIGUOUS.
action : The default action that would be used
for this situation, if not for this script. The
script being executed replaces the default
action (and is used instead of any other named
action).
sourceId : The _id value of the source
record.
linkQualifier : The link qualifier used for that
mapping, (default if no other link qualifier is
specified).
ambiguousTargetIds : An array of the target
object IDs that were found in an AMBIGUOUS
situation during correlation.
_action : The synchronization action (only
performAction is supported).

•
•
•

•

•

•
•

◦

◦

◦

◦

◦

◦

◦

◦

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 949

router configuration">

Script triggers defined in the router configuration

The augmentSecurityContext trigger

The augmentSecurityContext trigger, defined in the authentication configuration, can reference a script that is executed after
successful authentication. Such scripts can populate the security context of the authenticated user. If the authenticated user is
not found in the resource specified by queryOnResource , the augmentSecurityContext can provide the required authorization
map.

Such scripts have access to the following bindings:

security - includes the authenticationId and the authorization key, which includes the moduleId .

Trigger Variable

postAction

Returns JSON object source: Represents the source object.
target: Represents the target object.
action: The sync action that was performed.
sourceAction (boolean): Indicates whether the action
is being processed during the source or target
synchronization phase (true if performed during a
source synchronization, false if performed during a
target synchronization).
linkQualifier: The link qualifier used for this operation
(default if no other link qualifier is specified).
reconId: Represents the ID of the reconciliation.
situation: Represents the situation for this policy.
context: Information related to the current operation,
such as source and target.

•
•
•
•

•

•
•
•

Trigger Variable

onFailure exception

onRequest request

onResponse response

•

Scripting PingIDM

950 Copyright © 2025 Ping Identity Corporation

The main purpose of an augmentSecurityContext script is to modify the authorization map that is part of this
security binding. The authentication module determines the value of the authenticationId , and IDM attempts to
populate the authorization map with the details that it finds, related to that authenticationId value. These details
include the following:

security.authorization.component - the resource that contains the account (this will always will be the same as
the value of queryOnResource by default).

security.authorization.id - the internal _id value that is associated with the account.

security.authorization.roles - any roles that were determined, either from reading the userRoles property of
the account or from calculation.

security.authorization.moduleId - the authentication module responsible for performing the original
authentication.

You can use the augmentSecurityContext script to change any of these authorization values. The script can also add
new values to the authorization map, which will be available for the lifetime of the session.

properties - corresponds to the properties map of the related authentication module.

httpRequest - a reference to the Request object that was responsible for handling the incoming HTTP request.

This binding is useful to the augment script because it has access to all of the raw details from the HTTP request, such as
the headers. The following code snippet shows how you can access a header using the httpRequest binding. This
example accesses the authToken request header:

httpRequest.getHeaders().getFirst('authToken').toString()

Script variables

The variables available to a script depend on several factors:

The trigger that launches the script.

The configuration file in which that trigger is defined.

The object type:

For objects defined in the managed object configuration, the object type is either a managed object, or a managed
object property.

For objects defined in the mapping configuration, the object can be an object-mapping object, a property object, or
a policy object. For more information, refer to Policy Objects).

The following subtopics list the variables available to scripts, based on the configuration file in which the trigger is defined.

◦

◦

◦

◦

•

•

lightbulb_2
For more information about the variables available in script triggers, refer to Script triggers.

Tip

•

•

•

◦

◦

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 951

Variables available to scripts in custom endpoints

All custom endpoint scripts have a request variable in their scope, which is a JSON object containing all information about the
request. The parameters found in this object vary depending on the request method. The request may include headers,
credentials, and the desired action. The request normally also includes the endpoint as well as the payload to be processed.

For more details about writing custom endpoint scripts, refer to Custom Endpoint Scripts.

Variables available to role assignment scripts

The optional onAssignment and onUnassignment event scripts specify what should happen to attributes that are affected by
role assignments when those assignments are applied to a user, or removed from a user.

Variable Variable Parameters

request
method: The type of request, such as query , create ,
or delete .
resourceName: The name of the resource associated
with the request.
revision: The revision number of the requested
object.
parameters: JSON object mapping any additional
parameters sent in the request.
content: The contents of the requested object.
context: Information related to the current request,
such as client, end user, and routing.
Only available in query requests
pagedResultsCookie: Represents the cookie used for
queryFilter operations to track the results of a
filtered query.
pagedResultsOffset: Specifies how many records to
skip before returning a set of results.
pageSize: Specifies how many results to return per
page.
queryExpression: A string containing a native query to
query a system resource directly.
queryId: A string using the id of a predefined query
object to return a specific set of results from a queried
object.
queryFilter: A string with a common expression used
to filter the results of a queried object. Only available
in create requests
newResourceId: The ID of the new object. Only
available in create requests.

•

•

•

•

•
•

•

•

•

•

•

•

•

Scripting PingIDM

952 Copyright © 2025 Ping Identity Corporation

These scripts have access to the following variables:

sourceObject

targetObject

existingTargetObject

linkQualifier

The standard assignment scripts, replaceTarget.js , mergeWithTarget.js , removeFromTarget.js , and noOp.js have access
to all the variables in the previous list, as well as the following:

attributeName

attributeValue

attributesInfo

The identityServer variable

IDM provides an additional variable, named identityServer , to scripts. You can use this variable in several ways. The
ScriptRegistryService , described in Validate scripts over REST, binds this variable to:

getProperty

Retrieves property information from system configuration files. Takes up to three parameters:

The name of the property you are requesting.

(Optional) The default result to return if the property wasn’t set.

(Optional) Boolean to determine whether or not to use property substitution when getting the property.

For more information about property substitution, refer to Property value substitution.

Returns the first property found following the same order of precedence IDM uses to check for properties:
environment variables, system.properties , boot.properties , and then other configuration files.

For more information, refer to Server configuration.

For example, you can retrieve the value of the openidm.config.crypto.alias property with the following code:
alias = identityServer.getProperty("openidm.config.crypto.alias", "true", true);

getInstallLocation

Retrieves the IDM installation path, such as /path/to/openidm . May be superseded by an absolute path.

getProjectLocation

Retrieves the directory used when you started IDM. That directory includes configuration and script files for your project.

•

•

•

•

•

•

•

info
Role assignment scripts must always return targetObject , otherwise other scripts and code that occur downstream
of your script will not work as expected.

Note

•

◦

◦

◦

•

•

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 953

For more information on the project location, refer to Startup configuration.

getWorkingLocation

Retrieves the directory associated with database cache and audit logs. You can find db/ and audit/ subdirectories there.

For more information on the working location, refer to Startup configuration.

Router configuration

The router service provides the uniform interface to all IDM objects: managed objects, system objects, configuration objects, and
so on.

The router configuration contains an array of Filter objects:

{
 "filters": [filter object, ...]
}

Filter objects

The required filters array defines a list of filters to be processed on each router request. Filters are processed in the order in
which they are specified in this array, and have the following configuration:

{
 "pattern": string,
 "methods": [string, ...],
 "condition": script object,
 "onRequest": script object,
 "onResponse": script object,
 "onFailure": script object
}

pattern

string, optional

Specifies a regular expression pattern matching the JSON pointer of the object to trigger scripts. If not specified, all
identifiers (including null) match. Pattern matching is done on the resource name, rather than on individual objects.

methods

array of strings, optional

One or more methods for which the script(s) should be triggered. Supported methods are: "create" , "read" , "update" ,
"delete" , "patch" , "query" , "action" . If not specified, all methods are matched.

condition

script object, optional

•

Scripting PingIDM

954 Copyright © 2025 Ping Identity Corporation

Specifies a script that is called first to determine if the script should be triggered. If the condition yields "true" , the other
script(s) are executed. If no condition is specified, the script(s) are called unconditionally.

onRequest

script object, optional

Specifies a script to execute before the request is dispatched to the resource. If the script throws an exception, the
method is not performed, and a client error response is provided.

onResponse

script object, optional

Specifies a script to execute after the request is successfully dispatched to the resource and a response is returned.
Throwing an exception from this script does not undo the method already performed.

onFailure

script object, optional

Specifies a script to execute if the request resulted in an exception being thrown. Throwing an exception from this script
does not undo the method already performed.

router configuration">

Pattern matching in the router configuration

Pattern matching can minimize overhead in the router service. The default router configuration includes instances of the
pattern filter object, that limit script requests to specified methods and endpoints.

Based on the following code snippet, the router service would trigger the policyFilter.js script for CREATE and UPDATE calls
to managed and internal objects:

{
 "pattern" : "^(managed|internal)($|(/.+))",
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "require('policyFilter').runFilter()"
 },
 "methods" : [
 "create",
 "update"
]
}

Without this pattern , IDM would apply the policy filter to additional objects, such as the audit service, which could affect
performance.

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 955

Script execution sequence

All onRequest and onResponse scripts are executed in sequence. First, the onRequest scripts are executed from the top down,
then the onResponse scripts are executed from the bottom up.

client -> filter 1 onRequest -> filter 2 onRequest -> resource
client <- filter 1 onResponse <- filter 2 onResponse <- resource

The following sample router configuration shows the order in which the scripts would be executed:

Scripting PingIDM

956 Copyright © 2025 Ping Identity Corporation

{
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "require('router-authz').testAccess()"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "console.log('requestFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "console.log('responseFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "console.log('requestFilter 2');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "console.log('responseFilter 2');"
 }
 }
]
}

This configuration would produce a log as follows:

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 957

requestFilter 1
requestFilter 2
responseFilter 2
responseFilter 1

This example executes a script after a managed user object is created or updated:

{
 "filters": [
 {
 "pattern": "^managed/user",
 "methods": [
 "create",
 "update"
],
 "onResponse": {
 "type": "text/javascript",
 "file": "scripts/afterUpdateUser.js"
 }
 }
]
}

Script scope

Scripts are provided with the following scope:

{
 "openidm": openidm-functions object,
 "request": resource-request object,
 "response": resource-response object,
 "exception": exception object
}

openidm

openidm-functions object

Provides access to IDM resources.

request

resource-request object

The resource-request context, which has one or more parent contexts. Provided in the scope of all scripts. For more
information about the request context, refer to Request context chain.

response

resource-response object

Scripting PingIDM

958 Copyright © 2025 Ping Identity Corporation

The response to the resource-request. Only provided in the scope of the "onResponse" script.

exception

exception object

The exception value that was thrown as a result of processing the request. Only provided in the scope of the "onFailure"
script. An exception object is defined as:

{
 "code": integer,
 "reason": string,
 "message": string,
 "detail": string
}

code

integer

The numeric HTTP code of the exception.

reason

string

The short reason phrase of the exception.

message

string

A brief message describing the exception.

detail

(optional), string

A detailed description of the exception, in structured JSON format, suitable for programmatic evaluation.

Scripting function reference

Functions (access to managed objects, system objects, and configuration objects) within IDM are accessible to scripts via the
openidm object, which is included in the top-level scope provided to each script.

info
If you need to request specific resource versions, refer to REST API versioning.

Note

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 959

The script engine supports the following functions:

This function creates a new resource object.

Parameters
resourceName

string

The container in which the object will be created, for example, managed/user .

newResourceId

string

The identifier of the object to be created, if the client is supplying the ID. If the server should generate the ID, pass
null here.

content

JSON object

The content of the object to be created.

params

JSON object (optional)

Additional parameters that are passed to the create request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild cards, such as * or
*_ref . If no fields are specified, the entire new object is returned.

Returns

The created resource object.

Throws

An exception is thrown if the object could not be created.

info
Most of the following function examples are in JavaScript. To use the functions in Groovy scripts, make adjustments as
necessary. For example, you need to pass parameters using square brackets (not curly braces):

openidm.query("managed/user", ["_queryFilter" : "/userName sw \"user.1\""], ["userName", "_id"])

Note

Scripting PingIDM

960 Copyright © 2025 Ping Identity Corporation

Example

openidm.create("managed/user", ID, JSON object);

This function performs a partial modification of a managed or system object. Unlike the update function, only the modified
attributes are provided, not the entire object.

Parameters
resourceName

string

The full path to the object being updated, including the ID.

rev

string

The revision of the object to be updated. Use null if the object is not subject to revision control, or if you want to
skip the revision check and update the object, regardless of the revision.

value

An array of one or more JSON objects

The value of the modifications to be applied to the object. The patch set includes the operation type, the field to be
changed, and the new values. A PATCH request can add , remove , replace , or increment an attribute value.

A remove operation removes a property if the value of that property equals the specified value, or if no value is
specified in the request. The following example value removes the marital_status property from the object, if
the value of that property is single :

[
 {
 "operation": "remove",
 "field": "marital_status",
 "value": "single"
 }
]

For fields whose value is an array, it’s not necessary to know the position of the value in the array, as long as you
specify the full object. If the full object is found in the array, that value is removed. The following example removes
user adonnelly from bjensen’s reports :

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 961

{
 "operation": "remove",
 "field": "/manager",
 "value": {
 "_ref": "managed/user/adonnelly",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "adonnelly",
 "_refProperties": {
 "_id": "ed6620e4-98ba-410c-abc0-e06dc1be7aa7",
 "_rev": "000000008815942b"
 }
 }
}

If an invalid value is specified (that is a value that does not exist for that property in the current object) the patch
request is silently ignored.

A replace operation replaces an existing value, or adds a value if no value exists.

params

JSON object (optional)

Additional parameters that are passed to the patch request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild cards, such as * or *_ref . If
no fields are specified, the entire new object is returned.

Returns

The modified resource object.

Throws

An exception is thrown if the object could not be updated.

Examples

Patching an object to add a value to an array:

openidm.patch("managed/role/" + role._id, null, [{"operation":"add", "field":"/members/-", "value":
{"_ref":"managed/user/" + user._id}}]);

Patching an object to remove an existing property:

openidm.patch("managed/user/" + user._id, null, [{"operation":"remove", "field":"marital_status",
"value":"single"}]);

Scripting PingIDM

962 Copyright © 2025 Ping Identity Corporation

Patching an object to replace a field value:

openidm.patch("managed/user/" + user._id, null, [{"operation":"replace", "field":"/password",
"value":"Passw0rd"}]);

Patching an object to increment an integer value:

openidm.patch("managed/user/" + user._id, null, [{"operation":"increment","field":"/age","value":1}]);

This function reads and returns a resource object.

Parameters
resourceName

string

The full path to the object to be read, including the ID.

params

JSON object (optional)

The parameters that are passed to the read request. Generally, no additional parameters are passed to a read
request, but this might differ, depending on the request. If you need to specify a list of fields as a third
parameter, and you have no additional params to pass, you must pass null here. Otherwise, you simply omit
both parameters.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild cards, such as * or
*_ref . If no fields are specified, the entire object is returned.

Returns

The resource object, or null if not found.

Example

openidm.read("managed/user/"+userId, null, ["*", "manager"]);

This function updates an entire resource object.

Parameters
id

string

The complete path to the object to be updated, including its ID.

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 963

rev

string

The revision of the object to be updated. Use null if the object is not subject to revision control, or if you want to
skip the revision check and update the object, regardless of the revision.

value

object

The complete replacement object.

params

JSON object (optional)

The parameters that are passed to the update request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild cards, such as * or
*_ref . If no fields are specified, the entire object is returned.

Returns

The modified resource object.

Throws

An exception is thrown if the object could not be updated.

Example

In this example, the managed user entry is read (with an openidm.read , the user entry that has been read is updated with
a new description, and the entire updated object is replaced with the new value.

var user_read = openidm.read('managed/user/' + source._id);
user_read['description'] = 'The entry has been updated';
openidm.update('managed/user/' + source._id, null, user_read);

This function deletes a resource object.

Parameters
resourceName

string

The complete path to the to be deleted, including its ID.

Scripting PingIDM

964 Copyright © 2025 Ping Identity Corporation

rev

string

The revision of the object to be deleted. Use null if the object is not subject to revision control, or if you want to
skip the revision check and delete the object, regardless of the revision.

params

JSON object (optional)

The parameters that are passed to the delete request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild cards, such as * or
*_ref . If no fields are specified, the entire object is returned.

Returns

Returns the deleted object if successful.

Throws

An exception is thrown if the object could not be deleted.

Example

openidm.delete('managed/user/'+ user._id, user._rev);

This function performs a query on the specified resource object. For more information, refer to Construct Queries.

Parameters
resourceName

string

The resource object on which the query should be performed, for example, "managed/user" , or "system/ldap/
account" .

params

JSON object

The parameters that are passed to the query (_queryFilter , or _queryId). Additional parameters passed to the
query will differ, depending on the query.

Certain common parameters can be passed to the query to restrict the query results. The following sample query
passes paging parameters and sort keys to the query.

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 965

reconAudit = openidm.query("audit/recon", {
 "_queryFilter": queryFilter,
 "_pageSize": limit,
 "_pagedResultsOffset": offset,
 "_pagedResultsCookie": string,
 "_sortKeys": "-timestamp"
});

For more information about _queryFilter syntax, refer to Common Filter Expressions. For more information
about paging, refer to Page Query Results.

fields

list

A list of the fields that should be returned in the result. The list of fields can include wild cards, such as * or
*_ref . The following example returns only the userName and _id fields:

openidm.query("managed/user", { "_queryFilter": "/userName sw \"user.1\""}, ["userName", "_id"]);

This parameter is particularly useful in enabling you to return the response from a query without including
intermediary code to massage it into the right format.

Fields are specified as JSON pointers.

Returns

The result of the query. A query result includes the following parameters:

query-time-ms

(For JDBC repositories only) the time, in milliseconds, that IDM took to process the query.

result

The list of entries retrieved by the query. The result includes the properties that were requested in the query.

The following example shows the result of a custom query that requests the ID, user name, and email address of all
managed users in the repository.

Scripting PingIDM

966 Copyright © 2025 Ping Identity Corporation

{
 "result": [
 {
 "_id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "_rev": "00000000a059dc9f",
 "userName": "bjensen",
 "mail": "bjensen@example.com"
 },
 {
 "_id": "42f8a60e-2019-4110-a10d-7231c3578e2b",
 "_rev": "00000000d84ade1c",
 "userName": "scarter",
 "mail": "scarter@example.com"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Throws

An exception is thrown if the given query could not be processed.

Examples

The following sample query uses a _queryFilter to query the managed user repository:

openidm.query("managed/user", {'_queryFilter': userIdPropertyName + ' eq "' + security.authenticationId +
'"'});

The following sample query references the for-userName query, defined in the repository configuration, to query the
managed user repository:

openidm.query("managed/user", {"_queryId": "for-userName", "uid": request.additionalParameters.uid });

This function performs an action on the specified resource object. The resource and actionName are required. All other
parameters are optional.

Parameters
resource

string

The resource that the function acts upon, for example, managed/user .

actionName

string

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 967

The action to execute. Actions are used to represent functionality that is not covered by the standard methods for a
resource (create, read, update, delete, patch, or query). In general, you should not use the openidm.action
function for create, read, update, patch, delete or query operations. Instead, use the corresponding function
specific to the operation (for example, openidm.create).

Using the operation-specific functions lets you benefit from the well-defined REST API, which follows the same
pattern as all other standard resources in the system. Using the REST API enhances usability for your own API, and
enforces the established patterns.

IDM-defined resources support a fixed set of actions. For user-defined resources (scriptable endpoints) you can
implement whatever actions you require.

Supported Actions Per Resource

The following list outlines the supported actions for each resource or endpoint. The actions listed here are also
supported over the REST interface.

Actions supported on the authentication endpoint (authentication/*)

reauthenticate

Actions supported on the configuration resource (config/)

No action parameter applies.

Actions supported on custom endpoints

Custom endpoints enable you to run arbitrary scripts through the REST URI, and are routed at endpoint/
name , where name generally describes the purpose of the endpoint. For more information on custom
endpoints, refer to Create custom endpoints to launch scripts. You can implement whatever actions you
require on a custom endpoint. IDM uses custom endpoints in its workflow implementation. Those
endpoints, and their actions are as follows:

endpoint/getprocessforuser - create, complete
endpoint/gettasksview - create, complete

Actions supported on the external endpoint

external/email - send , for example:

{
 emailParams = {
 "from" : 'admin@example.com',
 "to" : user.mail,
 "subject" : 'Password expiry notification',
 "type" : 'text/plain',
 "body" : 'Your password will expire soon. Please change it!'
 }
 openidm.action("external/email", "send", emailParams);
}

external/email - sendTemplate , for example:

•

•

Scripting PingIDM

968 Copyright © 2025 Ping Identity Corporation

{
 emailParams = {
 "templateName" : "welcome",
 "to" : user.mail,
 "cc" : "ccUser1@example.com,ccUser2@example.com",
 "bcc" : "bigBoss@example.com"
 }
 openidm.action("external/email", "sendTemplate", emailParams);
}

external/rest - call , for example:

openidm.action("external/rest", "call", params);

Actions supported on the info endpoint (info/*)

No action parameter applies.

Actions supported on managed resources (managed/*)

patch, triggerSyncCheck

Actions supported on the policy resource (policy)

validateObject, validateProperty

For example:

openidm.action("policy/" + fullResourcePath, "validateObject", request.content, { "external" :
"true" });

Actions supported on the reconciliation resource (recon)

recon, reconById, cancel

For example:

openidm.action("recon/_id", "cancel", content, params);

Actions supported on the repository (repo)

command

For example:

•

info
A cancel action requires the entire reconciliation resource path (_id).

Note

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 969

var r, command = {
 "commandId": "purge-by-recon-number-of",
 "numberOf": numOfRecons,
 "includeMapping": includeMapping,
 "excludeMapping": excludeMapping
};
r = openidm.action("repo/audit/recon", "command", {}, command);

Actions supported on the script resource (script)

eval

For example:

openidm.action("script", "eval", getConfig(scriptConfig), {});

Actions supported on the synchronization resource (sync)

getLinkedResources, notifyCreate, notifyDelete, notifyUpdate, performAction

For example:

openidm.action('sync', 'performAction', content, params);

Actions supported on system resources (system/*)

availableConnectors, createCoreConfig, createFullConfig, test, testConfig, liveSync, authenticate, script

For example:

openidm.action("system/ldap/account", "authenticate", {"username" : "bjensen", "password" :
"Passw0rd"});

Actions supported on the task scanner resource (taskscanner)

execute, cancel

Actions supported on the workflow resource (workflow/*)

On workflow/processdefinition create, complete

On workflow/processinstance create, complete

For example:

var params = {
 "_key":"contractorOnboarding"
};
openidm.action('workflow/processinstance', 'create', params);

Scripting PingIDM

970 Copyright © 2025 Ping Identity Corporation

On workflow/taskinstance claim, create, complete

For example:

var params = {
 "userId":"manager1"
};
openidm.action('workflow/taskinstance/15', 'claim', params);

content

object

Content given to the action for processing.

params

object (optional)

Additional parameters passed to the script. The params object must be a set of simple key:value pairs and cannot
include complex values. The parameters must map directly to URL variables, which take the form
name1=val1&name2=val2&... .

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild cards, such as * or
*_ref . If no fields are specified, the entire object is returned.

Returns

The result of the action may be null .

Throws

If the action cannot be executed, an object containing an error property is returned.

This function encrypts a value.

Parameters
value

any

The value to be encrypted.

cipher

string

The cipher with which to encrypt the value, using the form "algorithm/mode/padding" or just "algorithm". Example:
AES/CBC/PKCS5Padding .

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 971

alias

string

A purpose defined in the secrets.json file, such as idm.password.encryption .

Returns

The value, encrypted with the specified cipher and key.

Throws

An exception is thrown if the object could not be encrypted.

This function decrypts a value.

Parameters
value

object

The value to be decrypted.

Returns

A deep copy of the value, with any encrypted value decrypted.

Throws

An exception is thrown if the object could not be decrypted for any reason. An error is thrown if the value is passed in as a
string - it must be passed in an object.

This function determines if a value is encrypted.

Parameters
object to check

any

The object whose value should be checked to determine if it is encrypted.

Returns

Boolean, true if the value is encrypted, and false if it is not encrypted.

Throws

An exception is thrown if the server is unable to detect whether the value is encrypted, for any reason.

This function calculates a value using a salted hash algorithm.

warning
Using key aliases from the keystore, such as openidm-sym-default, is deprecated. Use purposes
instead.

Warning

Scripting PingIDM

972 Copyright © 2025 Ping Identity Corporation

Supported Hashing Algorithms and Configuration Properties

Algorithm Config Property and Description

BCRYPT
cost

Value between 4 and 31. Default is 13 .

PBKDF2
hashLength

Byte-length of the generated hash. Default is 16 .

saltLength
Byte-length of the salt value. Default is 16 .

iterations
Number of cryptographic iterations. Default is 20000 .

hmac
HMAC algorithm. Default is SHA3-256 .
Supported values:

SHA-224

SHA-256

SHA-384

SHA-512

SHA3-224

SHA3-256

SHA3-384

SHA3-512

SCRYPT
hashLength

Byte-length of the generated hash, must be greater than or equal to 8. Default is
16 .

saltLength
Byte-length of the salt value. Default is 16 .

n
CPU/Memory cost. Must be greater than 1, a power of 2, and less than 2^(128 * r /
8). Default is 32768 .

p
Parallelization. Must be a positive integer less than or equal to Integer.MAX_VALUE /
(128 * r * 8). Default is 1 .

r
Block size. Must be greater than or equal to 1. Default is 8 .

•
•
•
•
•
•
•
•

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 973

Parameters
value

any

The value to be hashed.

algorithm

string (optional)

The hashing algorithm. Example: SHA-512 .

If no algorithm is provided, a null value must be passed, and the algorithm defaults to SHA-256.

options

For Groovy, Map or JSON value (optional)

For JavaScript, JSON object (optional)

Configuration properties for the selected algorithm.

Returns

The value, calculated with the specified hash algorithm.

Throws

An exception is thrown if the object could not be hashed for any reason.

Algorithm Config Property and Description

SHA-256
saltLength

Byte-length of the salt value. Default is 16 .

SHA-384
saltLength

Byte-length of the salt value. Default is 16 .

SHA-512
saltLength

Byte-length of the salt value. Default is 16 .

info
This is the default hashing.
Note

Scripting PingIDM

974 Copyright © 2025 Ping Identity Corporation

Examples
Groovy (Map)

openidm.hash(\"dummy\", \"BCRYPT\", [\"cost\": 10]);

Groovy (JSON value)

JsonValue v = new JsonValue([\"cost\": 10]); return openidm.hash(\"dummy\", \"BCRYPT\", v);

JavaScript

openidm.hash(\"dummy\", \"BCRYPT\", {\"cost\": 10})

This function detects whether a value has been calculated with a salted hash algorithm.

Parameters
value

any

The value to be reviewed.

Returns

Boolean, true if the value is hashed, and false otherwise.

Throws

An exception is thrown if the server is unable to detect whether the value is hashed, for any reason.

This function detects whether a string, when hashed, matches an existing hashed value.

Parameters
string

any

A string to be hashed.

value

any

A hashed value to compare to the string.

Returns

Boolean, true if the hash of the string matches the hashed value, and false otherwise.

Throws

An exception is thrown if the string could not be hashed.

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 975

Log functions

IDM also provides a logger object to access the Simple Logging Facade for Java (SLF4J) facilities. The following code shows an
example of the logger object.

logger.info("Parameters passed in: {} {} {}", param1, param2, param3);

To set the log level for JavaScript scripts, add the following property to your project’s conf/logging.properties file:

org.forgerock.openidm.script.javascript.JavaScript.level

The level can be one of SEVERE (highest value), WARNING, INFO, CONFIG, FINE, FINER , or FINEST (lowest value). For example:

org.forgerock.openidm.script.javascript.JavaScript.level=WARNING

In addition, JavaScript has a useful logging function named console.log() . This function provides an easy way to dump data to
the IDM standard output (usually the same output as the OSGi console). The function works well with the JavaScript built-in
function JSON.stringify and provides fine-grained details about any given object. For example, the following line will print a
formatted JSON structure that represents the HTTP request details to STDOUT.

console.log(JSON.stringify(context.http, null, 4));

The script engine supports the following log functions:

Logs a message at DEBUG level.

info
These functions can also have a vanity binding to make them more descriptive, such as consent.action() instead of
openidm.action("consent" ...) , by setting resourceBindings when you declare the script. In this case, the syntax
for these functions would omit the resource name from the function parameters.
See Call a script from the IDM configuration for more information about resourceBindings .

Note

info
These logging functions apply only to JavaScript scripts. To use the logging functions in Groovy scripts, the following
lines must be added to the Groovy scripts:

import org.slf4j.*;
logger = LoggerFactory.getLogger('logger');

Note

Scripting PingIDM

976 Copyright © 2025 Ping Identity Corporation

Parameters
message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

Logs a message at ERROR level.

Parameters
message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

Logs a message at INFO level.

Parameters
message

string

The message format to log. Params replace {} in your message.

params

object

PingIDM Scripting

Copyright © 2025 Ping Identity Corporation 977

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

Logs a message at TRACE level.

Parameters
message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

Logs a message at WARN level.

Parameters
message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

Scripting PingIDM

978 Copyright © 2025 Ping Identity Corporation

Workflow

Guide to enabling and using ForgeRock® Identity Management workflows.

IDM provides an embedded workflow and business process engine based on Flowable and the Business Process Model and
Notation (BPMN) 2.0 standard. This guide describes how to configure the workflow engine, and how to manage workflow tasks
and processes using the REST interface and the admin UI.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Workflow Tools

Learn about BPMN 2.0 and the workflow tools.

Enable Workflows

Configure the workflow engine and datasource
to enable workflows.

Invoke Workflows

Learn where and how to trigger workflows.

Custom Workflows

Create custom workflow templates.

info
Workflows are not supported with a DS repository. If you are using a DS repository for IDM data, you must configure a
separate JDBC repository as the workflow datasource.

Note

Workflow PingIDM

980 Copyright © 2025 Ping Identity Corporation

https://flowable.com/open-source/docs/
https://flowable.com/open-source/docs/
https://www.forgerock.com
https://www.forgerock.com

BPMN 2.0 and workflow tools

Business Process Model and Notation 2.0 is the result of consensus among Business Process Management (BPM) system vendors.
The Object Management Group (OMG) has developed and maintained the BPMN standard since 2004.

BPMN 2.0 lets you add artifacts that describe your workflows and business processes to IDM, for provisioning and other
purposes. You can create workflow definitions using a text editor or the ForgeRock Workflow Editor UI. The ForgeRock
Workflow Editor UI is an open-source project that is not supported or included in IDM. This visual workflow editor can be set up
as a standalone node server or integrated directly with IDM.

You can create scripts using Groovy and JavaScript.

Scripts inside BPMN 2.0 XML files have access to the following scripting variables:

openidm

identityServer

console

For example, to log a message with Groovy:

console.log('my message')

Enable workflows

IDM embeds a Flowable Process Engine that starts in the OSGi container. Workflows are not active by default. IDM needs two
configuration files to activate the workflow bundle:

workflow.json

The Flowable engine configuration, including the data source.

datasource.jdbc-default.json

The default data source for Flowable.

•

•

•

info
For more information about the graphical notations and XML representations for events, flows, gateways, tasks,
process constructs, and more, refer to BPMN 2.0 Constructs.
IDM does not support the following constructs:

Mule task

Camel task

The following terms are reserved and cannot be used as variable names: out , out:print , lang:import , context ,
and elcontext .

Note

•
•

PingIDM Workflow

Copyright © 2025 Ping Identity Corporation 981

http://omg.org/
http://omg.org/
http://www.omg.org/spec/BPMN/
http://www.omg.org/spec/BPMN/
https://github.com/ForgeRock/openidm-workflow-editor
https://github.com/ForgeRock/openidm-workflow-editor
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/#mule-task
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/#mule-task
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/#camel-task
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/#camel-task

When you enable workflows in the admin UI, IDM creates workflow.json in your project’s conf/ directory.

Log in to the admin UI.

From the navigation bar, select Configure > System Preferences.

On the System Preferences page, click the Workflow tab.

Enable the display of workflows, and click Save.

Optionally, configure the workflow engine.

Configure the workflow data source.

Configure the workflow engine

IDM creates the default workflow.json file with the following structure:

{
 "useDataSource" : "default",
 "workflowDirectory" : "&{idm.instance.dir}/workflow",
 "userResource": {
 "path": "managed/user",
 "queryFilter": "/userName eq \"${username}\""
 },
 "groupResource": {
 "path": "managed/group",
 "queryFilter": "/id eq \"${gid}\""
 }
}

useDataSource

The datasource configuration file that points to the repository where Flowable should store data.

By default, this is the datasource.jdbc-default.json file. For information about changing the data store that Flowable
uses, refer to Configure the Workflow Data Source.

workflowDirectory

Specifies the location where IDM expects to find workflow processes. By default, IDM looks for workflow processes in the
project-dir/workflow directory.

In addition to these default properties, you can configure the Flowable engine history level:

{
 "history" : "audit"
}

When a workflow is executed, information can be logged as determined by the history level. The history level can be one of the
following:

none This level results in the best performance for workflow execution, but no historical information is retained.

1.

2.

3.

4.

5.

6.

•

Workflow PingIDM

982 Copyright © 2025 Ping Identity Corporation

activity Logs all process instances and activity instances, without details.

audit This is the default level. All process instances, activity instances, and submitted form properties are logged so that
all user interaction through forms is traceable and can be audited.

full This is the highest level of history logging and has the greatest performance impact. This history level stores all the
information that is stored for the audit level, as well as any process variable updates.

Configure workflow email

Workflows can send an email using the following methods:

To use workflow email tasks, add the email configuration to workflow.json .

Example email configuration:

"mail" : {
 "host" : "mail.example.com",
 "port" : 1025,
 "username" : "username",
 "password" : "password",
 "useSSL" : false,
 "starttls" : true,
 "defaultFrom" : "workflow@example.com",
 "forceTo" : "overrideSendToEmail@example.com"
}

Only JavaScript and Groovy are supported as ScriptTask#scriptFormat languages.

Emails sent using scriptTask utilize IDM’s email client configuration.

Example script:

openidm.action("external/email", "send", { "to": "bob@example.com" }, { waitForCompletion: true });

Configure the workflow data source

The Flowable engine requires a JDBC database. The connection details to the database are specified in the datasource.jdbc-
default.json file. If you are using a JDBC repository for IDM data, you will already have a datasource.jdbc-default.json file in
your project’s conf/ directory. In this case, when you enable workflows, IDM uses the existing JDBC repository and creates the
required Flowable tables in that JDBC repository.

To specify a Flowable data source separate from your existing IDM repository, create a new datasource configuration file in your
project’s conf/ directory (for example, datasource.jdbc-flowable.json) with the connection details to the separate data
source. Then, reference that file in the useDataSource property of the workflow.json file (for example, "useDataSource" :
"flowable").

•

•

•

emergency_home
If you are using a DS repository for IDM data, you must configure a separate JDBC repository as the workflow
datasource. For more information, refer to Select a repository.

Important

PingIDM Workflow

Copyright © 2025 Ping Identity Corporation 983

https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/#email-task
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/#email-task

For more information about the fields in this file, refer to JDBC Connection Configuration.

Custom workflow object mapping

For custom object mapping, edit the default workflow.json configuration:

"userResource": {
 "path": "managed/user",
 "queryFilter": "/userName eq \"${username}\""
},
"groupResource": {
 "path": "managed/group",
 "queryFilter": "/id eq \"${gid}\""
}

Test workflow integration

IDM reads workflow definitions from the /path/to/openidm/workflow directory.

The /path/to/openidm/samples/provisioning-with-workflow/ sample provides a workflow definition
(contractorOnboarding.bar) that you can use to test the workflow integration.

Create a workflow directory in your project directory and copy the sample workflow to that directory:

cd project-dir
mkdir workflow
cp samples/provisioning-with-workflow/workflow/contractorOnboarding.bar workflow/

Verify the workflow integration by using the REST API. The following REST call lists the defined workflows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/workflow/processdefinition?_queryFilter=true"

The result is similar to:

info
Do not replace ${username} or ${gid} in the queryFilter; for example:

OK: "queryFilter": "/callSign eq \"${username}\""
NOT OK: "queryFilter": "/callSign eq \"${callsign}\""

Note

•
•

1.

2.

Workflow PingIDM

984 Copyright © 2025 Ping Identity Corporation

{
 "result": [
 {
 "_id": "contractorOnboarding:1:5",
 "_rev": "1",
 "candidateStarterGroupIdExpressions": [],
 "candidateStarterUserIdExpressions": [],
 "category": "Examples",
 "deploymentId": "1",
 "description": null,
 "eventSupport": {},
 "executionListeners": {},
 "graphicalNotationDefined": false,
 "hasStartFormKey": true,
 "historyLevel": null,
 "ioSpecification": null,
 "key": "contractorOnboarding",
 "laneSets": [],
 "name": "Contractor onboarding process",
 "participantProcess": null,
 "processDiagramResourceName": "contractorOnboarding.contractorOnboarding.png",
 "properties": {},
 "resourceName": "contractorOnboarding.bpmn20.xml",
 "revisionNext": 2,
 "startFormHandler": null,
 "suspended": false,
 "suspensionState": 1,
 "taskDefinitions": null,
 "tenantId": "",
 "variables": null,
 "version": 1
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

For more information about the above workflow, refer to Provision users with workflow.

For more information about managing workflows over REST, refer to Workflows.

Create workflows

For more information about the graphical notations and XML representations for events, flows, gateways, tasks, process
constructs, and more, refer to BPMN 2.0 Constructs.

IDM does not support the following constructs:

Mule task

Camel task

Create a workflow definition, and save it with a bpmn20.xml extension.

•

•

1.

PingIDM Workflow

Copyright © 2025 Ping Identity Corporation 985

https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/#mule-task
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/#mule-task
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/#camel-task
https://flowable.com/open-source/docs/bpmn/ch07b-BPMN-Constructs/#camel-task

Package the workflow definition file in a Business Archive File (.bar). A .bar file is similar to a .zip file, but with a
different extension.

Copy the .bar file to the openidm/workflow directory.

Invoke the workflow using a script (openidm/script/), or directly, using the REST interface. For more information, refer to
Invoke workflows.

You can also schedule the workflow to be invoked repeatedly, or at a future time.

Workflow definition comparison

Versions of IDM prior to 7.0 used the Activiti workflow engine. If you are upgrading from one of these versions, your current
workflow definitions will continue to work in compatibility mode, but new definitions must be written for the new engine,
Flowable. The following overview shows the main differences between the old and new workflow definitions:

Change all occurrences of activiti to flowable . Update examples:

Namespace

xmlns:flowable="http://flowable.org/bpmn"

Elements

<flowable:formProperty id="givenName" name="First Name" type="string" required="true"></
flowable:formProperty>
<flowable:formProperty id="sn" name="Last Name" type="string" required="true"></flowable:formProperty>
<flowable:formProperty id="department" name="Department" type="string"></flowable:formProperty>

Change task.getExecution() , per the changes to the sample file contractorOnboarding.bpmn20.xml :

2.

3.

4.

info
You can view additional upgrade information in the Flowable Migration Guide.

Note

1.

◦

◦

2.

Workflow PingIDM

986 Copyright © 2025 Ping Identity Corporation

https://flowable.com/open-source/docs/migration/
https://flowable.com/open-source/docs/migration/

Query workflows

The workflow implementation supports filtered queries that let you query the running process instances and tasks, based on
specific query parameters. To perform a filtered query, send a GET request to the workflow/processinstance context path,
including the query in the URL.

For example, the following query returns all process instances with the business key "newOrder" , as invoked in the previous
example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/workflow/processinstance?_queryId=filtered-
query&processInstanceBusinessKey=newOrder"

Any workflow properties can be queried using the same notation; for example, processDefinitionId=managedUserApproval:
1:6405 . The query syntax applies to all queries with _queryId=filtered-query . The following query returns all process
instances that were started by the user openidm-admin :

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/workflow/processinstance?_queryId=filtered-query&startUserId=openidm-admin"

You can also query process instances based on the value of any process instance variable, by prefixing the variable name with
var- . For example:

var-processvariablename=processvariablevalue

Invoke workflows

You can invoke workflows and business processes from any trigger point within IDM, including reacting to situations discovered
during reconciliation. Workflows can be invoked from script files, using the openidm.create() function, or directly from the REST
interface.

The following sample script extract shows how to invoke a workflow from a script file:

PingIDM Workflow

Copyright © 2025 Ping Identity Corporation 987

/*
 * Calling 'myWorkflow' workflow
 */

var params = {
 "_key": "myWorkflow"
};

openidm.create('workflow/processinstance', null, params);

The null in this example indicates that you do not want to specify an ID as part of the create call. For more information, refer to
openidm.create() .

You can invoke the same workflow from the REST interface with the following REST call:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{"_key":"myWorkflow"}' \
"http://localhost:8080/openidm/workflow/processinstance?_action=create"

For more information, refer to Workflows.

There are two ways in which you can specify the workflow definition that is used when a new workflow instance is started.

_key specifies the id attribute of the workflow process definition, for example:

<process id="sendNotificationProcess" name="Send Notification Process">

If there is more than one workflow definition with the same _key parameter, the latest deployed version of the workflow
definition is invoked.

_processDefinitionId specifies the ID that is generated by the Flowable Process Engine when a workflow definition is
deployed; for example:

"sendNotificationProcess:1:104";

To obtain the processDefinitionId , query the available workflows, for example:

•

•

Workflow PingIDM

988 Copyright © 2025 Ping Identity Corporation

{
 "result": [
 {
 "name": "Process Start Auto Generated Task Auto Generated",
 "_id": "ProcessSAGTAG:1:728"
 },
 {
 "name": "Process Start Auto Generated Task Empty",
 "_id": "ProcessSAGTE:1:725"
 },
 ...
]
}

If you specify a _key and a _processDefinitionId , the _processDefinitionId is used because it is more precise.

Use the optional _businessKey parameter to add specific business logic information to the workflow when it is invoked. For
example, the following workflow invocation assigns the workflow a business key of "newOrder" . This business key can later be
used to query "newOrder" processes.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{"_key":"myWorkflow", "_businessKey":"newOrder"}' \
"http://localhost:8080/openidm/workflow/processinstance?_action=create"

Access to workflows is based on IDM roles, and is configured in your project’s conf/process-access.json file. For more
information, refer to Secure Access to Workflows.

Workflow audit

The audit service logs workflow information in the activity event topic (default location: openidm/audit/activity.audit.json).

Example workflow audit events using the provisioning-with-workflow sample:

Each step shows the action performed along with the resulting audit data.

user1 completes the Contractor Onboarding Form.1.

PingIDM Workflow

Copyright © 2025 Ping Identity Corporation 989

{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-3871",
 "timestamp": "2020-05-06T17:39:52.021Z",
 "eventName": "workflow-create_process",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-3865",
 "userId": "user1",
 "runAs": "user1",
 "objectId": "workflow/processinstance/6",
 "operation": "CREATE",
 "changedFields": [],
 "revision": null,
 "status": "SUCCESS",
 "message": "Process created. processDefinitionId = contractorOnboarding:1:5, processDefinitionKey = null,
businessKey = null",
 "passwordChanged": false
}

manager1 self-assigns the task.

{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5748",
 "timestamp": "2020-05-06T17:43:18.058Z",
 "eventName": "workflow-update_task",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5744",
 "userId": "manager1",
 "runAs": "manager1",
 "objectId": "workflow/taskinstance/36",
 "operation": "UPDATE",
 "changedFields": [
 "/assignee"
],
 "revision": null,
 "status": "SUCCESS",
 "message": "Task updated",
 "passwordChanged": false
}

manager1 completes the task. Notice that transactionId is correlated to all managed/user, and other, operations.

2.

info
"changedFields":["/assignee"] only displays when conf/audit.json contains the property
"watchedFields" : ["assignee"] . For a complete list of fields that can be watched in this situation, refer
to the API Descriptor for UPDATE workflow/taskinstance/ .

Note

3.

Workflow PingIDM

990 Copyright © 2025 Ping Identity Corporation

{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5868",
 "timestamp": "2020-05-06T17:43:22.138Z",
 "eventName": "activity",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5838",
 "userId": "user1",
 "runAs": "user1",
 "objectId": "managed/user/d736487d-c146-4a0e-b677-ebfd6805b1d2",
 "operation": "CREATE",
 "changedFields": [],
 "revision": "000000001edd9dc2",
 "status": "SUCCESS",
 "message": "create",
 "passwordChanged": false
}
{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5871",
 "timestamp": "2020-05-06T17:43:22.141Z",
 "eventName": "activity",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5838",
 "userId": "user1",
 "runAs": "user1",
 "objectId": "internal/usermeta/cd237cca-913e-481e-9282-ba16c84b5131",
 "operation": "CREATE",
 "changedFields": [],
 "revision": "0000000030b45c3e",
 "status": "SUCCESS",
 "message": "create",
 "passwordChanged": false
}
{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5876",
 "timestamp": "2020-05-06T17:43:22.145Z",
 "eventName": "relationship_created",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5838",
 "userId": "user1",
 "runAs": "user1",
 "objectId": "managed/user/d736487d-c146-4a0e-b677-ebfd6805b1d2/authzRoles/ee5bbbce-a020-45db-
ab41-66c80d84d8be",
 "operation": "CREATE",
 "changedFields": [],
 "revision": "00000000fe6da3a7",
 "status": "SUCCESS",
 "message": "Relationship originating from managed/user/d736487d-c146-4a0e-b677-ebfd6805b1d2 via the
relationship field authzRoles and referencing internal/role/openidm-authorized was created.",
 "passwordChanged": false
}
{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5879",
 "timestamp": "2020-05-06T17:43:22.147Z",
 "eventName": "relationship_created",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5838",
 "userId": "user1",
 "runAs": "user1",
 "objectId": "managed/user/d736487d-c146-4a0e-b677-ebfd6805b1d2/manager/b58e5695-9e43-4e76-b89c-
e5d69d3bf52d",
 "operation": "CREATE",
 "changedFields": [],
 "revision": "000000008dcca1b6",
 "status": "SUCCESS",

PingIDM Workflow

Copyright © 2025 Ping Identity Corporation 991

 "message": "Relationship originating from managed/user/d736487d-c146-4a0e-b677-ebfd6805b1d2 via the
relationship field manager and referencing managed/user/038e65de-95ce-4180-94d3-4ea64bf25c6b was created.",
 "passwordChanged": false
}
{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5882",
 "timestamp": "2020-05-06T17:43:22.149Z",
 "eventName": "relationship_created",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5838",
 "userId": "user1",
 "runAs": "user1",
 "objectId": "managed/user/d736487d-c146-4a0e-b677-ebfd6805b1d2/_meta/d9299603-b768-44b6-a4c9-9b6441ca212e",
 "operation": "CREATE",
 "changedFields": [],
 "revision": "0000000027b29fb4",
 "status": "SUCCESS",
 "message": "Relationship originating from managed/user/d736487d-c146-4a0e-b677-ebfd6805b1d2 via the
relationship field _meta and referencing internal/usermeta/cd237cca-913e-481e-9282-ba16c84b5131 was created.",
 "passwordChanged": false
}
{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5908",
 "timestamp": "2020-05-06T17:43:22.778Z",
 "eventName": "activity",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5838",
 "userId": "user1",
 "runAs": "user1",
 "objectId": "internal/notification/12aa1698-bb1e-42c6-a92d-2e959c217ad0",
 "operation": "CREATE",
 "changedFields": [],
 "revision": "000000004d025d75",
 "status": "SUCCESS",
 "message": "create",
 "passwordChanged": false
}
{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5911",
 "timestamp": "2020-05-06T17:43:22.781Z",
 "eventName": "relationship_created",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5838",
 "userId": "user1",
 "runAs": "user1",
 "objectId": "internal/notification/12aa1698-bb1e-42c6-a92d-2e959c217ad0/target/eec80d30-be1e-4c5d-9873-
b4395373c833",
 "operation": "CREATE",
 "changedFields": [],
 "revision": "00000000b4c7a701",
 "status": "SUCCESS",
 "message": "Relationship originating from internal/notification/12aa1698-bb1e-42c6-a92d-2e959c217ad0 via the
relationship field target and referencing managed/user/038e65de-95ce-4180-94d3-4ea64bf25c6b was created.",
 "passwordChanged": false
}
{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5920",
 "timestamp": "2020-05-06T17:43:22.791Z",
 "eventName": "activity",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5838",
 "userId": "user1",
 "runAs": "user1",
 "objectId": "internal/notification/eec030e5-e520-4cf1-99c2-a9bbecb0627b",
 "operation": "CREATE",
 "changedFields": [],

Workflow PingIDM

992 Copyright © 2025 Ping Identity Corporation

 "revision": "0000000033465ada",
 "status": "SUCCESS",
 "message": "create",
 "passwordChanged": false
}
{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5923",
 "timestamp": "2020-05-06T17:43:22.794Z",
 "eventName": "relationship_created",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5838",
 "userId": "user1",
 "runAs": "user1",
 "objectId": "internal/notification/eec030e5-e520-4cf1-99c2-a9bbecb0627b/target/11eb13f8-991f-45ea-95dc-
e8f0fd0b95c3",
 "operation": "CREATE",
 "changedFields": [],
 "revision": "000000005134a80d",
 "status": "SUCCESS",
 "message": "Relationship originating from internal/notification/eec030e5-e520-4cf1-99c2-a9bbecb0627b via the
relationship field target and referencing managed/user/d736487d-c146-4a0e-b677-ebfd6805b1d2 was created.",
 "passwordChanged": false
}

The audit service logs the workflow-complete_task event.

{
 "_id": "f24ac83b-200c-449d-b017-d12b9c6c9091-5926",
 "timestamp": "2020-05-06T17:43:22.827Z",
 "eventName": "workflow-complete_task",
 "transactionId": "f24ac83b-200c-449d-b017-d12b9c6c9091-5838",
 "userId": "manager1",
 "runAs": "manager1",
 "objectId": "workflow/taskinstance/36",
 "operation": "complete",
 "changedFields": [],
 "revision": null,
 "status": "SUCCESS",
 "message": "Task completed",
 "passwordChanged": false
}

Custom workflow templates

The embedded workflow engine integrates with the default End User UI. For simple custom workflows, you can use the standard
Flowable form properties, and have the UI render the corresponding generic forms automatically. For more complex
functionality, including input validation, rich input field types, complex CSS, and more, you must define a custom form template.

The default workflows provided with IDM use the Vue JS framework for display in the End User UI. To write a custom form
template, you must have a basic understanding of the Vue JS framework and how to create components. A sample workflow
template is provided at /path/to/samples/provisioning-with-workflow/workflow/contractorOnboarding.bar . To extract the
archive, run the following command:

4.

PingIDM Workflow

Copyright © 2025 Ping Identity Corporation 993

https://vuejs.org/v2/guide/
https://vuejs.org/v2/guide/

jar -xvf contractorOnboarding.bar
inflated: contractorForm.js
inflated: contractorOnboarding.bpmn20.xml

The archive includes the workflow definition contactorOnboarding.bpmn20.xml and the corresponding JavaScript template
contractorForm.js to render the workflow in the UI.

Workflow PingIDM

994 Copyright © 2025 Ping Identity Corporation

Password synchronization plugins

Guide to configuring and integrating the password synchronization plugins into your IDM deployment.

Password synchronization ensures uniform password changes across the resources that store the password. This guide shows
you how to use password synchronization plugins to synchronize passwords between ForgeRock Identity Management (IDM) and
an LDAP server, either ForgeRock Directory Services (DS) or Active Directory.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Password Sync Plugins

Discover how password synchronization works
in IDM and learn about the plugins provided for

synchronizing passwords with LDAP servers.

Synchronize With DS

Use the ForgeRock Directory Services password
synchronization plugin.

Synchronize With AD

Use the Active Directory password
synchronization plugin.

Password synchronization plugins PingIDM

996 Copyright © 2025 Ping Identity Corporation

https://www.forgerock.com
https://www.forgerock.com

Password synchronization plugins

Password synchronization ensures uniform password changes across the resources that store the password. After password
synchronization, a user can authenticate with the same password on each resource. No centralized directory or authentication
server is required for performing authentication. Password synchronization reduces the number of passwords users need to
remember, so they can use fewer, stronger passwords.

IDM can propagate passwords to the resources that store a user’s password. In addition, you can download plugins from the
Backstage download site to intercept and synchronize passwords that are changed natively in ForgeRock Directory Services
(DS) and Active Directory.

If you use these plugins to synchronize passwords, set up password policy enforcement on the LDAP resource, rather than on
IDM. Alternatively, ensure that all password policies that are enforced are identical to prevent password updates on one resource
from being rejected by IDM or by another resource.

The password synchronization plugin intercepts password changes on the LDAP resource before the passwords are stored in
encrypted form. The plugin then sends the intercepted password value to IDM, using an HTTP POST request to patch the
corresponding managed user object.

If the IDM instance is unavailable when a password is changed in either DS or Active Directory, the respective password plugin
intercepts the change, encrypts the password, and stores the encrypted password in a JSON file. The plugin then checks whether
the IDM instance is available, at a predefined interval. When IDM becomes available, the plugin performs a PATCH on the
managed user record, to replace the password with the encrypted password stored in the JSON file.

To be able to synchronize passwords, both password synchronization plugins require that the corresponding managed user
object exist in the IDM repository.

Synchronize passwords with DS

The ForgeRock Directory Services (DS) password synchronization plugin intercepts passwords that are changed natively in the DS
server and propagates these password changes to IDM. The password synchronization plugin captures password changes in clear
text, encrypts them, and transmits them to IDM. If IDM is unavailable when a password change occurs, the password change is
queued for subsequent retry.

The password synchronization plugin requires keys to encrypt changed passwords and certificates to secure communication
between DS and IDM. The examples that follow use the keys generated when you set up the DS and IDM servers.

Set up IDM and DS

The following examples prepare a demonstration of password synchronization from DS to IDM. After this preparation:

DS and IDM are installed and running on your computer, with default security settings.

info
The plugins do not use the LDAP connector to transmit passwords, but send a generic HTTP POST request with a
patch action.

Note

•

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 997

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

In particular, both servers have key pairs used later in the demonstration:

DS has a generated TLS key pair (alias: ssl-key-pair and certificate subject DN: CN=DS, O=ForgeRock.com)
signed by the DS deploymentId-based CA (certificate subject DN: CN=Deployment key, O=ForgeRock.com).

DS uses the certificate to set up TLS connections, and to authenticate to IDM.

IDM has a generated key pair, alias openidm-localhost . The certificate is self-signed, and has certificate subject
DN CN=openidm-localhost, O=OpenIDM Self-Signed Certificate, OU=None, L=None, ST=None, C=None .

DS uses the public key certificate to encrypt passwords before sending them to IDM.

IDM does not otherwise synchronize DS data with its own.

This lets you confirm that DS, not synchronization, provides the updated password to IDM.

DS and IDM both have a user account for Barbara Jensen.

After you have configured password synchronization, when Barbara Jensen’s password changes in DS, DS sends the
change to IDM.

Prepare IDM

Update your hosts file.

The IDM self-signed certificate uses the domain alias openidm-localhost . When testing the DS plugin on your computer,
add the alias to your /etc/hosts file:

127.0.0.1 localhost openidm-localhost

Unzip IDM.

Start IDM:

/path/to/openidm/startup.sh

Add Barbara Jensen’s account to IDM:

◦

◦

•

•

1.

2.

3.

4.

Password synchronization plugins PingIDM

998 Copyright © 2025 Ping Identity Corporation

curl \
--request PUT \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept: application/json" \
--header "If-None-Match: *" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--data
'{"userName":"bjensen","password":"Password1","mail":"bjensen@example.com","sn":"Jensen","givenName":"Barbara"
}' \
"http://localhost:8080/openidm/managed/user/bjensen"
{
 "_id": "bjensen",
 "_rev": "revision",
 "userName": "bjensen",
 "mail": "bjensen@example.com",
 "sn": "Jensen",
 "givenName": "Barbara",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

Prepare DS

Download DS 7.4 .zip distribution.

Unzip DS:

unzip -q ~/Downloads/DS-7.4.zip -d /path/to

Generate a DS deploymentId for DS setup and managing deployments:

/path/to/opendj/bin/dskeymgr create-deployment-id --deploymentIdPassword password
your-deployment-ID

Set up and start DS with data from an IDM example that includes Barbara Jensen’s entry:

1.

2.

3.

4.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 999

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

/path/to/opendj/setup \
--serverId evaluation-only \
--deploymentId your-deployment-ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword password \
--hostname localhost \
--adminConnectorPort 4444 \
--ldapsPort 1636 \
--profile ds-user-data \
--set ds-user-data/baseDn:dc=com \
--set ds-user-data/ldifFile:/path/to/openidm/samples/sync-with-ldap/data/Example.ldif \
--start \
--acceptLicense

The sample data includes an entry for Barbara Jensen. The rest of the sample configuration is not used here.

Check that the directory superuser can read Barbara Jensen’s entry in the directory:

/path/to/opendj/bin/ldapsearch \
--port 1636 \
--useSSL \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--bindDn uid=admin \
--bindPassword password \
--baseDn dc=com \
"(uid=bjensen)"
dn: uid=bjensen,ou=People,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
cn: Barbara Jensen
description: Created for OpenIDM
givenName: Barbara
mail: bjensen@example.com
sn: Jensen
telephoneNumber: 1-360-229-7105
uid: bjensen
userPassword: {PBKDF2-HMAC-SHA256}10:hash

Notice that this entry differs from the account you added to IDM. However, the user identifier is bjensen in both cases.
This will let IDM identify Barbara Jensen’s account as the one whose password has changed when it receives the
notification from DS.

Secure communication between IDM and DS

The password synchronization plugin encrypts passwords using IDM’s public key. IDM then uses its private key to decrypt the
password.

5.

Password synchronization plugins PingIDM

1000 Copyright © 2025 Ping Identity Corporation

This section describes how to export IDM’s certificate, containing its public key, to DS so that the password synchronization plugin
can use the public key to encrypt the password. The same certificate is used by the plugin to trust the SSL certificate that is
provided by IDM.

There are four possible modes of communication between the DS password synchronization plugin and IDM:

SSL Authentication

For this communication mode, you must import IDM’s certificate into the DS truststore (either the self-signed certificate
that is generated the first time IDM starts, or a CA-signed certificate).

Mutual SSL Authentication

For this communication mode, you must:

Import the IDM certificate into the DS truststore.

Import the DS CA certificate into the IDM truststore.

Add the DS certificate subject DN as a value of the allowedAuthenticationIdPatterns property in your project’s
conf/authentication.json file.

AM Bearer Tokens

When you use IDM and AM together as a platform, configure the password synchronization plugin to use AM bearer
tokens for authentication.

For this communication mode, you must:

Import the IDM certificate into the DS truststore.

Import the DS CA certificate into the IDM truststore.

Configure the password synchronization plugin to accept AM bearer tokens.

HTTP Basic Authentication

For this mode, the connection is secured using a username and password, rather than any exchange of certificates.
Because the password sync plugin requires the IDM certificate to encrypt/decrypt passwords, you must import the IDM
certificate into the DS truststore.

For this communication mode, you must:

Import the IDM certificate into the DS truststore.

Set the following properties in the plugin configuration:

openidm-url

info
Mutual SSL authentication is the default configuration of the password synchronization plugin.

Note

•

•

•

•

•

•

warning
IDM supports basic authentication for testing purposes only. Do not use basic authentication in production.

Warning

•

•

◦

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1001

openidm-username

openidm-password

Enable DS to trust the IDM certificate

The first time IDM starts, it generates a self-signed certificate. This procedure uses the self-signed certificate to demonstrate how
to get the password synchronization plugin up and running. In a production environment, use a certificate that has been signed
by a Certificate Authority (CA).

The default Java truststore contains signing certificates from well-known CAs. If your CA certificate is not in the default truststore,
or if you are using a self-signed certificate, import it into the DS keystore, as described here.

Export the IDM self-signed certificate to a file, as follows:

keytool \
-export \
-alias openidm-localhost \
-file openidm-localhost.crt \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass changeit
Certificate stored in file <openidm-localhost.crt>

The default IDM keystore password is changeit .

Import the self-signed certificate into the DS keystore:

keytool \
-import \
-alias openidm-localhost \
-file openidm-localhost.crt \
-keystore /path/to/opendj/config/keystore \
-storepass:file /path/to/opendj/config/keystore.pin \
-storetype PKCS12 \
-noprompt
Certificate was added to keystore

Check that the IDM certificate is in the DS keystore:

keytool \
-list \
-keystore /path/to/opendj/config/keystore \
-storepass:file /path/to/opendj/config/keystore.pin
...
openidm-localhost, date, trustedCertEntry,
Certificate fingerprint (SHA-256): fingerprint
...

◦

◦

1.

2.

3.

Password synchronization plugins PingIDM

1002 Copyright © 2025 Ping Identity Corporation

Enable IDM to trust DS certificates

For mutual SSL authentication, you must also import a trusted DS certificate into the IDM truststore, either a trusted CA
certificate, or the CA certificate that is generated by the DS deploymentId and deploymentIdPassword. For more information,
refer to Deployment IDs in the DS Security Guide. This procedure uses the CA certificate generated by the DS deploymentId and
deploymentIdPassword.

Run the following command on your DS server to export the CA certificate to a file. Substitute the values for --
deploymentId and --deploymentIdPassword with the values from when you set up the DS server:

/path/to/opendj/bin/dskeymgr \
export-ca-cert \
--deploymentId your-deployment-ID \
--deploymentIdPassword password \
--outputFile ssl-key-pair.pem

Import the DS CA certificate into the IDM truststore:

keytool \
-importcert \
-alias ssl-key-pair \
-keystore /path/to/openidm/security/truststore \
-storepass changeit \
-file ssl-key-pair.pem
Owner: CN=Deployment key, O=ForgeRock.com
Issuer: CN=Deployment key, O=ForgeRock.com
...
Trust this certificate? [no]: yes
Certificate was added to keystore

Check that the DS CA certificate is in the IDM truststore:

keytool \
-list \
-keystore /path/to/openidm/security/truststore \
-storepass changeit...
ssl-key-pair, date, trustedCertEntry,
Certificate fingerprint (SHA-256): fingerprint...

Restart IDM:

/path/to/openidm/shutdown.sh; /path/to/openidm/startup.sh

1.

2.

3.

4.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1003

https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys
https://docs.pingidentity.com/pingds/7.4/security-guide/pki.html#about-deployment-keys

Configure the plugin for AM bearer tokens

This procedure uses the sample platform setup documentation as the basis for setting up IDM to use AM bearer tokens for
authentication and may need adjustment for your specific environment.

Perform sample platform setup - shared identity store using the following settings during the applicable steps:

adminConnectorPort 4444

ldapPort 1389

enableStartTls

ldapsPort 1636

httpsPort 8443

replicationPort 8989

deploymentId your-deployment-ID

adminConnectorPort 4445

ldapPort 1390

ldapsPort 1637

replicationPort 8990

deploymentId your-deployment-ID

port: 8080

redirects: 8444

openidm.port.http=8081

openidm.port.https=8445

openidm.port.mutualauth=8446

openidm.host=openidm.example.com

openidm.auth.clientauthonlyports=8446

Configure a ds-password-sync-plugin OAuth Client for the Password Sync Plugin:

If you’re not currently logged in to the AM console as the amAdmin user, log in.

In the Top Level Realm, select Applications > OAuth 2.0 > Clients , and click Add Client .

Enter the following details:

Client ID : ds-password-sync-plugin

Client secret : ds-password-sync-plugin

Scopes : fr:idm:*, openid, am-introspect-all-tokens, am-introspect-all-tokens-any-realm

1.

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

2.

◦

◦

◦

▪

▪

▪

Password synchronization plugins PingIDM

1004 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/preface.html
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/preface.html
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/deployment2.html
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/deployment2.html

Click Create .

On the Advanced tab:

Token Endpoint Authentication Method : Select client_secret_basic .

Grant Types : Add Client Credentials .

Click Save Changes .

If you haven’t performed the following procedures, do that now:

Import the IDM certificate into the DS truststore.

Import the DS CA certificate into the IDM truststore.

Add openidm-localhost to the idm.default mapping alias array in your project’s conf/secrets.json file:

"mappings": [
 {
 "secretId": "idm.default",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}", "openidm-localhost"]
 },
 ...
]

Log in to the IDM admin UI as amAdmin and create a new managed/user:

From the navigation bar of the admin UI, select Manage > User , and then click + New User .

On the New User page, enter the Username ds-password-sync-plugin , other information, as necessary, and click
Save .

On the ds-password-sync-plugin user page, select the Authorization Roles tab.

Click Add Authorization Roles , select all of the following roles, and then click Add :

openidm-admin

openidm-authorized

openidm-cert

openidm-reg

Add a staticUserMapping for the ds-password-sync-plugin user to the conf/authentication.json file:

{
 "subject" : "ds-password-sync-plugin",
 "localUser" : "managed/user/ds-password-sync-plugin",
 "roles" : [
 "internal/role/openidm-authorized",
 "internal/role/openidm-admin"
]
}

◦

◦

▪

▪

◦

3.

◦

◦

4.

5.

◦

◦

◦

◦

6.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1005

Install and configure the DS plugin

The following steps install the password synchronization plugin on a DS directory server that is running on the same host as IDM
(localhost). If you are running DS on a different host, use the fully qualified domain name instead of localhost .

You must use the plugin version that corresponds to your IDM and DS versions. For more information, refer to Supported
Password Synchronization Plugins. This procedure assumes that you are using IDM 7.4, DS 7.4, and version 7.4 of the password
synchronization plugin.

Depending on whether you are using IDM with AM, select one of the following plugin installation and configuration procedures:

For regular IDM authentication

Download the password synchronization plugin.

Extract the .zip file contents to the DS installation directory:

unzip ~/Downloads/DS-IDM-account-change-notification-handler-7.4.zip -d /path/to/opendj/

Restart DS to load the additional schema from the password synchronization plugin:

/path/to/opendj/bin/stop-ds --restart
Stopping Server...
...msg=Loaded extension from file '/path/to/opendj/lib/extensions/opendj-openidm-account-change-
notification-handler-7.4.jar'
...
...msg=The Directory Server has started successfully

Configure the password synchronization plugin:

1.

2.

3.

4.

Password synchronization plugins PingIDM

1006 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

/path/to/opendj/bin/dsconfig \
create-account-status-notification-handler \
--type openidm \
--handler-name "OpenIDM Notification Handler" \
--set enabled:true \
--set openidm-url:https://openidm-localhost:8444/openidm/managed/user \
--set private-key-alias:openidm-localhost \
--set certificate-subject-dn:"CN=openidm-localhost, O=OpenIDM Self-Signed Certificate, OU=None,
L=None, ST=None, C=None" \
--set ssl-cert-nickname:ssl-key-pair \
--set key-manager-provider:PKCS12 \
--set trust-manager-provider:PKCS12 \
--set password-attribute:password \
--set attribute-type:entryUUID \
--set attribute-type:uid \
--set query-id:for-userName \
--set log-file:logs/pwsync \
--set update-interval:5s \
--set request-retry-attempts:5000 \
--hostname localhost \
--port 4444 \
--bindDn uid=admin \
--bindPassword password \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt
The Openidm Account Status Notification Handler was created successfully

Adapt the settings to match your DS and IDM deployments:

Setting Details

enabled Enables the plugin.
Leave this setting as shown.

openidm-url The endpoint where the plugin finds IDM managed user
accounts.
Port 8444 is the IDM default for mutual TLS connections.

private-key-alias The IDM private key, used to decrypt the JSON objects
from DS that contain passwords.
The example references the default IDM private key of the
self-signed key pair generated at setup time.

certificate-subject-dn The certificate subject DN for the IDM public key.
The DS plugin encrypts JSON objects with the IDM public
key, so this must match the certificate for the IDM private
key specified for the private-key-alias property.
The example shows the subject DN of the default IDM
self-signed certificate.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1007

Setting Details

ssl-cert-nickname The alias of the DS TLS certificate used to authenticate to
IDM.
The example uses the default DS server certificate
generated at setup time.

key-manager-provider The provider for the keystore where DS finds its TLS key
pair specified in ssl-cert-nickname .
The example uses the default DS provider configured at
setup time.

trust-manager-provider The provider for the keystore where DS finds the IDM
public key specified in certificate-subject-dn .
The example uses the default DS provider configured at
setup time, and updated in Enable DS to Trust the IDM
Certificate.

password-attribute The name of the password field in the JSON that DS sends
to IDM for a password change.
This attribute type must be defined in the managed object
schema in IDM, and it must have either the user
password or auth password syntax.

attribute-type LDAP attributes that the DS plugin sends to IDM with the
password. IDM can use these to uniquely identify the
user, even if the user’s account has moved.
If no attribute types are specified, DS sends only the DN
and the new password to IDM.

query-id The query-id for the patch-by-query request.
Leave this setting as shown.

log-file The DS directory where the plugin writes log files
containing encrypted passwords before notifying IDM.
This setting has no effect in the example, where the
update-interval is zero seconds.

update-interval The interval at which the DS plugin sends password
changes to IDM.
If this value is zero, the plugin sends updates
synchronously. No encrypted passwords are stored in the
configured log-file directory. The plugin does not retry
failed requests, irrespective of the request-retry-
attempts setting.

Password synchronization plugins PingIDM

1008 Copyright © 2025 Ping Identity Corporation

Restart DS for the new configuration to take effect:

/path/to/opendj/bin/stop-ds --restart

Update DS password policies to use the password synchronization plugin.

The following example updates the default DS password policy:

/path/to/opendj/bin/dsconfig \
set-password-policy-prop \
--policy-name "Default Password Policy" \
--set account-status-notification-handler:"OpenIDM Notification Handler" \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

For details on configuring DS password policies, refer to Passwords in the DS Security Guide.

Configure IDM for password synchronization

The password synchronization plugin uses client certificate authentication to authenticate to IDM. You must also update your
security configuration to add the IDM key alias.

If your authentication configuration does not already include client certificate authentication, configure it as follows:

Add the CLIENT_CERT authentication module to your authentication configuration.

Set the allowedAuthenticationIdPatterns property to the certificate DN of the DS SSL certificate (ssl-key-pair
by default).

Add internal/role/openidm-cert to the array of defaultUserRoles .

Setting Details

request-retry-attempts The number of times the plugin attempts a
synchronization request if the first attempt fails. If this
value is zero, the request is not retried. If the value is
greater than zero, the plugin retries the specified number
of times before giving up and removing the request from
its queue.
When a request fails due to a transient condition, such as
failure to contact IDM, or a connection timeout, the plugin
does not decrement the number of retry attempts. The
plugin logs a message with the reason the request failed,
and continues to retry until IDM responds.

5.

6.

1.

1.

2.

3.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1009

https://docs.pingidentity.com/pingds/7.4/security-guide/passwords.html
https://docs.pingidentity.com/pingds/7.4/security-guide/passwords.html

The following example assumes that you are using the default DS ssl-key-pair certificate that has a certificate subject
DN of CN=DS, O=ForgeRock :

"authModules" : [
 ...
 {
 "name" : "CLIENT_CERT",
 "properties" : {
 "queryOnResource" : "managed/user",
 "defaultUserRoles" : [
 "internal/role/openidm-cert",
 "internal/role/openidm-authorized"
],
 "allowedAuthenticationIdPatterns" : [
 ".*CN=DS, O=ForgeRock.com.*"
]
 },
 "enabled" : true
 },
 ...
]

For more information about client certificate authentication, refer to CLIENT_CERT.

Update the IDM secret store (conf/secrets.json) to add the alias used in the private-key-alias plugin setting to the
idm.default secretId:

"mappings": [
 {
 "secretId" : "idm.default",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}", "openidm-localhost"]
 },
 ...
]

For more information about secret stores, refer to Secret stores.

For authentication with AM bearer tokens

Download the password synchronization plugin.

Extract the .zip file contents to the DS identity store installation directory:

unzip ~/Downloads/DS-IDM-account-change-notification-handler-7.4.zip -d /path/to/opendj-identity/

Configure the password synchronization plugin to use AM bearer token authentication:

2.

1.

2.

3.

Password synchronization plugins PingIDM

1010 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

/path/to/opendj-identity/bin/dsconfig \
create-account-status-notification-handler \
--type openidm \
--handler-name "OpenIDM Notification Handler" \
--set certificate-subject-dn:"CN=openidm-localhost,O=OpenIDM Self-Signed
Certificate,OU=None,L=None,ST=None,C=None" \
--set enabled:true \
--set attribute-type:entryUUID \
--set attribute-type:uid \
--set trust-manager-provider:PKCS12 \
--set key-manager-provider:PKCS12 \
--hostname identities.example.com \
--port 4445 \
--bindDn uid=admin \
--trustAll \
--bindPassword str0ngAdm1nPa55word \
--set log-file:logs/pwsync \
--set password-attribute:password \
--set query-id:for-userName \
--set private-key-alias:openidm-localhost \
--set openidm-url:https://openidm-localhost:8445/openidm/managed/user \
--set oauth2-access-token-url:http://am.example.com:8080/openam/oauth2/realms/root/access_token \
--set oauth2-scope:"openid fr:idm:*" \
--set oauth2-client-id:ds-password-sync-plugin \
--set oauth2-client-secret:ds-password-sync-plugin \
--set request-retry-attempts:5000 \
--set update-interval:5s \
--no-prompt
The Openidm Account Status Notification Handler was created successfully

Restart DS for the new configuration to take effect:

/path/to/opendj-identity/bin/stop-ds --restart

Configure the DS password policy to use the password synchronization plugin. The following example updates the default
DS password policy:

info
Adapt the above settings to match your DS, IDM, and AM deployments.

Note

4.

5.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1011

/path/to/opendj-identity/bin/dsconfig \
set-password-policy-prop \
--policy-name "Default Password Policy" \
--set account-status-notification-handler:"OpenIDM Notification Handler" \
--hostname identities.example.com \
--port 4445 \
--bindDN uid=admin \
--bindPassword str0ngAdm1nPa55word \
--usePkcs12TrustStore /path/to/opendj-identity/config/keystore \
--trustStorePassword:file /path/to/opendj-identity/config/keystore.pin \
--no-prompt

For details on configuring DS password policies, refer to Passwords in the DS Security Guide .

Generate an AM bearer token. For example:

curl -k \
--request POST \
--user "ds-password-sync-plugin:ds-password-sync-plugin" \
--data "grant_type=client_credentials" \
--data "scope=openid fr:idm:*" \
"http://am.example.com:8080/openam/oauth2/realms/root/access_token"
{
 "access_token": "access_token",
 "scope": "openid fr:idm:*",
 "id_token": "id_token",
 "token_type": "Bearer",
 "expires_in": 3599
}

Optionally, to test the AM bearer token, create a new managed user using the token as the authorization. For example:

curl -v \
--header "Authorization: Bearer access_token" \
--header "accept: application/json" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST "http://openidm-localhost:8081/openidm/managed/user?_action=create" \
--data '{"userName":"jdoe", "password": "6fNcHgBF", "mail": "jdoe@example.com", "sn": "Doe",
"givenName": "Jane"}'
{
 "_id": "7884b8ab-a226-4ee5-b9b9-0718f5a19335",
 "_rev": "00000000f527116e",
 "userName": "jdoe",
 "accountStatus": "active",
 "givenName": "Jane",
 "sn": "Doe",
 "mail": "jdoe@example.com"
}

6.

7.

Password synchronization plugins PingIDM

1012 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/7.4/security-guide/passwords.html
https://docs.pingidentity.com/pingds/7.4/security-guide/passwords.html

Test the DS plugin

With the plugin installed and configured, and with secure communications enabled between DS and IDM, you can test that the
setup has been successful as follows:

Change a user password in DS:

/path/to/opendj/bin/ldappasswordmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password \
--authzID dn:uid=bjensen,ou=people,dc=example,dc=com \
--newPassword Chngth5pwd
The LDAP password modify operation was successful

The message The LDAP password modify operation was successful only indicates that the password change
succeeded for DS. This does not mean that DS has propagated the change to IDM.

When you have successfully updated the password in DS, DS attempts to synchronize the change to the corresponding
IDM managed user account.

You should now be able to log in to the Self Service UI (https://localhost:8443/#login/) as that user ID with the new
password.

chromium --ignore-certificate-errors https://localhost:8443/#login

1.

2.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1013

Update the DS plugin

Additional steps may be necessary when updating the DS password synchronization plugin after upgrading DS. Check the
corresponding Knowledge Base article for more information.

Password synchronization plugins PingIDM

1014 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/knowledge/kb/article/a23668219
https://backstage.forgerock.com/knowledge/kb/article/a23668219

Uninstall the DS plugin

To uninstall the plugin, change the DS configuration as follows:

Reset your DS password policy configuration so that it no longer uses the password synchronization plugin.

The following command resets the default password policy:

/path/to/opendj/bin/dsconfig \
set-password-policy-prop \
--policy-name "Default Password Policy" \
--reset account-status-notification-handler \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

Delete the IDM Notification Handler from the DS configuration:

/path/to/opendj/bin/dsconfig \
delete-account-status-notification-handler \
--handler-name "OpenIDM Notification Handler" \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt
The Account Status Notification Handler was deleted successfully

Remove the password synchronization plugin from the DS extensions:

rm /path/to/opendj/lib/extensions/opendj-openidm-account-change-notification-handler

Restart DS for the new configuration to take effect:

/path/to/opendj/bin/stop-ds --restart

Synchronize passwords with Active Directory

Use the Active Directory (AD) password synchronization plugin to synchronize passwords between IDM and Active Directory (on
systems running at least Microsoft Windows Server 2012 R2).

1.

2.

3.

4.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1015

Install the plugin on Active Directory domain controllers (DCs) to intercept password changes, and send the password values to
IDM over an encrypted channel. You must have Administrator privileges to install the plugin. In a clustered Active Directory
environment, you must install the plugin on all DCs.

Install the Active Directory password synchronization plugin

The following steps install the password synchronization plugin on an Active Directory server:

Download the Active Directory password synchronization plugin.

Launch the installation wizard using one of the following methods:

In Windows Explorer, double-click the ad-passwordchange-handler-1.7.0.exe file.

From a Powershell command-line, enter the executable name (.\ad-passwordchange-handler-1.7.0.exe), and

press Enter .

In the Setup - OpenIDM Password Sync window, on the License Agreement page, you must accept the license agreement
to continue, and then click Next.

1.

2.

◦

◦

lightbulb_2
When starting the installation wizard from the command-line, the following options are available:

To save the settings in a configuration file, use the /saveinf switch:

PS C:\path\to\dir> .\ad-passwordchange-handler-1.7.0.exe /saveinf=C:\temp\adsync.inf

If you have a configuration file with installation parameters, you can install the password plugin
in silent mode as follows:

PS C:\path\to\dir> .\ad-passwordchange-handler-1.7.0.exe /verysilent /loadinf=C:
\temp\adsync.inf

Tip

▪

▪

3.

Password synchronization plugins PingIDM

1016 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

On the OpenIDM Information: Connection page, enter the applicable information in the following fields, and click Next.4.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1017

On the OpenIDM Information: Authentication page, enter the applicable information in the following fields, and click
Next.

OpenIDM URL The URL where IDM is deployed, including the query that targets each user account.
For example:

https://localhost:8444/openidm/managed/user?
_action=patch&_queryFilter=userName+eq+'${samaccountname}'

OpenIDM User Password
attribute

The password attribute for the managed/user object, such as adPassword .

lightbulb_2
If the password attribute does not exist in the IDM managed/user object, the
password sync service will return an error when it attempts to replay a
password update that has been made in Active Directory. If your managed
user objects do not include passwords, you can add an onCreate script to
the Active Directory > Managed Users mapping that sets an empty password
when managed user accounts are created. The following excerpt of a sample
sync.json file shows such a script in the mapping:

"mappings" : [
 {
 "name" : "systemAdAccounts_managedUser",
 "source" : "system/ad/account",
 "target" : "managed/user",
 "properties" : [
 {
 "source" : "sAMAccountName",
 "target" : "userName"
 }
],
 "onCreate" : {
 "type" : "text/javascript",
 "source" : "target.password=''"
 },
 ...
 }
]

The onCreate script creates an empty password in the managed/user object,
so that the password attribute exists and can be patched.

Tip

5.

Password synchronization plugins PingIDM

1018 Copyright © 2025 Ping Identity Corporation

If you selected Certificate as the authentication type, complete this step; otherwise, skip to the next step.

On the OpenIDM Information: Certificate Authentication page, enter the applicable information in the following fields,
and click Next.

User name An administrative user that can authenticate to IDM. For example, openidm-admin .

Password The above, specified user’s password.

OAuth2 Access Token URL If you are using the authentication type OAuth2 Access Token , enter the token
URL. For example:

https://am.example.com/am/oauth2/realms/root/access_token

OAuth2 Scope If you are using the authentication type OAuth2 Access Token , enter the OAuth2
token scope. For example fr:idm:* .

Select authentication type Select the authentication type that Active Directory will use to authenticate to IDM:
To use plain HTTP authentication, select OpenIDM Header.
To use mutual SSL authentication, select Certificate.
To use AM bearer tokens, select OAuth2 Access Token.

◦

◦

◦

6.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1019

Select Certificate file... Browse to select the certificate file that Active Directory will use to authenticate to
IDM.

You must also import the certificate into the IDM keystore.jceks file. On the
machine that is running IDM, enter the following command:

keytool \
-importkeystore \
-srckeystore /path/to/ad-pwd-plugin-localhost.p12 \
-srcstoretype PKCS12 \
-destkeystore keystore.jceks \
-deststoretype JCEKS

emergency_home
The certificate file must be configured with an appropriate encoding,
cryptographic hash function, and digital signature. The password
synchronization plugin can read a public or a private key from a PKCS #12
archive file.
For production purposes, you should use a certificate that has been issued by
a certificate authority. For testing purposes, you can generate a self-signed
certificate.

Important

Password synchronization plugins PingIDM

1020 Copyright © 2025 Ping Identity Corporation

On the Password Encryption page, enter the applicable information in the following fields, and click Next.

Private key alias The certificate alias, such as ad-pwd-plugin-localhost . The password sync plugin
sends the alias when communicating with IDM, which uses the alias to retrieve the
corresponding private key in IDM’s keystore.
Update the IDM secret store (conf/secrets.json) to add this certificate alias to the
idm.default secretId:

{
 "stores" : [
 {
 "name" : "mainKeyStore",
 "class" :
"org.forgerock.openidm.secrets.config.FileBasedStore",
 "config" : {
 ...
 "mappings" : [
 {
 "secretId" : "idm.default",
 "types" : [
 "ENCRYPT",
 "DECRYPT"
],
 "aliases" : [
 "&{openidm.config.crypto.alias|openidm-sym-
default}",
 "ad-pwd-plugin-localhost"
]
 },
 ...
]
 }
 },
 ...
],
 ...
}

For more information about secret stores, refer to Secret stores.

Password to open certificate
file

The keystore password (changeit , in the previous example).

7.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1021

Select Certificate file... Browse to select the certificate that will be used for password encryption. The
certificate format must be PKCS #12.

You must also import the certificate into the IDM truststore. On the machine that is
running IDM, enter the following command:

keytool \
 -importkeystore \
 -srckeystore /path/to/ad-pwd-plugin-localhost.p12 \
 -srcstoretype PKCS12 \
 -destkeystore truststore \
 -deststoretype JKS

emergency_home
The certificate file must be configured with an appropriate encoding,
cryptographic hash function, and digital signature. The plugin can read a
public or a private key from a PKCS #12 archive file.
For production purposes, you should use a certificate that has been issued by
a certificate authority. For testing purposes, you can generate a self-signed
certificate.

Important

Password synchronization plugins PingIDM

1022 Copyright © 2025 Ping Identity Corporation

On the Data Storage page, enter the applicable information in the following fields, and click Next.

Private key alias The certificate alias, such as ad-pwd-plugin-localhost . The password sync plugin
sends the alias when communicating with IDM, which uses the alias to retrieve the
corresponding private key in IDM’s keystore.
Update the IDM secret store (conf/secrets.json) to add this certificate alias to the
idm.default secretId:

"mappings": [
 {
 "secretId": "idm.default",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-
default}", "ad-pwd-plugin-localhost"] },
 ...
 }
]

For more information about secret stores, refer to Secret stores.

