
PingIntelligence



ABS 3.2.2 Release Notes
MongoDB critical reads: ABS 3.2.2 release provides an enhancement for critical read operations in
MongoDB. Critical read operations are now done through MongoDB's primary node.

ASE 3.2.2 Release Notes
Keep alive connection flag for ASE sideband

ASE 3.2.2 introduces enable_sideband_keepalive variable with a default value as false in
ase.conf file. This variable is only applicable for sideband deployments of ASE (mode=sideband in
ase.conf). When set to true, ASE sends a keep-alive in response header for the TCP connection
between API gateway and ASE. With the default falsevalue, ASE sends a connection close in response
header for connection between API gateway and ASE. Following is a snippet of ase.conffile with the new
variable:
; enable connection keepalive for requests from gateway to ase.
; This setting is applicable only in sideband mode.
; Once enabled ase will add 'Connection: keep-alive' header in response
; Once disabled ase will add 'Connection: close' header in response
enable_sideband_keepalive=false

3.2.1 Release Notes
• ASE
• ABS
• AAD
• Dashboard

ASE

• Install ASE as a non-root user: ASE can be installed as a non-root user with a customer defined
ASE installation path. For more information, see Install ASE Software

• Purge script: ASE purge script can now be run as a non-root user. Purge script now deletes the
controller.log files. For more information, see Purge log files

ABS

• Install ABS as a non-root user: ABS AI Engine can be installed as a non-root user with a
customer defined. For more information, see Install ABS AI engine

• Disk usage limit: A new parameter percentage_diskusage_limit is added to the abs.init
file. This parameter governs the disk usage limit at which ABS stops accepting access log files from
ASE. The default value is set to 80%. This parameter is also reported in the ABS Admin API. For more
information, see Admin REST API

• Email alert in the log file: All the email alerts are now logged in the abs.log file. For more
information, see ABS alerts

• Update.sh script: The ABS update.sh script can now update additional abs.init file
parameters:

◦ window_length
◦ url_limit
◦ discovery_subpath
◦ percentage_diskusage_limit

For more information, see Update the training variables

PingIntelligence copyright © 2022

| 2

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/api_security_enforcer___sideband.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/deploy/install_ase_software.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/purge_log_files.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/deploy/install_abs_ai_engine_software.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/admin_rest_api.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_alerts.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/update_the_training_period.html


• Enhanced Admin API: ABS Admin API now displays the ABS scale-up and scale-down settings:
"scale_config": {
        "scale_up": {
            "cpu_threshold": "70%",
            "cpu_monitor_interval": "30 minutes",
            "memory_threshold": "70%",
            "memory_monitor_interval": "30 minutes",
            "disk_threshold": "70%",
            "disk_monitor_interval": "30 minutes"
        },
        "scale_down": {
            "cpu_threshold": "10%",
            "cpu_monitor_interval": "300 minutes",
            "memory_threshold": "10%",
            "memory_monitor_interval": "300 minutes",
            "disk_threshold": "10%",
            "disk_monitor_interval": "300 minutes"
        }

For more information, see Admin REST API

AAD

Purge script: AAD now provides a purge script which is located in the /pingidentity/aad/util
directory. AAD purge script removes or archives aad.log files. For more information, see Purge AAD log
files

Dashboard

Purge script: Dashboard provides the following two new purge scripts:

• purge_elasticsearch: The Elasticsearch purge script deletes or archives Elasticsearch files. For
more information, see Purge data from Elasticsearch

• Purge: The purge script removes or archives dashboard.log files. For more information, see
Purge dashboard logs

Features at a glance
API Behavioral Security Engine (ABS) v4.0 delivers the following new features:

• Enhanced AI-based attack detection including content scraping, cross-API attack detection, and
extended time frame attacks, for example, slow login, extended data exfiltration.

• API Discovery support for OAuth tokens
• Additional MongoDB database high availability deployment options with replica set support

ABS features

• OAuth2 token-based metrics and forensics reporting – reports which show token activity on an API
and detailed reporting of all activity for a specific token.

• Obfuscation of keys and passwords in the properties file ABS.
• CLI to generate master key and obfuscate keys and passwords.
• Restricted user for ABS reports and Dashboard.
• Advanced Artificial Intelligence and machine learning software detects and reports on suspected

cyber attacks including complex attacks requiring correlation across multiple clients.

PingIntelligence copyright © 2022

| 3

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/admin_rest_api.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/purge_aad_log_files.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/purge_aad_log_files.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/dashboard/purging_data_from_elasticsearch.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/dashboard/purge_dashboard_logs.html


• Examples of detected attacks include data exfiltration, stolen cookie attacks, multiple types of API
Distributed Denial of Service (DDoS) attacks, API memory attacks, and brute force login attacks.

• Attack detection based on OAuth token, Cookie, or IP address activity.
• Automatic sending of attack lists to API Security Enforcer (ASE) for use in terminating sessions and

blocking future access for rogue clients.
• API discovery – Option to automatically discover APIs in your ecosystem.
• Automated API Definition (AAD) converts discovered APIs to API Security Enforcer (ASE) compatible

API JSON files and automatically adds the files to ASE.
• Detection and reporting of anomalous behavior to be evaluated as a potential attack.
• Discovering and reporting on valid and invalid URLs used to access each secured API.
• Comprehensive reporting on API traffic including:

◦ API activity - client information, API and URL usage, metrics, anomalies, backend errors, attack
types, and decoy traffic.

◦ ASE detected attack reporting – Detailed reports on hackers blocked by ASE for invalid API
activity and access of Decoy APIs. Provides client identification including OAuth V2 token,
cookie, or IP address information.

◦ API Key based activity reporting – API key activity report provides details on all API activity from
each API key.

◦ REST API interface for access to API JSON reports which are also accessible by customer
management systems for API monitoring.

• PingIntelligence for APIs Dashboard (installed separately) uses Kibana graphs to provide summary
information on metrics, anomalies, and attacks for each API.

• Stateless ABS clustering with redundant MongoDB databases for scale and high availability.
• Flexible deployment options on standard Linux servers (RHEL 7, Ubuntu 16 LTS) running JVMs

across various environments such as Containers, VMs, bare metal servers, and Clouds.
• Automatic generation of alerts to notify operations of errors or capacity issues.
• Password obfuscation to keep passwords encrypted
• SSL communication between ABS and ASE as well as for ABS REST APIs
• Script to update training period, system threshold interval, discovery interval and enabling and

disabling discovery.

ABS Introduction
API Behavioral Security Engine (ABS) is a Java-based distributed system which analyzes API traffic to
provide API traffic insight, visibility, and security. API traffic information is received from ASE nodes in log
files containing:

• Client details such as device, browser, IP address, and operating system
• Session information including HTTP or WebSocket connections and methods.

These logs are periodically, that is, at every 10 minutes forwarded to ABS nodes for processing. Using
machine learning algorithms, ABS generates API traffic insight, anomaly data, and attack insight which
identifies clients responsible for attacks. To prevent future attacks, ABS can automatically program inline
devices (such as API Security Enforcer) to block clients based on attack lists. PingIntelligence for APIs
Dashboard provides visualization of API attack, deception, and metrics.

ABS provides the following functionality:

• Collection and consolidation of access logs from API Security Enforcer nodes
• Machine learning algorithms to identify anomalies and attacks
• Detection of attacks from HTTP(s) and WebSocket(s) traffic
• Optional sending of attack lists to API Security Enforcer which blocks client access
• Centralized database for storing machine learning output

PingIntelligence copyright © 2022

| 4



• Stateless cluster for scalability and resiliency
• REST APIs for fetching traffic metrics, anomalies, and attack information
• Email alerts
• Data visualization

Configuring ABS consists of setting up three entities:

1. Database system: ABS uses a MongoDB database to store metadata and all Machine Learning
(ML) analytics. The MongoDB database system is configured in a replica set for production
deployments. MongoDB is separately installed before starting ABS.

2. ABS: One or more ABS instances are configured to receive and process logs and to store results in
MongoDB. Ping Identity recommends installing ABS in a cluster for high availability deployments.

3. PingIntelligence for APIsDashboard: The Dashboard uses Elasticsearch and Kibana to render
reference graphs for attack types, traffic metrics, and anomaly data. Please refer to ABS Dashboard
Admin Guide for installation and configuration information.

ABS administration
Administering ABS requires understanding:

• Directory structure
• Obfuscating passwords for securing ABS
• Configuring SSL for secure communication for between PingIntelligence products
• Different types of ABS users
• Understanding the port requirements
• Creating ABS cluster
• Understanding ABS log files
• Purging access logs from ABS
• ABS REST API format

• ABS License
• Start and Stop ABS
• Change default settings
• ABS users for API reports
• ABS directory structure
• Obfuscate passwords
• Configure SSL
• Import existing CA-signed certificates
• ABS ports
• ABS cluster
• ABS initial configuration
• Connect ABS to API Security Enforcer
• ABS logs
• Purge the processed access logs from ABS
• Purge MongoDB data
• Configure email notifications
• ABS REST API format
• Admin REST API

ABS License
To start ABS, you need a valid license. There are two types of ABS licenses:

• Trial license – The trial license is valid for 30-days. At the end of the trial period, ABS stops
processing.

PingIntelligence copyright © 2022

| 5



• Subscription license – The subscription license is based on the peak number of transactions
subscribed for per month and the duration of the license. It is a good practice to configure your email
before configuring the ABS license. ABS sends an email notification to the configured email ID when
the license has expired. Contact the PingIntelligence for APIs sales team for more information.

Add an ABS license

If you have not received an ABS license, request a license file from Ping sales. The name of the license file
must be PingIntelligence.lic. Copy the license file to the/opt/pingidentity/abs/config
directory and then start ABS.

Update an existing license

If your existing license has expired, obtain a new license from Ping sales and replace the license file in
the /opt/pingidentity/abs/config directory. Stop and then start ABS after the license file is
updated.

Checking the current transaction count
The transaction count is updated every day after 00:00 hours midnight in the /opt/
pingidentity/abs/logs/abs.log file. To check the current monthly transaction count, grep for
Current Transactions in the abs.log file. Following is a sample snippet for the current number of
transactions:
$ grep "Current Transactions" *
abs.log:2018-12-19 00:01:25 INFO - Current Transactions: 289088158 between 
earlier date: Sat Dec 01 00:00:00 EST 2018 and later date: Tue Dec 18 
23:59:59 EST 2018

The earlier date is always the starting date of the month.
Parent topic:ABS administration

Start and Stop ABS
Start ABS

To start ABS, run the start.sh script located in the /opt/pingidentity/abs/bin directory. Change
working directory to /opt/pingidentity/abs/bin. Then start ABS by typing the following command:

$ /opt/pingidentity/abs/bin/start.sh
Starting API Behavioral Security 4.0...
please see /opt/pingidentity/abs/logs/abs/abs.log for more details

To verify whether ABS has started, change the working directory to data directory and look for two .pid
files, abs.pid and stream.pid. Check the newly added ABS node is connecting to MongoDB and has a
heartbeat.

> use abs_metadata
switched to db abs_metadata
> db.abs_cluster_info.find().pretty()
 {
 "_id" : ObjectId("58d0c633d78b0f6a26c056ed"),
 "cluster_id" : "c1",
 "nodes" : [
 {
 "os" : "Red Hat Enterprise Linux Server release 7.1 (Maipo)",

PingIntelligence copyright © 2022

| 6



 "last_updated_at" : "1490088336493",
 "management_port" : "8080",
 "log_port" : "9090",
 "cpu" : "24",
 "start_time" : "1490077235426",
 "log_ip" : "2.2.2.2",
 "uuid" : "8a0e4d4b-3a8f-4df1-bd6d-3aec9b9c25c1",
 "dashboard_node" : false,
 "memory" : "62G",
 "filesystem" : "28%"
 } ] }

Stop ABS

To stop ABS, first stop API Security Enforcer (if it is running) or turn OFF the ABS flag in API Security
Enforcer. If no machine learning jobs are processing, run the stop.sh script available in the bin directory.

# /opt/pingidentity/abs/bin/stop.sh
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

If streaming or machines learning jobs are in progress, add the force parameter to kill running jobs and
stop ABS.

# /opt/pingidentity/abs/bin/stop.sh --force
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

Parent topic:ABS administration

Change default settings
It is recommended that you change the default key and password in ABS. Following is a list of commands
to change the default values:

Change default JKS password
You can change the default password for KeyStore and the key. Complete the following steps to change
the default passwords. Make sure that ABS is stopped before changing the JKS password.

1. Change the KeyStore password: Enter the following command to change the KeyStore
password. The default KeyStore password is abs123.
# keytool -storepasswd -keystore config/ssl/abs.jks
Enter keystore password:  abs123
New keystore password: newjkspassword
Re-enter new keystore password: newjkspassword

2. Change the key password: Enter the following command to change the key password. The
default key password is abs123
# keytool -keypasswd -alias pingidentity -keypass abs123 -new 
newjkspassword -keystore config/ssl/abs.jks
Enter keystore password: newjkspassword

PingIntelligence copyright © 2022

| 7



Start ABS after you have changed the default passwords.

Change abs_master.key

Run the following command to create your own ABS master key to obfuscate keys and password in ABS.

Command: generate_obfkey. ABS must be stopped before creating a new abs_master.key

Stop ABS: If ABS is running, then stop ABS before generating a new ABS master key. Enter the following
command to stop ABS:
# /opt/pingidentity/abs/bin/stop.sh
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

Change abs_master.key: Enter the generate_obfkey command to change the default ABS master
key:
/opt/pingidentity/abs/bin/cli.sh generate_obfkey -u admin -p admin
Please take a backup of config/abs_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh -obfuscate_keys
Warning: Obfuscation master key file
/pingidentity/abs/config/abs_master.key already exists. This command will 
delete it and create a new key in the same file
Do you want to proceed [y/n]: y
Creating new obfuscation master key
Success: created new obfuscation master key at /pingidentity/abs/config/
abs_master.key

Change admin password
You can change the default admin password by entering the following command:
/opt/pingidentity/abs/bin/cli.sh update_password -u admin -p admin
New Password>
Reenter New Password>
Success. Password updated for CLI

Change default access and secret key in MongoDB
To change the default access and secret key, complete the following steps:

1. Connect to MongoDB by entering the following command:
mongo --host <mongo-host> --port <mongo-port> --authenticationDatabase 
admin -u absuser -p abs123

absuser and abs123 is the default user name and password for MongoDB.
2. On the MongoDB prompt, run the following command:

use abs_metadata
db.auth_info.updateOne( { access_key: "<new-access-key>", secret_key: 
"<new-secret-key>"} )

Parent topic:ABS administration

ABS users for API reports

PingIntelligence copyright © 2022

| 8



ABS has two type of users to access the API reports and PingIntelligence for APIs Dashboard. The API
reports displayed is based on the type of user accessing the reports. The two users are:

• Admin user: An Admin user has complete access to API reports. All the cookies, tokens, and API
keys are visible in the reports. Use the following headers in the API report URL to access API reports
as an Admin user:

◦ x-abs-ak (access key header)
◦ x-abs-sk (secret key header)

• Restricted user: A Restricted user has limited access to the API reports. The Restricted user can
view the API reports however the cookies, tokens, and API keys are obfuscated. Use the following
headers in the API report URL to access API reports as an Admin user:

◦ x-abs-ak-ru (access key header)
◦ x-abs-sk-ru (secret key header)

The restricted user can access all the API Reports except:

◦ Threshold API
◦ Cookie, OAuth2 Token, and IP Forensics APIs

For a complete list of external REST APIs, see ABS External REST APIs.

The default access and secret key are configured in the opt/pingidentity/mongo/abs_init.js file.
Following is a snippet of the abs_init.js showing the default passwords for both type of users.

db.auth_info.insert({
 "access_key": "abs_ak",
 "secret_key": "abs_sk",
 "access_key_ru" : "abs_ak_ru",
 "secret_key_ru" : "abs_sk_ru"
});

Parent topic:ABS administration

ABS directory structure
The directories that ABS creates as part of the installation process are shown in the following table:

Directory Purpose

config Contains
abs.properties
, a Java properties file used to configure ABS.

data Stores logs sent by API Security Enforcer.

logs Stores all ABS related logs.

lib For internal use. Do not change anything in
this directory.

bin Contains various scripts to start and stop
ABS.

PingIntelligence copyright © 2022

| 9



Note: Do not edit the scripts in
the
bin
directory.

mongo Contains the
abs_init.js
file used to load the default schema, secret
key, and access key.

util Contains utilities to:

• Check and Open MongoDB Default Port
• Purge the Processed Access Logs from

ABS
• Purge ABS Data from MongoDB

• open_ports_abs.sh:•
Open the default ports 8080 and 9090
for ABS REST API and connectivity
from ASE respectively. Run the script
on the ABS machine.

Parent topic:ABS administration

Obfuscate passwords
Using ABS command line interface, you can obfuscate the keys and passwords configured in
abs.properties. The keys and passwords obfuscated include:

• mongo_password
• jks_password
• email_password

ABS ships with a default abs_master.key which is used to obfuscate the keys and passwords. It is
recommended to generate your own abs_master.key.

Note: During the process of obfuscation of keys and password, ABS must be stopped.

The following diagram summarizes the obfuscation process:

Generate abs_master.key

You can generate the abs_master.key by running the generate_obfkey ABS CLI command.

PingIntelligence copyright © 2022

| 10



/opt/pingidentity/abs/bin/cli.sh generate_obfkey -u admin -p admin
Please take a backup of config/abs_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh -obfuscate_keys
Warning: Obfuscation master key file
/pingidentity/abs/config/abs_master.key already exists. This command will 
delete it and create a new key in the same file
Do you want to proceed [y/n]: y
Creating new obfuscation master key
Success: created new obfuscation master key at /pingidentity/abs/config/
abs_master.key

The new abs_master.key is used to obfuscate the passwords in abs.properties file.

Important: After the keys and passwords are obfuscated, the abs_master.key must be moved to a
secure location and not stored on ABS.

In an ABS cluster, the abs_master.key must be manually copied to each of the cluster nodes.

Obfuscate key and passwords

Enter the keys and passwords in clear text in the abs.properties file. Run the obfuscate_keys
command to obfuscate keys and passwords:

/opt/pingidentity/abs/bin/cli.sh obfuscate_keys -u admin -p admin
Please take a backup of config/abs.password before proceeding
Enter clear text keys and passwords before obfuscation.
Following keys will be obfuscated
config/abs.properties: mongo_password, jks_password and email_password
Do you want to proceed [y/n]: y
obfuscating /pingidentity/abs/config/abs.properties
Success: secret keys in /pingidentity/abs/config/abs.properties obfuscated

Start ABS after passwords are obfuscated.

Parent topic:ABS administration

Configure SSL
ABS supports only TLS 1.2 and requires Java 8 u161 and later. You can configure SSL by setting the
value of enable_ssl parameter to true in pingidentity/abs/mongo/abs_init.js file. Setting the
value to true enables SSL communication between ASE and ABS as well as for ABS external REST APIs.
Following is a snippet of the abs.init file with enable_ssl parameter:

db.global_config.insert({
"attack_initial_training": "24",
"attack_update_interval": "24",
"url_limit": "100",
"response_size": "100",
"job_frequency" : "10",
"window_length" : "24",
"enable_ssl": true,
"api_discovery": false,
"discovery_initial_period" : "24",

PingIntelligence copyright © 2022

| 11



"discovery_subpath": "1",
"continuous_learning": true,
"discovery_update_interval": "1"

});

ABS ships with a default self-signed certificate with Java Keystore at abs/config/ssl/abs.jks and
the default password set to abs123 in the abs.properties file. The default password is obfuscated in
the abs.properties file. It is recommended to change the default passwords and obfuscate the new
passwords. See, Obfuscating Passwords for steps to obfuscate passwords.

If you want to use your own CA-signed certificates, you can import them in ABS.

Parent topic:ABS administration

Import existing CA-signed certificates
You can import your existing CA-signed certificate in ABS. To import the CA-signed certificate, stop ABS if
it is already running. Complete the following steps to import the CA-signed certificate:

1. Export your CA-signed certificate to the PKCS12 store by entering the following command:
# openssl pkcs12 -export -in <your_CA_cerficate.crt> -inkey 
<your_certificate_key.key> -out abs.p12 -name <alias_name>

For example:

# openssl pkcs12 -export -in ping.crt -inkey ping.key -out abs.p12 -name 
exampleCAcertificate
Enter Export Password:
Verifying - Enter Export Password:

Note: If you have an intermediate certificate from CA, then append the content to
<your_CA_certificate.crt> file.

2. Import the certificate and key from the PKCS12 store to Java Keystore by entering the following
command. The command requires the destination keystore password. The destination keystore
password entered in the command should be same as configured in the abs.properties file.

Here is a snippet of the abs.properties file where the destination keystore password is stored. The
password is obfuscated.

# Java Keystore password
jks_password=OBF:AES:Q3vcrnj7VZILTPdJnxkOsyimHRvGDQ==:daYWJ5QgzxZJAnTkuRlFpreM1rsz3FFCulhAUKj7ww4=

Enter the following command:

# keytool -importkeystore -destkeystore abs.jks -srckeystore abs.p12 
-srcstoretype PKCS12 -alias <alias_name>

For example:
# keytool -importkeystore -destkeystore abs.jks -srckeystore abs.p12 
-srcstoretype PKCS12 -alias exampleCAcertificate
Importing keystore abs.p12 to abs.jks...

PingIntelligence copyright © 2022

| 12



Enter destination keystore password:
Re-enter new password:
Enter source keystore password:

3. Copy the abs.jks file created in step 2 to /opt/pingidentity/abs/config/ssl directory.
4. Start ABS by entering the following command:

# /opt/pingidentity/abs/bin/start.sh
Starting API Behavioral Security 3.2...
please see /opt/pingidentity/abs/logs/abs/abs.log for more details

Parent topic:ABS administration

ABS ports
ABS uses the following ports:

Port number Description

8080 This port is used by ASE to log in to ABS and
also used by Postman to access data to
generate API reports

9090 This port is used by ASE to send access logs
to ABS

27017 Default port for MongoDB

Check and open MongoDB default port

MongoDB’s default port for connection with ABS is 27017. Run the check_ports_abs.sh script on the
ABS machine to determine whether MongoDB’s default port is available. Provide MongoDB host IP address
and default port as arguments. For example:/opt/pingidentity/abs/util/check_ports_abs.sh
{MongoDB IPv4:[port]}

Check and open MongoDB default port

Run the check_ports_abs.sh script on the ABS machine to determine whether MongoDB’s default port
is available. Input the MongoDB host IP address and default port (27017) as arguments. For example:

/opt/pingidentity/util/check_ports_abs.sh {MongoDB IPv4:[port]}

Run the script for MongoDB master and slave. If the default ports are not accessible, open the port from
the MongoDB machine.

Parent topic:ABS administration

ABS cluster
An ABS cluster consists of stateless ABS nodes communicating with a MongoDB replica set. Each ABS
node connects to the MongoDB cluster to obtain cluster configuration information that describes peer
nodes. ABS nodes themselves do not communicate with each other; they periodically send heartbeats to
MongoDB with status information. Each ABS node exposes:

• REST APIs for log streaming between ABS and API Security Enforcer

PingIntelligence copyright © 2022

| 13



• REST APIs between ABS and management applications which fetch metrics, anomalies, attack types,
backend error, blocked connections, flow control, and cluster status.

An ABS cluster is depicted in the following diagram:

To configure an ABS cluster, complete the following steps:

1. Install MongoDB in a replica set
2. Connect ABS to MongoDB

To set up an ABS cluster, no separate steps have to be completed. To create an ABS cluster, add an ABS
node and connect it to MongoDB primary node. Since ABS forms a stateless cluster, the information of all
the nodes in the cluster is fetched by ABS nodes from MongoDB.

Scale down ABS cluster: To scale down the cluster, stop the ABS node that you wish to remove from
the cluster. Edit the abs.properties file to remove MongoDB IP address.

Parent topic:ABS administration

ABS initial configuration
The ABS configuration file (abs.properties)is located in the ABS config directory. The following table
explains the parameters and provides recommended values.

Parameter Description

host_ip The externally visible IP address of the host ABS machine.

management_port Port for ABS to ASE and REST API to ABS communication.
The default value is 8080.

log_port Port for ASE to send log files to ABS. The default value is
9090.

log_level Log detail captured. The default is INFO.

PingIntelligence copyright © 2022

| 14

https://docs.pingidentity.com/bundle/pingintelligence-32/page/deploy/part_b___install_abs.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/deploy/connect_abs_to_mongodb.html


Additional options - DEBUG, ERROR.

mongo_rs Comma separated MongoDB replica set nodes IP addresses
and port numbers. A maximum of three nodes can be
configured.

metadata_dbname The MongoDB metadata database name.
The default value is
abs_metadata
.

data_dbname The MongoDB data database name.
The default value is
abs_data
.

mldata_dbname The MongoDB machine learning database name.
The default value is
abs_mldata

mongo_username Username of MongoDB.

Note: Required for MongoDB authentication

mongo_password MongoDB password

runaway_time Maximum time in minutes to wait for a job to finish.
The default value is 120 minutes.

queue_size Do not change the value of this parameter. The default is 10.

dashboard_node When
true
, designated as a dedicated Reporting or Dashboard node.
This ABS node does not process log data or participate in
an ABS cluster.
The default value is
false
.

Note: Multiple nodes can be Reporting or
Dashboard nodes.

system_memory Memory size in MB allocated to run machine learning jobs.
Recommended to be at least 25% of system memory.

system_json_size Memory size in KB allocated for API JSON files.
The default is 500 KB.

enable_emails Enable (
true

PingIntelligence copyright © 2022

| 15



) or disable (
false
) ABS email notifications.

sender_email Email address used for sending email alerts and reports.

receiver_email Email address notified about alerts and reports.

smtp_port Port number of SMTP server.

smtp_host Hostname of SMTP server.

jks_password The password of the JKS Keystore. ABS ships with a default
obfuscated password. You can reset the password and
obfuscate it. This password should be the same that you
would use in importing your CA-signed certificate.

A sample abs.properties file is displayed below:

# Ping Identity Corporation, ABS config file
# All the keys should be present, leave blank value if not applicable
# ABS node host IP
# If you have multiple network interfaces or if you are running inside a 
Docker, specify the externally visible IP address for ABS to bind
host_ip=127.0.0.1
# REST API port
management_port=8080
# Streaming port
log_port=9090
# Log levels (ALL > DEBUG > INFO > WARN > ERROR > FATAL > OFF)
log_level=DEBUG
# Java KeyStore password
jks_password=OBF:AES:Q3vcrnj7VZILTPdJnxkOsyimHRvGDQ==:daYWJ5QgzxZJAnTkuRlFpreM1rsz3FFCulhAUKj7ww4=
# MongoDB replica set nodes comma separated IP addresses and port numbers. 
For example, <IP1>:<Port>, <IP2>:<Port>, <IP3>:<Port>. Maximum three nodes 
can be configured.
mongo_rs=localhost:27017
# MongoDB Database
metadata_dbname=abs_metadata
data_dbname=abs_data
mldata_dbname=abs_mldata
# MongoDB authentication
# If you don't have authentication enabled in MongoDB, leave blank following 
two keys
mongo_username=absuser
mongo_password=OBF:AES:Q3vcrnj7VZILTPdJnxkOsyimHRvGDQ==:daYWJ5QgzxZJAnTkuRlFpreM1rsz3FFCulhAUKj7ww4=
# Time to mark a job runaway in minutes
runaway_time=120
# Job queue size per node
queue_size=10
# Setting as true makes an ABS node for dashboard query only and does not 
participate in ABS cluster for log processing
dashboard_node=false

PingIntelligence copyright © 2022

| 16



# Memory for webserver and streaming server (unit is in MB)
system_memory=4096
# Memory for ASE JSON (unit is KB)
system_json_size=8192
# E-mail alerts
enable_emails=false
# SMTP host
smtp_host=smtp.example.com
# SMTP port
smtp_port=587
# Sender email id
sender_email=sender@example.com
# Sender's email password
email_password=OBF:AES:UXzB+y+69Bn3xiX6N822ad4hf5IfNfJY9w==:T+QzM6qtc0+6MVsx4gU5p0LMHAI/
y+w8DDsWv6VxVAk=
# Receiver's email id
receiver_email=receiver@example.com

Parent topic:ABS administration

Connect ABS to API Security Enforcer
Before connecting ABS, API Security Enforcer must be installed. For more information on installing and
configuring API Security Enforcer, see the ASE Admin guide.

The following diagram summarizes the process of connecting ABS to API Security Enforcer:

The following is a sample abs.conf file which is part of the API Security Enforcer (ASE):

; API Security Enforcer ABS configuration.
; This file is in the standard .ini format. The comments start with a 
semicolon (;).
; Following configurations are applicable only if ABS is enabled with true.
; a comma-separated list of abs nodes having hostname:port or ipv4:port as 
an address.
abs_endpoint=127.0.0.1:8080
; access key for abs node
access_key=OBF:AES://
ENOzsqOEhDBWLDY+pIoQ:jN6wfLiHTTd3oVNzvtXuAaOG34c4JBD4XZHgFCaHry0
; secret key for abs node
secret_key=OBF:AES:Y2DadCU4JFZp3bx8EhnOiw:zzi77GIFF5xkQJccjIrIVWU+RY5CxUhp3NLcNBel+3Q
; Setting this value to true will enable encrypted communication with ABS.
enable_ssl=true
; Configure the location of ABS's trusted CA certificates. If empty, ABS's 

PingIntelligence copyright © 2022

| 17

https://docs.pingidentity.com/bundle/PingIntelligence_API_Security_Enforcer_3.2_pingintel_32/page/ase_administration.html


certificate
; will not be verified
abs_ca_cert_path=

The access_key and secret_key are the keys that were defined in the abs_init.js file when
configuring MongoDB.

Note: To connect an API Security Enforcer cluster to ABS, configure the abs.conf file on any
API Security Enforcer in the cluster and run the CLI commands. This ensures all the API Security
Enforcer nodes in the cluster will be updated to connect with ABS.

If ABS is running in cluster mode, choose the IP address and port from any ABS node to add to the
abs.conf file in API Security Enforcer.

Dataflow

API Security Enforcer connects to the ABS node defined in abs.conf to obtain available ABS IP addresses
(step 1). In stand-alone mode, ABS sends the only IP address. In cluster mode, ABS sends the IP addresses
of all available ABS nodes to API Security Enforcer.

After API Security Enforcer receives the IP address, it establishes a session with ABS by sending the secret
and access keys (step 2). After successful authentication, API Security Enforcer streams the access log
files and API JSON files to the ABS node (step 3). After sending the files, it receives the attack lists (only
available if blocking is activated for API Security Enforcer) from ABS (step 4). When the transaction is
complete, API Security Enforcer logs out from ABS (step 5).

ABS uses machine learning (ML) algorithms to discover attacks, anomalies, and other traffic information. It
stores incoming API Security Enforcer logs and then passes these logs to the machine learning engine for
analysis. In high load environments, a single ABS node may not be able to process all log files, and multiple
ABS nodes should be deployed for log processing.

The following diagrams show the API Security Enforcer – ABS Dataflow.

Stand-alone mode

In stand-alone mode, a single MongoDB node is used for both read and write operations. A stand-alone
mode of deployment is only recommended for testing purposes.

PingIntelligence copyright © 2022

| 18



Cluster mode

In cluster mode, API Security Enforcer nodes synchronize the abs.conf file as well as the state of each
ABS node. The ABS cluster nodes do not communicate among themselves. Each node records its status in
MongoDB and reads about the state of other nodes from the database.

Parent topic:ABS administration

ABS logs
The active ABS log file abs.log is located in the logs directory and rotated every 24-hours at midnight
local time. The rotated log files append timestamps to the name and follow the naming convention of
abs.log.<yyyy>-<mm>-<dd> (for example, abs.log.2018-11-24). Here is an example:

-rw-r--r--. 1 root root 68K Oct 24 23:59 abs.log.2018-11-24
-rw-r--r--. 1 root root 68K Oct 25 23:59 abs.log.2018-10-25

PingIntelligence copyright © 2022

| 19



-rw-r--r--. 1 root root 68K Oct 26 23:59 abs.log.2018-10-26
-rw-r--r--. 1 root root 158K Oct 27 23:59 abs.log.2018-10-27
-rw-r--r--. 1 root root 32K Oct 28 11:21 abs.log

The ABS log file contains INFO messages (for example, ABS started, MongoDB status) and ERROR
messages (for example, MongoDB is not reachable). The log files also contains entry of all the email alerts
sent. Here is a snippet of an abs.log file:

2018-10-28 11:16:45 INFO - starting abs periodic actions
2018-10-28 11:16:45 INFO - MongoDB heartbeat success
2018-10-28 11:16:45 INFO - notification node not set.
2018-10-28 11:16:45 INFO - training period 1 hours.
2018-10-28 11:16:45 INFO - system threshold update interval 1 hour(s).
2018-10-28 11:16:45 INFO - api discovery interval 1 hour(s).
2018-10-28 11:16:45 INFO - subpath limit: 100
2018-10-28 11:16:45 INFO - ABS started successfully...
2018-10-28 11:17:45 INFO - MongoDB heartbeat success
2018-10-28 11:19:45 ERROR - MongoDB heartbeat failure

Parent topic:ABS administration

Purge the processed access logs from ABS
A purge.sh script either archives or purges processed access log files which are stored in the /opt/
pingidentity/abs/data directory.

Note: When the purge script is run, the processed access log files are permanently deleted
from the /opt/pingidentity/abs/data directory. Always backup the files before deleting.