Password to open certificate
file

The password to access the PFX keystore file, such as changeit , from the previous
example.

Select encryption... The encryption standard to use when encrypting the password value (AES-128,
AES-192, or AES-256).

8.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1023

On the Log Storage page, enter the applicable information in the following fields, and click Next.

On the Select Destination Location page, browse to select the installation folder (default C:\Program Files\OpenIDM
Password Sync), and click Next.

Select the folder in which
Service will store its output
data files

Browse to select the folder for data output files. The server should prevent access to
this folder except for the Password Sync service .

Directory poll interval
(seconds)

The number of seconds between calls to check whether IDM is available. For
example, 60 , to poll IDM every minute.

emergency_home
The path name cannot include spaces.
Important

9.

Select the folder in which
Service will store its log files

Browse to select the folder for log files.

Select logging level The severity of messages to log: error , info , warning , fatal , or debug .

emergency_home
The path name cannot include spaces.
Important

10.

Password synchronization plugins PingIDM

1024 Copyright © 2025 Ping Identity Corporation

On the Ready to Install page, verify the details are acceptable, and click Install to continue. If you need to change any
installation options, click Back.

On the Completing the OpenIDM Password Sync Setup Wizard page, select one of the following, and click Finish:

11.

12.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1025

Yes, restart the computer now

No, I will restart the computer later

If you selected Certificate as the authentication type during setup, complete Add a Certificate to the Windows
Certificate Store; otherwise, your setup is now complete.

Password synchronization should now be configured and working. To test that the setup was successful, change a user password
in Active Directory. That password should be synchronized to the corresponding IDM managed user account, and you should be
able to query the user’s own entry in IDM using the new password.

Generate a self-signed certificate

For production purposes, you should use a certificate that has been issued by a certificate authority. For testing purposes, you
can generate a self-signed certificate.

On the Active Directory host, generate a private key, which will be used to generate a self-signed certificate with the alias
ad-pwd-plugin-localhost :

◦

◦

emergency_home
If you select this option, you must restart the computer before you continue.

Important

13.

1.

Password synchronization plugins PingIDM

1026 Copyright © 2025 Ping Identity Corporation

> keytool.exe ^
 -genkey ^
 -alias ad-pwd-plugin-localhost ^
 -keyalg rsa ^
 -dname "CN=localhost, O=AD-pwd-plugin Self-Signed Certificate" ^
 -keystore keystore.jceks ^
 -storetype JCEKS
Enter keystore password:changeit
Re-enter new password: changeit
Enter key password for <ad-pwd-plugin-localhost>
 <RETURN if same as keystore password>

Now use the private key, stored in the keystore.jceks file, to generate the self-signed certificate:

> keytool.exe ^
 -selfcert ^
 -alias ad-pwd-plugin-localhost ^
 -validity 365 ^
 -keystore keystore.jceks ^
 -storetype JCEKS ^
 -storepass changeit

Export the certificate. In this case, the keytool command exports the certificate in a PKCS #12 archive file format, used to
store a private key with a certificate:

> keytool.exe ^
 -importkeystore ^
 -srckeystore keystore.jceks ^
 -srcstoretype jceks ^
 -srcstorepass changeit ^
 -srckeypass changeit ^
 -srcalias ad-pwd-plugin-localhost ^
 -destkeystore ad-pwd-plugin-localhost.p12 ^
 -deststoretype PKCS12 ^
 -deststorepass changeit ^
 -destkeypass changeit ^
 -destalias ad-pwd-plugin-localhost ^
 -noprompt

The PKCS #12 archive file is named ad-pwd-plugin-localhost.p12 . Import the contents of the keystore contained in this
file to the system that hosts IDM. To do so, import the PKCS #12 file into the IDM keystore file, named truststore , in
the /path/to/openidm/security directory.

Add a certificate to the Windows certificate store

2.

3.

4.

info
If you selected Certificate as the authentication type during setup, you must complete this procedure.

Note

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1027

The Password Sync Service uses Windows certificate stores to verify IDM’s identity. The certificate that IDM uses must therefore
be added to the list of trusted certificates on the Windows machine.

In a production environment, use a certificate that has been issued by a certificate authority. For test purposes, you can use the
self-signed certificate that is generated by IDM on first startup.

To add the IDM certificate to the list of trusted certificates, use the Microsoft Management Console:

Click the Start Menu, type mmc, and click mmc Run Command.

In the Console window, select File > Add/Remove Snap-in.

From the Available snap-ins area, select Certificates, and click Add >.

1.

2.

3.

Password synchronization plugins PingIDM

1028 Copyright © 2025 Ping Identity Corporation

In the Certificates snap-in window, select My user account, and click Finish.4.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1029

From the Available snap-ins area, select Certificates, and click Add >.5.

Password synchronization plugins PingIDM

1030 Copyright © 2025 Ping Identity Corporation

In the Certificates snap-in window, select Service account, and click Next >.6.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1031

In the Select Computer window, select Local Computer, and click Next >.

In the Cerificates snap-in window, select the service account OpenIDM Password Sync Service, and click Finish.

7.

8.

Password synchronization plugins PingIDM

1032 Copyright © 2025 Ping Identity Corporation

From the Available snap-ins area, select Certificates, and click Add >.9.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1033

In the Certificates snap-in window, select Computer account, and click Next >.10.

Password synchronization plugins PingIDM

1034 Copyright © 2025 Ping Identity Corporation

In the Select Computer window, select Local Computer, and click Finish.

In the Add or Remove Snap-ins window, verify that you have three certificates in the Selected snap-ins area, and click OK.
If you are missing any certificates, please review the earlier steps in this procedure, and add the missing certificate(s).

11.

12.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1035

For each of the following nodes, import the certificate, as follows:

Expand the node, and select the appropriate item. For example, Certificates - Current User > Personal:

13.

List of Nodes

Certificates - Current User > Personal

Certificates - Current User > Trusted Root Certification Authorities

Certificates - Service > OpenIDM Password Sync\Personal

Certificates - Service > OpenIDM Password Sync\Trusted Root Certification Authorities

Certificates > Local Computer > Personal

Certificates > Local Computer > Trusted Root Certification Authorities

1.

Password synchronization plugins PingIDM

1036 Copyright © 2025 Ping Identity Corporation

From the menu bar, select Action > All Tasks > Import.

In the Certificate Import Wizard window, click Next.

2.

3.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1037

On the File to Import page, click Browse, locate the IDM certificate, and then click Next. If you exported IDM’s self-
signed certificate, the certificate is openidm-localhost.crt .

4.

Password synchronization plugins PingIDM

1038 Copyright © 2025 Ping Identity Corporation

On the Certificate Store page, leave the default option selected, and click Next. For example:5.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1039

On the final page of the wizard, review the details, and click Finish. For example:6.

Password synchronization plugins PingIDM

1040 Copyright © 2025 Ping Identity Corporation

The Certificate Import Wizard window displays the success or failure of the import, click OK.

The main window of the Microsoft Management Console now displays the added certificate in a sub-node. For
example:

7.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1041

Upgrade the Active Directory password synchronization plugin

To upgrade the Active Directory password synchronization plugin, you can run the installer over an existing configuration. For
more information about installation, refer to Install the Active Directory password synchronization plugin.

Configure the Active Directory password synchronization plugin

If you need to change any settings after installation, access the settings using the Registry Editor. For the full list of available
registry key values, refer to Registry Key Values. For information about creating registry keys, refer to the corresponding
Windows documentation.

Create or edit registry key values

Click the Start Menu, type registry, and click Registry Editor Desktop app.

In the left pane of Registry Editor, expand the node:

HKEY_LOCAL_MACHINE > SOFTWARE > ForgeRock > OpenIDM > PasswordSync

For Example:

info
Make sure to repeat this sub-procedure for all required nodes.

Note

info
After you change a registry key value associated with the password synchronization plugin, perform validation.

Note

1.

2.

Password synchronization plugins PingIDM

1042 Copyright © 2025 Ping Identity Corporation

https://docs.microsoft.com/en-us/system-center/scsm/registry-keys
https://docs.microsoft.com/en-us/system-center/scsm/registry-keys

From here you can edit the registry key values, or create new ones.

To edit a value, double-click any item in the Name column. An Edit String window displays.

To create a new string value, right-click the last folder of the expanded node (PasswordSync), select New > String
Value, and enter the applicable information.

3.

◦

◦

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1043

Registry key values

Authentication method

The following registry key values let you customize the authorization method between the plugin and IDM.

Password synchronization plugins PingIDM

1044 Copyright © 2025 Ping Identity Corporation

Password encryption

The following registry key values let you customize the encryption method for captured passwords.

Key Value Description

authType

(Required)
The authentication type:

basic
Plain HTTP or SSL authentication.

idm
Plain HTTP or SSL authentication using IDM headers.

oauth2
Oauth2 authentication using AM bearer tokens.

cert
Mutual SSL authentication using a certificate.

netSslVerifyPeer

(Optional)
When using cert as the authentication type, you can create this value set to True to
force validation of the IDM certificate.

authToken0

(Required)
The username or certificate path for authentication.
For example, for plain HTTP or SSL authentication, authToken0 might be set to openidm-
admin .
For certificate authentication, set authToken0 to the certificate path. For example, path/
to/certificate/cert.p12 . Only PKCS #12 format certificates are supported.

authToken1

(Required)
The authentication password.
For example, for plain HTTP or SSL authentication, authToken1 might be set to openidm-
admin .
For certificate authentication, set authToken1 to the keystore password.

encKey

(Optional)
The encryption key used to encrypt the values of authToken1 and certPassword . These
values are encrypted automatically when the plugin is installed, but when you change the
settings, you can encrypt the values manually by setting the encKey registry key. For
more information, refer to Registry Key Value Encryption.

info
By default, the plugin does not validate the IDM certificate. To enable
validation, create the registry key value netSslVerifyPeer set to True.

Note

info
If you do not want to encrypt the values of authToken1 and certPassword, you
must remove the registry key value encKey from the registry.

Note

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1045

Connection & synchronization

The password synchronization plugin assumes that the Active Directory user attribute is sAMAccountName . Although the default
attribute works in most deployments, you can specify an alternative attribute. For an example, refer to Example userAttribute
Modification.

Key Value Description

certFile

(Required)
The path to the keystore used for encrypting captured passwords. For example,
path/to/keystore.p12 . Only PKCS #12 keystores are supported.

certPassword

(Required)
The certFile keystore password.

keyAlias

(Required)
The certFile keystore alias.

keyType

(Optional)
The certFile keystore encryption algorithm. For example, aes128 . If not set, defaults
to aes128 .

Key Value Description

userAttribute

(Optional)
The attribute that identifies the Active Directory user. The password synchronization
plugin assumes that the Active Directory user attribute is sAMAccountName . Used with
userSearchFilter .

userSearchFilter

(Optional)
The search filter for locating Active Directory users.
Can only be used if userAttribute is also specified (even if the value is the default
attribute sAMAccountName).

idmURL

(Required)
The URL where IDM is deployed, including the query that targets each user account.

passwordAttr

(Required)
The password attribute for the managed/user object, such as adPassword .

oauth2Url

(Optional)
For the authentication type OAuth2 Access Token , the token URL. For example:

https://am.example.com/am/oauth2/realms/root/access_token

info
To use userSearchFilter with a special attribute such as memberOf, the filter only
tests for immediate group memberships, and not for membership in the primary
group (typically, cn=Users or cn=Domain Users) of your domain. The filter does not
handle nested memberships. For example, User A is member of Group A, which is a
member of Group B—although User A is technically a member of Group B, the filter
will not interpret it as such.

Note

Password synchronization plugins PingIDM

1046 Copyright © 2025 Ping Identity Corporation

IDM availability

When IDM is unavailable, or when an update fails, the password synchronization plugin stores the user password change in a
JSON file on the Active Directory system and attempts to resend the password change at regular intervals.

You can modify this behaviour with the following registry key values:

Key Value Description

oauth2Scope

(Optional)
For the authentication type OAuth2 Access Token , the OAuth2 token scope. For
example fr:idm:* .

userSearchBaseDn

(Optional)
The bind BaseDN used in the Active Directory user search. Use to set a different base dn
for attribute search. Default value is derived from defaultNamingContext .
Can only be used if userAttribute is also specified (even if the value is the default
attribute sAMAccountName). Used with userSearchFilter .

userSearchBindPass

(Optional)
The bind password used in the Active Directory user search.
Can only be used if userAttribute is also specified (even if the value is the default
attribute sAMAccountName). Used with userSearchFilter .

userSearchBindUser

(Optional)
The bind user used in the Active Directory user search.
Can only be used if userAttribute is also specified (even if the value is the default
attribute sAMAccountName). Used with userSearchFilter .

userSearchFilterStrict

(Optional)
Additional control for the behavior of userSearchFilter :

If set to true , requires userSearchFilter to return a value, which you can use
to filter out Active Directory users/groups from being password-synced.
The default behavior is false , which results in userSearchFilter only being
used to look up the Active Directory user attribute, and if it fails, password
synchronization is still attempted with a default attribute.

•

•

Key Value Description

dataPath

(Required)
The location where the password synchronization plugin stores the unsent changes.
When any unsent changes have been delivered successfully, files in this path are deleted.
The plugin creates one file for each user. This means that if a user changes their
password three times in a row, you will refer to only one file containing the last change.

maxFileRetry

(Optional)
The maximum number of password change retry attempts after which the plugin stops
attempting to send changes.

netTimeout

(Optional)
The length of time (in milliseconds) before the plugin stops attempting a connection.

pollEach

(Optional)
The interval (in seconds) between each attempt to send changes.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1047

Logging configuration

Other

Registry key value encryption

For security reasons, you should encrypt the values of the authToken1 and certPassword keys. During password
synchronization plugin installation, they are encrypted automatically. If you need to change the values, you can encrypt the values
manually by setting the encKey registry key value.

Key Value Description

logPath

(Optional)
The path to the log file.

logSize

(Optional)
The maximum log size (in Bytes) before the log is rotated. When the log file reaches this
size, it is renamed idm.log.0 and a new idm.log file is created.

logLevel

(Optional)
The severity of messages to log:

debug

info

warning

error

fatal

emergency_home
If you change this parameter, you must restart the machine for the new setting to
take effect. If you change the logPath and do not restart the machine, the service
will write the logs to the new location, but the sync module will continue to write
logs to the old location until the machine is restarted.

Important

•
•
•
•
•

Key Value Description

pwdChangeInterval

(Optional)
Infinite password sync loop prevention.
When Active Directory syncs passwords with IDM bidirectionally, it is possible to enter an
infinite loop, where Active Directory and IDM are constantly updating the password and
telling the other system to do the same. To help prevent this situation, you can set the
pwdChangeInterval key to the number of seconds that must elapse between password
updates.

info
This feature requires AD Password Synchronization Plugin version 1.4.0 or later.
Because version 1.4.0 can fail to make a secure connection with certain Windows
versions, ForgeRock recommends using a later version.

Note

Password synchronization plugins PingIDM

1048 Copyright © 2025 Ping Identity Corporation

https://bugster.forgerock.org/jira/browse/OPENIDM-16315
https://bugster.forgerock.org/jira/browse/OPENIDM-16315
https://bugster.forgerock.org/jira/browse/OPENIDM-16315

To encrypt the values of the authToken1 and certPassword :

Optionally, generate a new encryption key; otherwise, you can use the existing encryption key and skip this step.

PS C:\Program Files\OpenIDM Password Sync> .\idmsync.exe --key

keyValue

Encrypt the sensitive registry key values:

PS C:\Program Files\OpenIDM Password Sync> .\idmsync.exe --encrypt "keyValue" "authToken1Value"

authToken1-keyValue

PS C:\Program Files\OpenIDM Password Sync> .\idmsync.exe --encrypt "keyValue" "certPasswordValue"

certPasswordValue-keyValue

Replace the existing values of encKey , authToken1 and certPassword keys with the generated values.

For instructions on editing registry key values, refer to Create or Edit Registry Key Values.

Registry key value validation

After you change a registry key value associated with the password synchronization plugin, run path\to\idmsync.exe --
validate to perform validation. For example:

info
If you do not want to encrypt the values of the authToken1 and certPassword keys, you must delete encKey from the
registry. In this case, all password attributes can be set in cleartext (unencrypted).

Note

1.

2.

3.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1049

PS C:\Program Files\OpenIDM Password Sync> .\idmsync.exe --validate

OpenIDM Password Sync Service

Validating configuration parameters as user "Administrator"

Logging parameters:
logPath:
 "Z:\" has read/write access permissions.

logLevel:
 "error" is a valid logLevel entry.

logSize:
 "" is not a valid logSize entry. Will use default 5120000 byte file size limit.

Service and data storage parameters:
dataPath:
 "Z:\" has read/write access permissions.

pollEach:
 "75" is a valid pollEach entry.

OpenIDM service parameters:
idmURL:
 "https://localhost:8444/openidm/managed/user?_action=patch&_queryId=for-userName&uid=${samaccountname}" is a valid
idmURL entry.

keyAlias:
 "openidm-cert" is a valid keyAlias entry.

passwordAttr:
 "adPassword" is a valid passwordAttr entry.

idm2Only:
 Service is configured to run with OpenIDM version 3.x or newer.

netTimeout:
 "" is not a valid netTimeout entry. Will use default 16 second network timeout.

authType, authToken0 and authToken1:
 Service is configured to use "OAuth2 Access Token" authentication
 "oauth2" is a valid authType entry.

Password encryption parameters:
certFile and certPassword:
 "Z:\openidm-localhost.crt" file is a valid entry.

Example userAttribute modification

The password synchronization plugin assumes that the Active Directory user attribute is sAMAccountName . The default attribute
will work in most deployments. If you cannot use the sAMAccountName attribute to identify the Active Directory user, set the
following registry keys on your Active Directory server, specifying an alternative attribute. The examples in the following table use
the employeeId attribute instead of sAMAccountName .

For instructions on editing registry key values, refer to Create or Edit Registry Key Values.

Password synchronization plugins PingIDM

1050 Copyright © 2025 Ping Identity Corporation

Start or stop the plugin

The password synchronization plugin runs as OpenIDM Password Sync Service. You can start and stop the service using
Windows Service Manager or the command line.

Windows Service Manager

Click the Start Menu, type services.msc, and click Services Desktop App.

In the Services windows, right-click OpenIDM Password Sync Service, and select the applicable option (Start, Stop, or
Restart):

Key Value Data

userAttribute employeeId

userSearchFilter (&(objectClass=user)(sAMAccountName=%s))

idmURL https://localhost:8444/openidm/managed/user?

_action=patch&_queryFilter=uid+eq+${employeeId}

1.

2.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1051

Command line

You can use the following commands to start and stop the service from the command line.

PS C:\Program Files\OpenIDM Password Sync> .\idmsync.exe --start

PS C:\Program Files\OpenIDM Password Sync> .\idmsync.exe --stop

Plugin status

You can also check the status of the plugin:

PS C:\Program Files\OpenIDM Password Sync> .\idmsync.exe --status
Service is running.

Help command

The password synchronization plugin executable file includes a help command that prints the available command line options.

info
The service will not start from the command line if any registry key value fails validation.

Note

Password synchronization plugins PingIDM

1052 Copyright © 2025 Ping Identity Corporation

PS C:\Program Files\OpenIDM Password Sync> .\idmsync.exe --help

OpenIDM Password Sync Service usage:

install service:
 idmsync.exe --install

uninstall service:
 idmsync.exe --remove

start service:
 idmsync.exe --start

stop service:
 idmsync.exe --stop

query service:
 idmsync.exe --status

validate configuration:
 idmsync.exe --validate

generate encryption key:
 idmsync.exe --key

encrypt password:
 idmsync.exe --encrypt "key" "password"

build and version info:
 idmsync.exe --version

Uninstall the Active Directory password synchronization plugin

You can uninstall the Active Directory Password Synchronization plugin from multiple locations:

Uninstall from the Windows Control Panel (Control Panel > Programs and Features, select OpenIDM Password Sync from
the list and select Uninstall).

Run the uninstaller (unins000.exe) found in the OpenIDM Password Sync install directory (by default, C:\Program
Files\OpenIDM Password Sync).

After the uninstaller finishes, Windows will prompt you to restart. Restart to complete the uninstall process.

Remove installed authentication certificates

If you selected to authenticate with mutual SSL authentication, you can manually remove the IDM certificates using the Microsoft
Management Console:

Click the Start Menu, type mmc, and click mmc Run Command.

For each of the following nodes, expand the node, and delete the certificate.

•

•

1.

2.

PingIDM Password synchronization plugins

Copyright © 2025 Ping Identity Corporation 1053

If the OpenIDM Password Sync Service is still listed with stored certificates:

Select File > Add/Remove Snap-in.

From the Selected snap-ins area, select Certificates - OpenIDM Password Sync, and click Remove.

Click OK.

List of Nodes

Certificates - Current User > Personal

Certificates - Current User > Trusted Root Certification Authorities

Certificates - Service > OpenIDM Password Sync\Personal

Certificates - Service > OpenIDM Password Sync\Trusted Root Certification Authorities

Certificates > Local Computer > Personal

Certificates > Local Computer > Trusted Root Certification Authorities

3.

1.

2.

3.

Password synchronization plugins PingIDM

1054 Copyright © 2025 Ping Identity Corporation

Audit

Guide to configuring audit logs and notifications.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Configure audit logging

The audit service publishes and logs information to one or more targets, including local data files, the repository, and remote
systems.

Audit logs help you to record activity by account. With audit data, you can monitor logins, identify problems such as unresponsive
devices, and collect information to comply with regulatory requirements.

The audit service logs information related to the following events:

System access

System activity

Configure Audit

Configure audit logging.

Schema

Learn about the audit schema.

Notifications

Configure notifications.

•

•

Audit PingIDM

1056 Copyright © 2025 Ping Identity Corporation

https://www.forgerock.com
https://www.forgerock.com

Authentication operations

Configuration changes

Reconciliations

Synchronizations

You can customize what is logged for each event type. Auditing provides the data for all relevant reports, including those related
to orphan accounts.

When you first start IDM, an audit log file for each configured audit event topic is created in the /path/to/openidm/audit
directory. Until there is a relevant event, these files will be empty.

When IDM sends data to these audit logs, you can query them over the REST interface.

Configure the audit service

You access the audit logging configuration over REST at the openidm/config/audit context path and in the conf/audit.json
file. To configure the audit service, edit the audit.json file or use the admin UI. Select Configure > System Preferences, and
click the Audit tab. The fields on that form correspond to the configuration parameters described in this section.

You can configure the following major options for the audit service:

Which audit handlers are used

Audit event handlers are responsible for handling audit events. They are listed in the availableAuditEventHandlers
property in your conf/audit.json file.

Which handler is used for queries

You must configure one audit event handler to manage queries on the audit logs.

What events are logged

The events that are logged are configured in the events list for each audit event handler.

Track transactions across products

If you use more than one ForgeRock product, you can specify that a common transactionId be used to track audit data
across products. Edit your conf/system.properties file and set:

org.forgerock.http.TrustTransactionHeader=true

Specify the audit query handler

By default, queries on audit logs are managed by the JSON audit event handler. You can configure one of the other available
event handlers to handle queries. The audit event handler that you configure to manage queries must be enabled , either by
including its definition in audit.json , or setting it to Enabled in the admin UI.

•

•

•

•

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1057

To specify which audit event handler should be used for queries, set the handlerForQueries property in the audit.json file, as
follows:

{
 "auditServiceConfig" : {
 "handlerForQueries" : "json",
 "availableAuditEventHandlers" : [
 "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "org.forgerock.audit.handlers.jms.JmsAuditEventHandler",
 "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "org.forgerock.openidm.audit.impl.RepositoryAuditEventHandler",
 "org.forgerock.openidm.audit.impl.RouterAuditEventHandler",
 "org.forgerock.audit.handlers.syslog.SyslogAuditEventHandler"
],
 ...
}

In this case, the handlerForQueries is set to json , which is the name of the JsonAuditEventHandler .

Choose audit event handlers

An audit event handler manages audit events, sends audit output to a defined location, and controls the output format. IDM
provides a number of default audit event handlers, and audit event handlers for third-party log management tools.

Each audit event handler has a set of Common audit event handler properties. Specific audit event handlers have additional
configuration properties.

The standard configuration for a new install includes the following handlers:

JsonAuditEventHandler

Default state: Enabled

Property: openidm.audit.handler.json.enabled

JsonStdoutAuditEventHandler

Default state: Disabled

emergency_home
Do not use a file-based audit event handler, such as CSV or JSON, to handle queries in a clustered environment.
ForgeRock recommends using an audit handler that aggregates audit records from all nodes in the cluster,
such as JDBC.
You can use a file-based audit handler for queries in a non-clustered demonstration or evaluation
environment. However, be aware that these handlers do not implement paging, and are therefore subject to
general query performance limitations.
The JMS and Syslog handlers can not be used as the handler for queries.
Logging via CSV or JSON may lead to errors in one or more mappings in the admin UI.

Important

•

•
•

Audit PingIDM

1058 Copyright © 2025 Ping Identity Corporation

Property: openidm.audit.handler.stdout.enabled

RepositoryAuditEventHandler

Default state: Disabled

Property: openidm.audit.handler.repo.enabled

This command returns the available audit event handlers, along with the audit configuration (in the conf/audit.json file):

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/audit?_action=availableHandlers"

The output includes the configured options for each audit event handler.

To view the audit configuration in the admin UI, click Configure > System Preferences > Audit.

The following sections show how to configure the standard audit event handlers. For additional audit event handlers, refer to
Audit event handler configuration.

JSON audit event handler

The JSON audit event handler logs events as JSON objects to a set of JSON files. This is the default handler for queries on the audit
logs.

The following excerpt of an audit.json file shows a sample JSON audit event handler configuration:

info
To change the enable state for any of these handlers, use Property value substitution.

Note

warning
ForgeRock recommends that you DO NOT configure an audit event handler that points to the same repo IDM uses
(RepositoryAuditEventHandler), as this causes audit records to compete with IDM for resources on the database,
which impacts performance.

Warning

info
Result paging can improve responsiveness when scanning large numbers of audit records through the IDM REST API.
The default JSON audit handler does not support paging. If you need to page audit results, use a handler that does
support paging, such as the Repository Audit Event Handler.

Note

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1059

"eventHandlers" : [
 {
 "class" : "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config" : {
 "name" : "json",
 "enabled" : {
 "$bool" : "&{openidm.audit.handler.json.enabled|true}"
 },
 "logDirectory" : "&{idm.data.dir}/audit",
 "buffering" : {
 "maxSize" : 100000,
 "writeInterval" : "100 millis"
 },
 "topics" : [
 "access",
 "activity",
 "sync",
 "authentication",
 "config"
]
 }
 },

A JSON audit event handler configuration includes the following mandatory properties:

name

The audit event handler name (json).

logDirectory

The name of the directory in which the JSON log files should be written, relative to the working location. For more
information on the working location, refer to Startup configuration.

You can use property value substitution to direct log files to another location on the filesystem. For more information,
refer to Property value substitution.

buffering - maxSize

The maximum number of events that can be buffered. The default (and minimum) number of buffered events is 100000.

buffering - writeInterval

The delay after which the file-writer thread is scheduled to run after encountering an empty event buffer. The default
delay is 100 milliseconds.

topics

The list of topics for which audit events are logged.

One JSON file is created for each audit topic that is included in this list:

Audit PingIDM

1060 Copyright © 2025 Ping Identity Corporation

access.audit.json

activity.audit.json

authentication.audit.json

config.audit.json

sync.audit.json

If you want to get information about a reconciliation without enabling the audit topic, you can get similar details from the
recon/assoc endpoint. For more information about recon association data, refer to Viewing Reconciliation Association
Details.

For a description of all the configurable properties of the JSON audit event handler, refer to JSON Audit Event Handler
Properties.

The following excerpt of an authentication.audit.json file shows the log message format for authentication events:

{
"context": {

"ipAddress": "0:0:0:0:0:0:0:1"
},
"entries": [{

"moduleId": "JwtSession",
"result": "FAILED",
"reason": {},
"info": {}

},
 ...

{
"moduleId": "INTERNAL_USER",
"result": "SUCCESSFUL",
"info": {

"org.forgerock.authentication.principal": "openidm-admin"
}

}],
"principal": ["openidm-admin"],
"result": "SUCCESSFUL",
"userId": "openidm-admin",
"transactionId": "94b9b85f-fbf1-4c4c-8198-ab1ff52ed0c3-24",
"timestamp": "2016-10-11T12:12:03.115Z",
"eventName": "authentication",
"trackingIds": ["5855a363-a1e0-4894-a2dc-fd5270fb99d1"],
"_id": "94b9b85f-fbf1-4c4c-8198-ab1ff52ed0c3-30"

} {
"context": {

"component": "internal/user",
"roles": ["internal/role/openidm-admin", "internal/role/openidm-authorized"],
"ipAddress": "0:0:0:0:0:0:0:1",
"id": "openidm-admin",
"moduleId": "INTERNAL_USER"

}...

info
Reconciliations are available as an audit topic, but are not enabled by default. To enable auditing on
reconciliations, add recon to the list of topics. This will add a recon.audit.json file to the audit directory.

Note

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1061

JSON standard output audit event handler

Standard output is also known as stdout . A JSON stdout handler sends messages to standard output. The following code is an
excerpt of the audit.json file, which depicts a sample JSON stdout audit event handler configuration:

{
 "class" : "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",
 "config" : {
 "name" : "stdout",
 "enabled" : {
 "$bool" : "&{openidm.audit.handler.stdout.enabled|false}"
 },
 "topics" : [
 "access",
 "activity",
 "sync",
 "authentication",
 "config"
]
 }
}...

CSV audit event handler

The CSV audit event handler logs events to a comma-separated value (CSV) file.

The following excerpt of the audit.json file shows a sample CSV handler configuration:

"eventHandlers" : [
{
 "class" : "org.forgerock.audit.events.handlers.csv.CSVAuditEventHandler",
 "config" : {
 "name" : "csv",
 "logDirectory" : "&{idm.data.dir}/audit",
 "topics" : ["access", "activity", "sync", "authentication", "config"]
 }
}

The logDirectory indicates the name of the directory in which log files should be written, relative to the working location. For
more information on the working location, refer to Startup configuration.

You can use property value substitution to direct logs to another location on the filesystem. For more information, refer to
Property Value Substitution.

If you set up a custom CSV handler, you may configure over 20 different properties, as described in Common Audit Event Handler
Properties.

Audit file names are fixed and correspond to the event being audited:

emergency_home
The CSV handler does not sanitize messages when writing to CSV log files.
Do not open CSV logs in spreadsheets and other applications that treat data as code.

Important

Audit PingIDM

1062 Copyright © 2025 Ping Identity Corporation

access.csv

activity.csv

authentication.csv

config.csv

recon.csv

sync.csv

Restrictions on configuring the CSV audit handler in the admin UI

If you configure the CSV handler in the admin UI, set at least the following properties:

The logDirectory , the full path to the directory with audit logs, such as /path/to/openidm/audit . You can substitute
&{idm.install.dir} for /path/to/openidm .

Differing entries for the quote character, quoteChar and delimiter character, delimiterChar .

After you have set these options, do not change them in the admin UI. Rather, rotate any CSV audit files and edit the
configuration properties directly in conf/audit.json . Changing the properties in the admin UI generates an error in the
console.

If you enable the CSV tamper-evident configuration, include the keystoreHandlerName , or a filename and password . Do
not include all three options.

Before including tamper-evident features in the audit configuration, set up the keys as described in Configure Keys to
Protect Audit Logs.

Configure Tamper Protection for CSV Audit Logs

Tamper protection can ensure the integrity of audit logs written to CSV files. You can activate tamper protection in the
audit.json file directly, or by editing the CSV Audit Event Handler in the admin UI.

Before you change the audit configuration for tamper protection, move or delete any current audit CSV files:

mv /path/to/openidm/audit/*.csv /tmp

Tamper protection requires keys in the default IDM keystore. If you have not already done so, import a certificate into the
keystore, or create your own self-signed certificate:

IDM includes a Java Cryptography Extension Keystore (JCEKS), keystore.jceks , in the /path/to/openidm/security directory.

•

•

•

info
The signatureInterval property supports time settings in a human-readable format (default = 1 hour).
Examples of allowable signatureInterval settings are:

3 days, 4 m
1 hour, 3 sec

Allowable time units include:
days, day, d
hours, hour, h
minutes, minute, min, m
seconds, second, sec, s

Note

◦

◦

◦

◦

◦

◦

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1063

Initialize a key pair using the RSA encryption algorithm, using the SHA256 hashing mechanism:

keytool \
 -genkeypair \
 -alias "Signature" \
 -dname CN=openidm \
 -keystore /path/to/openidm/security/keystore.jceks \
 -storepass changeit \
 -storetype JCEKS \
 -keypass changeit \
 -keyalg RSA \
 -sigalg SHA256withRSA

You can now set up a secret key, in Hash-based message authentication code, using the SHA256 hash function (HmacSHA256):

keytool \
 -genseckey \
 -alias "Password" \
 -keystore /path/to/openidm/security/keystore.jceks \
 -storepass changeit \
 -storetype JCEKS \
 -keypass changeit \
 -keyalg HmacSHA256 \
 -keysize 256

To configure tamper protection, add a security property to the CSV audit handler configuration in your conf/audit.conf file:

{
 "class" : "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "config" : {
 ...
 "security" : {
 "enabled" : true,
 "filename" : "",
 "password" : "",
 "keyStoreHandlerName" : "openidm",
 "signatureInterval" : "10 minutes"
 },
 ...

This excerpt shows a tamper-evident configuration where a signature is written to a new line in each CSV file, every 10 minutes.
The signature uses the default keystore, configured in the install-dir/resolver/boot.properties file. The properties are
described in Common audit event handler properties.

To configure tamper protection in the admin UI:

Click Configure > System Preferences > Audit, and select an existing CSV audit handler, or add a new one.

Scroll down to Security, and set the keystore options.

1.

2.

Audit PingIDM

1064 Copyright © 2025 Ping Identity Corporation

When you have saved the configuration changes, you should see the following files in the /path/to/openidm/audit directory:

tamper-evident-access.csv
tamper-evident-access.csv.keystore
tamper-evident-activity.csv
tamper-evident-activity.csv.keystore
tamper-evident-authentication.csv
tamper-evident-authentication.csv.keystore
tamper-evident-config.csv
tamper-evident-config.csv.keystore
tamper-evident-recon.csv
tamper-evident-recon.csv.keystore
tamper-evident-sync.csv
tamper-evident-sync.csv.keystore

When you have configured tamper protection, you can periodically check the integrity of your log files:

The following command verifies audit files in the --archive directory (audit/), that belong to the access --topic , verified with
the keystore.jceks keystore, using the CSV audit handler bundle, forgerock-audit-handler-csv-version.jar :

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1065

java -jar \
bundle/forgerock-audit-handler-csv-version.jar \
--archive audit/ \
--topic access \
--keystore security/keystore.jceks \
--password changeit

If there are changes to your tamper-evident-access.csv file, a message similar to the following displays:

FAIL tamper-evident-access.csv-2016.05.10-11.05.43 The HMac at row 3 is not correct.

Router Audit Event Handler

The router audit event handler logs events to any external or custom endpoint, such as system/scriptedsql or custom-
endpoint/myhandler . It uses target-assigned values of _id .

A sample configuration for a router event handler is provided in the audit.json file in the
openidm/samples/audit-jdbc/conf directory, and described in About the Configuration Files. This sample directs log output to
a JDBC repository. The audit configuration file (conf/audit.json) for the sample shows the following event handler
configuration:

{
 "class": "org.forgerock.openidm.audit.impl.RouterAuditEventHandler",
 "config": {
 "name": "router",
 "topics" : ["access", "activity", "sync", "authentication", "config"],
 "resourcePath" : "system/auditdb"
 }
},

info
Note the following restrictions on verifying CSV audit files:

You can only verify audit files that have already been rotated. You cannot verify an audit file that is currently
being written to.
Verification of tampering is supported only for CSV audit files with the following format:

"formatting" : {
 "quoteChar" : "\"",
 "delimiterChar" : ",",
 "endOfLineSymbols" : "\n"
},

A tamper-evident audit configuration rotates files automatically and pairs the rotated file with the required
keystore file. Files that are rotated manually cannot be verified, as the required keystore information is not
appended.

Note

•

•

•

Audit PingIDM

1066 Copyright © 2025 Ping Identity Corporation

The resourcePath property in the configuration indicates that logs should be directed to the system/auditdb endpoint. This
endpoint, and the JDBC connection properties, are defined in the connector configuration file (conf/provisioner.openicf-
auditdb.json), as follows:

{
 "configurationProperties" : {
 "username" : "root",
 "password" : "password",
 "driverClassName" : "com.mysql.cj.jdbc.Driver",
 "url" : "jdbc:mysql://&{openidm.repo.host}:&{openidm.repo.port}/audit",
 "autoCommit" : true,
 "jdbcDriver" : "com.mysql.cj.jdbc.Driver",
 "scriptRoots" : ["&{idm.instance.dir}/tools"],
 "createScriptFileName" : "CreateScript.groovy",
 "testScriptFileName" : "TestScript.groovy",
 "searchScriptFileName" : "SearchScript.groovy"
 },
...

Include the correct URL or IP address of your remote JDBC repository in the boot.properties file for your project.

When JSON information is sent to the router audit event handler, the value of _id is replaced with eventId .

Repository Audit Event Handler

The repository audit event handler sends information to a JDBC repository. If you are using ForgeRock Directory Services (DS) as
the repository, you cannot enable this audit event handler, because audit data cannot be stored in DS.

Log entries are stored in the following tables of a JDBC repository:

auditaccess

auditactivity

auditauthentication

auditconfig

auditrecon

auditsync

You can use the repository audit event handler to generate reports that combine information from multiple tables.

Each of these JDBC tables maps to an object in the database table configuration file (repo.jdbc.json). The following excerpt of
that file illustrates the mappings for the auditauthentication table:

warning
ForgeRock recommends that you DO NOT use the RepositoryAuditEventHandler , as this causes audit records to
compete with IDM for resources on the database, which impacts performance.

Warning

•

•

•

•

•

•

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1067

"audit/authentication" : {
 "table" : "auditauthentication",
 "objectToColumn" : {
 "_id" : "objectid",
 "transactionId" : "transactionid",
 "timestamp" : "activitydate",
 "userId" : "userid",
 "eventName" : "eventname",
 "result" : "result",
 "principal" : {"column" : "principals", "type" : "JSON_LIST"},
 "context" : {"column" : "context", "type" : "JSON_MAP"},
 "entries" : {"column" : "entries", "type" : "JSON_LIST"},
 "trackingIds" : {"column" : "trackingids", "type" : "JSON_LIST"},
 }
},

The tables correspond to the topics listed in the audit.json file. For example:

{
 "class": "org.forgerock.openidm.audit.impl.RepositoryAuditEventHandler",
 "config": {
 "name": "repo",
 "topics" : ["access", "activity", "sync", "authentication", "config"]
 }
},

JMS audit event handler

The Java Message Service (JMS) is a Java API for sending asynchronous messages between clients. IDM audit information can be
handled by the JMS audit event handler, which sends information to message brokers. The message brokers can then forward
that information to external log analysis systems.

The JMS audit event handler works with the following message brokers:

Apache ActiveMQ Artemis.

For a demonstration, refer to Direct audit information to a JMS broker.

TIBCO Enterprise Message Service, as described in this chapter.

This implementation supports the publish/subscribe model. For more information, refer to Basic JMS API Concepts.

The JMS audit event handler supports JMS communication, based on the following components:

A JMS message broker that provides clients with connectivity, along with message storage and message delivery
functionality.

JMS messages that follow a specific format, described in JMS Message Format.

•

•

emergency_home
The JMS audit event handler does not support queries. If you enable JMS, and need to query audit events, you must
enable a second audit handler that supports queries. Specify that audit handler in the audit.json file with the
handlerForQueries property, or in the admin UI with the Use For Queries option.

Important

•

•

Audit PingIDM

1068 Copyright © 2025 Ping Identity Corporation

http://activemq.apache.org/
http://activemq.apache.org/
https://tap.tibco.com/storefront/trialware/tibco-enterprise-message-service/prod15032.html
https://tap.tibco.com/storefront/trialware/tibco-enterprise-message-service/prod15032.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html

Destinations external to IDM and the message broker. IDM (including the audit service) is a producer and not a destination.
IDM sends messages to a topic in a message broker. Consumers (clients) subscribe to the message broker.

Dependencies for JMS messaging

The JMS audit event handler requires Apache ActiveMQ Artemis and additional dependencies bundled with the ActiveMQ Artemis
delivery. This section lists the dependencies, and where they must be installed in the IDM instance. If you use a different
ActiveMQ version, you may need to download the corresponding dependencies separately.

Download the following files:

Apache ActiveMQ Artemis.

The most recent bnd JAR file from https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/.

Unpack the ActiveMQ Artemis archive. For example:

tar -zxvf ~/Downloads/apache-artemis-2.20.0-bin.tar.gz

Create a temporary directory, and then change to that directory:

mkdir ~/Downloads/tmp
cd ~/Downloads/tmp/

Move the ActiveMQ Artemis Client and bnd JAR files to the temporary directory.

mv ~/Downloads/apache-artemis-2.20.0/lib/client/artemis-jms-client-all-2.20.0.jar ~/Downloads/tmp/
mv ~/Downloads/biz.aQute.bnd-version.jar ~/Downloads/tmp/

Create an OSGi bundle:

In a text editor, create a BND file named activemq.bnd with the following contents, and save it to the current
directory:

•

info
JMS Topics are not the same as the ForgeRock audit event topics listed in your project’s audit.json file. For
more information about JMS topics, refer to the documentation on the publish/subscribe model. ForgeRock
audit event topics specify categories of events (including access, activity, authentication, configuration,
reconciliation, and synchronization). These event topics are published via the audit handler(s).

Note

1.

◦

info
This sample was tested with version 2.20.0.

Note

◦

lightbulb_2
The bnd utility lets you create OSGi bundles for libraries that do not support OSGi.

Tip

2.

3.

4.

5.

1.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1069

http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html#bnced
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html#bnced
https://activemq.apache.org/components/artemis/download/
https://activemq.apache.org/components/artemis/download/
https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
https://bnd.bndtools.org/
https://bnd.bndtools.org/

version=2.20.0
Export-Package: *;version=${version}
Import-Package: !org.apache.log4j.*,!org.apache.log.*,!org.apache.avalon.framework.logger.*,!
org.apache.avalon.framework.logger.*,!org.glassfish.json.*,!org.conscrypt.*,!
org.apache.logging.*,!org.bouncycastle.jsse.*,!org.eclipse.*,!sun.security.*,!reactor.*,!
org.apache.activemq.artemis.shaded.*,!com.aayushatharva.*,!com.github.luben.zstd,!
com.jcraft.jzlib,!com.ning.compress,!com.ning.compress.lzf,!com.ning.compress.lzf.util,!
com.oracle.svm.core.annotate,!lzma.*,!net.jpountz.*,*
Bundle-Name: ActiveMQArtemis :: Client
Bundle-SymbolicName: org.apache.activemq
Bundle-Version: ${version}

Your tmp/ directory should now contain the following files:

ls -1 ~/Downloads/tmp/
activemq.bnd
artemis-jms-client-all-2.20.0.jar
biz.aQute.bnd-version.jar

In the same directory, create the OSGi bundle archive file. For example:

java -jar biz.aQute.bnd-version.jar wrap \
--properties activemq.bnd \
--output artemis-jms-client-all-2.20.0-osgi.jar \
artemis-jms-client-all-2.20.0.jar

Copy the resulting artemis-jms-client-all-2.20.0-osgi.jar file to the openidm/bundle directory:

cp artemis-jms-client-all-2.20.0-osgi.jar /path/to/openidm/bundle/

Configure the JMS audit event handler

You can configure the JMS audit event handler in the admin UI, or in your conf/audit.json file.

To configure the JMS audit event handler in the admin UI:

Select Configure > System Preferences > Audit.

Under Event Handlers, select JmsAuditEventHandler > Add Event Handler.

The event handler configuration properties are discussed in this section. For a complete list of configuration options, refer to JMS
Audit Event Handler Properties.

To configure the audit event handler in the conf/audit.json file, refer to the sample configuration provided in /path/to/
openidm/samples/audit-jms/conf/audit.json . The following excerpt of that file shows the JMS audit event handler
configuration:

2.

6.

1.

2.

Audit PingIDM

1070 Copyright © 2025 Ping Identity Corporation

{
 "class" : "org.forgerock.audit.handlers.jms.JmsAuditEventHandler",
 "config" : {
 "name": "jms",
 "enabled" : true,
 "topics": [
 "access",
 "activity",
 "config",
 "authentication",
 "sync",
 "recon"
],
 "deliveryMode": "NON_PERSISTENT",
 "sessionMode": "AUTO",
 "batch": {
 "writeInterval": "1 second",
 "capacity": 1000,
 "maxBatchedEvents": 100
 },
 "jndi": {
 "contextProperties": {
 "java.naming.factory.initial" : "org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory",
 "java.naming.provider.url" : "tcp://127.0.0.1:61616?daemon=true",
 "topic.forgerock.idm.audit" : "forgerock.idm.audit"
 },
 "topicName": "forgerock.idm.audit",
 "connectionFactoryName": "ConnectionFactory"
 }
 }
}

In this sample configuration, the JMS audit event handler is enabled , with NON_PERSISTENT delivery of audit events in batches.
The handler is configured to use the Apache ActiveMQ Artemis Java Naming and Directory Interface (JNDI) message broker, on
port 61616.

For an example of how to configure Apache ActiveMQ Artemis, refer to Direct audit information to a JMS broker.

If you substitute a different JNDI message broker, change the jndi.contextProperties accordingly. If you configure the JNDI
message broker on a remote system, substitute the corresponding IP address.

Configure SSL for Apache ActiveMQ Artemis

For information on configuring Apache ActiveMQ Artemis security features, including SSL, refer to the ActiveMQ Artemis
Documentation:

Security

Configuring the Transport

•

•

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1071

https://activemq.apache.org/components/artemis/documentation/2.2.0/security.html
https://activemq.apache.org/components/artemis/documentation/2.2.0/security.html
https://activemq.apache.org/components/artemis/documentation/2.2.0/configuring-transports.html
https://activemq.apache.org/components/artemis/documentation/2.2.0/configuring-transports.html

JMS message format

The following JMS message reflects the authentication of the openidm-admin user, logging into the admin UI from a remote
location, IP address 172.16.209.49.

{
 "event": {
 "_id": "134ee773-c081-436b-ae61-a41e8158c712-565",
 "trackingIds": [
 "4dd1f9de-69ac-4721-b01e-666df388fb17",
 "185b9120-406e-47fe-ba8f-e95fd5e0abd8"
],
 "context": {
 "id": "openidm-admin",
 "ipAddress": "172.16.209.49",
 "roles": [
 "internal/role/openidm-admin",
 "internal/role/openidm-authorized"
],
 "component": "internal/user"
 },
 "entries": [
 {
 "info": {
 "org.forgerock.authentication.principal": "openidm-admin"
 },
 "result": "SUCCESSFUL",
 "moduleId": "JwtSession"
 }
],
 "principal": [
 "openidm-admin"
],
 "result": "SUCCESSFUL",
 "userId": "openidm-admin",
 "transactionId": "134ee773-c081-436b-ae61-a41e8158c712-562",
 "timestamp": "2016-04-15T14:57:53.114Z",
 "eventName": "authentication"
 },
 "auditTopic": "authentication"
}

JMS, TIBCO, and SSL

You can integrate the JMS audit event handler with the TIBCO Enterprise Message Service.

You’ll need to use two bundles from your TIBCO installation: tibjms.jar , and if you’re setting up a secure connection,
tibcrypt.jar . With the following procedure, you’ll process tibjms.jar into an OSGi bundle:

Download the most recent bnd JAR file from https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/. The bnd
 utility lets you create OSGi bundles for libraries that do not yet support OSGi. If you have previously set up the
ActiveMQ Artemis server, you may have already downloaded this file.

In the same directory, create a file named tibco.bnd , and add the following lines to that file:

1.

2.

Audit PingIDM

1072 Copyright © 2025 Ping Identity Corporation

http://www.tibco.com/products/automation/enterprise-messaging/enterprise-message-service
http://www.tibco.com/products/automation/enterprise-messaging/enterprise-message-service
https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
https://repo1.maven.org/maven2/biz/aQute/bnd/biz.aQute.bnd/
http://bnd.bndtools.org/
http://bnd.bndtools.org/
http://bnd.bndtools.org/

version=8.3.0
Export-Package: *;version=${version}
Bundle-Name: TIBCO Enterprise Message Service
Bundle-SymbolicName: com/tibco/tibjms
Bundle-Version: ${version}

Add the tibco.jar file to the same directory.

Run the following command to create the bundle:

java \
-jar biz.aQute.bnd-version.jar wrap \
-properties tibco.bnd tibjms.jar

Rename the newly created tibjms.bar file to tibjms-osgi.jar , and copy it to the /path/to/openidm/bundle
directory.

If you’re configuring SSL, copy the tibcrypt.jar file from your TIBCO installation to the /path/to/openidm/bundle
directory.

You also need to configure your project’s audit.conf configuration file. The options are similar to those listed earlier in
Configure the JMS Audit Event Handler, except for the following jndi code block:

"jndi": {
 "contextProperties": {
 "java.naming.factory.initial" : "com.tibco.tibjms.naming.TibjmsInitialContextFactory",
 "java.naming.provider.url" : "tibjmsnaming://localhost:7222"
 },
 "topicName": "audit",
 "connectionFactoryName": "ConnectionFactory"
}

If your TIBCO server is on a remote system, substitute appropriately for localhost . If you’re configuring a secure TIBCO
installation, you’ll want to configure a different code block:

"jndi": {
 "contextProperties": {
 "java.naming.factory.initial" : "com.tibco.tibjms.naming.TibjmsInitialContextFactory",
 "java.naming.provider.url" : "ssl://localhost:7243",
 "com.tibco.tibjms.naming.security_protocol" : "ssl",
 "com.tibco.tibjms.naming.ssl_trusted_certs" : "/path/to/tibco/server/certificate/cert.pem",
 "com.tibco.tibjms.naming.ssl_enable_verify_hostname" : "false"
 },
 "topicName": "audit",
 "connectionFactoryName": "SSLConnectionFactory"
}

Do not add the TIBCO certificate to the IDM truststore . The formats are not compatible.

3.

4.

5.

6.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1073

When this configuration work is complete, don’t forget to start your TIBCO server before starting IDM. For more information, refer
to the TIBCO Enterprise Message Service Users’s Guide.

Syslog audit event handler

The Syslog audit event handler lets you log messages to a Syslog server, based on the Syslog Protocol.

You can configure the Syslog audit event handler in the admin UI, or in your project’s conf/audit.json file. The following excerpt
from this file shows a possible Syslog configuration:

{
 "class" : "org.forgerock.audit.handlers.syslog.SyslogAuditEventHandler",
 "config" : {
 "protocol" : "UDP",
 "host" : "172.16.206.5",
 "port" : 514,
 "connectTimeout" : 5,
 "facility" : "KERN",
 "severityFieldMappings" : [
 {
 "topic" : "recon",
 "field" : "exception",
 "valueMappings" : {
 "SEVERE" : "EMERGENCY",
 "INFO" : "INFORMATIONAL"
 }
 }
],
 "buffering" : {
 "enabled" : false
 },
 "name" : "syslog1",
 "topics" : [
 "config",
 "activity",
 "authentication",
 "access",
 "recon",
 "sync"
],
 "enabled" : true
 }
}

The name , topics , and enabled options in the last part of the excerpt are common to all audit event handlers. For detailed
information on the remaining properties, refer to Syslog Audit Event Handler Properties.

Audit event topics

The audit service logs information from six event topics: access, activity, authentication, configuration, reconciliation, and
synchronization.

When you start IDM, it creates audit log files in the openidm/audit directory. The default file-based audit event handler is the
JSON handler, which creates one JSON file for each event topic.

Audit PingIDM

1074 Copyright © 2025 Ping Identity Corporation

https://docs.tibco.com/pub/ems/8.3.0/doc/pdf/TIB_ems_8.3_users_guide.pdf
https://docs.tibco.com/pub/ems/8.3.0/doc/pdf/TIB_ems_8.3_users_guide.pdf
https://www.rfc-editor.org/rfc/rfc5424.html
https://www.rfc-editor.org/rfc/rfc5424.html

To configure default and custom audit topics in the admin UI, select Configure > System Preferences. Click on the Audit tab, and
scroll down to Event Topics.

Default audit event topics

The audit service logs the following event topics by default:

Access Events

IDM writes messages at system boundaries, that is REST endpoints and the invocation of scheduled tasks in this log. In
short, it includes who, what, and output for every access request.

Default file: openidm/audit/access.audit.json

Activity Events

IDM logs operations on internal (managed) and external (system) objects to this log.

Entries in the activity log contain identifiers, both for the action that triggered the activity, and for the original caller and
the relationships between related actions, on internal and external objects.

Default file: openidm/audit/activity.audit.json

Authentication Events

IDM logs the results of authentication operations to this log, including situations and the actions taken on each object,
including when and how a user authenticated and related events. The activity log contains additional detail about each
authentication action.

Default file: openidm/audit/authentication.audit.json

Configuration Events

IDM logs the changes to the configuration in this log. The configuration log includes the "before" and "after" settings for
each configuration item, with timestamps.

Default file: openidm/audit/config.audit.json

Reconciliation Events

IDM logs the results of reconciliation runs to this log (including situations and the resulting actions taken). The activity log
contains details about the actions, where log entries display parent activity identifiers, recon/reconID , links, and policy
events by data store.

Default file: openidm/audit/recon.audit.json

Synchronization Events

IDM logs the results of automatic synchronization operations (liveSync and implicit synchronization) to this log, including
situations and the actions taken on each object, by account. The activity log contains additional detail about each action.

Default file: openidm/audit/sync.audit.json

For detailed information about each audit event topic, refer to Audit event handler configuration.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1075

Custom audit event topics

You can create custom event topics to collect audit information for customizations, such as scripts. Creating a new event topic has
a few additional requirements:

You must specify a schema for your custom topic. The schema determines the structure and type of information stored in
audit logs.

Your script needs to call the new audit event topic (for example audit/example), providing the values you specified in
your topic schema.

Create custom event topics directly in audit.json , or using the admin UI. The following example, from an audit.json file, has
been modified to include a custom audit event topic named example :

"eventTopics": {
 "authentication": {},
 "access": {},
 ...
 "example": {
 "schema": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "/",
 "type": "object",
 "properties": {
 "_id": {
 "id": "_id",
 "type": "string"
 },
 "transactionId": {
 "id": "transactionId",
 "type": "string"
 },
 "timestamp": {
 "id": "timestamp",
 "type": "string"
 },
 "status": {
 "id": "status",
 "type": "string"
 },
 "message": {
 "id": "message",
 "type": "string"
 }
 },
 "filter": {
 "actions": []
 }
 }
 }
}

When your topic has been created, add it to an event handler such as the JsonAuditEventHandler , in order to output the audit
logs in your desired format. New audit events can be sent by calling the audit topic endpoint (in this example, audit/example).
For example, the following REST call will add a new audit event for the example topic:

•

•

Audit PingIDM

1076 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "transactionId": "779d3cda-dab3-4e54-9ab1-e0ca4c7ae6df-699",
 "timestamp": "2019-02-12T01:11:02.675Z",
 "status": "SUCCESS",
 "message": "Script has run successfully."
}' \
"http://localhost:8080/openidm/audit/example"
{
 "_id": "2091c3f2-7a22-47bf-a618-b2af4c322e46-1192",
 "transactionId": "779d3cda-dab3-4e54-9ab1-e0ca4c7ae6df-699",
 "timestamp": "2019-02-12T01:11:02.675Z",
 "status": "SUCCESS",
 "message": "Script has run successfully."
}

This new audit event will be logged to the audit log specified by your event handler. For example, if you had added the example
topic to the JsonAuditEventHandler , you can find your new audit event logged in audit/example.audit.json .

Filter audit data

The audit configuration (in conf/audit.json) includes a filter parameter that lets you specify what should be logged, per
event topic. The information that is logged can be filtered in various ways.

The following excerpt of a sample audit.json file shows the filter element for the activity log:

"eventTopics" : {
 "authentication" : { },
 "access" : { },
 "activity" : {
 "filter" : {
 "actions" : [
 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 },
 ...
}

To configure audit filtering in the admin UI, select Configure > System Preferences > Audit. Scroll down to Event Topics, and click
the pencil icon next to the event that you want to filter. The filter tabs, Filter Actions, Filter Fields, Filter Script, and Filter
Triggers, correspond to the filtering capabilities discussed here.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1077

Filter by action

The filter actions list enables you to specify the actions that are logged, per event type. This filter is essentially a fields
filter (as described in Filter by Field Value) that filters log entries by the value of their actions field.

The following configuration specifies that the actions create, update, delete, patch, and action should be included in the log, for
the activity audit event topic.

"eventTopics" : {
...
 "activity": {
 "filter" : {
 "actions" : [
 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 },
 ...
 }
}

The list of actions that can be filtered into the log depend on the event type. The following table lists the actions that can be
filtered, per event type.

Actions that can be Filtered Per Event Type

Event Type Actions Description

Activity and Configuration read When an object is read by using its identifier. By default, read actions
are not logged.
Note that due to the potential result size in the case of read operations
on system/ endpoints, only the read is logged, and not the resource
detail. If you really need to log the complete resource detail, set the
following property in your resolver/boot.properties file:

openidm.audit.logFullObjects=true

create When an object is created.

update When an object is updated.

delete When an object is deleted.

patch When an object is partially modified. (Activity only.)

Audit PingIDM

1078 Copyright © 2025 Ping Identity Corporation

Filter by field value

You can add a list of filter fields to the audit configuration, that lets you filter log entries by specific fields. For example, you
might want to restrict the reconciliation or audit log so that only summary information is logged for each reconciliation operation.
The following addition to the audit.json file specifies that entries are logged in the reconciliation log only if their entryType is
start or summary .

Event Type Actions Description

query When a query is performed on an object. By default, query actions are
not logged.
Note that, due to the potential result size in the case of query
operations on system/ endpoints, only the query is logged, and not
the resource detail. If you really need to log the complete resource
detail, add the following line to your resolver/boot.properties file:

openidm.audit.logFullObjects=true

action When an action is performed on an object. (Activity only.)

Reconciliation and
Synchronization

create When a target object is created.

delete When a target object is deleted.

update When a target object is updated.

link When a link is created between a source object and an existing target
object.

unlink When a link is removed between a source object and a target object.

exception When the synchronization situation results in an exception. For more
information, refer to Synchronization situations and actions.

ignore When the target object is ignored; that is, no action is taken.

Authentication and Access - No actions can be specified for the authentication or the access log
event type.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1079

"eventTopics" : {
 ...
 "activity" : {
 "filter" : {
 "actions" : [
 "create",
 "update",
 "delete",
 "patch",
 "action
],
 "fields" : [
 {
 "name" : "entryType",
 "values" : [
 "start",
 "summary"
]
 }
]
 }
 }
 ...
},
...

To use nested properties, specify the field name as a JSON pointer. For example, to filter entries according to the value of the
authentication.id , you would specify the field name as authentication/id .

Filter with a script

Apart from the audit filtering options described in the previous sections, you can use a JavaScript or Groovy script to filter what is
logged. Audit filter scripts are referenced in the audit configuration file (conf/audit.json), and can be configured per event type.
The following sample configuration references a script named auditfilter.js , which is used to limit what is logged in the
reconciliation audit log:

{
 "eventTopics" : {
 ...
 "recon" : {
 "filter" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "auditfilter.js"
 }
 }
 },
 ...
}

The request and context objects are available to the script. Before writing the audit entry, IDM can access the entry as a
request.content object. For example, to set up a script to log just the summary entries for mapping managed users in an LDAP
data store, you could include the following in the auditfilter.js script:

Audit PingIDM

1080 Copyright © 2025 Ping Identity Corporation

(function() {
 return request.content.entryType == 'summary' &&
 request.content.mapping == 'systemLdapAccounts_managedUser'
}());

The script must return true to include the log entry; false to exclude it.

Filter by trigger

You can add a
filter `triggers list to the audit configuration, that specifies the actions that will be logged for a specific

trigger. For example, the following addition to the audit.json file specifies that only `create and update
actions are logged for in the activity log, for an activity that was triggered by a recon .

"eventTopics" : {
 "activity" : {
 "filter" : {
 "actions" : [
 ...
],
 "triggers" : {
 "recon" : [
 "create",
 "update"
]
 }
 ...

If a trigger is provided, but no actions are specified, nothing is logged for that trigger. If a trigger is omitted, all actions are logged
for that trigger. Only the recon trigger is implemented. For a list of reconciliation actions that can be logged, refer to
Synchronization Actions.

Use policies to filter audit data

In addition to event-based filtering, you can use policies to include or exclude specific information in the audit logs. By default,
IDM safelists fields that are safe to log. To include or exclude additional fields or values, edit conf/audit.json :

"filterPolicies" : {
 "value" : {
 "excludeIf" : [],
 "includeIf" : []
 }
}

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1081

To specify data to exclude from audit logs, use the excludeIf property.

To exclude an entire field, use the field property.

To exclude a field that contains a specific value, use the value property.

To specify data to include in custom audit event logs, use the includeIf property.

Default audit log safelists by event topic

/_id

/timestamp

/eventName

/transactionId

/trackingIds

/userId

/client

/server

/http/request/secure

/http/request/method

/http/request/path

/http/request/headers/accept

/http/request/headers/accept-api-version

/http/request/headers/content-type

/http/request/headers/host

/http/request/headers/user-agent

/http/request/headers/x-forwarded-for

/http/request/headers/x-forwarded-host

/http/request/headers/x-forwarded-port

/http/request/headers/x-forwarded-proto

info
Although you can’t edit the default safelist, IDM processes the safelist before the blocklist, so any items added to
excludeIf override their safelist status.

Note

•

◦

◦

•

info
This setting has no effect on default audit event topics.

Note

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Audit PingIDM

1082 Copyright © 2025 Ping Identity Corporation

/http/request/headers/x-original-uri

/http/request/headers/x-real-ip

/http/request/headers/x-request-id

/http/request/headers/x-requested-with

/http/request/headers/x-scheme

/request

/response

/roles

/_id

/timestamp

/eventName

/transactionId

/trackingIds

/userId

/runAs

/objectId

/operation

/changedFields

/revision

/status

/message

/passwordChanged

/context

/provider

/_id

/timestamp

/eventName

/transactionId

/trackingIds

/userId

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1083

/principal

/entries

/result

/provider

/method

/_id

/timestamp

/eventName

/transactionId

/trackingIds

/userId

/runAs

/objectId

/operation

/changedFields

/revision

/_id

/action

/ambiguousTargetObjectIds

/entryType

/eventName

/exception

/linkQualifier

/mapping

/message

/messageDetail

/reconAction

/reconciling

/reconId

/situation

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Audit PingIDM

1084 Copyright © 2025 Ping Identity Corporation

/sourceObjectId

/status

/targetObjectId

/timestamp

/trackingIds

/transactionId

/userId

/_id

/action

/eventName

/exception

/linkQualifier

/mapping

/message

/messageDetail

/situation

/sourceObjectId

/status

/targetObjectId

/timestamp

/trackingIds

/transactionId

/userId

Configure audit filter policies in the admin UI

From the navigation bar, click Configure > System Preferences.

On the System Preferences page, click the Audit tab.

The Audit Filter Policy area displays the policies that exist in conf/audit.json .

Make changes in the Audit Filter Policy area, and click Save.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1085

Audit filter example

A typical use case for filtering audit data by policy is to keep personally identifiable information (PII) out of the logs. To exclude a
specific field from the audit logs, add the field to the filterPolicies element, as follows:

"filterPolicies" : {
 "value" : {...}
 "field" : {
 "excludeIf" : [
 "/eventTopic/objectURI"
]
 }
}

Consider the following entry in a sample activity log, showing a change to the telephoneNumber field for a user:

{
 "_id": "334ed888-3179-4990-b475-c1982403f063-27593",
 "timestamp": "2021-11-09T23:33:25.802Z",
 "eventName": "activity",
 "transactionId": "334ed888-3179-4990-b475-c1982403f063-27554",
 "userId": "openidm-admin",
 "runAs": "openidm-admin",
 "objectId": "managed/user/ba46c2cc-e897-4a69-bb3c-a0c83d9f88bb",
 "operation": "PATCH",
 "changedFields": [],
 "revision": "d4907846-7a84-4da6-898c-a8c9b6f992c5-1210",
 "status": "SUCCESS",
 "message": "",
 "passwordChanged": false
}

Because the default Activity Safelist doesn’t contain telephoneNumber , the change isn’t reflected in the audit log.

To include the before and after telephone number in the activity audit log, add the following filter policy to conf/audit.json :

"filterPolicies" : {
 "field" : {
 "excludeIf" : [],
 "includeIf" : [
 "/activity/before/telephoneNumber",
 "/activity/after/telephoneNumber"]
}

With this configuration, a similar change would appear in the activity log as:

Audit PingIDM

1086 Copyright © 2025 Ping Identity Corporation

{
 "before": {
 "telephoneNumber": "360-555-5566"
 },
 "after": {
 "telephoneNumber": "360-555-5555"
 },
 "_id": "334ed888-3179-4990-b475-c1982403f063-28385",
 "timestamp": "2021-11-09T23:35:51.718Z",
 "eventName": "activity",
 "transactionId": "334ed888-3179-4990-b475-c1982403f063-28346",
 "userId": "openidm-admin",
 "runAs": "openidm-admin",
 "objectId": "managed/user/ba46c2cc-e897-4a69-bb3c-a0c83d9f88bb",
 "operation": "PATCH",
 "changedFields": [],
 "revision": "d4907846-7a84-4da6-898c-a8c9b6f992c5-1242",
 "status": "SUCCESS",
 "message": "",
 "passwordChanged": false
}

Monitor specific activity log changes

For the activity log only, you can specify fields whose values are considered particularly important in terms of logging.

Fields to watch

The watchedFields property (in conf/audit.json) lets you define a list of properties that should be monitored for changes.
When the value of one of the properties in this list changes, the change is logged in the activity log, under the column
changedFields . This parameter enables you to have quick access to important changes in the log.

Properties to monitor are listed as values of the watchedFields property, separated by commas, for example:

"watchedFields" : ["email", "address"]

info
By default, the /access/http/request/headers and /access/http/response/headers fields are considered case-
insensitive for filtering. All other fields are considered case-sensitive.
To specify that a value should be filtered, regardless of case, add the caseInsensitiveFields property to your audit
configuration, including an array of fields that should be considered case-insensitive. Fields are referenced using JSON
pointer syntax and the array of fields can be empty.
With the following configuration, the audit service excludes cookies named session-jwt and session-JWT from the
log:

"caseInsensitiveFields" : [
 "http.request.cookies"
],

Note

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1087

You can monitor changes to any field in this way.

To configure watched fields in the admin UI, select Configure > System Preferences > Audit. Scroll down to Event Topics, and
click the pencil icon next to the activity event.

Password fields to watch

You can set a list of passwordFields that functions much like the watchedFields property. Changes to these property values
are logged in the activity log, under the column changedFields . In addition, when a password property is changed, the boolean
passwordChanged flag is set to true in the activity log. Properties that should be considered as passwords are listed as values of
the passwordFields parameter, separated by commas. For example:

"passwordFields" : ["password", "userPassword"]

To configure password fields in the admin UI, select Configure > System Preferences > Audit. Scroll down to Event Topics, and
click the pencil icon next to the activity event.

Configure an audit exception formatter

The audit service includes an exception formatter, configured in the following snippet of the audit.json file:

"exceptionFormatter" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/audit/stacktraceFormatter.js"
},

As shown, you may find the script that defines how the exception formatter works in the stacktraceFormatter.js file. That file
handles the formatting and display of exceptions written to the audit logger.

Change audit write behavior

You can buffer audit logging to minimize the writes on your systems. Configure buffering either in conf/audit.json , or using the
admin UI.

To configure buffering for specific event handler in the admin UI, click Configure > System Preferences and click on the Audit tab.
When you customize or create an event handler, you can configure the following settings:

The following sample code illustrates where you would configure these properties in the audit.json file.

Audit Buffering Options

Property UI Text Description

enabled True or false Enables / disables buffering.

autoFlush True or false; whether the Audit Service automatically flushes events after writing
them to disk.

Audit PingIDM

1088 Copyright © 2025 Ping Identity Corporation

...
 "eventHandlers" : [
 {
 "config" : {
 ...
 "buffering" : {
 "autoFlush" : false,
 "enabled" : false
 }
 },
...

You can set up autoFlush when buffering is enabled. IDM then writes data to audit logs asynchronously, while autoFlush
functionality ensures that the audit service writes data to logs on a regular basis.

If audit data is important, do activate autoFlush . It minimizes the risk of data loss in case of a server crash.

Purge obsolete audit information

If reconciliation audit volumes grow "excessively" large, any subsequent reconciliations, as well as queries to audit tables, can
become "sluggish". In a deployment with limited resources, a lack of disk space can affect system performance.

You might already have restricted what is logged in your audit logs by setting up filters, as described in Filter Audit Data. You can
also use specific queries to purge reconciliation audit logs, or you can purge reconciliation audit entries older than a specific date,
using timestamps.

IDM provides a sample purge script, autoPurgeRecon.js , in the bin/defaults/script/audit directory. This script purges
reconciliation audit log entries only from the internal repository. It does not purge data from the corresponding JSON files or
external repositories.

To purge reconciliation audit logs on a regular basis, set up a schedule. A sample schedule is provided in openidm/samples/
example-configurations/schedules/schedule-autoPurgeAuditRecon.json . You can change that schedule as required, and
copy the file to the conf/ directory of your project, in order for it to take effect.

The sample purge schedule file is as follows:

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1089

{
 "enabled" : false,
 "type" : "cron",
 "schedule" : "0 0 */12 * * ?",
 "persisted" : true,
 "misfirePolicy" : "doNothing",
 "invokeService" : "script",
 "invokeContext" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "audit/autoPurgeAuditRecon.js",
 "input" : {
 "mappings" : ["%"],
 "purgeType" : "purgeByNumOfReconsToKeep",
 "numOfRecons" : 1,
 "intervalUnit" : "minutes",
 "intervalValue" : 1
 }
 }
 }
}

For information about the schedule-related properties in this file, refer to Schedule synchronization.

Beyond scheduling, the following parameters are of interest for purging the reconciliation audit logs:

input

Input information. The parameters below specify different kinds of input.

mappings

An array of mappings to prune. Each element in the array can be either a string or an object.

Strings must contain the mapping(s) name and can use "%" as a wild card value that will be used in a LIKE condition.

Objects provide the ability to specify mapping(s) to include/exclude and must be of the form:

{
 "include" : "mapping1",
 "exclude" : "mapping2"
 ...
}

purgeType

The type of purge to perform. Can be set to one of the following values:

purgeByNumOfReconsToKeep

Uses the deleteFromAuditReconByNumOf function and the numOfRecons config variable.

Audit PingIDM

1090 Copyright © 2025 Ping Identity Corporation

purgeByExpired

Uses the deleteFromAuditReconByExpired function and the config variables intervalUnit and intervalValue .

num-of-recons

The number of recon summary entries to keep for a given mapping, including all child entries.

intervalUnit

The type of time interval when using purgeByExpired . Acceptable values include: minutes , hours , or days .

intervalValue

The value of the time interval when using purgeByExpired . Set to an integer value.

Log file rotation

The file-based audit event handlers let you rotate audit log files, either automatically, based on a set of criteria, or by using a REST
call.

To configure automatic log file rotation, set the following properties in your project’s audit.json file:

{
 "class" : "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config" : {
 "fileRotation" : {
 "rotationEnabled" : true,
 "maxFileSize" : 0,
 "rotationFilePrefix" : "",
 "rotationTimes" : [],
 "rotationFileSuffix" : "",
 "rotationInterval" : ""
 },

The file rotation properties are described in JSON Audit Event Handler Properties.

If you have enabled file rotation ("rotationEnabled" : true), you can rotate the JSON log files manually for a specific audit
event topic, over REST. The following command saves the current access log file with a date and time stamp, then starts logging to
a new file with the same base name.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/audit/access?handler=json&_action=rotate"
{
 "status": "OK"
}

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1091

If the command is successful, two access.audit.json files display in the openidm/audit directory, for example:

access.audit.json access.audit.json-2016.10.12-17.54.41

The file with the extension (2016.10.12-17.54.41) indicates that audit logging to this file ended on October 12, 2016, at 5:54:41
pm.

To configure log rotation in the admin UI, click Configure > System Preferences > Audit, and edit the JSON audit event handler (or
the CSV audit event handler if you are logging to CSV). You can set all the log rotation properties on this screen.

Log file retention

Log file retention specifies how long audit files remain on disk before they are automatically deleted.

To configure log file retention, set the following properties in your project’s audit.json file:

"fileRetention" : {
 "maxNumberOfHistoryFiles" : 100,
 "maxDiskSpaceToUse" : 1000,
 "minFreeSpaceRequired" : 10
},

The file retention properties are described in JSON Audit Event Handler Properties.

To configure log file retention in the admin UI, click Configure > System Preferences > Audit, and edit the JSON audit event
handler (or the CSV audit event handler if you are logging to CSV). You can set all the log retention properties on this screen.

Query audit logs over REST

Regardless of where audit events are stored, they are accessible over REST on the /audit endpoint. The following sections
describe how to query audit logs over REST.

With the default audit configuration, reconciliation operations are not audited. To enable reconciliation logging, add recon to the
list of audit topics for your event handler in conf/audit.json . For example:

info
Queries on the audit endpoint must use queryFilter syntax.
If you get no REST output on the correct endpoint, the corresponding audit file or JDBC table may not have audit data.
Some examples in this section use client-assigned IDs (such as bjensen and scarter) when creating objects,
because it makes the examples easier to read. If you create objects using the admin UI, they are created with server-
assigned IDs (such as 55ef0a75-f261-47e9-a72b-f5c61c32d339). Generally, immutable server-assigned UUIDs are
used in production environments.

Note

Audit PingIDM

1092 Copyright © 2025 Ping Identity Corporation

"eventHandlers" : [
 {
 "class" : "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config" : {
 "name" : "json",
 "logDirectory" : "&{idm.data.dir}/audit",
 "buffering" : {
 "maxSize" : 100000,
 "writeInterval" : "100 millis"
 },
 "topics" : [
 "access",
 "activity",
 "recon",
 "sync",
 "authentication",
 "config"
]
 }
 },
 {
 "class": "org.forgerock.openidm.audit.impl.RepositoryAuditEventHandler",
 "config": {
 "name": "repo",
 "enabled": true,
 "topics": [
 "access",
 "activity",
 "recon",
 "sync",
 "authentication",
 "config"
]
 }
 }
],

When enabled, the above example logs reconciliation operations in the file /path/to/openidm/audit/recon.audit.json , and in
the repository. You can read and query the reconciliation audit logs over the REST interface, as outlined in the following
examples.

To return all reconciliation operations logged in the audit log, query the audit/recon endpoint, as follows:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/audit/recon?_queryFilter=true"

The following code extract shows the reconciliation audit log after the first reconciliation operation in the sync-with-csv
sample. The output has been truncated for legibility.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1093

{
 "result": [
 {
 "_id": "49bdb7cb-79a4-429d-856d-a7154005e41a-182",
 "transactionId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177",
 "timestamp": "2017-02-28T13:07:20.487Z",
 "eventName": "recon",
 "userId": "openidm-admin",
 "exception": null,
 "linkQualifier": null,
 "mapping": "systemCsvfileAccounts_managedUser",
 "message": "Reconciliation initiated by openidm-admin",
 "sourceObjectId": null,
 "targetObjectId": null,
 "reconciling": null,
 "ambiguousTargetObjectIds": null,
 "reconAction": "recon",
 "entryType": "start",
 "reconId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177"
 },
 {
 "_id": "49bdb7cb-79a4-429d-856d-a7154005e41a-192",
 "transactionId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177",
 "timestamp": "2017-02-28T13:07:20.934Z",
 "eventName": "recon",
 "userId": "openidm-admin",
 "action": "CREATE",
 "exception": null,
 "linkQualifier": "default",
 "mapping": "systemCsvfileAccounts_managedUser",
 "message": null,
 "situation": "ABSENT",
 "sourceObjectId": "system/csvfile/account/scarter",
 "status": "SUCCESS",
 "targetObjectId": "managed/user/scarter",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "entryType": "entry",
 "reconId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177"
 },
 ...
 }

Most of the fields in the reconciliation audit log are self-explanatory. Each distinct reconciliation operation is identified by its
reconId . Each entry in the log is identified by a unique _id . The first log entry indicates the status for the complete
reconciliation operation. Successive entries indicate the status for each entry affected by the reconciliation.

To obtain information about a specific log entry, include its entry _id in the URL. For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/audit/recon/414a4921-5d9d-4398-bf86-7d5312a9f5d1-146"

Audit PingIDM

1094 Copyright © 2025 Ping Identity Corporation

The following sample output shows the results of a read operation on a specific reconciliation audit entry. The entry shows the
creation of scarter’s account in the managed user repository, as the result of a reconciliation operation.

{
 "_id": "49bdb7cb-79a4-429d-856d-a7154005e41a-192",
 "transactionId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177",
 "timestamp": "2017-02-28T13:07:20.934Z",
 "eventName": "recon",
 "userId": "openidm-admin",
 "action": "CREATE",
 "exception": null,
 "linkQualifier": "default",
 "mapping": "systemCsvfileAccounts_managedUser",
 "message": null,
 "situation": "ABSENT",
 "sourceObjectId": "system/csvfile/account/scarter",
 "status": "SUCCESS",
 "targetObjectId": "managed/user/scarter",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "entryType": "entry",
 "reconId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177"
 }

To obtain information for a specific reconciliation operation, include the reconId in the query. You can filter the log so that the
query returns only the fields you want to see, by adding the _fields parameter.

The following query returns the mapping , timestamp , and entryType fields for a specific reconciliation operation:

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1095

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/audit/recon?_queryFilter=/reconId+eq+"4261227f-1d44-4042-
ba7e-1dcbc6ac96b8"&_fields=mapping,timestamp,entryType'
{
 "result": [
 {
 "_id": "49bdb7cb-79a4-429d-856d-a7154005e41a-182",
 "mapping": "systemCsvfileAccounts_managedUser",
 "timestamp": "2017-02-28T13:07:20.487Z",
 "entryType": "start"
 },
 {
 "_id": "49bdb7cb-79a4-429d-856d-a7154005e41a-192",
 "mapping": "systemCsvfileAccounts_managedUser",
 "timestamp": "2017-02-28T13:07:20.934Z",
 "entryType": "entry"
 },
 {
 "_id": "49bdb7cb-79a4-429d-856d-a7154005e41a-191",
 "mapping": "systemCsvfileAccounts_managedUser",
 "timestamp": "2017-02-28T13:07:20.934Z",
 "entryType": "entry"
 },
 {
 "_id": "49bdb7cb-79a4-429d-856d-a7154005e41a-193",
 "mapping": "systemCsvfileAccounts_managedUser",
 "timestamp": "2017-02-28T13:07:20.943Z",
 "entryType": "summary"
 }
],
 ...
}

To query the reconciliation audit log for a particular reconciliation situation, include the reconId and the situation in the
query. For example, the following query returns all ABSENT entries that were found during the specified reconciliation operation:

Audit PingIDM

1096 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/audit/recon?_queryFilter=/reconId+eq+"414a4921-5d9d-4398-
bf86-7d5312a9f5d1-135"and+situation+eq"ABSENT"'
{
 "result": [
 {
 "_id": "49bdb7cb-79a4-429d-856d-a7154005e41a-192",
 "situation": "ABSENT",
 "reconId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177",
 "transactionId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177",
 "timestamp": "2017-02-28T13:07:20.934Z",
 "eventName": "recon",
 "userId": "openidm-admin",
 "action": "CREATE",
 "exception": null,
 "linkQualifier": "default",
 "mapping": "systemCsvfileAccounts_managedUser",
 "message": null,
 "sourceObjectId": "system/csvfile/account/scarter",
 "status": "SUCCESS",
 "targetObjectId": "managed/user/scarter",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "entryType": "entry"
 },
 {
 "_id": "49bdb7cb-79a4-429d-856d-a7154005e41a-191",
 "situation": "ABSENT",
 "reconId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177",
 "transactionId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177",
 "timestamp": "2017-02-28T13:07:20.934Z",
 "eventName": "recon",
 "userId": "openidm-admin",
 "action": "CREATE",
 "exception": null,
 "linkQualifier": "default",
 "mapping": "systemCsvfileAccounts_managedUser",
 "message": null,
 "sourceObjectId": "system/csvfile/account/bjensen",
 "status": "SUCCESS",
 "targetObjectId": "managed/user/bjensen",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "entryType": "entry"
 }
],
 ...
 }

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1097

The activity logs track all operations on internal (managed) and external (system) objects. Entries in the activity log contain
identifiers for the reconciliation or synchronization action that triggered an activity, and for the original caller and the
relationships between related actions.

You can access the activity logs over REST with the following call:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/audit/activity?_queryFilter=true"

The following excerpt of the activity log shows the entries that created user scarter , with ID 42f8a60e-2019-4110-
a10d-7231c3578e2b :

Audit PingIDM

1098 Copyright © 2025 Ping Identity Corporation

{
 "result": [
 {
 "_id": "49bdb7cb-79a4-429d-856d-a7154005e41a-190",
 "transactionId": "49bdb7cb-79a4-429d-856d-a7154005e41a-177",
 "timestamp": "2017-02-28T13:07:20.894Z",
 "eventName": "activity",
 "userId": "openidm-admin",
 "runAs": "openidm-admin",
 "operation": "CREATE",
 "before": null,
 "after": {
 "mail": "scarter@example.com",
 "givenName": "Steven",
 "sn": "Carter",
 "description": "Created By CSV",
 "userName": "scarter",
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "salt": "tdrE2LZ+nBAnE44QY1UrCA==",
 "data": "P/z+OXA1x35aVWMRbOHMUQ==",
 "iv": "GACI5q4qZUWZRHzIle57TQ==",
 "key": "openidm-sym-default",
 "mac": "hqLmhjv67dxcmX8L3xxgZg=="
 }
 }
 },
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": [],
 "_rev": "00000000dc6160c8",
 "_id": "42f8a60e-2019-4110-a10d-7231c3578e2b"
 },
 "changedFields": [],
 "revision": "00000000bad8e88e",
 "message": "create",
 "objectId": "managed/user/42f8a60e-2019-4110-a10d-7231c3578e2b",
 "passwordChanged": true,
 "status": "SUCCESS"
 },
 ...
 }

For users who self-register through the End User UI, IDM provides more information. The following activity log excerpt depicts the
information collected for user jsanchez . Note the following properties:

IDM runs as user anonymous .

Security questions (kbaInfo) are recorded with a salted hash SHA-256 algorithm.

Marketing preferences are included.

termsAccepted includes the date of the version of Terms & Conditions was accepted.

•

•

•

•

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1099

The message , context , and status properties indicate that this user was created in the SELFSERVICE context,
successfully.