Located in the /opt/pingidentity/abs/util directory, the purge script deletes logs older than the
specified number of days. Run the script using the ABS command line. For example:

/opt/pingidentity/abs/util/purge.sh -d 3
In the above example, purge.sh deletes all access log files older than 3 
days. Here is sample output.
/opt/pingidentity/abs/util/purge.sh -d 3
This will delete the data in /opt/ pingidentity/abs/data which is older than 
3 days.
Are you sure (yes/no): yes
removing /opt/pingidentity/abs/data/
2018-04-10-11_21/9k2unv5l2bsgurneot3s3pmt03/ : last changed at Mon Jan 10 
11:32:31 IST 2018
removing /opt/ pingidentity/abs/data/2018-04-10-11_21/
ilq67a3g5sve2pmpkkp271o37c/ : last changed at Mon Jan 10 11:32:31 IST 2018

External log archival

The purge script can also archive logs older than the specified number of days to secondary storage. Use
the -l option and include the path of the secondary storage to archive log files. For example:

/opt/pingidentity/abs/util/purge.sh -d 3 -l /tmp/

PingIntelligence copyright © 2022

| 20



In the above example, log files older than 3-days are archived to the tmp directory. To automate log
archival, add the script to a cron job.

Parent topic:ABS administration

Purge MongoDB data
Purge MongoDB data

The ABS MongoDB purge script dumps and/or deletes processed ABS data from MongoDB. It is
recommended to archive the data before purging it. The purge_mongo.sh script is available in the/opt/
pingidentity/abs/util directory. Copy the script from the util directory to your MongoDB machine.

The script offers three options:

1. Dump data into a directory and then purge it
2. Only dump data
3. Only purge data

To execute the script, enter the following information on the command line:

• MongoDB credentials:mongo_username, mongo_password in abs.properties
• Database name and port number:data_dbname, mongo_master_port in
abs.properties

• Days of data to retain: minimum of one and maximum of 365 days
• The path to dump the data

For more information on the purge script parameters, run the purge help script from the MongoDB
command line:

/opt/pingidentity/mongo/purge_mongo.sh –help

By default, the script dumps all data and then removes processed data older than seven days. Here are
examples of the three options:

1. Dump and purge example:
/opt/pingidentity/mongo/purge_mongo.sh -u absuser -p abs123 --db 
abs_data --auth_db admin --port 27017 -d 80 -l /tmp

Dumps all log files to /tmp and purges log files greater than 80 days old.

2. Dump example:
/opt/pingidentity/mongo/purge_mongo.sh -u absuser -p abs123 --db 
abs_data --auth_db admin --port 27017 -d 45 -l /tmp

--dump_only

Dumps all log files to /tmp and purges log files greater than 45 days old.

3. Purge example:
/opt/pingidentity/mongo/purge_mongo.sh -u absuser -p abs123 --db 
abs_data --auth_db admin --port 27017 -d 80

PingIntelligence copyright © 2022

| 21



--purge_only

Purges log files greater than 80 days old.

CAUTION: Once the MongoDB data is purged, it cannot be retrieved.

Parent topic:ABS administration

Configure email notifications
ABS sends e-mail notifications under two categories:

• Alerts – event-based updates to notify administrators of potential issues
• Reports – standard reports sent every 24 hours at 00:00:00 hours midnight

Email parameters in abs.properties correspond to your e-mail server. By default, e-mail notifications
are disabled. Enable notifications after configuring e-mail IDs and server.

#Enable or Disable e-mail alerts
enable_emails=false
#Provide the details of sender and receiver of e-mail
#Sender's e-mail ID
sender_email=mail@yourdomain.com
#Sender's e-mail password
email_password=mypassword
#Receiver's e-mail ID
receiver_email=mail@yourdomain.com
#SMTP port
smtp_port=587
#SMTP host
smtp_host=smtp.smtphost.com

• ABS alerts
• ABS reports

Parent topic:ABS administration

ABS alerts
Threshold values are configured in the /opt/pingidentity/mongo/abs_init.js file which is in the
mongo directory. An email alert is sent based on the following category of events. These events are also
logged in the abs.log file.

• Dynamic Rate Limit: alert sent when CPU or Filesystem cross a threshold value.
• ABS Utilization:alert sent when ABS cannot accept more logs since resources are fully utilized.
• ABS Node: alert sent when ABS cluster nodes are added or removed.
• MongoDB: alert sent when a MongoDB node is added or becomes inaccessible.
• Percentage Disk Usage Limit: alert sent when the disk usage reaches the configured
percentage_diskusage_limit value. When this limit is reached, ABS stops accepting any new
access log files from ASE. The alert is also logged in the abs.log file.

• Scale Up and Scale Down: alert sent when a system resource, such as CPU, memory, or disk
utilization, is above or below its threshold value for a specified interval of time. If the value is above
the threshold value, add ABS nodes to distribute the load.

PingIntelligence copyright © 2022

| 22



• DDoS attack alert: ABS sends alerts for multi-client Login Attacks and for API Memory Attack Type
2. The email alert provides a time period for the attack along with a URL to access information on all
client IPs participating in the attack.

Here is a snippet of an /opt/pingidentiy/mongo/abs_init.js file for email alerts on the MongoDB
node. You can configure any of these values as per your requirement. It is a good practice to set the values
of email alerts before configuring MongoDB and the abs_init.js file. scale_up is for the upper
threshold, while scale_down is for the lower threshold. If you want to change the threshold values after
the system is running, then you have to manually change the values in MongoDB and restart the ABS node.

db.scale_config.insert({
"scale_up": [{

"resource": "memory",
"threshold": "70%",
"monitor_interval": "30minutes"

}, {
"resource": "cpu",
"threshold": "70%",
"monitor_interval": "30minutes"

}, {
"resource": "disk",
"threshold": "70%",
"monitor_interval": "30minutes"

}],
"scale_down": [{

"resource": "memory",
"threshold": "10%",
"monitor_interval": "300minutes"

}, {
"resource": "cpu",
"threshold": "10%",
"monitor_interval": "300minutes"

}, {
"resource": "disk",
"threshold": "10%",
"monitor_interval": "300minutes"

}]
});

Parent topic:Configure email notifications

ABS reports
ABS sends an e-mail report every 24 hours at midnight, 00:00:00 hours (local system time). Each report
includes values for the following parameters:

• ABS Node Status: resource utilization of CPU, file system, and operating system
• Number of successful API requests
• Size of access logs processed
• Number of Attacks and Anomalies reported

Parent topic:Configure email notifications

ABS REST API format

PingIntelligence copyright © 2022

| 23

https://docs.pingidentity.com/bundle/pingintelligence-32/page/deploy/install_mongodb_software.html


ABS provides external REST APIs which are used to access JSON reports providing deep insight into the
following:

• Attack Forensics and Compliance Reporting – attacks and anomalous behavior on APIs
• API Metrics – API client and traffic details
• Administrative – ABS system information
• API Security Enforcer – decoy API, blocked connections, flow control, and backend error reporting

A REST client can securely query each ABS API and receive data back in JSON format. REST client
program options include using:

• Postman App for Google Chrome browser
• Java, Python, C Sharp, or similar languages.
• Java client program (for example, Jersey)
• C sharp client program (for example, RestSharp)

The diagram shows the process for a REST API client to connect to an ABS API.

ABS API query format

ABS API offers a common format with a consistent syntax for request parameters. Detailed information
and format of all ABS REST APIs are included in ABS external REST APIs.

Query parameters for most APIs include:

Field Description

api_name The API name to query for results.

earlier_date The time to check for results going back in
time. For example, to check results from 10th
April, 6 PM to 14th April, 3 PM, the
earlier_date
would be 10th April, 6 PM.

later_date The time to check the results back in time.
For example, to check results from 10th April,
6 PM to 14th April, 3 PM, the
later_date
would be 14th April, 6 PM.

The following access_key and secret_key are the keys that were defined in the abs_init.js file:

• x-abs-ak and x-abs-ak-ru: access_key
• x-abs-sk and x-abs-sk-ru: secret_key

PingIntelligence copyright © 2022

| 24



Note: The start and end time are based on the log file data, that is, the local time where data
was captured and not of the location where results are analyzed.

Parent topic:ABS administration

Admin REST API
The Admin REST API reports on ABS cluster node resources including IP address, operating system, CPU,
memory, and filesystem usage. It also reports MongoDB node information including IP address, node type,
and status. Finally, it provides status on attack detection and reporting on APIs.

The report can be accessed by calling the ABS system at the following URL:

https://<ip>:<port>/v4/abs/admin

Here is the API JSON report.

{
    "company": "ping identity",
    "name": "api_admin",
    "description": "This report contains status information on all APIs, ABS 
clusters, and ASE logs",
    "across_api_prediction_mode": false,
    "api_discovery": {
        "status": false
    },
    "apis": [
        {
            "api_name": "apikeyquery",
            "host_name": "*",
            "url": "/apikeyquery",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        },
        {
            "api_name": "apikeyheader",
            "host_name": "*",
            "url": "/apikeyheader",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        },

PingIntelligence copyright © 2022

| 25



        {
            "api_name": "atmapp",
            "host_name": "*",
            "url": "/atmapp",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        },
        {
            "api_name": "pubatmapp",
            "host_name": "*",
            "url": "/pubatmapp",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "JSESSIONID",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        }
    ],
    "abs_cluster": {
        "abs_nodes": [
            {
                "node_ip": "192.168.11.165",
                "os": "Red Hat Enterprise Linux Server release 7.4 (Maipo)",
                "cpu": "24",
                "memory": "62G",
                "filesystem": "76%",
                "bootup_date": "Tue Feb 05 16:12:41 IST 2019"
            }
        ],
        "mongodb_nodes": [
            {
                "node_ip": "192.168.11.168",
                "status": "up"
            }
        ]
    },
    "ase_logs": [
        {
            "ase_node": "13eea2fc-64d0-4c51-b663-b1093b0bf7a5",
            "last_connected": "Wed Feb 06 19:41:07 IST 2019",
            "logs": {
                "start_time": "Wed Feb 06 19:36:26 IST 2019",
                "end_time": "Wed Feb 06 19:41:07 IST 2019",

PingIntelligence copyright © 2022

| 26



                "gzip_size": "27.51MB"
            }
        }
    ],
    "percentage_diskusage_limit": "80%",
    "scale_config": {
        "scale_up": {
            "cpu_threshold": "70%",
            "cpu_monitor_interval": "30 minutes",
            "memory_threshold": "70%",
            "memory_monitor_interval": "30 minutes",
            "disk_threshold": "70%",
            "disk_monitor_interval": "30 minutes"
        },
        "scale_down": {
            "cpu_threshold": "10%",
            "cpu_monitor_interval": "300 minutes",
            "memory_threshold": "10%",
            "memory_monitor_interval": "300 minutes",
            "disk_threshold": "10%",
            "disk_monitor_interval": "300 minutes"
        }
    }
}

Percentage diskusage limit: The percentage disk usage limit is configured in the /
pingidentity/abs/config/abs.init file. It is a good practice to configure this value before
initializing MongoDB and ABS. ABS stops accepting access log files from ASE when the configured
percentage_diskusage_limit is reached. An email alert is sent to the configured email ID and also
logged in the abs.log file.

You can update the disk usage limit using the updates.sh script available in the /opt/
pingidentity/abs/util. Copy the script from the util directory to your MongoDB primary machine.

Note: After executing the script, stop and start all ABS nodes for the updated values to take
effect.

Access script help by logging into the MongoDB primary machine and running the following command:
/opt/pingidentity/mongo/update.sh help

Following is an example of the script:
./update.sh -u absuser -p abs123 --db abs_metadata --auth_db admin --port 
27017 --percentage_diskusage_limit 80
updating percentage_diskusage_limit to 80
WriteResult({ “nMatched” : 1, “nUpserted” : 0, “nModified” : 0 })
The current values of the variables are:
attack_initial_training=1
attack_update_interval=24
api_discovery=false
discovery_update_interval=1
continuous_learning=true
discovery_initial_period=24

PingIntelligence copyright © 2022

| 27



url_limit=100
response_size=100
window_length=24
discovery_subpath=3
percentage_diskusage_limit=80

You need to restart all the ABS node for your changes to take effect.

Parent topic:ABS administration

AI Engine training
The PingIntelligence AI Engine needs to be trained before it can detect anomalies or attacks on API
services or generate reports. The AI engine training is governed by global variables which are configured in
the /opt/pingidentity/abs/mongo/abs_init.js file. The AI training runs for the minimum
training time set in the abs_init.js file but a minimum amount of data must also be received before the
training period is complete for a given API. You can check the training status by using the ABS Admin REST
API..

ABS must be trained on all APIs before they can be secured. Whenever a new API is added, ABS
automatically trains itself before looking for attacks.

• Training the ABS model
• AI Engine training variables
• Training period status
• Update the training variables
• Tune thresholds for false positives
• Disable attack detection

Training the ABS model
ABS can be trained in a live or a staging environment by analyzing ASE access logs to build its model.
When ABS first receives traffic for a new API, the training period starts. After the defined training period
(default is 24 hours) expires, ABS starts detecting attacks. In this case, no database migration is required.
ABS applies continuous learning and adapts its model over time for increased accuracy.

For example, a new API ecosystem is added with four APIs, and ABS is configured with a 24-hour training
period. Two APIs have immediate API activity, so ABS begins the training period for both APIs. After 24-
hours, ABS will detect attacks only for the two trained APIs.

If the remaining two APIs start sending traffic three days later, then ABS will begin the 24-hour training
period for the remaining APIs and begin attack detection for those APIs at the end of the training period.

PingIntelligence copyright © 2022

| 28



Important: It is important to decide on the training and threshold update intervals prior to
starting the AI system. Although you can updatethe training and threshold periods, it is a good
practice not to change these variables frequently as this may lead to a change in the behavior of
the AI model.

Parent topic:AI Engine training

AI Engine training variables
PingIntelligence AI training depends on a set of parameters configured in the abs_inti.js file. These
parameters should be configured before starting the system. It is recommended that you review the
variables and configure the best values for your environment. Frequent updates to the training variables
may lead to a change in behavior of the AI system. Following are the parameters that need to be
configured:

• attack_initial_training
• attack_update_interval
• continuous_learning
• window_length

The following table describes the various training variables:

Training variables

Variable Description

attack_initial_training The number of hours that you want to train
the AI model before it moves to the
prediction mode. The default value is 24-
hours. The minimum value is 1-hour.

attack_update_interval The time interval in hours at which you would
want the model thresholds to be updated.
The default value is 24-hours. The minimum
value is 1-hour.
The value in this variable takes effect only
when
continuous_learning
is set to
true
.

continuous_learning Setting this value to
true
configures the AI model to learn continuously
based on the live traffic. If it is set to
false,
the AI model detects attack based on the
initial training.

window_length The maximum time period that the AI model
uses to detect attacks across APIs. The
default and maximum value for
window_length

PingIntelligence copyright © 2022

| 29



is 24-hours. The training period should be
longer than the
window_length
period.

Following is a snippet from the abs_init.jsfile showing the variables:

db.global_config.insert({
"attack_initial_training": "24",
"attack_update_interval": "24",
"url_limit": "100",
"response_size": "100",
"job_frequency" : "10",
"window_length" : "24",
"enable_ssl": true,
"api_discovery": false,
"discovery_initial_period" : "24",
"discovery_subpath": "1",
"continuous_learning": true,
"discovery_update_interval": "1",
"attack_list_count": "500000",
"resource_monitor_interval" : "10",
"percentage_diskusage_limit" : "80"

});

Miscellaneous variables

Variable Description

response_size Maximum size in MB of the data fetched by
external calls to ABS REST APIs. The default
value is 100 MB.

enable_ssl When
true, 
SSL communication is enabled between ASE
and ABS, and for external systems making
rest API calls to ABS. See Configure SSLon
page 10 for more information.

Parent topic:AI Engine training

Training period status
ABS training status is checked using the ABS Admin API which returns the training duration and prediction
mode. If the prediction variable is true, ABS has completed training and is discovering attacks. A false
value means that ABS is still in training mode. The API URL for Admin API is: https://
<ip>:<port>/v3/abs/admin. Here is a snippet of the Admin API output:

"message": "training started at Thu Jul 30 12:32:59 IST 2018",
"training_duration": "2 hours",
"prediction": true

PingIntelligence copyright © 2022

| 30



Note: ABS only detects attacks after the training period is over. During training, no attacks are
detected.

Parent topic:AI Engine training

Update the training variables
ABS provides an update.sh script to update the training related variables in the global configuration of
abs_init.js file. Using the script, you can update the following variables:

• Continuous learning: continuous_learning
• Training period: attack_initial_learning
• Threshold update period: attack_update_interval
• Window length: window_length

You can update the training period when the system is already in a running state by using the update.sh
script available in the util directory. Review the following use cases before changing the training and
threshold period. In all the use cases, the default training period is assumed to be 24-hours. You can
update the default values before starting the system by editing and saving the values in the abs_init.js
file.