•

Audit PingIDM

1100 Copyright © 2025 Ping Identity Corporation

{
 "_id" : "ddc7f35b-4b97-4586-be31-f5a2599b0764-10781",
 "transactionId" : "ddc7f35b-4b97-4586-be31-f5a2599b0764-10779",
 "timestamp" : "2017-07-26T17:14:24.137Z",
 "eventName" : "activity",
 "userId" : "anonymous",
 "runAs" : "anonymous",
 "operation" : "CREATE",
 "before" : null,
 "after" : {
 "kbaInfo" : [{
 "answer" : {
 "$crypto" : {
 "value" : {
 "algorithm" : "SHA-256",
 "data" : "jENrBtzgIHscnOnvqSMYPTJKjZVVSN7XEfTp6VUpdXzNQsbCjmNQWpbfa1k1Zp24"
 },
 "type" : "salted-hash"
 }
 },
 "questionId" : "1"
 }, {
 "answer" : {
 "$crypto" : {
 "value" : {
 "algorithm" : "SHA-256",
 "data" : "obSQtsW3pgA4Yv4dPiISasvmrq4deoPOX4d9VRg+Bd/gGVDzu6fWPKd30Di3moEe"
 },
 "type" : "salted-hash"
 }
 },
 "questionId" : "2"
 }],
 "userName" : "jsanchez",
 "givenName" : "Jane",
 "sn" : "Sanchez",
 "mail" : "jane.sanchez@example.com",
 "password" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "preferences" : {
 "updates" : true,
 "marketing" : false
 },
 "accountStatus" : "active",
 "effectiveRoles" : [],
 "effectiveAssignments" : [],
 "_rev" : "000000004eb36844",

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1101

 "_id" : "6e7fb8ce-4a97-42d4-90f1-b5808d51194a"
 },
 "changedFields" : [],
 "revision" : "000000004eb36844",
 "message" : "create",
 "context" : "SELFSERVICE",
 "objectId" : "managed/user/6e7fb8ce-4a97-42d4-90f1-b5808d51194a",
 "passwordChanged" : true,
 "status" : "SUCCESS"
 },
 ...
 }

To return the activity information for a specific action, include the _id of the action in the URL, for example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/audit/activity/414a4921-5d9d-4398-bf86-7d5312a9f5d1-145'

Each action in the activity log has a transactionId that is the same as the transactionId that was assigned to the incoming or
initiating request. So, for example, if an HTTP request invokes a script that changes a user’s password, the HTTP request is
assigned a transactionId . The action taken by the script is assigned the same transactionId , which enables you to track the
complete set of changes resulting from a single action. You can query the activity log for all actions that resulted from a specific
transaction, by including the transactionId in the query.

The following command returns all actions in the activity log that occurred as a result of the reconciliation with the specified
transactionId . The query results are restricted to only the objectId and the resourceOperation . You can see from the
output that the reconciliation with this transactionId resulted in two CREATEs and two UPDATEs in the managed repository:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/audit/activity?_queryFilter=/transactionId+eq+"414a4921-5d9d-4398-
bf86-7d5312a9f5d1-135"&_fields=objectId,operation'

The following sample output shows the result of a query that created users scarter (with ID 42f8a60e-2019-4110-
a10d-7231c3578e2b) and bjensen (with ID 9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb).

Audit PingIDM

1102 Copyright © 2025 Ping Identity Corporation

{
 "result" : [{
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-144",
 "objectId" : "managed/user/42f8a60e-2019-4110-a10d-7231c3578e2b",
 "operation" : "CREATE"
 }, {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-145",
 "objectId" : "managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "operation" : "CREATE"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
 }

For users who register through social identity providers, the following command returns JSON-formatted output for someone
who has registered socially with a LinkedIn account, based on their _id :

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/audit/activity/b164fcb7-4a45-43b0-876d-083217254962'

The following output illustrates the data collected from a hypothetical LinkedIn user:

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1103

{
 "_id" : "94001c97-c597-46fa-a6c9-f53b0ddd7ff0-1982",
 "transactionId" : "94001c97-c597-46fa-a6c9-f53b0ddd7ff0-1974",
 "timestamp" : "2018-02-05T19:55:18.427Z",
 "eventName" : "activity",
 "userId" : "anonymous",
 "runAs" : "anonymous",
 "operation" : "CREATE",
 "before" : null,
 "after" : {
 "emailAddress" : "Xie@example.com",
 "firstName" : "Xie",
 "formattedName" : "Xie Na",
 "id" : "MW9FE_KyQH",
 "lastName" : "Na",
 "location" : {
 "country" : {
 "code" : "cn"
 },
 "name" : "Beijing, China"
 },
 "_meta" : {
 "subject" : "MW9FE_KyQH",
 "scope" : ["r_basicprofile", "r_emailaddress"],
 "dateCollected" : "2018-02-05T19:55:18.370"
 },
 "_rev" : "00000000c29c9f46",
 "_id" : "MW9FE_KyQH"
 },
 "changedFields" : [],
 "revision" : "00000000c29c9f46",
 "message" : "create",
 "provider" : "linkedIn",
 "context" : "SELFSERVICE",
 "objectId" : "managed/linkedIn/MW9FE_KyQH",
 "passwordChanged" : false,
 "status" : "SUCCESS"
 }

Note the SELFSERVICE context, which is included for all user self-registrations, either through the End User UI, or through a
social identity provider.

LiveSync and implicit sync operations are logged in the file /path/to/openidm/audit/sync.audit.json and in the repository.
You can read the synchronization audit logs over the REST interface, as outlined in the following examples.

To return all operations logged in the synchronization audit log, query the audit/sync endpoint, as follows:

Audit PingIDM

1104 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/audit/sync?_queryFilter=true"
{
 "result" : [{
 "_id" : "53709f21-5b83-4ea0-ac35-9af39c3090cf-95",
 "transactionId" : "53709f21-5b83-4ea0-ac35-9af39c3090cf-85",
 "timestamp" : "2015-11-23T05:07:39.376Z",
 "eventName" : "sync",
 "userId" : "openidm-admin",
 "action" : "UPDATE",
 "exception" : null,
 "linkQualifier" : "default",
 "mapping" : "managedUser_systemLdapAccounts",
 "message" : null,
 "situation" : "CONFIRMED",
 "sourceObjectId" : "managed/user/128e0e85-5a07-4e72-bfc8-4d9500a027ce",
 "status" : "SUCCESS",
 "targetObjectId" : "uid=jdoe,ou=People,dc=example,dc=com"
 }, {
 ...

Most of the fields in the synchronization audit log are self-explanatory. Each entry in the log synchronization operation is
identified by a unique id . Each _synchronization operation is identified with a transactionId . The same base transactionId
is assigned to the incoming or initiating request — so if a modification to a user entry triggers an implicit synchronization
operation, both the sync operation and the original change operation have the same transactionId . You can query the sync log
for all actions that resulted from a specific transaction, by including the transactionId in the query.

To obtain information on a specific sync audit log entry, include its entry _id in the URL. For example:

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1105

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/audit/sync/53709f21-5b83-4ea0-ac35-9af39c3090cf-95"
{
 "_id" : "53709f21-5b83-4ea0-ac35-9af39c3090cf-95",
 "transactionId" : "53709f21-5b83-4ea0-ac35-9af39c3090cf-85",
 "timestamp" : "2015-11-23T05:07:39.376Z",
 "eventName" : "sync",
 "userId" : "openidm-admin",
 "action" : "UPDATE",
 "exception" : null,
 "linkQualifier" : "default",
 "mapping" : "managedUser_systemLdapAccounts",
 "message" : null,
 "situation" : "CONFIRMED",
 "sourceObjectId" : "managed/user/128e0e85-5a07-4e72-bfc8-4d9500a027ce",
 "status" : "SUCCESS",
 "targetObjectId" : "uid=jdoe,ou=People,dc=example,dc=com"
}

The authentication log includes details of all successful and failed authentication attempts. The output may be long. The output
that follows is one excerpt from over 100 entries. To obtain the complete audit log over REST, use the following query:

Audit PingIDM

1106 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/audit/authentication?_queryFilter=true"
...
 "principal" : ["johndoe"],
 "result" : "SUCCESSFUL",
 "userId" : "johndoe",
 "transactionId" : "cf967c5d-2b95-4cbe-9da0-e8952d726cd0-1016",
 "timestamp" : "2017-06-20T20:56:04.112Z",
 "eventName" : "LOGIN",
 "method" : "SOCIAL_PROVIDERS",
 "trackingIds" : ["55fcec49-9631-4c00-83db-6931d10d04b8"]
 }, {
 "_id" : "cf967c5d-2b95-4cbe-9da0-e8952d726cd0-1025",
 "provider" : "wordpress",
 "context" : {
 "component" : "managed/user",
 "provider" : "wordpress",
 "roles" : ["internal/role/openidm-authorized"],
 "ipAddress" : "172.16.201.36",
 "id" : "8ead23d1-4f14-4102-a130-c4093237f250",
 "moduleId" : "SOCIAL_PROVIDERS"
 },
 "entries" : [{
 "moduleId" : "JwtSession",
 "result" : "SUCCESSFUL",
 "info" : {
 "org.forgerock.authentication.principal" : "johndoe"
 }
 }],
...

The output depicts a successful login using Wordpress as a social identity provider. From the information shown, you can derive
the following information:

The userId , also known as the authentication principal , is johndoe . In the REST call that follows, you’ll refer to how to
use this information to filter authentication attempts made by that specific user.

The login came from IP address 172.16.201.36 .

The login used the SOCIAL_PROVIDERS authentication and the JwtSession session modules. For more information, refer
to Authentication and Session Modules.

Login failures can also be instructive, as you’ll refer to consecutive moduleId modules that correspond to the order of modules
shown in your project’s authentication.json file.

You can filter the results to return only those audit entries that you are interested in. For example, the following query returns all
authentication attempts made by a specific user (johndoe), but displays only the security context and the result of the
authentication attempt:

•

•

•

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1107

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/audit/authentication?_queryFilter=/
principal+eq+"johndoe"&_fields=context,result'
{
 "result" : [{
 "_id" : "cf967c5d-2b95-4cbe-9da0-e8952d726cd0-198",
 "provider" : null,
 "context" : {
 "ipAddress" : "172.16.201.36"
 },
 "entries" : [{
 "moduleId" : "JwtSession",
 "result" : "FAILED",
 "reason" : { },
 "info" : { }
 },
...
 }, {
 "_id" : "cf967c5d-2b95-4cbe-9da0-e8952d726cd0-922",
 "provider" : "wordpress",
 "context" : {
 "component" : "null",
 "provider" : "wordpress",
 "roles" : ["internal/role/openidm-authorized"],
 "ipAddress" : "172.16.201.36",
 "id" : "e2b5bfc7-07a0-455c-a8f3-542089a8cc88",
 "moduleId" : "SOCIAL_PROVIDERS"
 },
 "entries" : [{
 "moduleId" : "JwtSession",
 "result" : "FAILED",
 "reason" : { },
 "info" : { }
 },
 ...
 {
 "moduleId" : "SOCIAL_PROVIDERS",
 "result" : "SUCCESSFUL",
 "info" : {
 "org.forgerock.authentication.principal" : "johndoe"
 }
 ...
 }, {
 "_id" : "cf967c5d-2b95-4cbe-9da0-e8952d726cd0-1007",
 "provider" : "wordpress",
 "context" : {
 "component" : "managed/user",
 "provider" : "wordpress",
 "roles" : ["internal/role/openidm-authorized"],
 "ipAddress" : "172.16.201.36",

Audit PingIDM

1108 Copyright © 2025 Ping Identity Corporation

 "id" : "johndoe",
 "moduleId" : "SOCIAL_PROVIDERS"
 },
 "entries" : [{
 "moduleId" : "JwtSession",
 "result" : "SUCCESSFUL",
 "info" : {
 "org.forgerock.authentication.principal" : "johndoe"
 }
...

The above excerpt illustrates a FAILED authentication attempt through a social identity provider, possibly based on a mistaken
password. That is followed by a SUCCESSFUL authentication through the SOCIAL_PROVIDERS module, with the user included in
the Managed User component .

This audit log lists changes made to the configuration in the audited server. You can read through the changes in the
config.extension file in the openidm/audit directory.

You can also read the complete audit log over REST with the following query:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/audit/config?_queryFilter=true"
{
 "result" : [{
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-73",
 "operation" : "CREATE",
 "userId" : "openidm-admin",
 "runAs" : "openidm-admin",
 "transactionId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-58",
 "revision" : null,
 "timestamp" : "2015-11-23T00:18:17.808Z",
 "objectId" : "ui",
 "eventName" : "CONFIG",
 "before" : "",
 "after" : "{ \"icons\":
 ...
 }],
 "resultCount" : 3,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

The output includes before and after entries, which represent the changes made to the configuration files.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1109

View audit events in the admin UI

The admin UI includes an audit widget that provides a visual display of audit events.

The audit widget is displayed on the System Monitoring dashboard by default. To show audit events:

Log in to the admin UI, and select Dashboards > System Monitoring.

On the Audit Events widget, select the type of audit event that you want to view. The event types correspond to the audit
event topics, described in Default Audit Event Topics.

Depending on the event type, you filter the events further. For example, if you select Config as the event type, you can
then select to view all configuration audit events, or only Creates, Reads, Updates, and so on.

By default, events are displayed for the current month. Use the arrow keys to scroll backwards and forwards to display the
audit data for other months.

The following image shows all access events for the month of March, 2020.

Use the move pointer to reposition the widget on the dashboard, or the vertical ellipses to delete the widget.

1.

2.

3.

Audit PingIDM

1110 Copyright © 2025 Ping Identity Corporation

Audit log schema

The tables in this section show the schema for the six audit event topics. For the JSON audit event handler, each audit topic is
logged to a distinct JSON file, with the topic in the filename. Files are created in the openidm/audit directory by default:

access.audit.json

activity.audit.json

authentication.audit.json

config.audit.json

recon.audit.json

sync.audit.json

You can parse the files in the openidm/audit directory using a JSON processor, such as jq . For example:

tail -f authentication.audit.json | jq .
{
 "context": {
 "component": "internal/user",
 "roles": [
 "internal/role/openidm-admin",
 "internal/role/openidm-authorized"
],
 "ipAddress": "0:0:0:0:0:0:0:1",
 "id": "openidm-admin",
 "moduleId": "INTERNAL_USER"
 },
 "entries": [
 {
 "moduleId": "JwtSession",
 "result": "SUCCESSFUL",
 "info": {
 "org.forgerock.authentication.principal": "openidm-admin"
 }
 }
],
 "principal": [
 "openidm-admin"
],
...

Reconciliation event topic properties

•

•

•

•

•

•

Event Property Description

_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0" .

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1111

Event Property Description

transactionId UUID of the transaction; the same transaction might display for the same event in
different audit event topics.

timestamp The time that IDM logged the message, in UTC format; for example,
"2020-05-18T08:48:00.160Z" .

eventName Name of the audit event: recon for this log.

userId User ID.

trackingIds A unique value for an object being tracked.

action Reconciliation action, shown as a Common REST action.

exception Stack trace of the exception.

linkQualifier Link qualifier applied to the action.

mapping Name of the mapping used for the synchronization operation.

message Description of the synchronization action.

messageDetail Details from the synchronization run, shown as Common REST output.

situation The synchronization situation.

sourceObjectId The object ID on the source system, such as managed/user/9dce06d4-2fc1-4830-a92b-
bd35c2f6bcbb .

status Reconciliation result status, such as SUCCESS or FAILURE.

targetObjectId The object ID on the target system, such as system/csvfile/account/bjensen .

reconciling What is currently being reconciled, source for the first phase, target for the second
phase.

ambiguousTargetObjectIds When the situation is AMBIGUOUS or UNQUALIFIED, and IDM cannot distinguish
between more than one target object, the object IDs are logged, to help figure out what
was ambiguous.

reconAction Reconciliation action, typically recon or null .

entryType Type of reconciliation log entry, such as start , entry , or summary .

reconId UUID for the reconciliation operation.

Audit PingIDM

1112 Copyright © 2025 Ping Identity Corporation

Synchronization event topic properties

Access event topic properties

Event Property Description

_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0" .

transactionId UUID of the transaction; the same transaction might display for the same event in
different audit event topics.

timestamp Time that IDM logged the message, in UTC format; for example,
"2020-05-18T08:48:00.160Z" .

eventName Name of the audit event: sync for this log.

userId User ID.

trackingIds A unique value for an object being tracked.

action The synchronization action, depicted as a Common REST action.

exception Stack trace of the exception.

linkQualifier Link qualifier applied to the action.

mapping Name of the mapping used for the synchronization operation.

message Description of the synchronization action.

messageDetail Details from the reconciliation run, shown as REST output.

situation The synchronization situation.

sourceObjectId Object ID on the source system, such as managed/user/9dce06d4-2fc1-4830-a92b-
bd35c2f6bcbb .

status Reconciliation result status, such as SUCCESS or FAILURE.

targetObjectId Object ID on the target system, such as uid=jdoe,ou=People,dc=example,dc=com .

Event Property Description

_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0" .

timestamp Time that IDM logged the message, in UTC format; for example,
"2020-05-18T08:48:00.160Z" .

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1113

Event Property Description

eventName Name of the audit event: access for this log.

transactionId UUID of the transaction; the same transaction might display for the same event in
different audit event topics.

userId User ID.

trackingId A unique value for the object being tracked.

server.ip IP address of the IDM server.

server.port Port number used by the IDM server.

client.ip Client IP address.

client.port Client port number.

request.protocol Protocol for request, typically Common REST.

request.operation Common REST operation taken on the object; for example, UPDATE, DELETE, or ACTION.

request.detail Typically, details for an ACTION request.

http.request.secure Boolean for request security.

http.request.method HTTP method requested by the client.

http.request.path Path of the HTTP request.

http.request.queryParameters Parameters sent in the HTTP request, such as a key/value pair.

http.request.headers HTTP headers for the request (optional).

http.request.cookies HTTP cookies for the request (optional).

http.response.headers HTTP response headers (optional).

response.status Normally, SUCCESSFUL, FAILED, or null.

response.statusCode SUCCESS in response.status leads to a null response.statusCode ; FAILURE leads to a
400-level error.

response.detail Message associated with response.statusCode , such as Not Found or Internal Server
Error.

response.elapsedTime Time to execute the access event.

response.elapsedTimeUnits Units for response time.

Audit PingIDM

1114 Copyright © 2025 Ping Identity Corporation

Activity event topic properties

Event Property Description

roles IDM roles associated with the request.

Event Property Description

_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0" .

timestamp Time that IDM logged the message, in UTC format; for example,
"2020-05-18T08:48:00.160Z" .

eventName Describes the audit event. Examples include activity , workflow-complete_task , and
relationship_created .

transactionId UUID of the transaction; the same transaction might display for the same event in
different audit event topics.

userId User ID.

trackingId A unique value for the object being tracked.

runAs User to run the activity as; may be used in delegated administration.

objectId Object identifier, such as /managed/user/42f8a60e-2019-4110-a10d-7231c3578e2b .

operation Common REST operation taken on the object; for example, UPDATE, DELETE, or ACTION.

before JSON representation of the object prior to the activity.

after JSON representation of the object after the activity.

changedFields Fields that were changed, based on Fields to Watch.

revision Object revision number.

status Result, such as SUCCESS.

message Human readable text about the action.

passwordChanged True/False entry on changes to the password.

context Flag for self-service logins, such as SELFSERVICE .

provider Name of the self-service provider, usually a social identity provider.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1115

Authentication event topic properties

Configuration event topic properties

Event Property Description

_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0" .

timestamp Time that IDM logged the message, in UTC format; for example,
"2020-05-18T08:48:00.160Z" .

eventName Name of the audit event: authentication for this log.

transactionId UUID of the transaction; the same transaction might display for the same event in
different audit event topics.

userId User ID.

trackingId A unique value for the object being tracked.

result Result of the transaction, either "SUCCESSFUL", or "FAILED".

principal An array of the accounts used to authenticate, such as ["openidm-admin"].

context The complete security context of the authentication operation, including the
authenticating ID, targeted endpoint, authentication module, any roles applied, and the
IP address from which the authentication request was made.

entries JSON representation of the authentication session.

method The authentication module used to authenticate, such as JwtSession or MANAGED_USER .

provider Social identity provider name.

Event Property Description

_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0" .

timestamp Time that IDM logged the message, in UTC format; for example,
"2020-05-18T08:48:00.160Z" .

eventName Name of the audit event: config for this log.

transactionId UUID of the transaction; the same transaction might display for the same event in
different audit event topics.

userId User ID.

Audit PingIDM

1116 Copyright © 2025 Ping Identity Corporation

Audit event handler configuration

To configure an audit event handler, set the config properties for that handler in your project’s conf/audit.json file.

To configure these properties from the admin UI, click Configure > System Preferences > Audit, and click the edit icon for your
event handler.

The tables in this section show the configuration properties common to all audit event handlers, then the properties specific to
each audit event handler.

Common audit event handler properties

Event Property Description

trackingId A unique value for the object being tracked.

runAs User to run the activity as; can be used in delegated administration.

objectId Object identifier, such as ui .

operation Common REST operation taken on the object; for example, UPDATE, DELETE, or ACTION.

before JSON representation of the object prior to the activity.

after JSON representation of the object after to the activity.

changedFields Fields that were changed, based on Fields to Watch.

revision Object revision number.

UI Label / Text audit.json File
Label

Description

Name name config sub-property. The name of the audit event handler.

Audit Events topics config sub-property; the list of audit topics that are logged by this
audit event handler, for example, access , activity , and config .

Use for Queries handlerForQue

ries

Specifies whether this audit event handler manages the queries on
audit logs.

Enabled enabled config sub-property; specifies whether the audit event handler is
enabled. An audit event handler can be configured, but disabled; in
which case, it will not log events.

n/a config The JSON object used to configure the handler; includes several sub-
properties.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1117

JSON audit event handler properties

UI Label / Text audit.json File
Label

Description

Shown only in audit.json class The class name in the Java file(s) used to build the handler.

Property Description

fileRotation Groups the file rotation configuration parameters.

rotationEnabled Specifies whether file rotation is enabled. Boolean: true, or false.

maxFileSize The maximum size of an audit file, in bytes, before rotation is triggered.

rotationFilePrefix The prefix to add to the start of an audit file name when it is rotated.

rotationTimes Specifies a list of times when file rotation should be triggered. The times must be
provided as durations, offset from midnight. For example, a list of 10 minutes, 20
minutes, 30 minutes will cause files to rotate at 10, 20 and 30 minutes after midnight.

rotationFileSuffix The suffix appended to rotated audit file names. This suffix should take the form of a
timestamp, in simple date format. The default suffix format, if none is specified, is -
yyyy.MM.dd-HH.mm.ss .

rotationInterval The interval to trigger a file rotation, expressed as a duration. For example, 5 seconds ,
5 minutes , 5 hours . A value of 0 or disabled disables time-based file rotation. Note
that you can specify a list of rotationTimes and a rotationInterval . The audit event
handler checks all rotation and retention policies on a periodic basis, and assesses
whether each policy should be triggered at the current time, for a particular audit file.
The first policy to meet the criteria is triggered.

fileRetention Groups the file retention configuration parameters. The retention policy specifies how
long audit files remain on disk before they are automatically deleted.

maxNumberOfHistoryFiles The maximum number of historical audit files that can be stored. If the total number of
audit files exceeds this maximum, older files are deleted.
A value of -1 disables purging of old log files.

maxDiskSpaceToUse The maximum disk space, in bytes, that can be used for audit files. If the total space
occupied by the audit files exceeds this maximum, older files are deleted. A negative or
zero value indicates that this policy is disabled; that is, that unlimited disk space can be
used for historical audit files.

Audit PingIDM

1118 Copyright © 2025 Ping Identity Corporation

CSV audit event handler properties

Property Description

minFreeSpaceRequired The minimum free disk space, in bytes, required on the system that houses the audit
files. If the free space drops below this minimum, older files are deleted. A negative or
zero value indicates that this policy is disabled; that is, that no minimum space
requirements apply.

rotationRetentionCheckInterva

l

Interval for periodically checking file rotation and retention policies.
The interval must be a duration; for example, 5 seconds , 5 minutes , or 5 hours .

logDirectory Directory with JSON audit files

elasticsearchCompatible Enable ElasticSearch JSON format compatibility. Boolean, true or false. Set this property
to true , for example, if you are using Logstash to feed into ElasticSearch. When
elasticsearchCompatible is true , the handler renames the _id field to _eventId
because _id is reserved by ElasticSearch. The rename is reversed after JSON
serialization, so that other handlers can safely use the original field name. For more
information, refer to the ElasticSearch documentation.

buffering Configuration for event buffering.

maxSize The maximum number of events that can be buffered (default/minimum: 100000).

writeInterval The delay after which the file-writer thread is scheduled to run after encountering an
empty event buffer (units of 'ms' are recommended).
Default: 100 ms.

UI Label / Text audit.json File Label Description

File Rotation fileRotation Groups the file rotation configuration parameters.

rotationEnabled rotationEnabled Specifies whether file rotation is enabled. Boolean: true, or
false.

maxFileSize maxFileSize The maximum size of an audit file, in bytes, before rotation
is triggered.

rotationFilePrefix rotationFilePrefix The prefix to add to the start of an audit file name when it is
rotated.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1119

https://www.elastic.co/guide/en/logstash/current/index.html
https://www.elastic.co/guide/en/logstash/current/index.html

UI Label / Text audit.json File Label Description

Rotation Times rotationTimes Specifies a list of times when file rotation should be
triggered.
The times must be provided as durations, offset from
midnight. For example, a list of 10 minutes, 20 minutes,
30 minutes will cause files to rotate at 10, 20 and 30
minutes after midnight.

File Rotation Suffix rotationFileSuffix The suffix appended to rotated audit file names. This suffix
should take the form of a timestamp, in simple date format.
The default suffix format, if none is specified, is -
yyyy.MM.dd-HH.mm.ss .

Rotation Interval rotationInterval The interval to trigger a file rotation, expressed as a
duration. For example, 5 seconds , 5 minutes , 5 hours . A
value of 0 or disabled disables time-based file rotation.
Note that you can specify a list of rotationTimes and a
rotationInterval . The audit event handler checks all
rotation and retention policies on a periodic basis, and
assesses whether each policy should be triggered at the
current time, for a particular audit file. The first policy to
meet the criteria is triggered.

File Retention fileRetention Groups the file retention configuration parameters. The
retention policy specifies how long audit files remain on disk
before they are automatically deleted.

Maximum Number of
Historical Files

maxNumberOfHistoryFiles The maximum number of historical audit files that can be
stored. If the total number of audit files exceeds this
maximum, older files are deleted.
A value of -1 disables purging of old log files.

Maximum Disk Space maxDiskSpaceToUse The maximum disk space, in bytes, that can be used for
audit files. If the total space occupied by the audit files
exceeds this maximum, older files are deleted. A negative or
zero value indicates that this policy is disabled; that is, that
unlimited disk space can be used for historical audit files.

Minimum Free Space Required minFreeSpaceRequired The minimum free disk space, in bytes, required on the
system that houses the audit files. If the free space drops
below this minimum, older files are deleted. A negative or
zero value indicates that this policy is disabled; that is, that
no minimum space requirements apply.

rotationRetentionCheckInterval rotationRetentionCheckIn

terval

Interval for periodically checking file rotation and retention
policies.
The interval must be a duration; for example, 5 seconds , 5
minutes , or 5 hours .

Audit PingIDM

1120 Copyright © 2025 Ping Identity Corporation

Repository and router audit event handler properties

In addition to the common properties, the Repository and Router audit event handlers both have one unique property,
resourcePath :

UI Label / Text audit.json File Label Description

Log Directory logDirectory Directory with CSV audit files.

CSV Output Formatting formatting

quoteChar quoteChar Formatting: Character used around a CSV field.

delimiterChar delimiterChar Formatting: Character between CSV fields.

End of Line Symbols endOfLineSymbols Formatting: end of line symbol, such as \n or \r .

Security: CSV Tamper Evident
Configuration

security Uses keystore-based signatures.

Enabled enabled CSV Tamper Evident Configuration: true, or false.

Filename filename CSV Tamper Evident Configuration: Path to the Java
keystore.

Password password CSV Tamper Evident Configuration: Password for the Java
keystore.

Keystore Handler keystoreHandlerName CSV Tamper Evident Configuration: Keystore name. The
value of this property must be openidm . This is the name
that the audit service provides to the ForgeRock Common
Audit Framework for the configured IDM keystore.

Signature Interval signatureInterval CSV Tamper Evident Configuration: Signature generation
interval. Default = 1 hour. Units described in Restrictions on
Configuring the CSV Audit Handler in the UI.

Buffering buffering Configuration for optional event buffering.

enabled enabled Buffering: true, or false.

autoFlush autoFlush Buffering: avoids flushing after each event.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1121

{
 "class" : "org.forgerock.openidm.audit.impl.RouterAuditEventHandler",
 "config" : {
 "name" : "router",
 "topics" : ["access", "activity", "sync", "authentication", "config"],
 "resourcePath" : "system/auditdb"
 }
},

JMS audit event handler properties

Note that the JMS audit handler config in audit.json includes the ForgeRock audit event topics and JMS audit topics.

To use the JMS resources provided by your web application container, leave the JNDI Context Properties settings empty.
Values for topicName and connectionFactoryName will then depend on the configuration of your web application container.

UI Label / Text audit.json File Label Description

resourcePath resourcePath Path to the repository resource.

UI Label / Text audit.json File Label Description

Delivery Mode deliveryMode Required property, for messages from a JMS provider; may
be PERSISTENT or NON_PERSISTENT

Session Mode sessionMode Acknowledgement mode, in sessions without transactions.
May be AUTO , CLIENT , or DUPS_OK .

Batch Configuration Settings batch Options for batch messaging.

Write Interval writeInterval Interval at which buffered events are written to JMS (units of
'ms' or 's' are recommended). Default is 10 ms.

Capacity capacity Maximum event count in the batch queue; additional events
are dropped.

Maximum Batched Events maxBatchedEvents Maximum number of events per batch.

JNDI Configuration jndiConfiguration Java Naming and Directory Interface (JNDI) Configuration
Settings.

JNDI Context Properties contextProperties Settings to populate the JNDI initial context with.

JNDI Context Factory java.naming.factory.initi

al

Initial JNDI context factory, such as
com.tibco.tibjms.naming.TibjmsInitialContextFactory .

Audit PingIDM

1122 Copyright © 2025 Ping Identity Corporation

Syslog audit event handler properties

UI Label / Text audit.json File Label Description

JNDI Provider URL java.naming.provider.url Depends on provider; options include tcp://localhost:
61616 and tibjmsnaming://192.168.1.133:7222 .

JNDI Topic topic.forgerock.idm.audi

t

Relevant JNDI topic; default= forgerock.idm.audit .

JNDI Topic Name topicName JNDI lookup name for the JMS topic.

Connection Factory connectionFactoryName JNDI lookup name for the JMS connection factory.

UI Label / Text audit.json File Label Description

protocol protocol Transport protocol for Syslog messages; may be TCP or UDP .

host host Host name or IP address of the receiving Syslog server.

port port The TCP/IP port number of the receiving Syslog server.

connectTimeout connectTimeout Timeout for connecting to the Syslog server (seconds).

facility facility Options shown in the admin UI, KERN , USER , MAIL , DAEMON ,
AUTH , SYSLOG , LPR , NEWS , UUCP , CRON , AUTPRIV , FTP ,
NTP , LOGAUDIT , LOGALERT , CLOCKD , LOCAL0 , LOCAL1 ,
LOCAL2 , LOCAL3 , LOCAL4 , LOCAL5 , LOCAL6 , LOCAL7
correspond directly to facility values shown in RFC 5424 - The
Syslog Protocol.

SeverityFieldMappings severityFieldMappings Sets the correspondence between audit event fields and
Syslog severity values.

topic topic Severity Field Mappings: the audit event topic to which the
mapping applies.

field field Severity Field Mappings: the audit event field to which the
mapping applies; taken from the JSON schema for the audit
event content.

Value Mappings valueMappings Severity Field Mappings: The map of audit event values to
Syslog severities. Syslog severities may be: EMERGENCY,
ALERT, CRITICAL, ERROR, WARNING, NOTICE,
INFORMATIONAL, or DEBUG, in descending order of
importance.

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1123

https://www.rfc-editor.org/rfc/rfc5424.html
https://www.rfc-editor.org/rfc/rfc5424.html
https://www.rfc-editor.org/rfc/rfc5424.html

Configure notifications

The customizable notification service sends messages, based on changes to objects. The notification service uses filters to assess
incoming requests. If the filter conditions are met, the service sends the corresponding notification. Notification messages are
sent to whatever routes you specify.

In a JDBC repository, notifications are stored in the notificationobjects table. The notificationobjectproperties , serves as
the index table. In a DS repository, notifications are stored under the DN
"ou=notification,ou=internal,dc=openidm,dc=forgerock,dc=com" .

The notification service is disabled by default. To enable the service, add openidm.notifications=true to your project’s
resolver/boot.properties file. You can perform additional configuration using the conf/notificationFactory.json file.

Default notificationFactory.json configuration

{
 "enabled" :{
 "$bool" : "&{openidm.notifications|false}"
 },
 "threadPool" : {
 "steadyPoolThreads" : 1,
 "maxPoolThreads" : 2,
 "threadKeepAlive" : 60,
 "maxQueueSize" : 20000
 }
}

Notifications for a managed object are injected into a property in that object. The name of this property is specified in the
managed object schema, in conf/managed.json . For example, notifications for managed user objects rely on the following
construct in the user object definition in managed.json :

UI Label / Text audit.json File Label Description

Buffering buffering Disabled by default; all messages written immediately to the
log.

emergency_home
Changing the notifications thread pool settings can adversely affect performance.

Important

Audit PingIDM

1124 Copyright © 2025 Ping Identity Corporation

{
 "objects" : [
 {
 "name" : "user",
 ...
 "notifications" : {
 "property" : "_notifications"
 },
 ...
 },
 ...
]
}

This excerpt indicates that notifications are injected into the _notifications property of the user object by default. The
notifications object is mandatory for notifications to be generated for that managed object type. However, you can change the
name of the property that is injected into the managed object when notifications are generated. If you omit the property field
from the notifications object, notifications are stored in the _notifications field by default.

Changes to the notification property name

The ability to tie a specific notification to its corresponding managed object is regarded as an internal object relation. Notifications
are therefore also configured in conf/internal.json with the following object:

{
 "name" : "notification",
 "properties" : {
 "target" : {
 "reversePropertyName" : "_notifications"
 }
 }
}

If you change the property field in managed.json to something other than _notifications , you must also update the
corresponding reversePropertyName in internal.json .

If you have configured notifications for more than one managed object type, all the object types must use the same notification
property name.

Custom notifications

Notifications are configured in files named notification-event.json , where event refers to the event that triggers the
notification.

info
The internal object service does not support runtime changes. If you update conf/internal.json over REST, you
must restart IDM for the change to take effect.

Note

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1125

By default, IDM doesn’t send any notifications for password or profile updates. To enable these notifications, add the applicable
line to your project’s resolver/boot.properties file:

openidm.notifications.passwordUpdate=true

openidm.notifications.profileUpdate=true

These notifications are configured in the conf/notification-passwordUpdate.json and conf/notification-
profileUpdate.json files, respectively. You can use these default notification configuration files as the basis for setting up
custom notifications.

The default notification-passwordUpdate.json file shows the structure of a notification configuration:

{
 "enabled" : {
 "$bool" : "&{openidm.notifications.passwordUpdate|false}"
 },
 "path" : "managed/user/*",
 "methods" : [
 "update",
 "patch"
],
 "condition" : {
 "type" : "groovy",
 "globals" : {
 "propertiesToCheck" : [
 "password"
]
 },
 "file" : "propertiesModifiedFilter.groovy"
 },
 "target" : {
 "resource" : "managed/user/{{response/_id}}"
 },
 "notification" : {
 "notificationType": "info",
 "message": "Your password has been updated."
 }
}

enabled boolean, true or false

Specifies whether notifications will be triggered for that configured event. To enable/disable, set the
openidm.notifications.passwordUpdate property in the resolver/boot.properties file.

path string

Specifies where the filter listens on the router. For user notifications, this is typically managed/user/* .

methods array of strings (optional)

One or more ForgeRock REST verbs, specifying the actions that should trigger the notification. These can include create ,
read , update , delete , patch , action , and query . If no methods are specified, the default is to listen for all methods.

•

•

Audit PingIDM

1126 Copyright © 2025 Ping Identity Corporation

condition string or object

An inline script or a path to a script file that specifies the condition on which the notification is triggered. The
passwordUpdate notification configuration references the groovy script, /path/to/openidm/bin/defaults/script/
propertiesModifiedFilter.groovy . This script monitors the properties listed in the propertiesToCheck array, and
sends a notification when those properties are changed. The script also checks whether a modified property is the child
(or parent) of a watched property.

To specify additional properties to watch, add the property names to the array of propertiesToCheck . The properties
that you can specify here are limited to existing user properties defined in your managed.json file. For example, the
following excerpt of the notification-profileUpdate.json file shows the properties that will trigger notifications if their
values are changed:

...
 "condition" : {
 "type" : "groovy",
 "globals" : {
 "propertiesToCheck" : [
 "userName",
 "givenName",
 "sn",
 "mail",
 "description",
 "accountStatus",
 "telephoneNumber",
 "postalAddress",
 "city",
 "postalCode",
 "country",
 "stateProvince",
 "preferences"
]
 },
 "file" : "propertiesModifiedFilter.groovy"
 },
...

target object

The target resource to which notifications are sent, typically managed/user/{{response/_id}} .

The target.resource field supports {{token}} replacement with contextual variables. The following variables are in
scope:

request

context

resourceName

response

notification

The actual notification, including the notificationType (info , warning , or error) and the message that is sent to the
user.

•

•

•

•

PingIDM Audit

Copyright © 2025 Ping Identity Corporation 1127

The notification.message field supports {{token}} replacement with contextual variables, as described previously for
target.resource .

Notification configuration files follow the format of the router.json file. For more information about how filtering is configured
in router.json , refer to Router configuration.

Limits on notification endpoints

Although notifications are highly configurable, you cannot apply them to services with their own internal routers, including
internal objects. This list includes:

workflow/taskinstance

workflow/processdefinition

workflow/processinstance

metrics/api

metrics/prometheus

scheduler/job

scheduler/trigger

scheduler/waitingTriggers

scheduler/acquiredTriggers

info/ping

info/login

info/version

info/uiconfig

info/features

internal/{object}

internal/{object}/{object_id}/relationship

managed/{object}/{object_id}/relationship

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Audit PingIDM

1128 Copyright © 2025 Ping Identity Corporation

Schedules

Guide to configuring schedules and scanning tasks.

This guide covers schedules and scanning tasks.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Schedule tasks and events

The scheduler service lets you schedule reconciliation and synchronization tasks, trigger scripts, collect and run reports, trigger
workflows, and perform custom logging.

The service depends on the Quartz Scheduler (bundled with IDM), and supports Quartz simple triggers and cron triggers. Use the
trigger type that suits your scheduling requirements. For more information, refer to the Quartz documentation on SimpleTriggers
 and CronTriggers.

By default, IDM picks up changes to scheduled tasks and events dynamically, during initialization and also at runtime. For more
information, refer to Configuration changes.

In addition to the fine-grained scheduling facility, you can perform a scheduled batch scan for a specified date in IDM data, and
then automatically run a task when this date is reached. For more information, refer to Scan data to trigger tasks.

Configure the scheduler service

There is a distinction between the configuration of the scheduler service, and the configuration of individual scheduled tasks and
events. The scheduler configuration has the following format, and configures the Quartz Scheduler:

Scheduling

Schedule tasks and events.

Task Scanner

Scan data to trigger tasks.

Schedules PingIDM

1130 Copyright © 2025 Ping Identity Corporation

https://www.forgerock.com
https://www.forgerock.com
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-05.html
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-05.html
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-05.html
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html

{
 "threadPool" : {
 "threadCount" : 10
 },
 "scheduler" : {
 "executePersistentSchedules" : {
 "$bool" : "&{openidm.scheduler.execute.persistent.schedules}"
 }
 }
}

threadCount specifies the maximum number of threads that are available for running scheduled tasks concurrently.

executePersistentSchedules lets you disable persistent schedules for a specific node. If this parameter is set to false ,
the Scheduler Service will support the management of persistent schedules (CRUD operations) but it will not run any
persistent schedules. The value of this property can be a string or boolean. Its default value (set in resolver/
boot.properties) is true .

advancedProperties (optional) lets you configure additional properties for the Quartz Scheduler.

For details of all the configurable properties for the Quartz Scheduler, refer to the Quartz Scheduler Configuration Reference.

Configure schedules

You can schedule tasks and events using:

Admin UI

REST

By convention, IDM uses file names of the form schedule-schedule-name.json , where schedule-name is a logical name for the
scheduled operation; for example, schedule-reconcile_systemCsvAccounts_managedUser.json . There are several example
schedule configuration files in the openidm/samples/example-configurations/schedules directory.

Each schedule configuration has the following format:

{
 "enabled" : boolean,
 "persisted" : boolean,
 "recoverable" : boolean,
 "concurrentExecution" : boolean,
 "type" : "simple | cron",
 "repeatInterval" : (optional) integer,
 "repeatCount" : (optional) integer,
 "startTime" : "(optional) time",
 "endTime" : "(optional) time",
 "schedule" : "cron expression",
 "misfirePolicy" : "optional, string",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info",
 "invokeLogLevel" : "(optional) level"
}

•

•

•

•

•

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1131

https://www.quartz-scheduler.org/documentation/quartz-2.3.0/configuration/ConfigMain
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/configuration/ConfigMain

Schedule configuration properties

The schedule configuration properties are defined as follows:

enabled

Set to true to enable the schedule. When this property is false , IDM considers the schedule configuration dormant, and
does not allow it to be triggered or launched.

If you want to retain a schedule configuration, but do not want it used, set enabled to false for task and event
schedulers, instead of changing the configuration or cron expressions.

persisted (optional)

Specifies whether the schedule state should be persisted or stored only in RAM. Boolean (true or false), true by
default.

In a clustered environment, this property must be set to true to have the schedule fire only once across the cluster. For
more information, refer to Configure Persistent Schedules.

recoverable (optional)

Specifies whether jobs that have failed mid-execution (as a result of a JVM crash or otherwise unexpected termination)
should be recovered. Boolean (true or false), false by default.

concurrentExecution

Specifies whether multiple instances of the same schedule can run concurrently. Boolean (true or false), false by
default. Multiple instances of the same schedule cannot run concurrently by default. This setting prevents a new
scheduled task from being launched before the same previously launched task has completed. For example, under normal
circumstances you would want a liveSync operation to complete before the same operation was launched again. To enable
multiple schedules to run concurrently, set this parameter to true . The behavior of missed scheduled tasks is governed
by the misfire policy.

type

The trigger type, either simple or cron .

To decide which trigger type to use, refer to the Quartz documentation on SimpleTriggers and CronTriggers.

repeatCount

Used only for simple triggers ("type" : "simple").

The number of times the schedule must be repeated. The repeat count can be zero, a positive integer, or -1. A value of -1
indicates that the schedule should repeat indefinitely.

If you do not specify a repeat count, the value defaults to -1.

info
If the schedule is stored only in RAM, the schedule will be lost when IDM is restarted.

Note

Schedules PingIDM

1132 Copyright © 2025 Ping Identity Corporation

https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-05.html
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-05.html
http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html
http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html

repeatInterval

Used only for simple triggers ("type" : "simple").

Specifies the interval, in milliseconds, between trigger firings. The repeat interval must be zero or a positive long value. If
you set the repeat interval to zero, the scheduler will trigger repeatCount firings concurrently (or as close to concurrently
as possible).

If you do not specify a repeat interval, the value defaults to 0.

startTime (optional)

This parameter starts the schedule at some time in the future. If the parameter is omitted, empty, or set to a time in the
past, the task or event is scheduled to start immediately.

Use ISO 8601 format to specify times and dates (yyyy-MM-dd’T’HH:mm:ss).

To specify a time zone, include the time zone at the end of the startTime , in the format +|-hh:mm ; for example
2017-10-31T15:53:00+05:00 . If you specify both a startTime and an endTime , they must have the same time zone.

endTime (optional)

Specifies when the schedule must end, in ISO 8601 format (yyyy-MM-dd’T’HH:mm:ss+|-hh:mm).

schedule

Used only for cron triggers ("type" : "cron").

Takes cron expression syntax. For more information, refer to the CronTrigger Tutorial and Lesson 6: CronTrigger.

misfirePolicy

This optional parameter specifies the behavior if IDM misses a scheduled task in a persistent schedule.

Simple schedules only support the MISFIRE_INSTRUCTION_FIRE_NOW value.

For cron-based schedules, the possible values include:

fireAndProceed . IDM attempts to run the missed schedule when the server is back online and discards all
subsequent runs. After this, the normal schedule is resumed.

doNothing . IDM discards all missed schedules and resumes the normal schedule when the server is back online.

invokeService

Defines the type of scheduled event or action. The value of this parameter can be one of the following:

sync for reconciliation.

provisioner for liveSync.

script to call some other scheduled operation defined in a script.

taskScanner to define a scheduled task that queries a set of objects. For more information, refer to Scan data to
trigger tasks.

•

•

•

•

•

•

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1133

https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html

invokeContext

Specifies contextual information, depending on the type of scheduled event (the value of the invokeService parameter).

The following example invokes reconciliation:

{
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccount_managedUser"
 }
}

The following example invokes a liveSync operation:

{
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/ldap/__ACCOUNT__"
 }
}

For scheduled liveSync tasks, the source property follows IDM’s convention for a pointer to an external resource object
and takes the form system/resource-name/object-type .

The following example invokes a script, which prints the node ID performing the scheduled job and the time to the
console.

A similar sample schedule is provided in schedule-script.json in the /path/to/openidm/samples/example-
configurations/schedules directory.

{
 "enabled" : true,
 "type": "simple",
 "repeatInterval": 3600000,
 "persisted" : true,
 "concurrentExecution" : false,
 "invokeService": "script",
 "invokeContext": {
 "script" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('Job executing on ' +
identityServer.getProperty('openidm.node.id') + ' at: ' + java.lang.System.currentTimeMillis());"
 }
 }
}

Schedules PingIDM

1134 Copyright © 2025 Ping Identity Corporation

invokeLogLevel (optional)

Specifies the level at which the invocation will be logged. Particularly for schedules that run very frequently, such as
liveSync, the scheduled task can generate significant output to the log file, and you should adjust the log level accordingly.
The default schedule log level is info . The value can be set to any one of the SLF4J log levels:

trace

debug

info

warn

error

fatal

Manage schedules using REST

The scheduler service is exposed under the /openidm/scheduler context path. Within this context path, the defined scheduled
jobs are accessible at /openidm/scheduler/job . A job is the actual task that is run. Each job contains a trigger that starts the job.
The trigger defines the schedule according to which the job is executed. You can read and query the existing triggers on the /
openidm/scheduler/trigger context path.

The following examples show how schedules are validated, created, read, queried, updated, and deleted, over REST, by using the
scheduler service.

Validate cron trigger expressions

Schedules are defined using Quartz cron or simple triggers. If you use a cron trigger, you can validate your cron expression by
sending the expression as a JSON object to the scheduler context path:

info
These are sample configurations only. Your schedule configuration will differ according to your specific
requirements.

Note

•

•

•

•

•

•

info
When you configure schedules over REST, changes made to the schedules are not pushed back into the configuration
service. Managing schedules by using the /openidm/scheduler/job context path essentially bypasses the
configuration service and sends the request directly to the scheduler.
If you need to perform an operation on a schedule that was created by using the configuration service (by placing a
schedule file in the conf/ directory), you must direct your request to the /openidm/config context path, and not to
the /openidm/scheduler/job context path.
PATCH operations are not supported on the scheduler context path. To patch a schedule, use the config context
path.

Note

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1135

http://www.slf4j.org/apidocs/org/apache/commons/logging/Log.html
http://www.slf4j.org/apidocs/org/apache/commons/logging/Log.html

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=2.0" \
--request POST \
--data '{
 "cronExpression": "0 0/1 * * * ?"
}' \
"http://localhost:8080/openidm/scheduler/job?_action=validateQuartzCronExpression"
{
 "valid": true
}

Define a schedule

To define a new schedule, send a PUT or POST request to the scheduler/job context path with the details of the schedule in the
JSON payload. A PUT request lets you specify the ID of the schedule. A POST request assigns an ID automatically.

The following example uses a PUT request to create a schedule that fires a script (script/testlog.js) every second. The
example assumes that the script exists in the specified location. The schedule configuration is as described in Configure
Schedules:

Schedules PingIDM

1136 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=2.0" \
--request PUT \
--data '{
 "enabled": true,
 "type": "cron",
 "schedule": "0/1 * * * * ?",
 "persisted": true,
 "misfirePolicy": "fireAndProceed",
 "invokeService": "script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 }
}' \
"http://localhost:8080/openidm/scheduler/job/testlog-schedule"
{
 "_id": "testlog-schedule",
 "enabled": true,
 "persisted": true,
 "recoverable": false,
 "misfirePolicy": "fireAndProceed",
 "schedule": "0/1 * * * * ?",
 "repeatInterval": 0,
 "repeatCount": 0,
 "type": "cron",
 "invokeService": "org.forgerock.openidm.script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 },
 "invokeLogLevel": "info",
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false,
 "triggers": [
 {
 "calendar": null,
 "group": "scheduler-service-group",
 "jobKey": "scheduler-service-group.testlog-schedule",
 "name": "trigger-testlog-schedule",
 "nodeId": "node1",
 "previousState": null,
 "serialized": {
 "type": "CronTriggerImpl",
 "calendarName": null,
 "cronEx": {

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1137

 "cronExpression": "0/1 * * * * ?",
 "timeZone": "Africa/Johannesburg"
 },
 "description": null,
 "endTime": null,
 "fireInstanceId": "node1_1570611359345",
 "group": "scheduler-service-group",
 "jobDataMap": {
 "scheduler.invokeService": "org.forgerock.openidm.script",
 "scheduler.config-name": "scheduler-testlog-schedule",
 "scheduler.invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 },
 "schedule.config": {
 "enabled": true,
 "persisted": true,
 "recoverable": false,
 "misfirePolicy": "fireAndProceed",
 "schedule": "0/1 * * * * ?",
 "repeatInterval": 0,
 "repeatCount": 0,
 "type": "cron",
 "invokeService": "org.forgerock.openidm.script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 },
 "invokeLogLevel": "info",
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false
 },
 "scheduler.invokeLogLevel": "info"
 },
 "jobGroup": "scheduler-service-group",
 "jobName": "testlog-schedule",
 "misfireInstruction": 1,
 "name": "trigger-testlog-schedule",
 "nextFireTime": 1570611569000,
 "previousFireTime": 1570611568000,
 "priority": 5,
 "startTime": 1570611391000,
 "volatility": false
 },
 "state": "NORMAL",
 "_rev": "000000001d4724d6",
 "_id": "scheduler-service-group.trigger-testlog-schedule"

Schedules PingIDM

1138 Copyright © 2025 Ping Identity Corporation

 }
],
 "previousRunDate": "2019-10-09T08:59:28.000Z",
 "nextRunDate": "2019-10-09T08:59:29.000Z"
}

The following example uses a POST request to create an identical schedule to the one created in the previous example, but with a
server-assigned ID:

info
The previous output includes the trigger that was created as part of the scheduled job, as well as the nextRunDate
for the job. For more information about the trigger properties, refer to Query Schedule Triggers.

Note

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1139

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=2.0" \
--request POST \
--data '{
 "enabled": true,
 "type": "cron",
 "schedule": "0/1 * * * * ?",
 "persisted": true,
 "misfirePolicy": "fireAndProceed",
 "invokeService": "script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 }
}' \
"http://localhost:8080/openidm/scheduler/job?_action=create"
{
 "_id": "b12e4a77-a626-4a38-a1dc-8edc7498ca1c",
 "enabled": true,
 "persisted": true,
 "recoverable": false,
 "misfirePolicy": "fireAndProceed",
 "schedule": "0/1 * * * * ?",
 "repeatInterval": 0,
 "repeatCount": 0,
 "type": "cron",
 "invokeService": "org.forgerock.openidm.script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 },
 "invokeLogLevel": "info",
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false,
 "triggers": [
 {
 "calendar": null,
 "group": "scheduler-service-group",
 "jobKey": "scheduler-service-group.b12e4a77-a626-4a38-a1dc-8edc7498ca1c",
 "name": "trigger-b12e4a77-a626-4a38-a1dc-8edc7498ca1c",
 "nodeId": null,
 "previousState": null,
 "serialized": {
 "type": "CronTriggerImpl",
 "calendarName": null,
 "cronEx": {

Schedules PingIDM

1140 Copyright © 2025 Ping Identity Corporation

 "cronExpression": "0/1 * * * * ?",
 "timeZone": "Africa/Johannesburg"
 },
 "description": null,
 "endTime": null,
 "fireInstanceId": null,
 "group": "scheduler-service-group",
 "jobDataMap": {
 "scheduler.invokeService": "org.forgerock.openidm.script",
 "scheduler.config-name": "scheduler-b12e4a77-a626-4a38-a1dc-8edc7498ca1c",
 "scheduler.invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 },
 "schedule.config": {
 "enabled": true,
 "persisted": true,
 "recoverable": false,
 "misfirePolicy": "fireAndProceed",
 "schedule": "0/1 * * * * ?",
 "repeatInterval": 0,
 "repeatCount": 0,
 "type": "cron",
 "invokeService": "org.forgerock.openidm.script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 },
 "invokeLogLevel": "info",
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false
 },
 "scheduler.invokeLogLevel": "info"
 },
 "jobGroup": "scheduler-service-group",
 "jobName": "b12e4a77-a626-4a38-a1dc-8edc7498ca1c",
 "misfireInstruction": 1,
 "name": "trigger-b12e4a77-a626-4a38-a1dc-8edc7498ca1c",
 "nextFireTime": 1570611659000,
 "previousFireTime": null,
 "priority": 5,
 "startTime": 1570611659000,
 "volatility": false
 },
 "state": "NORMAL",
 "_rev": "000000009e2e2212",
 "_id": "scheduler-service-group.trigger-b12e4a77-a626-4a38-a1dc-8edc7498ca1c"

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1141

 }
],
 "previousRunDate": null,
 "nextRunDate": "2019-10-09T09:00:59.000Z"
}

The output includes the generated _id of the schedule, in this case:

"_id": "b12e4a77-a626-4a38-a1dc-8edc7498ca1c"

View scheduled job details

The following example displays the details of the schedule created in the previous example. Specify the job ID in the URL:

Schedules PingIDM

1142 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request GET \
"http://localhost:8080/openidm/scheduler/job/testlog-schedule"
{
 "_id": "testlog-schedule",
 "enabled": true,
 "persisted": true,
 "recoverable": false,
 "misfirePolicy": "fireAndProceed",
 "schedule": "0/1 * * * * ?",
 "repeatInterval": 0,
 "repeatCount": 0,
 "type": "cron",
 "invokeService": "org.forgerock.openidm.script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 },
 "invokeLogLevel": "info",
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false,
 "triggers": [
 {
 "calendar": null,
 "group": "scheduler-service-group",
 "jobKey": "scheduler-service-group.testlog-schedule",
 "name": "trigger-testlog-schedule",
 "nodeId": null,
 "previousState": null,
 "serialized": {
 "type": "CronTriggerImpl",
 "calendarName": null,
 "cronEx": {
 "cronExpression": "0/1 * * * * ?",
 "timeZone": "Africa/Johannesburg"
 },
 "description": null,
 "endTime": null,
 "fireInstanceId": "node1_1570611359712",
 "group": "scheduler-service-group",
 "jobDataMap": {
 "scheduler.invokeService": "org.forgerock.openidm.script",
 "scheduler.config-name": "scheduler-testlog-schedule",
 "scheduler.invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1143

 },
 "schedule.config": {
 "enabled": true,
 "persisted": true,
 "recoverable": false,
 "misfirePolicy": "fireAndProceed",
 "schedule": "0/1 * * * * ?",
 "repeatInterval": 0,
 "repeatCount": 0,
 "type": "cron",
 "invokeService": "org.forgerock.openidm.script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 },
 "invokeLogLevel": "info",
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false
 },
 "scheduler.invokeLogLevel": "info"
 },
 "jobGroup": "scheduler-service-group",
 "jobName": "testlog-schedule",
 "misfireInstruction": 1,
 "name": "trigger-testlog-schedule",
 "nextFireTime": 1570611719000,
 "previousFireTime": 1570611718000,
 "priority": 5,
 "startTime": 1570611391000,
 "volatility": false
 },
 "state": "NORMAL",
 "_rev": "000000002d1c2465",
 "_id": "scheduler-service-group.trigger-testlog-schedule"
 }
],
 "previousRunDate": "2019-10-09T09:01:58.000Z",
 "nextRunDate": "2019-10-09T09:01:59.000Z"
}

Query scheduled jobs

You can query defined and running scheduled jobs using a regular query filter.

The following query returns the IDs of all defined schedules:

Schedules PingIDM

1144 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request GET \
"http://localhost:8080/openidm/scheduler/job?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "reconcile_systemLdapAccounts_managedUser"
 },
 {
 "_id": "testlog-schedule"
 }
]
 ...
}

The following query returns the IDs, enabled status, and next run date of all defined schedules:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request GET \
"http://localhost:8080/openidm/scheduler/job?_queryFilter=true&_fields=_id,enabled,nextRunDate"
{
 "result": [
 {
 "_id": "reconcile_systemLdapAccounts_managedUser",
 "enabled": false,
 "nextRunDate": null
 },
 {
 "_id": "testlog-schedule",
 "enabled": true,
 "nextRunDate": "2019-10-09T09:43:17.000Z"
 }
]
 ...
}

Update a schedule

To update a schedule definition, use a PUT request and update all the static properties of the object.

This example disables the testlog schedule created in the previous example by setting "enabled":false :

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1145

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=2.0" \
--request PUT \
--data '{
 "enabled": false,
 "type": "cron",
 "schedule": "0/1 * * * * ?",
 "persisted": true,
 "misfirePolicy": "fireAndProceed",
 "invokeService": "script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 }
}' \
"http://localhost:8080/openidm/scheduler/job/testlog-schedule"
{
 "_id": "testlog-schedule",
 "enabled": false,
 "persisted": true,
 "recoverable": false,
 "misfirePolicy": "fireAndProceed",
 "schedule": "0/1 * * * * ?",
 "repeatInterval": 0,
 "repeatCount": 0,
 "type": "cron",
 "invokeService": "org.forgerock.openidm.script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 },
 "invokeLogLevel": "info",
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false,
 "triggers": [],
 "previousRunDate": null,
 "nextRunDate": null
}

When you disable a schedule, all triggers are removed, and the nextRunDate is set to null . If you re-enable the schedule, a new
trigger is generated, and the nextRunDate is recalculated.

Schedules PingIDM

1146 Copyright © 2025 Ping Identity Corporation

List running scheduled jobs

This example returns a list of the jobs that are currently executing. The list lets you decide whether to wait for a specific job to
complete before shutting down a server.

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request POST \
"http://localhost:8080/openidm/scheduler/job?_action=listCurrentlyExecutingJobs"
[
 {
 "enabled": true,
 "persisted": true,
 "misfirePolicy": "fireAndProceed",
 "type": "simple",
 "repeatInterval": 3600000,
 "repeatCount": -1,
 "invokeService": "org.forgerock.openidm.sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccounts_managedUser"
 },
 "invokeLogLevel": "info",
 "timeZone": null,
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false
 }
]

Trigger a schedule manually

For testing purposes, and for certain administrative tasks, you can trigger a scheduled task manually, outside of its specified
schedule. A scheduled task must be enabled before it can be triggered.

This command triggers the testlog-schedule job created previously:

info
This action does not list the jobs across a cluster, only the jobs currently executing on the node to which the
request is routed.
The list is accurate only at the moment the request was issued, and can change at any time after the response
is received.

Note

•

•

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1147

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request POST \
"http://localhost:8080/openidm/scheduler/job/testlog-schedule?_action=trigger"
{
 "success": true
}

Pause and resume a scheduled job

Instead of deleting and recreating scheduled jobs, you can pause and resume them if necessary. This command pauses the
testlog-schedule job:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request POST \
"http://localhost:8080/openidm/scheduler/job/testlog-schedule?_action=pause"
{
 "success": true
}

This command resumes the testlog-schedule job:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request POST \
"http://localhost:8080/openidm/scheduler/job/testlog-schedule?_action=resume"
{
 "success": true
}

Pause all scheduled jobs

You can temporarily suspend all scheduled jobs. This action does not cancel or interrupt jobs that are already in progress; it
simply prevents any scheduled jobs from being invoked during the suspension period.

info
This action is available only from version 2.0 of the scheduler API onwards.

Note

info
These actions are available only from version 2.0 of the scheduler API onwards.

Note

Schedules PingIDM

1148 Copyright © 2025 Ping Identity Corporation

This command suspends all scheduled tasks and returns true if the tasks could be suspended successfully:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request POST \
"http://localhost:8080/openidm/scheduler/job?_action=pauseJobs"
{
 "success": true
}

Resume all scheduled jobs

You can resume scheduled jobs to start them up again. Any jobs that were missed during the downtime follow their configured
misfirePolicy .

This command resumes all scheduled jobs and returns true if the jobs could be resumed successfully:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request POST \
"http://localhost:8080/openidm/scheduler/job?_action=resumeJobs"
{
 "success": true
}

Query schedule triggers

When a scheduled job is created, a trigger for that job is created automatically and is included in the schedule definition. The
trigger is essentially what causes the job to be started. You can read all the triggers that have been generated on a system with
the following query on the openidm/scheduler/trigger context path:

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1149

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request GET \
"http://localhost:8080/openidm/scheduler/trigger?_queryFilter=true"
{
 "result": [
 {
 "_id": "scheduler-service-group.trigger-testlog-schedule",
 "_rev": "00000000db3523f1",
 "calendar": null,
 "group": "scheduler-service-group",
 "jobKey": "scheduler-service-group.testlog-schedule",
 "name": "trigger-testlog-schedule",
 "nodeId": "node1",
 "previousState": null,
 "serialized": {
 ...
 },
 "state": "NORMAL"
 }
]
}

The trigger object contents are:

_id

The ID of the trigger, which is based on the schedule ID. The trigger ID is made up of the group name, followed by
trigger- prepended to the schedule ID: group.trigger-schedule-id . For example, if the schedule ID was testlog-
schedule , then the trigger ID would be scheduler-service-group.trigger-testlog-schedule .

_rev

The revision of the trigger object. This property is reserved for internal use and specifies the revision of the object in the
repository. This is the same value that is exposed as the object’s ETag through the REST API. The content of this property is
not defined. No consumer should make any assumptions of its content beyond equivalence comparison.

previousState

The previous state of the trigger, before its current state. For a description of Quartz trigger states, refer to the Quartz API
documentation.

name

The trigger name, which matches the ID of the schedule that created the trigger, with trigger- added: trigger-
schedule-id .

state

The current state of the trigger. For a description of Quartz trigger states, refer to the Quartz API documentation.

Schedules PingIDM

1150 Copyright © 2025 Ping Identity Corporation

https://www.quartz-scheduler.org/api/2.3.0/org/quartz/Trigger.TriggerState.html
https://www.quartz-scheduler.org/api/2.3.0/org/quartz/Trigger.TriggerState.html
https://www.quartz-scheduler.org/api/2.3.0/org/quartz/Trigger.TriggerState.html
https://www.quartz-scheduler.org/api/2.3.0/org/quartz/Trigger.TriggerState.html
https://www.quartz-scheduler.org/api/2.3.0/org/quartz/Trigger.TriggerState.html

nodeId

The ID of the node that has acquired the trigger, useful in a clustered deployment. If the trigger has not been acquired by
a node yet, this will return null .

calendar

This is a part of the Quartz implementation, but is not currently supported by IDM. This will always return null .

serialized

The JSON serialization of the trigger class.

group

The name of the group that the trigger is in, always scheduler-service-group .

jobKey

The name of the job associated with the trigger: group.schedule-id .

To read the contents of a specific trigger, send a GET request to the trigger ID; for example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request GET \
"http://localhost:8080/openidm/scheduler/trigger/scheduler-service-group.trigger-testlog-schedule"
{
 "_id": "scheduler-service-group.trigger-testlog-schedule",
 "_rev": "00000000cd1723dd",
 "calendar": null,
 "group": "scheduler-service-group",
 "jobKey": "scheduler-service-group.testlog-schedule",
 "name": "trigger-testlog-schedule",
 "nodeId": "node1",
 "previousState": null,
 "serialized": {
 ...
 },
 "state": "NORMAL"
}

To view the triggers that have been acquired, send a GET request to the scheduler, with a _queryFilter of nodeId . For
example:

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1151

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request GET \
"http://localhost:8080/openidm/scheduler/trigger?_queryFilter=(nodeId+pr)"

To view the triggers that have not yet been acquired by any node, send a GET request to the scheduler, with a _queryFilter to
list the triggers with a null nodeId . For example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request GET \
"http://localhost:8080/openidm/scheduler/trigger?_queryFilter=%21(nodeId+pr)"

Delete a schedule

To delete a schedule, send a DELETE request to the schedule ID. For example:

Schedules PingIDM

1152 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=2.0" \
--request DELETE \
"http://localhost:8080/openidm/scheduler/job/testlog-schedule"
{
 "_id": "testlog-schedule",
 "enabled": false,
 "persisted": true,
 "recoverable": false,
 "misfirePolicy": "fireAndProceed",
 "schedule": "0/1 * * * * ?",
 "repeatInterval": 0,
 "repeatCount": 0,
 "type": "cron",
 "invokeService": "org.forgerock.openidm.script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "file": "script/testlog.js"
 }
 },
 "invokeLogLevel": "info",
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false,
 "triggers": [],
 "previousRunDate": null,
 "nextRunDate": null
}

The DELETE request returns the entire JSON object.

Manage schedules using the admin UI

To manage schedules using the admin UI, click Configure > Schedules.

Add, remove, and change schedules here. By default, only persisted schedules are shown in the Schedules list. To show non-
persisted (in memory) schedules, select Filter by Type > In Memory.

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1153

Schedules and daylight savings time

The scheduler service supports Quartz cron triggers and simple triggers. Cron triggers schedule jobs to fire at specific times with
respect to a calendar (rather than every N milliseconds). This scheduling can cause issues when clocks change for daylight savings
time (DST) if the trigger time falls around the clock change time in your specific time zone.

Depending on the trigger schedule, and on the daylight event, the trigger might be skipped or might appear not to fire for a short
period. This interruption can be particularly problematic for liveSync where schedules execute continuously. In this case, the time
change (for example, from 02:00 back to 01:00) causes an hour break between each liveSync execution.

To prevent DST from having an impact on your schedules, use simple triggers instead of cron triggers.

Persistent schedules

By default, scheduling information (such as schedule state, and the details of the schedule run) is stored in RAM. This means that
such information is lost when the server is rebooted. The schedule configuration is not lost when the server is shut down, and
normal scheduling continues when the server is restarted. However, there are no details of missed schedule runs that should
have occurred during the period the server was unavailable.

You can configure schedules to be persistent, which means that the scheduling information is stored in the internal repository,
rather than in RAM. With persistent schedules, scheduling information is retained when the server is shut down. Any previously
scheduled jobs can be rescheduled automatically when the server is restarted.

Persistent schedules also let you manage scheduling across a cluster (multiple IDM instances). When scheduling is persistent, a
particular schedule will be launched only once across the cluster, rather than once on every instance. For example, if your
deployment includes a cluster of nodes for high availability, you can use persistent scheduling to start a reconciliation operation
on only one node in the cluster, instead of starting several competing reconciliation operations on each node.

Schedules PingIDM

1154 Copyright © 2025 Ping Identity Corporation

To configure persistent schedules, set persisted to true in the schedule configuration.

If the server is down when a scheduled task was set to occur, one or more runs of that schedule might be missed. To specify what
action should be taken if schedules are missed, set the misfirePolicy in the schedule configuration file. The misfirePolicy
determines what IDM should do if scheduled tasks are missed. Possible values are as follows:

fireAndProceed

The first run of a missed schedule is immediately implemented when the server is back online. Subsequent runs are
discarded. After this, the normal schedule is resumed.

doNothing

All missed schedules are discarded and the normal schedule is resumed when the server is back online.

Scheduler metrics

Before you can use scheduler metrics, you must enable metrics. For the complete list of scheduler metrics, refer to API scheduler
metrics available in IDM.

Example scheduler metrics

scheduler.trigger.acquired.success

Request

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/metrics/api?_queryFilter=/_id+eq+"scheduler.trigger.acquired.success"'

emergency_home
Persistent schedules rely on timestamps. In a deployment where IDM instances run on separate machines, you must
synchronize the system clocks of these machines using a time synchronization service that runs regularly. The clocks
of all machines involved in persistent scheduling must be within one second of each other. For information on how
you can achieve this using the Network Time Protocol (NTP) daemon, refer to the NTP RFC.

Important

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1155

https://www.rfc-editor.org/rfc/rfc7822.html
https://www.rfc-editor.org/rfc/rfc7822.html

Response

{
 "result": [
 {
 "_id": "scheduler.trigger.acquired.success",
 "m15_rate": 1.3331465689081097,
 "m1_rate": 1.0309301543856877,
 "m5_rate": 1.2318064768948462,
 "mean_rate": 1.0258321337261471,
 "units": "events/second",
 "total": 183,
 "count": 183,
 "_type": "summary"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "EXACT",
 "totalPagedResults": 1,
 "remainingPagedResults": -1
}

scheduler.trigger.fired

Request

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/metrics/api?_queryFilter=/_id+eq+"scheduler.trigger.fired"'

Schedules PingIDM

1156 Copyright © 2025 Ping Identity Corporation

Response

{
 "result": [
 {
 "_id": "scheduler.trigger.fired",
 "m15_rate": 1.1575004755551879,
 "m1_rate": 1.0055565867908252,
 "m5_rate": 1.0976754941332376,
 "mean_rate": 1.0083534436743353,
 "units": "events/second",
 "total": 224,
 "count": 224,
 "_type": "summary"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "EXACT",
 "totalPagedResults": 1,
 "remainingPagedResults": -1
}

scheduler.job.job-group.job-name.executed

The following example retrieves the metric for an executed schedule with the following details:

job-group = scheduler-service-group

job-name = script

Request

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/metrics/api?_queryFilter=/_id+eq+"scheduler.job.scheduler-service-
group.script.executed"'

•

•

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1157

Response

{
 "result": [
 {
 "_id": "scheduler.job.scheduler-service-group.script.executed",
 "count": 391,
 "max": 17.04553,
 "mean": 1.3264534620189976,
 "min": 0.524604,
 "p50": 1.3127419999999999,
 "p75": 1.555721,
 "p95": 1.7416239999999998,
 "p98": 1.898285,
 "p99": 2.075185,
 "p999": 2.4402909999999998,
 "stddev": 0.39220923689155185,
 "m15_rate": 1.1311176673815566,
 "m1_rate": 1.000355220709147,
 "m5_rate": 1.056353857818992,
 "mean_rate": 1.0048492196855094,
 "duration_units": "milliseconds",
 "rate_units": "calls/second",
 "total": 580.803062,
 "_type": "timer"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "EXACT",
 "totalPagedResults": 1,
 "remainingPagedResults": -1
}

scheduler.job.job-group.job-name.completed

The following example retrieves the metric for a completed schedule with the following details:

job-group = scheduler-service-group

job-name = script

Request

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/metrics/api?_queryFilter=/_id+eq+"scheduler.job.scheduler-service-
group.script.completed"'

•

•

Schedules PingIDM

1158 Copyright © 2025 Ping Identity Corporation

Response

{
 "result": [
 {
 "_id": "scheduler.job.scheduler-service-group.script.completed",
 "m15_rate": 1.2596544396953329,
 "m1_rate": 1.0147166389216893,
 "m5_rate": 1.1109942946670412,
 "mean_rate": 1.0036465219104702,
 "units": "events/second",
 "total": 398,
 "count": 398,
 "_type": "summary"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "EXACT",
 "totalPagedResults": 1,
 "remainingPagedResults": -1
}

Schedule examples

The following example shows a schedule for reconciliation that is not enabled. When the schedule is enabled ("enabled" :
true,), reconciliation runs every 30 minutes (1800000 milliseconds), and repeats indefinitely:

{
 "enabled": false,
 "persisted": true,
 "type": "simple",
 "repeatInterval": 1800000,
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccounts_managedUser"
 }
}

The following example shows a schedule for liveSync enabled to run every 15 seconds, repeating indefinitely. Note that the
schedule is persisted; that is, stored in the repository rather than in memory. If one or more liveSync runs are missed, as a result
of the server being unavailable, the first run of the liveSync operation is implemented when the server is back online. Subsequent
runs are discarded. After this, the normal schedule is resumed:

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1159

{
 "enabled": true,
 "persisted": true,
 "misfirePolicy" : "fireAndProceed",
 "type": "simple",
 "repeatInterval": 15000,
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/ldap/account"
 }
}

Scan data to trigger tasks

In addition to the fine-grained scheduling facility, IDM provides a task scanning mechanism. The task scanner lets you scan a set
of properties with a complex query filter, at a scheduled interval, and then launches a script on the objects returned by the query.

For example, the task scanner can scan all managed/user objects for a specific date, and invoke a script that launches a task on
the user object when that date is reached.

The task scanner runs a scheduled task that queries a managed object, then launches a script based on the query results.
Scanning tasks are configured in the same way as standard scheduled tasks, as part of the schedule configuration, with the
invokeService parameter set to taskscanner . The invokeContext parameter defines the scan details, and the task that
should be launched when the specified condition is triggered.

Activate and deactivate accounts

The default IDM configuration includes two scanning tasks that activate and deactivate a user’s accountStatus , based on their
activeDate and inactiveDate . The tasks run once a day by default.

The activate task

The activate task (conf/schedule-taskscan_activate.json) has the following configuration:

info
Both tasks are disabled by default. To enable them, set "enabled" : true in the schedule configuration for each
task.

Note

Schedules PingIDM

1160 Copyright © 2025 Ping Identity Corporation

{
 "enabled" : false,
 "type" : "simple",
 "repeatInterval" : 86400000,
 "persisted" : true,
 "concurrentExecution" : false,
 "invokeService" : "taskscanner",
 "invokeContext" : {
 "waitForCompletion" : false,
 "numberOfThreads" : 5,
 "scan" : {
 "_queryFilter" : "((/activeDate le \"${Time.nowWithOffset}\") AND (!(/inactiveDate pr) or /inactiveDate ge \"$
{Time.nowWithOffset}\"))",
 "object" : "managed/user",
 "taskState" : {
 "started" : "/activateAccount/task-started",
 "completed" : "/activateAccount/task-completed"
 },
 "recovery" : {
 "timeout" : "10m"
 }
 },
 "task" : {
 "script" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "var patch = [{ \"operation\" : \"replace\", \"field\" : \"/accountStatus\", \"value\" :
\"active\" }];\n\nlogger.debug(\"Performing Activate Account Task on {} ({})\", input.mail, objectID);
\n\nopenidm.patch(objectID, null, patch); true;"
 }
 }
 }
}

When you run this task, a user account is activated if both of the following are true:

Their activeDate is less than or equal to the value of Time.nowWithOffset .

Their inactiveDate is greater than or equal to the value of Time.nowWithOffset , or they do not have an inactiveDate
set.

The expire task

The expire task (conf/schedule-taskscan_expire.json) has the following configuration:

•

•

info
Time.nowWithOffset is the current time plus the UTC time offset for the user’s geographical region.

Note

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1161

{
 "enabled" : false,
 "type" : "simple",
 "repeatInterval" : 86400000,
 "persisted" : true,
 "concurrentExecution" : false,
 "invokeService" : "taskscanner",
 "invokeContext" : {
 "waitForCompletion" : false,
 "numberOfThreads" : 5,
 "scan" : {
 "_queryFilter" : "((/inactiveDate lt \"${Time.nowWithOffset}\") AND (!(/activeDate pr) or /activeDate le \"$
{Time.nowWithOffset}\"))",
 "object" : "managed/user",
 "taskState" : {
 "started" : "/expireAccount/task-started",
 "completed" : "/expireAccount/task-completed"
 },
 "recovery" : {
 "timeout" : "10m"
 }
 },
 "task" : {
 "script" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "var patch = [{ \"operation\" : \"replace\", \"field\" : \"/accountStatus\", \"value\" :
\"inactive\" }];\n\nlogger.debug(\"Performing Expire Account Task on {} ({})\", input.mail, objectID);
\n\nopenidm.patch(objectID, null, patch); true;"
 }
 }
 }
}

When you run this task, a user account is deactivated if both of the following are true:

Their inactiveDate (expiry date) is less than the value of Time.nowWithOffset .

Their activeDate is less than or equal to the value of Time.nowWithOffset , or they do not have an activeDate set.

Create a new scanning task

The following example (openidm/samples/example-configurations/task-scanner/conf/schedule-taskscan_sunset.json)
defines a scheduled scanning task that triggers a sunset script:

•

•

info
Time.nowWithOffset is the current time plus the UTC time offset for the user’s geographical region.

Note

Schedules PingIDM

1162 Copyright © 2025 Ping Identity Corporation

{
 "enabled" : true,
 "type" : "simple",
 "repeatInterval" : 3600000,
 "persisted": true,
 "concurrentExecution" : false,
 "invokeService" : "taskscanner",
 "invokeContext" : {
 "waitForCompletion" : false,
 "numberOfThreads" : 5,
 "scan" : {
 "_queryFilter" : "((/sunset/date lt \"${Time.now}\") AND !(/sunset/task-completed pr))",
 "object" : "managed/user",
 "taskState" : {
 "started" : "/sunset/task-started",
 "completed" : "/sunset/task-completed"
 },
 "recovery" : {
 "timeout" : "10m"
 }
 },
 "task" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "script/sunset.js"
 }
 }
 }
}

The schedule configuration calls a script (sunset.js). To test the sample, copy this file to your project’s script directory or
replace "file" : "script/sunset.js" with the script source ("source" : "contents of sunset.js"). The sample script
marks all user objects that match the specified conditions as inactive. You can use this sample script to trigger a specific workflow,
or any other task associated with the sunset process.

The task will only execute on users who have a valid sunset/date field. You can add a sunset/date field to user entries over
REST. To make the field visible in the admin UI, you must add it to your managed object configuration.

This example command adds a sunset/date field to bjensen 's entry, over REST:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '[{
 "operation" : "add",
 "field" : "sunset/date",
 "value" : "2019-12-20T12:00:00Z"
}]' \
"http://localhost:8080/openidm/managed/user?_action=patch&_queryFilter=userName+eq+'bjensen'"

The remaining properties in the schedule configuration are as follows:

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1163

file:///home/jenkins/target/_attachments/sunset.js
file:///home/jenkins/target/_attachments/sunset.js

The invokeContext parameter takes the following properties:

waitForCompletion (optional)

This property specifies whether the task should be performed synchronously. Tasks are performed asynchronously by
default (with waitForCompletion set to false). A task ID (such as {"_id":"354ec41f-c781-4b61-85ac-93c28c180e46"}) is
returned immediately. If this property is set to true, tasks are performed synchronously, and the ID is not returned until all
tasks have completed.

maxRecords (optional)

The maximum number of records that can be processed. This property is not set by default so the number of records is
unlimited. If a maximum number of records is specified, that number will be spread evenly over the number of threads.

numberOfThreads (optional)

By default, the task scanner runs in a multi-threaded manner; that is, numerous threads are dedicated to the same
scanning task run. Multi-threading generally improves the performance of the task scanner. The default number of
threads for a single scanning task is 10. To change this default, set the numberOfThreads property. The sample
configuration sets the default number of threads to 5.

scan

The details of the scan. The following properties are defined:

_queryFilter

The query filter that identifies the entries for which this task should be run.

The query filter provided in the sample schedule configuration (/sunset/date lt \"${Time.now}\") AND !(/
sunset/task-completed pr) identifies managed users whose sunset/date property is before the current date
and for whom the sunset task has not yet completed.

The sample query supports time-based conditions, with the time specified in ISO 8601 format (Zulu time). You can
write any query to target the set of entries that you want to scan.

For time-based queries, it’s possible to use the ${Time.now} macro object (which fetches the current time). You
can also specify any date/time in relation to the current time, using the ` or `-` operator, and a duration
modifier. For example: changing the sample query to `${Time.now + 1d}` would return all user

objects whose `/sunset/date` is the following day (current time plus one day). Note: you must

include space characters around the operator (`` or -`). The duration modifier supports the following unit
specifiers:

s second

m minute

h hour

d day

M month

y year

•

•

•

•

•

•

Schedules PingIDM

1164 Copyright © 2025 Ping Identity Corporation

object

Defines the managed object type against which the query should be performed, as defined in the managed.json
file.

taskState

Indicates the names of the fields in which the start message, and the completed message are stored. These fields
are used to track the status of the task.

started

specifies the field that stores the timestamp for when the task begins.

completed

specifies the field that stores the timestamp for when the task completes its operation. The completed field
is present as soon as the task has started, but its value is null until the task has completed.

recovery (optional)

Specifies a configurable timeout , after which the task scanner process ends. For clustered IDM instances, there
might be more than one task scanner running at a time. A task cannot be launched by two task scanners at the
same time. When one task scanner "claims" a task, it indicates that the task has been started. That task is then
unavailable to be claimed by another task scanner and remains unavailable until the end of the task is indicated. In
the event that the first task scanner does not complete the task by the specified timeout, for whatever reason, a
second task scanner can pick up the task.

task

Provides details of the task that is performed. Usually, the task is invoked by a script, whose details are defined in the
script property:

type

The script type.

IDM supports "text/javascript" and "groovy" .

file

The path to the script file. The script file takes at least two objects (in addition to the default objects that are
provided to all IDM scripts):

input

The individual object that is retrieved from the query (in the example, this is the individual user object).

objectID

A string that contains the full identifier of the object. The objectID is useful for performing updates with
the script as it allows you to target the object directly. For example: openidm.update(objectID,
input['_rev'], input); .

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1165

Manage scanning tasks

Once you create scanning tasks, you may want to update them. For example, you might want to trigger, cancel, or list the existing
scanning tasks.

You can manage scanning tasks in IDM using:

REST

Admin UI

Manage scanning tasks using REST

You can trigger, cancel, and monitor scanning tasks over the REST interface, using the REST endpoint openidm/taskscanner .

Create a scanning task

You can define a scanning task in a configuration file or directly over the REST interface. For an example of a file-based scanning
task, refer to the file /path/to/openidm/samples/example-configurations/task-scanner/conf/schedule-
taskscan_sunset.json .

The following command defines a scanning task named sunsetTask :

info
For more information about using scripts, refer to Scripting function reference.