CAUTION: If you want to extend the training period, it is a best practice to add new APIs after
the training period is adjusted to avoid APIs completing a shorter training period.

Update the training interval
Increase the training period

You can increase the training period by executing the update script.

Case 1 – The API model is under training, that is, the training period is not over.

System Behavior – In this case, if you increase the training period, for example, from 24-hours to 48-
hours, the AI model trains based on the updated training period.

Case 2 – The API model has completed the training process.

System Behavior – Increasing the training period has no effect on trained APIs. Any new APIs will use
the new training period.

Decrease the training period

You can decrease the training period by executing the update script.

Case 1 – The API model is in the training process but has not reached the duration of the new training
period.

System Behavior – Decreasing the training period (for example, from 24 hours to 12 hours) shortens the
training period to 12 hours for the APIs that have not completed the training process. If the API has
completed 10 hours of training, then it will now complete its training period after 2 more hours.

Case 2 – The API model is in the training process and the new training duration is less than the current AI
model trained duration.

System Behavior – In this case the API model stops training itself at the current time and moves to the
prediction mode. For example, if the original training period was 24-hours and the AI model has been

PingIntelligence copyright © 2022

| 31



trained for 18-hours; at this time if the training period is reduced to 12-hours, the AI model stops training
itself and moves to the prediction mode.

Case 3 – API model has completed the training process.

System Behavior – Decreasing the training period has no effect on trained APIs. Any new APIs will use
the new training period.

Execute the update.sh script

The update.sh script is available in the /opt/pingidentity/abs/util directory. Copy the script
from the util directory to your MongoDB primary node. The training period and threshold can be changed
simultaneously or individually.

Note: After executing the script, stop and start all ABS nodes for the updated values to take
effect.

Access script help by logging into the MongoDB primary machine and running the following command:
/opt/pingidentity/mongo/update.sh help

ExampleChange the training period to 48 hours
/opt/pingidentity/mongo/update.sh -u absuser -p abs123 --
attack_initial_training 48
updating training_period to 48
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
The current values of the variables are:
attack_initial_training=48
attack_update_interval=24
api_discovery=false
discovery_update_interval=1
continuous_learning=true
discovery_initial_period=24
url_limit=100
response_size=100
window_length=24
discovery_subpath=3
percentage_diskusage_limit=80

You need to restart all the ABS node for your changes to take effect.

Parent topic:AI Engine training

Tune thresholds for false positives
ABS automatically generates attack thresholds which are used by the machine learning system to identify
attacks and anomalies. Initial attack thresholds are determined based on training and production traffic in
your API ecosystem. At the end of the training period, ABS calculates the first set of system-generated
threshold values and uses these values to detect attacks.

By default, system generated threshold values are updated every 24-hours. This frequency can be changed
at start-up by modifying attack_update_interval in the abs_init.js file or anytime by using the
update.sh script available in the util directory. The minimum value is 1-hour as sufficient traffic is
required to update the model.

PingIntelligence copyright © 2022

| 32



Following is a snippet of abs_init.js file:

db.global_config.insert({
"attack_initial_training": "24",
"attack_update_interval": "24",

       "continuous_learning": true,
"url_limit": "100",
"response_size": "100",
"job_frequency" : "10",
"window_length" : "24",
"enable_ssl": true,
"api_discovery": false,
"discovery_initial_training" : "24",
"discovery_subpath": "1",
"discovery_update_interval": "1"

});

You can change the threshold period at anytime by running the update.sh script. The value of the
updated threshold period is applicable immediately. For example, if the current threshold update period is
10 hours and the new threshold period is 12 hours, then the AI model updates the threshold at the 12th
hour.

Note: After executing the script, stop and start all ABS nodes for the updated values to take
effect.

Access script help by logging into the MongoDB machine and running the following command:

/opt/pingidentity/mongo/update.sh help

Example: change the training period and threshold interval together

/opt/pingidentity/mongo/update.sh -u absuser -p abs123 --
attack_initial_training 24 --attack_update_interval 24
updating attack_initial_training to 24
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
updating attack_update_interval to 24
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
The current values of the variables are:
attack_initial_training=24
attack_update_interval=24
api_discovery=true
discovery_initial_interval=48
You need to restart all ABS nodes for your changes to take effect.

Check threshold values

Threshold values can be checked using the ABS Threshold API. For each attack type, one or more variables
(for example, Var A, B) is used by the machine learning process during attack detection. All variables have a
Normal Threshold Value (tn), and some variables also have an Extreme Threshold Value (tx). These values
are used during the attack detection process and automatically update over time to provide improved
accuracy.

PingIntelligence copyright © 2022

| 33



To view the current threshold settings, use the GET method with the following ABS threshold API:

https://<ip_address>:<port>/v3/abs/attack/threshold?api=<api_name>

The IP address and port corresponding to the host ABS machine. The API payload returned is a JSON file
which shows the threshold values for each attack type. See Appendix B: Get Threshold API for an example.

Change attack thresholds

Ping Identity recommends using the automatically generated system thresholds in your production
operations. However, if attacks are detected for legitimate traffic (i.e. false positives), then manual tuning
options are provided. An administrator has two choices:

• Change the system generated threshold value to a larger user-generated value.
• Disable the variable to stop detecting attacks (see Disabling Attacks)

To identify settings to change, generate an attack report which includes attacks known to be false
positives. For each identified attack, an Attack Code (for example, "varA (Tn), varB (Tn)") is listed with the
threshold variable(s) that triggered the attack. The Attack Code includes the responsible variables (for
example, A, B) and threshold types (for example, Tn, Tx); the threshold type can be manually adjusted. Ping
Identity recommends slowly increasing the triggered threshold value(s) using user-generated thresholds.
After each update, evaluate the new setting to see if false positives are reduced. The process can be
repeated until the issue is addressed.

The Threshold API PUT method is used to manually override the system generated setting with a user-
defined value. When configuring the threshold manually, the normal threshold (tn), the extreme threshold
(tx), or either threshold can be individually set.

Note: Make sure that you are in user mode before changing the threshold manually.

Change threshold value Tn only

The Tn threshold value can be changed for each attack type for a specific API. The initial Tx value is
automatically calculated based on the gap between the values of Tn and Tx. This gap is determined at the
end of the training period. The minimum gap is 1, and the value of Tx always bigger than Tn. Here is an
example:

Values at end of training period:

• Tn = 12
• Tx = 16
• Gap = 4 (Tx-Tn)

Threshold API is used to set Tn=13 for an API variable.

• Tx = 17 (Gap value of 4 is automatically added to new Tn value)

This difference between the value of Tn and Tx is maintained when only Tn is moved. However, the
difference between the value of Tn and Tx can be changed when only Tx is changed.

Note: The value of Tncan never be more than the value of Tx.

PingIntelligence copyright © 2022

| 34



Changing Threshold Value Tx only

Change the Tx value to adjust the gap between the normal and extreme threshold setting for an attack
type on a specific API. The value of Tx defines the gap which ranges from a minimum of 1 to the
maximum value defined in Threshold range for Tn and Tx. When Tx is moved, the system calculated gap
calculated at the end of the training period is no longer used. For the attack types where Tx is not
applicable to the variable, “na” is displayed in the threshold API.

Note: If the value of only Tn is moved without modifying Tx, then the new gap between the
value of Tn and Tx is used until the value of Txis changed again.

Change threshold value Tn and Tx together

Both Tn and Tx can be changed for an attack type on a specific API. When Tn and Tx are moved
simultaneously, the newly defined value of Tn and gap for Tx are changed. The ranges of Tn and Tx values
are detailed in Appendix C.

How to configure threshold value

To manually set a threshold, use the PUT method with the following ABS attack API:

https://<ip_address>:<port>/v3/abs/attack/threshold?api=<api_name>

The IP address and port correspond to the host ABS machine. The API input payload is a JSON file which
sets the threshold value for attack types. The parameters include attack type and Normal Threshold (tn)
value. When manually setting the threshold for a variable, ABS Threshold API displays both system
generated and user configured threshold values. ABS applies the user configured threshold values until it is
reconfigured to use system generated values (see below).

Manually set thresholds

The threshold API with PUT method sets the operation mode for the variable by configuring mode to
system or user. The following snippet of Threshold API with PUT method shows how to change the
threshold mode from system to user and change value of tn, tx, or both at the same time. If you do not
wish to change the value for tn or tx in user mode, leave the field blank by putting “” in the Threshold API
body. In the following snippet, the value of tn and tx both are changed.

{
 "api_name" : "atmapp",
 "mode": "user",
 "ioc_threshold": [
 {
 "type": "api_memory_attack_type_2",
 "variable": "A",
 "tn": "9",
 "tx": "12"
 },
 {
 "type": "data_exfiltration_attack",
 "variable": "A",
 "tn": "18",
 "tx": ""
 },

PingIntelligence copyright © 2022

| 35



 {
 "type": "data_exfiltration_attack",
 "variable": "B",
 "tn": "18",
 "tx": ""
 },
 {
 "type": "api_memory_attack_type_1",
 "variable": "A",
 "tn": "18",
 "tx": ""
 }
 ]
}
{
 "api_name" : "shop",
 "mode": "user",
 "ioc_threshold": [
 {
 "type": "api_memory_attack_type_2",
 "variable": "A",
 "tn": "13"
 },
 {
 "type": "api_memory_attack_type_2",
 "variable": "B",
 "tn": "10"
 }
}

The API response is displayed below:

{
 "message": success: "Thresholds set to user mode for given variables.",
 "date": "Mon Jan 08 15:36:05 IST 2018"
}

After a threshold value is manually set, ABS uses the updated user threshold values to detect attacks.

When threshold mode is changed back to system, the user-configured values are no longer used or
displayed in the threshold API output. The following snippet shows changing threshold to system mode
from user mode for two variables associated with an API memory attack:

{
 "api_name" : "shop",
 "mode": "system", 
 "ioc_threshold": [
 {
 "type": "api_memory_attack_type_2",
 "variable": "A",
 },
 {
 "type": "api_memory_attack_type_2",

PingIntelligence copyright © 2022

| 36



 "variable": "B",
 }
}

The API response is displayed below:

{
 "message": success: "Thresholds set to system mode for given variables.",
 "date": "Mon Jan 06 15:36:05 IST 2018"
}

Parent topic:AI Engine training

Disable attack detection
In rare cases, an attack type may need to be completely disabled. This follows the same process as
changing the attack threshold and sets the user-generated normal threshold value to the maximum for the
attack type (refer to Threshold range for Tn and Tx for a list of maximum values). When the normal
threshold is set to maximum, the machine learning system will not generate attacks based on that variable.
All other variables continue to operate in either system or user mode.

Parent topic:AI Engine training

API discovery
API discovery consists of discovering new APIs and then automatically configuring the new APIs in ASE
using the Automatic API Definition (AAD) tool. The AAD tool is installed and configured separately.

• Discover the APIs
• Reporting the discovered APIs
• Discovery Subpaths
• ABS Discovery API
• Enable and disable discovery and update discovery interval

Discover the APIs
API Behavioral Security works in tandem with ASE to automatically discover APIs in your ecosystem. The
discovery process works as follows:

1. ASE is configured with an API JSON file with url as “/”andhostname as “*”. ASE captures the
API traffic metadata in log files and forwards API traffic to backend servers. It periodically sends the
log files to ABS.

2. ABS processes the ASE log files and looks for new APIs. During the discovery period, ABS monitors
the traffic on the API JSON (global API). At the end of the discovery period, the discovered APIs are
reported. T0 to T24 in the diagram represents the discovery period.

3. At the end of the initial discovery period, ABS does the following:
• If the API definition was learned, then ABS marks the API as discovered. Go to step 4.
• If the API definition is incomplete, then ABS repeats the discovery process (Step 2) for a
discovery_update_interval(default is 1-hour)

4. For each discovered API, the Automated API Definition (AAD) tool converts the ABS API definition
report to ASE API JSON definition file format. AAD then adds the API JSON file to ASE.

5. When traffic is received from the new API, ABS begins a machine learning training process for an
interval defined by attacks_initial_training to determine normal behavior. The diagram
assumes this occurs immediately and is represented by T24 to T48 in the diagram.

6. After the training period completes, ABS can begin detecting attacks on the discovered APIs.

PingIntelligence copyright © 2022

| 37



API discovery variables

Variable Description

api_discovery Set this variable to
true
to switch on API discovery. To switch off API
discovery, set it to
false
.

discovery_initial_period The initial time in hours after which APIs are
discovered in your API ecosystem.

discovery_update_interval The time interval in hours at which any new
discovered APIs are reported.

discovery_subpath The number of subpaths that is discovered in an API.
The minimum value is 1 and maximum value is 3. See
Discovery Subpathsfor more information.

url_limit This variables defines the number of URLs that are
reported in a discovered API.

db.global_config.insert({
"attacks_initial_training": "24",
"attacks_update_interval": "24",

       "continuous_learning": true,
"url_limit": "100",
"response_size": "100",
"job_frequency" : "10",
"window_length" : "24",
"enable_ssl": true,
"api_discovery": false,
"discovery_initial_period" : "24",
"discovery_subpath": "1",
"discovery_update_interval": "1"

});

The following illustration shows the time line from the start of API discovery to the time when attack
detection starts.

PingIntelligence copyright © 2022

| 38



Parent topic:API discovery

Reporting the discovered APIs
ABS API definition reports include the following information for each discovered API:

Information Description

host Hostname or IP address that is serving the
API.

basePath The base path on which the API is served.
The base path is relative to the host. The
value starts with a leading / (slash).

schemes API protocol - value must be HTTP, HTTPS,
WS, or WSS.

consumes A list of MIME types that the APIs can
consume.

produces A list of MIME types that the APIs can
produce.

paths Relative paths to the individual endpoints.

responses Placeholder to hold responses.

backendHosts Backend servers for the API.

server_ssl Value is
true
if backend API server supports encrypted
connection. Set to
false
if the backend API server does not support
encrypted connection.

Parent topic:API discovery

Discovery Subpaths
Before starting API discovery, it is important to configure the subpath depth which allows the AI Engine to
accurately detect the API environment. Subpath depth provides the number of sub-paths for a unique API
definition. Here are examples of discovery_subpath values:

• “1”, example: /atmapp isbasepath for /atmapp/zipcode, /atmapp/update, etc.
• “2”, example: v1/atmapp is basepath for v1/atmapp/zipcode, v1/atmapp/update, etc.
• “3”, example: v1/cust1/atmapp is basepath for v1/cust1/atmapp/zipcode, etc.

The discovery_subpath parameter is configured in the abs_init.js file and defines the number of
sub-paths in the basepath of the API. The default value is set to 1 and the maximum value is 3. The
url_limit parameter defines the maximum number of subpaths in a discovered API. The default value is
100.

PingIntelligence copyright © 2022

| 39



db.global_config.insert({
"attack_initial_training": "24",
"attack_update_interval": "24",
"url_limit": "100",
"response_size": "100",
"job_frequency" : "10",
"window_length" : "24",
"enable_ssl": true,
"api_discovery": false,
"discovery_initial_period" : "24",
"discovery_subpath": "1",
"continuous_learning": true,
"discovery_update_interval": "1"

});

Updating url_limit and discovery_subpath: You can update the url_limit and
discovery_subpath by running the update.sh script. The update.sh script is available in the/opt/
pingidentity/abs/util directory. Copy the script from the util directory to your MongoDB primary
machine.

Note: After executing the script, stop and start all ABS nodes for the updated values to take
effect.

Access script help by logging into the MongoDB primary machine and running the following command:
/opt/pingidentity/mongo/update.sh help

Example: Change the url_limit to 50
/opt/pingidentity/mongo/update.sh -u absuser -p abs123 --url_limit 50
updating url_limit to 50
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
The current values of the variables are:
attack_initial_training=48
attack_update_interval=24
api_discovery=false
discovery_update_interval=1
continuous_learning=true
discovery_initial_period=24
url_limit=50
response_size=100
window_length=24
discovery_subpath=3
percentage_diskusage_limit=80

You need to restart all the ABS node for your changes to take effect.

Parent topic:API discovery

ABS Discovery API
The Discovery API uses the GET method to display the discovered API details and is reported only when
the host, basepath, schemes, paths, and responses information is populated. ABS provides the
following external REST API which uses the GET method to view the discovered APIs:

PingIntelligence copyright © 2022

| 40



URL:/v3/abs/discovery

Following is a snippet of the summary output of discovery API:

{
 "company": "ping identity",
 "name": "api_discovery_summary",
 "description": "This report contains summary of discovered APIs",
 "summary": [
 {
 "api_name": "api_0",
 "host": "192.168.11.162",
 "basePath": "/pubatmapp",
 "created": "Wed Oct 25 20:31:46:082 2017",
 "updated": "Wed Oct 25 20:51:48:161 2017"
 },
 {
 "api_name": "api_1",
 "host": "192.168.11.162",
 "basePath": "/atmapp",
 "created": "Wed Oct 25 20:31:46:084 2017",
 "updated": "Wed Oct 25 20:51:48:158 2017"
 },
 {
 "api_name": "api_2",
 "host": "192.168.11.162",
 "basePath": "/app/ws",
 "created": "Wed Oct 25 20:31:46:086 2017",
 "updated": "Wed Oct 25 20:31:46:086 2017"
 }
 ]
}

Each API name (for example, api_1)is auto-generated and starts from api_0. This API name can be
specified in the api_name query parameter to request more details as shown in the next example.

URL: /v3/abs/discovery?api_name=api_1

Here is a snippet of a discovered API:

{
 "company": "ping identity",
 "name": "api_discovery_details",
 "description": "This report contains details of discovered APIs",
 "info": {
 "title": "api_1"
 },
 "host": "192.168.11.162",
 "basePath": "/atmapp",
 "schemes": [
 "http/1.1"
 ],
 "consumes": [

PingIntelligence copyright © 2022

| 41



 "application/json",
 "multipart/form-data"
 ],
 "produces": [
 "text/html",
 "application/json",
 "text/plain"
 ],
 "server_ssl": false,
 "backendHosts": [
 "x.foo.backend1.com:3000",
 "x.foo.backend2.com:3000",
 ],
 "backendServers": [
 "192.168.11.164:3001",
 "192.168.11.164:3002",
 "192.168.11.164:3003",
 "192.168.11.164:3004"
 ],
 "paths": {
 "paths": {
 "/atmapp/zipcode": {
 "post": {
 "produces": [
 "application/json"
 ],
 "responses": {
 "200": {
 "description": "ok"
 }
 }
 },
 "get": {
 "produces": [
 "application/json"
 ],
 "responses": {
 "200": {
 "description": "ok"
 }
 }
 },
 "delete": {
 "produces": [
 "application/json"
 ],
 "responses": {
 "200": {
 "description": "ok"
 }
 }
 },
 "put": {
 "produces": [

PingIntelligence copyright © 2022

| 42



 "application/json"
 ],
 "responses": {
 "200": {
 "description": "ok"
 }
 }
 }
 },
 "/atmapp/upload": {
 "post": {
 "produces": [
 "text/html"
 ],
 "responses": {
 "200": {
 "description": "ok"
 }
 }
 }
 },
 "/atmapp/login": {
 "post": {
 "produces": [
 "application/json",
 "text/plain"
 ],
 "responses": {
 "200": {
 "description": "unauthorized"
 },
 "401": {
 "description": "unauthorized"
 }
 }
 }
 },
 "/atmapp/update": {
 "put": {
 "produces": [
 "text/html"
 ],
 "responses": {
 "200": {
 "description": "ok"
 }
 } }}}}}

Note: If ASE is deployed in sideband mode, then backend host field in the output shows the IP
address as not available: 0. The backend server field shows the IP address as 0.0.0.0.
For more information on ASE sideband mode, see the ASE Admin Guide.

PingIntelligence copyright © 2022

| 43



• Discover OAuth token APIs

Parent topic:API discovery

Discover OAuth token APIs
ABS discovers OAuth2 token APIs when the following conditions are met:

•
◦ An API JSON file must be created in ASE with a URL configured as / and hostname as *
◦ oauth2_access_token must be set to true in the API JSON file.

During the discovery period, a sufficient volume of traffic must be sent before the API is discovered. After
the API is discovered, AAD creates an API JSON file with oauth2_access_token enabled and adds it to
ASE.

Parent topic:ABS Discovery API

Enable and disable discovery and update discovery interval
You can enable or disable discovery and also update the discovery interval by using the update.sh script
available in the util directory. If the training period is set to 24-hours, then discovered APIs are reported 24-
hours from the time when discovery was enabled.

Execute the update.sh script

The update.sh script is available in the/opt/pingidentity/abs/util directory. Copy the script
from the util directory to your MongoDB primary machine. You can change the training period and
threshold simultaneously or individually.

Note: You need to stop and start all the ABS nodes for the updated values to take effect after
the values are updated by executing the script.

You can access the help of the script by logging in to the MongoDB primary machine and running the
following command:

/opt/pingidentity/mongo/update.sh help

Example:

/opt/pingidentity/mongo/update.sh --api_discovery true --
discovery_update_interval 48
updating api_discovery to true
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 0 })
updating discovery_update_interval to 48
The current values of the variables are:
attack_initial_training=1
attack_update_interval=24
api_discovery=false
discovery_update_interval=1
continuous_learning=true
discovery_initial_period=24
url_limit=100
response_size=100

PingIntelligence copyright © 2022

| 44



window_length=24
discovery_subpath=3
percentage_diskusage_limit=80

You need to restart all the ABS node for your changes to take effect.

Parent topic:API discovery

Automated API Definition (AAD)
Automated API Definition (AAD) is a Java-based tool that adds ABS discovered APIs to ASE. AAD runs
independently of ABS but can run on the same machine as ABS. AAD works as follows:

• AAD polls ABS at regular intervals for any newly discovered APIs.
• If new APIs are discovered, AAD converts the new API definitions to an API JSON file
• AAD then adds the API JSON file to ASE.

The following illustration summarizes the API discovery and feedback loop.

Note: Do not connect AAD to ASE if you do not want to send APIs discovered by ABS to ASE.

Automated API Definition Tool converts ABS discovered parameters to API JSON file format:

ABS Discovered API Parameters AAD Converted API JSON Parameter

API ID: api_0 <hostname>_<url>

host hostname

basePath URL

schemes protocol

consumes NA

method NA

backendServers NA

server_ssl server_ssl

PingIntelligence copyright © 2022

| 45



backendHosts servers

Note: In the converted API JSON, api_memory_size is set to 64mb,health_check as
false and enable_blockingis set to trueby default. You can edit these values in ASE.

• Install AAD
• Obfuscate keys and passwords
• Configure AAD
• Start AAD
• Stop AAD
• AAD Conversion Status
• Purge AAD log files

Install AAD
Download the AAD tool from the download site. Oracle Java 8 must already be installed on the AAD
machine.

Copy the downloaded file to /opt directory and run the following command to install:

# tar -zxf aad-3.2.1.tar.gz

The above step installs AAD and creates the following directories:

• bin – Contains start.sh, stop.sh and status.sh scripts
• config – Contains aad.properties file. This file is used to configure AAD
• data – For internal use
• logs – Contains AAD’s logs
• util – Contains thecheck_ports.sh. Run on the machine with the AAD tool to check ASE and

ABS default ports.

Parent topic:Automated API Definition (AAD)

Obfuscate keys and passwords
Obfuscate keys and passwords

Using AAD’s command line interface, you can obfuscate the keys and passwords configured in
aad.properties. Following keys and passwords are obfuscated:

• ase.access_key
• ase.secret_key
• abs.access_key
• abs.secret_key
• gateway.management.password

AAD ships with a default aad_master.key which is used to obfuscate the various keys and passwords. It
is recommended to generate your own aad_master.key.

Note: During the process of obfuscation of keys and password, AAD must be stopped.

The following diagram summarizes the obfuscation process:

PingIntelligence copyright © 2022

| 46

https://download.elasticbeam.com/


Generate aad_master.key

You can generate the aad_master.key by running the generate_obfkey using the AAD CLI.

opt/pingidentity/aad/bin/cli.sh -u admin generate_obfkey -p
Password>
Please take a backup of config/aad_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh obfuscate_keys
Warning: Obfuscation master key file /opt/pingidentity/aad/config/
aad_master.key already exist. 
This command will delete it create a new key in the same file
Do you want to proceed [y/n]: y
creating new obfuscation master key
Success: created new obfuscation master key at /opt/pingidentity/aad/config/
aad_master.key

The new aad_master.key is used to obfuscate the passwords in aad.properties file.

Note: After the keys and passwords are obfuscated, the aad_master.key must be moved to
a secure location from AAD. If you want to restart AAD, the aad_master.key must be present
in the /opt/pingidentity/aad/config/ directory.

Obfuscate keys and passwords

Enter the keys and passwords in clear text in the aad.properties file. Run the obfuscate_keys
command to obfuscate keys and passwords:

/opt/pingidentity/aad/bin/cli.sh obfuscate_keys -u admin -p
Password>
Please take a backup of config/aad.properties before proceeding
Enter clear text keys and password before obfuscation.
Following keys will be obfuscated
 config/aad.properties: ase.access_key, ase.secret_key, abs.access_key, 
abs.secret_key and gateway.management.password
Do you want to proceed [y/n]: y
obfuscating /opt/pingidentity/aad/config/aad.properties
Success: secret keys in /opt/pingidentity/aad/config/aad.properties 
obfuscated

Start AAD after passwords are obfuscated.

Parent topic:Automated API Definition (AAD)

PingIntelligence copyright © 2022

| 47



Configure AAD
Connecting AAD with ABS and ASE requires the following:

• ASE node hostname or IPv4 address and credentials
• ABS node hostname or IPv4 address and keys

These values are configured in the aad.properties file available in the config directory.

The following table describes the AAD configuration parameters:

Property Description

aad.mode Set the value to
discovery
when ASE is deployed in inline mode.
Set the value to
gateway
when ASE is deployed in sideband mode. For
more information on AAD in
gateway
mode, see the Deployment Guide.
Set the value to
pingaccess
when ASE is deployed in
sideband
mode with PingAccess. For more information
on AAD in pingaccess mode, see the
PingIntelligence for APIs – PingAccess
Integration guide.
For more information on ASE modes, see the
ASE Admin Guide.

abs.host Hostname or IPv4 IP address of the ABS host
machine.

abs.port Port number of the ABS service.

abs.access_key The access key of ABS. Default value is
abs_ak

abs.secret_key The secret key of ABS. Default value is
abs_sk

ase.host Hostname or IPv4 IP address of the ASE host
machine.

ase.port Port number of the ASE service.

abs.ssl Set to true for ABS-AAD communication to
use SSL.

ase.access_key The username of ASE. Default value is
admin

PingIntelligence copyright © 2022

| 48

https://docs.pingidentity.com/bundle/PingIntelligence_PingAccess_Integration_pingintel_32/page/pingintelligence_pingaccess_setup.html
https://docs.pingidentity.com/bundle/PingIntelligence_PingAccess_Integration_pingintel_32/page/pingintelligence_pingaccess_setup.html
https://docs.pingidentity.com/bundle/PingIntelligence_API_Security_Enforcer_3.2_pingintel_32/page/features_at_a_glance.html


ase.secret_key The password of ASE. Default value is
admin

abs.query.interval The polling interval in minutes to poll for any
newly discovered APIs.
The default value is 10 minutes.

aad.log.level The log level of AAD log files. The default
value is
INFO
. Other possible values are:
ALL<DEBUG<INFO<WARN<ERROR<FATAL<OFF

gateway.management.url URL of the API Gateway.
Only valid when
aad.mode
is
gateway
.

gateway.management.username Username to connect to the API Gateway.
Only valid when
aad.mode
is
gateway
.

gateway.management.password Password to connect to the API Gateway.
Only valid when
aad.mode
is
gateway
.

Following is a sample aad.properties file:

# Automated API Discovery (AAD)
# AAD mode. Valid values discovery,span_port, and axway
# discovery will pull discovered APIs from ABS
# span_port will pull discovered APIs from ABS
# gateway will pull APIs from Axway API Gateway
# pingaccess will pull APIs from PingAccess
aad.mode=discovery
# AAD query polling interval (minutes) to ABS or Gateway
aad.query.interval=10
# Log level
aad.log.level=INFO
### ASE config
# ASE Host ( hostname or IPv4 address)
ase.host=127.0.0.1
# ASE management port
ase.port=8010

PingIntelligence copyright © 2022

| 49



# ASE REST API access key
ase.access_key=OBF:AES:Rs7NPeYGCU0Zku7TANJbwEl2rW7+:v7j6VGWaoMjUNcc4IMAtOMtLL8hUPOLWrq7BPMcq3m0=
# ASE REST API secret key
ase.secret_key=OBF:AES:Rs7NPeYGCU0Zku7TANJbwEl2rW7+:v7j6VGWaoMjUNcc4IMAtOMtLL8hUPOLWrq7BPMcq3m0=
### ABS config. Only valid if aad.mode=discovery or aad.mode=span_port
# ABS Host ( hostname or IPv4 address )
abs.host=127.0.0.1
# ABS management port
abs.port=8080
# ABS SSL enabled ( true or false )
abs.ssl=true
# ABS access key
abs.access_key=OBF:AES:RsjTC+lxddGqv3XUUV/
YX8iA8kg6Ng==:0vOu0XUVpbvV4AaSmv5mZllw3WpAsj1oPF3d5Etl70Y=
# ABS secret key
abs.secret_key=OBF:AES:RsjTC/tx/
sp+7XXtr8+1rnaty1BFug==:78i6bQcdVSavuKm2TXQMOKga/OOEa/ON4RoiUMYu3Rc=
### Axway API Gateway config. Only valid if aad.mode=gateway
# API Manager URL
gateway.management.url=https://127.0.0.1:8075/
# API Manager admin username
gateway.management.username=apiadmin
# API Manager admin password
gateway.management.password=OBF:AES:RMLBOu9/DIVOEAojYV/
Otw74LahxfEgp:dLfCNugFUCcfsg1nBXQzflTvAWiPit8ulseHxi+Z0tk=
### PingAccess config. Only valid if aad.mode=pingaccess
# Admin URL
pingaccess.management.url=https://127.0.0.1:9000/
# Admin username
pingaccess.management.username=Administrator
# Admin password
pingaccess.management.password=OBF:AES:FevDN+1pEqcKQnFG/UN3Efz0DMa/
kmI=:Az82rlUFftMGPmxF7unelJZUucX191lO2QgKvHD36vU=

A sample API JSON for auto-discovery is shown below. The important fields to fill are:

• url - /
• hostname - *
• server_ssl – true or false based on whether your backend server is SSL enabled or not.
• servers – If an API gateway is behind ASE, then provide the hostname or the IP address of the API

gateway. If the APIs are hosted as a service, then provide the hostname or the IP address of the
server that hosts these servers.

{
 "api_metadata": {
 "protocol": "http",
 "url": "/", 
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,

PingIntelligence copyright © 2022

| 50



 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": false,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing" : false
 },
 "api_memory_size": "128mb",
 "health_check": false,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false, 
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 }
 ],
 "decoy_config":
 {
 "decoy_enabled": false,
 "response_code" : 200,
 "response_def" : "",
 "response_message" : "",
 "decoy_subpaths": [
 ]
 }

PingIntelligence copyright © 2022

| 51



 }
}

Parent topic:Automated API Definition (AAD)

Start AAD
Prerequisite:

For AAD to start, the aad_master.key must be present in the /opt/pingidentity/aad/config
directory. If you have moved the master key to a secured location for security reasons, copy it to the
config directory before executing the start script.

To start AAD, navigate to /opt/pingidentity/aad/bin directory and run the following command:

bin/start.sh
AAD 3.2.1 starting...
please see /opt/pingidentity/aad/logs/aad.log for more details

Parent topic:Automated API Definition (AAD)

Stop AAD
To stop AAD, navigate to /opt/pingidentity/aad/bin directory and run the following command:

bin/stop.sh
Ping Identity Inc.
AAD is stopped.

Parent topic:Automated API Definition (AAD)

AAD Conversion Status
Check the status of API conversion by running the status command. To run the status command,
navigate to /opt/pingidentity/aad/bin directory.

bin/status.sh

The status command has different output based on API conversion state:

• Conversion stage: Tool is converting the API. The status message is:
status : converting
details : APIs in conversion stage

• Conversion successful: APIs have been successfully converted. The status message is:
status : API conversion successful
details :
1) api_0 : successful, API converted to myhost_pubatmapp api, pushed to 
ASE
2) api_1 : successful, API converted to myhost_atmapp api, pushed to ASE
3) api_2 : successful, API converted to wshost_app api, pushed to ASE

• Conversion unsuccessful: APIs could not be converted. The status message is:

PingIntelligence copyright © 2022

| 52



status : API conversion could not succeed
details : please see /opt/pingidentity/aad/logs/act.log for more details

• Conversion partially successful: Some APIs were converted successfully. The status message
is:
status : API conversion partially successful
details : please see /opt/pingidentity/ aad /logs/act.log for more 
details
1) api_0 : successful, converted to myhost_pubatmapp api, pushed to ASE
2) api_1 : unsuccessful, conversion unsuccessful, incompatible api from 
ABS
3) api_2 : unsuccessful, converted to wshost_app api, not able to push 
to ASE

• AAD not running: AAD is not running. Check the AAD log files for a possible reason.•

The following table lists the input to the Automated API Definition Tool and the output API JSON.