Note

•

•

Schedules PingIDM

1166 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-type: application/json" \
--header "Accept-API-Version: resource=2.0" \
--request PUT \
--data '{
 "enabled" : true,
 "type" : "simple",
 "repeatInterval" : 3600000,
 "persisted": true,
 "concurrentExecution" : false,
 "invokeService" : "taskscanner",
 "invokeContext" : {
 "waitForCompletion" : false,
 "numberOfThreads" : 5,
 "scan" : {
 "_queryFilter" : "/sunset/date lt \"$\{Time.now}\") AND !(/sunset/task-completed pr",
 "object" : "managed/user",
 "taskState" : {
 "started" : "/sunset/task-started",
 "completed" : "/sunset/task-completed"
 },
 "recovery" : {
 "timeout" : "10m"
 }
 },
 "task" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "script/sunset.js"
 }
 }
 }
}' \
"http://localhost:8080/openidm/scheduler/job/sunsetTask"
{
 "_id": "sunsetTask",
 "enabled": true,
 "persisted": true,
 "recoverable": false,
 "misfirePolicy": "fireAndProceed",
 "schedule": null,
 "repeatInterval": 3600000,
 "repeatCount": -1,
 "type": "simple",
 "invokeService": "org.forgerock.openidm.taskscanner",
 "invokeContext": {
 "waitForCompletion": false,
 "numberOfThreads": 5,
 "scan": {
 "_queryFilter": "/sunset/date lt \"$\{Time.now}\") AND !(/sunset/task-completed pr",
 "object": "managed/user",
 "taskState": {

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1167

 "started": "/sunset/task-started",
 "completed": "/sunset/task-completed"
 },
 "recovery": {
 "timeout": "10m"
 }
 },
 "task": {
 "script": {
 "type": "text/javascript",
 "file": "script/sunset.js"
 }
 }
 },
 "invokeLogLevel": "info",
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false,
 "triggers": [
 {
 "calendar": null,
 "group": "scheduler-service-group",
 "jobKey": "scheduler-service-group.sunsetTask",
 "name": "trigger-sunsetTask",
 "nodeId": null,
 "previousState": null,
 "serialized": {
 "type": "SimpleTriggerImpl",
 "calendarName": null,
 "complete": false,
 "description": null,
 "endTime": null,
 "fireInstanceId": null,
 "group": "scheduler-service-group",
 "jobDataMap": {
 "scheduler.invokeService": "org.forgerock.openidm.taskscanner",
 "scheduler.config-name": "scheduler-sunsetTask",
 "scheduler.invokeContext": {
 "waitForCompletion": false,
 "numberOfThreads": 5,
 "scan": {
 "_queryFilter": "/sunset/date lt \"$\{Time.now}\") AND !(/sunset/task-completed pr",
 "object": "managed/user",
 "taskState": {
 "started": "/sunset/task-started",
 "completed": "/sunset/task-completed"
 },
 "recovery": {
 "timeout": "10m"
 }
 },
 "task": {
 "script": {
 "type": "text/javascript",
 "file": "script/sunset.js"

Schedules PingIDM

1168 Copyright © 2025 Ping Identity Corporation

 }
 }
 },
 "schedule.config": {
 "enabled": true,
 "persisted": true,
 "recoverable": false,
 "misfirePolicy": "fireAndProceed",
 "schedule": null,
 "repeatInterval": 3600000,
 "repeatCount": -1,
 "type": "simple",
 "invokeService": "org.forgerock.openidm.taskscanner",
 "invokeContext": {
 "waitForCompletion": false,
 "numberOfThreads": 5,
 "scan": {
 "_queryFilter": "/sunset/date lt \"$\{Time.now}\") AND !(/sunset/task-completed pr",
 "object": "managed/user",
 "taskState": {
 "started": "/sunset/task-started",
 "completed": "/sunset/task-completed"
 },
 "recovery": {
 "timeout": "10m"
 }
 },
 "task": {
 "script": {
 "type": "text/javascript",
 "file": "script/sunset.js"
 }
 }
 },
 "invokeLogLevel": "info",
 "startTime": null,
 "endTime": null,
 "concurrentExecution": false
 },
 "scheduler.invokeLogLevel": "info"
 },
 "jobGroup": "scheduler-service-group",
 "jobName": "sunsetTask",
 "misfireInstruction": 1,
 "name": "trigger-sunsetTask",
 "nextFireTime": 1570618094818,
 "previousFireTime": null,
 "priority": 5,
 "repeatCount": -1,
 "repeatInterval": 3600000,
 "startTime": 1570618094818,
 "timesTriggered": 0,
 "volatility": false
 },
 "state": "NORMAL",

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1169

 "_rev": "000000006751ccf1",
 "_id": "scheduler-service-group.trigger-sunsetTask"
 }
],
 "previousRunDate": null,
 "nextRunDate": "2019-10-09T10:48:14.818Z"
}

Trigger a scanning task

To trigger a scanning task over REST, use the execute action and specify the name of the task (effectively the scheduled job
name). To obtain a list of task names, you can query the /openidm/scheduler/job endpoint. Note, however, that not all jobs are
scanning tasks. Only those jobs that have which have the correct task scanner invokeContext can be triggered in this way.

The following example triggers the sunsetTask defined in the previous example:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/taskscanner?_action=execute&name=sunsetTask"
{
 "_id": "9f2564c8-193c-4871-8869-6080f374b1bd-2073"
}

For scanning tasks that are defined in configuration files, you can determine the task name from the file name, for example,
schedule-task-name.json . The following example triggers a task named taskscan_sunset that is defined in a file named
conf/schedule-taskscan_sunset.json :

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/taskscanner?_action=execute&name=taskscan_sunset"
{
 "_id": "8d7742f0-5245-41cf-89a5-de32fc50e326-3323"
}

By default, a scanning task ID is returned immediately when the task is initiated. Clients can make subsequent calls to the task
scanner service, using this task ID to query its state and to call operations on it.

To have the scanning task complete before the ID is returned, set the waitForCompletion property to true in the task definition
file (schedule-taskscan_sunset.json).

Cancel a scanning task

To cancel a scanning task that is in progress, send a REST call with the cancel action, specifying the task ID. The following call
cancels the scanning task initiated in the previous example:

Schedules PingIDM

1170 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/taskscanner/9f2564c8-193c-4871-8869-6080f374b1bd-2073?_action=cancel"
{
 "_id":"9f2564c8-193c-4871-8869-6080f374b1bd-2073",
 "status":"SUCCESS"
}

List the scanning tasks

To retrieve a list of scanning tasks, query the openidm/taskscanner context path. The following example displays all scanning
tasks, regardless of their state:

info
You cannot cancel a scanning task that has already completed.

Note

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1171

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/taskscanner?_queryFilter=true"
{
 "result": [
 {
 "_id": "9f2564c8-193c-4871-8869-6080f374b1bd-2073",
 "name": "schedule/taskscan_sunset",
 "progress": {
 "state": "COMPLETED",
 "processed": 0,
 "total": 0,
 "successes": 0,
 "failures": 0
 },
 "started": "2017-12-19T11:45:53.433Z",
 "ended": "2017-12-19T11:45:53.438Z"
 },
 {
 "_id": "b32aafe5-b484-4d00-89ff-83554341f321-9970",
 "name": "schedule/taskscan_sunset",
 "progress": {
 "state": "ACTIVE",
 "processed": 80,
 "total": 980,
 "successes": 80,
 "failures": 0
 },
 "started": "2017-12-19T16:41:04.185Z",
 "ended": null
 }
]
 ...
}

Each scanning task has the following properties:

_id

The unique ID of that task instance.

name

The name of the scanning task, determined by the name of the schedule configuration file or over REST when the task is
executed.

started

The time at which the scanning task started.

Schedules PingIDM

1172 Copyright © 2025 Ping Identity Corporation

ended

The time at which the scanning task ended.

progress

The progress of the scanning task, summarized in the following fields:

The number of processed tasks whose details are retained is governed by the openidm.taskscanner.maxcompletedruns
property in the conf/system.properties file. By default, the last 100 completed tasks are retained.

Manage scanning tasks using the admin UI

The task scanner queries a set of managed objects, then executes a script on the objects returned in the query result. The
scanner then sets a field on a specific managed object property to indicate the state of the task. Before you start, you must set up
this object type property on the managed user object.

In the example that follows, the task scanner queries managed user objects and returns objects whose sunset property holds a
date that is prior to the current date. The scanner then sets the state of the task in the task-completed field of the user’s
sunset property.

Click Configure > Schedules, and click Add Schedule.

Enable the schedule, and set the times that the task should run.

Under Perform Action, select Execute a script on objects returned by a query (Task Scanner).

Select the managed object on which the query should be run; in this case, user .

Build the query that will be run against the managed user objects.

The following query returns all managed users whose sunset date is prior to the current date (${Time.now}) and for
whom the sunset task has not already completed (/sunset/task-completed pr):

((/sunset/date lt \"${Time.now}\") AND !(/sunset/task-completed pr))

In the Object Property Field, enter the property whose values will determine the state of the task; in this case, sunset .

In the Script field, enter an inline script, or a path to the file containing the script that should be launched on the results of
the query.

The sample task scanner runs the following script on the managed users returned by the previous query:

failures The number of records not able to be processed.
successes The number of records processed successfully.
total The total number of records.
processed The number of processed records.
state The current state of the task, INITIALIZED , ACTIVE , COMPLETED , CANCELLED , or ERROR .

1.

2.

3.

4.

5.

6.

7.

PingIDM Schedules

Copyright © 2025 Ping Identity Corporation 1173

var patch = [{ "operation" : "replace", "field" : "/active", "value" : false },{ "operation" : "replace",
"field" : "/accountStatus", "value" : "inactive" }];
openidm.patch(objectID, null, patch);

This script essentially deactivates the accounts of users returned by the query by setting the value of their active
property to false .

Configure the advanced properties of the schedule described in Configure Schedules.8.

Schedules PingIDM

1174 Copyright © 2025 Ping Identity Corporation

External services

Configure external email and external REST access.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Outbound email

The outbound email service sends email from IDM using a script or the REST API.

You can edit the email service over REST at the config/external.email endpoint, or in the external.email.json file in your
project’s conf directory.

Email service configuration types

IDM supports two email service configuration types:

SMTP - Email service that uses the Simple Mail Transfer Protocol.

MS Graph API - Email service that uses the MS Graph API sendMail endpoint.

MS Graph API requirements

Use of the MS Graph API email client requires a properly configured Microsoft Azure tenant. The basic steps for configuring an
Azure tenant should be used as an outline, as the specific options, menus, and features may have changed.

Email

Configure outbound email from IDM.

External REST

Access external REST services.

emergency_home
IDM supports UTF-8 (non-ASCII/international) characters in email addresses, such as zoë@example.com. When
sending emails to these type of addresses, the configured SMTP server must also support UTF-8.

Important

•

•

External services PingIDM

1176 Copyright © 2025 Ping Identity Corporation

https://www.forgerock.com
https://www.forgerock.com
https://learn.microsoft.com/en-us/graph/api/user-sendmail
https://learn.microsoft.com/en-us/graph/api/user-sendmail
https://learn.microsoft.com/en-us/graph/api/user-sendmail

Microsoft Sandbox
If you need a sandbox for testing only, check out the Microsoft developer sandbox subscription. Although the sandbox
accepts sendMail requests, the Microsoft Exchange service prevents messages from being delivered. The messages do
show up in the sender’s "sent" box, which should be sufficient for manual testing purposes.

Configure Azure for MS Graph API mail client

Navigate to Azure Active Directory | App registrations.

Create the IDM client application:

From the menu bar, click + New Registration.

On the Register an application page, enter the application Name, such as idm-email-client .

For Supported account types, select the applicable option for your organization.

Click Register.

On the idm-email-client page, in the main Essentials area, record the Application (client) ID.

Add a client secret:

On the idm-email-client page, in the main Essentials area, click Add a certificate or secret.

1.

2.

1.

2.

3.

4.

5.

info
This is the value for clientId in the auth settings of the email configuration. Refer to oauth2
properties.

Note

3.

1.

PingIDM External services

Copyright © 2025 Ping Identity Corporation 1177

https://learn.microsoft.com/en-us/office/developer-program/microsoft-365-developer-program-get-started
https://learn.microsoft.com/en-us/office/developer-program/microsoft-365-developer-program-get-started
https://portal.azure.com/#view/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/~/RegisteredApps
https://portal.azure.com/#view/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/~/RegisteredApps

On the Certificates & secrets page, select the Client secrets tab, and click + New client secret.2.

External services PingIDM

1178 Copyright © 2025 Ping Identity Corporation

In the Add a client secret window, enter the details, and click Add.

Copy the Value and Secret ID to a secure place before leaving the Certificates & secrets page.

Add API permissions:

From the side menu, click API permissions.

On the API permissions page, click + Add a permission.

In the Request API permissions windows, select the Microsft APIs tab, and click Microsoft Graph.

In the What type of permissions... area, click Application permissions.

In the Select permissions search bar, type send .

Expand the Mail node, and select Mail.Send.

Click Add permissions.

3.

4.

info
Use the secret Value for clientSecret in the auth settings of the email configuration. Refer to oauth2
properties.

Note

4.

1.

2.

3.

4.

5.

6.

7.

PingIDM External services

Copyright © 2025 Ping Identity Corporation 1179

Configure outbound email

To configure the outbound email service using the admin UI, click Configure > Email Settings.

Edit the email configuration with the mail server details and account.

Submit the configuration over REST or copy the file to your project’s conf/ directory. For example:

1.

lightbulb_2
For the complete list of configuration options, refer to External email configuration properties.
For sample email configurations, refer to Sample email configuration.

Tip

◦

◦

2.

External services PingIDM

1180 Copyright © 2025 Ping Identity Corporation

REST

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PUT \
--data '{
 "host" : "smtp.gmail.com",
 "port" : 587,
 "debug" : false,
 "auth" : {
 "enable" : true,
 "username" : "admin",
 "password" : "Passw0rd"
 },
 "from" : "admin@example.com",
 "timeout" : 300000,
 "writetimeout" : 300000,
 "connectiontimeout" : 300000,
 "starttls" : {
 "enable" : true
 },
 "ssl" : {
 "enable" : false
 },
 "smtpProperties" : [
 "mail.smtp.ssl.protocols=TLSv1.2",
 "mail.smtps.ssl.protocols=TLSv1.2"
],
 "threadPoolSize" : 20
}' \
"http://localhost:8080/openidm/config/external.email"

Filesystem

cp /path/to/external.email.json /path/to/openidm/conf/

Sample email configuration

This sample email configuration sets up the outbound email service:

info
IDM encrypts the password.

Note

PingIDM External services

Copyright © 2025 Ping Identity Corporation 1181

{
 "host" : "smtp.gmail.com",
 "port" : 587,
 "debug" : false,
 "auth" : {
 "enable" : true,
 "username" : "xxxxxxxx",
 "password" : "xxxxxxxx"
 },
 "timeout" : 300000,
 "writetimeout" : 300000,
 "connectiontimeout" : 300000,
 "starttls" : {
 "enable" : true
 },
 "ssl" : {
 "enable" : false
 },
 "smtpProperties" : [
 "mail.smtp.ssl.protocols=TLSv1.2",
 "mail.smtps.ssl.protocols=TLSv1.2"
],
 "threadPoolSize" : 20
}

{
 "type" : "msgraph",
 "mailEndpoint" : "https://graph.microsoft.com/v1.0/users/example@myTenant.onmicrosoft.com/sendMail",
 "from" : "example@myTenant.onmicrosoft.com",
 "auth" : {
 "enable" : true,
 "type" : "oauth2",
 "clientId" : "clientId",
 "clientSecret" : "clientSecret",
 "tokenEndpoint" : "https://login.microsoftonline.com/myTenant.onmicrosoft.com/oauth2/v2.0/token",
 "scope" : [
 "https://graph.microsoft.com/.default"
]
 },
 "timeout" : 300000,
 "writetimeout" : 300000,
 "connectiontimeout" : 300000,
 "threadPoolSize" : 20
}

SMTP

MS Graph API

External services PingIDM

1182 Copyright © 2025 Ping Identity Corporation

External email configuration properties

The msgraph type also supports the External REST configuration properties.

Properties

Property Description Required? /
Type Support

type The email service type, smtp or msgraph . When no type is
specified, the default value is smtp .

No

mailEndpoint The URI for the MS Graph API sendMail endpoint.
Typical format:

https://graph.microsoft.com/v1.0/users/{user}
@{tenant}.onmicrosoft.com/sendMail

Yes
Only for msgraph type.

host The host name or IP address of the SMTP server. This can be
the localhost , if the mail server is on the same system as
IDM.

Yes
Only for smtp type.

port SMTP server port number, such as 25, 465, or 587. Yes
Only for smtp type.

debug When set to true , this option outputs diagnostic messages
from the JavaMail library. Debug mode can be useful if you
are having difficulty configuring the external email endpoint
with your mail server.

No
Only for smtp type.

from Specifies a default From: address which displays when users
receive emails from IDM.

No

info
Many SMTP servers require the use of a secure port
such as 465 or 587. Many ISPs flag email from port 25
as spam.

Note

emergency_home
Although from is optional in the email configuration,
the email service requires this property to send email.
If you do not specify a from address in the email
configuration, you must provide one in another way,
for example:

From an email template.
As a parameter in the email service request
(from or _from).

Important

•
•

PingIDM External services

Copyright © 2025 Ping Identity Corporation 1183

Property Description Required? /
Type Support

auth Contains authentication detail sub-properties. Refer to the
authentication sub-properties table for all options.

Yes
Required sub-properties vary
based on type .

starttls If "enable" : true , enables the use of the STARTTLS
command (if supported by the server) to switch the
connection to a TLS-protected connection before issuing any
login commands. If the server does not support STARTTLS,
the connection continues without the use of TLS.

No
Only for smtp type.

ssl Set "enable" : true to use SSL to connect, and use the SSL
port by default.

No
Only for smtp type.

smtpProperties Specifies the SSL protocols that will be enabled for SSL
connections. Protocols are specified as a whitespace-
separated list. The default protocol is TLSv1.2.

No
Only for smtp type.

threadPoolSize Emails are sent in separate threads managed by a thread
pool. This property sets the number of concurrent emails
that can be handled at a specific time. The default thread
pool size (if none is specified) is 20 .

No

connectiontimeout The socket connection timeout, in milliseconds. The default
connection timeout (if none is specified) is 300000
milliseconds, or 5 minutes. A setting of 0 disables this
timeout.

No

timeout The socket read timeout, in milliseconds. The default read
timeout (if none is specified) is 300000 milliseconds, or 5
minutes. A setting of 0 disables this timeout.

No
Only for smtp type.

writetimeout The socket write timeout, in milliseconds. The default write
timeout (if none is specified) is 300000 milliseconds, or 5
minutes. A setting of 0 disables this timeout.

No
Only for smtp type.

External services PingIDM

1184 Copyright © 2025 Ping Identity Corporation

auth sub-properties

Property Description Required? /
Type Support

enable Whether you need login credentials to connect to the server/
API.

Yes

username Account used to connect to the server/API. No

password Password used to connect to the server/API. No

type Authentication type used to connect to the server/API:

basic —basic authentication using a username and
password. Default value.
oauth2 —OAuth2 authentication. Requires additional
oauth2 properties. The msgraph configuration type
only supports oauth2 .

Yes

oauth2 properties
The following properties are only applicable when the auth/type is oauth2 :

clientId clientId used to request an access token from the token
endpoint. Obtained during Azure application creation.

Yes

clientSecret clientSecret used to request an access token from the token
endpoint. Obtained during Azure application creation.

Yes

tokenEndpoint OAuth2 token endpoint.
Typical format:

https://login.microsoftonline.com/
{tenant}.onmicrosoft.com/oauth2/v2.0/token

Yes

scope Requested OAuth2 scopes in a JSON array of strings. Yes

scopeDelimiter Scope delimiter to use. Defaults to space. No

info
If "enable" : false, , you can leave the entries for
"username" and "password" empty:

"enable" : false,
"username" : "",
"password" : ""

Note

•

•

PingIDM External services

Copyright © 2025 Ping Identity Corporation 1185

Send mail using REST

In a production environment, you typically send mail from a script. To test your configuration, you can use the REST API by
sending an HTTP POST to /openidm/external/email . You pass the message parameters as part of the POST payload, URL
encoding the content, as necessary.

The following example sends a test email using the REST API:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "from":"openidm@example.com",
 "to":"your_email@example.com",
 "subject":"Test",
 "body":"Test"}' \
"http://localhost:8080/openidm/external/email?_action=send"
{
 "status": "OK",
 "message": "Email sent"
}

By default, a response is returned only when the SMTP relay has completed. To return a response immediately, without waiting
for the SMTP relay to finish, include the parameter waitForCompletion=false in the REST call. Use this option only if you do not
need to verify that the email was accepted by the SMTP server. For example:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "from":"openidm@example.com",
 "to":"your_email@example.com",
 "subject":"Test",
 "body":"Test"}' \
"http://localhost:8080/openidm/external/email?_action=send&waitForCompletion=false"
{
 "status": "OK",
 "message": "Email submitted"
}

Property Description Required? /
Type Support

grantType The only supported grant type is client_credentials . No

External services PingIDM

1186 Copyright © 2025 Ping Identity Corporation

Mail templates

You can send an email template using the sendTemplate action. For example:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "templateName":"welcome",
 "to":"your_email@example.com",
 "cc":"alt_email@example.com",
 "bcc":"bigBoss_email@example.com"}' \
"http://localhost:8080/openidm/external/email?_action=sendTemplate"
{
 "status": "OK",
 "message": "Email sent"
}

Send mail using a script

You can send email using the resource API functions, with the external/email context. For more information about these
functions, refer to openidm.action. In the following example, params is an object that contains the POST parameters:

var params = new Object();
params.from = "openidm@example.com";
params.to = "your_email@example.com";
params.cc = "bjensen@example.com,scarter@example.com";
params.subject = "OpenIDM recon report";
params.type = "text/html";
params.body = "<html><body><p>Recon report follows...</p></body></html>";

openidm.action("external/email", "send", params);

Mail templates

You can send an email template using the sendTemplate action. For example:

info
Email templates utilize Handlebar expressions to reference object data dynamically. For example, to reference the
userName of an object:

{{object.userName}}

Note

PingIDM External services

Copyright © 2025 Ping Identity Corporation 1187

https://handlebarsjs.com/guide/
https://handlebarsjs.com/guide/

Example 1

var params = new Object();
params.templateName = "welcome";
params.to = "your_email@example.com";
params.cc = "bjensen@example.com,scarter@example.com";
params.bcc = "bigBoss@example.com";

openidm.action("external/email", "sendTemplate", params);

Example 2

var params = new Object();
params.templateName = "myTemplate";
params.to = "hgale815@example.com";
params.object = { "givenName": newObject.givenName, "sn": newObject.sn, "mail": newObject.mail, "country":
newObject.country };

openidm.action("external/email", "sendTemplate", params);

external/email POST parameters

IDM supports the following POST parameters:

from

Sender mail address

to

Comma-separated list of recipient mail addresses

cc

Optional comma-separated list of copy recipient mail addresses

bcc

Optional comma-separated list of blind copy recipient mail addresses

info
Email templates utilize Handlebar expressions to reference object data dynamically. For example, to reference the
userName of an object:

{{object.userName}}

Note

External services PingIDM

1188 Copyright © 2025 Ping Identity Corporation

https://handlebarsjs.com/guide/
https://handlebarsjs.com/guide/

subject

Email subject

body

Email body text

type

Optional MIME type. One of "text/plain" , "text/html" , or "text/xml" .

Email rate limiting

No rate limiting is applied to password reset emails, or any emails sent by the IDM server. This means that an attacker can
potentially spam a known user account with an infinite number of emails, filling that user’s inbox. In the case of password reset,
the spam attack can obscure an actual password reset attempt.

In a production environment, you must configure email rate limiting through the network infrastructure in which IDM runs.
Configure the network infrastructure to detect and prevent frequent repeated requests to publicly accessible web pages, such as
the password reset page. You can also handle rate limiting within your email server.

Access External REST Services

The external REST service lets you access remote REST services at the openidm/external/rest context path or by specifying the
external/rest resource in your scripts. Note that this service is not intended as a full connector to synchronize or reconcile
identity data, but as a way to make dynamic HTTP calls as part of the IDM logic. For more declarative and encapsulated
interaction with remote REST services, and for synchronization or reconciliation operations, use the scripted REST
implementation of the Groovy connector.

An external REST call via a script might look something like the following:

openidm.action("external/rest", "call", params);

The call parameter specifies the action name to be used for this invocation, and is the standard method signature for the
openidm.action method.

An external REST call over REST might look something like the following:

PingIDM External services

Copyright © 2025 Ping Identity Corporation 1189

https://docs.pingidentity.com/openicf/connector-reference/groovy.html
https://docs.pingidentity.com/openicf/connector-reference/groovy.html

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "url": "http://urlecho.appspot.com/echo?status=200&Content-
Type=application%2Fjson&body=%5B%7B%22key%22%3A%22value%22%7D%5D",
 "method": "GET"
}' \
"http://localhost:8080/openidm/external/rest?_action=call"
[
 {
 "key": "value"
 }
]

Configure the External REST Service

You can edit the external REST configuration over REST at the config/external.rest endpoint, or in an external.rest.json
file in your project’s conf directory.

The following sample external REST configuration sets up the external REST service:

External services PingIDM

1190 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-type: application/json" \
--request PUT \
--data '{
 "socketTimeout" : "10 s",
 "connectionTimeout" : "10 s",
 "reuseConnections" : true,
 "retryRequests" : true,
 "maxConnections" : 64,
 "tlsVersion" : "&{openidm.external.rest.tls.version}",
 "hostnameVerifier" : "&{openidm.external.rest.hostnameVerifier}",
 "proxy" : {
 "proxyUri" : "",
 "userName" : "",
 "password" : ""
 }
}' \
"http://localhost:8080/openidm/config/external.rest"
{
 "_id": "external.rest",
 "socketTimeout": "10 s",
 "connectionTimeout": "10 s",
 "reuseConnections": true,
 "retryRequests": true,
 "maxConnections": 64,
 "tlsVersion": "&{openidm.external.rest.tls.version}",
 "hostnameVerifier": "&{openidm.external.rest.hostnameVerifier}",
 "proxy": {
 "proxyUri": "",
 "userName": "",
 "password": ""
 }
}

Using REST

PingIDM External services

Copyright © 2025 Ping Identity Corporation 1191

Copy the config to the external.rest.json file in your project’s conf directory:

{
 "socketTimeout" : "10 s",
 "connectionTimeout" : "10 s",
 "reuseConnections" : true,
 "retryRequests" : true,
 "maxConnections" : 64,
 "tlsVersion" : "&{openidm.external.rest.tls.version}",
 "hostnameVerifier" : "&{openidm.external.rest.hostnameVerifier}",
 "proxy" : {
 "proxyUri" : "",
 "userName" : "",
 "password" : ""
 }
}

External REST configuration properties

socketTimeout (string)

The TCP socket timeout, in seconds, when waiting for HTTP responses. The default timeout is 10 seconds.

connectionTimeout (string)

The TCP connection timeout for new HTTP connections, in seconds. The default timeout is 10 seconds.

reuseConnections (boolean, true or false)

Specifies whether HTTP connections should be kept alive and reused for additional requests. By default, connections will
be reused if possible.

retryRequests (boolean, true or false)

Specifies whether requests should be retried if a failure is detected. By default requests will be retried.

maxConnections (integer)

The maximum number of connections that should be pooled by the HTTP client. At most 64 connections will be pooled by
default.

tlsVersion (string)

The TLS version that should be used for connections.

By default, TLS connections made via the external REST service use TLS version 1.2. In some cases, you might need to
specify a different TLS version, for example, if you are connecting to a legacy system that supports an old version of TLS
that is not accommodated by the backward-compatibility mode of your Java client. If you need to specify that the external
REST service use a different TLS version, uncomment the openidm.external.rest.tls.version property towards the
end of the resolver/boot.properties file and set its value, for example:

Using the filesystem

External services PingIDM

1192 Copyright © 2025 Ping Identity Corporation

openidm.external.rest.tls.version=TLSv1.3

Valid versions for this parameter include TLSv1.1, TLSv1.2, and TLSv1.3.

hostnameVerifier (string)

Specifies whether the external REST service should check that the hostname to which an SSL client has connected is
allowed by the certificate that is presented by the server.

The property can take the following values:

STRICT - hostnames are validated

ALLOW_ALL - the external REST service does not attempt to match the URL hostname to the SSL certificate
Common Name, as part of its validation process

By default, this property is set in the resolver/boot.properties file and the value in conf/external.rest.json
references that setting. For testing purposes, the default setting in boot.properties is:

openidm.external.rest.hostnameVerifier=ALLOW_ALL

If you do not set this property (by removing it from the boot.properties file or the conf/external.rest.json file), the
behavior is to validate hostnames (the equivalent of setting "hostnameVerifier": "STRICT"). In production
environments, you should set this property to STRICT .

proxy

Lets you set a proxy server specific to the external REST service. If you set a proxyUri here, the system-wide proxy
settings described in HTTP Clients are ignored. To configure a system-wide proxy, leave these proxy settings empty and
configure the HTTP Client settings instead.

Invocation Parameters

The following parameters are passed in the resource API parameters map. These parameters can override the static
configuration (if present) on a per-invocation basis.

url

The target URL to invoke, in string format.

method

The HTTP action to invoke, in string format.

Possible actions include POST , GET , PUT , DELETE , and OPTIONS .

headers (optional)

The HTTP headers to set, in a map format from string (header-name) to string (header-value). For example, Accept-
Language: en-US .

•

•

PingIDM External services

Copyright © 2025 Ping Identity Corporation 1193

contentType (optional)

The media type of the data that is sent, for example "contentType" : "application/json" . This parameter is applied
only if no Content-Type header is included in the request. (If a Content-Type header is included, that header takes
precedence over this contentType parameter.) If no Content-Type is provided (in the header or with this parameter), the
default content type is application/json; charset=utf-8 .

body (optional)

The body or resource representation to send (for PUT and POST operations), in string format.

base64 (boolean, optional)

Indicates that the body is base64-encoded, and should be decoded prior to transmission.

forceWrap (boolean, optional)

Indicates that the response must be wrapped in the headers/body JSON message format, even if the response was JSON,
and would otherwise have been passed through unchanged.

If you need to disambiguate between HTTP 20x response codes, you must invoke the external REST service with
forceWrap=true . For failure cases, the HTTP status code is present within the wrapped response embedded in the
exception detail, or through the resource exception itself. For example:

External services PingIDM

1194 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "url": "http://urlecho.appspot.com/echo?status=203&Content-
Type=application%2Fjson&body=%5B%7B%22key%22%3A%22value%22%7D%5D",
 "method": "GET",
 "forceWrap": true}' \
"http://localhost:8080/openidm/external/rest?_action=call"
{
 "headers": {
 "Access-Control-Allow-Origin": [
 "*"
],
 "Cache-Control": [
 "max-age=3600"
],
 "Content-Length": [
 "17"
],
 "Content-Type": [
 "application/json"
],
 "Date": [
 "Fri, 17 Jul 2020 10:55:54 GMT"
],
 "Server": [
 "Google Frontend"
],
 "X-Cloud-Trace-Context": [
 "11e4441659a85832e47af219d6e657af"
]
 },
 "code": 203,
 "body": [
 {
 "key": "value"
 }
]
}

authenticate

The authentication type, and the details with which to authenticate.

IDM supports the following authentication types:

basic authentication with a username and password, for example:•

PingIDM External services

Copyright © 2025 Ping Identity Corporation 1195

"authenticate" : {
 "type": "basic",
 "user" : "john",
 "password" : "Passw0rd"
}

bearer authentication, with an OAuth token instead of a username and password, for example:

"authenticate" : {
 "type": "bearer",
 "token" : "ya29.iQDWKpn8AHy09p....."
}

If no authenticate parameter is specified, no authentication is used.

Support for Non-JSON Responses

The external REST service supports any arbitrary payload (currently in stringified format). If the response is anything other than
JSON, a JSON message object is returned:

For text-compatible (non-JSON) content, IDM returns a JSON object similar to the following:

{
 "headers": { "Content-Type": ["..."] },
 "body": "..."
}

Content that is not text-compatible (such as JPEGs) is base64-encoded in the response body and returned as follows:

{
 "headers": { "Content-Type": ["..."] },
 "body": "...",
 "base64": true
}

•

•

•

info
If the response format is JSON, the raw JSON response is returned. If you want to inspect the response headers, set
forceWrap to true in your request. This setting returns a JSON message object with headers and body , similar to
the object returned for text-compatible content.

Note

External services PingIDM

1196 Copyright © 2025 Ping Identity Corporation

Monitoring and metrics

Configure ForgeRock® Identity Management server logs and monitoring metrics.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

Server logs

Server logging is not the same as auditing. Auditing logs activity on the IDM system, such as access, and synchronization. Server
logging records information about the internal workings of IDM, like system messages, error reporting, service loading, or startup
and shutdown messaging.

Configure server logging in your project’s conf/logging.properties file. Changes to logging settings require a server restart
before they take effect. Alternatively, use JMX via jconsole to change the logging settings. In this case, changes take effect without
restarting the server.

Server Logs

Manage and read server logs.

Monitoring

Set up systems to monitor IDM.

Metrics

Monitoring metrics reference information.

Monitoring and metrics PingIDM

1198 Copyright © 2025 Ping Identity Corporation

https://www.forgerock.com
https://www.forgerock.com

Log message handlers

The way IDM logs messages is set in the handlers property in the logging.properties file. This property has the following
value by default:

handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler

The default handlers are:

FileHandler writes formatted log records to a single file or to a set of rotating log files. By default, log files are written to
logs/openidm*.log files.

ConsoleHandler writes formatted logs to System.err .

Additional log message handlers are listed in the logging.properties file.

Log message format

IDM supports the two default log formatters included with Java. These are set in the conf/logging.properties file:

java.util.logging.SimpleFormatter.format outputs a text log file that is human-readable. This is the default
formatter.

java.util.logging.XMLFormatter outputs logs as XML, for use in logging software that can read XML logs.

IDM extends the Java SimpleFormatter with the following formatting options:

org.forgerock.openidm.logger.SanitizedThreadIdLogFormatter

This is the default formatter for console and file logging. It extends the SimpleFormatter to include the thread ID of the
thread that generated each message. The thread ID helps with debugging when reviewing the logs.

In the following example log excerpt, the thread ID is [19] :

[19] May 23, 2018 10:30:26.959 AM org.forgerock.openidm.repo.opendj.impl.Activator start
INFO: Registered bootstrap repository service
[19] May 23, 2018 10:30:26.960 AM org.forgerock.openidm.repo.opendj.impl.Activator start
INFO: DS bundle started

org.forgerock.openidm.logger.ThreadIdLogFormatter

Similar to the SanitizedThreadIdLogFormatter , but does not encode control characters. If you do not want to encode
control characters in file and console log messages, edit the file and console handlers in conf/logging.properties as
follows:

•

•

•

•

lightbulb_2
The SanitizedThreadIdLogFormatter also encodes all control characters (such as newline characters) using
URL-encoding, to protect against log forgery. Control characters in stack traces are not encoded.

Tip

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1199

java.util.logging.FileHandler.formatter = org.forgerock.openidm.logger.ThreadIdLogFormatter

java.util.logging.ConsoleHandler.formatter = org.forgerock.openidm.logger.ThreadIdLogFormatter

The SimpleFormatter (and, by extension, the SanitizedThreadIdLogFormatter and ThreadIdLogFormatter) lets you
customize what information to include in log messages, and how this information is laid out. By default, log messages include the
date, time (down to the millisecond), log level, source of the message, and the message sent (including exceptions). To change the
defaults, adjust the value of java.util.logging.SimpleFormatter.format in your conf/logging.properties file. For more
information on how to customize the log message format, refer to the related Java documentation.

Logging level

By default, IDM logs messages at the INFO level. This logging level is specified with the following global property in conf/
logging.properties :

.level=INFO

You can specify different separate logging levels for individual server features which override the global logging level. Set the log
level, per package to one of the following:

SEVERE (highest value)
WARNING
INFO
CONFIG
FINE
FINER
FINEST (lowest value)

For example, the following setting decreases the messages logged by the embedded PostgreSQL database:

reduce the logging of embedded postgres since it is very verbose
ru.yandex.qatools.embed.postgresql.level = SEVERE

Set the log level to OFF to disable logging completely (Disable Logs), or to ALL to capture all possible log messages.

If you use logger functions in your JavaScript scripts, set the log level for the scripts as follows:

org.forgerock.openidm.script.javascript.JavaScript.level=level

You can override the log level settings, per script, with the following setting:

org.forgerock.openidm.script.javascript.JavaScript.script-name.level=level

Monitoring and metrics PingIDM

1200 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/SimpleFormatter.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/SimpleFormatter.html

For more information about using logger functions in scripts, refer to Log Functions.

Log file rotation

By default, IDM rotates log files when the size reaches 5 MB, and retains up to 5 files. All system and custom log messages are
also written to these files. You can modify these limits in the following properties in the logging.properties file for your project:

Limiting size of output file in bytes:
java.util.logging.FileHandler.limit = 5242880

Number of output files to cycle through, by appending an
integer to the base file name:
java.util.logging.FileHandler.count = 5

Disable logs

If necessary, you can disable logs. For example, to disable ConsoleHandler logging, make the following changes in your project’s
conf/logging.properties file before you start IDM.

Set java.util.logging.ConsoleHandler.level = OFF , and comment out other references to ConsoleHandler , as shown in the
following excerpt:

ConsoleHandler: A simple handler for writing formatted records to System.err
#handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler
handlers=java.util.logging.FileHandler
...
--- ConsoleHandler ---
Default: java.util.logging.ConsoleHandler.level = INFO
java.util.logging.ConsoleHandler.level = OFF
#java.util.logging.ConsoleHandler.formatter = ...
#java.util.logging.ConsoleHandler.filter=...

Monitoring

IDM includes the following tools for monitoring metrics:

A Dropwizard dashboard widget, for viewing metrics within IDM.

emergency_home
It is strongly recommended that you do not log messages at the FINE or FINEST levels in a production environment.
Although these levels are useful for debugging issues in a test environment, they can result in accidental exposure of
sensitive data. For example, a password change patch request can expose the updated password in the Jetty logs.

Important

info
There is currently no logging.properties setting for time-based rotation of server log files. However, on UNIX
systems you can use the logrotate command to schedule server log rotation at a regular interval. For more
information, refer to the logrotate man page.

Note

•

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1201

https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate

A Prometheus endpoint, for viewing metrics through external resources such as Prometheus and Grafana.

Enable metrics

IDM does not collect metrics by default. To enable metrics collection, open conf/metrics.json and set the enabled property to
true :

{
 "enabled" : true
}

After you have enabled metrics, the following command returns all collected metrics:

Request

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/metrics/api?_queryFilter=true'

•

Monitoring and metrics PingIDM

1202 Copyright © 2025 Ping Identity Corporation

Response

{
 "result": [
 {
 "_id": "jvm.memory-usage.pools.Metaspace.used",
 "value": 101709640,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.non-heap.used",
 "value": 159728512,
 "_type": "gauge"
 },
 {
 "_id": "repo.ds.get-connection",
 "count": 25,
 "max": 13.407542,
 "mean": 7.016551422258608,
 "min": 2.274208,
 "p50": 7.038666999999999,
 "p75": 8.653042,
 "p95": 12.613916999999999,
 "p98": 13.407542,
 "p99": 13.407542,
 "p999": 13.407542,
 "stddev": 3.0043480716919446,
 "m15_rate": 1.00220378348439,
 "m1_rate": 1.0294250758954837,
 "m5_rate": 1.0065021413358448,
 "mean_rate": 1.173715776010422,
 "duration_units": "milliseconds",
 "rate_units": "calls/second",
 "total": 174.284168,
 "_type": "timer"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Old-Gen.committed",
 "value": 794820608,
 "_type": "gauge"
 },
 {
 "_id": "user.session.static-user",
 "m15_rate": 0.19780232116334415,
 "m1_rate": 0.17175127368841633,
 "m5_rate": 0.1935515941358193,
 "mean_rate": 0.09993098620692964,
 "units": "events/second",
 "total": 2,
 "count": 2,
 "_type": "summary"
 },
 {
 "_id": "jvm.max-memory",
 "value": 2147483648,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.Compressed-Class-Space.usage",

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1203

 "value": 0.015285782516002655,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'non-profiled-nmethods'.init",
 "value": 2555904,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.non-heap.usage",
 "value": -233855696,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Old-Gen.init",
 "value": 2034237440,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.total.max",
 "value": 2147483647,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.total.committed",
 "value": 2399019008,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.heap.init",
 "value": 2147483648,
 "_type": "gauge"
 },
 {
 "_id": "repo.ds.update.cluster",
 "count": 5,
 "max": 13.490832999999999,
 "mean": 11.40983226004801,
 "min": 8.795417,
 "p50": 10.932459,
 "p75": 12.708499999999999,
 "p95": 13.490832999999999,
 "p98": 13.490832999999999,
 "p99": 13.490832999999999,
 "p999": 13.490832999999999,
 "stddev": 1.594812363576534,
 "m15_rate": 0.2011018917421949,
 "m1_rate": 0.21471253794774184,
 "m5_rate": 0.2032510706679223,
 "mean_rate": 0.23483436767444082,
 "duration_units": "milliseconds",
 "rate_units": "calls/second",
 "total": 56.608459,
 "_type": "timer"
 },
 {
 "_id": "repo.ds.read.cluster",
 "count": 5,
 "max": 13.253,
 "mean": 9.663193140378318,
 "min": 6.366667,
 "p50": 10.924292,

Monitoring and metrics PingIDM

1204 Copyright © 2025 Ping Identity Corporation

 "p75": 11.00375,
 "p95": 13.253,
 "p98": 13.253,
 "p99": 13.253,
 "p999": 13.253,
 "stddev": 2.480672375020272,
 "m15_rate": 0.19999386134317423,
 "m1_rate": 0.1987214208736065,
 "m5_rate": 0.19994536143224584,
 "mean_rate": 0.23467002606408544,
 "duration_units": "milliseconds",
 "rate_units": "calls/second",
 "total": 49.324167,
 "_type": "timer"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'profiled-nmethods'.init",
 "value": 2555904,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'non-nmethods'.usage",
 "value": 0.42355263157894735,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.Compressed-Class-Space.init",
 "value": 0,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Old-Gen.used",
 "value": 137279336,
 "_type": "gauge"
 },
 {
 "_id": "jvm.thread-state.timed_waiting.count",
 "value": 84,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Old-Gen.usage",
 "value": 0.08353511989116669,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.Metaspace.init",
 "value": 0,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Survivor-Space.committed",
 "value": 52428800,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'non-profiled-nmethods'.usage",
 "value": 0.12785444714742736,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.heap.usage",

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1205

 "value": 0.5991601198911667,
 "_type": "gauge"
 },
 {
 "_id": "jvm.garbage-collector.G1-Old-Generation.count",
 "value": 4,
 "_type": "gauge"
 },
 {
 "_id": "jvm.garbage-collector.G1-Young-Generation.count",
 "value": 18,
 "_type": "gauge"
 },
 {
 "_id": "jvm.thread-state.waiting.count",
 "value": 50,
 "_type": "gauge"
 },
 {
 "_id": "jvm.class-loading.loaded",
 "value": 22747,
 "_type": "gauge"
 },
 {
 "_id": "jvm.thread-state.terminated.count",
 "value": 0,
 "_type": "gauge"
 },
 {
 "_id": "jvm.available-cpus",
 "value": 10,
 "_type": "gauge"
 },
 {
 "_id": "jvm.garbage-collector.G1-Old-Generation.time",
 "value": 360,
 "_type": "gauge"
 },
 {
 "_id": "filter.scripted.on-request.d6fc81179beaca37094a23c2fcd00aaf54bb3ef9:router:onRequest",
 "count": 2,
 "max": 21.174791,
 "mean": 16.456464351980753,
 "min": 12.961041999999999,
 "p50": 12.961041999999999,
 "p75": 21.174791,
 "p95": 21.174791,
 "p98": 21.174791,
 "p99": 21.174791,
 "p999": 21.174791,
 "stddev": 4.061101381329072,
 "m15_rate": 0.19780232116334415,
 "m1_rate": 0.17175127368841633,
 "m5_rate": 0.1935515941358193,
 "mean_rate": 0.09992547412748008,
 "duration_units": "milliseconds",
 "rate_units": "calls/second",
 "total": 34.135833,
 "_type": "timer"
 },
 {
 "_id": "jvm.memory-usage.heap.committed",

Monitoring and metrics PingIDM

1206 Copyright © 2025 Ping Identity Corporation

 "value": 2147483648,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.Metaspace.committed",
 "value": 110043136,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'non-profiled-nmethods'.committed",
 "value": 10813440,
 "_type": "gauge"
 },
 {
 "_id": "jvm.used-memory",
 "value": 2147483648,
 "_type": "gauge"
 },
 {
 "_id": "scheduler.job-store.repo.query-list.triggers",
 "count": 5,
 "max": 21.151916999999997,
 "mean": 15.297513466089498,
 "min": 8.745917,
 "p50": 15.716375,
 "p75": 16.422957999999998,
 "p95": 21.151916999999997,
 "p98": 21.151916999999997,
 "p99": 21.151916999999997,
 "p999": 21.151916999999997,
 "stddev": 3.80884629646711,
 "m15_rate": 0.39669429076432344,
 "m1_rate": 0.355760156614281,
 "m5_rate": 0.3902458849001428,
 "mean_rate": 0.2410821468791895,
 "duration_units": "milliseconds",
 "rate_units": "calls/second",
 "total": 76.092959,
 "_type": "timer"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'non-nmethods'.committed",
 "value": 2555904,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.total.init",
 "value": 2155151360,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'non-nmethods'.used",
 "value": 2432384,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.non-heap.committed",
 "value": 171778048,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Survivor-Space.usage",

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1207

 "value": 1,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Eden-Space.init",
 "value": 113246208,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.Metaspace.usage",
 "value": 0.9206230255320343,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Eden-Space.max",
 "value": -1,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Old-Gen.max",
 "value": 2147483648,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.total.used",
 "value": 1520570400,
 "_type": "gauge"
 },
 {
 "_id": "jvm.thread-state.blocked.count",
 "value": 0,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Survivor-Space.used-after-gc",
 "value": 52428800,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Eden-Space.usage",
 "value": 0.8114423851732474,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'non-profiled-nmethods'.used",
 "value": 10729600,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'profiled-nmethods'.used",
 "value": 33729792,
 "_type": "gauge"
 },
 {
 "_id": "repo.ds.query._adhoc-filter.scheduler",
 "count": 5,
 "max": 9.139959,
 "mean": 7.781217638351263,
 "min": 6.122667,
 "p50": 7.9247499999999995,
 "p75": 8.001249999999999,
 "p95": 9.139959,

Monitoring and metrics PingIDM

1208 Copyright © 2025 Ping Identity Corporation

 "p98": 9.139959,
 "p99": 9.139959,
 "p999": 9.139959,
 "stddev": 0.9531334102258491,
 "m15_rate": 0.39669429076432344,
 "m1_rate": 0.355760156614281,
 "m5_rate": 0.3902458849001428,
 "mean_rate": 0.2411032736278605,
 "duration_units": "milliseconds",
 "rate_units": "calls/second",
 "total": 38.649876,
 "_type": "timer"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Survivor-Space.init",
 "value": 0,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.non-heap.max",
 "value": -1,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Survivor-Space.max",
 "value": -1,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Survivor-Space.used",
 "value": 52428800,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'profiled-nmethods'.max",
 "value": 122908672,
 "_type": "gauge"
 },
 {
 "_id": "jvm.thread-state.daemon.count",
 "value": 98,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Eden-Space.used-after-gc",
 "value": 0,
 "_type": "gauge"
 },
 {
 "_id": "jvm.thread-state.new.count",
 "value": 0,
 "_type": "gauge"
 },
 {
 "_id": "repo.ds.query._adhoc-filter.cluster",
 "count": 10,
 "max": 7.115333,
 "mean": 4.415241990632845,
 "min": 2.32275,
 "p50": 4.271917,
 "p75": 5.5420419999999995,
 "p95": 7.115333,

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1209

 "p98": 7.115333,
 "p99": 7.115333,
 "p999": 7.115333,
 "stddev": 1.57203480094502,
 "m15_rate": 0.5967004294211492,
 "m1_rate": 0.5570387357406746,
 "m5_rate": 0.590300523467897,
 "mean_rate": 0.4695941183571473,
 "duration_units": "milliseconds",
 "rate_units": "calls/second",
 "total": 43.476667,
 "_type": "timer"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Eden-Space.used",
 "value": 317718528,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.Compressed-Class-Space.committed",
 "value": 14024704,
 "_type": "gauge"
 },
 {
 "_id": "jvm.garbage-collector.G1-Young-Generation.time",
 "value": 465,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'non-nmethods'.init",
 "value": 2555904,
 "_type": "gauge"
 },
 {
 "_id": "jvm.thread-state.count",
 "value": 180,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'non-profiled-nmethods'.max",
 "value": 122912768,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.non-heap.init",
 "value": 7667712,
 "_type": "gauge"
 },
 {
 "_id": "audit.authentication",
 "m15_rate": 0.19780232116334415,
 "m1_rate": 0.17175127368841633,
 "m5_rate": 0.1935515941358193,
 "mean_rate": 0.09988653077391328,
 "units": "events/second",
 "total": 2,
 "count": 2,
 "_type": "summary"
 },
 {
 "_id": "jvm.memory-usage.heap.used",
 "value": 507426664,

Monitoring and metrics PingIDM

1210 Copyright © 2025 Ping Identity Corporation

 "_type": "gauge"
 },
 {
 "_id": "jvm.class-loading.unloaded",
 "value": 16,
 "_type": "gauge"
 },
 {
 "_id": "jvm.thread-state.runnable.count",
 "value": 46,
 "_type": "gauge"
 },
 {
 "_id": "audit.access",
 "m15_rate": 0.19779007785878447,
 "m1_rate": 0.16929634497812282,
 "m5_rate": 0.1934432200964012,
 "mean_rate": 0.05002186361867778,
 "units": "events/second",
 "total": 1,
 "count": 1,
 "_type": "summary"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'profiled-nmethods'.committed",
 "value": 34340864,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Eden-Space.committed",
 "value": 1300234240,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.Metaspace.max",
 "value": -1,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.G1-Old-Gen.used-after-gc",
 "value": 121026408,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.Compressed-Class-Space.max",
 "value": 1073741824,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.heap.max",
 "value": 2147483648,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'non-nmethods'.max",
 "value": 5836800,
 "_type": "gauge"
 },
 {
 "_id": "jvm.memory-usage.pools.CodeHeap-'profiled-nmethods'.usage",
 "value": 0.39190126470490216,
 "_type": "gauge"

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1211

 },
 {
 "_id": "jvm.memory-usage.pools.Compressed-Class-Space.used",
 "value": 11149728,
 "_type": "gauge"
 },
 {
 "_id": "jvm.free-used-memory",
 "value": 860110576,
 "_type": "gauge"
 }
],
 "resultCount": 85,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "EXACT",
 "totalPagedResults": 85,
 "remainingPagedResults": -1
}

Learn more:

Metrics reference

Load testing

Dropwizard widget

The Dropwizard widget creates a graph of metrics based on server activity and is useful for lightweight, live monitoring of IDM.
The widget has the following limitations:

The graph created by the widget does not persist. If you reload or navigate away from the page, the graph restarts.

The widget only works with time-based metrics.

To add the Dropwizard widget:

From the navigation bar, click Dashboards > Dashboard Name.

On the Dashboard Name page, click Add Widget.

In the Add Widget window, from the Select a Widget drop-down list, select Dropwizard Table with Graph.

info
Metrics are only collected after they have been triggered by activity in IDM, such as a reconciliation.

Note

•

•

•

•

1.

2.

3.

Monitoring and metrics PingIDM

1212 Copyright © 2025 Ping Identity Corporation

To preview any metric on the graph, click Add to Graph adjacent to any metric.

Click Add.

The Dropwizard widget now displays on the dashboard.

Prometheus endpoint

This topic describes how to configure Prometheus and Grafana to collect IDM metrics. These third-party tools are not supported
by ForgeRock. Refer to the Prometheus documentation.

Prometheus is a third-party tool used for gathering and processing monitoring data. Prometheus uses the openidm/metrics/
prometheus endpoint to gather information. This endpoint is protected by a basic authentication filter, using the following
credentials, set in the resolver/boot.properties file:

openidm.prometheus.username=username
openidm.prometheus.password=password

Disable Prometheus

To disable IDM’s Prometheus handler, comment out or remove openidm.prometheus.username and
openidm.prometheus.password from the resolver/boot.properties file. If these properties are not set, IDM does not enable
the Prometheus handler.

Configure Prometheus

Download Prometheus.

4.

5.

info
The Prometheus endpoint also supports secret resolution. Refer to Secret stores.

Note

1.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1213

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/
https://prometheus.io/

Create a prometheus.yml configuration file. For more information, refer to the Prometheus configuration documentation
. An example prometheus.yml file:

global:
 scrape_interval: 15s
 external_labels:
 monitor: 'my_prometheus'

https://prometheus.io/docs/operating/configuration/#scrape_config
scrape_configs:
 - job_name: 'openidm'
 scrape_interval: 15s
 scrape_timeout: 5s
 metrics_path: 'openidm/metrics/prometheus'
 scheme: http
 basic_auth:
 username: 'prometheus'
 password: 'prometheus'
 static_configs:
 - targets: ['localhost:8080']

This example configures Prometheus to poll the openidm/metrics/prometheus endpoint every 5 seconds
(scrape_interval: 5s), receiving metrics in a plain text format (_fields: ['text'] and _mimeType: ['text/
plain;version=0.0.4']). For more information about reporting formats, refer to the Prometheus documentation on
Exposition Formats.

Verify the configuration returns metric results:

Request

curl \
--user prometheus:prometheus \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/metrics/prometheus'

2.

3.

Monitoring and metrics PingIDM

1214 Copyright © 2025 Ping Identity Corporation

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/

Response

HELP idm_jvm_available_cpus Automatically generated
TYPE idm_jvm_available_cpus gauge
idm_jvm_available_cpus 10.0
HELP idm_jvm_class_loading_loaded Automatically generated
TYPE idm_jvm_class_loading_loaded gauge
idm_jvm_class_loading_loaded 24876.0
HELP idm_jvm_class_loading_unloaded Automatically generated
TYPE idm_jvm_class_loading_unloaded gauge
idm_jvm_class_loading_unloaded 1.0
HELP idm_jvm_free_used_memory_bytes Automatically generated
TYPE idm_jvm_free_used_memory_bytes gauge
idm_jvm_free_used_memory_bytes 9.77543264E8
HELP idm_jvm_garbage_collector_g1_old_generation_count Automatically generated
TYPE idm_jvm_garbage_collector_g1_old_generation_count gauge
idm_jvm_garbage_collector_g1_old_generation_count 0.0
HELP idm_jvm_garbage_collector_g1_old_generation_time Automatically generated
TYPE idm_jvm_garbage_collector_g1_old_generation_time gauge
idm_jvm_garbage_collector_g1_old_generation_time 0.0
HELP idm_jvm_garbage_collector_g1_young_generation_count Automatically generated
TYPE idm_jvm_garbage_collector_g1_young_generation_count gauge
idm_jvm_garbage_collector_g1_young_generation_count 82.0
HELP idm_jvm_garbage_collector_g1_young_generation_time Automatically generated
TYPE idm_jvm_garbage_collector_g1_young_generation_time gauge
idm_jvm_garbage_collector_g1_young_generation_time 2127.0
HELP idm_jvm_max_memory_bytes Automatically generated
TYPE idm_jvm_max_memory_bytes gauge
idm_jvm_max_memory_bytes 2.147483648E9
...

Start Prometheus with the prometheus.yml configuration file:

prometheus --config.file=/path/to/prometheus.yml

To confirm that Prometheus is gathering data from IDM, go to the Prometheus monitoring page (default http://
localhost:9090).

4.

5.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1215

Configure Grafana

Prometheus lets you monitor and process information provided by IDM. If you need deeper analytics, you can use tools such as
Grafana to create customized charts and graphs based on Prometheus data. For information on installing and running Grafana,
refer to the Grafana website.

You can also monitor aspects of IDM’s performance using Prometheus to plug JVM metrics into a Grafana dashboard. For more
information on using metrics to observe the system under load, refer to Load testing.

To set up a Grafana dashboard with IDM metrics using Prometheus:

In a browser, go to the main Grafana page (default http://localhost:3000) and log in.

To add your Prometheus installation to Grafana as a data source, click the toggle menu button , and click Connections
> Data sources.

On the Data sources page, click Add data source.

On the Add data source page, select Prometheus.

lightbulb_2
Before you get started, download the Monitoring Dashboard Samples from the Backstage download site. Open
monitoring.dashboard.json from the downloaded .zip file, as you’ll need it during the following procedure.

Tip

1.

lightbulb_2
The default username and password for Grafana is admin.

Tip

2.

3.

4.

Monitoring and metrics PingIDM

1216 Copyright © 2025 Ping Identity Corporation

https://grafana.com
https://grafana.com
https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

Enter information and select options, as needed. The information you enter here should match the settings in the
monitoring.dashboard.json file:

Give your data source a name; for example, ForgeRockIDM .

Set the URL (default http://localhost:9090).

Enable Basic auth.

Enter the User (default prometheus).

Enter the Password (default prometheus).

Click Save & test.

If the test succeeds, Grafana displays Data source is working.

Create a Grafana dashboard

After Prometheus has been configured as a data source in Grafana, you can create a dashboard with IDM metrics:

In Grafana, click the toggle menu button , and click Dashboards.

Click New, and do one of the following:

Select Import.

On the Import dashboard page, drag the monitoring.dashboard.json file from its location on your
system to the Upload dashboard JSON file area.

Enter information in the Options area, and select the Prometheus data source you previously created.

Click Import.

5.

1.

2.

3.

1.

2.

6.

1.

2.

◦

1.

2.

3.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1217

Select New dashboard.

Click Add visualization.

Select the Prometheus data source you previously created.

Configure the panel.

Load testing

Load testing can help you get the most out of IDM and other ForgeRock products. The benefits load testing provides include:

Reducing the chance that unexpected spikes in system activity will cause the system to become unstable

Allowing developers and system administrators to reason more accurately and be more confident in release cycle
timelines

Providing baseline statistics which can be used to identify and investigate unexpected behavior

Load testing is a complex subject that requires knowledge of your system and a disciplined approach. There is no "one-size-fits-
all" solution that applies in all circumstances. However, there are some basic principles to keep in mind while planning, executing,
and evaluating load tests.

Planning tests

The first step is to determine what metrics need to be examined, what components are going to be tested, what levels of load are
going to be used, and what response ranges are acceptable. Answering these questions requires:

Service-level Agreements (SLAs)

Understanding of your use case

Baseline knowledge of your system

SLAs provide a stationary, business-based target to aim for in testing. An example SLA appears as follows:

◦

1.

2.

3.

lightbulb_2
For more information, refer to:

Prometheus query language

Panel editor overview

Tip

▪

▪

•

•

•

•

•

•

Service/Endpoint Sustained load Peak load Required response time

Customer auth against LDAP
repo

50,000 over 16 hours 4,000 per second three times
in a 16-hour period

200ms

Employee auth against AD
repo

4,000 over 10 hours 100/second 400ms

Customer registration 1,000 over 24 hours 10/second 500ms

Monitoring and metrics PingIDM

1218 Copyright © 2025 Ping Identity Corporation

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://grafana.com/docs/grafana/latest/panels-visualizations/panel-editor-overview/
https://grafana.com/docs/grafana/latest/panels-visualizations/panel-editor-overview/

Details will vary depending on your use case and application flow, present usage patterns, full load profile, and environment. To
get the most benefit, collect this information.

The system’s full load profile depends on how it is designed and used. For example, some systems have thousands of clients each
using a small slice of bandwidth, while others have only a few high-bandwidth connections. Understanding these nuances helps
determine an appropriate number of connections and threads of execution to use to generate a test load.

Understanding resource use

Understanding what resources are heavily consumed by ForgeRock products will help you with your test planning. The following
chart details some products and their consumed resources:

Service/Endpoint Sustained load Peak load Required response time

Employee password reset 10 over 24 hours 1/second 500ms

Sample SLA warnings and details:

Response times are between load generator and ForgeRock platform and do not account for latency between client
devices and architecture.
IDM must support four writes and 45 read transactions per second for 12 hours using DS as the repository.
IDM must support 2,000 changes from HR service.
Measuring response times occurs after establishing 10,000 active, concurrent stateful sessions with 10,000 unique
identities.

•

•
•
•

lightbulb_2
If you have trouble determining which systems and components are being used at various points during your
application flow, consider modeling your application using a sequence diagram.

Tip

Product Consumed resources

AM with external stores CPU, memory

DS as a user repository I/O, memory

DS as a token store I/O, memory (if high token count)

IDM I/O; CPU and memory play an important role in provisioning,
sync, and user self-service

IG CPU

All of the above depends on network performance, including name resolution and proper load balancing when required.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1219

Executing tests

When it comes to executing tests, these are the basic principles to keep in mind:

Every system is different; "it depends" is the cardinal rule.

Testing scenarios that don’t happen in reality gives you test results that don’t happen in reality.

System performance is constrained by the scarcest resource.

One way to ensure that your tests reflect real use patterns is to begin with a load generator that creates periods of consistent use
and periods of random spikes in activity. During the consistent periods, gradually add load until you exceed your SLAs and
baselines. By using that data and the data from the periods of spiking activity, you can determine how your system handles spikes
in activity in many different scenarios.

When testing systems with many components, begin by testing the most basic things — I/O, CPU, and memory use. IDM provides
insight into these by exposing JVM Metrics.

Once you have an understanding of the basic elements of your system, introduce new components into the tests. Keep a record
of each test’s environment and the components which were under test. These components may include:

Hardware/Hypervisor/Container platform

Hosting OS/VM/Container environment

Hosted OS

Java Virtual Machine (JVM)

Web/J2EE Container (if used to host ForgeRock AM/IG or ForgeRock AM Agent)

Databases, repositories, and directory servers used with ForgeRock

Networking, load balancers, and firewalls between instances

SSL, termination points, and other communications

Points of integration, if any

Other applications and services that utilize ForgeRock components

Load generation configuration

Sample data, logs from test runs, and other generated files

1.

2.

3.

info
Your load generator should be located on separate hardware/instances from your production systems. It should have
adequate resources to generate the expected load.

Note

•

•

•

•

•

•

•

•

•

•

•

•

lightbulb_2
While there are many tools that can help you monitor your system, a thorough understanding of your system logs is
the best path to understanding its behavior.

Tip

Monitoring and metrics PingIDM

1220 Copyright © 2025 Ping Identity Corporation

Metrics reference

IDM exposes a number of metrics. All metrics are available at both the openidm/metrics/api and
openidm/metrics/prometheus endpoints. The actual metric names can vary, depending on the endpoint used. Also refer to
Monitoring.

Metric types

Metrics are organized into the following types:

Timer

Timers provide a histogram of the duration of an event, along with a measure of the rate of occurrences. Timers can be
monitored using the Dropwizard dashboard widget and the IDM Prometheus endpoint. Durations in timers are measured in
milliseconds. Rates are reported in number of calls per second. The following example shows a Timer metric:

{
 "_id": "sync.source.perform-action",
 "count": 2,
 "max": 371.53391,
 "mean": 370.1752705,
 "min": 368.816631,
 "p50": 371.53391,
 "p75": 371.53391,
 "p95": 371.53391,
 "p98": 371.53391,
 "p99": 371.53391,
 "p999": 371.53391,
 "stddev": 1.3586395,
 "m15_rate": 0.393388581528647,
 "m1_rate": 0.311520313228562,
 "m5_rate": 0.3804917698002856,
 "mean_rate": 0.08572717156016606,
 "duration_units": "milliseconds",
 "rate_units": "calls/second",
 "total": 740.350541,
 "_type": "timer"
 }

Summary

Summaries are similar to Timers in that they measure a distribution of events. However, Summaries record values that aren’t
units of time, such as user login counts. Summaries cannot be graphed in the Dropwizard dashboard widget, but are available
through the Prometheus endpoint, and by querying the openidm/metrics/api endpoint directly. The following example shows a
Summary metric:

warning
To keep your results clear and focused, only add or adjust one variable at a time.
Do not run tests designed to stress the system to its theoretical limit. The results you get from these stress tests rarely
provide actionable insights.

Warning

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1221

{
 "_id": "audit.recon",
 "m15_rate": 0.786777163057294,
 "m1_rate": 0.623040626457124,
 "m5_rate": 0.7609835396005712,
 "mean_rate": 0.16977218861919927,
 "units": "events/second",
 "total": 4,
 "count": 4,
 "_type": "summary"
}

Gauge

Gauge metrics return a numerical value that can increase or decrease. The value for a gauge is calculated on request, and
represents the state of the metric at that specific time. The following example shows a Gauge metric:

{
 "_id": "jvm.used-memory",
 "value": 2147483648,
 "_type": "gauge"
}

API metrics

Metrics accessed at the api endpoint (such as those consumed by the Dropwizard dashboard widget) use dot notation for their
metric names; for example, recon.target-phase . The following table lists the API metrics available in IDM:

API metrics available in IDM

API Metric Name Type Description

audit.audit-topic Summary Count of all audit events generated of a
given topic type.

field.augmentation.edge Timer Rate of reading response objects to fulfill
the _fields requested (when the fields
were not populated by the initial repo
query).

field.augmentation.vertex Timer Rate of reading response objects to fulfill
the _fields requested (when the fields
were not populated by the initial repo
query).

filter.filter-type.action.script-name Timer Rate that filter scripts are executed per
action. Monitors scripted filters and
delegated admin.

Monitoring and metrics PingIDM

1222 Copyright © 2025 Ping Identity Corporation

API Metric Name Type Description

icf.system-identifier.objectClass.query._queryExpression Timer Rate of ICF query executions with
queryExpression and the time taken to
perform this operation.

icf.system-identifier.objectClass.query._queryFilter Timer Rate of ICF query executions with
queryFilter and the time taken to perform
this operation.

icf.system-identifier.objectClass.query._queryId.queryId Timer Rate of ICF query executions with queryId,
and time taken to perform this operation.

icf.system-identifier.objectClass.query._UNKNOWN Timer Rate of ICF query executions when the
query type is UNKNOWN, and time taken
to perform this operation.

internal.managed-object.operation Timer Rate of operations on internal objects.

internal.managed-object.relationship.fetch-relationship-

fields

Timer Rate of fetch operations of relationship
fields for internal objects.

internal.managed-object.relationship.get-relationship-

value-for-resource

Timer Query rate on relationship values for
internal objects.

internal.managed-object.script.script-name Timer Rate of script executions on internal
object.

internal.managed-object.relationship.validate-

relationship-fields

Timer Rate of validate operations of relationship
fields for internal objects.

live-sync.system-name.object-type Timer Duration of live sync on a system object.

managed.field.augmentation Timer Rate of responses requiring field
augmentation. When the repository
cannot retrieve all data in a single call, IDM
performs additional read operations to
complete (augment) the missing data.

managed.managed-object.operation Timer Rate of operations on a managed object.

managed.managed-object.relationship.fetch-relationship-

fields

Timer Rate of fetches of relationship fields of a
managed object.

managed.managed-object.relationship.get-relationship-

value-for-resource

Timer Rate of queries to get relationship values
for a resource on a managed object.

managed.managed-object.relationship.validate-relationship-

fields

Timer Rate of validations of relationship fields of
a managed object.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1223

API Metric Name Type Description

managed.managed-object.script.script-name Timer Rate of executions of a script on a
managed object.

managed.object.handle-temporal-constraints-on-create Timer Latency of enforcing temporal constraints
on role objects during object creation.

managed.object.handle-temporal-constraints-on-delete Timer Latency of enforcing temporal constraints
on role objects during object deletion.

managed.object.handle-temporal-constraints-on-update Timer Latency of enforcing temporal constraints
on role objects during object update.

managed.relationship.handle-temporal-constraints-on-create Timer Latency of enforcing temporal constraints
on relationship grants during edge
creation.

managed.relationship.handle-temporal-constraints-on-delete Timer Latency of enforcing temporal constraints
on relationship grants during edge
deletion.

managed.relationship.handle-temporal-constraints-on-update Timer Latency of enforcing temporal constraints
on relationship grants during edge
update.

managed.relationship.validate.read-relationship-endpoint-

edges

Timer Rate of reads on relationship endpoint
edges for validation.

null_array_filter.augmentationrequestType Timer Time spent in filter that maps non-nullable
and null-valued array fields to an empty
array. This filter is traversed for all repo
access relating to internal and managed
objects.

recon Timer Rate of executions of a full reconciliation,
and time taken to perform this operation.

recon-assoc-entry.merged-query.merge-results Timer Rate of merge operations after source
and/or target objects have been retrieved
during a merged query of recon
association entries.

recon-assoc-entry.merged-query.page-assoc-entries Timer Rate of individual paged recon association
entry queries during a merged query.
More than one page of entries might be
requested to build a single page of
merged results.

Monitoring and metrics PingIDM

1224 Copyright © 2025 Ping Identity Corporation

API Metric Name Type Description

recon-assoc-entry.merged-query.query-source Timer Rate of source object retrieval via query
when merging source objects to recon
association entries.

recon-assoc-entry.merged-query.query-target Timer Rate of target object retrieval via query
when merging target objects to recon
association entries.

recon.association-persistence.recon-id-operation Timer The time taken to persist association data.
The operation can be source , target , or
amendsource , depending on whether data
is being produced for a source-phase or
target-phase recon association, or to
amend the association for a specific
source.

recon.id-queries-phase Timer Rate of executions of the id query phase
of a reconciliation, and time taken to
perform this operation.

recon.source-phase Timer Rate of executions of the source phase of
a reconciliation, and time taken to
perform this operation.

recon.source-phase.page Timer Rate of pagination executions of the
source phase of a reconciliation, and time
taken to perform this operation.

recon.target-phase Timer Rate of executions of the target phase of a
reconciliation, and time taken to perform
this operation.

repo.jdbc.relationship.edge.execute.joinedToVertex Timer Time (ms) spent running the Edge→Vertex
relationship join query on the database
and collecting the result set.

repo.jdbc.relationship.execute Timer Rate of relationship graph query execution
times.

repo.jdbc.relationship.process Timer Rate of relationship graph query result
processing times.

repo.raw._queryId.queryId Timer Rate of executions of a query with queryId
at a repository level and the time taken to
perform this operation.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1225

API Metric Name Type Description

repo.repo-type.cache.objecttypes.event.resource-mapping Count Counts the usage statistics of the
objecttypeid cache, which maps an
object type to its objecttypeid . The
expected count is a small number of
misses (sometimes, only one) and the
remainder of hits.

repo.repo-typeget-connection Timer Rate of retrievals of a repository
connection.

repo.repo-type.operation.action_name.command.resource-

mapping

Timer Rate of actions to a repository datasource
for a generic/explicit mapped table.

repo.repo-type.operation._adhoc-expression.relationship Timer Rate of filtered queries (using native query
expressions) on the relationship table.
This metric measures the time spent
making the query (in ms), and the number
of times the query is invoked.

repo.repo-type.operation._adhoc-filter.relationship Timer Rate of filtered queries (using the
_queryFilter parameter) on the
relationship table. This metric measures
the time spent making the query (in ms),
and the number of times the query is
invoked.

repo.repo-type.create_properties.execute.resource-mapping Timer Rate of execution time on the JDBC
database for the create_properties
operations. This operation is performed
for every generic object create when it
persists the searchable properties. The
rate measured here does not include the
time taken to obtain a connection to the
database from the connection pool. The
physical connections to the database have
already been established inside the
connection pool.

repo.repo-type.operation.execute.resource-mapping Timer Rate of execution time on the JDBC
database for CRUD operations. This rate
does not include the time taken to obtain
a connection to the database from the
connection pool. The physical connections
to the database have already been
established inside the connection pool.

Monitoring and metrics PingIDM

1226 Copyright © 2025 Ping Identity Corporation

API Metric Name Type Description

repo.repo-type.query.execute.resource-mappingqueryType.] Timer Rate of execution time on the JDBC
database for queries (either queryFilter
or queryId). This rate does not include
the time taken to obtain a connection to
the database from the connection pool.
The physical connections to the database
have already been established inside the
connection pool.

repo.repo-type.operation.relationship Timer Rate of CRUDPAQ operations to a
repository datasource for a generic/
explicit/relationship mapped table.

repo.repo-type.operation.relationship.stage.origin_type Timer Time (ms) spent in the various phases to
retrieve relationship expanded data
referenced by queried objects.

repo.repo-type.operation.resource-mapping Timer Rate of initiations of a CRUDPAQ
operation to a repository datasource.

router.path-name.action.action-type Timer Rate of actions over the router and the
time taken to perform this operation.

router.path-name.create Timer Rate of creates over the router and the
time taken to perform this operation.

router.path-name.delete Timer Rate of deletes over the router and the
time taken to perform this operation.

router.path-name.patch Timer Rate of patches over the router and the
time taken to perform this operation.

router.path-name.query.queryExpression Timer Rate of queries with queryExpression
completed over the router and the time
taken to perform this operation.

router.path-name.query.queryFilter Timer Rate of queries with queryFilter completed
over the router and the time taken to
perform this operation.

router.path-name.read Timer Rate of reads over the router and the time
taken to perform this operation.

router.path-name.update Timer Rate of updates over the router and the
time taken to perform this operation.

script.script-name.request-type Timer Rate of calls to a script and time taken to
complete.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1227

API Metric Name Type Description

selfservice.user.password.reset Summary Count of all successful user self-service
password resets.

selfservice.user.registration.registration-type Summary Count of all successful user self-service
registrations by registration type.

selfservice.user.registration.registration-type.provider Summary Count of all successful user self-service
registrations by registration type and
provider.

sync.create-object Timer Rate of requests to create a target object,
and time taken to perform the operation.

sync.delete-target Timer Rate of requests to delete a target object,
and time taken to perform the operation.

sync.objectmapping.mapping-name Timer Rate of configurations applied to a
mapping.

sync.queue.mapping-name.action.acquire Timer Rate of acquisition of queued
synchronization events from the queue.

sync.queue.mapping-name.action.discard Timer Rate of deletion of synchronization events
from the queue.

sync.queue.mapping-name.action.execution Timer Rate at which queued synchronization
operations are executed.

sync.queue.mapping-name.action.failed Summary Number of queued synchronization
operations that failed.

sync.queue.mapping-name.action.precondition-failed Summary Number of queued synchronization events
acquired by another node in the cluster.

sync.queue.mapping-name.action.rejected-executions Summary Number of queued synchronization events
rejected because the backing thread-pool
queue was at full capacity and the thread-
pool had already allocated its maximum
configured number of threads.

sync.queue.mapping-name.action.release Timer Rate at which queued synchronization
events are released.

sync.queue.mapping-name.action.release-for-retry Timer Times the release of queued
synchronization events after a failure and
before exceeding the retry count.

Monitoring and metrics PingIDM

1228 Copyright © 2025 Ping Identity Corporation

API Metric Name Type Description

sync.queue.mapping-name.action.submit Timer Rate of insertion of synchronization events
into the queue.

sync.queue.mapping-name.poll-pending-events Timer The latency involved in polling for
synchronization events.

sync.raw-read-object Timer Rate of reads of an object.

sync.source.assess-situation Timer Rate of assessments of a synchronization
situation.

sync.source.correlate-target Timer Rate of correlations between a target and
a given source, and time taken to perform
this operation.

sync.source.determine-action Timer Rate of determinations done on a
synchronization action based on its
current situation.

sync.source.perform-action Timer Rate of completions of an action
performed on a synchronization
operation.

sync.target.assess-situation Timer Rate of assessments of a target situation.

sync.target.determine-action Timer Rate of determinations done on a target
action based on its current situation.

sync.target.perform-action Timer Rate of completions of an action
performed on a target sync operation.

sync.update-target Timer Rate of requests to update an object on
the target, and the time taken to perform
this operation.

user.login.user-type Summary Count of all successful logins by user type.

user.login.user-type.provider Summary Count of all successful logins by user type
and provider.

virtual-properties-from-relationships.not-found.virtual_pr

operties.resource_collection_relationship_field

Summary Number of 404 responses encountered
when querying the
resource_collection /
relationship_field specified in the
traversal_depthX tag for the most recent
X.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1229

API JVM metrics available in IDM

API Metric Name Type Description

virtual-properties-from-relationships.unsatisified-temp-

constraint.virtual_properties.resource_collection_relation

ship_field

Summary Number of edges skipped due to an
unsatisfied temporal constraint on either
the edge or the referred-to vertex.
Encountered when querying the resource
collection and relationship field at the
traversal_depthX tag for the most recent
X.

virtual-properties-from-relationships.virtual_properties.r

esource_collection_relationship_field

Timer Time spent traversing relationship fields to
calculate the specified virtual properties.
The managed objects linked to by the
traversal relationship fields define a tree
whose root is the virtual property host.
This object tree is traversed depth-first
with the traversal_depthX corresponding
to the latency involved with each
relationship traversal. Traversal_depth0
corresponds to the first relationship field
traversed. Because the tree is traversed
depth-first, traversal_depthX subsumes all
the traversal latencies for all
traversal_depth Y, where Y>X.

info
These metrics depend on the JVM version and configuration. In particular, garbage-collector-related metrics depend
on the garbage collector that the server uses. The garbage-collector metric names are unstable and can change even
in a minor JVM release.

Note

API Metric Name Type Unit Description

jvm.available-cpus Gauge Count Number of processors available to
the JVM. For more information,
refer to Runtime.

jvm.class-loading.loaded Gauge Count Number of classes loaded since the
Java virtual machine started. For
more information, refer to
ClassLoadingMXBean.

jvm.class-loading.unloaded Gauge Count Number of classes unloaded since
the Java virtual machine started.
For more information, refer to
ClassLoadingMXBean.

Monitoring and metrics PingIDM

1230 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ClassLoadingMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ClassLoadingMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ClassLoadingMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ClassLoadingMXBean.html

API Metric Name Type Unit Description

jvm.free-used-memory Gauge Bytes For more information, refer to
Runtime.

jvm.garbage-collector.G1-Old-Generation.count Gauge Count For each garbage collector in the
JVM. For more information, refer to
GarbageCollectorMXBean.

jvm.garbage-collector.G1-Old-Generation.time Gauge Milliseconds

jvm.garbage-collector.G1-Young-Generation.count Gauge Count

jvm.garbage-collector.G1-Young-Generation.time Gauge Milliseconds

jvm.max-memory Gauge Bytes For more information, refer to
Runtime.

jvm.memory-usage.heap.committed Gauge Bytes Amount of heap memory
committed for the JVM to use. For
more information, refer to
MemoryMXBean.

jvm.memory-usage.heap.init Gauge Bytes

jvm.memory-usage.heap.max Gauge Bytes Maximum amount of heap
memory available to the JVM.

jvm.memory-usage.heap.usage Gauge Bytes

jvm.memory-usage.heap.used Gauge Bytes Amount of heap memory used by
the JVM.

jvm.memory-usage.non-heap.committed Gauge Bytes Amount of non-heap memory
committed for the JVM to use.

jvm.memory-usage.non-heap.init Gauge Bytes Amount of non-heap memory the
JVM initially requested from the
operating system.

jvm.memory-usage.non-heap.max Gauge Bytes Maximum amount of non-heap
memory available to the JVM.

jvm.memory-usage.non-heap.usage Gauge Bytes

jvm.memory-usage.non-heap.used Gauge Bytes Amount of non-heap memory used
by the JVM.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1231

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/GarbageCollectorMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/GarbageCollectorMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryMXBean.html

API Metric Name Type Unit Description

jvm.memory-usage.pools.CodeHeap-'non-

nmethods'.committed

Gauge Bytes For each pool. For more
information, refer to
MemoryPoolMXBean.

jvm.memory-usage.pools.CodeHeap-'non-nmethods'.init Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'non-nmethods'.max Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'non-

nmethods'.usage

Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'non-nmethods'.used Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'non-profiled-

nmethods'.committed

Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'non-profiled-

nmethods'.init

Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'non-profiled-

nmethods'.max

Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'non-profiled-

nmethods'.usage

Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'non-profiled-

nmethods'.used

Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'profiled-

nmethods'.committed

Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'profiled-

nmethods'.init

Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'profiled-

nmethods'.max

Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'profiled-

nmethods'.usage

Gauge Bytes

jvm.memory-usage.pools.CodeHeap-'profiled-

nmethods'.used

Gauge Bytes

jvm.memory-usage.pools.Compressed-Class-

Space.committed

Gauge Bytes

jvm.memory-usage.pools.Compressed-Class-Space.init Gauge Bytes

Monitoring and metrics PingIDM

1232 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryPoolMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryPoolMXBean.html

API Metric Name Type Unit Description

jvm.memory-usage.pools.Compressed-Class-Space.max Gauge Bytes

jvm.memory-usage.pools.Compressed-Class-Space.usage Gauge Bytes

jvm.memory-usage.pools.Compressed-Class-Space.used Gauge Bytes

jvm.memory-usage.pools.G1-Eden-Space.committed Gauge Bytes

jvm.memory-usage.pools.G1-Eden-Space.init Gauge Bytes

jvm.memory-usage.pools.G1-Eden-Space.max Gauge Bytes

jvm.memory-usage.pools.G1-Eden-Space.usage Gauge Bytes

jvm.memory-usage.pools.G1-Eden-Space.used Gauge Bytes

jvm.memory-usage.pools.G1-Eden-Space.used-after-gc Gauge Bytes

jvm.memory-usage.pools.G1-Old-Gen.committed Gauge Bytes

jvm.memory-usage.pools.G1-Old-Gen.init Gauge Bytes

jvm.memory-usage.pools.G1-Old-Gen.max Gauge Bytes

jvm.memory-usage.pools.G1-Old-Gen.usage Gauge Bytes

jvm.memory-usage.pools.G1-Old-Gen.used Gauge Bytes

jvm.memory-usage.pools.G1-Old-Gen.used-after-gc Gauge Bytes

jvm.memory-usage.pools.G1-Survivor-Space.committed Gauge Bytes

jvm.memory-usage.pools.G1-Survivor-Space.init Gauge Bytes

jvm.memory-usage.pools.G1-Survivor-Space.max Gauge Bytes

jvm.memory-usage.pools.G1-Survivor-Space.usage Gauge Bytes

jvm.memory-usage.pools.G1-Survivor-Space.used Gauge Bytes

jvm.memory-usage.pools.G1-Survivor-Space.used-

after-gc

Gauge Bytes

jvm.memory-usage.pools.Metaspace.committed Gauge Bytes

jvm.memory-usage.pools.Metaspace.init Gauge Bytes

jvm.memory-usage.pools.Metaspace.max Gauge Bytes

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1233

API scheduler metrics available in IDM

For example requests, refer to Scheduler metrics.

API Metric Name Type Unit Description

jvm.memory-usage.pools.Metaspace.usage Gauge Bytes

jvm.memory-usage.pools.Metaspace.used Gauge Bytes

jvm.memory-usage.total.committed Gauge Bytes Amount of memory that is
committed for the JVM to use. For
more information, refer to
MemoryMXBean.

jvm.memory-usage.total.init Gauge Bytes

jvm.memory-usage.total.max Gauge Bytes

jvm.memory-usage.total.used Gauge Bytes

jvm.thread-state.blocked.count Gauge Count For more information, refer to
ThreadMXBean.

jvm.thread-state.count Gauge Count Number of live threads including
both daemon and non-daemon
threads.

jvm.thread-state.daemon.count Gauge Count Number of live daemon threads.

jvm.thread-state.new.count Gauge Count Number of threads in the NEW
state.

jvm.thread-state.runnable.count Gauge Count Number of threads in the
RUNNABLE state.

jvm.thread-state.terminated.count Gauge Count Number of threads in the
TERMINATED state.

jvm.thread-state.timed_waiting.count Gauge Count Number of threads in the
TIMED_WAITING state.

jvm.thread-state.waiting.count Gauge Count Number of threads in the WAITING
state.

jvm.used-memory Gauge Bytes For more information, refer to
totalMemory().

Monitoring and metrics PingIDM

1234 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryMXBean.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.management/java/lang/management/ThreadMXBean.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.management/java/lang/management/ThreadMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html#totalMemory()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html#totalMemory()

API workflow metrics available in IDM

API Metric Name Type Description

scheduler.job.job-group.job-name.completed Summary A summary of completed jobs for the
specified job-group and job-name.

scheduler.job.job-group.job-name.executed Timer Time spent on executed jobs for the
specified job-group and job-name.

scheduler.job-store.repo.operation.scheduler-object Timer Time spent storing scheduled jobs in
the repository for the specified
operation and scheduler-object.

scheduler.trigger.acquired.success Summary A summary of successfully acquired
jobs.

scheduler.trigger.acquired.timeout Summary A summary of acquired jobs that time
out.

scheduler.trigger.fired Summary A summary of fired schedule triggers.

scheduler.trigger.misfired Summary A summary of misfired schedule
triggers.

scheduler.trigger.recovered Timer Time spent on recovered triggers.

scheduler.type.operation Timer Execution rate of scheduler requests for
the specified type and operation.

API Metric Name Type Description

workflow.execution.action.message Timer Time spent invoking a message event.

workflow.execution.action.signal Timer Time spent invoking a signal event.

workflow.execution.action.trigger Timer Time spent triggering an execution.

workflow.execution.query Timer Time spent querying executions.

workflow.job.action.execute Timer Time spent forcing synchronous
execution of a job.

workflow.job.action.stacktrace Timer Time spent displaying the stacktrace for
a job that triggered an exception.

workflow.job.delete Timer Time spent deleting a job.

workflow.job.query Timer Time spent querying jobs.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1235

API Metric Name Type Description

workflow.job.read Timer Time spent reading a single job.

workflow.jobdeadletter.action.execute Timer Time spent to execute dead-letter job.

workflow.jobdeadletter.action.stacktrace Timer Time spent to retrieve the stacktrace for
a dead-letter job.

workflow.jobdeadletter.delete Timer Time spent to delete a dead letter job.

workflow.jobdeadletter.query Timer Time spent to query dead letter jobs.

workflow.jobdeadletter.read Timer Time spent to read a dead letter job.

workflow.model.action.deploy Timer Time spent to deploy a model.

workflow.model.action.list_deployments Timer Time spent to list model deployments.

workflow.model.action.validate_bpmn Timer Time spent to validate BPMN content.

workflow.model.create Timer Time spent to create a model.

workflow.model.delete Timer Time spent to delete a model.

workflow.model.query Timer Time spent to query models.

workflow.model.read Timer Time spent to read a model.

workflow.model.update Timer Time spent to update a model.

workflow.processdefinition.delete Timer Time spent to delete a process
definition.

workflow.processdefinition.query Timer Time spent to query process definitions.

workflow.processdefinition.read Timer Time spent to read a process definition.

workflow.processinstance.action.migrate Timer Time spent to migrate a process
instance.

workflow.processinstance.action.validateMigration Timer Time spent to validate a migration of a
process instance.

workflow.processinstance.create Timer Time spent to create a process
instance.

workflow.processinstance.delete Timer Time spent to delete a process instance.

workflow.processinstance.query Timer Time spent to query process instances.

Monitoring and metrics PingIDM

1236 Copyright © 2025 Ping Identity Corporation

Prometheus metrics

Metrics accessed through the Prometheus endpoint are prepended with idm_ and use underscores between words; for
example, idm_recon_target_phase_seconds . The following table lists the Prometheus metrics available in IDM:

Prometheus metrics available in IDM

API Metric Name Type Description

workflow.processinstance.read Timer Time spent to read a process instance.

workflow.taskdefinition.query Timer Time spent to query task definitions.

workflow.taskdefinition.read Timer Time spent to read a task definition.

workflow.taskinstance.action.complete Timer Time spent to complete a task instance.

workflow.taskinstance.query Timer Time spent to query task instances.

workflow.taskinstance.read Timer Time spent to read a task instance.

workflow.taskinstance.update Timer Time spent to update a task instance.

Prometheus Metric Name Type Description

idm_audit{audit_topic=audit-topic} Summary Count of all audit events
generated of a given topic type.

idm_field_augmentation{origin-type=edge} Timer Rate of reading response
objects, to fulfill the _fields
requested (when the fields were
not populated by the initial repo
query).

idm_field_augmentation{origin-type=vertex} Timer Rate of reading response
objects, to fulfill the _fields
requested (when the fields were
not populated by the initial repo
query).

idm_filter_seconds{action=action,filter_type=filter-type,script_nam

e=script-name}

Timer Rate at which filter scripts are
executed, per action. Monitors
scripted filters and delegated
admin.

idm_icf_system-identifier_objectClass_query__queryExpression_second

s

Timer Rate of ICF query executions
with queryExpression, and time
taken to perform this operation.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1237

Prometheus Metric Name Type Description

idm_icf_system-identifier_objectClass_query__queryFilter_seconds Timer Rate of ICF query executions
with queryFilter, and time taken
to perform this operation.

idm_icf_system-identifier_objectClass_query__queryId_queryId_second

s

Timer Rate of ICF query executions
with queryId, and time taken to
perform this operation.

idm_icf_system-identifier_objectClass_query__UNKNOWN_seconds Timer Rate of ICF query executions
when the query type is
UNKNOWN, and time taken to
perform this operation.

idm_internal_managed-object_relationship_fetch_relationship_fields_

seconds

Timer Rate of fetch operations of
relationship fields for internal
objects.

idm_internal_managed-object_relationship_get_relationship_value_for

_resource_seconds

Timer Query rate on relationship
values for internal objects.

idm_internal_managed-object_relationship_validate_relationship_fiel

ds_seconds

Timer Rate of validate operations of
relationship fields for internal
objects.

idm_internal_managed-object_script_script-name_seconds Timer Rate of script executions on
internal objects.

idm_internal_seconds{managed_object=managed-object,operation=operat

ion}

Timer Rate of operations on internal
objects.

idm_live-sync{sytem-name=system-name,object-type=object-type} Timer Duration of live sync on a
system object.

idm_managed_field_augmentation_seconds Timer Rate of responses requiring field
augmentation. When the
repository is unable to retrieve
all the data in a single call, IDM
performs additional read
operations to complete
(augment) the missing data.

idm_managed_managed-object_relationship_fetch_relationship_fields_s

econds

Timer Rate of fetches of relationship
fields of a managed object.

idm_managed_managed-object_relationship_get_relationship_value_for_

resource_seconds

Timer Rate of queries to get
relationship values for a
resource on a managed object.

Monitoring and metrics PingIDM

1238 Copyright © 2025 Ping Identity Corporation

Prometheus Metric Name Type Description

idm_managed_managed-object_relationship_validate_relationship_field

s_seconds

Timer Rate of validations of
relationship fields of a managed
object.

idm_managed_managed-objectscriptscript-name_seconds Timer Rate of executions of a script on
a managed object.

idm_managed_object_handle_temporal_constraints_on_create Timer Latency of enforcing temporal
constraints on role objects
during object creation.

idm_managed_object_handle_temporal_constraints_on_delete Timer Latency of enforcing temporal
constraints on role objects
during object deletion.

idm_managed_object_handle_temporal_constraints_on_update Timer Latency of enforcing temporal
constraints on role objects
during object update.

idm_managed_relationship_handle_temporal_constraints_on_create Timer Latency of enforcing temporal
constraints on relationship
grants during edge creation.

idm_managed_relationship_handle_temporal_constraints_on_delete Timer Latency of enforcing temporal
constraints on relationship
grants during edge deletion.

idm_managed_relationship_handle_temporal_constraints_on_update Timer Latency of enforcing temporal
constraints on relationship
grants during edge update.

idm_managed_relationship_validate_read_relationship_endpoint_edges_

seconds

Timer Rate of reads on relationship
endpoint edges for validation.

idm_managed_seconds{managed_object=managed-object,operation=operati

on}

Timer Rate of operations on a
managed object.

idm_null_array_filter.augmentationrequestType Timer Time spent in filter which maps
non-nullable, null-valued array
fields to an empty array. This
filter is traversed for all repo
access relating to internal and
managed objects.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1239

Prometheus Metric Name Type Description

idm_recon-assoc-entry_merged-query_merge-results Timer Rate of merge operations after
source and/or target objects
have been retrieved during a
merged query of recon
association entries.

idm_recon-assoc-entry_merged-query_page-assoc-entries Timer Rate of individual paged recon
association entry queries during
a merged query. More than one
page of entries might be
requested to build a single page
of merged results.

idm_recon-assoc-entry_merged-query_query-source Timer Rate of source object retrieval
via query when merging source
objects to recon association
entries.

idm_recon-assoc-entry_merged-query_query-target Timer Rate of target object retrieval via
query when merging target
objects to recon association
entries.

idm_recon_association-persistence{recon-id=reconId,operation=operat

ion}

Timer The time taken to persist
association data. The operation
can be source , target , or
amendsource , depending on
whether data is being produced
for a source-phase or target-
phase recon association, or to
amend the association for a
specific source.

idm_recon_id_queries_phase_seconds Timer Rate of executions of the id
query phase of a reconciliation,
and time taken to perform this
operation.

idm_recon_seconds Timer Rate of executions of a full
reconciliation, and time taken to
perform this operation.

idm_recon_source_phase_page_seconds Timer Rate of pagination executions of
the source phase of a
reconciliation, and time taken to
perform this operation.

Monitoring and metrics PingIDM

1240 Copyright © 2025 Ping Identity Corporation

Prometheus Metric Name Type Description

idm_recon_source_phase_seconds Timer Rate of executions of the source
phase of a reconciliation, and
time taken to perform this
operation.

idm_recon_target_phase_seconds Timer Rate of executions of the target
phase of a reconciliation, and
time taken to perform this
operation.

idm_repo_adhoc-expression_relationship_seconds{operation=operation,

repo_type=repo-type}

Timer Rate of filtered queries (using
native query expressions) on
the relationship table. This
metric measures the time spent
making the query (in ms), and
the number of times the query is
invoked.

idm_repo_adhoc-filter_relationship_seconds{operation=operation,repo

_type=repo-type}

Timer Rate of filtered queries (using
the _queryFilter parameter)
on the relationship table. This
metric measures the time spent
making the query (in ms), and
the number of times the query is
invoked.

idm_repo_execute_seconds{operation=create_properties,repo_type=repo

-type,resource_mapping=resource-mapping}

Timer Rate of execution time on the
JDBC database for the
create_properties operations.
This operation is performed for
every generic object create
when it persists the searchable
properties. The rate measured
here does not include the time
taken to obtain a connection to
the database from the
connection pool. The physical
connections to the database
have already been established
inside the connection pool.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1241

Prometheus Metric Name Type Description

idm_repo_execute_seconds{operation=operation,repo_type=repo-type,re

source_mapping=resource-mapping}

Timer Rate of execution time on the
JDBC database for CRUD
operations. This rate does not
include the time taken to obtain
a connection to the database
from the connection pool. The
physical connections to the
database have already been
established inside the
connection pool.

idm_repo_execute_seconds{operation="query",queryType=queryFilter|

queryId,repo_type=repo-type,resource_mapping=resource-mapping}

Timer Rate of execution time on the
JDBC database for queries
(either queryFilter or
queryId). This rate does not
include the time taken to obtain
a connection to the database
from the connection pool. The
physical connections to the
database have already been
established inside the
connection pool.

idm_repo_get_connection_seconds{repo_type=repo-type} Timer Rate of retrievals of a repository
connection.

idm_repo_jdbc_cache_objecttypes_count{event="hit|miss",type=resourc

e-mapping

Count Counts the usage statistics of
the objecttypeid cache, which
maps an object type to its
objecttypeid . The expected
count is a small number of
misses (sometimes, only one)
and the remainder of hits.

idm_repo_jdbc_relationship_edge_execute_seconds{joinedToVertex=join

edToVertex>

Timer Time (ms) spent running the
Edge→Vertex relationship join
query on the database and
collecting the result set.

idm_repo_jdbc_relationship_execute_seconds Timer Rate of relationship graph query
execution times.

idm_repo_jdbc_relationship_process_seconds Timer Rate of relationship graph query
result processing times.

Monitoring and metrics PingIDM

1242 Copyright © 2025 Ping Identity Corporation

Prometheus Metric Name Type Description

idm_repo_raw__queryid_credential_queryId_seconds Timer Rate of executions of a query
with queryId at a repository
level, and time taken to perform
this operation.

idm_repo_relationship_count{operation=operation,origin_type=origin_

type,repo_type=repo_type,stage=stage}

Timer Time (ms) spent in the various
phases to retrieve relationship
expanded data referenced by
queried objects.

idm_repo_relationship_seconds{operation=operation,repo_type=repo-

type}

Timer Rate of CRUDPAQ operations to
a repository datasource for a
generic/explicit/relationship
mapped table.

idm_repo_seconds{action_name=action-

name,command=command,operation=operation,repo_type=repo-type,resour

ce_mapping=resource-mapping}

Timer Rate of actions to a repository
datasource for a generic/explicit
mapped table.

idm_repo_seconds{operation=operation,repo_type=repo-type,resource_m

apping=resource-mapping}

Timer Rate of initiations of a CRUDPAQ
operation to a repository
datasource.

idm_router_path-nameactionaction-type_seconds Timer Rate of actions over the router,
and time taken to perform this
operation.

idm_router_path-name_create_seconds Timer Rate of creates over the router,
and time taken to perform this
operation.

idm_router_path-name_delete_seconds Timer Rate of deletes over the router,
and time taken to perform this
operation.

idm_router_path-name_patch_seconds Timer Rate of patches over the router,
and time taken to perform this
operation.

idm_router_path-name_query_queryExpression_seconds Timer Rate of queries with
queryExpression completed
over the router, and time taken
to perform this operation.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1243

Prometheus Metric Name Type Description

idm_router_path-name_query_queryFilter_seconds Timer Rate of queries with queryFilter
completed over the router, and
time taken to perform this
operation.

idm_router_path-name_read_seconds Timer Rate of reads over the router,
and time taken to perform this
operation.

idm_router_path-name_update_seconds Timer Rate of updates over the router,
and time taken to perform this
operation.

idm_script_script-name_request-type Timer Rate of calls to a script and time
taken to complete.

idm_selfservice_user_password_reset Summary Count of all successful user self-
service password resets.

idm_selfservice_user_registration{provider=provider,reg_type=regist

ration-type}

Summary Count of all successful user self-
service registrations by
registration type and provider.

idm_selfservice_user_registration{reg_type=registration-type} Summary Count of all successful user self-
service registrations by
registration type.

idm_sync_create_object_seconds Timer Rate of requests to create an
object on the target, and the
time taken to perform this
operation.

idm_sync_delete_target_seconds Timer Rate of requests to delete an
object on the target, and the
time taken to perform this
operation.

idm_sync_objectmapping_seconds{mapping_name=mapping-name} Timer Rate of configurations applied to
a mapping.

idm_sync_queue_acquire{mapping_name=mapping-name, action=action} Timer Rate of acquisition of queued
synchronization events from the
queue.

idm_sync_queue_discard{mapping_name=mapping-name, action=action} Timer Rate of deletion of
synchronization events from the
queue.

Monitoring and metrics PingIDM

1244 Copyright © 2025 Ping Identity Corporation

Prometheus Metric Name Type Description

idm_sync_queue_execution{mapping_name=mapping-name, action=action} Timer Rate at which queued
synchronization operations are
executed.

idm_sync_queue_failed{mapping_name=mapping-name, action=action} Summary Number of queued
synchronization operations that
failed.

idm_sync_queue_poll_pending_events{mapping_name=mapping-name } Timer The latency involved in polling
for synchronization events.

idm_sync_queue_precondition_failed{mapping_name=mapping-name,

action=action}

Summary Number of queued
synchronization events that
were acquired by another node
in the cluster.

idm_sync_queue_rejected_executions{mapping_name=mapping-name,

action=action}

Summary Number of queued
synchronization events that
were rejected because the
backing thread-pool queue was
at full capacity and the thread-
pool had already allocated its
maximum configured number of
threads.

idm_sync_queue_release_for_retry{mapping_name=mapping-name,

action=action}

Timer Times the release of queued
synchronization events after a
failure and before exceeding the
retry count.

idm_sync_queue_release{mapping_name=mapping-name, action=action} Timer Rate at which queued
synchronization events are
released.

idm_sync_queue_submit{mapping_name=mapping-name, action=action} Timer Rate of insertion of
synchronization events into the
queue.

idm_sync_raw_read_object_seconds Timer Rate of reads of an object.

idm_sync_source_assess_situation_seconds Timer Rate of assessments of a
synchronization situation.

idm_sync_source_correlate_target_seconds Timer Rate of correlations between a
target and a given source, and
time taken to perform this
operation.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1245

Prometheus Metric Name Type Description

idm_sync_source_determine_action_seconds Timer Rate of determinations done on
a synchronization action based
on its current situation.

idm_sync_source_perform_action_seconds Timer Rate of completions of an action
performed on a synchronization
operation.

idm_sync_target_assess_situation_seconds Timer Rate of assessments of a target
situation.

idm_sync_target_determine_action_seconds Timer Rate of determinations done on
a target action based on its
current situation.

idm_sync_target_perform_action_seconds Timer Rate of completions of an action
performed on a target sync
operation.

idm_sync_update_target_seconds Timer Rate of requests to update an
object on the target, and the
time taken to perform this
operation.

idm_user_login{user_type=user-type} Summary Count of all successful logins by
user type.

idm_user_login_total{provider=provider,user_type=user-type} Summary Count of all successful logins by
user type and provider.

idm_virtual_properties_from_relationships{virtual_properties=calcul

ated-virtual-properties, traversal_depthX=traversal-origin-

resource-collection and traversal relationship,not_found}

Summary Number of 404 responses
encountered when querying the
resource_collection /
relationship_field specified
in the traversal_depthX tag for
the most recent X. X
corresponds to the relationship
field sequence.

Monitoring and metrics PingIDM

1246 Copyright © 2025 Ping Identity Corporation

Prometheus JVM metrics available in IDM

Prometheus Metric Name Type Description

idm_virtual_properties_from_relationships{virtual_properties=calcul

ated-virtual-properties, traversal_depthX=traversal-origin-

resource-collection and traversal relationship,unsatisfied_temp_con

straint}

Summary Number of edges skipped due to
an unsatisfied temporal
constraint on either the edge or
the referred-to vertex.
Encountered when querying the
resource collection and
relationship field at the
traversal_depthX tag for the
most recent X. X corresponds to
the relationship field sequence.

idm_virtual_properties_from_relationships{virtual_properties=calcul

ated-virtual-properties, traversal_depthX=traversal-origin-

resource-collection and traversal relationship}

Timer Time spent traversing
relationship fields to calculate
the specified virtual properties.
The managed objects linked to
by the traversal relationship
fields define a tree, whose root
is the virtual property host. This
object tree is traversed depth-
first, with the traversal_depthX
corresponding to the latency
involved with each relationship
traversal. Traversal_depth0
corresponds to the first
relationship field traversed.
Because the tree is traversed
depth-first, traversal_depthX will
subsume all the traversal
latencies for all traversal_depth
Y, where Y>X. X corresponds to
the relationship field sequence.

info
These metrics depend on the JVM version and configuration. In particular, garbage-collector-related metrics depend
on the garbage collector that the server uses. The garbage-collector metric names are unstable, and can change even
in a minor JVM release.

Note

Prometheus Metric Name Type Unit Description

idm_jvm_available_cpus Gauge Count Number of processors available to
the JVM. For more information,
refer to Runtime.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1247

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html

Prometheus Metric Name Type Unit Description

idm_jvm_class_loading_loaded Gauge Count Number of classes loaded since
the Java virtual machine started.
For more information, refer to
ClassLoadingMXBean.

idm_jvm_class_loading_unloaded Gauge Count Number of classes unloaded since
the Java virtual machine started.
For more information, refer to
ClassLoadingMXBean.

idm_jvm_free_used_memory_bytes Gauge Bytes For more information, refer to
Runtime.

idm_jvm_garbage_collector_g1_old_generation_count Gauge Count For each garbage collector in the
JVM. For more information, refer to
GarbageCollectorMXBean.

idm_jvm_garbage_collector_g1_old_generation_time Gauge Milliseconds

idm_jvm_garbage_collector_g1_young_generation_count Gauge Count

idm_jvm_garbage_collector_g1_young_generation_time Gauge Milliseconds

idm_jvm_max_memory_bytes Gauge Bytes For more information, refer to
Runtime.

idm_jvm_memory_usage_heap_committed Gauge Bytes Amount of heap memory
committed for the JVM to use. For
more information, refer to
MemoryMXBean.

idm_jvm_memory_usage_heap_init Gauge Bytes

idm_jvm_memory_usage_heap_max Gauge Bytes Maximum amount of heap
memory available to the JVM.

idm_jvm_memory_usage_heap_usage Gauge Bytes

idm_jvm_memory_usage_heap_used Gauge Bytes Amount of heap memory used by
the JVM.

idm_jvm_memory_usage_non_heap_committed Gauge Bytes Amount of non-heap memory
committed for the JVM to use.

idm_jvm_memory_usage_non_heap_init Gauge Bytes Amount of non-heap memory the
JVM initially requested from the
operating system.

Monitoring and metrics PingIDM

1248 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ClassLoadingMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ClassLoadingMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ClassLoadingMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ClassLoadingMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/GarbageCollectorMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/GarbageCollectorMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryMXBean.html

Prometheus Metric Name Type Unit Description

idm_jvm_memory_usage_non_heap_max Gauge Bytes Maximum amount of non-heap
memory available to the JVM.

idm_jvm_memory_usage_non_heap_usage Gauge Bytes

idm_jvm_memory_usage_non_heap_used Gauge Bytes Amount of non-heap memory used
by the JVM.

idm_jvm_memory_usage_pools_codeheap__non_nmethods__

committed

Gauge Bytes For each pool. For more
information, refer to
MemoryPoolMXBean.

idm_jvm_memory_usage_pools_codeheap__non_nmethods__

init

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__non_nmethods__

max

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__non_nmethods__

usage

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__non_nmethods__

used

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__non_profiled_n

methods__committed

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__non_profiled_n

methods__init

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__non_profiled_n

methods__max

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__non_profiled_n

methods__usage

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__non_profiled_n

methods__used

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__profiled_nmeth

ods__committed

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__profiled_nmeth

ods__init

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__profiled_nmeth

ods__max

Gauge Bytes

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1249

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryPoolMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryPoolMXBean.html

Prometheus Metric Name Type Unit Description

idm_jvm_memory_usage_pools_codeheap__profiled_nmeth

ods__usage

Gauge Bytes

idm_jvm_memory_usage_pools_codeheap__profiled_nmeth

ods__used

Gauge Bytes

idm_jvm_memory_usage_pools_compressed_class_space_c

ommitted

Gauge Bytes

idm_jvm_memory_usage_pools_compressed_class_space_i

nit

Gauge Bytes

idm_jvm_memory_usage_pools_compressed_class_space_m

ax

Gauge Bytes

idm_jvm_memory_usage_pools_compressed_class_space_u

sage

Gauge Bytes

idm_jvm_memory_usage_pools_compressed_class_space_u

sed

Gauge Bytes

idm_jvm_memory_usage_pools_g1_eden_space_committed Gauge Bytes

idm_jvm_memory_usage_pools_g1_eden_space_init Gauge Bytes

idm_jvm_memory_usage_pools_g1_eden_space_max Gauge Bytes

idm_jvm_memory_usage_pools_g1_eden_space_usage Gauge Bytes

idm_jvm_memory_usage_pools_g1_eden_space_used Gauge Bytes

idm_jvm_memory_usage_pools_g1_eden_space_used_after

_gc

Gauge Bytes

idm_jvm_memory_usage_pools_g1_old_gen_committed Gauge Bytes

idm_jvm_memory_usage_pools_g1_old_gen_init Gauge Bytes

idm_jvm_memory_usage_pools_g1_old_gen_max Gauge Bytes

idm_jvm_memory_usage_pools_g1_old_gen_usage Gauge Bytes

idm_jvm_memory_usage_pools_g1_old_gen_used Gauge Bytes

idm_jvm_memory_usage_pools_g1_old_gen_used_after_gc Gauge Bytes

idm_jvm_memory_usage_pools_g1_survivor_space_commit

ted

Gauge Bytes

Monitoring and metrics PingIDM

1250 Copyright © 2025 Ping Identity Corporation

Prometheus Metric Name Type Unit Description

idm_jvm_memory_usage_pools_g1_survivor_space_init Gauge Bytes

idm_jvm_memory_usage_pools_g1_survivor_space_max Gauge Bytes

idm_jvm_memory_usage_pools_g1_survivor_space_usage Gauge Bytes

idm_jvm_memory_usage_pools_g1_survivor_space_used Gauge Bytes

idm_jvm_memory_usage_pools_g1_survivor_space_used_a

fter_gc

Gauge Bytes

idm_jvm_memory_usage_pools_metaspace_committed Gauge Bytes

idm_jvm_memory_usage_pools_metaspace_init Gauge Bytes

idm_jvm_memory_usage_pools_metaspace_max Gauge Bytes

idm_jvm_memory_usage_pools_metaspace_usage Gauge Bytes

idm_jvm_memory_usage_pools_metaspace_used Gauge Bytes

idm_jvm_memory_usage_total_committed Gauge Bytes Amount of memory that is
committed for the JVM to use. For
more information, refer to
MemoryMXBean.

idm_jvm_memory_usage_total_init Gauge Bytes

idm_jvm_memory_usage_total_max Gauge Bytes

idm_jvm_memory_usage_total_used Gauge Bytes

idm_jvm_thread_state_blocked_count Gauge Count For more information, refer to
ThreadMXBean.

idm_jvm_thread_state_count Gauge Count Number of live threads including
both daemon and non-daemon
threads.

idm_jvm_thread_state_daemon_count Gauge Count Number of live daemon threads.

idm_jvm_thread_state_new_count Gauge Count Number of threads in the NEW
state.

idm_jvm_thread_state_runnable_count Gauge Count Number of threads in the
RUNNABLE state.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1251

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryMXBean.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.management/java/lang/management/ThreadMXBean.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.management/java/lang/management/ThreadMXBean.html

Prometheus scheduler metrics available in IDM

Prometheus Metric Name Type Unit Description

idm_jvm_thread_state_terminated_count Gauge Count Number of threads in the
TERMINATED state.

idm_jvm_thread_state_timed_waiting_count Gauge Count Number of threads in the
TIMED_WAITING state.

idm_jvm_thread_state_waiting_count Gauge Count Number of threads in the WAITING
state.

idm_jvm_used_memory_bytes Gauge Bytes For more information, refer to
totalMemory().

Prometheus Metric Name Type Description

idm_scheduler.job{job-group=job-group, job-name=job-name,

activity=completed}

Summary A summary of completed jobs for the
specified job-group and job-name.

idm_scheduler.job{job-group=job-group, job-name=job-name,

activity=executed}

Timer Time spent on executed jobs for the
specified job-group and job-name.

idm_scheduler_job_store_repo_seconds{operation=operation,

scheduler_object=scheduler-object}

Timer Time spent storing scheduled jobs in
the repository for the specified
operation and scheduler-object.

idm_scheduler.trigger{activity=acquired, result=success} Summary A summary of successfully acquired
jobs.

idm_scheduler.trigger{activity=acquired, result=timeout} Summary A summary of acquired jobs that time
out.

idm_scheduler.trigger{activity=fired} Summary A summary of fired schedule triggers.

idm_scheduler.trigger{activity=misfired} Summary A summary of misfired schedule
triggers.

idm_scheduler.trigger{activity=recovered} Timer Time spent on recovered triggers.

idm_scheduler_seconds{operation=operation, type=type} Timer Execution rate of scheduler requests for
the specified type and operation.

Monitoring and metrics PingIDM

1252 Copyright © 2025 Ping Identity Corporation

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html#totalMemory()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html#totalMemory()

Prometheus workflow metrics available in IDM

Prometheus Metric Name Type Description

idm_workflow_execution_action_seconds{action="message"} Timer Time spent invoking a message event.

idm_workflow_execution_action_seconds{action="signal"} Timer Time spent invoking a signal event.

idm_workflow_execution_action_seconds{action="trigger"} Timer Time spent triggering an execution.

idm_workflow_execution_query_seconds Timer Time spent querying executions.

idm_workflow_job_action_seconds{action="execute"} Timer Time spent forcing synchronous
execution of a job.

idm_workflow_job_action_seconds{action="stacktrace"} Timer Time spent displaying the stacktrace for
a job that triggered an exception.

idm_workflow_job_delete_seconds Timer Time spent deleting a job.

idm_workflow_job_query_seconds Timer Time spent querying jobs.

idm_workflow_job_read_seconds Timer Time spent reading a single job.

idm_workflow_jobdeadletter_action_seconds{action="execute"

}

Timer Time spent to execute dead-letter job.

idm_workflow_jobdeadletter_action_seconds{action="stacktrac

e"}

Timer Time spent to retrieve the stacktrace for
a dead-letter job.

idm_workflow_jobdeadletter_delete_seconds Timer Time spent to delete a dead letter job.

idm_workflow_jobdeadletter_query_seconds Timer Time spent to query dead letter jobs.

idm_workflow_jobdeadletter_read_seconds Timer Time spent to read a dead letter job.

idm_workflow_model_action_seconds{action="deploy"} Timer Time spent to deploy a model.

idm_workflow_model_action_seconds{action="list_deployments"

}

Timer Time spent to list model deployments.

idm_workflow_model_action_seconds{action="validate_bpmn"} Timer Time spent to validate BPMN content.

idm_workflow_model_create_seconds Timer Time spent to create a model.

idm_workflow_model_delete_seconds Timer Time spent to delete a model.

idm_workflow_model_query_seconds Timer Time spent to query models.

idm_workflow_model_read_seconds Timer Time spent to read a model.

PingIDM Monitoring and metrics

Copyright © 2025 Ping Identity Corporation 1253

Prometheus Metric Name Type Description

idm_workflow_model_update_seconds Timer Time spent to update a model.

idm_workflow_processdefinition_delete_seconds Timer Time spent to delete a process
definition.

idm_workflow_processdefinition_query_seconds Timer Time spent to query process definitions.

idm_workflow_processdefinition_read_seconds Timer Time spent to read a process definition.

idm_workflow_processinstance_action_seconds{action="migrate

"}

Timer Time spent to migrate a process
instance.

idm_workflow_processinstance_action_seconds{action="validat

eMigration"}

Timer Time spent to validate a migration of a
process instance.

idm_workflow_processinstance_create_seconds Timer Time spent to create a process
instance.

idm_workflow_processinstance_delete_seconds Timer Time spent to delete a process instance.

idm_workflow_processinstance_query_seconds Timer Time spent to query process instances.

idm_workflow_processinstance_read_seconds Timer Time spent to read a process instance.

idm_workflow_taskdefinition_query_seconds Timer Time spent to query task definitions.

idm_workflow_taskdefinition_read_seconds Timer Time spent to read a task definition.

idm_workflow_taskinstance_action_seconds{action="complete"

}

Timer Time spent to complete a task instance.

idm_workflow_taskinstance_query_seconds Timer Time spent to query task instances.

idm_workflow_taskinstance_read_seconds Timer Time spent to read a task instance.

idm_workflow_taskinstance_update_seconds Timer Time spent to update a task instance.

Monitoring and metrics PingIDM

1254 Copyright © 2025 Ping Identity Corporation

REST API reference

Guide to creating and managing objects in ForgeRock® Identity Management.

This reference describes the ForgeRock Common REST API. refer to Common REST and IDM for information specific to the IDM
implementation of Common REST.

Quick Start

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web resources and collections of
resources.

ForgeRock Common REST

ForgeRock® Common REST is a common REST API framework. It works across the ForgeRock platform to provide common ways
to access web resources and collections of resources. Adapt the examples in this section to your resources and deployment.

Start Here

Learn about the Common REST interface in the
ForgeRock Platform and the specifics of REST in

IDM.

API Explorer

Access the online IDM REST API reference
through the admin UI.

REST API Structure

Understand RESTful syntax with respect to the
IDM REST API.

REST Endpoints

Discover the REST endpoints IDM exposes.

REST API reference PingIDM

1256 Copyright © 2025 Ping Identity Corporation

https://www.forgerock.com
https://www.forgerock.com

Common REST Resources

Servers generally return JSON-format resources, though resource formats can depend on the implementation.

Resources in collections can be found by their unique identifiers (IDs). IDs are exposed in the resource URIs. For example, if a
server has a user collection under /users , then you can access a user at /users/user-id . The ID is also the value of the _id
field of the resource.

Resources are versioned using revision numbers. A revision is specified in the resource’s _rev field. Revisions make it possible to
figure out whether to apply changes without resource locking and without distributed transactions.

Common REST Verbs

The Common REST APIs use the following verbs, sometimes referred to collectively as CRUDPAQ . For details and HTTP-based
examples of each, follow the links to the sections for each verb.

Create

Add a new resource.

This verb maps to HTTP PUT or HTTP POST.

For details, refer to Create.

Read

Retrieve a single resource.

This verb maps to HTTP GET.

For details, refer to Read.

Update

Replace an existing resource.

This verb maps to HTTP PUT.

For details, refer to Update.

Delete

Remove an existing resource.

This verb maps to HTTP DELETE.

For details, refer to Delete.

info
This section describes the full Common REST framework. Some platform component products do not implement all
Common REST behaviors exactly as described in this section. For details, refer to the product-specific examples and
reference information in other sections of this documentation set.

Note

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1257

Patch

Modify part of an existing resource.

This verb maps to HTTP PATCH.

For details, refer to Patch.

Action

Perform a predefined action.

This verb maps to HTTP POST.

For details, refer to Action.

Query

Search a collection of resources.

This verb maps to HTTP GET.

For details, refer to Query.

Common REST Parameters

Common REST reserved query string parameter names start with an underscore (_).

Reserved query string parameters include, but are not limited to, the following names:

_action

_api

_crestapi

_fields

_mimeType

_pageSize

_pagedResultsCookie

_pagedResultsOffset

_prettyPrint

_queryExpression

_queryFilter

_queryId

_sortKeys

_totalPagedResultsPolicy

Continue reading for details about how to use each parameter.

info
Some parameter values are not safe for URLs, so URL-encode parameter values as necessary.

Note

REST API reference PingIDM

1258 Copyright © 2025 Ping Identity Corporation

Common REST Extension Points

The action verb is the main vehicle for extensions. For example, to create a new user with HTTP POST rather than HTTP PUT, you
might use /users?_action=create . A server can define additional actions. For example, /tasks/1?_action=cancel .

A server can define stored queries to call by ID. For example, /groups?_queryId=hasDeletedMembers . Stored queries can call for
additional parameters. The parameters are also passed in the query string. Which parameters are valid depends on the stored
query.

Common REST API Documentation

Common REST APIs often depend at least in part on runtime configuration. Many Common REST endpoints therefore serve API
descriptors at runtime. An API descriptor documents the actual API as it is configured.

Use the following query string parameters to retrieve API descriptors:

_api

Serves an API descriptor that complies with the OpenAPI specification.

This API descriptor represents the API accessible over HTTP. It is suitable for use with popular tools, such as Swagger UI.

_crestapi

Serves a native Common REST API descriptor.

This API descriptor provides a compact representation that is not dependent on the transport protocol. It requires a client
that understands Common REST because it omits many Common REST defaults.

Publish OpenAPI Documentation

In production systems, developers expect stable, well-documented APIs. Rather than retrieving API descriptors at runtime
through Common REST, prepare final versions, and publish them alongside the software in production.

info
Requests made with the _api query string parameter require authorization. Grant access by creating a
custom rule in access.json . The following example authorizes users with the openidm-authorized role:

{
 "pattern" : "managed/user",
 "roles" : "internal/role/openidm-authorized",
 "methods" : "read",
 "customAuthz" : "checkIfApiRequest()"
}

Note

info
Consider limiting access to API descriptors in production environments to avoid unnecessary traffic.
To provide documentation in production environments, refer to Publish OpenAPI Documentation instead.

Note

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1259

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/

Use the OpenAPI-compliant descriptors to provide API reference documentation for your developers as described in the following
steps:

Configure the software to produce production-ready APIs.

In other words, the software should be configured as in production so that the APIs are identical to what developers refer
to in production.

Retrieve the OpenAPI-compliant descriptor.

The following command saves the descriptor to a file, myapi.json :

curl -o myapi.json endpoint?_api

If necessary, edit the descriptor.

For example, you might want to add security definitions to describe how the API is protected.

If you make any changes, then also consider using a source control system to manage your versions of the API descriptor.

Publish the descriptor using a tool, such as Swagger UI.

You can customize Swagger UI for your organization as described in the documentation for the tool.

Create

There are two ways to create a resource, either with an HTTP POST or with an HTTP PUT.

To create a resource using POST, perform an HTTP POST with the query string parameter _action=create and the JSON
resource as a payload. The server creates the identifier if not specified:

POST /users?_action=create HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
{ JSON resource }

To create a resource using PUT, perform an HTTP PUT including the case-sensitive identifier for the resource in the URL path, and
the JSON resource as a payload. Optionally, include the If-None-Match: * header to prevent overwriting an existing object:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-None-Match: *
{ JSON resource }

1.

2.

3.

4.

REST API reference PingIDM

1260 Copyright © 2025 Ping Identity Corporation

https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-ui

The _id and content of the resource depend on the server implementation. The server is not required to use the _id that the
client provides. The server response to the create request indicates the resource location as the value of the Location header.

If you include the If-None-Match header, its value must be * . In this case, the request creates the object if it does not exist, and
fails if the object does exist. If you include the If-None-Match header with any value other than * , the server returns an HTTP
400 Bad Request error. For example, creating an object with If-None-Match: revision returns a bad request error. If you do
not include If-None-Match: * , the request creates the object if it does not exist, and updates the object if it does exist.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

Read

To retrieve a single resource, perform an HTTP GET on the resource by its case-sensitive identifier (_id) and accept a JSON
response:

GET /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1261

_mimeType=mime-type

Some resources have fields whose values are multi-media resources such as a profile photo for example.

If the feature is enabled for the endpoint, you can read a single field that is a multi-media resource by specifying the field
and mime-type.

In this case, the content type of the field value returned matches the mime-type that you specify, and the body of the
response is the multi-media resource.

The Accept header is not used in this case. For example, Accept: image/png does not work. Use the _mimeType query
string parameter instead.

Update

To update a resource, perform an HTTP PUT including the case-sensitive identifier (_id) as the final element of the path to the
resource, and the JSON resource as the payload. Use the If-Match: _rev header to check that you are actually updating the
version you modified. Use If-Match: * if the version does not matter.

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON resource }

When updating a resource, include all the attributes to be retained. Omitting an attribute in the resource amounts to deleting the
attribute unless it is not under the control of your application. Attributes not under the control of your application include private
and read-only attributes. In addition, virtual attributes and relationship references might not be under the control of your
application.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

REST API reference PingIDM

1262 Copyright © 2025 Ping Identity Corporation

Delete

To delete a single resource, perform an HTTP DELETE by its case-sensitive identifier (_id) and accept a JSON response:

DELETE /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

Patch

To patch a resource, send an HTTP PATCH request with the following parameters:

operation

field

value

from (optional with copy and move operations)

You can include these parameters in the payload for a PATCH request, or in a JSON PATCH file. If successful, you’ll refer to a JSON
response similar to:

PATCH /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON array of patch operations }

PATCH operations apply to three types of targets:

single-valued, such as an object, string, boolean, or number.

•

•

•

•

•

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1263

list semantics array, where the elements are ordered, and duplicates are allowed.

set semantics array, where the elements are not ordered, and duplicates are not allowed.

ForgeRock PATCH supports several different operations . The following sections show each of these operations, along with
options for the field and value :

Patch Operation: Add

The add operation ensures that the target field contains the value provided, creating parent fields as necessary.

If the target field is single-valued, then the value you include in the PATCH replaces the value of the target. Examples of a single-
valued field include: object, string, boolean, or number.

An add operation has different results on two standard types of arrays:

List semantic arrays: you can run any of these add operations on that type of array:

If you add an array of values, the PATCH operation appends it to the existing list of values.

If you add a single value, specify an ordinal element in the target array, or use the {-} special index to add that
value to the end of the list.

Set semantic arrays: The value included in the patch is merged with the existing set of values.

As an example, start with the following list semantic array resource:

{
 "fruits" : ["orange", "apple"]
}

The following add operation includes the pineapple to the end of the list of fruits, as indicated by the - at the end of the fruits
array.

{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : "pineapple"
}

The following is the resulting resource:

{
 "fruits" : ["orange", "apple", "pineapple"]
}

Note that you can add only one array element one at a time, as per the corresponding JSON Patch specification. If you add an
array of elements, for example:

•

•

•

◦

◦

•

REST API reference PingIDM

1264 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc6902.html#appendix-A.16
https://www.rfc-editor.org/rfc/rfc6902.html#appendix-A.16

{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : ["pineapple", "mango"]
}

The resulting resource would have the following invalid JSON structure:

{
 "fruits" : ["orange", "apple", ["pineapple", "mango"]]
}

Patch Operation: Copy

The copy operation takes one or more existing values from the source field. It then adds those same values on the target field.
Once the values are known, it is equivalent to performing an add operation on the target field.

The following copy operation takes the value from a field named mail , and then runs a replace operation on the target field,
another_mail .

[
 {
 "operation":"copy",
 "from":"mail",
 "field":"another_mail"
 }
]

If the source field value and the target field value are configured as arrays, the result depends on whether the array has list
semantics or set semantics, as described in Patch Operation: Add.

Patch Operation: Increment

The increment operation changes the value or values of the target field by the amount you specify. The value that you include
must be one number, and may be positive or negative. The value of the target field must accept numbers. The following
increment operation adds 1000 to the target value of /user/payment .

[
 {
 "operation" : "increment",
 "field" : "/user/payment",
 "value" : "1000"
 }
]

Since the value of the increment is a single number, arrays do not apply.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1265

Patch Operation: Move

The move operation removes existing values on the source field. It then adds those same values on the target field. It is
equivalent to performing a remove operation on the source, followed by an add operation with the same values, on the target.

The following move operation is equivalent to a remove operation on the source field, surname , followed by a replace
operation on the target field value, lastName . If the target field does not exist, it is created.

[
 {
 "operation":"move",
 "from":"surname",
 "field":"lastName"
 }
]

To apply a move operation on an array, you need a compatible single-value, list semantic array, or set semantic array on both the
source and the target. For details, refer to the criteria described in Patch Operation: Add.

Patch Operation: Remove

The remove operation ensures that the target field no longer contains the value provided. If the remove operation does not
include a value, the operation removes the field. The following remove deletes the value of the phoneNumber , along with the
field.

[
 {
 "operation" : "remove",
 "field" : "phoneNumber"
 }
]

If the object has more than one phoneNumber , those values are stored as an array.

A remove operation has different results on two standard types of arrays:

List semantic arrays: A remove operation deletes the specified element in the array. For example, the following operation
removes the first phone number, based on its array index (zero-based):

[
 {
 "operation" : "remove",
 "field" : "/phoneNumber/0"
 }
]

Set semantic arrays: The list of values included in a patch are removed from the existing array.

•

•

REST API reference PingIDM

1266 Copyright © 2025 Ping Identity Corporation

Patch Operation: Replace

The replace operation removes any existing value(s) of the targeted field, and replaces them with the provided value(s). It is
essentially equivalent to a remove , followed by a add operation. If the arrays are used, the criteria is based on Patch Operation:
Add. However, indexed updates are not allowed, even when the target is an array.

The following replace operation removes the existing telephoneNumber value for the user, and then adds the new value of +1
408 555 9999 .

[
 {
 "operation" : "replace",
 "field" : "/telephoneNumber",
 "value" : "+1 408 555 9999"
 }
]

A PATCH replace operation on a list semantic array works in the same fashion as a PATCH remove operation. The following
example demonstrates how the effect of both operations. Start with the following resource:

{
 "fruits" : ["apple", "orange", "kiwi", "lime"],
}

Apply the following operations on that resource:

[
 {
 "operation" : "remove",
 "field" : "/fruits/0",
 "value" : ""
 },
 {
 "operation" : "replace",
 "field" : "/fruits/1",
 "value" : "pineapple"
 }
]

The PATCH operations are applied sequentially. The remove operation removes the first member of that resource, based on its
array index, (fruits/0), with the following result:

[
 {
 "fruits" : ["orange", "kiwi", "lime"],
 }
]

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1267

The second PATCH operation, a replace , is applied on the second member (fruits/1) of the intermediate resource, with the
following result:

[
 {
 "fruits" : ["orange", "pineapple", "lime"],
 }
]

Patch Operation: Transform

The transform operation changes the value of a field based on a script or some other data transformation command. The
following transform operation takes the value from the field named /objects , and applies the something.js script as shown:

[
 {
 "operation" : "transform",
 "field" : "/objects",
 "value" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "something.js"
 }
 }
 }
]

Patch Operation Limitations

Some HTTP client libraries do not support the HTTP PATCH operation. Make sure that the library you use supports HTTP PATCH
before using this REST operation.

For example, the Java Development Kit HTTP client does not support PATCH as a valid HTTP method. Instead, the method
HttpURLConnection.setRequestMethod("PATCH") throws ProtocolException .

Parameters

You can use the following parameters. Other parameters might depend on the specific action implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

REST API reference PingIDM

1268 Copyright © 2025 Ping Identity Corporation

Action

Actions are a means of extending Common REST APIs and are defined by the resource provider, so the actions you can use
depend on the implementation.

The standard action indicated by _action=create is described in Create.

Parameters

You can use the following parameters. Other parameters might depend on the specific action implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

Query

To query a resource collection (or resource container if you prefer to think of it that way), perform an HTTP GET and accept a
JSON response, including at least a _queryExpression , _queryFilter , or _queryId parameter. These parameters cannot be
used together:

GET /users?_queryFilter=true HTTP/1.1
Host: example.com
Accept: application/json

The server returns the result as a JSON object including a "results" array and other fields related to the query string parameters
that you specify.

Parameters

You can use the following parameters:

_queryFilter=filter-expression

Query filters request that the server return entries that match the filter expression. You must URL-escape the filter
expression.

The string representation is summarized as follows. Continue reading for additional explanation:

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1269

Expr = OrExpr
OrExpr = AndExpr ('or' AndExpr) *
AndExpr = NotExpr ('and' NotExpr) *
NotExpr = '!' PrimaryExpr | PrimaryExpr
PrimaryExpr = '(' Expr ')' | ComparisonExpr | PresenceExpr | LiteralExpr
ComparisonExpr = Pointer OpName JsonValue
PresenceExpr = Pointer 'pr'
LiteralExpr = 'true' | 'false'
Pointer = JSON pointer
OpName = 'eq' | # equal to
 'co' | # contains
 'sw' | # starts with
 'lt' | # less than
 'le' | # less than or equal to
 'gt' | # greater than
 'ge' | # greater than or equal to
 STRING # extended operator
JsonValue = NUMBER | BOOLEAN | '"' UTF8STRING '"'
STRING = ASCII string not containing white-space
UTF8STRING = UTF-8 string possibly containing white-space

JsonValue components of filter expressions follow RFC 7159: The JavaScript Object Notation (JSON) Data Interchange
Format. In particular, as described in section 7 of the RFC, the escape character in strings is the backslash character. For
example, to match the identifier test\ , use _id eq 'test\\' . In the JSON resource, the \ is escaped the same way:
"_id":"test\\" .

When using a query filter in a URL, be aware that the filter expression is part of a query string parameter. A query string
parameter must be URL encoded as described in RFC 3986: Uniform Resource Identifier (URI): Generic Syntax. For
example, white space, double quotes ("), parentheses, and exclamation characters need URL encoding in HTTP query
strings. The following rules apply to URL query components:

query = *(pchar / "/" / "?")
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
pct-encoded = "%" HEXDIG HEXDIG
sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

ALPHA , DIGIT , and HEXDIG are core rules of RFC 5234: Augmented BNF for Syntax Specifications:

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

As a result, a backslash escape character in a JsonValue component is percent-encoded in the URL query string parameter
as %5C . To encode the query filter expression _id eq 'test\\' , use _id+eq'test%5C%5C'+ , for example.

A simple filter expression can represent a comparison, presence, or a literal value.

For comparison expressions use json-pointer comparator json-value, where the comparator is one of the following:

REST API reference PingIDM

1270 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/rfc/rfc5234.html

eq (equals)
co (contains)
sw (starts with)
lt (less than)
le (less than or equal to)
gt (greater than)
ge (greater than or equal to)

For presence, use json-pointer pr to match resources where:

The JSON pointer is present.

The value it points to is not null .

Literal values include true (match anything) and false (match nothing).

Complex expressions employ and , or , and ! (not), with parentheses, (expression) , to group expressions.

_queryId=identifier

Specify a query by its identifier.

Specific queries can take their own query string parameter arguments, which depend on the implementation.

_pagedResultsCookie=string

The string is an opaque cookie used by the server to keep track of the position in the search results. The server returns the
cookie in the JSON response as the value of pagedResultsCookie .

In the request _pageSize must also be set and non-zero. You receive the cookie value from the provider on the first
request, and then supply the cookie value in subsequent requests until the server returns a null cookie, meaning that
the final page of results has been returned.

The _pagedResultsCookie parameter is supported when used with the _queryFilter parameter. The
_pagedResultsCookie parameter is not guaranteed to work when used with the _queryExpression and _queryId
parameters.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be used together.

_pagedResultsOffset=integer

When _pageSize is non-zero, use this as an index in the result set indicating the first page to return.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be used together.

_pageSize=integer

Return query results in pages of this size. After the initial request, use _pagedResultsCookie or _pageResultsOffset to
page through the results.

•

•

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1271

_totalPagedResultsPolicy=string

When a _pageSize is specified, and non-zero, the server calculates the "totalPagedResults", in accordance with the
totalPagedResultsPolicy , and provides the value as part of the response. The "totalPagedResults" is either an estimate
of the total number of paged results (_totalPagedResultsPolicy=ESTIMATE), or the exact total result count
(_totalPagedResultsPolicy=EXACT). If no count policy is specified in the query, or if _totalPagedResultsPolicy=NONE ,
result counting is disabled, and the server returns value of -1 for "totalPagedResults".

_sortKeys=[-][.replaceable]##field##[,[-]field...]

Sort the resources returned based on the specified field(s), either in + (ascending, default) order, or in - (descending)
order.

Because ascending order is the default, including the ` character in the query is unnecessary. If you do include
the `` , it must be URL-encoded as %2B` , for example:

http://localhost:8080/api/users?_prettyPrint=true&_queryFilter=true&_sortKeys=%2Bname/givenName

The _sortKeys parameter is not supported for predefined queries (_queryId).

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in each element of the "results" array in the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}} , parent/child
refers to the "child":"value" .

If the field is left blank, the server returns all default values.

HTTP status codes

When working with a Common REST API over HTTP, client applications should expect at least the following HTTP status codes. Not
all servers necessarily return all status codes identified here:

200 OK

The request was successful and a resource returned, depending on the request.

201 Created

The request succeeded and the resource was created.

204 No Content

The action request succeeded, and there was no content to return.

REST API reference PingIDM

1272 Copyright © 2025 Ping Identity Corporation

304 Not Modified

The read request included an If-None-Match header, and the value of the header matched the revision value of the
resource.

400 Bad Request

The request was malformed.

401 Unauthorized

The request requires user authentication.

403 Forbidden

Access was forbidden during an operation on a resource.

404 Not Found

The specified resource could not be found, perhaps because it does not exist.

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

406 Not Acceptable

The request contains parameters that are not acceptable, such as a resource or protocol version that is not available.

409 Conflict

The request would have resulted in a conflict with the current state of the resource.

410 Gone

The requested resource is no longer available, and will not become available again. This can happen when resources
expire for example.

412 Precondition Failed

The resource’s current version does not match the version provided.

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the requested method.

428 Precondition Required

The resource requires a version, but no version was supplied in the request.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1273

501 Not Implemented

The resource does not support the functionality required to fulfill the request.

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been disabled, for example.

REST and IDM

Representational State Transfer (REST) is a software architecture style for exposing resources, using the technologies and
protocols of the World Wide Web. REST describes how distributed data objects, or resources, can be defined and addressed.

IDM provides a RESTful API for accessing managed objects, system objects, workflows, and the system configuration.

Common REST and IDM

IDM implements the Common REST API as described in the previous section, with the exception of the following elements:

IDM provides limited support for the in expression clause. You can use this clause for queries on singleton string
properties, not arrays. in query expressions are not supported through the admin UI.

The PATCH transform action is supported only on the config endpoint. Note that this is an optional action and not
implemented everywhere across the ForgeRock Identity Platform.

Common REST supports PATCH operations by list element index, as shown in the example in Patch Operation: Remove.
IDM does not support PATCH by list element index. So, for PATCH operations, you cannot use an ordinal when adding or
removing list items.

You can add an item using the special hyphen index, which designates that the element should be added to the end of the
list. To remove specific items from a list, you must specify the value to be removed, for example:

[
 {
 "operation" : "remove",
 "field" : "/phoneNumber/",
 "value" : "202-555-0185"
 }
]

If _fields is left blank (null), the server returns all default values. In IDM, this excludes relationships and virtual fields. To
include these fields in the output, add "returnByDefault" : true in the applicable schema.

IDM also implements wild-card (*) handling with the _fields parameter. So, a value of _fields=*_ref will return all
relationship fields associated with an object. A value of _fields=*_ref/* will return all the fields within each relationship.

•

•

•

info
When you remove items in this way, if the list contains two or more items with the same value, they are all
removed.

Note

•

REST API reference PingIDM

1274 Copyright © 2025 Ping Identity Corporation

IDM does not implement the ESTIMATE total paged results policy. The totalPagedResults is either the exact total result
count (_totalPagedResultsPolicy=EXACT) or result counting is disabled (_totalPagedResultsPolicy=NONE). For more
information, refer to Page Query Results.

REST API Explorer

IDM includes an API Explorer, an implementation of the OpenAPI Initiative Specification, also known as Swagger.

The API Explorer covers most endpoints provided with a default IDM installation.

Each endpoint lists supported HTTP methods, such as POST and GET. When custom actions are available, the API Explorer lists
them as:

HTTP Method /path/to/endpoint?_action=something

Example

To see the API Explorer in action, follow along with this procedure:

To access the API Explorer, log in to the admin UI, click the question mark button in the upper right corner, and select
 API Explorer.

Expand the User v1.0 endpoint node, and click GET /openidm/managed/user1.0_query_id_query-all.

Click Try it out!, and then click Execute.

The output includes:

The REST call, in the form of the curl command.

The request URL, which specifies the endpoint and associated parameters.

•

1.

info
If the API Explorer does not display, you might need to enable it in your resolver/boot.properties file by
setting the openidm.apidescriptor.enabled property to true .

Note

2.

3.

◦

◦

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1275

https://www.openapis.org/specification/repo
https://www.openapis.org/specification/repo

The response body, which contains the data that you requested.

The HTTP response code; if everything works, this should be 200 .

Response headers.

For details on common ForgeRock REST parameters, refer to ForgeRock Common REST.

You’ll refer to examples of REST calls throughout this documentation set. You can try these calls with the API Explorer.

You can also generate an OpenAPI-compliant descriptor of the REST API to provide API reference documentation specific to your
deployment. The following command saves the API descriptor of the managed/user endpoint to a file named my-openidm-
api.json :

◦

◦

lightbulb_2
If you refer to a 401 Access Denied code in the response body, your session may have timed out, and
you’ll have to log in to the admin UI again.

Tip

◦

REST API reference PingIDM

1276 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
--output "my-openidm-api.json" \
"http://localhost:8080/openidm/managed/user?_api"

For information about publishing reference documentation using the API descriptor, refer to Publish OpenAPI Documentation.

REST API versioning

ForgeRock REST API features are assigned version numbers. Providing version numbers in the REST API helps ensure
compatibility between releases. The version number of a feature increases when ForgeRock introduces a change that is not
backwards-compatible, and that affects clients that use the feature.

If there is more than one version of the API, you must select the version by setting a version header that specifies which version
of the resource is requested. To ensure that your clients are always compatible with a newer IDM version, you should always
include resource versions in your REST calls.

For more information about the supported resource versions, refer to REST API Explorer.

Specify the API version in REST calls

HTTP requests can optionally include the Accept-API-Version header with the value of the resource version, such as
resource=2.0 . If no Accept-API-Version header is included, the latest resource version is invoked by the HTTP request.

The following call requests version 2.0 of the specified resource:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=2.0" \
--request POST \
--data '{
 "url":"https://www.forgerock.com/favicon.ico",
 "method":"GET"
}' \
"http://localhost:8080/openidm/external/rest?_action=call"

If Accept-API-Version contains an invalid version, IDM returns the following error:

{
 "code": 404,
 "reason": "Not Found",
 "message": "Resource'' not found"
}

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1277

Specify the API Version in Scripts

You can specify a resource version in scripts using the fourth (additional parameters) argument. If present, the Accept-API-
Version parameter is applied to the actual REST request. Any other parameters are set as Additional Parameters on the request.

The following examples request specific resource versions:

REST with Inline Javascript

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "type":"text/javascript",
 "source":"openidm.action(\"external/rest\", \"call\", {\"url\": \"https://www.forgerock.com/
favicon.ico\", \"method\": \"GET\"}, {\"Accept-API-Version\": \"resource=1.0\"});"
}' \
"http://localhost:8080/openidm/script?_action=eval"

Standalone Javascript

openidm.action("external/rest", "call",
 {"url": "https://www.forgerock.com/favicon.ico", "method": "GET"},
 {"Accept-API-Version": "resource=1.0"});

API Version Header Warnings

IDM can log warnings when API version headers are not specified. Additionally, you can enable warnings when scripts don’t
specify API versions. Warnings are disabled by default. To enable this feature, add one or more of the following to your project’s
resolver/boot.properties file:

openidm.apiVersion.warning.enabled=true

A message will be logged once per resource path, at the info level. For example:

INFO: Accept-API-Version header missing from external request (authentication);
transactionId=e017258a-8bac-4507-9575-78a41152e479-1929

The HTTP response will apply a warning header. For example:

Warning: 100 CREST "Accept-API-Version should be included in the request."

•

•

REST API reference PingIDM

1278 Copyright © 2025 Ping Identity Corporation

openidm.apiVersion.warning.includeScripts=true

A message will be logged once per resource path and script-name pair, at the info level.

Example script file log entry:

[127] Sep 22, 2021 4:08:15.162 AM
org.forgerock.openidm.servlet.internal.ResourceApiVersionFilterRegistration
logOnceForScriptRequest
INFO: Accept-API-Version header missing from script (policyFilter.js) request: policy

Example inline script log entry:

INFO: Accept-API-Version header missing from script
(d6fc81179beaca37094a23c2fcd00aaf54bb3ef9:router:onRequest) request (config)
...
INFO: Accept-API-Version header missing from script (policy.js) request (managed/user)

Filter Resource Path Warnings

To filter which resource paths are logged, edit the logFilterResourcePaths array located in the conf/apiVersion.json file.
You can also modify the configuration over REST:

Get the current configuration:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/config/apiVersion"

info
This setting requires openidm.apiVersion.warning.enabled=true.

Note

•

1.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1279

{
 "warning" : {
 "enabled" : {
 "$bool" : "&{openidm.apiVersion.warning.enabled|false}"
 },
 "includeScripts" : {
 "$bool" : "&{openidm.apiVersion.warning.includeScripts|false}"
 },
 "logFilterResourcePaths" : [
 "audit",
 "authentication",
 "cluster",
 "config",
 "consent",
 "csv",
 "external/rest",
 "identityProviders",
 "info",
 "internal",
 "internal/role",
 "internal/user",
 "internal/usermeta",
 "managed",
 "managed/assignment",
 "managed/organization",
 "managed/role",
 "managed/user",
 "notification",
 "policy",
 "privilege",
 "profile",
 "recon",
 "recon/assoc",
 "repo",
 "selfservice/kba",
 "selfservice/terms",
 "scheduler/job",
 "scheduler/trigger",
 "schema",
 "sync",
 "sync/mappings",
 "system",
 "taskscanner"
]
 }
}

Make changes, and replace the configuration:2.

REST API reference PingIDM

1280 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--request PUT \
--data '{
 "warning" : {
 "enabled" : {
 "$bool" : "&{openidm.apiVersion.warning.enabled|false}"
 },
 "includeScripts" : {
 "$bool" : "&{openidm.apiVersion.warning.includeScripts|false}"
 },
 "logFilterResourcePaths" : [<Insert modified resourcePaths here>
]
 }
}' \
"http://localhost:8080/openidm/config/apiVersion"

REST API structure

URI scheme

The URI scheme for accessing a managed object follows this convention, assuming the IDM web application was deployed at /
openidm .

/openidm/managed/type/id

Similar schemes exist for URIs associated with all but system objects. For more information, refer to Configure Access Control in
access.json.

The URI scheme for accessing a system object follows this convention:

/openidm/system/resource-name/type/id

An example of a system object in an LDAP directory might be:

/openidm/system/ldap/account/07b46858-56eb-457c-b935-cfe6ddf769c7

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1281

Object identifiers

Every managed and system object has an identifier (expressed as id in the URI scheme) that is used to address the object through
the REST API. The REST API allows for client-generated and server-generated identifiers, through PUT and POST methods. The
default server-generated identifier type is a UUID. If you create an object by using POST , a server-assigned ID is generated in the
form of a UUID. If you create an object by using PUT, the client assigns the ID in whatever format you specify.

Most of the examples in this guide use client-assigned IDs, as it makes the examples easier to read.

Content negotiation

The REST API fully supports negotiation of content representation through the Accept HTTP header. Currently, the supported
content type is JSON. When you send a JSON payload, you must include the following header:

Accept: application/json

In a REST call (using the curl command, for example), you would include the following option to specify the noted header:

--header "Content-Type: application/json"

You can also specify the default UTF-8 character set as follows:

--header "Content-Type: application/json;charset=utf-8"

The application/json content type is not needed when the REST call does not send a JSON payload.

Conditional operations

The REST API supports conditional operations through the use of the ETag , If-Match and If-None-Match HTTP headers. The
use of HTTP conditional operations is the basis of IDM’s optimistic concurrency control system. Clients should make requests
conditional in order to prevent inadvertent modification of the wrong version of an object.

emergency_home
For LDAP resources, you should not map the LDAP dn to the IDM uidAttribute (_id). The attribute that is used for
the _id should be immutable. You should therefore map the LDAP entryUUID operational attribute to the IDM _id ,
as shown in the following excerpt of the provisioner configuration file:

...
"uidAttribute" : "entryUUID",
...

Important

REST API reference PingIDM

1282 Copyright © 2025 Ping Identity Corporation

REST endpoints

Server configuration

IDM stores configuration objects in the repository, and exposes them under the context path /openidm/config . Single instance
configuration objects are exposed under /openidm/config/object-name .

Multiple instance configuration objects are exposed under /openidm/config/object-name/instance-name . The following table
outlines these configuration objects and how they can be accessed through the REST interface.

REST API Conditional Operations

HTTP Header Operation Description

If-Match: <rev> PUT Update the object if the <rev> matches the revision level of the object.

If-Match: * PUT Update the object regardless of revision level.

If-None-Match: <rev> Bad request.

If-None-Match: * PUT Create; fails if the object already exists.

When the conditional operations
If-Match , If-None-Match are
not used

PUT Upsert; attempts a create, and then an update; if both attempts fail,
return an error.

URI HTTP
Operation

Description

/openidm/config GET Returns a list of configuration objects.

/openidm/config/access GET Returns the current access configuration.

/openidm/config/audit GET Returns the current audit configuration.

/openidm/config/provisioner.openicf/
provisioner-name

GET Returns the configuration of the specified connector.

/openidm/config/selfservice/function GET Returns the configuration of the specified self-service feature,
registration , reset , or username .

/openidm/config/router PUT Changes the router configuration. Modifications are provided
with the --data option, in JSON format.

/openidm/config/object PATCH Changes one or more fields of the specified configuration
object. Modifications are provided as a JSON array of patch
operations.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1283

IDM supports REST operations to create, read, update, query, and delete configuration objects.

For command-line examples of managing the configuration over REST, refer to Configure the server over REST.

One entry is returned for each configuration object. To obtain additional information on the configuration object, include its pid
or _id in the URL. The following example displays configuration information on the sync object, based on a deployment using
the sync-with-csv sample:

URI HTTP
Operation

Description

/openidm/config/object DELETE Deletes the specified configuration object.

/openidm/config/object?_queryFilter=query GET Queries the specified configuration object. You cannot create
custom predefined queries to query the configuration.

REST API reference PingIDM

1284 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/config/sync"
{
 "_id": "sync",
 "mappings": [
 {
 "name": "systemCsvfileAccounts_managedUser",
 "source": "system/csvfile/account",
 "target": "managed/user",
 "correlationQuery": {
 "type": "text/javascript",
 "source": "var query = {'_queryId' : 'for-userName', 'uid' : source.name};query;"
 },
 "properties": [
 {
 "source": "email",
 "target": "mail"
 },
 {
 "source": "firstname",
 "target": "givenName"
 },
 {
 "source": "lastname",
 "target": "sn"
 },
 {
 "source": "description",
 "target": "description"
 },
 {
 "source": "_id",
 "target": "_id"
 },
 {
 "source": "name",
 "target": "userName"
 },
 {
 "default": "Passw0rd",
 "target": "password"
 },
 {
 "source": "mobileTelephoneNumber",
 "target": "telephoneNumber"
 },
 {
 "source": "roles",
 "transform": {
 "type": "text/javascript",

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1285

 "source": "var _ = require('lib/lodash'); _.map(source.split(','), function(role)
 { return {'_ref': 'internal/role/' + role} });"
 },
 "target": "authzRoles"
 }
],
...

Managed users

User objects are stored in the repository and are exposed under the context path /managed/user . Many examples of REST calls
related to this context path exist throughout this document. The following table lists available functionality associated with the /
managed/user context path.

URI HTTP
Operation

Description

/openidm/managed/user?
_queryFilter=true&_fields=_id

GET Lists the IDs of all the managed users in the repository.

/openidm/managed/user?_queryFilter=true GET Lists all info for the managed users in the repository.

/openidm/managed/user?_queryFilter=filter GET Queries the managed user object with the defined filter.

/openidm/managed/user/_id GET Returns the JSON representation of a specific user.

/openidm/managed/user/_id PUT Creates a new user.

/openidm/managed/user/_id PUT Updates a user entry (replaces the entire entry).

/openidm/managed/user?_action=create POST Creates a new user.

/openidm/managed/user?
_action=patch&_queryId=for-
userName&uid=userName

POST Updates a user (can be used to replace the value of one or
more existing attributes).

/openidm/managed/user/_id PATCH Updates specified fields of a user entry.

/openidm/managed/user/_id DELETE Deletes a user entry.

info
The access rule for this endpoint is:

{
 "pattern" : "managed/user/*",
 "roles" : "internal/role/openidm-
authorized",
 "methods" : "patch",
 "actions" : ""
}

Note

REST API reference PingIDM

1286 Copyright © 2025 Ping Identity Corporation

For a number of sample commands that show how to manage users over REST, refer to Users.

Managed organizations

Organizations are exposed under the context path /managed/organization . The following table lists the REST commands
associated with managed organizations.

For a number of sample commands that show how to manage organizations over REST, refer to Managed Organizations.

System objects

System objects, that is, objects that are stored in remote systems, are exposed under the /openidm/system context. IDM
provides access to system objects over REST, as listed in the following table:

URI HTTP
Operation

Description

/openidm/managed/organization?
_queryFilter=true&_fields=_id

GET Lists the IDs of all managed organizations.

/openidm/managed/organization?
_queryFilter=filter

GET Queries managed organizations with the defined filter.

/openidm/managed/organization/_id GET Returns the JSON representation of a specific organization.

/openidm/managed/organization/_id PUT Creates an organization with a user-defined ID.

/openidm/managed/organization/_id PUT Updates an organization (replaces the entire object).

/openidm/managed/organization?
_action=create

POST Creates a new organization with a system-generated ID.

/openidm/managed/organization/_id DELETE Deletes an organization.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1287

URI HTTP
Operation

Description

/openidm/system?_action=action-name POST _action=availableConnectors returns a list of the
connectors that are available in openidm/connectors or in
openidm/bundle .
_action=createCoreConfig takes the supplied connector
reference (connectorRef) and adds the configuration
properties required for that connector. This generates a core
connector configuration that you can use to create a full
configuration with the createFullConfig action.
_action=createFullConfig generates a complete
connector configuration, using the configuration properties
from the createCoreConfig action, and retrieving the object
types and operation options from the resource, to complete
the configuration.
_action=test returns a list of all remote systems, with their
status, and supported object types.
_action=testConfig validates the connector configuration
provided in the POST body.
_action=liveSync triggers a liveSync operation on the
specified source object.
_action=authenticate authenticates to the specified
system with the credentials provided.

/openidm/system/system-name?
_action=action-name

POST _action=test tests the status of the specified system.

/openidm/system/system-name/system-
object?_action=action-name

POST _action=liveSync triggers a liveSync operation on the
specified system object.
_action=authenticate authenticates to the specified
system object, with the provided credentials.
_action=create creates a new system object.

/openidm/system/system-name?
_action=script&scriptId=script-
name&scriptExecuteMode=resource

POST _action=script runs the specified script on the system
object.

/openidm/system/system-name/system-
object?_queryId=query-all-ids

GET Lists all IDs related to the specified system object, such as
users, and groups.

/openidm/system/system-name/system-
object?_queryFilter=filter

GET Lists the item(s) associated with the query filter.

/openidm/system/system-name/system-
object/id

PUT Creates a system object, or updates the system object, if it
exists (replaces the entire object).

/openidm/system/system-name/system-
object/id

PATCH Updates the specified fields of a system object.

REST API reference PingIDM

1288 Copyright © 2025 Ping Identity Corporation

List available connector configurations:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system?_action=availableConnectors"

URI HTTP
Operation

Description

/openidm/system/system-name/system-
object/id

DELETE Deletes a system object.

info
When you create a system object with a PUT request (that is, specifying a client-assigned ID), you should specify the ID
in the URL only and not in the JSON payload. If you specify a different ID in the URL and in the JSON payload, the
request will fail, with an error similar to the following:

{
 "code":500,
 "reason":"Internal Server Error",
 "message":"The uid attribute is not single value attribute."
}

A POST request with a patch action is not currently supported on system objects. To patch a system object, you
must send a PATCH request.

Note

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1289

List remote systems, and their status:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system?_action=test"
[
 {
 "name": "ldap",
 "enabled": true,
 "config": "config/provisioner.openicf/ldap",
 "connectorRef": {
 "bundleVersion": "[1.4.0.0,1.6.0.0)",
 "bundleName": "org.forgerock.openicf.connectors.ldap-connector",
 "connectorName": "org.identityconnectors.ldap.LdapConnector"
 },
 "displayName": "LDAP Connector",
 "objectTypes": [
 "ALL",
 "account",
 "group"
],
 "ok": true
 }
]

Run liveSync on a specified system object:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system?_action=liveSync&source=system/ldap/account"
{
 "connectorData": {
 "nativeType": "integer",
 "syncToken": 0
 },
 "_rev": "00000000a92657c7",
 "_id": "SYSTEMLDAPACCOUNT"
}

Source Parameter

REST API reference PingIDM

1290 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system/ldap/account?_action=liveSync"
{
 "connectorData": {
 "nativeType": "integer",
 "syncToken": 0
 },
 "_rev": "00000000a92657c7",
 "_id": "SYSTEMLDAPACCOUNT"
}

Run a script on a system object:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system/ldap/account?_action=script&_scriptId=addUser"

Authenticate to a system object

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "username" : "bjensen",
 "password" : "Passw0rd"
}' \
"http://localhost:8080/openidm/system/ldap/account?_action=authenticate"
{
 "_id": "fc252fd9-b982-3ed6-b42a-c76d2546312c"
}

Endpoint

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1291

Create a new system object

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--data '{
 "cn": "James Smith",
 "dn": "uid=jsmith,ou=people,dc=example,dc=com",
 "uid": "jsmith",
 "sn": "Smith",
 "givenName":"James",
 "mail": "jsmith@example.com",
 "description": "Created by IDM REST"}' \
--request POST \
"http://localhost:8080/openidm/system/ldap/account?_action=create"
{
 "telephoneNumber": null,
 "description": "Created by IDM REST",
 "mail": "jsmith@example.com",
 "givenName": "James",
 "cn": "James Smith",
 "dn": "uid=jsmith,ou=people,dc=example,dc=com",
 "uid": "jsmith",
 "ldapGroups": [],
 "sn": "Smith",
 "_id": "07b46858-56eb-457c-b935-cfe6ddf769c7"
}

Rename a system object

You can rename a system object simply by supplying a new naming attribute value in a PUT request. The PUT request replaces
the entire object. The naming attribute depends on the external resource.

The following example renames an object on an LDAP server, by changing the DN of the LDAP object (effectively performing a
modDN operation on that object). The example renames the user created in the previous example:

REST API reference PingIDM

1292 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.0" \
--header "If-Match: *" \
--data '{
 "cn": "James Smith",
 "dn": "uid=jimmysmith,ou=people,dc=example,dc=com",
 "uid": "jimmysmith",
 "sn": "Smith",
 "givenName": "James",
 "mail": "jsmith@example.com"}' \
--request PUT \
"http://localhost:8080/openidm/system/ldap/account/07b46858-56eb-457c-b935-cfe6ddf769c7"
{
 "mail": "jsmith@example.com",
 "cn": "James Smith",
 "sn": "Smith",
 "dn": "uid=jimmysmith,ou=people,dc=example,dc=com",
 "ldapGroups": [],
 "telephoneNumber": null,
 "description": "Created by IDM REST",
 "givenName": "James",
 "uid": "jimmysmith",
 "_id": "07b46858-56eb-457c-b935-cfe6ddf769c7"
}

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1293

List IDs associated with a specific system object:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/system/ldap/account?_queryId=query-all-ids"
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 3,
 "result": [
 {
 "dn": "uid=jdoe,ou=People,dc=example,dc=com",
 "_id": "1ff2e78f-4c4c-300c-b8f7-c2ab160061e0"
 },
 {
 "dn": "uid=bjensen,ou=People,dc=example,dc=com",
 "_id": "fc252fd9-b982-3ed6-b42a-c76d2546312c"
 },
 {
 "dn": "uid=jimmysmith,ou=people,dc=example,dc=com",
 "_id": "07b46858-56eb-457c-b935-cfe6ddf769c7"
 }
]
}

Internal objects

You can manage the following internal objects over REST:

URI HTTP
Operation

Description

/openidm/internal/role?_queryFilter=true GET Lists all internal roles.

/openidm/internal/user?_queryFilter=true GET Lists internal users.

/openidm/internal/user/username PUT Adds a new internal user, or changes the password of an
existing internal user.

/openidm/internal/user/username PATCH Adds or removes roles of an internal user.

/openidm/internal/role?
_queryFilter=true&_fields=_id

GET Lists internal roles.

/openidm/internal/role/role-id?
_fields=*,authzMembers

GET Lists internal and managed users with the specified internal
role.

REST API reference PingIDM

1294 Copyright © 2025 Ping Identity Corporation

Schedules

Use the scheduler service to manage and monitor scheduled jobs.

You can access the scheduler service over REST, as indicated in the following table:

URI HTTP Operation Description

/openidm/scheduler?
_action=validateQuartzCronExpression

POST Validates a cron expression.

/openidm/scheduler/job/id PUT Creates or updates a schedule with the
specified ID.

GET Obtains the details of the specified schedule.

POST with ?_action=trigger
API V2 only

Manually triggers the specified schedule.

POST with ?_action=pause
API V2 only

Suspends the specified schedule.

POST with ?_action=resume
API V2 only

Resumes the specified schedule.

DELETE Deletes the specified schedule.

/openidm/scheduler/job?_action=create POST Creates a schedule with a system-generated
ID.

/openidm/scheduler/job?_queryFilter=query GET Queries the existing defined schedules.

/openidm/scheduler/job?
_action=listCurrentlyExecutingJobs

POST Returns a list of the jobs that are currently
running.

/openidm/scheduler/job?_action=pauseJobs POST Suspends all scheduled jobs.

/openidm/scheduler/job?_action=resumeJobs POST Resumes all suspended scheduled jobs.

/openidm/scheduler/trigger?
_queryFilter=query

GET Queries the existing triggers.

/openidm/scheduler/trigger/id GET Obtains the details of the specified trigger.

/openidm/scheduler/acquiredTriggers GET Returns an array of the triggers that have
been acquired, per node.

/openidm/scheduler/waitingTriggers GET Returns an array of the triggers that have not
yet been acquired.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1295

Scanning tasks

The task scanning mechanism lets you perform a batch scan for a specified date, on a scheduled interval, and then execute a
task when this date is reached.

IDM provides REST access to the task scanner, as listed in the following table:

Audit logs

You can interact with the audit logs over REST, as shown in the following table. Queries on the audit endpoint must use
queryFilter syntax.

URI HTTP
Operation

Description

/openidm/taskscanner GET Lists all the scanning tasks, past and present.

/openidm/taskscanner/id GET Lists details of the given task.

/openidm/taskscanner?
_action=execute&name=name

POST Triggers the specified task scan run.

/openidm/taskscanner/id?_action=cancel POST Cancels the specified task scan run.

URI HTTP
Operation

Description

/openidm/audit/recon?_queryFilter=true GET Displays the reconciliation audit log.

/openidm/audit/recon/id GET Reads a specific reconciliation audit log entry.

/openidm/audit/recon/id PUT Creates a reconciliation audit log entry.

/openidm/audit/recon?_queryFilter=/
reconId+eq+"reconId"

GET Queries the audit log for a particular reconciliation
operation.

/openidm/audit/recon?_queryFilter=/
reconId+eq+"reconId"+and+situation+eq+"situation"

GET Queries the reconciliation audit log for a specific
reconciliation situation.

/openidm/audit/sync?_queryFilter=true GET Displays the synchronization audit log.

/openidm/audit/sync/id GET Reads a specific synchronization audit log entry.

/openidm/audit/sync/id PUT Creates a synchronization audit log entry.

/openidm/audit/activity?_queryFilter=true GET Displays the activity log.

REST API reference PingIDM

1296 Copyright © 2025 Ping Identity Corporation

Reconciliation operations

You can interact with the reconciliation engine over REST, as shown in the following table:

The following example runs a reconciliation for the mapping systemHrdb_managedUser :

URI HTTP
Operation

Description

/openidm/audit/activity/id GET Returns activity information for a specific action.

/openidm/audit/activity/id PUT Creates an activity audit log entry.

/openidm/audit/activity?
_queryFilter=transactionId=id

GET Queries the activity log for all actions resulting from
a specific transaction.

/openidm/audit/access?_queryFilter=true GET Displays the full list of auditable actions.

/openidm/audit/access/id GET Displays information on the specific audit item.

/openidm/audit/access/id PUT Creates an access audit log entry.

/openidm/audit/authentication?_queryFilter=true GET Displays a complete list of authentication attempts,
successful and unsuccessful.

/openidm/audit/authentication?_queryFilter=/
principal+eq+"principal"

GET Displays the authentication attempts by a specified
user.

/openidm/audit?_action=availableHandlers POST Returns a list of audit event handlers.

openidm/audit/config?_queryFilter=true GET Lists changes made to the configuration.

URI HTTP
Operation

Description

/openidm/recon GET Lists all reconciliation runs, including those in
progress. Inspect the state property to see the
reconciliation status.

/openidm/recon?_action=recon&mapping=mapping-
name

POST Launches a reconciliation run with the specified
mapping.

/openidm/recon?
_action=reconById&mapping=mapping-name&id=id

POST Restricts the reconciliation run to the specified ID.

/openidm/recon/id?_action=cancel POST Cancels the specified reconciliation run.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1297

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=recon&mapping=systemHrdb_managedUser"

Synchronization service

You can interact with the synchronization service over REST, as shown in the following table:

For example:

URI HTTP
Operation

Description

/openidm/sync?
_action=getLinkedResources&resourceName=resource

POST Provides a list of linked resources for the specified
resource.

/openidm/sync/mappings?_queryFilter=true GET Returns a list of all configured mappings, in the
order in which they will be processed.

/openidm/sync/queue?_queryFilter=filter GET Lists the queued synchronization events, based
on the specified filter.

/openidm/sync/queue/eventID DELETE Deletes a queued synchronization event, based
on its ID.

REST API reference PingIDM

1298 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
"http://localhost:8080/openidm/sync?_action=getLinkedResources&resourceName=managed/user/
42f8a60e-2019-4110-a10d-7231c3578e2b"
[
 {
 "resourceName": "system/ldap/account/03496258-1c5e-40a0-8744-badc2500f262",
 "content": {
 "uid": "joe.smith1",
 "mail": "joe.smith@example.com",
 "sn": "Smith",
 "givenName": "Joe",
 "employeeType": [],
 "dn": "uid=joe.smith1,ou=People,dc=example,dc=com",
 "ldapGroups": [],
 "cn": "Joe Smith",
 "kbaInfo": [],
 "aliasList": [],
 "objectClass": [
 "top",
 "inetOrgPerson",
 "organizationalPerson",
 "person"
],
 "_id": "03496258-1c5e-40a0-8744-badc2500f262"
 },
 "linkQualifier": "default",
 "linkType": "systemLdapAccounts_managedUser"
 }
]

Scripts

You can interact with the script service over REST, as shown in the following table:

The following example compiles, but does not execute, the script provided in the JSON payload:

URI HTTP
Operation

Description

/openidm/script?_action=compile POST Compiles a script, to validate that it can be
executed. Note that this action compiles a script,
but does not execute it. A successful compilation
returns true . An unsuccessful compilation returns
the reason for the failure.

/openidm/script?_action=eval POST Executes a script and returns the result, if any.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1299

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "type": "text/javascript",
 "source": "source.mail ? source.mail.toLowerCase() : null"
}' \
"http://localhost:8080/openidm/script?_action=compile"
True

The following example executes the script referenced in the file parameter, with the provided input:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "type": "text/javascript",
 "file": "script/autoPurgeAuditRecon.js",
 "globals": {
 "input": {
 "mappings": ["%"],
 "purgeType": "purgeByNumOfRecordsToKeep",
 "numOfRecons": 1
 }
 }
}' \
"http://localhost:8080/openidm/script?_action=eval"
"Must choose to either purge by expired or number of recons to keep"

Privileges

Privileges are a part of internal roles, and can be created or modified using the REST calls specified in Internal objects.
Additionally, openidm/privilege can be used for getting information about privileges on a resource as they apply to the
authenticated user.

URI HTTP
Operation

Description

/openidm/privilege?_action=listPrivileges POST Lists an array of privilege paths for the
authenticated user, with additional detail required
by the admin UI.

REST API reference PingIDM

1300 Copyright © 2025 Ping Identity Corporation

Email

You can use the IDM outbound email service over REST at the external/email endpoint:

For complete examples, refer to Send mail using REST.

File upload

IDM supports a generic file upload service at the file endpoint. Files are uploaded either to the filesystem or to the repository.
For information about configuring this service, and for command-line examples, refer to Upload files to the server.

IDM provides REST access to the file upload service, as listed in the following table:

URI HTTP
Operation

Description

/openidm/privilege/resource GET Lists the privileges for the logged in user associated
with the given resource path.

/openidm/privilege/resource/guid GET Lists the privileges for the logged in user associated
with the specified object.

info
To configure the email service, refer to Outbound email.

Note

URI HTTP
Operation

Description

/openidm/external/email?_action=send POST Sends an email.

/openidm/external/email?_action=sendTemplate POST Sends an email template.

URI HTTP
Operation

Description

/openidm/file/handler/ PUT Uploads a file to the specified file handler. The file
handler is either the repository or the filesystem
and the context path is configured in the conf/
file-handler.json file.

/openidm/file/handler/filename GET Returns the file content in a base 64-encoded string
within the returned JSON object.

/openidm/file/handler/filename?
_fields=content&_mimeType=mimeType

GET Returns the file content with the specified MIME
type.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1301

Bulk import

The bulk import service lets you import large numbers of entries from a CSV file into the IDM repository. You can import any
managed object type, but you will generally use this service to import user entries. The following table shows the endpoints used
by the bulk import service:

URI HTTP
Operation

Description

/openidm/file/handler/filenamemimeType DELETE Deletes an uploaded file.

URI HTTP
Operation

Description

/openidm/csv/template?
resourceCollection=managed/user

GET Generates a CSV header row that you can use as a
template for the import. You can safely remove
generated columns for properties that are not
required. Set the query parameters
_fields=header and _mimeType=text/csv to
download the header file.

/upload/csv/resourceCollection POST Uploads the file specified by the --form (-F)
parameter to the specified resource collection. ?
uniqueProperty=propertyName is required.
Generally, for managed/user objects, the
uniqueProperty is userName . You can specify
multiple comma-delimited values here to identify
unique records; for example, ?
uniqueProperty=firstName,lastName . Example.