Input from ABS Output to ASE

{
"company": "ping identity",
"name": "api_discovery_details",
"description":"This report contains 
 details of discovered APIs",
"info": {
 "title": "api_0"
 },
"host": "myhost",
"basePath": "/pubatmapp",
"cookie": "JSESSIONID",
"schemes": [
 "http/1.1"
 ],
"consumes": [
 "application/json",
 "multipart/form-data",
 "text/plain"
 ],
"produces": [
 "text/html",
 "application/json"
 ],
"server_ssl": false,
 "backendHosts": [
 "x.foo.backend1.com:3000",
 "x.foo.backend2.com:3000",
 ],
 "backendServers": [
 "192.168.11.168:3000",
 "192.168.11.169:3000",
 ],
"paths": {
 "/pubatmapp/update": {
 "put": {
 "produces": [

{
 "api_metadata": {
 "protocol": "http",
 "url": "/pubatmapp",
 "hostname": "myhost",
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "enable_blocking": false,
 "cookie": "",
 "cookie_idle_timeout": "",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "",
 "error_def": "",
 "error_message_body": ""
 },
 "flow_control": {
 "client_spike_threshold": "0/
second",
 "server_connection_queueing": false
 },
 "api_memory_size": "64mb",

PingIntelligence copyright © 2022

| 53



 "text/html"
 ],
 "responses": {
 "200": {
 "description": "ok"
 } } } },
 
 "/pubatmapp/login": {
 "post": {
 "produces": [
 "application/json"
 ],
 "responses": {
 "200": {
 "description":"ok"
 } } } },
 "/pubatmapp/zipcode": {
 "post": {
 "produces": [
 "application/json"
 ],
 "responses": {
 "200": {
 "description":"ok"
 } } },
 "get": {
 "produces": [
 "application/json"
 ],
 "responses": {
 "200": {
 "description":"ok"
 } } },
 "delete": {
 "produces": [
 "application/json"
 ],
 "responses": {
 "200": {
 "description":"ok"
 } } },
 "put": {
 "produces": [
 "application/json"
 ],
 "responses": {
 "200": {
 "description":"ok"
 } } } }, 
 "/pubatmapp/upload": {
 "post": {
 "produces": [
 "text/html"
 ],
 "responses": {
 "200": {
 "description":"ok"

 "health_check": false,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/",
 "server_ssl": false,
 "servers": [
 {
 "host": "x.foo.backend1.com",
 "port": 3000,
 "server_spike_threshold": "0/
second",
 "server_connection_quota": 0
 },
 {
 "host": "x.foo.backend2.com",
 "port": 3000,
 "server_spike_threshold": "0/
second",
 "server_connection_quota": 0
 }
 ],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

PingIntelligence copyright © 2022

| 54



} } } } } }
 

Parent topic:Automated API Definition (AAD)

Purge AAD log files
A purge.sh script either archives or purges processed access log files which are stored in the /opt/
pingidentity/aad/logs directory.

Note: When the purge script is run, the log files are permanently deleted from the /opt/
pingidentity/aad/logs directory. Always backup the files before deleting.

Located in the /opt/pingidentity/aad/util directory, the purge script deletes logs older than the
specified number of days. Run the script using the ABS command line. For example:

/opt/pingidentity/aad/util/purge.sh -d 3
In the above example, purge.sh deletes all access log files older than 3 
days. Here is sample output.
/opt/pingidentity/aad/util/purge.sh -d 3
This will delete the data in /opt/ pingidentity/aad/logs which is older than 
3 days.
Are you sure (yes/no): yes
removing /opt/pingidentity/aad/logs/aad.log.2019-02-08 : last changed at Fri 
Feb  8 23:51:09 EST 2019
removing /opt/pingidentity/aad/logs/aad.log.2019-02-09 : last changed at Sat 
Feb  9 23:51:09 EST 2019

Force delete: You can force delete the AAD log files by using the -f option with purge.sh script. When
you use the force purge option, the script does not check for confirmation to purge the log files. You can
use the force purge option with the -d option to provide the number of days of logs you wish to keep.

Example: The following snippet shows the usage of force purge option with the -d option:
/opt/pingidentity/aad/util/purge.sh -d 2 -f
removing /opt/pingidentity/aad/logs/aad.log.2019-02-10 : last changed at Sun 
Feb 10 00:11:55 EST 2019
removing /opt/pingidentity/aad/logs/aad.log.2019-02-11 : last changed at Mon 
Feb 11 00:12:01 EST 2019
removing /opt/pingidentity/aad/logs/aad.log.2019-02-07 : last changed at Sat 
Feb  9 00:12:27 EST 2019
Done.

In the above example, the script force purges the AAD log files while keeping log files of 2-days.

External log archival

The purge script can also archive logs older than the specified number of days to secondary storage. Use
the -l option and include the path of the secondary storage to archive log files. For example:

/opt/pingidentity/aad/util/purge.sh -d 3 -l /tmp/

PingIntelligence copyright © 2022

| 55



In the above example, log files older than 3-days are archived to the tmp directory. To automate log
archival, add the script to a cron job.

Parent topic:Automated API Definition (AAD)

Manage REST API attack detection
For each API, the API JSON file (see API Security Enforcer Admin Guide for information) determines
whether the attacks and other reports are based on cookie identifier, token, or IP address. An environment
with multiple APIs can support a mixture of identifier types in a single ABS system. Client identifier use
cases include:

• API JSON with OAuth2 token parameter – When an API JSON is configured with OAuth2 token
parameter = true, then attack information is associated with the OAuth2 access token used by
the hacker. Configuring the OAuth2 token parameter is recommended when access tokens are
present as it is a unique client identifier that eliminates issues identified below with IP addresses.

• API JSON with cookie parameter – When the cookie parameter is configured, most attacks are
reported with cookie identifiers, the exception being pre-authentication attacks (such as client login
attacks). Configuring the cookie parameter is recommended when cookies are present as it is a
unique client identifier that eliminates issues identified below with IP addresses.

• API JSON without a cookie or token parameter – When cookie and OAuth2 token parameters
are not configured, all attacks are reported with the client IP address which is determined based on
the following:

• XFF header present: The first IP address in the XFF list is used as the client identifier. When
forwarding traffic, load balancers and other proxy devices with XFF enabled add IP addresses to the
XFF header to provide application visibility of the client IP address. The first IP address in the list is
typically associated with the originating IP address.

Note: XFF is not always a reliable source of the client IP address and can be spoofed by a
malicious proxy.

• No XFF header: When no XFF header is present, the source IP address of the incoming traffic is
used as the client identifier. In this configuration, make sure that the incoming traffic is using public
or private IP addresses associated with the actual client devices, not a load balancer or proxy device
on your premise.

Note: When a load balancer or other proxy without XFF enabled is the source of the inbound
traffic, then all client traffic will be associated with the load balancer IP addresses. This
configuration will not provide effective attack reporting unless cookies or tokens are used.

To change the client identifier for an existing API, save the API JSON with a new name and update the
configuration to include the new client identifier parameter. ABS then re-trains the model for this API and
starts detecting attacks. For more information on configuring API JSON files, see API Security Enforcer
Admin Guide.

• REST API attack types
• REST API attacks detected on cookie
• REST API attacks detected on token
• REST API attacks detected on IP address

REST API attack types

PingIntelligence copyright © 2022

| 56

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html


API Behavioral Security (ABS) reports on REST API attacks using two different API calls:

• Per API attacks
• Across API attacks

Per API attacks: These attack types are reported on a specific API in your ecosystem. These attacks are
based on OAuth token, cookie or an IP address. Each attack type is assigned a type ID and can be
accessed using attack REST API of ABS. Type ID 0 reports on all attacks on the specified API except for
attack types which are analyzed across APIs.

Use the following ABS REST API to access different attack types: https://<ABS_IP:port>/v3/abs/
attack?later_date=yyyy-mm-ddThh:mm&later_date=yyyy-mm-
ddThh:mm&api=<api_name>&type=<type_id>.

For example, https://192.168.11.166:8080>/v3/abs/attack?
later_date=2018-12-31T18:00&later_date=2018-10-25T13:30&api=shop&type=1

The following table lists the attack types for individual APIs:

Per API attacks

Attack Type Type ID

Data Exfiltration Attack Type 1 1

Single Client Login Attack Type 1 2

Multi-Client Login Attack 3

Stolen Token Attack Type 1 (Token) 4

Stolen Cookie Attack Type 1 (Cookie) 4

API Memory Attack Type 1 5

API Memory Attack Type 2 6

Cookie DoS Attack 7

API Probing Replay Attack Type 1 8

API DDoS Attack Type 1 9

Extreme Client Activity Attack 10

Extreme App Activity Attack 11

API DoS Attack 12

API DDoS Attack Type 2 13

Data Deletion 14

Data Poisoning 15

PingIntelligence copyright © 2022

| 57



Data Exfiltration Attack Type 2 21

Content Scraping Type 2 28

Unauthorized client attack 29

Across API attacks: These attacks are detected across APIs in your API ecosystem. For example, if you
have five APIs in your ecosystem and there is a misbehaving token, cookie or an IP, then the across API
attack sniffs through all the APIs and reports the attacks.

Use the following ABS REST API to access different attack types: https://<ABS_IP:port>/v3/abs/
attack?later_date=yyyy-mm-ddThh:mm&later_date=yyyy-mm-ddThh:mm&type=<type_id>.

For example, https://192.168.11.166:8080>/v3/abs/attack?
later_date=2018-12-31T18:00&later_date=2018-10-25T13:30&type=18

The following table lists the attack types for individual APIs:

Across API attacks

Attack Type Type ID

Stolen Token Attack Type 2 16

Stolen Cookie Attack Type 2 17

API Probing Replay Attack Type 2 (Cookie) 18

API Probing Replay Attack Type 2 (Token) 19

API Probing Replay Attack Type 2 (IP) 20

Excessive Client Connections (Cookie)

Note: Applicable only for Inline
ASE deployment

22

Excessive Client Connections (Token)

Note: Applicable only for Inline
ASE deployment

23

Excessive Client Connections (IP)

Note: Applicable only for Inline
ASE deployment

24

Content Scraping Type 1 (Cookie) 25

Content Scraping Type 1 (Token) 26

Content Scraping Type 1 (IP) 27

PingIntelligence copyright © 2022

| 58



Single Client Login Attack Type 2 30

Parent topic:Manage REST API attack detection

REST API attacks detected on cookie
ABS machine learning algorithms categorize attacks which are assigned a unique type_id. The following
table lists the attacks detected based on cookie for a per API attack and across APIs.

Detected attacks based on cookie activity

Attack Type Description id Single or Across
APIs

Data Exfiltration
Attack Type 1

Data is being
extracted via a REST
API service.

1 Single API

Stolen Cookie Attack A stolen cookie is
being used to attack
an API service.

4 Single API

API Memory Attack
Type 1

Flooding of an API
service with data or
code.

5 Single API

API Memory Attack
Type 2

6 Single API

Cookie DoS Attack Session
management service
receiving an
abnormal number of
cookies from a client.

7 Single API

API Probing Replay
Attack

Probing or breach
attempts on an API
service – also called
fuzzing.

8 Single API

API DDoS Attack
Type 1

A DDoS or
distributed attack is
disrupting an API
service.

9 Single API

Extreme Client
Activity Attack

Extreme client
request activity on an
API service.

10 Single API

Extreme App Activity Extreme App Activity
may indicate an
injection or other
CPU intensive attack.

11 Single API

PingIntelligence copyright © 2022

| 59



Data Deletion Excessive data
deletion activity on
an API service.

14 Single API

Data Poisoning Extreme create or
update activity
received on an API
service.

15 Single API

Stolen Cookie Attack
Type 2

A stolen cookie is
being used to attack
an API service.

17 Across APIs

API Probing Replay
Attack Type 2

Probing or breach
attempts on an API
service – also called
fuzzing.

18 Across APIs

Data Exfiltration
Attack Type 2

Data is being
extracted via a REST
API service.

21 Single API

Excessive Client
Connections

Client is establishing
an excessive number
of TCP connections.
*

22 Across APIs

Content Scraping
Type 1

Client abnormally
accessing API
content

25 Across APIs

Content Scraping
Type 2

Client abnormally
accessing API
content

28 Single API

* Applicable only for Inline ASE deployment

Parent topic:Manage REST API attack detection

REST API attacks detected on token
The following table lists the REST API attacks using tokens detected by ABS. The attacks can be on a
single API or across APIs

Attack Type Description type_id Single or Across
APIs

Data Exfiltration
Attack Type 1

Data is being
extracted via a REST
API service.

1 Single API

Stolen Access Token
Attack

A stolen access
token is being used

4 Single API

PingIntelligence copyright © 2022

| 60



to attack an API
service.

API Memory Attack
Type 1

Flooding of an API
service with data or
code.

5 Single API

API Memory Attack
Type 2

6 Single API

API Probing Replay
Attack

Probing or breach
attempts on an API
service – also called
fuzzing.

8 Single API

API DDoS Attack
Type 1

A DDoS or
distributed attack is
disrupting an API
service.

9 Single API

Extreme Client
Activity Attack

Extreme client
request activity on an
API service.

10 Single API

Extreme App Activity Extreme App Activity
may indicate an
injection or other
CPU intensive attack.

11 Single API

Data Deletion Excessive data
deletion activity on
an API service.

14 Single API

Data Poisoning Extreme create or
update activity
received on an API
service.

15 Single API

API Probing Replay
Type 2

Probing or breach
attempts on an API
service – also called
fuzzing.

19 Across APIs

Data Exfiltration
Attack Type 2

Data is being
extracted via a REST
API service.

21 Single API

Excessive Client
Connections

Client is establishing
an excessive number
of TCP connections.*

23 Across APIs

Content Scraping
Type 1

Client abnormally
accessing API
content

26 Across APIs

PingIntelligence copyright © 2022

| 61



Content Scraping
Type 2

Client abnormally
accessing API
content

28 Single API

* Applicable only for Inline ASE deployment

Parent topic:Manage REST API attack detection

REST API attacks detected on IP address
The following table lists the REST API attacks detected using IP address as the main client identifier. The
attacks can be on a single API or across APIs

Attack Type Description id Single or Across
APIs

Data Exfiltration
Attack

Data is being
extracted via a REST
API service.

1 Single API

Single Client Login
Attack Type 1

Login service
attacked by a bot or
rogue client.

2 Single API

Multi-Client Login
Attack

Login service is
under DDoS attack
by bots.

3 Single API

API Memory Attack
Type 1

Flooding of an API
service with data or
code.

5 Single API

API Memory Attack
Type 2

6 Single API

API Probing Replay
Attack

Probing or breach
attempts on an API
service – also called
fuzzing.

8 Single API

API DDoS Attack
Type 1

A DDoS or
distributed attack is
disrupting an API
service.

9 Single API

Extreme Client
Activity Attack

Extreme client
request activity on an
API service.

10 Single API

Extreme App Activity Extreme App Activity
may indicate an
injection or other
CPU intensive attack.

11 Single API

PingIntelligence copyright © 2022

| 62



API DoS Attack Inbound client
request limits
exceeded on an API
service.*

12 Single API

API DDoS Attack
Type 2

A DDoS or
distributed attack is
overloading an API
service.*

13 Single API

Data Deletion Excessive data
deletion activity on
an API service.

14 Single API

Data Poisoning Extreme create or
update activity
received on an API
service.

15 Single API

API Probing Replay
Type 2

Probing or breach
attempts on an API
service – also called
fuzzing.

20 Across APIs

Data Exfiltration
Attack Type 2

Data is being
extracted via a REST
API service.

21 Single API

Excessive Client
Connections

Client is establishing
an excessive number
of TCP connections.*

24 Across APIs

Content Scraping
Type 1

Client abnormally
accessing API
content

27 Across APIs

Content Scraping
Type 2

Client abnormally
accessing API
content

28 Single API

Unauthorized client
attack

Client without a
token or cookie is
probing an API
service.

29 Single API

Single Client Login
Attack Type 2

Login service
attacked by a bot or
rogue client.

30 Across APIs

* Applicable only for Inline ASE deployment

Parent topic:Manage REST API attack detection

PingIntelligence copyright © 2022

| 63



Manage WebSocket API attack detection
Note: WebSocket API attack detection is only supported when ASE is running in Inline mode.

Client identifier determination – IP address or cookie

In each API, the presence of the cookie parameter in the API JSON file (see API Security Enforcer Admin
Guide for information) determines whether attacks are reported based on cookie identifier or IP address.
An environment with multiple APIs can support a mixture of identifier types in a single ABS system. Use
cases include the following:

• API JSON with cookie parameter – When the cookie parameter is configured, most attacks are
reported with cookie identifiers, the exception being pre-authentication attacks (for example, client
login attacks). Configuring the Cookie parameter is recommended when cookies are present as it is a
unique client identifier that eliminates the issues identified below with IP addresses.