/openidm/csv/metadata/?_action=cleanupList POST Lists the import UUIDs that have error records or
temporary records. These can be cleaned up to free
up database space. If you clean up error records,
you will no longer be able to download a CSV of
failed import records.

/openidm/csv/metadata/importUUID?
_action=cleanup

POST Cleans up temporary import records for the
specified import UUID. To also clean up error
records, set the query parameter ?
deleteErrorRecords=true .

/openidm/csv/metadata/importUUID?
_action=cancel

POST Cancels the specified in-progress import.

/openidm/csv/metadata/importUUID DELETE Deletes the specified import record. This does not
affect the data that was imported.

REST API reference PingIDM

1302 Copyright © 2025 Ping Identity Corporation

Server state

You can access information about the current state of the IDM instance through the info endpoint, as shown in the following
table:

URI HTTP
Operation

Description

/openidm/csv/metadata?_queryFilter GET Queries bulk imports.

/openidm/csv/metadata/importUUID GET Reads the specified import record.

/export/csvImportFailures/importUUID GET Downloads a CSV file of failed import records.
Returns 404 if there were no failures for the
specified import UUID.

URI HTTP
Operation

Description

/openidm/info/features?_queryFilter=true GET Queries the available features in the server
configuration.

/openidm/info/login GET Provides authentication and authorization details
for the current user.

/openidm/info/ping GET Lists the current server state. Possible states are
STARTING , ACTIVE_READY , ACTIVE_NOT_READY , and
STOPPING .

/openidm/info/uiconfig GET Provides the UI configuration of this IDM instance.
The language parameter returned is the user’s
preferred language, based on the
Accept-Language header included in the request. If
Accept-Language is not specified in the request, it
returns the language set in conf/ui-
configuration.json .

/openidm/info/version GET Provides the software version of this IDM instance.

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1303

Social identity providers

Workflows

Workflow objects are exposed under the /openidm/workflow context path. IDM provides access to the workflow module over
REST, as listed in the following table:

URI HTTP
Operation

Description

/openidm/identityProviders GET Returns JSON details for all configured social
identity providers.

/openidm/authentication GET Returns JSON details for all configured social
identity providers, if the SOCIAL_PROVIDERS module
is enabled.

/openidm/managed/social_identity_provider multiple Supports access to social identity provider
information.

/openidm/managed/user/social_identity_provider GET Supports a list of users associated with a specific
social identity provider.

/openidm/managed/user/User_UUID/idps multiple Supports management of social identity providers
by UUID.

emergency_home
Social authentication is deprecated and will
be removed in a future release of IDM. For
more information, refer to Deprecation.

Important

URI HTTP
Operation

Description

/openidm/workflow/execution?_action=message POST Invokes a message event. When the
processVariables field is non-null the message is
sent synchronously; otherwise, asynchronously.

/openidm/workflow/execution?_action=signal POST Invokes a signal event. When the
processVariables field is non-null the message is
sent synchronously; otherwise, asynchronously.

REST API reference PingIDM

1304 Copyright © 2025 Ping Identity Corporation

URI HTTP
Operation

Description

/openidm/workflow/execution?_action=trigger POST Triggers an execution asynchronously; for example,
to continue a process instance that is waiting at a
Receive Task. When the transientVariables field is
non-null the trigger is sent synchronously;
otherwise, asynchronously.

/openidm/workflow/execution?_queryFilter=true GET Queries the executions. Only supports
_queryFilter=true .

/openidm/workflow/execution?_queryId=filtered-
query&filter

GET Returns a list of executions, based on the specified
query filter.

executionId

executionParentId

processDefinitionCategory

processDefinitionId

processDefinitionKey

processDefinitionName

processDefinitionVersion

processInstanceBusinessKey

processInstanceId

activityId

signalName

messageName

startedBefore

startedAfter

startedBy

processVariableName

processVariableValue

processVariableValueType

processVariableOperator

variableName

variableValue

variableValueType

variableOperator

/openidm/workflow/job?_queryFilter=true GET Queries jobs. Only supports _queryFilter=true .

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1305

URI HTTP
Operation

Description

/openidm/workflow/job?_queryId=filtered-
query&filter

GET Returns a list of jobs, based on the specified query
filter. You can’t combine timersOnly=true with
messagesOnly=true in the same query.

jobId

processDefinitionId

processInstanceId

executionId

timersOnly

messagesOnly

withException

exceptionMessage

dueAfter

dueBefore

/openidm/workflow/job/deadletter?
_queryFilter=true

GET Queries dead-letter jobs. Only supports
_queryFilter=true .

/openidm/workflow/job/deadletter?
_queryId=filtered-query&filter

GET Returns a list of dead-letter jobs, based on the
specified query filter. You can’t combine
timersOnly=true with messagesOnly=true in the
same query.

jobId

processDefinitionId

processInstanceId

executionId

timersOnly

messagesOnly

withException

exceptionMessage

dueAfter

dueBefore

/openidm/workflow/job/deadletter/id?
_action=execute

POST Executes a dead-letter job. If successful, runs as a
normal job.

/openidm/workflow/job/deadletter/id?
_action=stacktrace

POST Displays the stacktrace for a dead-letter job that
triggered an exception.

/openidm/workflow/job/deadletter/id DELETE Deletes a dead-letter job.

/openidm/workflow/job/deadletter/id GET Reads a dead-letter job.

/openidm/workflow/job/id?_action=execute POST Forces the synchronous execution of a job, even if it
is suspended.

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

REST API reference PingIDM

1306 Copyright © 2025 Ping Identity Corporation

URI HTTP
Operation

Description

/openidm/workflow/job/id?_action=stacktrace POST Displays the stacktrace for a job that triggered an
exception.

/openidm/workflow/job/id DELETE Deletes a job.

/openidm/workflow/job/id GET Reads a job.

/openidm/workflow/model?_action=validate_bpmn POST Validates a BPMN 2.0 XML file.

/openidm/workflow/model POST Creates a new model. Omitting the bpmnXML field
generates a template. Also refer to the deploy
action.

/openidm/workflow/model?_queryFilter=query GET Queries the existing models. bpmnXML and
resourceMap fields are omitted from results by
default.

openidm/workflow/model/id?_action=deploy POST Deploys a model and creates associated process
definitions. Existing process definition IDs will be
returned if duplicate model detected. refer to
workflow/processdefinition endpoints.

/openidm/workflow/model/id?
_action=list_deployments

POST Lists process definition IDs for model deployments.

/openidm/workflow/model/id DELETE Deletes a model.

/openidm/workflow/model/id GET Reads a model.

/openidm/workflow/model/id PUT Updates a model.

/openidm/workflow/processdefinition?
_queryFilter=true

GET Queries the process definitions. Only supports
_queryFilter=true . Use the READ endpoint to get
form-related fields.

/openidm/workflow/processdefinition?
_queryId=filtered-query&filter

GET Returns a list of workflow process definitions, based
on the specified query filter.

version

deploymentId

category

key

name

processDefinitionResourceName

/openidm/workflow/processdefinition/id DELETE Deletes a process definition.

•
•
•
•
•
•

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1307

URI HTTP
Operation

Description

/openidm/workflow/processdefinition/id GET Reads a process definition with form-related fields
included.

/openidm/workflow/processdefinition/procdefid/
taskdefinition?_queryFilter=true

GET Queries the task definitions. Only supports
_queryFilter=true .

/openidm/workflow/processdefinition/procdefid/
taskdefinition/id

GET Reads a task definition.

/openidm/workflow/processinstance POST Creates a process instance. JSON request object
must contain either the _processDefinitionId or
_key fields, but not both. Additional JSON fields will
be passed to the create-operation and utilized if
applicable.

/openidm/workflow/processinstance?
_queryFilter=true

GET Queries the process instances. Only supports
_queryFilter=true .

/openidm/workflow/processinstance?
_queryId=filtered-query&filter

GET Returns a list of workflow process instances, based
on the specified query filter.

processDefinitionId

processDefinitionKey

processInstanceBusinessKey

processInstanceId

superProcessInstanceId

finished

unfinished

involvedUserId

startUserId

startedAfter

startedBefore

/openidm/workflow/processinstance/history?
_queryFilter=true

GET Queries the process instance history. Only supports
_queryFilter=true .

•
•
•
•
•
•
•
•
•
•
•

REST API reference PingIDM

1308 Copyright © 2025 Ping Identity Corporation

URI HTTP
Operation

Description

/openidm/workflow/processinstance/history?
_queryId=filtered-query&filter

GET Returns a list of process instance history, based on
the specified query filter.

processDefinitionId

processDefinitionKey

processInstanceBusinessKey

processInstanceId

superProcessInstanceId

finished

unfinished

involvedUserId

startUserId

startedAfter

startedBefore

/openidm/workflow/processinstance/history/id DELETE Deletes process instance history.

/openidm/workflow/processinstance/history/id GET Reads process instance history. diagram field
returned when defined and requested in _fields
parameter.

/openidm/workflow/processinstance/id?
_action=migrate

POST Migrates a process instance to a different process
definition. To simulate the migration first, refer to
the action validateMigration .

{
 "processDefinitionId": "string",
 "variables": {},
 "fromActivityIdMap": {
 "123": {
 "toActivityId": "string",
 "localVariables": {}
 }
 }
}

/openidm/workflow/processinstance/id?
_action=validateMigration

POST Simulates a process instance migration (migrate
action).

/openidm/workflow/processinstance/id DELETE Deletes a process instance.

/openidm/workflow/processinstance/id GET Reads a process instance. diagram field returned
when defined and requested in _fields
parameter.

/openidm/workflow/taskinstance?_queryFilter=true GET Queries the task instances. Only supports
_queryFilter=true .

•
•
•
•
•
•
•
•
•
•
•

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1309

URI HTTP
Operation

Description

/openidm/workflow/taskinstance?_queryId=filtered-
query&filter

GET Returns a list of task instances, based on the
specified query filter.

executionId

processDefinitionId

processDefinitionKey

processInstanceId

assignee

taskCandidateGroup

taskCandidateUser

name

owner

description

priority

unassigned

/openidm/workflow/taskinstance?
_queryId=unassignedTaskQuery

GET Queries unassigned task instances for which the
authenticated user is authorized to assign.

/openidm/workflow/taskinstance/history?
_queryFilter=true

GET Queries the task instance history. Only supports
_queryFilter=true .

/openidm/workflow/taskinstance/history?
_queryId=filtered-query&filter

GET Returns a list of task instance history, based on the
specified query filter.

executionId

processDefinitionId

processDefinitionKey

processInstanceId

assignee

taskCandidateGroup

taskCandidateUser

taskId

taskName

owner

description

finished

unfinished

processFinished

processUnfinished

priority

deleteReason

/openidm/workflow/taskinstance/history/id GET Reads a task instance history.

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REST API reference PingIDM

1310 Copyright © 2025 Ping Identity Corporation

The following examples list the defined workflows. For a workflow to appear in this list, the corresponding workflow definition
must be in the openidm/workflow directory:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/workflow/processdefinition?_queryId=query-all-ids"

Depending on the defined workflows, the output will be something like the following:

URI HTTP
Operation

Description

/openidm/workflow/taskinstance/id?_action=claim POST Assigns a task to a userId .

/openidm/workflow/taskinstance/id?
_action=complete

POST To complete a task, supply the required task
parameters, as specified in the BPMN 2.0 XML file.

/openidm/workflow/taskinstance/id DELETE Deletes a task instance.

/openidm/workflow/taskinstance/id GET Reads a task instance.

/openidm/workflow/taskinstance/id PUT Updates a task instance. Must include one or more
supported fields in JSON payload:

assignee

description

name

owner

category

dueDate

priority

•
•
•
•
•
•
•

PingIDM REST API reference

Copyright © 2025 Ping Identity Corporation 1311

{
 "result": [
 {
 "_id": "contractorOnboarding:1:5"
 },
 {
 "_id": "contractorOnboarding:2:9"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

The following example invokes a workflow named "myWorkflow". The foo parameter is given the value bar in the workflow
invocation:

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "_key":"contractorOnboarding",
 "foo":"bar"
}' \
"http://localhost:8080/openidm/workflow/processinstance?_action=create"

REST API reference PingIDM

1312 Copyright © 2025 Ping Identity Corporation

Self-service reference

Reference documentation for the ForgeRock® Identity Management Self-Service REST API.

Quick Start

info
This guide is reference documentation for IDM’s self-contained service. If you are using the platform-based service
using trees, refer to the Platform Self-Service documentation instead.
If you are just getting started, we recommend the platform-based version of self-service.

Note

schedule

Self-Service Overview

Understand Self-Service Processes

Self-Registration

Configure User Self-Registration

Social Registration

Configure Registration Using Social Identity
Providers

Password Reset

Password Reset Process

Self-service reference PingIDM

1314 Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/docs/platform-self-service/7.3/preface.html
https://backstage.forgerock.com/docs/platform-self-service/7.3/preface.html

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity and Access Management solution.
We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their
employees and partners. For more information about ForgeRock and about the platform, refer to https://www.forgerock.com.

This guide is intended for anyone developing a self-service application that acts as a client of ForgeRock Identity Management
(IDM).

This guide is written with the expectation that you already have basic familiarity with the following topics:

REST APIs

JavaScript Object Notation (JSON) and basic IDM configuration

About user self-service

IDM provides a sample End User UI that implements a number of self-service processes, such as self-registration and password
reset, based on a Self-Service REST API.

Self-service processes are configured in files named selfservice-process-name.json in your project’s conf directory. Every
self-service process steps through a series of stages, each with its own requirements, until the end of the process is reached or
until the process exits with an exception. The flow through the stages differs, depending on how you have configured the process.

Username Retrieval

Configure Username Retrieval

Additional Configuration

Additional configuration options for additional
features such as reCAPTCHA, notifications, and

the End User UI

Custom Stages

Add a Custom Stage to Self-Service

Stage Reference

Reference appendix of available self-service
stages

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1315

https://www.forgerock.com
https://www.forgerock.com

You can customize the default processes, or write your own custom processes by implementing the stages described in Self-
service stage reference. For information about how self-service is implemented in the default End User UI, refer to Self-Service
End User UI. For information on how to customize the End User UI, refer to the following Git repository: Identity Management
(End User) - UI.

The Self-Service REST API supports only two HTTP requests:

GET which obtains the requirements for that stage

POST with _action=submitRequirements

The response to the POST request instructs the client how to proceed. The response can have one of two outcomes:

Success—all requirements have been submitted and the process advances to the next stage.

Failure—the behavior here differs by stage. Certain stages will exit with an exception, others will convert the exception into
an error that the client must handle, others will simply return the requirements again.

The self-service process flow

Each self-service process advances through the stages in the order in which they are listed in the stageConfigs array in the
process configuration file. The password reset process, for example, might include the following stages:

{
 "stageConfigs" : [
 {
 "name": "parameters",
 ...
 },
 {
 "name" : "userQuery",
 ...
 },
 {
 "name" : "validateActiveAccount",
 ...
 },
 {
 "name" : "emailValidation",
 ...
 },
 {
 "name" : "kbaSecurityAnswerVerificationStage",
 ...
 },
 {
 "name" : "resetStage",
 ..
 }
],
 ...
}

A process definition also includes an optional snapshotToken and storage parameter, for example:

•

•

•

•

Self-service reference PingIDM

1316 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui

{
 "stageConfigs" : [
 ...
],
 "snapshotToken" : {
 "type" : "jwt",
 "jweAlgorithm" : "RSAES_PKCS1_V1_5",
 "encryptionMethod" : "A128CBC_HS256",
 "jwsAlgorithm" : "HS256",
 "tokenExpiry" : 300
 },
 "storage" : "stateless"
}

The snapshotToken specifies the format of the token that is passed between the client and the server with each request. By
default, this is a JWT token, stored statelessly, which means that the state is stored in the client, rather than on the server side.
Because some legacy clients cannot handle the long URLs provided in a JWT token, you can store the snapshot token locally, as a
uuid with the following configuration:

{
 ...
 "snapshotToken" : {
 "type" : "uuid"
 },
 "storage" : "local"
}

In this case, the 16-character token is stored in the IDM repository, in the jsonstorage table. To use this feature,
copy /path/to/openidm/samples/example-configurations/self-service/jsonstore.json to your project’s conf/ directory.
This file stores the configuration for the uuid token and includes the following settings:

entryExpireSeconds —the amount of time before the password reset URL expires.

cleanupDwellSecondsliteral —how often the server checks for and expires tokens.

The value of cleanupDwellSecondsliteral should be a fraction of entryExpireSeconds so that expiration occurs close
to the expected expiration time. The check is performed on a periodic basis.

For more information on the self-service tokens, refer to Tokens and User Self-Service.

If you do not include the snapshotToken and storage in the configuration, the default stateless configuration applies.

When a stage advances, it can optionally insert parameters into the process context or state for consumption by stages that occur
later in the process. The snapshot token is essentially the state of the stage. It is the container in which state ,
successAdditions and other data are stored, and then returned to the client at the end of the process, as an encrypted blob
named token .

Sample configurations for each default self-service process are available in the /path/to/openidm/samples/example-
configurations/self-service directory.

Each self service process has a specific endpoint under openidm/selfservice with the name of the process; for example
openidm/selfservice/reset for the Password Reset process. If you create a custom self-service process with a configuration file
such as selfservice-myprocess.json , you produce an endpoint such as {hostname}/openidm/selfservice/myprocess .

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1317

All REST actions occur against that endpoint. For example, the following initial GET request against the password reset endpoint
returns the requirements for the following stage:

curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --header "Accept-API-Version: resource=1.0" \
 --request GET \
 "http://localhost:8080/openidm/selfservice/reset"
{
 "_id": "1",
 "_rev": "-852427048",
 "type": "captcha",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Captcha stage",
 "type": "object",
 "required": [
 "response"
],
 "properties": {
 "response": {
 "recaptchaSiteKey": "6LcvE1IUAAAAAA5AI1SZzZJl-AlGvHM_dzUg-0_S",
 "description": "Captcha response",
 "type": "string"
 }
 }
 }
}

The default End User UI implements the following processes:

Self-registration (under the endpoint selfservice/registration)

Social registration (under the endpoint selfservice/socialUserClaim)

Password reset (under the endpoint selfservice/reset)

Forgotten username retrieval (under the endpoint selfservice/username)

Progressive profile completion (under selfservice/profile)

Security question updates (under selfservice/kbaUpdate)

•

•

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer
to Deprecation.

Important

•

•

•

emergency_home
Progressive profiling is deprecated and will be removed in a future release of IDM. For more information, refer
to Deprecation.

Important

•

Self-service reference PingIDM

1318 Copyright © 2025 Ping Identity Corporation

Terms and conditions (under selfservice/termsAndConditions)

The remainder of this guide describes each stage, its requirements, and expected responses.

Self-registration

This chapter describes the configuration, and the requests and responses for user self-registration.

Quick Start

•

Configuration

Configure User Self-Registration

Registration Form

Configure the User Self-Registration Form

Email Registration

Configure Emails for Self-Service Registration

User Preferences

Configure Synchronization Filters With User
Preferences

Multiple Registration Flows

Configure Multiple User Self-Registration Flows

Examples

Example Self-Registration REST Requests

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1319

User self-registration

To set up basic user self-registration, you’ll need at least the following configuration files:

ui-configuration.json

You can find this file in the default IDM project configuration directory, openidm/conf .

To enable self-service registration in the UI, enable the following boolean property in ui-configuration.json :

"selfRegistration" : true,

selfservice-registration.json

You can find a template version of this file in the following directory: openidm/samples/example-configurations/self-
service . This includes the following properties:

allInOneRegistration : determines whether IDM collects all user registration information in one or multiple
pages. By default, it’s set to true:

"allInOneRegistration" : true,

stageConfigs : configuration details for the stages included in the self-registration process. While the specific
stages included may vary, most processes will include at least:

idmUserDetails : includes the IDM property for email addresses (mail), whether or not registration with
social identity providers is enabled, and what data is required from new users, as described in User self-
registration form.

registrationPreferences : lists preferences to include as defined in the managed.json file. For more
information, refer to User preferences.

snapshotToken : configuration details for the token used to store the user’s details during the registration process.

storage : determines how a user’s details are stored for consumption by later stages in the registration process. By
default, this is set to stateless .

Depending on how you configure User Self-Registration, you may need to set up additional configuration files, as discussed in
User self-registration form.

Common components included in self-registration include:

Email validation

If you have included email verification, you must configure an outgoing email server. For details about the required
addition to selfservice-registration.json , refer to Self-Service registration emails.

Security questions (KBA)

•

•

◦

◦

•

•

•

•

Self-service reference PingIDM

1320 Copyright © 2025 Ping Identity Corporation

If you have configured security questions, users who self-register must create these questions during registration and
answer them during the password reset process. You can also configure the system to force users who have been created
during a reconciliation from an external data store to add security questions. The relevant code block is shown here, which
includes security questions as a stage in the user self-registration process. For related configuration options, refer to
Security questions.

{
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
},

Google ReCAPTCHA

If you’ve activated Google reCAPTCHA for user self-service registration, you’ll refer to the following code block:

{
 "name" : "captcha",
 "recaptchaSiteKey" : "<siteKey>",
 "recaptchaSecretKey" : "<secretKey>",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},

As suggested by the code, you’d substitute the actual siteKey and secretKey assigned by Google for your domain. For
more information, refer to Google reCAPTCHA.

Terms & Conditions

If you’ve set up Terms & Conditions, users who self-register will have to accept them, based on criteria you create, as
discussed in Terms & Conditions. If you’ve included Terms & Conditions with user self-registration, you’ll refer to the
following code block:

{
 "name" : "termsAndConditions"
},

New users will have to manually accept these conditions before they complete the self-registration process.

Privacy & Consent

If you’ve configured Privacy & Consent, you’ll refer to a code block with the consent name. The following code block
includes template Privacy & Consent terms in English (en) and French (fr):

{
 "name" : "consent",
 "consentTranslations" : {
 "en" : "Please consent to sharing your data with whomever we like.",
 "fr" : "Veuillez accepter le partage de vos données avec les services de notre choix."
 }
},

•

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1321

For audit activity data related to user self-registration, refer to Query the Activity Audit Log

Configure self-registration using the admin UI

To configure user self-registration using the admin UI:

From the navigation bar, click Configure > User Registration.

On the User Registration page, enable Enable User Registration.

Configure options in the Configure Registration Form window:

Identity Resource, typically managed/user .

Identity Email Field, typically mail or email .

Success URL for the End User UI. Users who successfully log in are redirected to this URL. By default, {hostname}/
#dashboard/ .

Preferences, which set up default marketing preferences for new users. New users can change these preferences
during registration, or from the End User UI.

Advanced Options > Snapshot Token, typically JSON Web Token (JWT).

Advanced Options > Token Lifetime (seconds), with a default of 300 seconds.

Click Save.

Now that User Registration is active, three tabs display on the User Registration page:

Registration Form, as described in User self-registration form.

Social, as described in Social registration.

Options, as described in Additional configuration.

Managing user self-registration over REST

To display the current user self-registration configuration over REST, run the following command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/config/selfservice/registration"

info
Substitute Privacy & Consent content that meets the requirements of your legal authorities.

Note

1.

2.

info
When you enable self-registration using the admin UI, IDM creates selfservice-registration.json if it
doesn’t already exist.

Note

3.

◦

◦

◦

◦

◦

◦

4.

◦

◦

◦

Self-service reference PingIDM

1322 Copyright © 2025 Ping Identity Corporation

Unless you have disabled file writes, the output matches the contents of your project’s selfservice-registration.json file.

To update the configuration over REST, include the desired file contents:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PUT \
--data '{ <Insert file contents here> }' \
"http://localhost:8080/openidm/config/selfservice/registration"

User self-registration form

During user self-registration, IDM displays user attributes on the user registration form, as defined in the selfservice-
registration.json file. You can modify the displayed properties in the registrationProperties code block:

"registrationProperties" : [
 "userName",
 "givenName",
 "sn",
 "mail"
],

To add user attributes to the user self-registration form using the admin UI:

From the navigation bar, click Configure > User Registration.

On the User Registration page, select the Registration Form tab.

Below the list of attributes, click the drop-down list, select an attribute, and click Add.

The user self-registration form displays attributes in the listed order.

You can also set up user self-registration via configuration files, as described in the following table:

1.

2.

3.

info
This action also adds the attribute to the registrationProperties code block.

Note

User Self-Registration Configuration Files

File Name Description

external.email.json To enable email verification, you must configure an outgoing email
server.

managed.json You can customize user self-registration based on entries in this file.
To change the labels seen by end users, change the associated title .

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1323

Self-Service registration emails

To configure self-service registration emails, add the following code block to the selfservice-registration.json file:

{
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@example.com",
 "subject" : "Register new account",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Register new account",
 "fr" : "Créer un nouveau compte"
 },
 "messageTranslations" : {
 "en" : "<h3>This is your registration email.</h3><h4>Email verification link</h4>",
 "fr" : "<h3>Ceci est votre mail d'inscription.</h3><h4>Lien de vérification email</
h4>"
 },
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://localhost:8443/#/registration/"
},

The code block includes default registration email messages in English (en) and French (fr). The verificationLink sent with
the email takes users to the IDM self-registration URL.

As noted in Managing User Self-Registration Over REST, you can make these changes over the endpoint URI: /openidm/config/
selfservice/registration

To configure self-service registration emails using the admin UI:

From the navigation bar, click Configure > User Registration.

On the User Registration page, select the Options tab.

Enable Email Validation.

File Name Description

policy.json For more information, refer to Custom policies for self-registration
and password reset.

selfservice.kba.json refer to Security questions.

selfservice-registration.json refer to User self-registration.

ui-configuration.json refer to User self-registration.

1.

2.

3.

Self-service reference PingIDM

1324 Copyright © 2025 Ping Identity Corporation

In the Configure Validation Email window, enter the necessary information, and click Save.

Self-registration email changes made using the admin UI are saved to the selfservice-registration.json file.

User preferences

You can set up preferences for managed users, such as those related to marketing and news updates. You can then use those
preferences as a filter when reconciling users to a target repository.

In the default project, common marketing preference options are included for the managed user object. You can see these
preferences in the managed.json file:

"preferences" : {
 "title" : "Preferences",
 "description" : "Preferences",
 "viewable" : true,
 "searchable" : false,
 "userEditable" : true,
 "type" : "object",
 "usageDescription" : "",
 "isPersonal" : false,
 "properties" : {
 "updates" : {
 "description" : "Send me news and updates",
 "type" : "boolean"
 },
 "marketing": {
 "description" : "Send me special offers and services",
 "type" : "boolean"
 }
 },
 "order": [
 "updates",
 "marketing"
],
 "required": []
},

To view these preferences using the admin UI:

From the navigation bar, click Configure > Managed Objects.

On the Managed Objects page, click User.

Select the Properties tab, scroll down the properties list, and click preferences.

The Managed Objects > user > preferences properties display:

info
If the Email Validation option is disabled, outbound email has not been configured. Click Configure Here, and
refer to Outbound email for more information.

Note

4.

1.

2.

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1325

Review preferences as an end user

When regular users log in to the End User UI, they’ll refer to the preferences described in User preferences. When they accept the
preferences, their managed user objects are updated with entries similar to the following:

"preferences" : {
 "updates" : true,
 "marketing" : true
},

User preferences and reconciliation

You can configure user preferences as a filter for reconciliation. For example, if some users don’t want marketing emails, you can
filter those users out of any reconciliation operation.

To configure user preferences as a reconciliation filter using the admin UI:

From the navigation bar, click Configure > Mappings, and select a mapping.

Click the Association tab, and expand the Individual Record Validation node.

From the Valid Source drop-down list, select Validate based on user preferences.

Select the applicable preferences checkboxes.

For example, if you select the Send me news and updates checkbox, users who have opted-in to that preference will be
reconciled from the source to the target repository.

Click Save.

1.

2.

3.

4.

5.

Self-service reference PingIDM

1326 Copyright © 2025 Ping Identity Corporation

Alternatively, edit the mapping file directly. The following excerpt of a mapping file includes preferences as conditions to define
a validSource on an individual record validation. IDM applies these conditions at the next reconciliation.

"validSource" : {
 "type" : "text/javascript",
 "globals" : {
 "preferences" : [
 "updates",
 "marketing"
]
 },
 "file" : "ui/preferenceCheck.js"
},
"validTarget" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : ""
}

Multiple user self-registration flows

You can set up multiple self-registration flows, with features limited only by the capabilities listed in Self-registration.

For example, you may want to set up different portals for regular employees and contractors. You’d configure each portal with
different self-registration flows, managed by the same IDM backend. Each portal would use the appropriate registration API.

To prepare for this section, you’ll need a selfservice-registration.json file. You can find a copy in the following directory: /
path/to/openidm/samples/example-configurations/self-service .

To avoid errors when using this file, you should either:

Copy the following files from the same directory:

selfservice.terms.json

selfservice-termsAndConditions.json

Delete the termsAndConditions code block from the respective selfservice-registration*.json files.

info
What IDM does during this reconciliation depends on the policy associated with the UNQUALIFIED situation for
a validSource. The default action is to delete the target object (user). For more information, refer to How IDM
assesses synchronization situations.

Note

info
Multiple self-registration flows, and customization of the End User UI beyond what is described in this document (and
the noted public Git repository), are not supported.
For additional information on customizing the End User UI, refer to the following ForgeRock Git repository: ForgeRock/
end-user-ui: Identity Management (End User).

Note

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1327

https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui

User self-registration is normally coded in the selfservice-registration.json file. In preparation, copy this file to the
selfservice-registration*.json to the names shown in the following list:

Employee Portal

Configuration file: selfservice-registrationEmployee.json

URL: https://localhost:8443/openidm/selfservice/registrationEmployee

verificationLink : https://localhost:8443/#/registrationEmployee

Contractor Portal

Configuration file: selfservice-registrationContractor.json

URL: https://localhost:8443/openidm/selfservice/registrationContractor

verificationLink : https://localhost:8443/#/registrationContractor

Edit the configuration file for each portal.

Modify the verificationLink URL associated with each portal as described.

Edit your access configuration (conf/access.json), by adding an endpoint for each new self-service registration file, after
the selfservice/registration section. For example, the following code excerpt would apply to the
registrationEmployee and registrationContractor endpoints:

{
 "pattern" : "selfservice/registrationEmployee",
 "roles" : "*",
 "methods" : "read,action",
 "actions" : "submitRequirements"
},
{
 "pattern" : "selfservice/registrationContractor",
 "roles" : "*",
 "methods" : "read,action",
 "actions" : "submitRequirements"
},

Modify the functionality of each selfservice-registration*.json file as desired. For guidance, refer to the sections noted in
the following table:

•

◦

◦

◦

•

◦

◦

◦

1.

2.

3.

Configuring selfservice-registration*.jsonFiles for Different Portals

Feature Code Block Link

Social Registration
"socialRegistrationEnabled" : true,

Social registration

Self-service reference PingIDM

1328 Copyright © 2025 Ping Identity Corporation

https://localhost:8443/openidm/selfservice/registrationEmployee
https://localhost:8443/openidm/selfservice/registrationEmployee
https://localhost:8443/#/registrationEmployee
https://localhost:8443/#/registrationEmployee
https://localhost:8443/openidm/selfservice/registrationContractor
https://localhost:8443/openidm/selfservice/registrationContractor
https://localhost:8443/#/registrationContractor
https://localhost:8443/#/registrationContractor

If you leave out the code blocks associated with the feature, you won’t refer to that feature in the self-service registration
flow. In that way, you can set up different self-service registration flows for the Employee and Contractor portals.

Feature Code Block Link

Properties requested
during self-
registration

"registrationProperties" : [
 "userName",
 "givenName",
 "sn",
 "mail"
],

User self-
registration form

Terms & Conditions
{
 "name" : "termsAndConditions"
}

Terms & Conditions

Privacy & Consent
{
 "name" : "consent",
 "consentTranslations" : {
 "en" : "substitute appropriate Privacy & Consent
wording",
 "fr" : "substitute appropriate Privacy & Consent
wording, in French"
 }
},

Privacy and consent

reCAPTCHA
{
 "name" : "captcha",
 "recaptchaSiteKey" : "<siteKey>",
 "recaptchaSecretKey" : "<secretKey>",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/
siteverify"
}

Google reCAPTCHA

Email Validation Self-Service
registration emails

Security Questions
{
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
},

Security questions

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1329

Once you’ve configured both portals, you can make REST calls to both URLs: https://localhost:8443/openidm/selfservice/
registrationEmployee

https://localhost:8443/openidm/selfservice/registrationContractor

For more advice on how you can create custom registration flows, refer to the following public ForgeRock Git repository: Identity
Management (End User) - UI.

Self-registration REST requests

The REST calls shown in this chapter assume that user registration is enabled with the default security questions, and that the
configuration is similar to that shown in the sample registration configuration file (samples/example-configurations/self-
service/selfservice-registration.json):

info
The changes described in this section require changes to the End User UI source code as described in the noted public
Git repository. Pay particular attention to the instructions associated with the Registration.vue file.

Note

Self-service reference PingIDM

1330 Copyright © 2025 Ping Identity Corporation

https://localhost:8443/openidm/selfservice/registrationEmployee
https://localhost:8443/openidm/selfservice/registrationEmployee
https://localhost:8443/openidm/selfservice/registrationEmployee
https://localhost:8443/openidm/selfservice/registrationContractor
https://localhost:8443/openidm/selfservice/registrationContractor
https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui

{
 "allInOneRegistration" : true,
 "stageConfigs" : [
 {
 "name": "parameters",
 "parameterNames" : [
 "returnParams"
]
 },
 {
 "name" : "idmUserDetails",
 "identityEmailField" : "mail",
 "socialRegistrationEnabled" : true,
 "identityServiceUrl" : "managed/user",
 "registrationProperties" : [
 "userName",
 "givenName",
 "sn",
 "mail"
],
 "registrationPreferences": ["marketing", "updates"]
 },
 {
 "name" : "termsAndConditions"
 },
 {
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@admin.org",
 "subject" : "Register new account",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Register new account",
 "fr" : "Créer un nouveau compte"
 },
 "messageTranslations" : {
 "en" : "<h3>This is your registration email.</h3><h4>Email verification link</
h4>",
 "fr" : "<h3>Ceci est votre email d'inscription.</h3><h4>Lien de vérification
email</h4>"
 },
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://idm.example.com:8443/#/registration/"
 },
 {
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
 },
 {
 "name" : "selfRegistration",
 "identityServiceUrl" : "managed/user"
 },
 {
 "name" : "localAutoLogin",
 "successUrl" : "",
 "identityUsernameField": "userName",

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1331

 "identityPasswordField": "password"
 }
],
 "storage" : "stateless"
}

The client loads the initial registration form. The server returns the initial tag to indicate the start of the registration
process:

curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --header "X-OpenIDM-NoSession: true" \
 --request GET \
 "https://idm.example.com:8443/openidm/selfservice/registration"
{
 "_id": "1",
 "_rev": "1113597344",
 "type": "parameters",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Parameters",
 "type": "object",
 "properties": {
 "returnParams": {
 "description": "Parameter named 'returnParams'",
 "type": "string"
 }
 }
 }
}

The client sends an empty POST request with the submitRequirements action.

The server returns the following:

The initial tag to indicate the start of the registration process.

A token that must be provided in subsequent steps.

A JSON requirements object that must be provided in subsequent steps.

1.

◦

◦

◦

Self-service reference PingIDM

1332 Copyright © 2025 Ping Identity Corporation

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Password: anonymous" \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-NoSession: true" \
--request POST \
--data '{"input":{"input":{}}}' \
https://idm.example.com:8443/openidm/selfservice/registration?_action=submitRequirements
{
 "type":"allInOneRegistration",
 "tag":"initial",
 "requirements":{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "description":"All-In-One Registration",
 "type":"object",
 "properties":{
 "response":{
 "recaptchaSiteKey":"6Lf...1ry",
 "description":"Captcha response",
 "type":"string"
 },
 "kba":{
 "type":"array",
 "minItems":2,
 "items":{
 "type":"object",
 "oneOf":[
 {
 "$ref":"#/definitions/systemQuestion"
 },
 {
 "$ref":"\#/definitions/userQuestion"
 }
]
 },
 "questions":[
 {
 "question":{
 "en":"What’s your favorite color?",
 "en_GB":"What is your favourite colour?",
 "fr":"Quelle est votre couleur préférée?"
 },
 "id":"1"
 },
 {
 "question":{
 "en":"Who was your first employer?"
 },
 "id":"2"
 }
]
 },
 "user":{
 "default":{

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1333

 },
 "description":"User Object",
 "type":"object"
 },
 "accept":{
 "description":"Accept",
 "type":"string"
 }
 },
 "required":[
 "response",
 "accept",
 "kba"
],
 "terms":"These are our terms and conditions",
 "termsVersion":"1.0",
 "uiConfig":{
 "displayName":"We have updated our terms",
 "purpose":"To proceed, accept these terms",
 "buttonText":"Accept"
 },
 "createDate":"2018-11-05T13:14:00.540Z",
 "definitions":{
 "systemQuestion":{
 "description":"System Question",
 "type":"object",
 "required":[
 "questionId",
 "answer"
],
 "properties":{
 "questionId":{
 "description":"Id of predefined question",
 "type":"string"
 },
 "answer":{
 "description":"Answer to the referenced question",
 "type":"string"
 }
 },
 "additionalProperties":false
 },
 "userQuestion":{
 "description":"User Question",
 "type":"object",
 "required":[
 "customQuestion",
 "answer"
],
 "properties":{
 "answer":{
 "description":"Answer to the question",
 "type":"string"
 },
 "customQuestion":{

Self-service reference PingIDM

1334 Copyright © 2025 Ping Identity Corporation

 "description":"Question defined by the user",
 "type":"string"
 }
 },
 "additionalProperties":false
 },
 "providers":{
 "type":"array",
 "items":{
 "type":"object",
 "oneOf":[
]
 }
 }
 },
 "socialRegistrationEnabled":false,
 "registrationForm":null,
 "registrationProperties":{
 "properties":{
 "userName":{
 "title":"Username",
 "description":"Username",
 "viewable":true,
 "type":"string",
 "searchable":true,
 "userEditable":true,
 "usageDescription":"",
 "isPersonal":true,
 "policies":[
 {
 "policyId" : "minimum-length",
 "params" : {
 "minLength" : 1
 }
 },
 {
 "policyId":"unique"
 },
 {
 "policyId":"no-internal-user-conflict"
 },
 {
 "policyId":"cannot-contain-characters",
 "params":{
 "forbiddenChars":[
 "/"
]
 }
 }
]
 },
 "givenName":{
 "title":"First Name",
 "description":"First Name",
 "viewable":true,

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1335

 "type":"string",
 "searchable":true,
 "userEditable":true,
 "usageDescription":"",
 "isPersonal":true
 },
 "sn":{
 "title":"Last Name",
 "description":"Last Name",
 "viewable":true,
 "type":"string",
 "searchable":true,
 "userEditable":true,
 "usageDescription":"",
 "isPersonal":true
 },
 "mail":{
 "title":"Email Address",
 "description":"Email Address",
 "viewable":true,
 "type":"string",
 "searchable":true,
 "userEditable":true,
 "usageDescription":"",
 "isPersonal":true,
 "policies":[
 {
 "policyId":"valid-email-address-format"
 }
]
 }
 },
 "required":[
 "userName",
 "givenName",
 "sn",
 "mail"
]
 },
 "registrationPreferences":{
 "updates":{
 "description":"Send me news and updates",
 "type":"boolean"
 },
 "marketing":{
 "description":"Send me special offers and services",
 "type":"boolean"
 }
 },
 "stages":[
 "captcha",
 "termsAndConditions",
 "kbaSecurityAnswerDefinitionStage",

Self-service reference PingIDM

1336 Copyright © 2025 Ping Identity Corporation

 "idmUserDetails"
]
 },
 "token":"eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVYQ...2h-k"
}

The client sends a POST request with the requirements. The server responds with a request for the emailed code:2.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1337

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Password: anonymous" \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-NoSession: true" \
--request POST \
--data '{
 "input":{
 "user":{
 "userName":"bjensen",
 "givenName":"Babs",
 "sn":"Jensen",
 "mail":"babs.k.jensen@gmail.com",
 "preferences":{
 "updates":false,
 "marketing":false
 },
 "password":"Passw0rd"
 },
 "kba":[
 {
 "answer":"red",
 "questionId":"1"
 },
 {
 "answer":"forgerock",
 "questionId":"2"
 }
],
 "response":"03AMGVjXggloUomtJx2Q0_wAjzyb9lN3LJBRIN67O85eGJIejO6WMlZGZ2jqnz...",
 "g-recaptcha-response":"03AMGVjXggloUomtJx2Q0_wAjzyb9lN3LJBRIN67O85eGJIejO...",
 "accept":"true"
 },
 "token":"eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVYQWlPa..."
}' \
https://idm.example.com:8443/openidm/selfservice/registration?_action=submitRequirements
{
 "type":"emailValidation",
 "tag":"validateCode",
 "requirements":{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "description":"Verify emailed code",
 "type":"object",
 "required":[
 "code"
],
 "properties":{
 "code":{
 "description":"Enter code emailed",
 "type":"string"

Self-service reference PingIDM

1338 Copyright © 2025 Ping Identity Corporation

 }
 }
 },
 "token":"eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVYQWl..."
}

The email verification link redirects to:

https://idm.example.com:8443/#/registration/&token=eyJ0e..."

The client is registered and logged into the End User UI.

Social registration

IDM provides a standards-based solution for social authentication requirements, based on the OAuth 2.0 and OpenID Connect
1.0 standards. They are similar, as OpenID Connect 1.0 is an authentication layer built on OAuth 2.0.

This chapter describes how to configure IDM to register and authenticate users with multiple social identity providers.

To configure different social identity providers, you’ll take the same general steps:

Enable the social providers authentication module.

Set up the provider. You’ll need information such as a Client ID and Client Secret to set up an interface with IDM.

Configure the provider on IDM.

info
By default, the snapshot token expires after 300 seconds. If the delay between the first request and the second
request is greater than that period, the snapshot token will be invalid and the initial request must be sent
again to obtain a fresh snapshot token. You can change the snapshot token expiration time in the self-service
process configuration file (selfservice-registration.json in this case).
The following excerpt of the configuration file shows the default snapshotToken configuration. To change the
expiration time, set the tokenExpiry property:

"snapshotToken" : {
 "type" : "jwt",
 "jweAlgorithm" : "RSAES_PKCS1_V1_5",
 "encryptionMethod" : "A128CBC_HS256",
 "jwsAlgorithm" : "HS256",
 "tokenExpiry" : 300
},

Note

3.

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

1.

2.

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1339

http://openid.net/connect/
http://openid.net/connect/

Set up User Registration. Activate Social Registration in the applicable admin UI screen or configuration file.

After configuration is complete, test the result. For a common basic procedure, refer to Test social identity providers.

Enable the social providers authentication module

You must enable the social providers authentication module before using social registration:

From the navigation bar, click Configure > Authentication.

On the Authentication page, click the Modules tab.

From the Select a module drop-down list, select Social Providers, and click Add.

In the New Social Providers Authentication Module window, make sure Module Enabled is enabled.

Make changes as necessary, and click Save.

Social Providers now displays in the Module list.

Copy /path/to/openidm/samples/example-configurations/self-service/identityProviders.json to your project’s
conf/ directory.

To understand how data is transmitted between IDM and a social identity provider, read OpenID connect authorization code
flow.

4.

5.

1.

2.

3.

4.

5.

6.

Self-service reference PingIDM

1340 Copyright © 2025 Ping Identity Corporation

When you’ve configured one or more social identity providers, you can activate the Social Registration option in User
Registration. This action adds:

The following setting to the selfservice-registration.json configuration file:

"socialRegistrationEnabled" : true,

The selfservice-socialUserClaim.json configuration file, discussed in Account Claiming.

Under the Social tab, you’ll refer to a list of property mappings as defined in the selfservice.propertymap.json file.

One or more source properties in this file takes information from a social identity provider. When a user registers with their
social identity account, that information is reconciled to the matching target property for IDM. For example, the email
property from a social identity provider is normally reconciled to the IDM managed user mail property.

OpenID connect authorization code flow

The OpenID Connect Authorization Code Flow specifies how IDM (Relying Party) interacts with the OpenID Provider (Social ID
Provider), based on the use of the OAuth 2.0 authorization grant. The following sequence diagram illustrates successful
processing from the authorization request, through grant of the authorization code, access token, ID token, and provisioning
from the social identity provider to IDM.

Figure 1. IDM supports OpenID Connect for Social Identity Providers

The following list describes details of each item in the authorization flow:

A user navigates to the IDM End User UI, and selects the Sign In link for the desired social identity provider.

IDM prepares an authorization request.

IDM sends the request to the Authorization Endpoint that you configured for the social identity provider, with a Client ID.

The social identity provider requests end user authentication and consent.

The end user transmits authentication and consent.

The social identity provider sends a redirect message, with an authorization code, to the end user’s browser. The redirect
message goes to an oauthReturn endpoint, configured in ui.context-oauth.json in your project’s conf/ directory.

info
For all social identity providers, set up a FQDN for IDM, along with information in a DNS server, or system hosts files.
For test purposes, FQDNs that comply with RFC 2606, such as localhost and openidm.example.com , are acceptable.

Note

•

•

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

IDM supports OpenID Connect for Social Identity Providers

1.

2.

3.

4.

5.

6.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1341

When you configure a social identity provider, you’ll find the endpoint in the applicable configuration file with the following
property: redirectUri .

The browser transmits the redirect message, with the authorization code, to IDM.

IDM records the authorization code, and sends it to the social identity provider Token Endpoint.

The social identity provider token endpoint returns access and ID tokens.

IDM validates the token, and sends it to the social identity provider User Info Endpoint.

The social identity provider responds with information on the user’s account, that IDM can provision as a new Managed
User.

You’ll configure these credentials and endpoints, in some form, for each social identity provider.

Many social identity providers, one schema

Most social identity providers include common properties, such as name, email address, icon configuration, and location.

IDM includes two sets of property maps that translate information from a social identity provider to your managed user objects.
These property maps are as follows:

The identityProviders.json file includes a propertyMap code block for each supported provider. This file maps
properties from the provider to a generic managed user object. You should not customize this file. To use this file, copy /
path/to/openidm/samples/example-configurations/self-service/identityProviders.json to your project’s conf/
directory.

The selfservice.propertymap.json file translates the generic managed user properties to the managed user schema
that you have defined in managed.json . If you have customized the managed user schema, this is the file that you must
change, to indicate how your custom schema maps to the generic managed user schema.

Examine conf/identityProviders.json . The following excerpt shows the Facebook propertyMap :

7.

8.

9.

10.

11.

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

•

•

Self-service reference PingIDM

1342 Copyright © 2025 Ping Identity Corporation

"propertyMap" : [
 {
 "source" : "id",
 "target" : "id"
 },
 {
 "source" : "name",
 "target" : "displayName"
 },
 {
 "source" : "first_name",
 "target" : "givenName"
 },
 {
 "source" : "last_name",
 "target" : "familyName"
 },
 {
 "source" : "email",
 "target" : "email"
 },
 {
 "source" : "email",
 "target" : "username"
 },
 {
 "source" : "locale",
 "target" : "locale"
 }
]

The source lists the Facebook property, the target lists the corresponding property for a generic managed user.

IDM then processes that information through the selfservice.propertymap.json file, where the source corresponds to the
generic managed user and the target corresponds to your customized managed user schema (defined in your project’s
managed.json file).

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1343

{
 "properties" : [
 {
 "source" : "givenName",
 "target" : "givenName"
 },
 {
 "source" : "familyName",
 "target" : "sn"
 },
 {
 "source" : "email",
 "target" : "mail"
 },
 {
 "source" : "postalAddress",
 "target" : "postalAddress",
 "condition" : "/object/postalAddress pr"
 },
 {
 "source" : "addressLocality",
 "target" : "city",
 "condition" : "/object/addressLocality pr"
 },
 {
 "source" : "addressRegion",
 "target" : "stateProvince",
 "condition" : "/object/addressRegion pr"
 },
 {
 "source" : "postalCode",
 "target" : "postalCode",
 "condition" : "/object/postalCode pr"
 },
 {
 "source" : "country",
 "target" : "country",
 "condition" : "/object/country pr"
 },
 {
 "source" : "phone",
 "target" : "telephoneNumber",
 "condition" : "/object/phone pr"
 },
 {
 "source" : "username",
 "target" : "userName"
 }
]
}

Several of the property mappings include a pr presence expression which is a filter that returns all records with the given
attribute. For more information, refer to Presence Expressions.

lightbulb_2
To take additional information from a social identity provider, make sure the property is mapped through the
identityProviders.json and selfservice.propertymap.json files.

Tip

Self-service reference PingIDM

1344 Copyright © 2025 Ping Identity Corporation

Amazon social identity provider

Set up Amazon

To set up Amazon as a social identity provider, first Register for Login With Amazon. You will need an Amazon account.

Then, create a security profile. You will need the following information:

Security Profile Name (The name of your app)

Security Profile Description

Consent Privacy Notice URL

Consent Logo Image (optional)

When complete and saved, you should see a list of security profiles with OAuth2 credentials. You should be able to find the
Client ID and Client Secret from this screen.

You still need to configure the web settings for your new Security Profile. From the Amazon Developer Console dashboard, select
Apps and Services > Login with Amazon, then select Manage > Web Settings.

In the Web Settings for your app, you’ll need to set either of the following properties:

Allowed Origins, which should match the URL for your registration page, such as https://openidm.example.com:8443

Allowed Return URLs, which should match the redirect URIs described in Configure an Amazon Social Identity Provider.
You may refer to URIs such as https://openidm.example.com:8443/ .

Configure an Amazon social identity provider

To configure an Amazon social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable Amazon.

In the Amazon Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer to
Amazon Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-amazon.json file:

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

info
Amazon as a social identity provider requires access over secure HTTP (HTTPS).

Note

•

•

•

•

•

•

1.

2.

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1345

https://developer.amazon.com/docs/login-with-amazon/register-web.html
https://developer.amazon.com/docs/login-with-amazon/register-web.html
https://developer.amazon.com/docs/login-with-amazon/register-web.html#create-a-new-security-profile
https://developer.amazon.com/docs/login-with-amazon/register-web.html#create-a-new-security-profile

{
 "provider" : "amazon",
 "authorizationEndpoint" : "https://www.amazon.com/ap/oa",
 "tokenEndpoint" : "https://api.amazon.com/auth/o2/token",
 "userInfoEndpoint" : "https://api.amazon.com/user/profile"
 "enabled" : true,
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "scope" : [
 "profile"
],
...

The file includes schema information, which includes properties for each social identity account, as collected by IDM, as well as
the order in which it appears in the admin UI. When you’ve registered a user with an Amazon social identity, you can verify this by
selecting Manage > Amazon, and then selecting a user.

Another part of the file includes a propertyMap , which maps user information entries between the source (social identity
provider) and the target (IDM).

If you need more information about the properties in this file, refer to Amazon Social Identity Provider Configuration Details.

Configure user registration to link to Amazon

Once you’ve configured the Amazon social identity provider, you can activate it through User Registration. To do so in the admin
UI, select Configure > User Registration, and activate that feature. Under the Social tab that appears, enable Social Registration.
For more information on IDM user self-service features, refer to IDM user interface.

When you enable Social Registration, you’re allowing users to register on IDM through all active social identity providers.

Amazon social identity provider configuration details

You can set up the Amazon social identity provider through the admin UI or in a conf/identityProvider-amazon.json file. IDM
generates the identityProvider-amazon.json file when you configure and enable this social identity provider in the admin UI.
Alternatively, you can create the file manually.

The following table includes the information shown in the admin UI Amazon Provider pop-up window, along with associated
information in the identityProvider-amazon.json file:

Self-service reference PingIDM

1346 Copyright © 2025 Ping Identity Corporation

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

Apple social identity provider

To configure Apple as a social identity provider (Sign in with Apple), you’ll need an Apple developer account.

Configure Apple Login

You need a client ID and client secret for your application. In the Apple developer portal, the client ID is called a Services ID .

Log in to the Apple Developer Portal.

Select Certificates, Identifiers and Profiles > Identifiers.

On the Identifiers page, select Register a New Identifier, then select Services IDs.

Amazon social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Client ID clientId The client identifier for your Amazon App

Client Secret clientSecret Used with the Client ID to access the applicable Amazon API

Scope scope An array of strings that allows access to user data; refer to Amazon’s
Customer Profile Documentation.

Authorization Endpoint authorization

Endpoint

Typically https://www.amazon.com/ap/oa .

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token; typically https://api.amazon.com/auth/o2/token

User Info Endpoint userInfoEndpo

int

Endpoint that transmits scope-related fields; typically https://
api.amazon.com/user/profile

Not in the admin UI name Name of the social identity provider

Not in the admin UI type Authentication module

Not in the admin UI authenticatio

nId

Authentication identifier, as returned from the User Info Endpoint for
each social identity provider

Not in the admin UI propertyMap Mapping between Amazon and IDM

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

1.

2.

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1347

https://developer.amazon.com/public/apis/engage/login-with-amazon/docs/customer_profile.html
https://developer.amazon.com/public/apis/engage/login-with-amazon/docs/customer_profile.html
https://developer.apple.com/
https://developer.apple.com/

Enter a Description and Identifier for this Services ID, and make sure that Sign in With Apple is enabled.

Click Configure.

On the Web Authentication Configuration screen, enter the Web Domain on which IDM runs, and specify the redirect
URL used during the OAuth flow (Return URLs).

The redirect URL must have the following format:

https://idm.example.com/redirect

Click Save > Continue > Register.

Generate the client secret.

Instead of using simple strings as OAuth client secrets, Apple uses a public/private key pair, where the client secret is a
signed JWT. To register the private key with Apple:

Select Certificates, Identifiers and Profiles > Keys, then click the + button to register a new key.

Enter a Key Name, and enable Sign In with Apple.

Click Configure, and select the primary App ID that you created previously.

Apple generates a new private key, in a .p8 file.

Rename the file to key.txt , then locate the Key ID in that file.

Use this private key to generate a client secret JWT. Sign the JWT with your private key, using an ES256 algorithm.

Configure an Apple identity provider

To configure an Apple social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable Apple.

In the Apple Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer to
Apple Social Identity Provider Configuration Details.

4.

emergency_home
The Identifier you specify here will be your OAuth Client ID.

Important

5.

6.

info
You must use a real domain (FQDN). Apple does not allow localhost URLs. If you enter an IP address such as
127.0.0.1, it will fail later in the OAuth flow.

Note

7.

8.

◦

◦

◦

◦

error
You can only download this key once. Ensure that you save this file, because you will not be able to
download it again.

Caution

◦

1.

2.

3.

Self-service reference PingIDM

1348 Copyright © 2025 Ping Identity Corporation

Configure user registration through Apple

To configure Apple social user registration using the admin UI:

From the navigation bar, click Configure > User Registration, and click the Social tab.

Enable Social Registration.

For more information, refer to Self-service end user UI.

Apple social identity provider configuration details

You can set up the Apple social identity provider through the admin UI or in a conf/identityProvider-apple.json file. IDM
generates the identityProvider-apple.json file when you configure and enable this social identity provider in the admin UI.
Alternatively, you can create the file manually.

The following table includes the information shown in the admin UI Apple Provider pop-up window, along with associated
information in the identityProvider-apple.json file.

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

1.

2.

Apple social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Client ID clientId The client identifier for your Apple App. In the Apple developer portal,
the client ID is called a Services ID .

Client Secret clientSecret Used with the Client ID to access the applicable Apple API.

Scope scope An array of strings that allows access to user data.

Authorization Endpoint authorization

Endpoint

Typically, https://appleid.apple.com/auth/authorize .

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token. Typically, https://appleid.apple.com/auth/token .

Well-Known Endpoint wellKnownEndp

oint

Access for other URIs. Typically, https://appleid.apple.com/.well-
known/openid-configuration .

Issuer issuer The token issuer. Typically, https://appleid.apple.com .

Not in the admin UI provider Name of the social identity provider.

Not in the admin UI configClass Configuration class for the authentication module.

Not in the admin UI basicAuth Whether to use basic authentication.

Not in the admin UI propertyMap Mapping between Apple and IDM.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1349

Facebook social identity provider

Set up Facebook

To set up Facebook as a social identity provider, navigate to the Facebook for Developers page. You’ll need a Facebook account.
While you could use a personal Facebook account, it is best to use an organizational account to avoid problems if specific
individuals leave your organization. When you set up a Facebook social identity provider, you’ll need to perform the following
tasks:

On the Facebook for Developers page, select My Apps, and click Add a New App. For IDM, you’ll create a Website
application.

You’ll need to include the following information when creating a Facebook website application:

Display Name

Contact Email

IDM URL

When complete, you should see your App. Navigate to Basic Settings.

Make a copy of the App ID and App Secret for when you configure the Facebook social identity provider in IDM.

In App settings, you should see an entry for App Domains, such as example.com , as well as a Website Site URL, such as
https://idm.example.com/ .

For Facebook’s documentation on the subject, refer to Facebook Login for the Web with the JavaScript SDK.

Configure a Facebook social identity provider

To configure a Facebook social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable Facebook.

In the Facebook Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer to
Facebook Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-facebook.json file:

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

info
Facebook as a social identity provider requires access over secure HTTP (HTTPS).

Note

•

•

◦

◦

◦

•

•

•

1.

2.

3.

Self-service reference PingIDM

1350 Copyright © 2025 Ping Identity Corporation

https://developers.facebook.com/apps/
https://developers.facebook.com/apps/
https://developers.facebook.com/docs/facebook-login/web
https://developers.facebook.com/docs/facebook-login/web

{
 "provider" : "facebook",
 "authorizationEndpoint" : "https://www.facebook.com/dialog/oauth",
 "tokenEndpoint" : "https://graph.facebook.com/v2.7/oauth/access_token",
 "userInfoEndpoint" : "https://graph.facebook.com/me?fields=id,name,picture,email,first_name,last_name,locale"
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "scope" : [
 "email",
 "user_birthday"
],
...

The file includes schema information, which includes properties for each social identity account, as collected by IDM, as well as
the order in which it appears in the admin UI. When you’ve registered a user with a Facebook social identity, you can verify this by
selecting Manage > Facebook, and then selecting a user.

Another part of the file includes a propertyMap , which maps user information entries between the source (social identity
provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix: Facebook Social Identity Provider
Configuration Details.

Configure user registration to link to Facebook

Once you’ve configured the Facebook social identity provider, you can activate it through User Registration. To do so in the admin
UI, select Configure > User Registration, and under the Social tab, enable the option associated with Social Registration. For more
information about user self-service features, refer to Self-service end user UI.

When you enable social registration, you’re allowing users to register on IDM through all active social identity providers.

Facebook social identity provider configuration details

You can set up the Facebook social identity provider through the admin UI or in a conf/identityProvider-facebook.json file.
IDM generates the identityProvider-facebook.json file when you configure and enable this social identity provider in the
admin UI. Alternatively, you can create the file manually.

The following table includes the information shown in the admin UI Facebook Provider pop-up window, along with associated
information in the identityProvider-facebook.json file:

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1351

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

Google social identity provider

Set up Google

To set up Google as a social identity provider, navigate to the Google API Manager. You’ll need a Google account. If you have
Gmail, you already have a Google account 😉. While you could use a personal Google account, it is best to use an organizational
account to avoid problems if specific individuals leave your organization. When you set up a Google social identity provider, you’ll
need to perform the following tasks:

Facebook social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

App ID clientId The client identifier for your Facebook App

App Secret clientSecret Used with the App ID to access the applicable Facebook API

Scope scope An array of strings that allows access to user data; refer to Facebook’s
Permissions Reference Documentation.

Authorization Endpoint authorization

Endpoint

For Facebook’s implementation, refer to their documentation on how
they Manually Build a Login Flow.

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token. For Facebook’s implementation, refer to their
documentation on how they Manually Build a Login Flow.

User Info Endpoint userInfoEndpo

int

Endpoint that transmits scope-related fields through Facebook’s API.
The default endpoint includes the noted field properties as a list, as
defined in Facebook’s Permissions Reference.

Not in the admin UI name Name of the Social ID provider

Not in the admin UI type Authentication module

Not in the admin UI authenticatio

nId

Authentication identifier, as returned from the User Info Endpoint for
each social identity provider

Not in the admin UI propertyMap Mapping between Facebook and IDM

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

Self-service reference PingIDM

1352 Copyright © 2025 Ping Identity Corporation

https://developers.facebook.com/docs/facebook-login/permissions
https://developers.facebook.com/docs/facebook-login/permissions
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/
https://developers.facebook.com/docs/facebook-login/permissions
https://developers.facebook.com/docs/facebook-login/permissions
https://console.developers.google.com
https://console.developers.google.com

Plan ahead. It may take some time before the Google+ API that you configure for IDM is ready for use.

In the Google API Manager, select and enable the Google+ API. It is one of the Google "social" APIs.

Create a project for IDM.

Create OAuth client ID credentials. You’ll need to configure an OAuth consent screen with at least a product name and
email address.

When you set up a Web application for the client ID, you’ll need to set up a web client with:

Authorized JavaScript origins

The origin URL for IDM, typically a URL such as https://openidm.example.com:8443

Authorized redirect URIs

The redirect URI after users are authenticated, typically, https://openidm.example.com:8443/

In the list of credentials, you’ll refer to a unique Client ID and Client secret . You’ll need this information when you
configure the Google social identity provider, as described in Configure a Google Social Identity Provider.

For Google’s procedure, refer to the Google Identity Platform documentation on Setting Up OAuth 2.0.

Configure a Google social identity provider

To configure a Google social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable Google.

In the Google Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer to
Google Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-google.json file:

{
 "enabled" : true,
 "authorizationEndpoint" : "https://accounts.google.com/o/oauth2/v2/auth",
 "tokenEndpoint" : "https://www.googleapis.com/oauth2/v4/token",
 "userInfoEndpoint" : "https://www.googleapis.com/oauth2/v3/userinfo",
 "wellKnownEndpoint" : "https://accounts.google.com/.well-known/openid-configuration",
 "issuer": "https://accounts.google.com",
 "clientId" : "<someUUID>",
 "clientSecret" : {encrypted-client-secret},
...

The file includes schema information, which includes properties for each social identity account, as collected by IDM, as well as
the order in which it appears in the admin UI. When you’ve registered a user with a Google social identity, you can verify this by
selecting Manage > Google, and then selecting a user.

Another part of the file includes a propertyMap , which maps user information entries between the source (social identity
provider) and the target (IDM).

•

•

•

•

◦

◦

•

1.

2.

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1353

https://developers.google.com/identity/protocols/OpenIDConnect#appsetup
https://developers.google.com/identity/protocols/OpenIDConnect#appsetup

If you need more information about the properties in this file, refer to the following appendix: Google Social Identity Provider
Configuration Details.

Configure user registration to link to Google

Once you’ve configured the Google social identity provider, you can activate it through User Registration. To do so in the admin
UI, select Configure > User Registration, and under the Social tab, enable the option associated with Social Registration. For
more information on user self-service features, refer to Self-service end user UI.

When you enable social registration, you’re allowing users to register on IDM through all active social identity providers.

Google social identity provider configuration details

You can set up the Google social identity provider through the admin UI or in a conf/identityProvider-google.json file. IDM
generates the identityProvider-google.json file when you configure and enable this social identity provider in the admin UI.
Alternatively, you can create the file manually.

The following table includes the information shown in the admin UI Google Provider pop-up window, along with associated
information in the identityProvider-google.json file:

Google social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Client ID clientId The client identifier for your Google Identity Platform project.

Client Secret clientSecret Used with the Client ID to access the configured Google API.

Scope scope An array of strings that allows access to user data; refer to Google’s
documentation on Authorization Scopes.

Authorization Endpoint authorization

Endpoint
As per RFC 6749, "used to interact with the resource owner and
obtain an authorization grant". For Google’s implementation, refer to
Forming the URL.

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization grant, and returns an
access and ID token.

User Info Endpoint userInfoEndpo

int

Endpoint that receives an access token, and returns information about
the user.

Well-Known Endpoint wellKnownEndp

oint
Access URL for Google’s Discovery Document.

Issuer issuer The token issuer. Typically, https://accounts.google.com .

Not in the admin UI name Name of the social identity provider.

Not in the admin UI type Authentication module.

Self-service reference PingIDM

1354 Copyright © 2025 Ping Identity Corporation

https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes
https://www.rfc-editor.org/rfc/rfc6749.html#section-3.1
https://www.rfc-editor.org/rfc/rfc6749.html#section-3.1
https://developers.google.com/identity/protocols/OAuth2UserAgent#formingtheurl
https://developers.google.com/identity/protocols/OAuth2UserAgent#formingtheurl
https://developers.google.com/identity/protocols/OpenIDConnect#discovery
https://developers.google.com/identity/protocols/OpenIDConnect#discovery
https://accounts.google.com
https://accounts.google.com

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

Instagram social identity provider

Set up Instagram

To set up Instagram as a social identity provider, navigate to Facebook for Developers, and follow the steps. You’ll need a
minimum of:

An Instagram account

A Facebook developer account

An application name and description

A website URL for your app, such as http://openidm.example.com:8080

A Redirect URL for IDM, such as http://openidm.example.com:8080/

Configure an Instagram social identity provider

To configure an Instagram social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable Instagram.

In the Instagram Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer
to Instagram Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-instagram.json file:

Property (UI) Property
(JSON file)

Description

Not in the admin UI authenticatio

nId

Authentication identifier, as returned from the User Info Endpoint for
each social identity provider.

Not in the admin UI propertyMap Mapping between Google and IDM.

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

•

•

•

•

•

1.

2.

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1355

https://developers.facebook.com/docs/instagram-basic-display-api/getting-started
https://developers.facebook.com/docs/instagram-basic-display-api/getting-started

{
 "provider" : "instagram",
 ...
 "clientId" : "<Client_ID_Name>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "authorizationEndpoint" : "https://api.instagram.com/oauth/authorize/",
 "tokenEndpoint" : "https://api.instagram.com/oauth/access_token",
 "userInfoEndpoint" : "https://graph.instagram.com/me?fields=id,username",
 "redirectUri" : "http://openidm.example.com:8080/",
 "scope" : [
 "user_profile",
],
...

The file includes schema information for each social identity account, as collected by IDM, as well as the order in which it appears
in the admin UI. When you’ve registered a user with an Instagram social identity, you can verify this by selecting Manage >
Instagram, and then selecting a user. For more information about the properties in this file, refer to Instagram Social Identity
Provider Configuration Details.

Configure user registration to link to Instagram

After you configure the Instagram social identity provider, you can activate it through User Registration. To do so in the admin UI,
select Configure > User Registration, and activate that feature. Under the Social tab that appears, enable Social Registration. For
more information on IDM user self-service features, refer to Self-service end user UI.

Instagram social identity provider configuration details

You can set up the Instagram social identity provider through the admin UI or in a conf/identityProvider-instagram.json file.
IDM generates the identityProvider-instagram.json file when you configure and enable this social identity provider in the
admin UI. Alternatively, you can create the file manually.

The following table includes the information shown in the admin UI Instagram Provider pop-up window, along with associated
information in the identityProvider-instagram.json file:

info
When you enable Social Registration, you’re allowing users to register on IDM through all active social identity
providers.

Note

Self-service reference PingIDM

1356 Copyright © 2025 Ping Identity Corporation

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

LinkedIn social identity provider

Set up a LinkedIn app

Before you start, you will need a LinkedIn account. You can use a personal LinkedIn account for testing, but you should use an
organizational account to avoid problems if individuals leave your organization.

Instagram social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Client ID clientId Your Instagram App client identifier

Client Secret clientSecret Used with the Client ID to access the Instagram API

Scope scope An array of strings that allows access to user data

Authorization Endpoint authorization

Endpoint

Typically https://api.instagram.com/oauth/authorize/ ; known as
an Instagram Authorize URL

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token; typically https://api.instagram.com/oauth/
access_token

User Info Endpoint userInfoEndpo

int

Endpoint that transmits scope-related fields; typically https://
graph.instagram.com/me?fields=id,username

Not in the admin UI provider Name of the social identity provider

Not in the admin UI configClass Configuration class for the authentication module

Not in the admin UI basicAuth Whether to use basic authentication

Not in the admin UI propertyMap Mapping between Instagram and IDM

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

emergency_home
Microsoft has deprecated the "Sign In with LinkedIn" functionality as of August 1, 2023. Refer to Sign In with LinkedIn
.

Important

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1357

https://learn.microsoft.com/en-us/linkedin/consumer/integrations/self-serve/sign-in-with-linkedin
https://learn.microsoft.com/en-us/linkedin/consumer/integrations/self-serve/sign-in-with-linkedin
https://learn.microsoft.com/en-us/linkedin/consumer/integrations/self-serve/sign-in-with-linkedin

To set up a LinkedIn app:

Log in to LinkedIn, and navigate to LinkedIn Developers → MyApps.

Select Create app, and enter the following information:

App name—Any unique name fewer than 50 characters.

Company—The company name associated with this application.

Privacy policy URL—An optional URL that displays a privacy policy.

Business email—The business email address that is associated with this application.

App logo—The logo that is displayed to users when they authenticate with this app.

Select the products that should be integrated into the app.

Accept LinkedIn’s legal terms.

Select Verify to associate the app with your company, then follow the verification approval process.

After you have approved the app, select it under My Apps, then select the Auth tab.

Take note of the Client ID and Client Secret —you will need them in the next procedure.

The app should have the following Permissions:

r_emailaddress

r_liteprofile

w_member_social

Under OAuth 2.0 settings, select Add redirect URL and enter the FQDN and port number of your IDM instance. For
example, http://openidm.example.com:8080/

Configure a LinkedIn social identity provider

To configure a LinkedIn social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable LinkedIn.

In the LinkedIn Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer to
LinkedIn Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-linkedIn.json file:

1.

2.

◦

◦

◦

◦

◦

3.

4.

5.

6.

7.

8.

◦

◦

◦

9.

info
For LinkedIn’s procedure, refer to their documentation on Authenticating with OAuth 2.0.

Note

1.

2.

3.

Self-service reference PingIDM

1358 Copyright © 2025 Ping Identity Corporation

https://www.linkedin.com/developer/apps/
https://www.linkedin.com/developer/apps/
https://docs.microsoft.com/en-us/linkedin/shared/authentication/authentication
https://docs.microsoft.com/en-us/linkedin/shared/authentication/authentication

{
 "provider" : "linkedIn",
 "authorizationEndpoint" : "https://www.linkedin.com/oauth/v2/authorization",
 "tokenEndpoint" : "https://www.linkedin.com/oauth/v2/accessToken",
 "userInfoEndpoint" : "https://api.linkedin.com/v2/me?
projection=(id,firstName,lastName,profilePicture(displayImage~:playableStreams))",
 "emailAddressEndpoint" : "https://api.linkedin.com/v2/emailAddress?q=members&projection=(elements*(handle~))",
 "clientId" : "77l9udb8qmqihq",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "2cmC36Ds++6xAtRhlvNOEw==",
 "data" : "TJ7VOHjJI0VWWedTKX4agviqc3H3Un5RDVAWyB2u64g=",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "QbGAUSuOMrCh1i8F0fWGyA==",
 "mac" : "rUFVcSJ5+s+LZL6YFB3rFQ=="
 }
 }
 },
 "scope" : [
 "r_liteprofile",
 "r_emailaddress"
],
...

The file includes schema information, indicating the properties of each social identity account that will be collected by IDM, and
the order in which these properties appear in the admin UI. When you have registered a user with a LinkedIn social identity, you
can verify these properties by selecting Manage > LinkedIn, then selecting the user.

Further down in the file, the propertyMap maps user information between the source (social identity provider) and the target
(IDM).

For more information about the properties in this file, refer to LinkedIn Social Identity Provider Configuration Details.

Configure user registration with LinkedIn

To configure LinkedIn social user registration using the admin UI:

From the navigation bar, click Configure > User Registration, and click the Social tab.

Enable Social Registration.

For more information, refer to Self-service end user UI.

1.

2.

info
When you enable social registration, you are allowing users to register in IDM through all active social identity
providers.

Note

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1359

LinkedIn social identity provider configuration details

You can set up the LinkedIn social identity provider through the admin UI or in a conf/identityProvider-linkedIn.json file.
IDM generates the identityProvider-linkedIn.json file when you configure and enable this social identity provider in the
admin UI. Alternatively, you can create the file manually.

The following table includes the information shown in the admin UI LinkedIn Provider pop-up window, along with associated
information in the identityProvider-linkedIn.json file:

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

LinkedIn social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Client ID clientId The client identifier for your LinkedIn Application

Client Secret clientSecret Used with the Client ID to access the applicable LinkedIn API

Scope scope An array of strings that allows access to user data; refer to LinkedIn’s
documentation on Lite Profile Fields.

Authorization Endpoint authorization

Endpoint
As per RFC 6749, "used to interact with the resource owner and
obtain an authorization grant". For LinkedIn’s implementation, refer to
their documentation on Authenticating with OAuth 2.0.

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token. For LinkedIn’s implementation, refer to their
documentation on Authenticating with OAuth 2.0.

User Info Endpoint userInfoEndpo

int

Endpoint that transmits scope-related fields through LinkedIn’s API.

Email Address Endpoint emailAddressE

ndpoint

API that must be called to retrieve the email address of the user.

Well-Known Endpoint wellKnownEndp

oint

Not used for LinkedIn

Not in the admin UI name Name of the social identity provider

Not in the admin UI type Authentication module

Not in the admin UI authenticatio

nId

Authentication identifier, as returned from the User Info Endpoint for
each social identity provider

Not in the admin UI propertyMap Mapping between LinkedIn and IDM

Self-service reference PingIDM

1360 Copyright © 2025 Ping Identity Corporation

https://docs.microsoft.com/en-us/linkedin/shared/references/v2/profile/lite-profile
https://docs.microsoft.com/en-us/linkedin/shared/references/v2/profile/lite-profile
https://www.rfc-editor.org/rfc/rfc6749.html#section-3.1
https://www.rfc-editor.org/rfc/rfc6749.html#section-3.1
https://docs.microsoft.com/en-us/linkedin/shared/authentication/authentication
https://docs.microsoft.com/en-us/linkedin/shared/authentication/authentication
https://docs.microsoft.com/en-us/linkedin/shared/authentication/authentication
https://docs.microsoft.com/en-us/linkedin/shared/authentication/authentication

Microsoft social identity provider

Set up Microsoft

For Microsoft documentation on how to set up a social identity provider, navigate to the following article: Sign-in Microsoft
Account & Azure AD users in a single app. You’ll need a Microsoft account.

To set up Microsoft as a social identity provider:

Navigate to the Microsoft app registration portal, and sign in with your Microsoft account.

Select Add an App, and give your app a name.

The portal will assign your app a unique Application ID .

To find your Application Secret, select Generate New Password. The displayed password is your Application Secret.

Select Add Platform, and enter the following details:

Web platform.

Enable Allow Implicit Flow

Redirect URI: https://openidm.example.com:8443/

Logo image (optional)

Terms of Service URL (optional)

Privacy Statement URL (optional)

The OAuth2 credentials for your new Microsoft App include an Application ID and Application Secret for your app.

Configure a Microsoft social identity provider

To configure a Microsoft social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable Microsoft.

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

info
Microsoft as a social identity provider requires access over secure HTTP (HTTPS). This example assumes that you’ve
configured IDM on https://openidm.example.com:8443 . Substitute your URL for openidm.example.com .

Note

1.

2.

3.

lightbulb_2
Store the Application Secret in a secure location, as you can’t view it again.

Tip

4.

◦

◦

◦

◦

◦

◦

1.

2.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1361

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-appmodel-v2-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-appmodel-v2-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-appmodel-v2-overview
https://apps.dev.microsoft.com/
https://apps.dev.microsoft.com/

In the Microsoft Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer to
Microsoft Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-microsoft.json file:

"provider" : "microsoft",
 "authorizationEndpoint" : "https://login.microsoftonline.com/common/oauth2/v2.0/authorize",
 "tokenEndpoint" : "https://login.microsoftonline.com/common/oauth2/v2.0/token",
 "userInfoEndpoint" : "https://graph.microsoft.com/v1.0/me"
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "scope" : [
 "User.Read"
],
...

The file includes schema information, which includes properties for each social identity account, as collected by IDM, as well as
the order in which it appears in the admin UI. When you’ve registered a user with a Microsoft social identity, you can verify this by
selecting Manage > Microsoft, and then selecting a user.

Another part of the file includes a propertyMap , which maps user information entries between the source (social identity
provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix: Microsoft Social Identity Provider
Configuration Details.

Configure user registration to link to Microsoft

Once you’ve configured the Microsoft social identity provider, you can activate it through User Registration. To do so in the admin
UI, select Configure > User Registration, and activate that feature. Under the Social tab that appears, enable Social Registration.
For more information on IDM user self-service features, refer to Self-service end user UI.

When you enable Social Registration, you’re allowing users to register on IDM through all active social identity providers.

Microsoft social identity provider configuration details

You can set up the Microsoft social identity provider through the admin UI or in a conf/identityProvider-microsoft.json file.
IDM generates the identityProvider-microsoft.json file when you configure and enable this social identity provider in the
admin UI. Alternatively, you can create the file manually.

3.

Self-service reference PingIDM

1362 Copyright © 2025 Ping Identity Corporation

The following table includes the information shown in the admin UI Microsoft Provider pop-up window, along with associated
information in the identityProvider-microsoft.json file:

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

Salesforce social identity provider

Microsoft social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Application ID clientId The client identifier for your Microsoft App

Application Secret clientSecret Used with the Application ID; shown as application password

Scope scope OAuth 2 scopes; for more information, refer to Microsoft Graph
Permission Scopes.

Authorization Endpoint authorization

Endpoint

Typically
https://login.microsoftonline.com/common/oauth2/v2.0/

authorize

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code and returns an
access token; typically https://login.microsoftonline.com/common/
oauth2/v2.0/token

User Info Endpoint userInfoEndpo

int

Endpoint that transmits scope-related fields; typically https://
graph.microsoft.com/v1.0/me

Not in the admin UI name Name of the social identity provider

Not in the admin UI type Authentication module

Not in the admin UI authenticatio

nId

Authentication identifier, as returned from the User Info Endpoint for
each social identity provider

Not in the admin UI propertyMap Mapping between Microsoft and IDM

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

info
When you configure a Salesforce app, look for a Consumer Key and a Consumer Secret. IDM uses this information as a
clientId and clientSecret , respectively.
For reference, read through the following Salesforce documentation: Connected Apps Overview.

Note

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1363

https://developer.microsoft.com/en-us/graph/docs/authorization/permission_scopes
https://developer.microsoft.com/en-us/graph/docs/authorization/permission_scopes
https://developer.microsoft.com/en-us/graph/docs/authorization/permission_scopes
https://help.salesforce.com/articleView?id=connected_app_overview.htm&type=0
https://help.salesforce.com/articleView?id=connected_app_overview.htm&type=0

Set up Salesforce

To set up Salesforce as a social identity provider, you will need a Salesforce developer account. Log in to the Salesforce
Developers Page with your developer account credentials and create a new Connected App.

Under App Setup, select Create > Apps > Connected Apps > New. You will need to add the following information:

Connected App Name

API Name (defaults to the Connected App Name)

Contact Email

Activate Enable OAuth Settings

Callback URL (also known as the Redirect URI for other providers), for example https://localhost:8443 .

The Callback URL must correspond to the log-in URL for the IDM admin UI.

Add the following OAuth scopes:

Access and Manage your data (api)

Access your basic information (id, profile, email, address, phone)

Perform requests on your behalf at any time (refresh_token, offline_access)

Provide access to your data via the Web (web)

After you have saved the Connected App, it might take a few minutes for the new app to appear under Administration
Setup > Manage Apps > Connected Apps.

Select the new Connected App then locate the Consumer Key and Consumer Secret (under the API list). You’ll use that
information as shown here:

Salesforce Consumer Key = IDM Client ID

Salesforce Consumer Secret = IDM Client Secret

Configure a Salesforce social identity provider

To configure a Salesforce social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable Salesforce.

info
These instructions were written with the Winter '19 Release of the Salesforce API. The menu items might differ slightly
if you are working with a different version of the API.

Note

1.

2.

◦

◦

◦

◦

◦

3.

◦

◦

◦

◦

info
You must add these scopes even if you are planning to use the full OAuth scope.

Note

4.

5.

◦

◦

1.

2.

Self-service reference PingIDM

1364 Copyright © 2025 Ping Identity Corporation

https://developer.salesforce.com/
https://developer.salesforce.com/
https://developer.salesforce.com/

In the Salesforce Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer
to Salesforce Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-salesforce.json file:

{
 "provider" : "salesforce",
 "authorizationEndpoint" : "https://login.salesforce.com/services/oauth2/authorize",
 "tokenEndpoint" : "https://login.salesforce.com/services/oauth2/token",
 "userInfoEndpoint" : "https://login.salesforce.com/services/oauth2/userinfo",
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "scope" : [
 "id",
 "api",
 "web"
],

The file includes schema information, which includes properties for each social identity account, as collected by IDM, as well as
the order in which it appears in the admin UI. When you’ve registered a user with a Salesforce social identity, you can verify this
by selecting Manage > Salesforce, and then selecting a user.

Another part of the file includes a propertyMap , which maps user information entries between the source (social identity
provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix: Salesforce Social Identity Provider
Configuration Details.

Configure user registration to link to Salesforce

Once you’ve configured the Salesforce social identity provider, you can activate it through User Registration. To do so in the
admin UI, select Configure > User Registration, and activate that feature. Under the Social tab that appears, enable Social
Registration. For more information on IDM user self-service features, refer to Self-service end user UI.

When you enable Social Registration, you’re allowing users to register on IDM through all active social identity providers.

Salesforce social identity provider configuration details

You can set up the Salesforce social identity provider through the admin UI or in a conf/identityProvider-salesforce.json
file. IDM generates the identityProvider-salesforce.json file when you configure and enable this social identity provider in
the admin UI. Alternatively, you can create the file manually.

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1365

The following table includes the information shown in the admin UI Salesforce Provider pop-up window, along with associated
information in the identityProvider-salesforce.json file:

Twitter social identity provider

Set up Twitter

For additional information, refer to Single-user OAuth with Examples.

To set up Twitter as a social identity provider, you’ll need a Twitter account, and then navigate to Twitter Application
Management.

Select Create New App, and enter at least the following information:

Name

Salesforce social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Client ID clientId The client identifier for your Salesforce App

Client Secret clientSecret Used with the Client ID to access the applicable Salesforce API

Scope scope An array of strings that allows access to user data

Authorization Endpoint authorization

Endpoint

A typical URL: https://login.salesforce.com/services/oauth2/
authorize .

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token; such as https://login.salesforce.com/services/
oauth2/token

User Info Endpoint userInfoEndpo

int

Endpoint that transmits scope-related fields; a typical URL: https://
login.salesforce.com/services/oauth2/userinfo

Not in the admin UI provider Name of the social identity provider

Not in the admin UI configClass Configuration class for the authentication module

Not in the admin UI basicAuth Whether to use basic authentication

Not in the admin UI propertyMap Mapping between Salesforce and IDM

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

1.

2.

◦

Self-service reference PingIDM

1366 Copyright © 2025 Ping Identity Corporation

https://dev.twitter.com/oauth/overview/single-user
https://dev.twitter.com/oauth/overview/single-user
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/

Description

Website, such as http://openidm.example.com:8080

Callback URL, such as http://openidm.example.com:8080/ ; required for IDM; for other providers, known as
RedirectURI

Click Save.

The page displays a Consumer Key and Consumer Secret for your new web app.

Configure Twitter as a social identity provider

To configure a Twitter social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable Twitter.

In the Twitter Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer to
Twitter Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-twitter.json file:

{
 "provider" : "twitter",
 "requestTokenEndpoint" : "https://api.twitter.com/oauth/request_token",
 "authorizationEndpoint" : "https://api.twitter.com/oauth/authenticate",
 "tokenEndpoint" : "https://api.twitter.com/oauth/access_token",
 "userInfoEndpoint" : "https://api.twitter.com/1.1/account/verify_credentials.json",
 "clientId" : "<Client_ID_Name>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },

The next part of the file includes schema information, which includes properties for each social identity account, as collected by
IDM, as well as the order in which it appears in the admin UI. When you’ve registered a user with a Twitter social identity, you can
verify this by selecting Manage > Twitter, and then selecting a user.

◦

◦

◦

3.

info
Twitter Apps use the OAuth 1.0a protocol. With IDM, you can use the same process used to configure OIDC and OAuth
2 social identity providers.

Note

1.

2.

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1367

Another part of the file includes a propertyMap , which maps user information entries between the source (social identity
provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix: Twitter Social Identity Provider
Configuration Details.

Configure user registration to link to Twitter

Once you’ve configured the Twitter social identity provider, you can activate it through User Registration. To do so in the admin
UI, select Configure > User Registration, and activate that feature. Under the Social tab that appears, enable Social Registration.
For more information on IDM user self-service features, refer to Self-service end user UI.

When you enable Social Registration, you’re allowing users to register on IDM through all active social identity providers.

Twitter social identity provider configuration details

You can set up the Twitter social identity provider through the admin UI or in a conf/identityProvider-twitter.json file. IDM
generates the identityProvider-twitter.json file when you configure and enable the Twitter social identity provider in the
admin UI. Alternatively, you can create that file manually.

The following table includes the information shown in the admin UI Twitter Provider pop-up window, along with associated
information in the identityProvider-twitter.json file.

Twitter social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Consumer Key clientId The client identifier for your Twitter App

Consumer Secret clientSecret Used with the Client ID to access the applicable Twitter API

Authorization Endpoint authorization

Endpoint

Typically https://api.twitter.com/oauth/authenticate ; known as
a Twitter Authorize URL

Access Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token; typically https://api.twitter.com/oauth/
access_token

User Info Endpoint userInfoEndpo

int

Access for other URIs; typically https://api.twitter.com/1.1/
account/verify_credentials.json

Request Token Endpoint requestTokenE

ndpoint

Endpoint that receives a one-time authorization code, and returns an
access token; typically https://api.twitter.com/oauth/
request_token

Not in the admin UI provider Name of the social identity provider

Not in the admin UI authenticatio

nIdKey

The user identity property, such as _id

Self-service reference PingIDM

1368 Copyright © 2025 Ping Identity Corporation

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

Vkontakte social identity provider

Set up Vkontakte

To set up Vkontakte as a social identity provider, navigate to the Vkontakte Developers Page. You’ll need a Vkontakte
account.

Click My Apps, and create an application with the following information:

Title (The name of your app)

Platform (Choose Website)

Site Address (The URL of your IDM deployment, such as http://openidm.example.com:8080/

Base domain (Example: example.com)

Authorized Redirect URI (Example: http://openidm.example.com:8080/)

API Version; for the current VKontakte API version, refer to VK Developers Documentation, API Versions. The
default VKontakte API version used for IDM 8.0 is 5.73.

Navigate to the Settings for your app, where you’ll find the Application ID and Secure Key. You’ll use that information as
shown here:

Vkontakte Application ID = IDM Client ID

Property (UI) Property
(JSON file)

Description

Not in the admin UI configClass Configuration class for the authentication module

Not in the admin UI basicAuth Whether to use basic authentication

Not in the admin UI propertyMap Mapping between Twitter and IDM

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

info
When you configure a Vkontakte app, look for an Application ID and a Secure Key. IDM uses this information as a
clientId and clientSecret , respectively.

Note

1.

2.

◦

◦

◦

◦

◦

◦

info
If you leave and need to return to Vkontakte, navigate to https://vk.com/dev and select My Apps. You can
then Manage the new apps that you’ve created.

Note

3.

◦

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1369

https://vk.com/dev
https://vk.com/dev
https://vk.com/dev/versions
https://vk.com/dev/versions
https://vk.com/dev
https://vk.com/dev

Vkontakte Secure Key = IDM Client Secret

Configure a Vkontakte social identity provider

To configure a Vkontakte social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable Vkontakte.

In the Vkontakte Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer
to Vkontakte Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-vkontakte.json file:

{
 "provider" : "vkontakte",
 "configClass" : "org.forgerock.oauth.clients.vk.VKClientConfiguration",
 "basicAuth" : false,
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "authorizationEndpoint" : "https://oauth.vk.com/authorize",
 "tokenEndpoint" : "https://oauth.vk.com/access_token",
 "userInfoEndpoint" : "https://api.vk.com/method/users.get",
 "redirectUri" : "http://openidm.example.com:8080/",
 "apiVersion" : "5.73",
 "scope" : [
 "email"
],
...

The file includes schema information, which includes properties for each social identity account, as collected by IDM, as well as
the order in which it appears in the admin UI. When you’ve registered a user with a Vkontakte social identity, you can verify this by
selecting Manage > Vkontakte, and then selecting a user.

Another part of the file includes a propertyMap , which maps user information entries between the source (social identity
provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix: Vkontakte Social Identity Provider
Configuration Details.

◦

1.

2.

3.

Self-service reference PingIDM

1370 Copyright © 2025 Ping Identity Corporation

Configure user registration to link to Vkontakte

Once you’ve configured the Vkontakte social identity provider, you can activate it through User Registration. To do so in the admin
UI, select Configure > User Registration, and activate that feature. Under the Social tab that appears, enable Social Registration.
For more information on IDM user self-service features, refer to Self-service end user UI.

When you enable Social Registration, you’re allowing users to register on IDM through all active social identity providers.

Vkontakte social identity provider configuration details

You can set up the Vkontakte social identity provider through the admin UI or in a conf/identityProvider-vkontakte.json file.
IDM generates the identityProvider-vkontakte.json file when you configure and enable this social identity provider in the
admin UI. Alternatively, you can create the file manually.

The following table includes the information shown in the admin UI Vkontakte Provider pop-up window, along with associated
information in the identityProvider-vkontakte.json file:

Vkontakte social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Application ID clientId The client identifier for your Vkontakte App

Secure Key clientSecret Used with the Client ID to access the applicable Vkontakte API

Scope scope An array of strings that allows access to user data.

Authorization Endpoint authorization

Endpoint

Typically https://oauth.vk.com/authorize .

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token; typically https://oauth.vk.com/access_token

User Info Endpoint userInfoEndpo

int

Endpoint that transmits scope-related fields; typically https://
api.vk.com/method/users.get

API Version apiVersion Version of the applicable VKontakte API, available from VK Developers
Documentation, API Versions section. The default VKontakte API
version used for IDM 8.0 is 5.73.

Not in the admin UI provider Name of the social identity provider

Not in the admin UI configClass Configuration class for the authentication module

Not in the admin UI basicAuth Whether to use basic authentication

Not in the admin UI authenticatio

nIdKey

The user identity property, such as id

Not in the admin UI propertyMap Mapping between Vkontakte and IDM

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1371

https://vk.com/dev/versions
https://vk.com/dev/versions
https://vk.com/dev/versions

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

WeChat social identity provider

These procedures assume that you have a WeChat developer account with access to create WeChat web application credentials.
To verify access, you’ll need the WeChat app on your mobile device.

Set up WeChat

To set up WeChat as a social identity provider, you’ll need to get the following information for your WeChat app. The name may
be different in WeChat.

Client ID (WeChat uses appid as of this writing.)

Client Secret (WeChat uses secret as of this writing.)

Scope

Authorization Endpoint URL

Token Endpoint URL

User Info Endpoint URL

Redirect URI, normally something like http://openidm.example.com/

WeChat unique requirements

Before testing WeChat, be prepared for the following special requirements:

WeChat works only if you deploy IDM on one of the following ports: 80 or 443.

For more information on how to configure IDM to use these ports, refer to Host and port information.

For registration and sign-in, WeChat requires the use of a mobile device with a QR code reader.

For sign-in, you’ll also need to install the WeChat app on your mobile device.

Configure a WeChat social identity provider

To configure a WeChat social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable WeChat.

In the WeChat Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer to
WeChat Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-wechat.json file:

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

Self-service reference PingIDM

1372 Copyright © 2025 Ping Identity Corporation

{
 "provider" : "wechat",
 ...
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "authorizationEndpoint" : "https://open.weixin.qq.com/connect/qrconnect",
 "tokenEndpoint" : "https://api.wechat.com/sns/oauth2/access_token",
 "refreshTokenEndpoint" : "https://api.wechat.com/sns/oauth2/refresh_token",
 "userInfoEndpoint" : "https://api.wechat.com/sns/userinfo",
 "redirectUri" : "http://openidm.example.com:8080/",
 "scope" : [
 "snsapi_login"
],
...

The file includes schema information, which includes properties for each social identity account, as collected by IDM, as well as
the order in which it appears in the admin UI. When you’ve registered a user with a WeChat social identity, you can verify this by
selecting Manage > WeChat, and then selecting a user.

Another part of the file includes a propertyMap , which maps user information entries between the source (social identity
provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix: WeChat Social Identity Provider
Configuration Details.

Configure user registration to link to WeChat

Once you’ve configured the WeChat social identity provider, you can activate it through User Registration. To do so in the admin
UI, select Configure > User Registration, and activate that feature. Under the Social tab that appears, enable Social Registration.
For more information on IDM user self-service features, refer to Self-service end user UI.

When you enable Social Registration, you’re allowing users to register on IDM through all active social identity providers.

WeChat social identity provider configuration details

You can set up the WeChat social identity provider through the admin UI or in a conf/identityProvider-wechat.json file. IDM
generates the identityProvider-wechat.json file when you configure and enable this social identity provider in the admin UI.
Alternatively, you can create the file manually.

The following table includes the information shown in the admin UI WeChat Provider pop-up window, along with associated
information in the identityProvider-wechat.json file.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1373

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

WordPress social identity provider

info
WeChat supports URLs on one of the following ports: 80 or 443. For more information on how to configure IDM to use
these ports, refer to Host and port information.

Note

WeChat social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Client ID clientId The client identifier for your WeChat App

Client Secret clientSecret Used with the Client ID to access the applicable WeChat API

Scope scope An array of strings that allows access to user data

Authorization Endpoint authorization

Endpoint

Typically https://open.weixin.qq.com/connect/qrconnect .

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token; typically https://api.wechat.com/sns/oauth2/
access_token

Refresh Token Endpoint refreshTokenE

ndpoint

Endpoint that receives a one-time authorization code, and returns a
refresh token; typically https://api.wechat.com/sns/oauth2/
refresh_token

User Info Endpoint userInfoEndpo

int

Endpoint that transmits scope-related fields; typically https://
api.wechat.com/user/profile

Not in the admin UI provider Name of the social identity provider

Not in the admin UI configClass Configuration class for the authentication module

Not in the admin UI basicAuth Whether to use basic authentication

Not in the admin UI propertyMap Mapping between WeChat and IDM

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

Self-service reference PingIDM

1374 Copyright © 2025 Ping Identity Corporation

Set up WordPress

To set up WordPress as a social identity provider, navigate to Developer Resources. You’ll need a WordPress account. You can
then navigate to the WordPress My Applications page, where you can create a new web application, with the following
information:

Name

Description

Website URL, which becomes your Application URL

Redirect URL(s); for IDM, normally http://openidm.example.com:8080/

Type, which allows you to select Web clients

When complete and saved, you should see a list of OAuth Information for your new web application. That information should
include your Client ID and Client Secret .

Configure a WordPress social identity provider

To configure a WordPress social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable WordPress.

In the WordPress Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer
to WordPress Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-wordpress.json file:

•

•

•

•

•

1.

2.

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1375

https://developer.wordpress.com/
https://developer.wordpress.com/
https://developer.wordpress.com/apps/
https://developer.wordpress.com/apps/

{
 "provider" : "wordpress",
 "authorizationEndpoint" : "https://public-api.wordpress.com/oauth2/authorize",
 "tokenEndpoint" : "https://public-api.wordpress.com/oauth2/token",
 "userInfoEndpoint" : "https://public-api.wordpress.com/rest/v1.1/me/",
 "enabled" : true,
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "scope" : [
 "auth"
],
...

The file includes schema information, which includes properties for each social identity account, as collected by IDM, as well as
the order in which it appears in the admin UI. When you’ve registered a user with a Wordpress social identity, you can verify this
by selecting Manage > Wordpress, and then selecting a user.

Another part of the file includes a propertyMap , which maps user information entries between the source (social identity
provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix: WordPress Social Identity Provider
Configuration Details.

Configure user registration to link to WordPress

Once you’ve configured the WordPress social identity provider, you can activate it through User Registration. To do so in the
admin UI, select Configure > User Registration, and activate that feature. Under the Social tab that appears, enable Social
Registration. For more information on IDM user self-service features, refer to Self-Service End User UI.

When you enable Social Registration, you’re allowing users to register on IDM through all active social identity providers.

WordPress social identity provider configuration details

You can set up the WordPress social identity provider through the admin UI or in a conf/identityProvider-wordpress.json
file. IDM generates the identityProvider-wordpress.json file when you configure and enable this social identity provider in the
admin UI. Alternatively, you can create the file manually.

The following table includes the information shown in the admin UI WordPress Provider pop-up window, along with associated
information in the identityProvider-wordpress.json file:

Self-service reference PingIDM

1376 Copyright © 2025 Ping Identity Corporation

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

Yahoo social identity provider

Set up Yahoo

To set up Yahoo as a social identity provider, navigate to the following page: Yahoo OAuth 2.0 Guide. You’ll need a Yahoo
account. You can then navigate to the Create an App page, where you can follow the Yahoo process to create a new web
application with the following information:

Application Name

Web Application

WordPress social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Client ID clientId The client identifier for your WordPress App

Client Secret clientSecret Used with the Client ID to access the applicable WordPress API

Scope scope An array of strings that allows access to user data; refer to WordPress’s
OAuth2 Authentication Documentation.

Authorization Endpoint authorization

Endpoint

Typically https://public-api.wordpress.com/oauth2/authorize ;
known as a WordPress Authorize URL.

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token; typically https://public-api.wordpress.com/oauth2/
token ; known as a WordPress Request Token URL.

User Info Endpoint userInfoEndpo

int

Endpoint that transmits scope-related fields; typically https://
public-api.wordpress.com/rest/v1.1/me/

Not in the admin UI name Name of the social identity provider

Not in the admin UI type Authentication module

Not in the admin UI authenticatio

nId

Authentication identifier, as returned from the User Info Endpoint for
each social identity provider

Not in the admin UI propertyMap Mapping between WordPress and IDM

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1377

https://developer.wordpress.com/docs/oauth2/
https://developer.wordpress.com/docs/oauth2/
https://developer.yahoo.com/oauth2/guide/
https://developer.yahoo.com/oauth2/guide/
https://developer.yahoo.com/apps/
https://developer.yahoo.com/apps/

Callback Domain, such as openidm.example.com ; required for IDM

API Permissions; for whatever you select, choose Read/Write. IDM only reads Yahoo user information.

When complete and saved, you should see a Client ID and Client Secret for your new web app.

Configure Yahoo as a social identity provider

To configure a Yahoo social identity provider using the admin UI:

From the navigation bar, click Configure > Social ID Providers.

On the Social Identity Providers page, enable Yahoo.

In the Yahoo Provider window, enter applicable values in the fields, and click Save. For a complete list of fields, refer to
Yahoo Social Identity Provider Configuration Details.

After you save the social identity provider configuration, IDM generates a conf/identityProvider-yahoo.json file:

{
 "provider" : "yahoo",
 "scope" : [
 "openid",
 "sdpp-w"
],
 "uiConfig" : {
 "iconBackground" : "#7B0099",
 "iconClass" : "fa-yahoo",
 "iconFontColor" : "white",
 "buttonClass" : "fa-yahoo",
 "buttonDisplayName" : "Yahoo",
 "buttonCustomStyle" : "background-color: #7B0099; border-color: #7B0099; color:white;",
 "buttonCustomStyleHover" : "background-color: #7B0099; border-color: #7B0099; color:white;"
 },

The next part of the file includes schema information, which includes properties for each social identity account, as collected by
IDM, as well as the order in which it appears in the admin UI. When you’ve registered a user with a Yahoo social identity, you can
verify this by selecting Manage > Yahoo, and then selecting a user.

Next, there’s the part of the file that you may have configured through the admin UI, plus additional information on the
redirectUri , the configClass , and the authenticationIdKey :

•

•

info
Yahoo supports URLs using only HTTPS, only on port 443. For more information on how to configure IDM to use these
ports, refer to Host and port information.

Note

1.

2.

3.

Self-service reference PingIDM

1378 Copyright © 2025 Ping Identity Corporation

 "authorizationEndpoint" : "https://api.login.yahoo.com/oauth2/request_auth",
 "tokenEndpoint" : "https://api.login.yahoo.com/oauth2/get_token",
 "wellKnownEndpoint" : "https://api.login.yahoo.com/.well-known/openid-configuration",
 "issuer" : "https://api.login.yahoo.com",
 "clientId" : "<Client_ID_Name>",
 "clientSecret" : {encrypted-client-secret},
 "authenticationIdKey" : "sub",
 "redirectUri" : "https://openidm.example.com/",
 "basicAuth" : false,
 "configClass" : "org.forgerock.oauth.clients.oidc.OpenIDConnectClientConfiguration",
 "enabled" : true

If you need more information about the properties in this file, refer to the following appendix: Yahoo Social Identity Provider
Configuration Details.

Configure user registration to link to Yahoo

Once you’ve configured the Yahoo social identity provider, you can activate it through User Registration. To do so in the admin UI,
select Configure > User Registration, and activate that feature. Under the Social tab that appears, enable Social Registration. For
more information on IDM user self-service features, refer to Self-service end user UI.

When you enable Social Registration, you’re allowing users to register on IDM through all active social identity providers.

Yahoo social identity provider configuration details

You can set up the Yahoo social identity provider through the admin UI or in a conf/identityProvider-yahoo.json file. IDM
generates the identityProvider-yahoo.json file when you configure and enable this social identity provider in the admin UI.
Alternatively, you can create the file manually.

The following table includes the information shown in the admin UI Yahoo Provider pop-up window, along with associated
information in the identityProvider-yahoo.json file.

info
Yahoo supports URLs using only HTTPS, only on port 443. For more information on how to configure IDM to use these
ports, refer to Host and port information.

Note

Yahoo social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Client ID clientId The client identifier for your Yahoo App.

Client Secret clientSecret Used with the Client ID to access the applicable Yahoo API.

Scope scope An array of strings that allows access to user data.

Authorization Endpoint authorization

Endpoint

Typically, https://api.login.yahoo.com/oauth2/request_auth ;
known as a Yahoo Authorize URL.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1379

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

Custom social identity provider

As suggested in the introduction to this chapter, you’ll need to take four basic steps to configure a custom social identity provider:

Prepare IDM

Set Up a Custom Social Identity Provider

Configure a Custom Social Identity Provider

Configure User Registration to Link to a Custom Provider

Custom Social Identity Provider Configuration Details

Prepare IDM

While IDM includes provisions to work with OpenID Connect 1.0 and OAuth 2.0 social identity providers, connections to those
providers are not supported, other than those specifically listed in this chapter. If you haven’t already, copy /path/to/openidm/
samples/example-configurations/self-service/identityProviders.json to your project’s conf/ directory.

Property (UI) Property
(JSON file)

Description

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token. Typically, https://api.login.yahoo.com/oauth2/
get_token .

Well-Known Endpoint wellKnownEndp

oint

Access for other URIs. Typically, https://login.yahoo.com/.well-
known/openid-configuration .

Issuer issuer The token issuer. Typically, https://api.login.yahoo.com .

Not in the admin UI provider Name of the social identity provider.

Not in the admin UI configClass Configuration class for the authentication module.

Not in the admin UI basicAuth Whether to use basic authentication.

Not in the admin UI propertyMap Mapping between Yahoo and IDM.

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

•

•

•

•

•

info
These instructions require the social identity provider to be fully compliant with The OAuth 2.0 Authorization
Framework or the OpenID Connect standards.

Note

Self-service reference PingIDM

1380 Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc6749.html
https://www.rfc-editor.org/rfc/rfc6749.html
https://www.rfc-editor.org/rfc/rfc6749.html
http://openid.net/connect/
http://openid.net/connect/

To set up another social provider, first add a code block to conf/identityProviders.json :

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1381

{
 "provider" : "<providerName>",
 "authorizationEndpoint" : "",
 "tokenEndpoint" : "",
 "userInfoEndpoint" : "",
 "wellKnownEndpoint" : "",
 "clientId" : "",
 "clientSecret" : "",
 "uiConfig" : {
 "iconBackground" : "",
 "iconClass" : "",
 "iconFontColor" : "",
 "buttonImage" : "",
 "buttonClass" : "",
 "buttonCustomStyle" : "",
 "buttonCustomStyleHover" : "",
 "buttonDisplayName" : ""
 },
 "scope" : [],
 "authenticationIdKey" : "",
 "schema" : {
 "id" : "urn:jsonschema:org:forgerock:openidm:identityProviders:api:<providerName>",
 "viewable" : true,
 "type" : "object",
 "$schema" : "http://json-schema.org/draft-03/schema",
 "properties" : {
 "id" : {
 "title" : "ID",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 },
 "name" : {
 "title" : "Name",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 },
 "first_name" : {
 "title" : "First Name",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 },
 "last_name" : {
 "title" : "Last Name",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 },
 "email" : {
 "title" : "Email Address",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 },
 "locale" : {
 "title" : "Locale Code",
 "viewable" : true,
 "type" : "string",

Self-service reference PingIDM

1382 Copyright © 2025 Ping Identity Corporation

 "searchable" : true
 }
 },
 "order" : [
 "id",
 "name",
 "first_name",
 "last_name",
 "email",
 "locale"
],
 "required" : []
 },
 "propertyMap" : [
 {
 "source" : "id",
 "target" : "id"
 },
 {
 "source" : "name",
 "target" : "displayName"
 },
 {
 "source" : "first_name",
 "target" : "givenName"
 },
 {
 "source" : "last_name",
 "target" : "familyName"
 },
 {
 "source" : "email",
 "target" : "email"
 },
 {
 "source" : "email",
 "target" : "username"
 },
 {
 "source" : "locale",
 "target" : "locale"
 }
],
 "redirectUri" : "http://openidm.example.com:8080/",
 "configClass" : "org.forgerock.oauth.clients.oidc.OpenIDConnectClientConfiguration",
 "basicAuth" : false,
 "enabled" : true
},

Modify this code block for your selected social provider. Some of these properties may appear under other names. For example,
some providers specify an App ID that you’d include as a clientId .

Additional changes may be required, especially depending on how the provider implements the OAuth2 or OpenID Connect
standards.

In the propertyMap code block, you should substitute the properties from the selected social identity provider for various values
of source . Make sure to trace the property mapping through selfservice.propertymap.json to the Managed User property
shown in managed.json . For more information on this multi-step mapping, refer to Many social identity providers, one schema.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1383

As shown in OpenID connect authorization code flow, user provisioning information goes through the User Info Endpoint. Some
providers, such as LinkedIn and Facebook, may require a list of properties with the endpoint. Consult the documentation for your
provider for details.

For more information on the uiConfig code block, refer to Social identity provider button and badge properties.

Both files, identityProviders.json and identityProvider-custom.json , should include the same information for the new
custom identity provider. For property details, refer to Custom Social Identity Provider Configuration Details.

Once you’ve included information from your selected social identity provider, proceed with the configuration process. You’ll use
the same basic steps described for other specified social providers.

Set up a custom social identity provider

Every social identity provider should be able to provide the information you need to specify properties in the code block shown in
Prepare IDM.

In general, you’ll need an authorizationEndpoint , a tokenEndpoint and a userInfoEndpoint . To link to the custom provider,
you’ll also have to copy the clientId and clientSecret that you created with that provider. In some cases, you’ll get this
information in a slightly different format, such as an App ID and App Secret .

For the propertyMap , check the source properties. You may need to revise these properties to match those available from your
custom provider.

For examples, refer to the specific social identity providers documented in this chapter.

Configure a custom social identity provider

To configure a custom social identity provider, log in to the admin UI and navigate to Configure > Social ID Providers.

Enable the custom social identity provider. The name you refer to is based on the name property in the relevant code
block in the identityProviders.json file.

If you haven’t already done so, include the values provided by your social identity provider for the properties shown. For
more information, refer to the following appendix: Custom Social Identity Provider Configuration Details.

Configure user registration to link to a custom provider

Once you’ve configured a custom social identity provider, you can activate it through User Registration. To do so in the admin UI,
select Configure > User Registration, and under the Social tab, enable the option associated with Social Registration. For more
information about user self-service features, refer to IDM user interface.

When you enable social identity providers, you’re allowing users to register on IDM through all active social identity providers.

Custom social identity provider configuration details

When you set up a custom social identity provider, starting with Prepare IDM, you’ll refer to configuration details in your conf/
identityProviders.json file. The following table includes the information shown in the relevant admin UI pop-up window.

IDM generates the content of identityProvider-custom.json after you configure and enable the custom social identity
provider using the admin UI. Before you can activate this feature in the admin UI, copy /path/to/openidm/samples/example-
configurations/self-service/identityProviders.json to your project’s conf/ directory. You can also manually create this
file.

1.

2.

3.

Self-service reference PingIDM

1384 Copyright © 2025 Ping Identity Corporation

For information on social identity provider buttons and badges, refer to Social identity provider button and badge properties.

Social providers authentication module

The SOCIAL_PROVIDERS authentication module incorporates the requirements from social identity providers who rely on either
the OAuth2 or OpenID Connect standards. The Social Providers authentication module is disabled by default. To configure or
enable this module in the admin UI, select Configure > Authentication, choose the Modules tab, then select Social Providers
from the list of modules.

Authentication settings can be configured from the admin UI.

The authentication properties are described in detail in Authentication and session module configuration.

Custom social identity provider configuration properties

Property (UI) Property
(JSON file)

Description

Client ID clientId The client identifier for your social identity provider

Client Secret clientSecret Used with the Client ID

Scope scope An array of strings that allows access to user data; varies by provider.

Authorization Endpoint authorization

Endpoint

Every social identity provider should have an authorization endpoint to
authenticate end users.

Token Endpoint tokenEndpoin

t

Endpoint that receives a one-time authorization code, and returns an
access token.

User Info Endpoint userInfoEndpo

int

Endpoint that transmits scope-related fields.

Not in the admin UI name Name of the social identity provider

Not in the admin UI type Authentication module

Not in the admin UI authenticatio

nId

Authentication identifier, as returned from the User Info Endpoint for
each social identity provider

Not in the admin UI propertyMap Mapping between the social identity provider and IDM

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1385

Account claiming: links between accounts and social identity providers

If your users have one or more social identity providers, they can link them to the same IDM user account. This section assumes
that you have configured one or more of the social identity providers described in Social registration.

Conversely, you should not be able to link more than one IDM account with a single social identity provider account.

When social accounts are associated with an IDM account, IDM creates a managed record, which uses the name of the social
identity provider name as the managed object type, and the subject is used as the _id . This combination has a unique
constraint; if you try to associate a second IDM account with the same social account, IDM detects a conflict, which prevents the
association.

The default process uses the email address associated with the account. Once you’ve configured social identity providers, you can
see this filter in the selfservice-socialUserClaim.json file:

{
 "name" : "socialUserClaim",
 "identityServiceUrl" : "managed/user",
 "claimQueryFilter" : "/mail eq \"{{mail}}\""
},

You can modify the claimQueryFilter to a different property such as telephoneNumber . Make sure that property is:

Set to "required" in the managed.json file; the default list for managed users is shown here:

"required" : [
 "userName",
 "givenName",
 "sn",
 "mail"
]

Unique; for example, if multiple users have the same telephone number, IDM responds with error messages shown in
When Multiple Users have the Same Email Address.

Based on the claimQueryFilter , what IDM does depends on the following scenarios:

When the Email Address is New

When One User has the Same Email Address

When Multiple Users have the Same Email Address

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

•

•

•

•

•

Self-service reference PingIDM

1386 Copyright © 2025 Ping Identity Corporation

When the email address is new

When you register with a social identity provider, IDM checks the email address of that account against the managed user data
store.

If that email address doesn’t exist for any IDM managed user, IDM takes available identifying information, and pre-populates the
self-registration screen. If all required information is included, IDM proceeds to other screens, depending on what you’ve
activated in this section: Additional configuration.

When one user has the same email address

When you register with a social identity provider, IDM checks the email address of that account against the managed user data
store.

If that email address exists for one IDM managed user, IDM gives you a chance to link to that account, with the following message:

We found an existing account with the same email address <substitute email address>. To continue, please
enter your password to link accounts.

In the text box, users are expected to enter their IDM account password.

When multiple users have the same email address

When you register with a social identity provider, IDM checks the email address of that account against the managed user data
store.

If that email address exists for multiple IDM managed users, IDM denies the login attempt, with the following error message:

Unable to authenticate using login provider

IDM denies further attempts to login with that account with the following message:

Forbidden request error

For information about customizing the End User UI, refer to the Github repository: ForgeRock/end-user-ui.

The process for end users

When your users register with a social identity provider, as defined in Social registration, they create an account in the IDM
managed user data store. As an end user, you can link additional social identity providers to that data store, from the End User
UI:

Navigate to the End User UI. For example, http://idm.example.com:8080 .

Log in to the account, either as an IDM user, or with a social identity provider.

Navigate to Profile > Social Sign-in.

The list of configured social identity providers displays.

1.

2.

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1387

https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui

Connect to the social identity providers of your choice. Unless you’ve already signed in with that social provider, you are
prompted to log in to that provider.

To test the result, log out and log back in, using the link for the newly linked social identity provider.

Reviewing linked accounts as an administrator

You can review social identity accounts linked to an IDM account, from the admin UI and from the command line. You can disable
or delete social identity provider information for a specific user from the command line, as described in Reviewing Linked
Accounts Over REST.

When you activate a social identity provider, IDM creates a new managed object for that provider. You can review that managed
object in the managed.json file, as well as in the admin UI, by selecting Configure > Managed Objects.

The information shown is reflected in the schema in the identityProvider-providername.json file for the selected provider.

Reviewing linked accounts over REST

To identify linked social identity provider accounts for a user, you must specifically add the idps field to your user query. For
example, the following query shows bjensen’s linked social identity information:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+'bjensen'&_fields=idps"
{
 "result": [
 {
 "_id": "bjensen",
 "_rev": "000000003062291c",
 "idps": [
 {
 "_ref": "managed/google/108246554379618660085",
 "_refResourceCollection": "managed/google",
 "_refResourceId": "108246554379618660085",
 "_refProperties": {
 "_id": "ba01a4c3-8a7f-468b-8b09-95f5d34f05ea",
 "_rev": "0000000098619792"
 }
 }
]
 }
],
 ...
}

4.

5.

info
Do not edit social identity provider profile information in IDM. Any changes won’t be synchronized with the provider.

Note

Self-service reference PingIDM

1388 Copyright © 2025 Ping Identity Corporation

For more information about a specific social identity provider, query the identity relationship using the referred resource ID. The
following example shows the information collected from the Google provider for bjensen:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/google/108246554379618660085"
{
 "_id": "108246554379618660085",
 "_rev": "00000000e5cace4d",
 "sub": "108246554379618660085",
 "name": "Barbara Jensen",
 "given_name": "Barbara",
 "family_name": "Jensen",
 "picture": "https://lh3.googleusercontent.com/-XdUIqdMkCWA/AAAAAAAAAAI/AAAAAAAAAAA/4252rscbv5M/
photo.jpg",
 "email": "babs.jensen@gmail.com",
 "email_verified": true,
 "locale": "en",
 "_meta": {
 "subject": "108246554379618660085",
 "scope": [
 "openid",
 "profile",
 "email"
],
 "dateCollected": "2018-03-08T02:07:27.882"
 }
}

When a user disables logins through one specific social identity provider in the End User UI, that sets "enabled" : false in the
data for that provider. However, that user’s social identity information is preserved.

Alternatively, you can use a REST call to disable logins to a specific social identity provider. The following REST call removes a
user’s ability to log in through Google:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-type: application/json" \
--request POST \
"http://localhost:8080/openidm/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb?
_action=unbind&provider=google"

In this case, the REST call deletes all Google social identity provider information for that user.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1389

Reviewing linked accounts from the admin UI

When you configure a social identity provider, IDM includes two features in the admin UI.

The ability to review the social identity accounts linked to specific users. To refer to how this works, log in to the admin UI,
and select Manage > User, and select a user. Under the Identity Providers tab, you can review the social identity providers
associated with a specific account.

A managed object for each provider. For example, if you’ve enabled Google as a social identity provider, select Manage >
Google. On the Google List page, you can select the ID for any Google social identity account that has been used or linked
to an existing IDM account, and review the profile information shared from the provider.

Social identity providers over REST

You can identify the current status of configured social identity providers with the following REST call:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/authentication'

The output that you refer to includes JSON information from each configured social identity provider, as described in the
identityProvider-provider file in your project’s conf/ subdirectory.

One key line from this output specifies whether the social identity provider is enabled:

"enabled" : true

If the SOCIAL_PROVIDERS authentication module is disabled, you’ll refer to the following output from that REST call:

{
 "providers" : []
}

For more information, refer to Social providers authentication module.

If the SOCIAL_PROVIDERS module is disabled, you can still review the standard configuration of each social provider (enabled or
not) by running the same REST call on a different endpoint (do not forget the s at the end of identityProviders):

•

•

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

Self-service reference PingIDM

1390 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/identityProviders'

You can still get information about the available configuration for social identity providers on a slightly different endpoint:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/config/identityProviders'

The config in the endpoint refers to the configuration, starting with the identityProviders.json configuration file. Note how
it matches the corresponding term in the endpoint.

You can review information for a specific provider by including the name with the endpoint. For example, if you’ve configured
LinkedIn as described in LinkedIn social identity provider, run the following command:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/config/identityProvider/linkedIn'

The above command differs in subtle ways. The config in the endpoint points to configuration data. The identityProvider at
the end of the endpoint is singular, which matches the corresponding configuration file, identityProvider-linkedIn.json . And
linkedIn includes a capital I in the middle of the word.

In a similar fashion, you can delete a specific provider:

info
If you have not configured a social identity provider, you’ll refer to the following output from the REST call on the
openidm/identityProviders endpoint:

{
"providers" : []
}

Note

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1391

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
'http://localhost:8080/openidm/config/identityProvider/linkedIn'

If you have the information needed to set up a provider, such as the output from the previous two REST calls, you can use the
following command to add a provider:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
 --header "Accept-API-Version: resource=1.0" \
 --header "Content-type: application/json" \
 --request PUT \
--data '{
 <Include content from an identityProvider-linkedIn.json file>
}' \
'http://localhost:8080/openidm/config/identityProvider/linkedIn'

IDM incorporates the given information in a file named for the provider, in this case, identityProvider-linkedIn.json .

You can even disable a social identity provider with a PATCH REST call, as shown:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-type: application/json" \
--request PATCH \
--data '[
 {
 "operation":"replace",
 "field" : "enabled",
 "value" : false
 }
]' \
'http://localhost:8080/openidm/config/identityProvider/linkedIn'

You can reverse the process by substituting true for false in the previous PATCH REST call.

You can manage the social identity providers associated with individual users over REST, as described in Social identity providers
over REST.

Self-service reference PingIDM

1392 Copyright © 2025 Ping Identity Corporation

Test social identity providers

Once social identity provider configuration is complete, you should test the provider:

Navigate to the login screen for the End User UI, https://openidm.example.com:8443 .

Click Register on the login page.

Click the applicable link to sign in with the selected social identity provider.

Follow the prompts from your social identity provider to log in to your account.

Because security questions are enabled by default, you must add at least one security question and answer to proceed.
For more information, refer to Security questions.

When the Social ID registration process is complete, you are redirected to the End User UI at https://
openidm.example.com:8443 .

You should now be able to use the sign in link for your social identity provider.

Social registration scenarios

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

1.

2.

3.

info
If you do not refer to a link to sign in with any social identity provider, make sure that Social Registration is
enabled. In the admin UI, select Configure > User Registration.

Note

warning
If you refer to a redirect URI error from a social identity provider, check the configuration for your web
application in the social identity provider developer console. There may be a mistake in the redirect URI or
redirect URL.

Warning

4.

info
If there is a problem with the interface to the social identity provider, you might refer to a Register Your
Account screen with information acquired from that provider.

Note

5.

6.

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1393

When users connect to IDM with a social identity provider, it could be the first time they’re connecting to your system. They could
already have an regular IDM account. They could already have registered with a different social identity provider. This section
describes what happens during the self-registration process. The process varies depending on whether there’s an existing
account in the IDM managed user store.

Figure 1. The flow varies slightly if the user already exists in IDM.

The following list describes each item in the flow shown in the adjacent figure:

From the IDM End User UI, the user selects the Register link

The self-registration Interface returns a Register Your Account page at {hostname}/#/registration with a list of
configured providers.

The user then selects one configured social identity provider.

IDM connects to the selected social identity provider.

The social identity provider requests end user authentication.

The end user authenticates with the social identity provider.

The social identity provider prompts the user to accept sharing selected account information.

The user accepts the conditions presented by the social identity provider.

The social identity provider notifies IDM of the user registration request.

IDM passes responsibility to the administrative interface.

IDM uses the email address from the social identity provider, and compares it with email addresses of existing managed
users.

If the email address is found, IDM links the social identity information to that account (and skips to step 16).

IDM returns to the self-registration (Self-Service) interface.

The self-registration interface prompts the user for additional information, such as security questions, and reCAPTCHA, if
configured per Google reCAPTCHA.

The user responds appropriately.

IDM creates a new managed user. If the user has already been created, IDM reviews data from the social identity provider,
and updates the user data for the managed/provider to conform. In this case, the provider is a social identity provider such
as Google.

The user is redirected to the Success URL .

Social identity widgets

The flow varies slightly if the user already exists in IDM.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

Self-service reference PingIDM

1394 Copyright © 2025 Ping Identity Corporation

The admin UI includes widgets that can help you measure the success of your social identity efforts. To add these widgets, take
the following steps:

Log in to the admin UI.

From the navigation bar, click Dashboards, and select a dashboard.

For more information about managing dashboards in the UI, refer to Manage dashboards.

Click Add Widget.

In the Add Widget window, scroll down to the Social item, and select one of the following graphical widgets:

Social Registration (year)

Daily Social Registration

Daily Social Logins

A preview of the widget displays. Your IDM system must contain some social data to display the preview correctly.

Click Settings to configure the widget.

The following example shows daily social registrations:

1.

2.

3.

4.

◦

◦

◦

5.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1395

Social identity provider button and badge properties

You can configure buttons and badges for each social identity provider, using the admin UI or by editing the associated
identityProvider-name.json file. The admin UI displays examples during social identity provider configuration.

Badges appear in the admin UI under Configure > Social ID Providers , and in the End User UI under My Account > Sign-in &
Security > Social Sign-in.

Buttons appear in the IDM login screens, and when you select Register from the End User UI login screen.

How IDM displays buttons and badges changes based on how many social identity providers are enabled:

For up to three social identity providers, IDM displays large buttons, with the text Register with Provider.

For four or more social identity providers, IDM displays smaller buttons with icons.

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

Example Button Example Badges

•

•

info
For seven or more social identity providers, horizontal scrolling may be required.

Note

Properties for Social Identity Provider Buttons and Badges

Property (UI) Property
(JSON file)

Description

Badge background color iconBackgroun

d

Color for the social identity provider icon.

Badge icon classname iconClass Name of the icon class. Can be a Font Awesome name like fa-google .

Badge font color iconFontColo

r

Color for the social identity provider icon font.

Button image path buttonImage Looks in openidm/ui/admin/extension and then openidm/ui/admin/
default for an image file. Takes precedence over the Button icon
classname.

Button icon classname buttonClass Name for the social identity provider class. Can be a Font Awesome
name like fa-yahoo .

Self-service reference PingIDM

1396 Copyright © 2025 Ping Identity Corporation

Progressive profile

Progressive profile completion lets you gather profile attributes asynchronously to enrich your users' profile data, and enhance
engagement with your customer base. Profile completion requires the creation of one or more forms to collect user data.

IDM implements progressive profile completion as a default self-service process. You can use this process as an example of how
to build additional functionality into a custom client application, using the Self-Service REST API.

After activating Self-registration, users need only the following information to register:

User name

First name

Last name

Email address

Progressive profile completion lets you collect additional information, limited by the attributes defined in the managed.json file
for your project.

In the following sections, you’ll examine how you use progressive profile completion to ask or require more information from
users. You’re limited only by what properties are defined in your project’s managed.json file.

Progressive profile completion form

Property (UI) Property
(JSON file)

Description

Button display name buttonDisplay

Name

Name to display on large buttons.

Button styles buttonCustomS

tyle

Custom styles, such as background-color: #7B0099; border-color:
#7B0099; color:white; .

Button hover styles buttonCustomS

tyleHover

Custom styles for the hover state of a button, such as background-
color: #7B0099; border-color: #7B0099; color: white; .

emergency_home
Progressive profiling is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

•

•

•

•

emergency_home
Progressive profiling is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1397

If you’re testing progressive profile completion, you can start from the selfservice-profile.json file in the following directory:
openidm/samples/example-configurations/self-service/

Copy this file to your project’s conf/ directory and start IDM. After the conditions shown in this configuration file are met, end
users will refer to a form prompting them to add a telephone number.

{
 "stageConfigs" : [
 {
 "name" : "conditionaluser",
 "identityServiceUrl" : "managed/user",
 "condition" : {
 "type" : "loginCount",
 "interval" : "at",
 "amount" : 25
 },
 "evaluateConditionOnField" : "user",
 "onConditionTrue" : {
 "name" : "attributecollection",
 "identityServiceUrl" : "managed/user",
 "uiConfig" : {
 "displayName" : "Add your telephone number",
 "purpose" : "Help us verify your identity",
 "buttonText" : "Save"
 },
 "attributes" : [
 {
 "name" : "telephoneNumber",
 "isRequired" : true
 }
]
 }
 }
]
}

The following table includes a detailed list of each property shown in this file:

The selfservice-profile.jsonFile

Property Description

stageConfigs Progressive profile completion is a stage of user self-service.

name conditionaluser sets up conditions for end users.

identityServiceUrl managed/user specifies IDM Managed Users.

condition Condition when to display the form.

type Type of condition ; for a list of conditions, refer to Progressive Profile Completion
Conditions.

evaluateConditionOnField IDM evaluates the condition, per user .

Self-service reference PingIDM

1398 Copyright © 2025 Ping Identity Corporation

The default progressive profile completion process involves two mandatory stages:

Conditional User Stage

Attribute collection stage

With the previous configuration, users logging in to the End User UI must submit a telephone number on the 25th login.

Progressive profile completion conditions

You can set up a number of different conditions for when users are prompted to add information to their profiles. IDM includes
the following pre-defined criteria:

loginCount

May specify at or every number of logins, as defined by the following value: amount .

timeSince

May specify a time since the user was created, the createDate , in years , months , weeks , days , hours , and minutes .

profileCompleteness

Based on the number of items completed by the user from managed.json , in percent, as defined by percentLessThan ;
for more information, refer to Defining Overall Profile Completion.

Property Description

onConditionTrue Presents the form with the following properties.

name Data that you collect with the form is an attributeCollection .

uiConfig Labels to include the in the form seen by the end user.

displayName Form title.

purpose Form explanation.

buttonText Customizable.

attributes Attribute name from managed.json .

isRequired If an end user has to enter data to complete a connection to IDM.

•

•

info
End users can bypass progressive profile completion screens, when configured with a loginCount. Every time
they refer to such a request, they can open a new browser window to bypass that request, and log in to the
End User UI. They won’t have to provide the information requested, even if you’ve set the attribute as Required
under the Attributes tab.

Note

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1399

propertyValue

Based on the value of a specific user entry, such as postalAddress , which can be defined by Presence Expressions.

Custom progressive profile conditions

You can also set up custom conditions with query filters and scripts. These criteria may deviate from standard query filters
described in Construct Queries and standard scripted conditions described in Add Conditional Policy Definitions.

A queryFilter. For example, the following query filter checks user information for users who live in the city of Portland:

"condition" : {
 "type" : "queryFilter",
 "filter" : "/city eq \"Portland\""
 },

In addition, you can also reference metadata, as described in Track User Metadata. For example, the following query filter
searches for users with:

A loginCount greater than or equal to five.

Does not have a telephone number:

"filter" : "(/_meta/loginCount ge 5 and !(/telephoneNumber pr))"

An inline script (scripted), or a reference to a script file; IDM works with scripts written in either JavaScript or Groovy. For
example, you could set up a script here:

"condition" : {
 "type" : "scripted",
 "script" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "<some script code>"
 },

Alternatively, you could point to some JavaScript or Groovy file:

•

◦

◦

warning
If you include _meta in query filters, the admin UI will not work for the subject progressive profiling
form.
While it’s technically possible to include a number like 5 in the admin UI with the query filter, IDM
would write the number as a string to the selfservice-profile.json file. You’d still have to change
that number directly in the noted file.

Warning

•

Self-service reference PingIDM

1400 Copyright © 2025 Ping Identity Corporation

"condition" : {
 "type" : "scripted",
 "script" : {
 "type" : "text/javascript",
 "globals" : { },
 "file" : "path/to/someScript.js"
 },

For the script code, you’ll need to reference fields directly, and not by object.field . For example, the following code
would test for the presence of a telephone number:

typeof telephoneNumber === 'undefined' || telephoneNumber === ''

While you can also reference metadata for scripts, you can’t check for all available fields, as there is no outer object field.
However, you can see fields that are part of the user object.

Configuring progressive profile completion through the admin UI

The UI is straightforward; in the admin UI, when you select Configure > Progressive Profile, you’ll add a New Form, with:

Attributes defined in managed.json .

Conditions that may be based on a query filter, a script, or pre-defined criteria such as number of logins.

What you configure in the admin UI is written to the selfservice-profile.json file. The information under the following admin
UI Progressive Profile Completion page tabs is written to the following code blocks in that file:

Details: uiConfig

Display Condition: condition

Attributes: attributes

The auth.profile.json file

•

•

•

•

•

warning
When you use the UI, you must specify a property under the Attributes tab. Otherwise, IDM won’t display a
Progressive Profile form. To specify a property, select Configure > Progressive Profile. Select a Progressive Profile form
> Attributes tab > Add a Property. Be sure to select an Attribute Name based on user properties configured in the
managed.json file.

Warning

emergency_home
Progressive profiling is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1401

In some circumstances, you may wish to create a temporary role for users who are in the middle of progressive profile
completion, such as if you wish to enable access to an endpoint, while prohibiting access to other parts of the End User UI (as well
as the rest of IDM).

To do this, you may optionally define an authenticationRole in auth.profile.json , which you can use as a role assignment in
access.json or elsewhere.

For example, if you wished to assign access to a custom endpoint for users who have incomplete profiles, you could modify
auth.profile.json to include a custom authenticationRole called incomplete-profile :

{
 "profileEnhancementProcesses": [
 "selfservice/termsAndConditions",
 "selfservice/kbaUpdate",
 "selfservice/profile"
],
 "authenticationRole": "incomplete-profile",
 "authorizationRole": "internal/role/openidm-authorized"
}

You could then give access to this role to your custom endpoint in access.json :

{
 "pattern" : "endpoint/extra-steps",
 "roles" : "incomplete-profile",
 "methods" : "read",
 ...
},

Access for these and other roles is governed by the access.json script. For more information, refer to Configure Access Control
in access.json.

The role specified in authenticationRole can be an existing role, or it can be a placeholder string. If it is a placeholder, it will not
function as a real role, but can still be used for access in access.json , and will appear in access and authentication log files in
the openidim/audit directory.

Progressive profile completion and metadata

info
To use auth.profile.json , copy the file from /path/to/openidm/samples/example-configurations/self-
service/ to your project’s conf/ directory.

Note

emergency_home
Progressive profiling is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

Self-service reference PingIDM

1402 Copyright © 2025 Ping Identity Corporation

Progressive profile completion requires that you track object metadata. Configure tracking of the following data:

createDate : The date the user was created; used in the onCreateUser.js script in the openidm/bin/defaults/script
directory.

loginCount : The number of logins, by user.

stagesCompleted : Used to track progressive profile forms, and whether they’ve been completed, by user.

User acceptance of Terms & Conditions is tracked by default (see Terms & Conditions).

Defining overall profile completion

A user profile is based on every item in managed.json where both viewable and userEditable are set to true . Every
qualifying item has equal weight.

So, if there are 20 qualifying items in managed.json , a user who has entries for 10 items has a Profile completion percentage of 50.

Progressive profile REST requests

The following REST requests and responses demonstrate the flow through a profile completion process, given the previous
configuration:

Client attempts a login for the 25th time:

•

•

•

emergency_home
Progressive profiling is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

1.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1403

curl \
 --header "X-OpenIDM-Username: bjensen" \
 --header "X-OpenIDM-Password: Passw0rd" \
 --header "X-OpenIDM-NoSession: false" \
 --request POST \
 "https://localhost:8443/openidm/authentication?_action=login"
{
 "_id": "login",
 "authorization": {
 "userRolesProperty": "authzRoles",
 "processesRequired": true,
 "component": "managed/user",
 "authLogin": true,
 "authenticationIdProperty": "username",
 "roles": [],
 "ipAddress": "0:0:0:0:0:0:0:1",
 "protectedAttributeList": ["password"],
 "requiredProfileProcesses": ["selfservice/profile"],
 "id": "51c6c46d-3d7b-4671-8295-0c8ee39e8549",
 "moduleId": "MANAGED_USER",
 "queryId": "credential-query"
 },
 "authenticationId": "bjensen"
}

Server sends a GET request to the profile endpoint and returns "type": "conditionaluser" and "tag": "initial"
to start the profile completion process:

info
The values of the requiredProfileProcesses and roles properties in the returned output trigger the
remainder of the process. If requiredProfileProcesses is present and not empty, there are processes that
must be completed. Ultimately, the process must return a full access role (such as internal/role/openidm-
authorized) and continue to the user profile page.

Note

2.

Self-service reference PingIDM

1404 Copyright © 2025 Ping Identity Corporation

curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --request GET \
 "https://localhost:8443/openidm/selfservice/profile"
{

"_id": "1",
"_rev": "991096945",
"type": "conditionaluser",
"tag": "initial",
"requirements": {

"$schema": "http://json-schema.org/draft-04/schema#",
"description": "Attribute Details",
"type": "object",
"properties": {},
"attributes": [{

"name": "telephoneNumber",
"isRequired": true,
"schema": {

"type": "string",
"title": "Telephone Number",
"description": "Telephone Number",
"viewable": true,
"userEditable": true,
"pattern": "^\\+?([0-9\\- \\(\\)])*$",
"usageDescription": "",
"isPersonal": true

},
"value": null

}],
"uiConfig": {

"displayName": "Add your telephone number",
"purpose": "Help us verify your identity",
"buttonText": "Save"

}
}

}

Client submits requirements, in this case, the required profile field. Server response includes "tag": "end" and
"success": true to signal the end of the profile process:

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1405

curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --request POST \
 --data '{
 "input":{
 "attributes":{
 "telephoneNumber":"555-555-1234"
 }
 }
 }'
 "https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{

"type": "conditionaluser",
"tag": "end",
"status": {

"success": true
},
"additions": {}

}

Viewing profile completeness

You can view how complete a profile is, presented as the percentage of user-editable attributes that have been filled out on a
profile. To do so, send a REST call to the selfservice/profile/completeness endpoint:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
"http://localhost:8080/openidm/selfservice/profile/completeness/managed/user/3a8cabef-
d4a3-4f60-926a-52f27257bde6"
{
 "_id": "managed/user/3a8cabef-d4a3-4f60-926a-52f27257bde6",
 "_rev": "00000000c38d9344",
 "completeness": 42.857143
}

Password reset

IDM supports self-service user password reset. When enabled, users who forget their passwords can log in to the IDM End User
UI, and can verify their identities with options such as email validation and security questions.

You can also generate random passwords when you create users. For more information, refer to Generate random passwords.

Password reset lets registered users reset their own passwords. The following stages can be included in a password reset
process:

Captcha stage (optional)

User query stage (mandatory)

•

•

Self-service reference PingIDM

1406 Copyright © 2025 Ping Identity Corporation

Email validation stage (optional)

KBA security answer verification stage (optional)

Password reset stage (mandatory)

If all of these stages are configured, the password reset configuration (in conf/selfservice-profile.json looks similar to the
following:

•

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1407

{
 "stageConfigs" : [
 {
 "name" : "captcha",
 "recaptchaSiteKey" : "...",
 "recaptchaSecretKey" : "...",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
 },
 {
 "name" : "userQuery",
 "validQueryFields" : [
 "userName",
 "mail",
 "givenName",
 "sn"
],
 "identityIdField" : "_id",
 "identityEmailField" : "mail",
 "identityUsernameField" : "userName",
 "identityServiceUrl" : "managed/user"
 },
 {
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@example.com",
 "subject" : "Reset password email",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Reset your password",
 "fr" : "Réinitialisez votre mot de passe"
 },
 "messageTranslations" : {
 "en" : "...Click to reset your password...",
 "fr" : "...Cliquez pour réinitialiser votre mot de passe..."
 },
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://localhost:8443/#/passwordreset/"
 },
 {
 "name" : "kbaSecurityAnswerVerificationStage",
 "kbaPropertyName" : "kbaInfo",
 "identityServiceUrl" : "managed/user",
 "kbaConfig" : null
 },
 {
 "name" : "resetStage",
 "identityServiceUrl" : "managed/user",
 "identityPasswordField" : "password"
 }
],
 "snapshotToken" : {
 "type" : "jwt",
 "jweAlgorithm" : "RSAES_PKCS1_V1_5",
 "encryptionMethod" : "A128CBC_HS256",

Self-service reference PingIDM

1408 Copyright © 2025 Ping Identity Corporation

 "jwsAlgorithm" : "HS256",
 "tokenExpiry" : "300"
 },
 "storage" : "stateless"
}

User password reset configuration files

To set up basic user password reset features, you’ll need at least the following configuration files:

selfservice-reset.json

You can find a template version of this file in the following directory: openidm/samples/example-configurations/self-
service .

ui-configuration.json

You can find this file in the default IDM project configuration directory, openidm/conf .

To set up self-service user password reset registration, enable the following boolean in ui-configuration.json :

"passwordReset" : true,

You can include several features with user password reset, as shown in the following excerpts of the selfservice-reset.json
file:

If you’ve activated Google reCAPTCHA for user self-service registration, you’ll refer to the following code block:

{
 "name" : "captcha",
 "recaptchaSiteKey" : "<siteKey>",
 "recaptchaSecretKey" : "<secretKey>",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},

As suggested by the code, you’d substitute the actual siteKey and secretKey assigned by Google for your domain. For
more information, refer to Google reCAPTCHA.

For password reset, IDM needs to verify user identities. To ensure that password reset links are sent to the right user,
include the following code block:

•

•

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1409

{
 "name" : "userQuery",
 "validQueryFields" : [
 "userName",
 "mail",
 "givenName",
 "sn"
],
 "identityIdField" : "_id",
 "identityEmailField" : "mail",
 "identityUsernameField" : "userName",
 "identityServiceUrl" : "managed/user"
},

This code lets IDM verify user identities by their username, email address, first name (givenName), or last name (sn , short
for surname).

If you have included email verification, you must configure an outgoing email server. For details about the required
addition to selfservice-registration.json , refer to Email for password reset.

If you’ve configured security questions, users who self-register will have to create questions and answers during the self-
registration process.

If the feature is enabled, users who’ve been reconciled from external data stores will also be prompted, once, upon their
next login, to add security questions and answers. The relevant code block is shown here, which points IDM to other
configuration files as discussed in links from this section.

{
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
},

Configuring password reset from the admin UI

To configure Password Reset from the admin UI, select Configure > Password Reset. When you activate Enable Password Reset,
you’ll refer to a Configure Password Reset Form that lets you specify the:

Identity Resource, typically managed/user

Advanced Options, Snapshot Token, typically a JSON Web Token (JWT)

Advanced Options, Token Lifetime, with a default of 300 seconds

You can also add these settings to the following configuration file: selfservice-reset.json . When you modify these settings in
the admin UI, IDM creates the file for you.

Email for password reset

To configure emails for password reset, you can add the following code block to the selfservice-reset.json file:

•

•

•

•

•

Self-service reference PingIDM

1410 Copyright © 2025 Ping Identity Corporation

{
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@example.com",
 "subject" : "Reset password email",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Reset your password",
 "fr" : "Réinitialisez votre mot de passe"
 },
 "messageTranslations" : {
 "en" : "<h3>Click to reset your password</h3><h4>Password reset link</h4>",
 "fr" : "<h3>Cliquez pour réinitialiser votre mot de passe</h3><h4>Mot de passe lien de
réinitialisation</h4>"
 },
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://localhost:8443/#/passwordreset/"
},

As suggested by the code block, it includes default password reset email messages in English (en) and French (fr). The
verificationLink sent with the email takes users to the IDM password reset URL.

As noted in Password reset REST requests, you can make these changes over the following endpoint URI: /openidm/config/
selfservice/reset

If desired, you can also configure self-service password reset emails through the admin UI. Select Configure > Password Reset. If
needed, activate the Enable Password Reset option, and in the Email Validation box, click the button. The Configure
Validation Email window displays.

When you use the admin UI to customize password reset emails, you can review the changes in the selfservice-reset.json
file.

Password reset REST requests

The following REST requests and responses demonstrate the flow through a simple password reset process. To keep the process
simple, this flow does not include the Google ReCAPTCHA stage, or the Security Answer Verification stage:

Client initiates the password reset,

The server returns the initial tag:

1.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1411

curl \
--request GET \
"https://localhost:8443/openidm/selfservice/reset"
{
 "type": "parameters",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Parameters",
 "type": "object",
 "properties": {
 "returnParams": {
 "description": "Parameter named 'returnParams'",
 "type": "string"
 }
 }
 }
}

Initial requirements submission with an empty payload.

The server returns requirements for the userQuery stage, and the JWT:

curl \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-Password: anonymous" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "input":{}
}' \
"https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{
 "type": "userQuery",
 "tag": "initial",
 "requirements": {
 "$schema": "http:\/\/json-schema.org\/draft-04\/schema#",
 "description": "Find your account",
 "type": "object",
 "required": [
 "queryFilter"
],
 "properties": {
 "queryFilter": {
 "description": "filter string to find account",
 "type": "string"
 }
 }
 },
 "token": "eyJ0e...FYkE"
}

2.

Self-service reference PingIDM

1412 Copyright © 2025 Ping Identity Corporation

The client provides the requirements for the userQuery stage, along with the JWT. The process progresses to the
emailValidation stage:

curl \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-Password: anonymous" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "token": "eyJ0e...FYkE",
 "input": {"queryFilter": "userName eq \"bjensen\""}
}' \
"https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{
 "type": "emailValidation",
 "tag": "validateCode",
 "requirements": {
 "$schema": "http:\/\/json-schema.org\/draft-04\/schema#",
 "description": "Verify emailed code",
 "type": "object",
 "required": [
 "code"
],
 "properties": {
 "code": {
 "description": "Enter code emailed",
 "type": "string"
 }
 }
 },
 "token": "eyJ0e...FYkE"
}

The server converts that requirement and token to a URL that is emailed.

The user receives an email with the password reset link.

Clicking the link sends another POST request to the emailValidation stage, along with the token, and a code :

curl \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-Password: anonymous" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/#/passwordreset/&token=eyJ0e...FYkE&code=code"

The process advances to the reset stage and returns its requirements.

After email validation, the client submits the new password. The process advances to the reset stage, updates the
managed object, and exits:

3.

4.

5.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1413

curl \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-Password: anonymous" \
--request POST \
--header "Content-Type: application/json" \
--data {
 "token": "eyJ0e...FYkE",
 "input": {
 "password": "Passw0rd"
 }
} \
"https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{
 "type": "resetStage",
 "tag": "end",
 "status": {
 "success": true
 },
 "additions": {
 }
}

Username retrieval

Username retrieval lets registered users retrieve a forgotten username, based on the provision of alternative information in the
user record, such as email address, last name, or given name. Depending on how this process is configured, the retrieved
username can be emailed to the user or displayed directly.

The REST requests in this section assume that the username is emailed to the user, and that the configuration is similar to that in
the example configuration file (samples/example-configurations/self-service/selfservice-username.json):

Self-service reference PingIDM

1414 Copyright © 2025 Ping Identity Corporation

{
 "stageConfigs" : [
 {
 "name" : "userQuery",
 "validQueryFields" : [
 "mail",
 "givenName",
 "sn"
],
 "identityIdField" : "_id",
 "identityEmailField" : "mail",
 "identityUsernameField" : "userName",
 "identityServiceUrl" : "managed/user"
 },
 {
 "name" : "emailUsername",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@admin.org",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Account Information - username"
 },
 "messageTranslations" : {
 "en" : "<h3>Username is:</h3>
%username%"
 },
 "usernameToken" : "%username%"
 },
 {
 "name" : "retrieveUsername"
 }
],
 "storage" : "stateless"
}

Username retrieval configuration

To set up basic forgotten username configuration, you’ll need at least the following configuration files:

selfservice-username.json

You can find a template version of this file in the following directory: openidm/samples/example-configurations/self-
service .

ui-configuration.json

You can find this file in the default IDM project configuration directory, openidm/conf .

To set up forgotten username retrieval, enable the following boolean in ui-configuration.json :

"forgotUsername" : true,

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1415

You can include several features with forgotten username retrieval, as shown in the following excerpts of the selfservice-
reset.json file:

If you’ve activated Google reCAPTCHA for forgotten username retrieval, you’ll refer to the following code block:

{
 "name" : "captcha",
 "recaptchaSiteKey" : "<siteKey>",
 "recaptchaSecretKey" : "<secretKey>",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},

As suggested by the code, you’d substitute actual siteKey and secretKey assigned by Google for your domain. For more
information, refer to Google reCAPTCHA.

For forgotten username retrieval, IDM needs to verify user identities. To ensure that usernames are sent to the right user,
include the following code block:

{
 "name" : "userQuery",
 "validQueryFields" : [
 "mail",
 "givenName",
 "sn"
],
 "identityIdField" : "_id",
 "identityEmailField" : "mail",
 "identityUsernameField" : "userName",
 "identityServiceUrl" : "managed/user"
},

This code allows IDM to verify user identities by their username, email address, first name (givenName), or last name (sn ,
short for surname).

If you have included email verification, you must configure an outgoing email server. For details about the required
addition to selfservice-registration.json , refer to Email for forgotten username.

The following code block, after confirming user identity, allows IDM to display the username:

{
 "name" : "retrieveUsername"
}

Configuring Forgotten Username Retrieval From the admin UI

To configure forgotten username retrieval using the admin UI, select Configure > Forgotten Username. When you activate
Enable Forgotten Username Retrieval, a Configure Forgotten Username Form window displays, and you can specify:

Identity Resource, typically managed/user .

Advanced Options, Snapshot Token, typically a JSON Web Token (JWT).

•

•

•

•

•

•

Self-service reference PingIDM

1416 Copyright © 2025 Ping Identity Corporation

Advanced Options, Token Lifetime, with a default of 300 seconds.

You can also add these settings to the selfservice-username.json configuration file. When you modify these settings in the
admin UI, IDM creates the file for you.

Email for forgotten username

To configure emails for forgotten username functionality, you can add the following code block to the selfservice-
username.json file:

{
 "name" : "emailUsername",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@example.com",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Account Information - username"
 },
 "messageTranslations" : {
 "en" : "<h3>Username is:</h3>
%username%"
 },
 "usernameToken" : "%username%"
},

As suggested by the code block, it includes default email messages in English (en), with a usernameToken that includes the actual
username in the message.

As noted in Username retrieval, you can make these changes over the following endpoint URI: /openidm/config/selfservice/
username

If desired, you can also configure forgotten username retrieval emails through the admin UI. Select Configure > Forgotten
Username, and click the button. The Configure Email Username window displays.

When you use the admin UI to customize forgotten username retrieval emails, you can review the changes in the selfservice-
username.json file.

Forgotten username REST requests

The following REST requests and responses demonstrate the flow through a forgotten username process:

Client initiates the username retrieval process. The server returns the initial set of requirements:

•

1.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1417

curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --header "X-OpenIDM-NoSession: true" \
 --request GET \
 "https://localhost:8443/openidm/selfservice/username"
{
 "_id":"1",
 "_rev":"959264722",
 "type":"userQuery",
 "tag":"initial",
 "requirements":{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "description":"Find your account",
 "type":"object",
 "required":[
 "queryFilter"
],
 "properties":{
 "queryFilter":{
 "description":"filter string to find account",
 "type":"string"
 }
 }
 }
}

Client submits the requirements, along with the token. Server returns the username and the end tag to indicate the end
of the process:

curl \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-Password: anonymous" \
--request POST \
--data '{
 "token": "eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVY...W5ywOcr8",
 {
 "input":{
 "queryFilter":"mail eq \"babs.k.jensen@gmail.com\""
 }
}' \
"https://localhost:8443/openidm/selfservice/username?_action=submitRequirements"
{
 "type":"retrieveUsername",
 "tag":"end",
 "status":{
 "success":true
 },
 "additions":{
 "userName":"bjensen"
 }
}

2.

Self-service reference PingIDM

1418 Copyright © 2025 Ping Identity Corporation

Additional configuration

This chapter describes additional configuration options for user self-service.

Additional Configuration Options

Email Notification

Configure Notification Emails.

Privacy & Consent

Configure Privacy and Consent.

UMA & Trusted Devices

Set Up User-Managed Access (UMA), Trusted
Devices, and Privacy.

Terms & Conditions

Configure Terms & Conditions.

User Self-Service Tokens

Tokens and User Self-Service.

End User UI Notifications

Configure End User UI Notifications.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1419

Notification emails

When you configure the outbound email service, IDM can use that service to notify users of significant events, primarily related to
user self-service. For specifics, refer to the following table for related notification emails:

reCAPTCHA

Configure Google reCAPTCHA.

Identity Fields

Configure Identity Field Associations.

Security Questions

Configure Security Questions (KBA).

Custom Policies

Add Custom Policies for Self-Registration and
Password Reset.

End User UI

Configure Self-Service End User UI.

Self-service reference PingIDM

1420 Copyright © 2025 Ping Identity Corporation

Each email template can specify an email address to use in the From field. If this field is left blank, IDM will default to the address
specified in Email Settings.

User self-registration email template

When a new user registers through the IDM self-registration interface (and if you have configured outbound email), that user will
get a welcome email as configured in the emailTemplate-welcome.json file:

{
 "enabled" : true,
 "from" : "",
 "subject" : {
 "en" : "Your account has been created"
 },
 "message" : {
 "en" : "<html><body><p>Welcome to OpenIDM. Your username is '{{object.userName}}'.</p></body></html>"
 },
 "defaultLocale" : "en"
}

Configuring Notification Emails

Situation Configuration File Details

When a user is successfully registered emailTemplate-welcome.json See User Self-Registration Email
Template

When a user asks for their forgotten username selfservice-username.json See Email for forgotten
username

When a user registers using self-service and needs
to verify their email address

selfservice-

registration.json

See Self-Service registration
emails

When a user asks for a password reset selfservice-reset.json See Email for password reset

info
Email templates utilize Handlebar expressions to reference object data dynamically. For example, to reference the
userName of an object:

{{object.userName}}

Note

info
Some email providers, such as Google, will override the From address you specify in the templates, and instead use
the address used to authenticate with the SMTP server. The email address specified in the template may still be
present, but in an email header hidden from most users, such as X-Google-Original-From .

Note

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1421

https://handlebarsjs.com/guide/
https://handlebarsjs.com/guide/

You may want to make the following changes:

Add an email address to the from property, perhaps an email address for your organization’s systems administrator.

Specify locale(s) in the defaultLocale property.

Note that locales specified as preferredLocales in the Accept-Language header take precedence over the
defaultLocale .

Modify the subject line as needed.

Include a welcome message appropriate to your organization.

Managing email templates using the admin UI

The admin UI includes tools that can help you customize email messages related to the administrative tasks:

Creating users

Resetting passwords

To configure these messages using the admin UI:

From the navigation bar, click Configure > Email Settings, and select the Templates tab.

IDM displays a list of email templates.

To configure an email template, click the adjacent edit button.

On the Email Template templateName page, make changes, and click Save.

•

•

•

•

•

•

1.

2.

3.

Self-service reference PingIDM

1422 Copyright © 2025 Ping Identity Corporation

Privacy and consent

As an end user, you might want to control what happens to your personal data. For IDM, that means control of how your data is
shared with external systems. The example in Marketo connector shows how you can generate a marketing leads database,
only for those users who have selected a specific preference. Also read Privacy and consent.

IDM allows you to regulate access to two different kinds of personal data:

User information: while marketers want user information such as addresses and telephone numbers, IDM allows you to let
individual users decide whether to share that data. For more information, refer to Regulating HTTP Access to Personal
Data.

Account information: by default, IDM prevents REST-based access to passwords with the private scope, as defined in the
managed.json file. You can extend this protection to other properties. For more information, refer to Restricting HTTP
Access to Sensitive Data.

You can configure Privacy and Consent for users who register directly through IDM, or through a social identity provider. For
more information on the registration process, refer to User self-registration and Social registration.

When you have configured Privacy and Consent, end users must agree to share their data before they can obtain a registered
account.

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1423

https://docs.pingidentity.com/openicf/connector-reference/marketo.html
https://docs.pingidentity.com/openicf/connector-reference/marketo.html

To configure Privacy and Consent, edit the following configuration files:

In selfservice-registration.json , add the following JSON object:

{
 "name" : "consent",
 "consentTranslations" : {
 "en" : "<Substitute appropriate Privacy and Consent wording>",
 "fr" : "<Substitute appropriate Privacy and Consent wording, in French>"
 }
},

Add custom privacy and consent notices for all your required languages in the consentTranslations property.

Alternatively, send the corresponding request over REST to the /openidm/config/selfservice/registration endpoint.

In the mapping configuration, include:

"consentRequired" : true,

Configure privacy and consent using the admin UI

From the navigation bar, click Configure > Mappings, and select a mapping.

Click the Advanced tab, activate Enable Privacy & Consent, and then click Save.

From the navigation bar, click Configure > User Registration.

Click the Options tab, and activate Privacy & Consent.

In the Configure Privacy & Consent window, add privacy notices for any necessary languages, and click Save.

Regulate HTTP access to personal data

In some cases, you might want to allow users to choose whether to share their personal data. User preferences describes how to
allow users to select basic preferences for updates and marketing. They can select these preferences when they register and in
the End User UI.

•

•

1.

emergency_home
Although the admin UI includes the Privacy & Consent switch for all mappings, it makes sense to configure
Privacy and Consent only for mappings from the Managed Object source to an external target resource. In
other words, end users give their consent to transfer some or all of their managed user data to an external
system.

Important

2.

3.

info
If Enable User Registration is inactive, refer to User Self-Registration.

Note

4.

5.

Self-service reference PingIDM

1424 Copyright © 2025 Ping Identity Corporation

Examine the managed.json file for your project. Every relevant property should include two settings that determine whether a
user can choose to share or not share that property:

isPersonal : When set to true , specifies personally identifying information. By default, the isPersonal option for
userName and postalAddress is set to true .

usageDescription : Includes additional information that can help users understand the sensitivity of a specific property
such as telephoneNumber .

The consentedMappings property in a managed user object enables the user to specify an array of mappings (target systems)
with which they consent to sharing their identifying information. The following sample excerpt of the default managed user object
schema shows the consentedMappings property definition:

"consentedMappings": {
 "title": "Consented Mappings",
 "description": "Consented Mappings",
 "type": "array",
 "viewable": false,
 "searchable": false,
 "userEditable": true,
 "usageDescription": "",
 "isPersonal": false,
 "items": {
 "type": "object",
 "title": "Consented Mapping",
 "properties": {
 "mapping": {
 "title": "Mapping",
 "description": "Mapping",
 "type": "string",
 "viewable": true,
 "searchable": true,
 "userEditable": true
 },
 "consentDate": {
 "title": "Consent Date",
 "description": "Consent Date",
 "type": "string",
 "viewable": true,
 "searchable": true,
 "userEditable": true
 }
 },
 "order": [
 "mapping",
 "consentDate"
],
 "required": [
 "mapping",
 "consentDate"
]
 },
 "returnByDefault": false,
 "isVirtual": false
}

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1425

Restrict HTTP access to sensitive data

You can protect specific sensitive managed data by marking the corresponding properties as private . Private data, whether it is
encrypted or not, is not accessible over the REST interface. Properties that are marked as private are removed from an object
when that object is retrieved over REST.

To mark a property as private, set its scope to private in the conf/managed.json file.

The following extract of the managed.json file shows how HTTP access is prevented on the password property:

{
 "objects": [
 {
 "name": "user",
 "schema": {
 "id" : "http://jsonschema.net",
 "title" : "User",
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 ...
 "encryption" : {
 "purpose": "idm.password.encryption"
 },
 "scope" : "private",
 ...
 }
]
}

A potential caveat relates to private properties. If you use an HTTP GET request, you won’t even refer to private properties. Even
if you know all relevant private properties, a PUT request would replace the entire object in the repository. In addition, that
require would effectively remove all private properties from the object. To work around this limitation, use a POST request to
update only those properties that require change.

For example, to update the givenName of user jdoe, you could run the following command:

lightbulb_2
To configure private properties using the admin UI:

Select Configure > Managed Objects, and select the object type whose property values you want to make
private (for example, User).
On the Properties tab, select the property that must be private, and select the Private checkbox.

Tip

1.

2.

Self-service reference PingIDM

1426 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request POST \
--data '[
 {
 "operation": "replace",
 "field": "/givenName",
 "value": "Jon"
 }
]' \
"https://localhost:8443/openidm/managed/user?_action=patch&_queryId=for-userName&uid=jdoe"

UMA, trusted devices, and privacy

In the following sections, you will refer to AM documentation to set up User-Managed Access (UMA), Trusted Devices, and Privacy
for your end users. The section requires IDM authentication with AM bearer tokens and the rsFilter authentication module.
For more information, refer to Authenticate through AM.

User Managed Access in IDM

When you integrate IDM with ForgeRock Access Management (AM) you can take advantage of AM’s abilities to work with User-
Managed Access (UMA) workflows. AM and IDM use a common installation of ForgeRock Directory Services (DS) to store user
data.

When you have configured IDM to authenticate through AM bearer tokens, you can configure AM to work with UMA. For more
information, refer to the AM User-Managed Access (UMA) Guide. From that guide, you need to know how to:

Set up AM as an authorization server.

Register resource sets and client agents in AM.

info
The filtering of private data applies only to direct HTTP read and query calls on managed objects. No automatic
filtering is done for internal callers, and the data that these callers choose to expose.

Note

lightbulb_2
If you want to configure both UMA and Trusted Devices in AM, configure these features in the following order, as
described in the sections that follow:

Set up UMA
Use AM to configure UMA-based resources
Configure Trusted Devices

If you have to reconfigure UMA at a later date, you’ll have to first disable Trusted Devices. You can enable Trusted
Devices, once again, afterwards.

Tip

1.
2.
3.

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1427

https://docs.pingidentity.com/pingam/7.4/uma-guide
https://docs.pingidentity.com/pingam/7.4/uma-guide

Help users manage access to their protected resources through AM.

Pay close attention to the AM documentation on configuring an OAuth 2.0 UMA Client and UMA Server. You may need to add
specific grant types to each OAuth 2.0 application.

If you follow AM documentation to set up UMA, you’ll refer to instructions on setting up users as resource owners and requesting
parties. If you set up users in AM, be sure to include the following information for each user:

First Name

Last Name

Email Address

AM writes this information to the common DS user data store. You can then synchronize these users to the IDM Managed User
data store, with a command such as:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=recon&mapping=systemLdapAccounts_managedUser"

After your users have shared UMA resources from the AM Self-Service UI, they can view what they’ve done and shared in the IDM
End User UI, by selecting the Sharing icon ().

Configuring Trusted Devices on IDM

You can configure Trusted Devices through AM, using the following sections of the AM Authentication and Single Sign-On Guide:
Configuring Authentication Chains and Device ID (Match) Authentication Module. You can use the techniques described in
these sections to set up different authentication chains for administrators and regular users.

You can create an AM authentication chain with the following modules and criteria:

This is different from the authentication chain described in the following section of the AM Authentication and Single Sign-On Guide:
Device ID (Match) Authentication Module, as it does not include the HOTP Authentication Module.

When trusted devices are enabled, users are presented with a prompt on a screen with the following question "Add to Trusted
Devices?". If the user selects Yes , that user is prompted for the name of the Trusted Device.

•

•

•

•

AM Authentication Chain Modules

Module Criteria

Data Store Requisite

Device Id (Match) Sufficient

Device Id (Save) Required

Self-service reference PingIDM

1428 Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.4/authentication-guide/about-authentication-modules-and-chains.html#configure-authn-chains
https://docs.pingidentity.com/pingam/7.4/authentication-guide/about-authentication-modules-and-chains.html#configure-authn-chains
https://docs.pingidentity.com/pingam/7.4/authentication-guide/configure-authn-modules-hints.html#device-id-match-hints
https://docs.pingidentity.com/pingam/7.4/authentication-guide/configure-authn-modules-hints.html#device-id-match-hints
https://docs.pingidentity.com/pingam/7.4/authentication-guide/configure-authn-modules-hints.html#device-id-match-hints
https://docs.pingidentity.com/pingam/7.4/authentication-guide/configure-authn-modules-hints.html#device-id-match-hints
https://docs.pingidentity.com/pingam/7.4/authentication-guide/configure-authn-modules-hints.html#hotp-module-conf-hints
https://docs.pingidentity.com/pingam/7.4/authentication-guide/configure-authn-modules-hints.html#hotp-module-conf-hints

Terms & Conditions

Most entities require users to accept Terms & Conditions. By default, this feature is active for user self-registration in IDM. When a
user accepts Terms & Conditions, IDM records relevant information in the _meta data for that user, as described in Identifying
When a User Accepts Terms & Conditions.

Terms & Conditions configuration files

selfservice.terms.json

Exists in the /path/to/openidm/conf/ directory and contains the default Terms & Conditions language:

{
 "versions": [
 {
 "version": "0.0",
 "termsTranslations": {
 "en": "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum."
 },
 "createDate": "2019-10-28T04:20:11.320Z"
 }
],
 "active": "0.0",
 "uiConfig": {
 "displayName": "We've updated our terms",
 "purpose": "You must accept the updated terms in order to proceed.",
 "buttonText": "Accept"
 }
}

selfservice-termsAndConditions.json

To force existing IDM users to accept new Terms & Conditions during login, copy selfservice-termsAndConditions.json
from your project’s conf directory to your project directory, and edit the file, as necessary.

The following example applies Terms & Conditions to the managed/user store:

info
In default configurations, trusted devices are not saved for the AM amadmin account. You can set up different AM
administrative users as described in Delegate privileges in the AM Security Guide.
You can set up different authentication chains for regular and administrative users, as described in the AM
Authentication and Single Sign-On Guide.

Note

info
To use this feature, auth.profile.json must be present in the /path/to/openidm/conf/ directory.

Note

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1429

https://docs.pingidentity.com/pingam/7.4/security-guide/securing-administration.html#delegating-realm-administration-privileges
https://docs.pingidentity.com/pingam/7.4/security-guide/securing-administration.html#delegating-realm-administration-privileges
https://docs.pingidentity.com/pingam/7.4/authentication-guide
https://docs.pingidentity.com/pingam/7.4/authentication-guide

{
 "stageConfigs" : [
 {
 "name" : "conditionaluser",
 "identityServiceUrl" : "managed/user",
 "condition" : {
 "type" : "terms"
 },
 "evaluateConditionOnField" : "user",
 "onConditionTrue" : {
 "name" : "termsAndConditions"
 }
 },
 {
 "name" : "patchObject",
 "identityServiceUrl" : "managed/user"
 }
]
}

info
IDM does not support <form> elements or <script> tags in Terms & Conditions text.
Substitute Terms & Conditions content to meet the legal requirements of your applicable governing entities.

Note

selfservice.terms.jsonDetails

Property Description

version Specifies a version number (must be unique).

termsTranslations Supports Terms & Conditions in different languages.

createDate Creation date.

info
For Terms & Conditions in multiple languages, what the end user sees depends on
their browser default language, based on ISO-639 language codes:
First, IDM determines the active version, as defined in the
selfservice.terms.json file:

If the browser default language matches one of the configured Terms &
Conditions languages, IDM displays it.
If the browser default language does not match any configured Terms &
Conditions languages:

IDM displays the en language.
If there is no en language, IDM displays the first configured
language for the active version.

Note

•

•

◦

◦

Self-service reference PingIDM

1430 Copyright © 2025 Ping Identity Corporation

Preview Terms & Conditions as an end user

To preview Terms & Conditions in the End User UI:

Create a regular user.

Log in to the End User UI as the new user.

IDM prompts you to accept the default Terms & Conditions.

Updating Terms & Conditions over REST

You can manage the configuration for Terms & Conditions over the following endpoints:

openidm/config/selfservice.terms

openidm/config/selfservice/termsAndConditions

For example, the following command would replace the value of buttonText :

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[{
 "operation" : "replace",
 "field" : "uiConfig/buttonText",
 "value" : "OK"
}]' \
"http://localhost:8080/openidm/config/selfservice.terms"

Identifying when a user accepts Terms & Conditions

You can identify when a user accepts Terms & Conditions, as well as the associated version. To do so, take the following steps:

If needed, find identifying information for all managed users:

Property Description

active Specifies the version of Terms & Conditions shown to users; must match an existing
version .

displayName The title of the Terms & Conditions page, as seen by end users.

purpose Help text shown below the displayName .

buttonText Button text shown to the end user for acceptance.

1.

2.

•

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1431

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryId=query-all"

Use REST to get a specific user’s information. This example illustrates how a user with a userName of kvaughan has
already accepted a specific version of Terms & Conditions:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+'kvaughan'&_fields=*,/_meta/*"
{
 "result": [
 {
 ...
 "userName": "kvaughan",
 ...
 "termsAccepted": {
 "acceptDate": "2018-04-12T22:55:33.370Z",
 "termsVersion": "2.0"
 },
 "createDate": "2018-04-12T22:55:33.395Z",
 "lastChanged": {
 "date": "2018-04-12T22:55:33.395Z"
 },
 "loginCount": 1,
 "_rev": "00000000776f8be1",
 "_id": "69124007-05ec-46e1-a8a8-ecc3d94db124"
 }
 }
],
 ...
}

Configure Terms & Conditions using the admin UI

From the navigation bar, click Configure > Terms & Conditions.

Click New Version, and on the New Terms & Conditions Version page, configure the following:

Version (must be unique).

•

info
The admin UI does not let you delete existing Terms & Conditions.

Note

1.

2.

◦

Self-service reference PingIDM

1432 Copyright © 2025 Ping Identity Corporation

If there are existing Terms & Conditions, a Make active switch displays. If you activate this option, all users must
accept the new, active Terms & Conditions.

Locale, in ISO-639 format.

Terms & Conditions, in the specified language locales. You can set up Terms & Conditions in text and/or basic
HTML.

After you’ve added Terms & Conditions to all desired locales, click Save.

IDM saves your changes in the selfservice.terms.json file.

Once you have at least one set of Terms & Conditions, click the Settings tab, configure the following, and click Save:

Require acceptance switch—the next time any end user logs into IDM, that user will refer to a copy of your Terms
& Conditions, with the Header, Description, and Button Text.

Header.

Description.

Button Text.

To make sure new users must accept the Terms & Conditions:

From the navigation bar, click Configure > User Registration, and select the Options tab.

Enable Terms & Conditions. For more information, refer to Self-registration.

These changes are recorded in _meta data for each user, and can be retrieved through REST calls described in Identifying When
a User Accepts Terms & Conditions.

Tokens and user self-service

Many processes within user self-service involve multiple stages, such as user self-registration, password reset, and forgotten
username. As the user transitions from one stage to another, IDM uses JWT tokens to represent the current state of the process.
As each stage is completed, IDM returns a new token. Each request that follows includes that latest token.