• API JSON without cookie parameter – When the cookie parameter is not configured, all the
attacks are reported with the client IP address which is determined based on the following:

• XFF header present: The first IP address in the XFF list is used as the client identifier. When
forwarding traffic, load balancers and other proxy devices with XFF enabled add IP addresses to the
XFF header to provide application visibility of the client IP address. The first IP address in the list is
typically associated with the originating IP address.

Note: XFF is not always a reliable source of the client IP address and can be spoofed by a
malicious proxy.

• No XFF header: When no XFF header is present, the source IP address of the incoming traffic is
used as the client identifier. In this configuration, make sure that the incoming traffic is using public
or private IP addresses associated with the actual client devices, not a load balancer or proxy device
on your premise.

Note: When a load balancer or other proxy without XFF enabled is the source of the inbound
traffic, then all client traffic will be associated with the load balancer IP addresses. This
configuration will not provide effective attack reporting.

To change from a cookie to an IP identifier for an existing API, save the API JSON with a new name. ABS
then re-trains the model for this API and starts detecting IP-based attacks. For more information on
configuring API JSON files, see API Security Enforcer Admin Guide.

Note: OAuth2 token based attacks are not reported for WebSocket APIs.

The following tables list the attacks detected by ABS for WebSocket APIs for cookie and IP:

Cookie based detected attacks:

Attack Type Description id

Summary Attack Report Provides a summary of all
attacks detected.

0

PingIntelligence copyright © 2022

| 64



WS Cookie Attack WebSocket session
management service
receiving an abnormal
number of cookies.

50

WS DoS Attack Inbound streaming limits
exceeded on a WebSocket
service.

52

WS Data Exfiltration Attack Data is being extracted via a
WebSocket API service.

53

IP based detected attacks

Attack Type Description id

Summary Attack Report Provides a summary of all
attacks detected.

0

WS Identity Attack WebSocket identity service
receiving excessive upgrade
requests.

51

WS DoS Attack Inbound streaming limits
exceeded on a WebSocket
service.

52

WS Data Exfiltration Attack Data is being extracted via a
WebSocket API service.

53

Manage Attack blocking
ASE and ABS work in tandem to detect and block attacks. ASE detects attacks in real-time, blocks the
hacker, and reports attack information to ABS. ABS AI Engine uses behavioral analysis to look for advanced
attacks.

• Automatic blocking of attacks with ASE
• Whitelist and blacklist management
• Per API blocking

Automatic blocking of attacks with ASE
Automatic blocking of attacks with ASE

When enabled in API Security Enforcer, ABS detected attack lists (OAuth2 token, IP addresses and/or
cookies suspected of executing attacks) are automatically sent to ASE nodes which terminate current
sessions and block future access for clients on the list.

Activate log processing for ABS

To activate ABS log processing, execute the following ASE command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs

PingIntelligence copyright © 2022

| 65



After log processing is enabled, ASE sends log data to ABS which processes the log data to look for
attacks and generate reports.

Automatically block ABS detected attacks

ABS generates a list of clients which are suspected of executing attacks. ABS can be configured to
automatically send the attack list to ASE which blocks client access. By default, automatic blocking is
inactive, execute the following ASE command to activate automatic client blocking.

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs_attack

Disable attack blocking

To disable automatic sending of ABS attack lists to ASE, execute the following ASE command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs_attack

Parent topic:Manage Attack blocking

Whitelist and blacklist management
Whitelist and blacklist management

ASE maintains two types of lists:

• Whitelist –List of “safe” IP addresses, cookies, OAuth2 Tokens or API keys that will not be blocked
by ASE. The list is manually generated by CLI commands.

• Blacklist – List of “bad” IP addresses, cookies, OAuth2 Tokens or API keys that are always blocked
by ASE. The list consists of entries from one or more of the following sources:

• ABS detected clients suspected of executing attacks (for example, data exfiltration)
• ASE detected clients suspected of executing attacks (for example, invalid method, decoy API

accessed)
• List of “bad” clients manually generated by CLI

ABS manages a list which includes ABS and ASE clients suspected of attacks. However, ABS does not
receive manually generated lists (for example, white list, imported black lists).

• Manage Whitelist
• Manage Blacklist
• Blacklist to whitelist transition

Parent topic:Manage Attack blocking

Manage Whitelist
Valid ASE operations for OAuth2 Tokens, Cookies, IP addresses and API Keys on a white list include:

• Add an entry
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist ip 
10.10.10.10
ip 10.10.10.10 added to whitelist

PingIntelligence copyright © 2022

| 66



/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist cookie 
JSESSIONID cookie_1.4
cookie JSESSIONID cookie_1.4 added to whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist token 
token1.4
token token1.4 added to whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist api_key 
X-API-KEY key_1.4
api_key X-API-KEY key_1.4 added to whitelist

• View whitelist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_whitelist
Whitelist
1) type : ip, value : 1.1.1.1
2) type : cookie, name : JSESSIONID, value : cookie_1.1
3) type : token, value : token1.3
4) type : api_key, name : X-API-KEY, value : key_1.4

• Delete an entry
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist ip 
4.4.4.4
ip 4.4.4.4 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist 
cookie JSESSIONID cookie_1.1
cookie JSESSIONID cookie_1.1 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist 
token token1.1
token token1.1 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist 
api_key X-API-KEY key_1.4
api_key X-API-KEY key_1.4 deleted from whitelist

• Clear the whitelist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin clear_whitelist
This will delete all whitelist Attacks, Are you sure (y/n) : y
Whitelist cleared

Parent topic:Whitelist and blacklist management

Manage Blacklist
Valid ASE operations for IP addresses, Cookies, OAuth2 Tokens and API Keys on a black list include:

PingIntelligence copyright © 2022

| 67



• Add an entry
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist ip 
1.1.1.1
ip 1.1.1.1 added to blacklist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist cookie 
JSESSIONID ad233edqsd1d23redwefew 
cookie JSESSIONID ad233edqsd1d23redwefew added to blacklist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist token 
ad233edqsd1d23redwefew
token ad233edqsd1d23redwefew added to blacklist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist api_key 
AccessKey b31dfa4678b24aa5a2daa06aba1857d4
api_key AccessKey b31dfa4678b24aa5a2daa06aba1857d4 added to blacklist

• View blacklist - entire Black list or based on the type of real time violation.
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist all
Manual Blacklist
1) type : ip, value : 10.10.10.10
2) type : cookie, name : JSESSIONID, value : cookie_1.4
3) type : token, value : token1.4
4) type : api_key, name : X-API-KEY, value : key_1.4
Realtime Decoy Blacklist
1) type : ip, value : 4.4.4.4
Realtime Protocol Blacklist
1) type : token, value : token1.1
2) type : ip, value : 1.1.1.1
3) type : cookie, name : JSESSIONID, value : cookie_1.1
Realtime Method Blacklist
1) type : token, value : token1.3
2) type : ip, value : 3.3.3.3
3) type : cookie, name : JSESSIONID, value : cookie_1.3
Realtime Content-Type Blacklist
1) type : token, value : token1.2
2) type : ip, value : 2.2.2.2
3) type : cookie, name : JSESSIONID, value : cookie_1.2

• Blacklist based on decoy IP addresses
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist decoy
Realtime Decoy Blacklist
1) type : ip, value : 4.4.4.4

• Blacklist based on protocol violations
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist 
invalid_protocol
Realtime Protocol Blacklist
1) type : token, value : token1.1

PingIntelligence copyright © 2022

| 68



2) type : ip, value : 1.1.1.1
3) type : cookie, name : JSESSIONID, value : cookie_1.1

• Blacklist based on method violations
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist 
invalid_method
Realtime Method Blacklist
1) type : token, value : token1.3
2) type : ip, value : 3.3.3.3
3) type : cookie, name : JSESSIONID, value : cookie_1.3

• Blacklist based on content-type violation
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist 
invalid_content_type
Realtime Content-Type Blacklist
1) type : token, value : token1.2
2) type : ip, value : 2.2.2.2
3) type : cookie, name : JSESSIONID, value : cookie_1.2

• Automated blacklist (ABS detected attacks)
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist 
abs_detected
No Blacklist

• Delete an entry
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_blacklist ip 
1.1.1.1
ip 1.1.1.1 deleted from blacklist

./bin/cli.sh -u admin -p admin delete_blacklist cookie JSESSIONID 
avbry47wdfgd
cookie JSESSIONID avbry47wdfgd deleted from blacklist

./bin/cli.sh -u admin -p admin delete_blacklist token 
58fcb0cb97c54afbb88c07a4f2d73c35
token 58fcb0cb97c54afbb88c07a4f2d73c35 deleted from blacklist

• Clearing the blacklist
./bin/cli.sh -u admin -p admin clear_blacklist
This will delete all blacklist Attacks, Are you sure (y/n) :y
Blacklist cleared
./bin/cli.sh -u admin -p admin clear_blacklist
This will delete all blacklist Attacks, Are you sure (y/n) :n
Action canceled

When clearing the Blacklist, make sure that real-time ASE detected attacks and ABS detected attacks are
disabled. If not disabled, the Blacklist gets populated again as both ASE and ABS are continuously
detecting attacks.

PingIntelligence copyright © 2022

| 69



Parent topic:Whitelist and blacklist management

Blacklist to whitelist transition
When you delete a black list entry which was created by ABS or ASE, it is automatically added to the
whitelist and no longer blocked by ASE. However, CLI added entries deleted from the blacklist are not
added to the whitelist. When the blacklist is cleared, list entries are not transitioned to the whitelist.

Parent topic:Whitelist and blacklist management

Per API blocking
ASE can be configured to selectively block on a per API basis by configuring an API JSON file parameter.
To enable per API blocking for each API, set the enable_blocking parameter to true in the API JSON.
For example:

api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "enable_blocking": true,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },

If per API blocking is disabled, ABS still detects the suspected attacks for that specific API, however, ASE
does not block them. ASE will continue to block the suspected attacks on other APIs with the
enable_blocking set to true.

ASE CLI commands are also supported to enable blocking for the specified API

• ./cli.sh –u admin -p admin enable_blocking {api_id}

Disable blocking for the specified API

• ./cli.sh –u admin -p admin disable_blocking {api_id}

Parent topic:Manage Attack blocking

Attack reporting
Attack reports provide information about the suspected attacks on each API. The ABS Attack API provides
reports by specifying the type_id (see descriptions in Attack Types) and receiving attack details including
time frame, client identifier, and an attack code (see Changing Attack Thresholds for an explanation of
attack codes). The format of the ABS attack API is:

https://<hostname>:<port>/v3/abs/
later_date<>&earlier_date<>&api=<api_name>type=type_id

PingIntelligence copyright © 2022

| 70



The hostname and port correspond to the host ABS machine.

Understanding the API report parameters

Here is a brief description of the information available in the attack reports. Not all items are included in
each of the reports. Please refer to ABS external REST APIs for detailed information in each report.

• attack_type:Name of the attack type (for example, data exfiltration, stolen cookie)
• description:Description of the attack.
• earlier_date:A date which is past in time. For example, if the query range is between March 12 and

March 14, then the earlier date would be March 12.
• later_date:A date which is more recent in time. For example, if the query range is between March 12

and March 14, then the later date would be March 14.
• api_name:The name of the API for which report is displayed.
• access_time:The time that the hacker accessed the API
• attack_code:Code for the variables and thresholds used to detect attacks. For example,

attack_code": "varA(Tx, 25) signifies that the attack was triggered because variable A with a value of
25 exceeded the Tx threshold. Current threshold values can be checked using the Threshold API.

• ddos_info:The ddos_info field provides a pointer to detailed information in the MongoDB system
– for example, a list of IPs that were active during a DDoS attack (note: only included in DDoS
reports). The data is accessible in the login_dos collection in abs_data database. To access the
data, enter the following in your MongoDB command line:

>use abs_data
>db.login_dos.find({end_time:'Tue Mar 21 22:25:36:144 2017'},
{'ips':1}).pretty()

Use the end_time in the query to see the participating IPs.

The following pages provide examples of API JSON attack reports for Data Exfiltration, Stolen Cookie, and
Multi-Client Login Attack.

Note: You can use the Admin user or the restricted user to access the API reports. Few
examples of API output is produced where the cookie is obfuscated. For the Admin user, the
cookie, token or the API key is not obfuscated.

• Consolidated result of attack types
• API Deception
• Real-time Detected attacks for inline ASE
• Anomalous activity reporting

Consolidated result of attack types
To view all attack types on a given API in a single, consolidated report, use the ABS Attack API. Attack ID 0
gives all the attacks on a single API or across APIs based on the REST API query parameters.

Consolidated attack report for an API:

The following attack API URL with attack ID as 0 gives all the attacks for a specific API: https://
<ABS_IP:port>/v3/abs/attack?later_date=yyyy-mm-ddThh:mm&later_date=yyyy-mm-
ddThh:mm&api=<api_name>&type=<type_id>

PingIntelligence copyright © 2022

| 71

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs%2Fexample_reports_for_few_attack_types.html


Example:https://192.168.11.166:8080>/v3/abs/attack?
later_date=2018-12-31T18:00&later_date=2018-10-25T13:30&api=shop&type=0

You can further select a client identifier (IP, cookie, or a token) and carry out IP, cookie, or token forensics
using the Forensic API.

{
 "company": "ping identity",
 "attack_type": "Data Exfiltration Attack",
 "cookie": "JSESSIONID",
 "description": "Client (IP or Cookie) extracting an abnormal amount of data 
for given API",
 "earlier_date": "Tue Jan 02 16:00:00:000 2018",
 "later_date": "Mon Jan 01 18:00:00:000 2018",
 "api_name": "shop",
 "cookies": [
 {
 "cookie": "extreme_client_activity_500_request",
 "details": [
 {
 "access_time": "Fri Jan 12 08:44:39:086 2018",
 "attack_code": "varA(Tx, 26)"
 },
 {
 "access_time": "Fri Jan 12 09:18:34:087 2018",
 "attack_code": "varA(Tx, 25)"
 }
 ]
 },
 
 {
 "company": "ping identity",
 "attack_type": "API Probing Replay Attack",
 "cookie": "JSESSIONID",
 "description": "Client (IP or Cookie) probing or trying different parameter 
values to breach 
 the API service for given API",
 "earlier_date": "Tue Jan 02 16:00:00:000 2018",
 "later_date": "Mon Jan 01 18:00:00:000 2018",
 "api_name": "shop",
 "cookies": [
 {
 "cookie": "api_dos_attack_type_1_shop_50_percent_error",
 "details": [
 {
 "access_time": "Fri Jan 12 08:39:56:896 2018",
 "attack_code": "varA(Tx, 47)"
 },
 {
 "access_time": "Fri Jan 12 09:18:34:087 2018",
 "attack_code": "varA(Tx, 47)"
 }
 },

PingIntelligence copyright © 2022

| 72



 },
}

Consolidated attack report across API:

Use the following ABS REST API to access all the attack types: https://<ABS_IP:port>/v3/abs/
attack?later_date=yyyy-mm-ddThh:mm&later_date=yyyy-mm-ddThh:mm&type=<type_id>.

Example:https://192.168.11.166:8080>/v3/abs/attack?
later_date=2018-12-31T18:00&later_date=2018-10-25T13:30&type=0

You can further select a client identifier (IP, cookie, or a token) and carry out IP, cookie, or token forensics
using the Forensic API.