For example, users who use these features to recover their usernames and passwords get two tokens in the following scenario:

The user goes through the forgotten username process, gets a JWT Token with a lifetime (default = 300 seconds) that lets
the user get to the next step in the process.

With username in hand, that user may then start the password reset process. That user gets a second JWT token, with the
token lifetime configured for that process.

◦

◦

◦

3.

4.

◦

◦

◦

◦

5.

1.

2.

•

•

info
The default IDM JWT token is encrypted and stateless. However, if you need a token that can be included in a link that
works in all email clients, change the `snapshotToken `type in the appropriate configuration file to uuid .

Note

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1433

End User UI notifications

Whenever there are changes related to individual users, IDM sends notifications to those users. When they log in to the End User
UI, they can find their notifications by clicking the notification button.

Notifications are configured in notification-event.json files, as described in Custom Notifications.

IDM includes a notifications endpoint that can help you identify all notifications:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/internal/notification?_queryFilter=true"

To list notifications by user ID, include the _notifications field in a query on that ID:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/e3a9385b-733f-4a1c-891b-c89292b30d70?_fields=_notifications/*"

You can filter notifications with any of the properties shown in the following table:

You can get additional information from the activity audit log, in the audit/activity.audit.json file, including the following:

The userId who made the change.

The runAs name of the user who made the change.

If configured in Fields to Watch, any watched fields that have changed.

If the password was changed, as indicated by the passwordChanged property.

End User Notification Properties

Property Description

createDate Creation date

notificationType Message type: limited to info, warning, or error

message Message seen by the end user

•

•

•

•

Self-service reference PingIDM

1434 Copyright © 2025 Ping Identity Corporation

Google reCAPTCHA

Google reCAPTCHA helps prevent bots from registering users or resetting passwords on your system. For Google documentation
on this feature, refer to Google reCAPTCHA. IDM works with Google reCAPTCHA v2.

To use Google reCAPTCHA, you will need a Google account and your domain name (RFC 2606-compliant URLs such as localhost
and example.com are acceptable for test purposes). Google then provides a site key and a secret key that you can include in the
self-service function configuration.

For example, you can set up reCAPTCHA by adding the following code block to the configuration file for user self-registration
selfservice-registration.json , password reset, selfservice-reset.json , and forgotten username selfservice-
username.json functionality.

{
 "name" : "captcha",
 "recaptchaSiteKey" : "< Insert Site Key Here >",
 "recaptchaSecretKey" : "< Insert Secret Key Here >",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},

You may also add the reCAPTCHA keys through the UI for each of these self-service features.

Identity fields

It is possible to adjust the property associated with a field in user self-service. Properties that are used by self-service functions
can be set using identity field properties in your configuration. For example, if you had changed the mail property in managed/
user to instead be email , you would then update identityEmailField in your self-service configuration to be
"identityEmailField" : "email", . There are currently six identity fields that can be customized:

identityServiceUrl - sets where self-service stores and retrieves its data, such as managed/user .

identityUsernameField - sets the property associated with the username of the user.

identityEmailField - sets the property associated with the email address of the user.

identityPasswordField - sets the property associated with the password of the user.

identityIdField - sets the property associated with the ID of the user, which is used when performing user queries.

identityAccountStatus - sets the property associated with the account status of the user, which is used when
performing user queries.

Not every identity field is used in each self-service stage. For more information about which fields are required for each stage,
refer to Self-service stage reference.

•

•

•

•

•

•

info
If you have removed usernames from your managed/user schema in favor of using another property (such as email),
you will still need to set identityUsernameField to the new property in order for self-service to function correctly.

Note

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1435

https://www.google.com/recaptcha
https://www.google.com/recaptcha

Security questions

IDM uses security questions to let users verify their identities. Security questions are sometimes referred to as Knowledge-Based
Authentication (KBA). When an administrator has configured security questions, self-service users can choose from the questions
set in the selfservice.kba.json file, as described in Security Questions and Self-Registration.

You can prompt users to update their security questions. As these questions may be subject to risks, you can set up IDM to
prompt the user to update and/or add security questions, courtesy of the selfservice-kbaUpdate.json file. For more
information, refer to Prompt to Update Security Questions.

Security questions and self-registration

The user is prompted to enter answers to pre-configured or custom security questions, during the self-registration process. These
questions are used to help verify an identity when a user requests a password reset. These questions do not apply for users who
need username retrieval.

The template version of the selfservice.kba.json file includes minimumAnswersToDefine , which requires a user to define at
least that many security questions and answers, along with minimumAnswersToVerify , which requires a user to answer (in this
case), at least one of those questions when asking for a password reset.

{
 "kbaPropertyName" : "kbaInfo",
 "minimumAnswersToDefine": 2,
 "minimumAnswersToVerify": 1,
 "questions" : {
 "1" : {
 "en" : "What's your favorite color?",
 "en_GB" : "What is your favourite colour?",
 "fr" : "Quelle est votre couleur préférée?"
 },
 "2" : {
 "en" : "Who was your first employer?"
 }
 }
}

You can change or add questions in JSON format, or if you’re configuring user self-registration, you can also edit these questions
through the admin UI. From the admin UI, select Configure > User Registration. Enable User Registration, select Options >
Security Questions, and select the edit icon to add, edit, or delete these questions.

Any change you make to the security questions under User Registration also applies to Password Reset. To confirm, select
Configure > Password Reset. Enable Password Reset, and edit the Security Questions. You’ll refer to the same questions there.

In addition, individual users can configure their own questions and answers:

During the user self-registration process.

From the End User UI, in the user’s Profile section (), under Account Security > Security Questions.

•

•

Self-service reference PingIDM

1436 Copyright © 2025 Ping Identity Corporation

KBA answer hashing

By default, KBA answers are SHA-256 hashed upon save. To specify another type of hashing, edit the self-service KBA
configuration]]>:

Add the secureHash property to the conf/selfservice.kba.json file:

"secureHash" : {
 "algorithm": "{type}",
 "configProp": value
}

For example, to use BCRYPT hashing:

"secureHash": {
 "algorithm": "BCRYPT",
 "cost": 13
}

Get the current self-service KBA configuration]]>:

emergency_home
A managed user’s security questions can only be changed through the selfservice/userupdate endpoint, or when
the user is created through selfservice/registration , and provides their own questions. You cannot manipulate a
user’s kbaInfo property directly through the managed/user endpoint.
When the answers to security questions are hashed, they are converted to lowercase. If you intend to pre-populate
answers with a mapping, the openidm.hash function, or the secureHash mechanism, you must provide the string in
lowercase to match the value of the answer.

Important

1.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1437

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/config/selfservice.kba"
{
 "_id": "selfservice.kba",
 "kbaPropertyName": "kbaInfo",
 "minimumAnswersToDefine": 2,
 "minimumAnswersToVerify": 1,
 "questions": {
 "1": {
 "en": "What’s your favorite color?",
 "en_GB": "What is your favourite colour?",
 "fr": "Quelle est votre couleur préférée?"
 },
 "2": {
 "en": "Who was your first employer?"
 }
 }
}

Add the secureHash property for the alternative hashing, and replace the self-service KBA configuration]]>. For example,
to use BCRYPT hashing:

2.

Self-service reference PingIDM

1438 Copyright © 2025 Ping Identity Corporation

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PUT \
--data '{
 "_id": "selfservice.kba",
 "kbaPropertyName": "kbaInfo",
 "minimumAnswersToDefine": 2,
 "minimumAnswersToVerify": 1,
 "questions": {
 "1": {
 "en": "What'\''s your favorite color?",
 "en_GB": "What is your favourite colour?",
 "fr": "Quelle est votre couleur préférée?"
 },
 "2": {
 "en": "Who was your first employer?"
 }
 },
 "secureHash": {
 "algorithm": "BCRYPT",
 "cost": 13
 }
}' \
"http://localhost:8080/openidm/config/selfservice.kba"
{
 "_id": "selfservice.kba",
 "kbaPropertyName": "kbaInfo",
 "minimumAnswersToDefine": 2,
 "minimumAnswersToVerify": 1,
 "questions": {
 "1": {
 "en": "What’s your favorite color?",
 "en_GB": "What is your favourite colour?",
 "fr": "Quelle est votre couleur préférée?"
 },
 "2": {
 "en": "Who was your first employer?"
 }
 },
 "secureHash": {
 "algorithm": "BCRYPT",
 "cost": 13
 }
}

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1439

Supported Hashing Algorithms and Configuration Properties

Algorithm Config Property and Description

BCRYPT
cost

Value between 4 and 31. Default is 13 .

PBKDF2
hashLength

Byte-length of the generated hash. Default is 16 .

saltLength
Byte-length of the salt value. Default is 16 .

iterations
Number of cryptographic iterations. Default is 20000 .

hmac
HMAC algorithm. Default is SHA3-256 .
Supported values:

SHA-224

SHA-256

SHA-384

SHA-512

SHA3-224

SHA3-256

SHA3-384

SHA3-512

SCRYPT
hashLength

Byte-length of the generated hash, must be greater than or equal to 8. Default is
16 .

saltLength
Byte-length of the salt value. Default is 16 .

n
CPU/Memory cost. Must be greater than 1, a power of 2, and less than 2^(128 * r /
8). Default is 32768 .

p
Parallelization. Must be a positive integer less than or equal to Integer.MAX_VALUE /
(128 * r * 8). Default is 1 .

r
Block size. Must be greater than or equal to 1. Default is 8 .

•
•
•
•
•
•
•
•

Self-service reference PingIDM

1440 Copyright © 2025 Ping Identity Corporation

KBA attempts account lockout

To configure account lockout based on the security questions, add the following lines to your selfservice.kba.json file:

"numberOfAttemptsAllowed" : 2,
"kbaAttemptsPropertyName" : "lockoutproperty"

With this configuration, users who make more than two mistakes in answering security questions are prevented from using the
password reset facility until the kbaAttemptsPropertyName field is removed, or the number is set to a value lower than the
numberOfAttemptsAllowed . The number of mistakes is recorded in whatever property you assign to kbaAttemptsPropertyName
(lockoutproperty , in this example).

If you are using an explicit mapping for managed user objects, you must add this lockoutproperty to your database schema and
to the objectToColumn mapping in your repository configuration file.

For example, the previous configuration would require the following addition to your conf/repo.jdbc.json file:

"explicitMapping" : {
 "managed/user": {
 "table" : "managed_user",
 "objectToColumn": {
 ...
 "lockoutproperty" : "lockoutproperty",
 ...
 }

You would also need to create a lockoutproperty column in the openidm.managed_user table, with datatype VARCHAR . For
example:

Algorithm Config Property and Description

SHA-256
saltLength

Byte-length of the salt value. Default is 16 .

SHA-384
saltLength

Byte-length of the salt value. Default is 16 .

SHA-512
saltLength

Byte-length of the salt value. Default is 16 .

info
This is the default hashing.
Note

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1441

mysql> show columns from managed_user;
+----------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------------------+--------------+------+-----+---------+-------+
objectid	varchar(38)	NO	PRI	NULL	
rev	varchar(38)	NO		NULL	
username	varchar(255)	YES	UNI	NULL	
password	varchar(511)	YES		NULL	
accountstatus	varchar(255)	YES	MUL	NULL	
postalcode	varchar(255)	YES		NULL	
lockoutproperty	varchar(255)	YES		NULL	
...

Prompt to update security questions

IDM supports a requirement for users to update their security questions, in the selfservice-kbaUpdate.json file. You can find
this file in the following directory: /path/to/openidm/samples/example-configurations/self-service .

Alternatively, if you set up security questions from the admin UI, you can navigate to Configure > Security Questions > Update
Form, and select Enable Update. This action adds a selfservice-kbaUpdate.json file to your project’s conf/ subdirectory.

For more information on this configuration file, refer to Conditional User Stage.

Custom policies for self-registration and password reset

IDM defines policies for usernames and passwords, in the openidm/bin/defaults/script/policy.js file. To enforce these
policies for user self-registration and password reset, add the following objects to your conf/policy.json file, under
resources :

{
 "resource" : "selfservice/registration",
 "calculatedProperties" : {
 "type" : "text/javascript",
 "source" : "require('selfServicePolicies').getRegistrationProperties()"
 }
},
{
 "resource" : "selfservice/reset",
 "calculatedProperties" : {
 "type" : "text/javascript",
 "source" : "require('selfServicePolicies').getResetProperties()"
 }
},

warning
Once you deploy these IDM self-service features, you should never remove or change existing security questions, as
users may have included those questions during the user self-registration process.

Warning

Self-service reference PingIDM

1442 Copyright © 2025 Ping Identity Corporation

Self-service end user UI

This topic includes procedures to verify functionality from an end user point of view. Some options described can be used to help
support compliance with the General Data Protection Regulation (GDPR).

For information about customizing the End User UI, refer to the Github repository: ForgeRock/end-user-ui.

Localize the end user UI

The End User UI is configured in US English. For more information on how to localize and modify the messages in the End User UI,
refer to Translations and Text.

Change the end user UI path

By default, the End User UI is registered at the root context and is accessible at the URL https://localhost:8443 . To specify a
different URL, edit the project-dir/conf/ui.context-enduser.json file, setting the urlContextRoot property to the new URL.

For example, to change the End User UI URL to https://localhost:8443/exampleui , edit the file as follows:

"urlContextRoot" : "/exampleui",

Alternatively, to change the End User UI URL in the admin UI, follow these steps:

Log in to the admin UI.

From the navigation bar, click Configure > System Preferences, and select the Self-Service UI tab.

Specify the new context route in the Relative URL field.

Click Save.

Provide a logout URL to external applications

By default, an End User UI session is invalidated when a user clicks on the Log out link. In certain situations, external applications
might require a distinct logout URL to which users can be routed, to terminate their UI session.

The logout URL is #logout , appended to the UI URL; for example, https://localhost:8443/#logout/ .

The logout URL effectively performs the same action as clicking on the Log out link of the UI.

Privacy: my account information in the End User UI

While end users can find their information in the End User UI, you can use REST calls and audit logs to find the same information.
Some of the information in this section, such as Trusted Devices and UMA-based sharing, may require integration with ForgeRock
Access Management (AM), as described in the sample platform setup documentation.

What the end user sees upon log in to the End User UI depends on which features are configured.

When you log in to the End User UI, you’ll be taken to the IDM Profile page , with at least the following information under
the Settings tab:

Account Security

Preferences

1.

2.

3.

4.

•

◦

◦

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1443

https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui
https://localhost:8443
https://localhost:8443
https://localhost:8443/exampleui
https://localhost:8443/exampleui
https://localhost:8443/#logout/
https://localhost:8443/#logout/
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/preface.html
https://backstage.forgerock.com/docs/platform/7.3/platform-setup-guide/preface.html

Account Controls

At a minimum, the left panel displays the Dashboard and Profile buttons. If you’ve configured UMA as described in
UMA, trusted devices, and privacy, you’ll also refer to a Sharing button. To see descriptions, click the Menu button:

When you add features, additional options display on the profile page:

Personal information

To view account details in the End User UI, a user clicks the Profile button > Edit Personal Info. By default, user information
includes at least a Username, First Name, Last Name, and Email Address.

Each user can modify this information as needed, as long as "userEditable" : true for the property in your project’s
managed.json file. For more information, refer to Create and Modify Object Types.

Sign-In & security

Under this tab, end users can change their passwords. They can also add, delete, or modify security questions, and link or unlink
supported social identity accounts. For more information, refer to Security questions and Social registration.

◦

•

•

Information in the End User Profile Page

Title Description Section

Account Security Password and Security Questions, default Security questions

Social Sign-in Links to Social Identity Provider Accounts Social registration

Authorized Applications Applications that can access an account Authorized Applications

Trusted Devices Based on system and browser Configuring Trusted Devices on
IDM

Preferences Default User preferences

Personal Data Sharing Provides control Personal Data Sharing

Account Controls Includes collected account data (Default) Account Controls

Self-service reference PingIDM

1444 Copyright © 2025 Ping Identity Corporation

Preferences

The preferences tab allows end users to modify marketing preferences, as defined in the managed.json file, and the Managed
Object User property Preferences tab. For more information, refer to Configure User Preferences.

End users can toggle marketing preferences. When IDM includes a mapping to a marketing database, these preferences are sent
to that database. This can help administrators use IDM to target marketing campaigns and identify potential leads.

Trusted devices

A trusted device uses AM’s Device ID (Match) and Device ID (Save) authentication modules, as described in the AM Authentication
and Single Sign-On Guide. When such modules are configured (see Configuring Trusted Devices on IDM), end users can add
such devices the first time they log in from a new location.

During the login process, when an end user selects Log In, that user is prompted for a Trusted Device Name. Users refer to their
added devices under the Trusted Devices tab.

A trusted device entry is paired with a specific browser on a specific system. The next time the same end user logs in from the
same browser and system, in the same location, that user should not be prompted to enter a trusted device again.

End users can remove their trusted devices from the tab.

Authorized applications

The Authorized Applications section is specific to end users as OAuth 2 clients. and reflects the corresponding section of the AM
Self-Service dashboard, as described in the following section of the AM OAuth 2.0 Guide on: User Consent Management.

Personal data sharing

This section assumes that as an administrator, you’ve followed the instructions in Privacy and consent to enable Privacy &
Consent.

End users who refer to a Personal Data Sharing section have control of whether personal data is shared with an external
database, such as one that might contain marketing leads.

The managed object record for end users who consent to sharing such data is shown in REST output and the audit activity log as
one consentedMappings object:

"consentedMappings" : [{
 "mapping" : "managedUser_systemLdapAccounts",
 "consentDate" : "2017-08-25T18:13:08.358Z"
}

If enabled, end users will refer to a Personal Data Sharing section in their profiles. If they select the Allow link, they can see the
data properties that would be shared with the external database.

This option supports the right to restrict processing of user personal data.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1445

https://docs.pingidentity.com/pingam/7.4/authentication-guide
https://docs.pingidentity.com/pingam/7.4/authentication-guide
https://docs.pingidentity.com/pingam/7.4/authentication-guide
https://docs.pingidentity.com/pingam/7.4/oauth2-guide/#oauth2-user-consent
https://docs.pingidentity.com/pingam/7.4/oauth2-guide/#oauth2-user-consent

Account controls

The Account Controls section allows end users to download their account data (in JSON format), and to delete their accounts from
IDM.

To modify the message associated with the Delete Your Account option, refer to the section about Translations in the
README of the public ForgeRock Identity Management (End User) Git repository. Find the translation.json file, search for the
deleteAccount code block, and edit the information.

The options shown in this section can help meet requirements related to data portability, as well as the right to be forgotten.

Custom self-service stages

This chapter demonstrates how to build, deploy, and configure a custom stage, and how to add it to a self-service process. You
can use the classes in the sample project as a basis to develop your own stages.

To implement a custom stage in the End User UI, refer to the following instructions from the ForgeRock End User UI Git
Repository: How to Add a Self-Service Stage to the UI.

Sample stage

ForgeRock provides a sample custom stage project with the minimum classes and project file required for any self-service stage.
The sample project has a dependency on the forgerock-selfservice-core artifact. Engage ForgeRock support for access to the
required repositories.

The sample project implements a stage named MathProblem , which generates a simple math problem that must be completed in
order to progress to the next stage.

The project includes the following files, required for any custom self-service stage:

A Maven project file (pom.xml)

Pay particular attention to the maven-bundle-plugin in this file:

emergency_home
When end users delete their accounts, the change is propagated to external systems by implicit sync. However, it is
then up to the administrator of the external system to make sure that any additional user information is purged from
that system.

Important

Self-service reference PingIDM

1446 Copyright © 2025 Ping Identity Corporation

https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui#how-to-add-a-self-service-stage-to-the-ui
https://github.com/ForgeRock/end-user-ui#how-to-add-a-self-service-stage-to-the-ui

<plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Fragment-Host>org.forgerock.openidm.selfservice</Fragment-Host>
 </instructions>
 </configuration>
 </plugin>
</plugins>

This plugin indicates that Apache Felix should attach the custom stage artifact to IDM’s self-service bundle.

A configuration class

(src/main/java/org/forgerock/selfservice/custom/MathProblemStageConfig.java)

The configuration class reads configuration data from a corresponding configuration (JSON) file. The class represents each
configuration item for the stage as properties of the class.

An implementation class

(src/main/java/org/forgerock/selfservice/custom/MathProblemStage.java)

The implementation class is the main orchestration class for the stage.

Build the sample stage

To build the sample stage, you must have Apache Maven installed.

Clone the ForgeRock Selfservice Custom Stage repository.

Change to the root directory of the project you cloned:

cd /path/to/forgerock-selfservice-custom-stage

This version of IDM works with version 26.3.x of ForgeRock Commons. Locate the latest version 26.3.x tag:

List the latest tags for this version:

git tag --list | grep 26.3.x
26.3.x-20210331172848-d863e5b
...
26.3.x-latest

Check out the latest version:

1.

2.

3.

1.

2.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1447

https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://stash.forgerock.org/projects/COMMONS/repos/forgerock-selfservice-custom-stage/
https://stash.forgerock.org/projects/COMMONS/repos/forgerock-selfservice-custom-stage/

git checkout -b test tags/26.3.x-latest
Switched to a new branch 'test'

Build the sample stage:

mvn clean install

The build process creates the forgerock-selfservice-custom-stage/self-service/forgerock-selfservice-custom-
stage/target/forgerock-selfservice-custom-stage-version.jar file.

Copy the compiled sample stage to the openidm/bundle directory:

cp target/forgerock-selfservice-custom-stage-version.jar /path/to/openidm/bundle/

Restart IDM.

Configuration for the sample stage

To create a configuration for this stage, examine the configuration class (MathProblemStageConfig.java). Three configuration
properties must be specified in the corresponding configuration file:

class

For the default IDM self-service stages, you specify the stage name in the configuration, in the format "name" : "stage-
name" . For example:

"name" : "captcha"

For custom stages, you must specify the stage configuration class, in the format "class" : "stage_config_classname" .
For example:

"class" : "org.forgerock.selfservice.custom.MathProblemStageConfig"

leftValue

rightValue

The configuration for this stage will therefore look something like the following:

{
 "class" : "org.forgerock.selfservice.custom.MathProblemStageConfig",
 "leftValue" : int,
 "rightValue" : int
},

4.

5.

6.

•

•

•

Self-service reference PingIDM

1448 Copyright © 2025 Ping Identity Corporation

Test the custom stage

Stages are implemented as part of a self-service process. To test your custom stage, you need to add it to a self-service process.
You can create a new process, or use one of the default processes available through the admin UI.

In this example, we add the custom stage to the User Registration process and test it as part of self-registration, as follows:

From the navigation bar, click Configure > User Registration, and activate Enable User Registration.

IDM creates a selfservice-registration.json file in your project’s conf directory. There are a number of stages in that
process by default; for example, the parameters stage:

"stageConfigs" : [
 {
 "name" : "parameters",
 "parameterNames" : [
 "returnParams"
]
 },
...
]

Add your custom stage to the process by creating a configuration item in the stageConfigs array:

"stageConfigs" : [
 {
 "name" : "parameters",
 "parameterNames" : [
 "returnParams"
]
 },
 {
 "class" : "org.forgerock.selfservice.custom.MathProblemStageConfig",
 "leftValue" : 12,
 "rightValue" : 4
 },
...
]

Disable all-in-one registration.

emergency_home
When you write a custom stage, the equals and hashCode methods must be overridden to include local class
members.

Important

1.

2.

info
Self-service stages can generally not be configured in random order. For example, some stages require input
from the process state that has been populated by a preceding stage. For the purposes of this example, add
the MathProblem stage directly after the parameters stage.

Note

3.

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1449

By default, the registration phase has all-in-one registration enabled. All-in-one registration covers a number of registration
stages. For the purposes of testing the custom stage, disable all-in-one registration by setting "allInOneRegistration" :
false in selfservice-registration.json . For more information, refer to All-in-one registration.

Save the changes to the selfservice-registration.json file.

IDM reloads the configuration automatically—you do not need to restart the server.

Log in to the End User UI (https://localhost:8443 by default), and click Register.

IDM displays the Math Problem you configured previously.

Self-service stage reference

This chapter describes the individual stages that can be called by a self-service process, the purpose of the stage, any required
parameters, dependencies on preceding or following stages, and the expected stage output.

The stages are listed in alphabetical order, for ease of reference, but they cannot be configured in random order. For example,
some stages require input from the process state that has been populated by a preceding stage.

The identityServiceURL is a required parameter for most self-service stages. The self-service stages operate on a managed
object. The identityServiceURL indicates the object type, for example, managed/user .

All-in-one registration

A registration process that consists of more than one stage can include an optional "super stage" named allInOneRegistration ,
that is set outside of the stageConfigs array as follows:

"allInOneRegistration" : true

All-in-one registration covers a number of registration stages. If this property is true , in the registration process configuration,
IDM scans the configuration for any of the following stages:

parameters

captcha

termsAndConditions

kbaSecurityAnswerDefinitionStage

consent

idmUserDetails

If any of these stages are found, the individual stages are effectively removed from the configuration, and a new configuration is
generated that accumulates all the found stages.

4.

5.

•

•

•

•

•

•

Self-service reference PingIDM

1450 Copyright © 2025 Ping Identity Corporation

The purpose of all-in-one registration is to obtain a set of initial requirements, then to advance to the end of all six stages
simultaneously. This lets self-registration be completed on a single registration form. As the process advances, it gathers any
output, errors, and others from all six stages (or however many stages have been configured). The process then returns whatever
was gathered from the cumulative stages, including any outstanding requirements. Depending on the output, the process might
be required to go through the stages more than once, as the outstanding requirements are provided.

OpenAM auto-login stage

This stage is used to perform auto-login when IDM is configured with ForgeRock Access Management (AM). The stage is similar to
the local auto-login stage, but also requires the returnParams stored in state (populated in the Parameters stage).

Example configuration

{
 "name" : "openAmAutoLogin",
 "identityUsernameField": "userName",
 "identityPasswordField": "password",
 "openAMBaseUrl" : "http://AM.example.com:8080/openam/",
 "authenticationEndpoint" : "json/realms/root/authenticate"
}

Dependencies

This stage should appear towards the end of a process—it cannot be the first stage in a process.

Required Parameters

authenticationEndpoint - the AM Authentication Endpoint URL.

openAMBaseUrl - the URL of the AM server.

identityUsernameField - the managed object property that contains the username.

identityPasswordField - the managed object property that contains the user password.

Attribute collection stage

The purpose of this stage is to collect managed object properties to insert into the user profile. The list of properties to be
collected is defined as part of the configuration.

This stage updates the managed object directly, and checks whether attributes are required. If required attributes are not
provided, the stage returns the list of requirements again. This stage can throw an exception if there is an error attempting to
save the updated attributes.

emergency_home
All-in-one registration requires multiple registration stages. If your registration process includes only one stage, for
example, consent , allInOneRegistration must be set to false , to preserve the registration flow.
If all-in-one registration is false , any additional stages listed in the registration process (selfservice-
registration.json) must be listed after the parameters and idmUserDetails stages. If a stage occurs before the
idmUserDetails stage without all-in-one registration, both social and regular registration will not work.

Important

•

•

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1451

Example configuration

{
 "name" : "attributecollection",
 "identityServiceUrl" : "managed/user",
 "uiConfig" : {
 "displayName" : "Add your telephone number",
 "purpose" : "Help us verify your identity",
 "buttonText" : "Save"
 },
 "attributes" : [
 {
 "name" : "telephoneNumber",
 "isRequired" : true
 }
]
}

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process.

Required Parameters

identityServiceUrl - the managed object type on which this stage acts

uiConfig - how the requirements list is conveyed to an end user

attributes - the array of attributes to be collected. For each attribute, the isRequired parameter indicates
whether the attribute is mandatory for the stage to proceed.

Captcha stage

This stage verifies a response variable populated in state by the reCaptcha mechanism. If the response is missing, or if
validation fails (typically, if the configuration does not include the required reCaptcha configuration parameters), the stage throws
a bad request exception. If validation succeeds, the process advances to the next stage.

Example configuration

{
 "name" : "captcha",
 "recaptchaSiteKey" : "6LdahVIUAAAAAJcwGTWdl4OsG9tpdgFIyZKUSzyU",
 "recaptchaSecretKey" : "6LdahVIUAAAAANF-O17E-b8PyBqLrhLaOHUX8ch-",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process.

Required Parameters

recaptchaSiteKey - invokes the reCAPTCHA service

•

•

•

•

Self-service reference PingIDM

1452 Copyright © 2025 Ping Identity Corporation

recaptchaSecretKey - authorizes communication between IDM and the reCAPTCHA server to verify the user’s
response

recaptchaUri - the reCaptcha verification API

Conditional User Stage

Defines a condition, that results in a boolean (true or false). The outcome of the condition determines which stage should be
executed next.

Example configuration

{
 "name": "conditionaluser",
 "identityServiceUrl": "managed/user",
 "condition": {
 "type": "kbaQuestions"
 },
 "evaluateConditionOnField": "user",
 "onConditionFalse": {
 "name": "kbaUpdateStage",
 "kbaConfig": null,
 "identityServiceUrl" : "managed/user",
 "uiConfig" : {
 "displayName" : "Update your security questions",
 "purpose" : "Please review and update your security questions",
 "buttonText" : "Update"
 }
 }
}

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process. If the condition evaluates to
true , the process moves on to the next stage.

Required Parameters

identityServiceUrl - the managed object type on which this stage acts.

condition - the condition type, which can be one of the following:

kbaQuestions - a boolean (true or false) that indicates whether configured security questions have
been answered.

queryFilter - a common filter expression such as "filter" : "/co eq \"US\"" .

script - lets you configure a custom scripted condition.

loginCount - a condition based on the number of password or social authentication-based login requests.

terms - a boolean (true or false) that indicates whether configured Terms and Conditions have been
accepted.

•

•

•

•

◦

◦

◦

◦

◦

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1453

timesincelogin - sets a condition based on the period of time since the last login, in years, months, weeks,
days, hours, and minutes.

evaluateConditionOnField - the property on which the condition should be evaluated.

onConditionFalse - the details of the stage to be called if the condition evaluates to false.

Consent Stage

This stage evaluates a boolean consentGiven (true or false). The user is prompted to consent for each mapping that is set to
require consent. If consent is required but not given, the stage fails with an exception. It is up to the client to handle that
exception, for example, to prevent registration if the user does not provide consent.

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process.

Required Parameters

None.

Email validation stage

This stage retrieves the email address from state (or in response to initial requirements), then verifies the validity of the email
address with the user who submitted the requirements through an email process.

Example configuration

{
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@admin.org",
 "subject" : "Reset password email",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Reset your password",
 "fr" : "Réinitialisez votre mot de passe"
 },
 "messageTranslations" : {
 "en" : "Click to reset your password Password reset link",
 "fr" : "Cliquez pour réinitialiser votre mot de passeMot de passe lien de
réinitialisation"
 },
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://localhost:8443/#/passwordreset/"
},

◦

•

•

•

Self-service reference PingIDM

1454 Copyright © 2025 Ping Identity Corporation

Dependencies

This stage expects a preceding stage to populate the user email address in state . The stage has no downstream
dependencies.

Required Parameters

Email configuration. For more information, refer to Self-Service registration emails.

IDM user details stage

This stage collects new user data and stores it in state . This is the only stage that sets up a user from nothing. The stage does
not create a managed object directly—it simply gathers and stores the data. The Self-registration stage consumes the stored user
data and creates the managed object from it.

The IDM User Details stage executes multiple times, requesting additional requirements each time. There are different ways for
the stage to advance, depending on how the user create request is initiated.

If the user completes a self-service registration form, the input contains a user object, collected from the form, and populates
that user in state . If the user registers through social authentication, the stage reads the profile from the remote identity
provider, normalizes it, then maps it to a user object. That user object is then put into state .

If the new user object in state is incomplete or does not meet policy requirements, the stage returns a new set of requirements,
indicating the collected data and the missing data. The registering user is requested to submit the additional data, then the stage
revalidates the object in state . When all of the required data to register a user is present, the process advances to the next
stage.

Example configuration

{
 "name" : "idmUserDetails",
 "identityEmailField" : "mail",
 "socialRegistrationEnabled" : true,
 "identityServiceUrl" : "managed/user",
 "registrationProperties" : [
 "userName",
 "givenName",
 "sn",
 "mail"
],
 "registrationPreferences": ["marketing", "updates"]
},

Dependencies

This stage must occur in any registration process. It has no dependencies on previous stages but must have the Self-
registration stage somewhere downstream in the process, to create the managed user object.

•

emergency_home
The user data remains in state —no managed user object is created.

Important

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1455

Required Parameters

identityEmailField - the attribute on the managed user object that contains the user email.

identityServiceUrl - the managed object type on which this stage acts.

socialRegistrationEnabled - optional, false if not specified. Indicates whether the stage must read the user
profile from a remote identity provider and normalize it.

registrationProperties - an array of properties that must be provided by a registering user in order for the
stage to progress.

registrationPreferences - optional, an array of properties that can be requested after the user has provided the
required properties.

KBA security answer definition stage

In the context of registration, this stage supplies security questions to the user and captures the answers provided by the user.

The stage validates any answers against the user object. If the requirement is not met (incorrect number of questions answered
correctly), the stage throws a bad request exception and increments the failure count of the managed user. If the requirement is
met (correct number of questions answered correctly), the process advances to the next stage.

This stage also disallows users from entering custom questions that duplicate any questions defined by the administrator,
regardless of the locale. It does this comparison by removing any special characters and making a lowercase comparison. For
example, What Is YoUr FaVorite COLOR???? would be evaluated as the same question as what is your favorite color? .

Example configuration

{
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
},

Dependencies

The stage depends on a previous stage to populate the user ID in state . It has no dependencies on following stages.

Required Parameters

kbaConfig - reads the KBA configuration from the corresponding selfservice.kba.json file.

KBA security answer verification stage

This stage verifies security answers and validates user lockout. The stage requires a user ID in state .

The stage reads the user object and validates that the user has not already failed to answer the security questions. The stage then
obtains the configured security questions, and returns the minimum number of randomly selected questions as a requirement.

The stage validates any answers against the user object. If the requirement is not met (incorrect number of questions answered
correctly) the stage throws a bad request exception and increments the failure count of the managed user. If the requirement is
met (correct number of questions answered correctly) the process advances to the next stage.

•

•

•

•

•

•

Self-service reference PingIDM

1456 Copyright © 2025 Ping Identity Corporation

Example configuration

{
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
},

Dependencies

The stage depends on a previous stage to populate the user ID in state . It has no dependencies on following stages.

Required Parameters

kbaConfig - reads the KBA configuration from the corresponding selfservice.kba.json file.

KBA update stage

The KBA Update stage is used as part of progressive profile completion to let users update their existing security questions and to
add any additional questions that are needed. This stage updates the user object directly. If a user fails to provide sufficient
questions, the stage returns the requirements again. If the object cannot be updated, the stage throws an exception. The stage
outputs nothing to the state and has no downstream dependencies.

Example configuration

{
 "name": "kbaUpdateStage",
 "kbaConfig": null,
 "identityServiceUrl" : "managed/user",
 "uiConfig" : {
 "displayName" : "Update your security questions",
 "purpose" : "Please review and update your security questions",
 "buttonText" : "Update"
 }
}

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process. If the condition evaluates to
true , the process moves on to the next stage.

Required Parameters

kbaConfig - returns the minimum number of security questions that must be provided.

identityServiceUrl - the managed object type on which this stage acts.

uiConfig - how the requirements are conveyed to an end user.

•

emergency_home
Progressive profiling is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

•

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1457

Local auto-login stage

This stage is used to perform auto-login with IDM. The stage obtains the OAuth Login from state , and populates the user
object (username and password) in state .

The stage adds the OAuth login to the successAdditions (with a value of true) and adds the successURL from its own
configuration. If IDM can obtain all those details from state , it takes the user object, locates the username and password , and
generates a CREDENTIAL_JWT . That JWT is then placed in the successAdditions parameter.

If IDM is unable to generate the CREDENTIAL_JWT , it generates an internal server error (500).

Example configuration

{
 "name" : "localAutoLogin",
 "successUrl" : "",
 "identityUsernameField": "userName",
 "identityPasswordField": "password"
}

Dependencies

This stage should appear towards the end of a process—it cannot be the first stage in a process.

Required Parameters

successURL - the URL to which an end user should be redirected following successful registration.

identityUsernameField - the managed object property that contains the username.

identityPasswordField - the managed object property that contains the user password.

Parameters stage

This stage captures parameters in the original request. To advance, the stage assesses the input body. Any values that have been
passed in and are listed in the configuration are put into state . The stage ignores any values that are not listed in the
configuration. The self-service mechanism passes the parameters back to the client at the end of the process.

By default, this stage is required only if you are integrating IDM with AM. The stage is added automatically if you use the UI to
configure a self-service process, but can generally be ignored unless a custom client or UI requires it.

Example configuration

{
 "name" : "parameters",
 "parameterNames" : [
 "returnParams"
]
}

•

•

•

Self-service reference PingIDM

1458 Copyright © 2025 Ping Identity Corporation

Dependencies

In all of the default IDM self-service processes, this must be the first stage in the process. In a custom process, the stage
has no order dependencies, and can occur anywhere in a process. All this stage does is to copy named parameters into
successAdditions for the process to output at tag:end .

Required Parameters

parameterNames - a list of parameters the stage supports. These parameters are returned in the requirements.

Patch object stage

Currently, this stage is used only to patch the managed object with the terms and conditions acceptance obtained from state . If
the terms and conditions state is not present, the stage simply advances to the next stage in the process.

Example configuration

{
 "name" : "patchObject",
 "identityServiceUrl" : "managed/user"
}

Dependencies

This stage requires the Terms and Conditions stage to have preceded it. It can be followed by any stage and can occur
anywhere in a process.

Requirements

identityServiceUrl - the managed object type on which this stage acts.

Password reset stage

This stage updates the managed object directly, changing the value of the configured identityPasswordField . To gather the
initial requirements, the stage reads the managed user object, and checks that the email and userID of the object match what
is in state . If they do not match, the stage exits with a Bad request exception .

If they do match, the stage returns with its requirements (the new password value). When the requirements are submitted, the
stage advances, locates the userId again, and applies the new password . If the password is empty, the stage throws an
exception. If the password is valid, the stage patches the managed user object directly to update the password. If the patch fails,
the stage returns the requirements again, along with an error message (for example, a password policy requirement).

Example configuration

{
 "name" : "resetStage",
 "identityServiceUrl" : "managed/user",
 "identityPasswordField" : "password"
}

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1459

Dependencies

This stage cannot be the first stage in a process. It expects a previous stage to populate the userId and mail attributes
of the user in state .

Required Parameters

identityServiceUrl - the managed object type on which this stage acts.

identityPasswordField - the managed object property that contains the user password.

Self-registration stage

This is currently the final stage in the default user registration process. The stage obtains all the user details from state . When
the stage advances, it checks state for any idpdata , combines that with the user data, and creates the managed user object.
This stage must occur in any registration process.

Example configuration

{
 "name" : "selfRegistration",
 "identityServiceUrl" : "managed/user"
},

Dependencies

This stage must come after a stage that has populated the user in state . If the user is absent, the stage exits with an
illegal argument exception.

Required Parameters

identityServiceUrl - the managed object type that the stage creates.

Social user claim stage

This stage enables an existing managed user to claim a social identity. The stage obtains a CLIENT_TOKEN from some social
identity provider. That token includes the following data:

OAuth token

Identity provider name

•

•

info
If you are integrating IDM with AM, the OpenAM auto-login stage can follow this stage.

Note

•

emergency_home
Social authentication is deprecated and will be removed in a future release of IDM. For more information, refer to
Deprecation.

Important

•

•

Self-service reference PingIDM

1460 Copyright © 2025 Ping Identity Corporation

Renewal token

Expiration date

Using the CLIENT_TOKEN , the stage retrieves the user profile from the social identity provider and normalizes the profile into a
user object (using the regular normalization mapping for social identity providers). For more information on this mapping, refer to
Many social identity providers, one schema.

If the stage is unable to retrieve the user profile, or unable to normalize it using the mapping, it exits with an exception. It does
not return any missing requirements.

When the user profile has been normalized, the stage attempts to identify any existing managed users that match the profile. If
there are no matches, it simply advances to the next stage in the process. If it finds a match, it extracts the existing managed
object and returns that as a new set of requirements.

The new requirement is that the user must provide their password , either their managed/user password, or the password to
another social identity provider, if they registered through a separate identity provider.

The stage then does the following:

Verifies the login

Creates a managed/idp object for the user

Establishes a relationship between the managed object and the idp object

Puts OAUTH_LOGIN:true into state

Puts a claimedProfile containing the URL of the managed object that was claimed into successAdditions

Example configuration

{
 "name" : "socialUserClaim",
 "identityServiceUrl" : "managed/user",
 "claimQueryFilter" : "/mail eq \"{{mail}}\""
},

Dependencies

This stage has no dependencies on previous or subsequent stages and can occur anywhere in a process.

Required Parameters

identityServiceUrl - the managed object type against which the stage verifies the profile.

claimQueryFilter - the query filter that is used to locate the managed object from the social identity provider profile.

Notice the double-brace notation in preceding example "claimQueryFilter" : "/mail eq \"{{mail}}\"" . This notation
indicates that the named property from the user object in state is substituted for the double-braced value. In this
example, {{mail}} would become the value of the mail property of the user in state , such as bjensen@example.com ,
if that was in the user in state . You can use this notation with any user property.

•

•

•

•

•

•

•

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1461

Terms and Conditions stage

This stage evaluates a boolean accepted (true or false).

Example configuration

This stage is configured in a selfservice.terms.json file in the project conf directory and includes the following
parameters:

{
 "versions" : [
 {
 "version" : "1",
 "termsTranslations" : {
 "en" : "Sample terms and conditions"
 },
 "createDate" : "2018-04-10T09:52:25.478Z"
 }
],
 "uiConfig" : {
 "displayName" : "We have updated our terms",
 "purpose" : "To proceed, accept these terms",
 "buttonText" : "Accept"
 },
 "active" : "1"
}

The stage can stand on its own (as it does in the default registration configuration) or be called from the Conditional User
Stage with a configuration similar to the following:

{
 "name" : "conditionaluser",
 "identityServiceUrl" : "managed/user",
 "condition" : {
 "type" : "terms"
 },
 "evaluateConditionOnField" : "user",
 "onConditionTrue" : {
 "name" : "termsAndConditions"
 }
},

Dependencies

Configured as part of the Conditional User Stage. Must have the Patch object stage somewhere downstream. This stage
can occur anywhere in a process.

Requirements

Requires Terms and Conditions to be accepted before continuing to the next stage:

If accept is absent, the stage returns the requirements again.

If accept is present but false , the stage generates an exception. It is up to the client to handle that exception.

•

•

Self-service reference PingIDM

1462 Copyright © 2025 Ping Identity Corporation

If accept is true , this stage puts all the outputs into state and advances to the next stage.

Outputs

TERMS_ACCEPTED , TERMS_DATE , and TERMS_VERSION

User query stage

This stage queries the managed user repository for a user, based on the supplied query fields. If the stage identifies a user, it
populates the mail , userId , userName , and accountStatus fields in state .

Example configuration

{
 "name" : "userQuery",
 "validQueryFields" : [
 "userName",
 "mail",
 "givenName",
 "sn"
],
 "identityIdField" : "_id",
 "identityEmailField" : "mail",
 "identityUsernameField" : "userName",
 "identityServiceUrl" : "managed/user",
 "identityAccountStatusField" : "accountStatus"
},

Dependencies

This stage has no dependencies on preceding or following stages, but cannot be the only stage in a process.

Required Parameters

validQueryFields - an array of fields on which the query can be based.

identityIdField - the managed object property that contains the user ID to be provided to state .

identityEmailField - the managed object property that contains the user mail to be provided to state .

identityUsernameField - the managed object property that contains the username to be provided to state .

identityAccountStatusField - the managed object property that contains the user account status to be provided
to state .

identityServiceUrl - the managed object type on which this stage acts.

•

•

•

•

•

•

•

PingIDM Self-service reference

Copyright © 2025 Ping Identity Corporation 1463

IDM glossary

correlation query

A correlation query specifies an expression that matches existing entries in a source repository to one or more entries in a
target repository. A correlation query might be built with a script, but it is not the same as a correlation script. For more
information, refer to Correlate source objects with existing target objects.

correlation script

A correlation script matches existing entries in a source repository, and returns the IDs of one or more matching entries
on a target repository. While it skips the intermediate step associated with a correlation query , a correlation script can
be relatively complex, based on the operations of the script.

entitlement

An entitlement is a collection of attributes that can be added to a user entry via roles. As such, it is a specialized type of
assignment . A user or device with an entitlement gets access rights to specified resources. An entitlement is a property of
a managed object.

JCE

Java Cryptographic Extension, which is part of the Java Cryptography Architecture, provides a framework for encryption,
key generation, and digital signatures.

JSON

JavaScript Object Notation, a lightweight data interchange format based on a subset of JavaScript syntax. For more
information, refer to the JSON site.

JSON Pointer

A JSON Pointer defines a string syntax for identifying a specific value within a JSON document. For information about JSON
Pointer syntax, refer to the JSON Pointer RFC.

JWT

JSON Web Token. As noted in RFC 8725, "JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security
tokens that contain a set of claims that can be signed and/or encrypted." For IDM, the JWT is associated with the
JWT_SESSION authentication module.

managed object

An object that represents the identity-related data managed by IDM. Managed objects are configurable, JSON-based data
structures that IDM stores in its pluggable repository. The default configuration of a managed object is that of a user, but
you can define any kind of managed object, for example, groups or roles.

mapping

A policy that is defined between a source object and a target object during reconciliation or synchronization. A mapping
can also define a trigger for validation, customization, filtering, and transformation of source and target objects.

PingIDM IDM glossary

Copyright © 2025 Ping Identity Corporation 1465

https://www.json.org
https://www.json.org
https://www.rfc-editor.org/rfc/rfc6901.html
https://www.rfc-editor.org/rfc/rfc6901.html
https://www.rfc-editor.org/rfc/rfc8725.html
https://www.rfc-editor.org/rfc/rfc8725.html

OSGi

A module system and service platform for the Java programming language that implements a complete and dynamic
component model. For more information, refer to What is OSGi? Currently, only the Apache Felix container is
supported.

reconciliation

During reconciliation, comparisons are made between managed objects and objects on source or target systems.
Reconciliation can result in one or more specified actions, including, but not limited to, synchronization.

resource

An external system, database, directory server, or other source of identity data to be managed and audited by the identity
management system.

REST

Representational State Transfer. A software architecture style for exposing resources, using the technologies and
protocols of the World Wide Web. REST describes how distributed data objects, or resources, can be defined and
addressed.

role

IDM distinguishes between two distinct role types - provisioning roles and authorization roles. For more information, refer
to Managed Roles.

source object

In the context of reconciliation, a source object is a data object on the source system, that IDM scans before attempting to
find a corresponding object on the target system. Depending on the defined mapping, IDM then adjusts the object on the
target system (target object).

synchronization

The synchronization process creates, updates, or deletes objects on a target system, based on the defined mappings from
the source system. Synchronization can be scheduled or on demand.

system object

A pluggable representation of an object on an external system. For example, a user entry that is stored in an external
LDAP directory is represented as a system object in IDM for the period during which IDM requires access to that entry.
System objects follow the same RESTful resource-based design principles as managed objects.

target object

In the context of reconciliation, a target object is a data object on the target system, that IDM scans after locating its
corresponding object on the source system. Depending on the defined mapping, IDM then adjusts the target object to
match the corresponding source object.

IDM glossary PingIDM

1466 Copyright © 2025 Ping Identity Corporation

https://www.osgi.org/resources/what-is-osgi/
https://www.osgi.org/resources/what-is-osgi/
http://felix.apache.org/
http://felix.apache.org/

	Table of Contents
	Release notes
	What's New
	Prepare for Deployment
	Compatibility
	Bug Fixes
	Doc Updates
	What’s new
	Maintenance releases
	IDM 7.4.2 features
	Secure RCS access
	Array comparison
	_api parameter requires authorization
	Jetty 12 support
	Java 17 support

	IDM 7.4.1 features
	IDM 7.4.0 features
	Filesystem secret stores
	Microsoft Graph API email client
	Additional metrics
	Script support for countOnly queries
	mTLS for authentication to DS

	Security advisories

	Before you install
	Hardware and memory requirements
	Operating System requirements
	Java requirements
	Supported web application containers
	Supported repositories
	Supported browsers
	Supported connectors
	Supported password synchronization plugins
	Third-Party software

	Incompatible changes
	Changes between IDM 7.4.1 and 7.4.2
	_api parameter requires authorization
	Array comparison
	Java upgrade

	Changes between IDM 7.4.0 and 7.4.1
	Workflow engine upgrade

	Changes between IDM 7.3.x and 7.4.0
	IDM requires JDK 11.0.20 or higher
	The DB2 driver is now OSGi-compliant

	Deprecation
	Progressive profile
	Social authentication
	Integrated Windows Authentication (IWA)
	Access configuration in access.js
	Actions on scheduler endpoint
	Health endpoints
	Conditional query filters
	Self-Service stages
	oauthReturn endpoint
	timeZone in schedules
	MD5 and SHA-1 hash algorithms
	JAVA_TYPE_DATE attribute type
	POST request with ?_action=patch
	minLength property
	Read requests at top of /config
	Defining object schema type attribute in an array when it is a single type

	Discontinued
	IDM 7.4.2 removals
	Apache Felix web console
	Java 11 support
	Gzip handler compressionLevel and excludedAgentPatterns properties

	IDM 7.4.1 removals
	IDM 7.4.0 removals
	Sample notification configuration files
	Splunk and Elasticsearch audit handlers

	Fixed issues
	IDM 7.4.2
	IDM 7.4.1
	IDM 7.4.0

	Limitations
	Workflow limitations
	Queries with a DS repository
	Queries with an OracleDB repository
	Queries with privileges
	Connector limitations
	If-Match requests

	Known issues
	IDM issues

	Documentation
	Release levels and interface stability
	ForgeRock product release levels
	ForgeRock product stability labels

	Getting started
	Start Here
	Demo: Getting Started
	Where To Go from Here
	About IDM
	What Can You Do With IDM?
	ForgeRock Identity Management Integrations

	IDM demo : Getting started
	Set up the server
	What You Need Before Starting
	Download and start the server

	Demo data files
	Reconcile data stores
	Reconcile after an update
	Stop and remove the server

	Where to go from here
	Reconciliation
	Authentication Modules
	Password Management
	User Role Management
	Business Processes and Workflows
	Remote Data Stores
	Additional Samples

	Samples
	Samples Summary
	Start Here
	Sync With CSV
	Sync With LDAP
	Sync Two External Resources
	liveSync
	Samples provided with IDM
	Start here
	Run the samples
	Prepare IDM
	LDAP server configuration
	Start DS using sample LDIF data

	Synchronize data from a CSV file to IDM
	Sample overview
	Sample configuration files
	Run the sample

	One-way synchronization from LDAP to IDM
	Prepare the sample
	Run the sample

	Two-way synchronization between LDAP and IDM
	Prepare the sample
	Run the sample

	Synchronize LDAP groups
	Sample overview
	Prepare the sample
	Run the sample

	Synchronize LDAP group membership
	Prepare the sample
	Run the sample

	Synchronize data between two external resources
	Configure email for the sample
	Run the sample

	Asynchronous reconciliation using workflow
	Run the sample

	LiveSync with an LDAP server
	Set up the LDAP resources
	Run the sample
	Reconcile the two LDAP data stores
	Configure liveSync
	Test liveSync

	Synchronize accounts with the Google Apps connector
	Prepare the sample
	Configure the Google Apps connector
	Run the sample

	Synchronize users between Salesforce and IDM
	Prepare the sample
	Run the sample
	Use the admin UI
	Use the command line
	Configure the Salesforce connector
	Run reconciliation

	Synchronize Kerberos user principals
	Configure the Kerberos connector
	Run the sample

	Store multiple passwords for managed users
	Configure the multiple passwords sample
	Password history policy
	LDAP server configuration
	Show multiple accounts
	Show the password history policy

	Link Multiple Accounts to a Single Identity
	Sample Overview
	Prepare the Sample
	Run the Sample
	Create the Users, Roles, and Assignments
	Reconcile Managed Users to the LDAP Server

	Link historical accounts
	Sample overview
	Run the sample

	Provision users with roles
	Sample overview
	Prepare the sample
	Run the sample
	Add assignments to a role definition
	Grant a role to a user and observe that user’s role assignments
	Propagate assignments to an external system
	Remove a role grant from a user and observe that user’s role assignments

	Provision users with workflow
	Prepare the sample
	Run the sample

	Connect to DS with ScriptedREST
	Set up DS
	Run the sample

	Connect to Active Directory with the PowerShell connector
	Sample overview
	Prepare the sample
	Run the Sample

	Synchronize data between IDM and Azure Active Directory
	Prepare the sample
	Configure the MS Graph API connector
	Run the sample
	Manage users in Azure AD
	Manage groups in Azure AD

	Connect to a MySQL database with ScriptedSQL
	Configure the external MySQL database
	Run the sample
	Test the event hooks
	Run the sample with paging

	Direct audit information to MySQL
	About the configuration files
	Configure the MySQL database
	Run the sample

	Direct audit information to a JMS broker
	Dependencies for JMS messaging
	Configure SSL for Apache ActiveMQ Artemis
	Configure a secure port for JMS messages

	Start the ActiveMQ Artemis broker and IDM
	Configure and use a JMS consumer application

	Synchronize data between MongoDB and IDM
	Sample overview
	Configure the MongoDB database
	Run the sample

	Synchronize data between IDM and HubSpot
	Prepare the sample
	Get the refresh token

	Run the sample

	Synchronize data between IDM and DocuSign
	Run the sample

	Synchronize data between IDM and a SCIM provider
	Run the sample

	Subscribe to JMS messages
	Sample overview
	Dependencies for JMS messaging
	Configure SSL for Apache ActiveMQ Artemis
	Configure a secure port for JMS messages

	Start the ActiveMQ Artemis broker and IDM
	Use the ActiveMQ Artemis UI to access the REST interface
	Customize the scripted JMS sample

	Authenticate using a trusted servlet filter
	Prepare the sample
	The sample servlet filter
	Run the sample
	Customize the sample for an external system

	Create a custom endpoint
	Run the sample

	Installation
	Install IDM
	Interact with IDM
	Repository
	Startup Configuration
	Install in a Cluster
	Jetty Configuration
	Java requirements
	Install and run IDM
	Interact with IDM
	REST interface introduction
	Format REST output for readability

	IDM user interfaces

	IDM as a service
	IDM as a Linux service
	IDM as a Windows service

	Start a new project
	Select a repository
	Embedded DS repository
	External DS repository
	Configure a single external DS instance as a repository
	Configure two DS repositories in an active/passive deployment
	Configure mTLS

	MySQL repository
	Microsoft SQL repository
	Install Microsoft SQL Server and associated tools
	Configure IDM to Use the SQL Repository

	Oracle DB repository
	Set up Oracle as an IDM repository

	PostgreSQL repository
	Configure the PostgreSQL repository and IDM
	Configure Array Fields

	IBM DB2 repository
	Kerberos authentication with a DB2 repository

	JDBC repository configuration
	JDBC database access rights
	Case insensitivity for a JDBC repo
	JDBC over SSL

	Configuration and monitoring
	Startup configuration
	Monitor server health
	Basic health checks
	Session information
	Health check service

	Installed modules and features

	IDM in a cluster
	IDM cluster configuration
	Configuration updates in a cluster
	Repository-based configuration
	File-based configuration

	Manage configuration with Docker
	Build a base image

	Scheduled tasks across a cluster
	Manage nodes in a cluster
	Manage nodes over REST
	Manage Nodes Using the admin UI
	Remove Nodes

	Host and port information
	Property files
	boot.properties
	config.properties
	logging.properties
	system.properties

	Embedded Jetty configuration
	IDM configuration properties in Jetty
	Explicit Bean properties
	Generic Properties

	Jetty default settings
	Additional servlet filters
	Secure protocol configuration
	Jetty thread settings
	Gzip compression for HTTP responses

	Upgrade
	Migrate Configuration
	Update Repository
	Migrate Data
	About upgrades
	Supported upgrade paths

	Before you upgrade
	Migrate your configuration
	Migrate configuration files
	Migrate boot.properties
	Migrate security settings
	Migrate custom scripts
	Migrate custom bundles
	Migrate provisioner files
	Migrate UI customizations

	Update the repository
	Upgrade an existing repository
	Create a new repository

	Migrate data
	Configure the Migration Service
	Run the Data Migration

	Upgrade a clustered deployment
	Update to a maintenance release

	Setup
	Architecture
	Configuration
	Command-Line Interface
	User Interface
	Architectural overview
	Modular framework
	Infrastructure modules
	Core services
	Access layer

	Server configuration
	Configuration objects
	Single instance configuration objects
	Multiple instance configuration objects

	Configuration changes
	Default REST context
	HTTP I/O buffer
	Configure the server over REST
	Property value substitution
	Expression resolvers
	Environment variables
	Java system properties
	Expression files
	Framework configuration properties
	Configuration files

	Evaluation order of precedence
	Transforming data types
	Configuration property value storage
	Limitations of property value substitution
	In the admin UI
	In connector configurations

	HTTP clients

	Command-line interface
	configexport
	configimport
	configureconnector
	encrypt
	secureHash
	keytool
	validate

	IDM user interface
	Manage dashboards
	Default dashboards
	Quick start dashboard
	Add Connector
	Create Mapping
	Manage Roles
	Add Device
	Configure Registration
	Configure Password Reset
	Manage Users
	Configure System Preferences

	System monitoring dashboard
	Resource report
	Business report

	Custom dashboards
	Create a new dashboard

	Add and move widgets
	Admin UI widgets
	admin UI reporting widgets
	Social widgets
	System status widgets
	Utility widgets

	Customize the admin UI
	Default UI subdirectories
	Customize the UI theme
	Change the default logo
	Create project-specific themes
	Set custom response headers
	Disable the Admin and End User UIs
	Protect custom static web resources
	Cache static UI files in memory

	Reset user passwords
	Change user passwords through the admin UI
	Use an external password reset system

	Object modeling
	Managed objects
	Users
	Relationships
	Roles
	Policies
	Managed objects
	Define the schema
	Create and modify object types
	Default values

	Virtual properties
	Virtual properties using onRetrieve scripts
	Relationship-derived virtual properties

	Run scripts on managed objects
	Track user metadata

	Users
	Managed users examples
	Retrieve the IDs of all managed users in the repository
	Query managed users for a specific user
	Retrieve a managed user by their ID
	Add a user with a specific user ID
	Add a user with a system-generated ID
	Update a user
	Delete a user

	Relationships between objects
	Define a relationship type
	Create a relationship between two objects
	Configure relationship change notification
	Validate relationships between objects
	Create bidirectional relationships
	Grant relationships conditionally
	View relationships over REST
	View relationships in graph form
	Add the Identity Relationships widget to a dashboard
	Use the Identity Relationships widget

	Manage relationships using the admin UI
	Create a new Device object type
	Configure the relationship between a device and a user
	Demonstrate the relationship
	View the relationship configuration in the UI

	Roles
	IDM role types
	Managed roles
	Manipulate roles
	Create a role
	Use the admin UI
	Use REST

	List roles
	Grant roles to a user
	Grant roles statically
	Use REST
	Use the admin UI

	Grant roles dynamically
	Grant a role based on a condition

	Query a user’s roles
	Delete a user’s roles
	Over REST
	Use the admin UI

	Delete a role definition

	Use temporal constraints to restrict effective roles
	Add a temporal constraint to a role
	Add a temporal constraint to a role grant

	Use assignments to provision users
	Create an Assignment
	Attribute encryption on assignments

	Add an assignment to a role
	Delete an assignment

	Effective roles and effective assignments
	Roles and relationship change notification
	Managed role script hooks
	Map roles to external groups

	Organizations
	Manage organizations over REST
	Organizations in high latency environments

	Use policies to validate data
	Default policy for managed objects
	Policy script
	Policy configuration objects
	Policy implementation functions

	Default policy reference
	Policy configuration element
	Validate managed object data types
	Configure policy validation using the admin UI

	Extend the policy service
	Add custom scripted policies
	Add conditional policy definitions

	Disable policy enforcement
	Manage policies over REST
	List the defined policies
	Validate objects and properties over REST
	Validate field removal
	Force validation of default values
	Validate properties to unknown resource paths
	Pre-registration validation example

	Store managed objects in the repository
	Repository configuration files
	JDBC connection configuration
	JDBC database table configuration
	DS repository configuration

	Object mappings
	Mappings with a JDBC repository
	Generic, explicit, and hybrid, oh my!
	Generic mappings (JDBC)
	Improve generic mapping search performance (JDBC)

	Explicit mappings (JDBC)
	Hybrid mappings (JDBC)
	Object type conversion
	Convert an explicit mapped object to a hybrid mapped object (JDBC)
	Convert a generic mapped object to an explicit mapped object (JDBC)
	Convert a generic mapped object to a hybrid mapped object (JDBC)

	Mappings with a DS repository
	Generic mappings (DS)
	Explicit mappings (DS)
	Specify how IDM IDs map to LDAP entry names

	Relationship properties in a DS repository

	Access Data Objects
	Access data objects using scripts
	Access data objects using the REST API
	Access data objects by remote proxy
	How to determine the value for instanceName
	Using the filesystem
	Using REST

	Prerequisites
	Mapping
	Authentication
	Examples
	Basic authentication
	Bearer/Oauth2 authentication
	REST request
	Script

	Define and call data queries
	Queries on object array properties (JDBC)
	Special characters in queries
	Common filter expressions
	Parameterized queries
	Native query expressions
	Construct queries
	Comparison expressions
	Presence expressions
	Literal expressions
	In expression clause
	Filter expanded relationships
	Complex expressions
	Filter objects in arrays

	Page query results
	Sort query results
	Recalculate virtual property values in queries

	Upload files to the server

	Data models and objects reference
	Managed objects reference
	Managed object schema
	Data consistency
	Managed object triggers
	State triggers
	Object storage triggers
	Property storage triggers
	Storage trigger sequences

	Managed object encryption
	Managed object configuration
	Managed-object-config object properties
	Property configuration properties
	Script Object Properties
	Property Encryption Object
	Property Hash Object

	Custom managed objects
	Set up a managed object type
	Manipulate managed objects declaratively
	Manipulate managed objects programmatically
	Create objects
	Update objects
	Patch objects
	Delete objects
	Read objects
	Query object sets

	Access managed objects through the REST API

	Configuration objects
	When To use custom configuration objects
	Custom configuration object naming conventions
	Mapping configuration objects To configuration files
	Configuration objects file and REST payload formats
	Accessing configuration objects through the REST API
	Accessing configuration objects programmatically
	Creating objects
	Updating objects
	Deleting objects
	Reading objects

	System objects
	Audit objects
	Links

	Authentication and authorization
	Authentication
	Authorization & roles
	Delegated administration
	Authentication
	IDM and HTTP basic authentication
	Password changes
	Character encoding in authentication headers
	Authenticate users
	Attributes used for authentication
	Internal users
	Change the administrator user password

	Authentication and session modules
	JWT_SESSION
	Authenticate without a session
	Deterministic ECDSA signatures

	STATIC_USER
	TRUSTED_ATTRIBUTE
	MANAGED_USER
	INTERNAL_USER
	CLIENT_CERT
	Test client certificate authentication

	PASSTHROUGH
	SOCIAL_PROVIDERS
	IWA
	Create a specific Kerberos user account
	Create a keytab file
	Configure IDM for IWA

	Authenticate through AM
	Test authentication through AM

	Authenticate as a different user
	Authentication and roles
	Dynamic role calculation
	Roles, authentication, and the security context

	Authorization and roles
	Modify and extend the router authorization script
	Configure access control in access.json
	Change the access configuration over REST
	Grant internal authorization roles manually
	Secure access to workflows
	Secure RCS access

	Administrative users
	Delegated administration
	How privileges restrict administrative access
	Determine access privileges
	Create privileges
	Adding privileges using the admin UI
	Adding privileges using REST
	Policies related to privileges

	Get privileges on a resource
	Create a delegated administrator
	Configure search UI for delegated administrators
	Minimum filter search length
	Disable sort and filter for resource collections

	Authentication and session module configuration

	Synchronization
	Synchronization overview
	Mappings
	Situations and actions
	Filter synchronization data
	Implicit sync and liveSync
	Reconciliation performance
	Synchronization overview
	Synchronization types
	Synchronization configuration overview
	Data mapping model

	Connections between resources
	Configure connectors using the admin UI
	Edit connector configuration files
	Configure connectors using REST

	Resource mapping
	Specifying default fields
	When to specify
	When not to specify

	Configure a resource mapping
	Configure mappings using the admin UI

	Remove a mapping
	Transform attributes using a mapping
	Configure attribute transformation using the admin UI

	Default attribute values in a mapping
	Configure default attribute values using the admin UI

	Scriptable conditions in a mapping
	Configure mapping conditions using the admin UI

	Map a single source object to multiple target objects
	Configure link qualifiers using the admin UI

	Prevent the accidental deletion of a target system
	Prevent accidental target deletion using the admin UI

	Scripts in mappings
	Construct and manipulate attributes
	Perform other actions
	Generate log messages

	Reuse links between mappings
	Reconcile with case-insensitive data stores

	Synchronization situations and actions
	How IDM assesses synchronization situations
	Source reconciliation
	Target reconciliation
	Situations specific to implicit synchronization and liveSync

	Synchronization actions
	Launch a script as an action
	Launch a workflow as an action

	Correlate source objects with existing target objects
	Configure correlation using the admin UI
	Correlation queries
	Use filtered queries to correlate objects
	Create Correlation Queries Using the Expression Builder

	Correlation scripts
	Correlation Script Using Link Qualifiers
	Configure a correlation script using the admin UI

	Synchronization operations
	Manage reconciliation
	Trigger a reconciliation
	Cancel a reconciliation
	List reconciliation history
	Reconciliation Properties

	Reconciliation details
	View reconciliation details using the admin UI
	Reconciliation association details
	Purge reconciliation statistics

	Manage liveSync
	Trigger liveSync using the admin UI
	Troubleshoot liveSync failures

	Filter synchronization data
	Filter source and target objects with scripts
	Restrict reconciliation by using queries
	Restrict reconciliation queries using the admin UI

	Restrict reconciliation to a specific ID
	Restrict implicit synchronization to specific property changes

	Implicit synchronization and liveSync
	Array comparison
	Disable automatic synchronization operations
	Configure the liveSync retry policy
	Improve reliability with queued synchronization
	Configure queued synchronization
	Tune queued synchronization
	Manage the synchronization queue
	Recover mappings when nodes are down
	Balance mapping locks across nodes

	Synchronization failure compensation

	Schedule synchronization
	Configure scheduled synchronization
	Schedule liveSync using the admin UI

	Clustered reconciliation
	Configure clustered reconciliation for a mapping
	Clustered reconciliation progress
	Cancel a clustered reconciliation

	Tuning reconciliation performance
	Correlate empty target sets
	Prefetch links
	Parallel reconciliation threads
	Improve reconciliation query performance
	Paging reconciliation query results

	Asynchronous reconciliation
	Configure asynchronous reconciliation Using a workflow

	Import bulk data
	Generate a CSV template
	Upload a CSV file
	Query bulk imports
	Limit query to a specific object type

	Handle failed import records
	Cancel an import in progress
	Change the HTTP request timeout

	Synchronization reference
	Object-mapping objects
	Property objects
	Policy objects
	Script Object

	Links
	Queries
	Reconciliation stages
	REST API
	Reconciliation duration metrics
	Recon tasks
	Metrics Collected

	Security
	Certificates and keys
	Passwords
	Network
	Data
	General security considerations
	Secure the repository
	Secure IDM data
	Secure sensitive values
	Reversible encryption
	Configure encryption using the admin UI

	Salted hash algorithms
	Configure hashing using the admin UI

	Encrypted objects
	Encrypt and decrypt properties over REST

	Sensitive files and directories
	Protect sensitive files in Unix
	Protect sensitive files in Windows

	Read-only installation
	Prep
	Redirect audit and logging data
	Finishing touches

	Manage password policies
	Password policy
	Password history policy

	Multiple passwords per linked resource
	Random passwords
	password property
	Email rate limiting

	Secure network connections
	Use TLS/SSL
	Restrict REST access to the HTTPS port
	Protect sensitive REST interface URLs
	Enable HTTP Strict-Transport-Security
	Restrict the HTTP payload size
	Deploy securely behind a load balancer
	Connect to IDM through a proxy server
	Protect against Cross-Site Request Forgery

	Stores, certificates, and keys
	The IDM keystore
	Change the default keystore password

	Secret stores
	Configure secret stores
	Mapping secretIDs to key aliases
	Filesystem secret stores
	Example: Create a new user type

	Property secret stores
	Hardware secret stores
	HSM configuration
	HSM default encryption keys
	Configure IDM to support an HSM provider

	Encryption key management
	Manual key rotation
	Scheduled key rotation

	Change the active alias for managed object encryption

	CA-signed certificates
	Import CA-signed certificates
	Delete certificates
	Delete root CA certificates

	FIPS 140-2 compliance
	Download the Bouncy Castle libraries
	Enable the Bouncy Castle FIPS provider in the JVM
	Add Bouncy Castle providers to the existing JVM
	Add Bouncy Castle providers to IDM conf/java.security
	Build a distribution of the JVM that supports Bouncy Castle

	Create the IDM Bouncy Castle keystore and cryptographic keys
	Provide the JVM to IDM
	Configure the Bouncy Castle keystore in secrets.json
	Disable Bouncy Castle FIPS-approved mode

	Hide unused REST endpoints
	Secure the API Explorer
	Adjust log levels
	Disable automatic configuration updates
	Disable configuration file writes

	Scripting
	Script Configuration
	Custom Endpoints
	Script Triggers
	Script Variables
	Script configuration
	Call a script from the IDM configuration
	Examples

	Validate scripts over REST
	Create custom endpoints to launch scripts
	Custom endpoint configuration
	Custom endpoint scripts
	Script exceptions
	Write an API descriptor for a custom endpoint

	Register custom scripted actions
	Example scenario

	Request context chain
	Script triggers
	Script triggers defined in the managed object configuration
	Managed object configuration object
	Property object

	Script triggers defined in mappings
	Object-mapping object
	Property object
	Policy object

	Script triggers defined in the router configuration
	The augmentSecurityContext trigger

	Script variables
	Variables available to scripts in custom endpoints
	Variables available to role assignment scripts
	The identityServer variable

	Router configuration
	Filter objects
	Pattern matching in the router configuration
	Script execution sequence
	Script scope

	Scripting function reference
	Log functions

	Workflow
	Workflow Tools
	Enable Workflows
	Invoke Workflows
	Custom Workflows
	BPMN 2.0 and workflow tools
	Enable workflows
	Configure the workflow engine
	Configure workflow email

	Configure the workflow data source
	Custom workflow object mapping

	Test workflow integration
	Create workflows
	Workflow definition comparison

	Query workflows
	Invoke workflows
	Workflow audit
	Example workflow audit events using the provisioning-with-workflow sample:

	Custom workflow templates

	Password synchronization plugins
	Password Sync Plugins
	Synchronize With DS
	Synchronize With AD
	Password synchronization plugins
	Synchronize passwords with DS
	Set up IDM and DS
	Prepare IDM
	Prepare DS

	Secure communication between IDM and DS
	Enable DS to trust the IDM certificate
	Enable IDM to trust DS certificates
	Configure the plugin for AM bearer tokens

	Install and configure the DS plugin
	For regular IDM authentication
	Configure IDM for password synchronization

	For authentication with AM bearer tokens

	Test the DS plugin
	Update the DS plugin
	Uninstall the DS plugin

	Synchronize passwords with Active Directory
	Install the Active Directory password synchronization plugin
	Generate a self-signed certificate
	Add a certificate to the Windows certificate store

	Upgrade the Active Directory password synchronization plugin
	Configure the Active Directory password synchronization plugin
	Create or edit registry key values
	Registry key values
	Authentication method
	Password encryption
	Connection & synchronization
	IDM availability
	Logging configuration
	Other

	Registry key value encryption
	Registry key value validation
	Example userAttribute modification

	Start or stop the plugin
	Windows Service Manager
	Command line
	Plugin status

	Help command
	Uninstall the Active Directory password synchronization plugin
	Remove installed authentication certificates

	Audit
	Configure Audit
	Schema
	Notifications
	Configure audit logging
	Configure the audit service
	Specify the audit query handler
	Choose audit event handlers
	JSON audit event handler
	JSON standard output audit event handler
	CSV audit event handler
	Restrictions on configuring the CSV audit handler in the admin UI
	Configure Tamper Protection for CSV Audit Logs

	Router Audit Event Handler
	Repository Audit Event Handler
	JMS audit event handler
	Dependencies for JMS messaging
	Configure the JMS audit event handler
	Configure SSL for Apache ActiveMQ Artemis

	JMS message format
	JMS, TIBCO, and SSL

	Syslog audit event handler

	Audit event topics
	Default audit event topics
	Custom audit event topics

	Filter audit data
	Filter by action
	Filter by field value
	Filter with a script
	Filter by trigger

	Use policies to filter audit data
	Default audit log safelists by event topic
	Configure audit filter policies in the admin UI
	Audit filter example

	Monitor specific activity log changes
	Fields to watch
	Password fields to watch

	Configure an audit exception formatter
	Change audit write behavior
	Purge obsolete audit information
	Log file rotation
	Log file retention
	Query audit logs over REST
	View audit events in the admin UI

	Audit log schema
	Reconciliation event topic properties
	Synchronization event topic properties
	Access event topic properties
	Activity event topic properties
	Authentication event topic properties
	Configuration event topic properties

	Audit event handler configuration
	Common audit event handler properties
	JSON audit event handler properties
	CSV audit event handler properties
	Repository and router audit event handler properties
	JMS audit event handler properties
	Syslog audit event handler properties

	Configure notifications
	Changes to the notification property name
	Custom notifications
	Limits on notification endpoints

	Schedules
	Scheduling
	Task Scanner
	Schedule tasks and events
	Configure the scheduler service
	Configure schedules
	Schedule configuration properties
	Manage schedules using REST
	Validate cron trigger expressions
	Define a schedule
	View scheduled job details
	Query scheduled jobs
	Update a schedule
	List running scheduled jobs
	Trigger a schedule manually
	Pause and resume a scheduled job
	Pause all scheduled jobs
	Resume all scheduled jobs
	Query schedule triggers
	Delete a schedule

	Manage schedules using the admin UI

	Schedules and daylight savings time
	Persistent schedules
	Scheduler metrics
	Example scheduler metrics
	scheduler.trigger.acquired.success
	scheduler.trigger.fired
	scheduler.job.job-group.job-name.executed
	scheduler.job.job-group.job-name.completed

	Schedule examples

	Scan data to trigger tasks
	Activate and deactivate accounts
	The activate task
	The expire task

	Create a new scanning task
	Manage scanning tasks
	Manage scanning tasks using REST
	Create a scanning task
	Trigger a scanning task
	Cancel a scanning task
	List the scanning tasks

	Manage scanning tasks using the admin UI

	External services
	Email
	External REST
	Outbound email
	Email service configuration types
	MS Graph API requirements
	Configure Azure for MS Graph API mail client

	Configure outbound email
	Sample email configuration
	External email configuration properties

	Send mail using REST
	Mail templates

	Send mail using a script
	Mail templates

	external/email POST parameters
	Email rate limiting

	Access External REST Services
	Configure the External REST Service
	External REST configuration properties

	Invocation Parameters
	Support for Non-JSON Responses

	Monitoring and metrics
	Server Logs
	Monitoring
	Metrics
	Server logs
	Log message handlers
	Log message format
	Logging level
	Log file rotation
	Disable logs

	Monitoring
	Enable metrics
	Dropwizard widget
	Prometheus endpoint
	Disable Prometheus
	Configure Prometheus
	Configure Grafana
	Create a Grafana dashboard

	Load testing
	Planning tests
	Understanding resource use
	Executing tests

	Metrics reference
	Metric types
	Timer
	Summary
	Gauge

	API metrics
	API metrics available in IDM
	API JVM metrics available in IDM
	API scheduler metrics available in IDM
	API workflow metrics available in IDM

	Prometheus metrics
	Prometheus metrics available in IDM
	Prometheus JVM metrics available in IDM
	Prometheus scheduler metrics available in IDM
	Prometheus workflow metrics available in IDM

	REST API reference
	Start Here
	API Explorer
	REST API Structure
	REST Endpoints
	ForgeRock Common REST
	Common REST Resources
	Common REST Verbs
	Common REST Parameters
	Common REST Extension Points
	Common REST API Documentation
	Publish OpenAPI Documentation

	Create
	Read
	Update
	Delete
	Patch
	Patch Operation: Add
	Patch Operation: Copy
	Patch Operation: Increment
	Patch Operation: Move
	Patch Operation: Remove
	Patch Operation: Replace
	Patch Operation: Transform
	Patch Operation Limitations

	Action
	Query
	HTTP status codes

	REST and IDM
	Common REST and IDM

	REST API Explorer
	Example

	REST API versioning
	Specify the API version in REST calls
	Specify the API Version in Scripts
	API Version Header Warnings
	Filter Resource Path Warnings

	REST API structure
	URI scheme
	Object identifiers
	Content negotiation
	Conditional operations

	REST endpoints
	Server configuration
	Managed users
	Managed organizations
	System objects
	List available connector configurations:
	List remote systems, and their status:
	Run liveSync on a specified system object:
	Run a script on a system object:
	Authenticate to a system object
	Create a new system object
	Rename a system object
	List IDs associated with a specific system object:

	Internal objects
	Schedules
	Scanning tasks
	Audit logs
	Reconciliation operations
	Synchronization service
	Scripts
	Privileges
	Email
	File upload
	Bulk import
	Server state
	Social identity providers
	Workflows

	Self-service reference
	Self-Service Overview
	Self-Registration
	Social Registration
	Password Reset
	Username Retrieval
	Additional Configuration
	Custom Stages
	Stage Reference
	About user self-service
	The self-service process flow

	Self-registration
	Configuration
	Registration Form
	Email Registration
	User Preferences
	Multiple Registration Flows
	Examples
	User self-registration
	Configure self-registration using the admin UI
	Managing user self-registration over REST

	User self-registration form
	Self-Service registration emails
	User preferences
	Review preferences as an end user
	User preferences and reconciliation

	Multiple user self-registration flows
	Self-registration REST requests

	Social registration
	Enable the social providers authentication module
	OpenID connect authorization code flow
	Many social identity providers, one schema
	Amazon social identity provider
	Set up Amazon
	Configure an Amazon social identity provider
	Configure user registration to link to Amazon
	Amazon social identity provider configuration details

	Apple social identity provider
	Configure Apple Login
	Configure an Apple identity provider
	Configure user registration through Apple
	Apple social identity provider configuration details

	Facebook social identity provider
	Set up Facebook
	Configure a Facebook social identity provider
	Configure user registration to link to Facebook
	Facebook social identity provider configuration details

	Google social identity provider
	Set up Google
	Configure a Google social identity provider
	Configure user registration to link to Google
	Google social identity provider configuration details

	Instagram social identity provider
	Set up Instagram
	Configure an Instagram social identity provider
	Configure user registration to link to Instagram
	Instagram social identity provider configuration details

	LinkedIn social identity provider
	Set up a LinkedIn app
	Configure a LinkedIn social identity provider
	Configure user registration with LinkedIn
	LinkedIn social identity provider configuration details

	Microsoft social identity provider
	Set up Microsoft
	Configure a Microsoft social identity provider
	Configure user registration to link to Microsoft
	Microsoft social identity provider configuration details

	Salesforce social identity provider
	Set up Salesforce
	Configure a Salesforce social identity provider
	Configure user registration to link to Salesforce
	Salesforce social identity provider configuration details

	Twitter social identity provider
	Set up Twitter
	Configure Twitter as a social identity provider
	Configure user registration to link to Twitter
	Twitter social identity provider configuration details

	Vkontakte social identity provider
	Set up Vkontakte
	Configure a Vkontakte social identity provider
	Configure user registration to link to Vkontakte
	Vkontakte social identity provider configuration details

	WeChat social identity provider
	Set up WeChat
	WeChat unique requirements
	Configure a WeChat social identity provider
	Configure user registration to link to WeChat
	WeChat social identity provider configuration details

	WordPress social identity provider
	Set up WordPress
	Configure a WordPress social identity provider
	Configure user registration to link to WordPress
	WordPress social identity provider configuration details

	Yahoo social identity provider
	Set up Yahoo
	Configure Yahoo as a social identity provider
	Configure user registration to link to Yahoo
	Yahoo social identity provider configuration details

	Custom social identity provider
	Prepare IDM
	Set up a custom social identity provider
	Configure a custom social identity provider
	Configure user registration to link to a custom provider
	Custom social identity provider configuration details

	Social providers authentication module
	Account claiming: links between accounts and social identity providers
	When the email address is new
	When one user has the same email address
	When multiple users have the same email address
	The process for end users
	Reviewing linked accounts as an administrator
	Reviewing linked accounts over REST
	Reviewing linked accounts from the admin UI

	Social identity providers over REST
	Test social identity providers
	Social registration scenarios
	Social identity widgets
	Social identity provider button and badge properties

	Progressive profile
	Progressive profile completion form
	Progressive profile completion conditions
	Custom progressive profile conditions

	Configuring progressive profile completion through the admin UI

	The auth.profile.json file
	Progressive profile completion and metadata
	Defining overall profile completion

	Progressive profile REST requests
	Viewing profile completeness

	Password reset
	User password reset configuration files
	Configuring password reset from the admin UI

	Email for password reset
	Password reset REST requests

	Username retrieval
	Username retrieval configuration
	Configuring Forgotten Username Retrieval From the admin UI

	Email for forgotten username
	Forgotten username REST requests

	Additional configuration
	Email Notification
	Privacy & Consent
	UMA & Trusted Devices
	Terms & Conditions
	User Self-Service Tokens
	End User UI Notifications
	reCAPTCHA
	Identity Fields
	Security Questions
	Custom Policies
	End User UI
	Notification emails
	User self-registration email template
	Managing email templates using the admin UI

	Privacy and consent
	Configure privacy and consent using the admin UI
	Regulate HTTP access to personal data
	Restrict HTTP access to sensitive data

	UMA, trusted devices, and privacy
	User Managed Access in IDM
	Configuring Trusted Devices on IDM

	Terms & Conditions
	Terms & Conditions configuration files
	Preview Terms & Conditions as an end user
	Updating Terms & Conditions over REST
	Identifying when a user accepts Terms & Conditions
	Configure Terms & Conditions using the admin UI

	Tokens and user self-service
	End User UI notifications
	Google reCAPTCHA
	Identity fields
	Security questions
	Security questions and self-registration
	KBA answer hashing

	KBA attempts account lockout
	Prompt to update security questions

	Custom policies for self-registration and password reset
	Self-service end user UI
	Localize the end user UI
	Change the end user UI path
	Provide a logout URL to external applications
	Privacy: my account information in the End User UI
	Personal information
	Sign-In & security
	Preferences
	Trusted devices
	Authorized applications
	Personal data sharing
	Account controls

	Custom self-service stages
	Sample stage
	Build the sample stage

	Configuration for the sample stage
	Test the custom stage

	Self-service stage reference
	All-in-one registration
	OpenAM auto-login stage
	Attribute collection stage
	Captcha stage
	Conditional User Stage
	Consent Stage
	Email validation stage
	IDM user details stage
	KBA security answer definition stage
	KBA security answer verification stage
	KBA update stage
	Local auto-login stage
	Parameters stage
	Patch object stage
	Password reset stage
	Self-registration stage
	Social user claim stage
	Terms and Conditions stage
	User query stage

	IDM glossary