[
    {
        "company": "ping identity",
        "attack_type": "Stolen Token Attack Type 2",
        "name": "api_attack_type",
        "description": "Client (Token) reusing cookies to deceive 
application services.",
        "earlier_date": "Thu Oct 25 13:30:00:000 2018",
        "later_date": "Mon Dec 31 18:00:00:000 2018",
        "api_name": "all",
        "access_tokens": [
            {
                "access_token": "SYU4R2ZZN1IDYI0L",
                "details": [
                    {
                        "access_time": "Tue Nov 27 11:10:00:000 2018",
                        "attack_code": "varA(Tn, 3)"
                    },
                    {
                        "access_time": "Tue Nov 27 11:40:00:000 2018",
                        "attack_code": "varA(Tn, 3)"
                    },
                    {
                        "access_time": "Tue Nov 27 16:10:00:000 2018",
                        "attack_code": "varA(Tn, 2)"
                    }
                ]
            },
            {
                "access_token": "CT27QTP01K6ZW2AK",
                "details": [
                    {
                        "access_time": "Tue Nov 27 10:50:00:000 2018",
                        "attack_code": "varA(Tn, 2)"
                    },
                    {
                        "access_time": "Tue Nov 27 11:10:00:000 2018",
                        "attack_code": "varA(Tn, 4)"
                    },

PingIntelligence copyright © 2022

| 73



                    {
                        "access_time": "Tue Nov 27 11:40:00:000 2018",
                        "attack_code": "varA(Tn, 5)"
                    }
                ]
            },
            {
                "access_token": "BDGC519O55KGG4HR",
                "details": [
                    {
                        "access_time": "Tue Nov 27 11:10:00:000 2018",
                        "attack_code": "varA(Tn, 2)"
                    },
                    {
                        "access_time": "Tue Nov 27 11:40:00:000 2018",
                        "attack_code": "varA(Tn, 4)"
                    },
                    {
                        "access_time": "Tue Nov 27 16:00:00:000 2018",
                        "attack_code": "varA(Tn, 2)"
                    }
                ]
            },
            {
                "access_token": "VDIFV3JH5P4VVXDW",
                "details": [
                    {
                        "access_time": "Tue Nov 27 11:30:00:000 2018",
                        "attack_code": "varA(Tn, 2)"
                    },
                    {
                        "access_time": "Tue Nov 27 11:40:00:000 2018",
                        "attack_code": "varA(Tn, 2)"
                    }
                ]
            },
            {
                "ip": "100.64.7.124",
                "details": [
                    {
                        "access_time": "Tue Nov 27 11:20:00:000 2018",
                        "attack_code": "varA(Tn, 3), varA(Tn, 3)"
                    },
                    {
                        "access_time": "Tue Nov 27 11:30:00:000 2018",
                        "attack_code": "varA(Tn, 3), varA(Tn, 3)"
                    },
                    {
                        "access_time": "Tue Nov 27 11:40:00:000 2018",
                        "attack_code": "varA(Tn, 3), varA(Tn, 3)"
                    }
                ]
            },
            {

PingIntelligence copyright © 2022

| 74



                "ip": "100.64.26.175",
                "details": [
                    {
                        "access_time": "Tue Nov 27 16:00:00:000 2018",
                        "attack_code": "varA(Tn, 3), varA(Tn, 3)"
                    }
                ]
            },
            {
                "ip": "100.64.10.18",
                "details": [
                    {
                        "access_time": "Tue Nov 27 11:10:00:000 2018",
                        "attack_code": "varA(Tn, 3), varA(Tn, 3)"
                    },
                    {
                        "access_time": "Tue Nov 27 11:40:00:000 2018",
                        "attack_code": "varA(Tn, 3), varA(Tn, 3)"
                    }
                ]
            }
        ]
    }
]

Parent topic:Attack reporting

API Deception
API Deception

ASE supports configuration of decoy APIs, either the for in-context or out-of-context mode. If a client
accesses an ASE decoy API and later tries to access a legitimate API, ASE drops the connection and
blocks the client from accessing any non-decoy APIs. ASE Admin Guide provides more information on API
Deception Environments.

Report ASE real-time decoy attack detection

ASE sends information about clients accessing decoy APIs to ABS which does further analysis and
generates an API Deception report with type ID 100. Here is an example ABS REST API to generate an API
Deception report:

https://192.168.11.138:8080/v3/abs/attack?
later_date=2018-07-16&earlier_date=2018-07-16&api=atmapp&type=100

{
 "company": "ping identity",
 "attack_type": "Decoy Attack",
 "name": "api_attack_type",
 "description": "Clients accessing decoy APIs",
 "earlier_date": "Mon Jan 01 12:00:00:000 2018",
 "later_date": "Mon Dec 31 02:28:00:000 2018",
 "api_name": "atmapp",
 "ips": [

PingIntelligence copyright © 2022

| 75



 {
 "ip": "100.64.38.140",
 "details": [
 {
 "access_time": "Sun Jan 28 19:59:29:395 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 19:59:29:395 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 }
 ]
 },
 {
 "ip": "100.64.38.144",
 "details": [
 {
 "access_time": "Sun Jan 28 19:59:29:395 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 19:59:29:395 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",

PingIntelligence copyright © 2022

| 76



 "attack_code": "decoy"
 }
 ]
 }
 ],
 "cookies": [],
 "access_tokens": []
}

Decoy API

When decoy APIs are configured in ASE, then ABS generates decoy API reports with detailed information
on all client access to decoy APIs including ASE detected violations. Here is a decoy API URL:
<ABS_IP>:port/v3/abs/decoy?earlier_date<>&later_date<>

{
 "company": "ping identity",
 "name": "decoy_api_metrics",
 "description": "This report contains detailed information on client access 
to each decoy API
 ",
 "later_date": "Tue Jan 11 18:00:00:000 2018",
 "earlier_date": "Tue Jan 11 17:50:00:000 2018",
 "api_name": "atmapp",
 "api_type": "decoy-incontext",
 "decoy_url": [
 "/atmapp/decoy"
 ],
 "summary": [
 {
 "decoy_url": "/atmapp/decoy",
 "unique_ip_count": 122,
 "total_requests": 240,
 "most_used_methods": {
 "GET": 88,
 "DELETE": 32,
 "ABDU": 32,
 "POST": 30,
 "PUT": 26
 },
 "most_used_ips": {
 "100.64.9.37": 4,
 "100.64.10.79": 4,
 },
 "most_used_devices": {
 "UBUNTU": 76,
 "MAC_OS_X": 69,
 },
 "most_used_content_types": {
 "UNKNOWN": 184,
 "multipart/form-data": 56
 }
 }

PingIntelligence copyright © 2022

| 77



 ],
 "details": [
 {
 "decoy_url": "/atmapp/decoy",
 "source_ip": [
 {
 "ip": "100.64.31.183",
 "total_requests": 2,
 "method_count": {
 "GET": {
 "count": 2
 }
 },
 "url_count": {
 "/atmapp/decoy": 2

See ABS external REST APIs for a full report.

Parent topic:Attack reporting

Real-time Detected attacks for inline ASE
API Security Enforcer supports real time attack detection and blocking for:

• API Pattern Enforcement – validate traffic to ensure it is consistent with the API definition
• API Deception – blocks hackers probing a Decoy API

Enable ASE detected attacks

Enable real-time ASE detected attacks by running the following command on the ASE command line:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_ase_detected_attack
ASE Detected Attack is now enabled

Disable ASE detected attacks

Disable real-time ASE detected attacks by running the following command on the ASE command line:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin 
disable_ase_detected_attack
ASE Detected Attack is now disabled

Note: When you disable ASE detected attacks, the attacks are deleted from the blacklist.

In real-time, ASE blocks hackers which violate pattern enforcement or probe decoy APIs. Hacker
information is reported to ABS which generates ASE detected attack reports (type ID 101). Use the
following ABS REST API to view the report:

https://192.168.11.138:8080/v3/abs/attack?
later_date=2018-07-16&earlier_date=2018-07-16&api=atmapp&type=101

Real-time ASE detected attack based on OAuth2 token activity

PingIntelligence copyright © 2022

| 78



{
 "company": "ping identity",
 "attack_type": "Invalid API Activity",
 "name": "api_attack_type",
 "description": "Clients using invalid method/protocol/content-type",
 "earlier_date": "Thu Jan 25 18:00:00:000 2018",
 "later_date": "Fri Dec 28 18:00:00:000 2018",
 "api_name": "atm_app_oauth",
 "ips": [],
 "cookies": [],
 "access_tokens": [
 {
 "access_token": "token_protocol",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:04:770 2018",
 "attack_code": "protocol"
 },
 {
 "access_time": "Fri Jan 26 21:16:17:851 2018",
 "attack_code": "protocol"
 }
 ]
 },
 {
 "access_token": "token_method",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:04:819 2018",
 "attack_code": "method"
 },
 {
 "access_time": "Fri Jan 26 21:16:17:903 2018",
 "attack_code": "method"
 }
 ]
 },
 {
 "access_token": "token_contenttype",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:04:819 2018",
 "attack_code": "content_type"
 },
 {
 "access_time": "Fri Jan 26 21:16:17:903 2018",
 "attack_code": "content_type"
 }
 ]
 }
 ]
}

PingIntelligence copyright © 2022

| 79



Real-time ASE detected attack based on pattern enforcement violation

{
 "company": "ping identity",
 "attack_type": "Invalid API Activity",
 "cookie": "JSESSIONID",
 "name": "api_attack_type",
 "description": "Clients using invalid method/protocol/content-type",
 "earlier_date": "Thu Jan 25 18:00:00:000 2018",
 "later_date": "Fri Dec 28 18:00:00:000 2018",
 "api_name": "atm_app_public",
 "ips": [],
 "cookies": [
 {
 "cookie": "session_contenttype1",
 "details": [
 {
 "access_time": "Fri Jan 26 21:17:10:662 2018",
 "attack_code": "content_type"
 }
 ]
 },
 {
 "cookie": "session_method",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:06:656 2018",
 "attack_code": "method"
 },
 {
 "access_time": "Fri Jan 26 21:17:10:662 2018",
 "attack_code": "method"
 }
 ]
 },
 {
 "cookie": "session_contenttype",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:06:656 2018",
 "attack_code": "content_type"
 },
 {
 "access_time": "Fri Jan 26 21:17:10:662 2018",
 "attack_code": "content_type"
 }
 ]
 },
 {
 "cookie": "session_protocol",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:04:873 2018",
 "attack_code": "protocol"

PingIntelligence copyright © 2022

| 80



 },
 {
 "access_time": "Fri Jan 26 21:16:47:314 2018",
 "attack_code": "protocol"
 }
 ]
 },
 {
 "cookie": "session_method1",
 "details": [
 {
 "access_time": "Fri Jan 26 21:17:10:662 2018",
 "attack_code": "method"
 }
 ]
 },
 {
 "cookie": "session_protocol1",
 "details": [
 {
 "access_time": "Fri Jan 26 21:16:47:314 2018",
 "attack_code": "protocol"
 }
 ]
 }
 ],
 "access_tokens": []
}

Parent topic:Attack reporting

Anomalous activity reporting
The Anomaly API provides detailed reporting on anomalous activity associated with a specified API. The
types of anomalies detected include:

• Anomalies for each ABS attack type – activity which has the characteristics of one of the attack
types (for example, API Memory Attack) but does not meet the threshold of an attack.

• Irregular URLs – suspicious URL traffic
• Anomalous request activity including injection attacks, overflow attacks, and system commands

This report detects leading indicators of attacks on API services and is reviewed to observe trends.

Note: A Java sample client to view the result using the metrics and anomaly API is available on
Ping Identity’s download site.

Here is an excerpt from an Anomaly API JSON report for a cookie-based API:

{
 "company": "ping identity",
 "name": "api_anomalies",
 "description": " This report contains information on anomalous activity on 
the specified

PingIntelligence copyright © 2022

| 81



 API",
 "later_date": "Tue Jan 14 18:00:00:000 2018",
 "earlier_date": "Sun Jan 12 18:00:00:000 2018",
 "api_name": "shop",
 "anomalies_summary": {
 "api_url": "shopapi",
 "total_anomalies": 14,
 "most_suspicious_ips": [],
 "most_suspicious_anomalies_urls": []
 },
 "anomalies_details": {
 "url_anomalies": {
 "suspicious_sessions": [],
 "suspicious_requests": []
 },
 "ioc_anomalies": [
 {
 "anomaly_type": "API Memory Attack Type 2",
 "cookies": [
 {
 "cookie": "AMAT_2_H",
 "access_time": [
 "Mon Jan 13 01:01:33:589 2018"
 ]
 },
 {
 "cookie": "AMAT_2_H",
 "access_time": [
 "Mon Jan 13 01:01:33:589 2018"
 ]
 }
 ]
 },

Parent topic:Attack reporting

Blocked connection reporting
ABS Blocked Connection REST API reports all connections that are blocked by ASE. Two types of reports
are provided:

• Blocked Connection Summary Report
• Blocked Connection Detail Report

The blocked connections are reported for the following categories:

• API routing
• DDoS flow control
• ABS detected attacks
• Custom blacklist
• Decoy attacks
• ASE detected attacks

Use the following ABS REST API for viewing the blocked connections report:

PingIntelligence copyright © 2022

| 82



Blocked connection summary

URL: <ABS_IP>:port/v3/abs/bc?earlier_date=<>T<hh:mm>&later_date=<>T<hh:mm>

Following is a snippet of blocked connection summary report:

{
 "company": "ping identity",
 "name": "api_blockedconnections",
 "description": " This report contains a summary of all API traffic blocked 
  by ASE for the following types: api_not_found, host_header_not_found, 
  backend_not_found, client_spike, server_spike, bytes_in_threshold, 
  bytes_out_threshold, quota_threshold, customer_blacklist, 
  abs_detected_attacks, ase_detected_attacks, decoy_detected_attacks",
 "earlier_date": "Thu Jan 18 13:00:00:000 2018",
 "later_date": "Thu Feb 22 18:00:00:000 2018",
 "api_name": "global",
 "total_blocked_connections": 21222,
 "api_not_found": 0,
 "host_header_not_found": 0,
 "backend_not_found": 3501,
 "client_spike": 237,
 "server_spike": 6179,
 "bytes_in_threshold": 5938,
 "bytes_out_threshold": 18,
 "quota_threshold": 0,
 "customer_blacklist": 0,
 "abs_detected_attacks": 4576,
 "ase_detected_attacks": 773,
 "decoy_detected_attacks": 0

Blocked Connection Details

URL: <ABS_IP>:port/v3/abs/bc?later_date=<>T<hh:mm>&earlier_date=<>
T<hh:mm>&details=true

Following is a snippet of Blocked Connection details report:

{
 "company": "ping identity",
 "name": "api_blockedconnections",
 "description": "This report contains details of all API traffic blocked by 
  ASE for the following types: api_not_found, host_header_not_found, 
  backend_not_found, client_spike, server_spike, bytes_in_threshold, 
  bytes_out_threshold, quota_threshold, customer_blacklist, 
  abs_detected_attacks,  ase_detected_attacks, decoy_detected_attacks,
 "earlier_date": "Thu Jan 18 13:00:00:000 2018",
 "later_date": "Thu Feb 22 18:00:00:000 2018",
 "api_blocked_connections": [
 {
 "category": "api_routing",
 "details": [
 {

PingIntelligence copyright © 2022

| 83



 "source": "192.168.11.161",
 "type": "backend_not_found",
 "destination_api": "/v2/pet/55"
 },
 {
 "source": "192.168.11.161",
 "type": "backend_not_found",
 "destination_api": "/v2/store/inventory"
 }
 ]
 },
 {
 "category": "ddos_flowcontrol",
 "details": [
 {
 "source": "100.64.1.24",
 "type": "bytes_in_threshold",
 "destination_api": "/app/ws"
 },
 {
 "source": "100.64.3.213",
 "type": "protocol_violation",
 "destination_api": ""
 }
 ]
 },
 {
 "category": "abs_detected_attacks",
 "details": [
 {
 "source": "100.64.38.180",
 "type": "ioc_abs_ip_port",
 "destination_api": "/atmapp/zipcode"
 },
 {
 "source": "100.64.38.180",
 "type": "ioc_abs_ip_port",
 "destination_api": "/atmapp/zipcode"
 }
 ]
 },
 {
 "category": "customer_blacklist",
 "details": []
 },
 {
 "category": "decoy_detected_attacks",
 "details": []
 },
 {
 "category": "ase_detected_attacks",
 "details": [
 {
 "source": "100.64.8.252",

PingIntelligence copyright © 2022

| 84



 "type": "protocol_violation",
 "destination_api": ""
 },
 {
 "source": "100.64.36.93",
 "type": "protocol_violation",
 "destination_api": ""
 }
 ]
 },
 ]
 }
 ]
}

API forensics reporting
ABS provides in-depth information on the activities performed by a client using an OAuth2 token, IP or
cookie across APIs. The client identifier is included in attack reports and can be used to generate a forensic
report which provides detailed information on the activity of an individual token, IP or cookie.

Note: If ASE is deployed in sideband mode, then server field in the output shows the IP address
as 0.0.0.0. For ASE deployed in inline mode, the server field shows the IP address of the
backend API server. For more information on ASE sideband mode, see the ASE Admin Guide.

Forensics on OAuth2 token

The OAuth2 token forensics report shows all activity associated with the specified token over a time
period. Report information includes a detailed activity trail of accessed URLs, methods, and attacks.

{
 "company": "ping identity",
 "name": "api_abs_token",
 "description": "This report contains a summary and detailed information on 
metrics,
  attacks and anomalies for the specified token across all APIs.",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "total_requests": 6556,
 "total_attacks": 2,
 "total_anomalies": 0
 },
 "details": {
 "metrics": {
 "token": "token1",
 "total_requests": 6556,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 6556,
 "devices": {
 "UNKNOWN": 6556

PingIntelligence copyright © 2022

| 85



 },
 "methods": {
 "DELETE": 472,
 "POST": 140,
 "GET": 1944,
 "PUT": 4000
 },
 "urls": {
 "/atm_app_oauth/delete200": 218,
 "/atm_app_oauth/get200": 850,
 "/atm_app_oauth/post400": 8,
 "/atm_app_oauth/post200": 62,
 "/atm_app_oauth/put400": 62,
 "/atm_app_oauth/get400": 122,
 "/atm_app_oauth/put200": 1938,
 "/atm_app_oauth/delete400": 18,
 "/2_atm_app_oauth/put200": 1938,
 "/2_atm_app_oauth/post200": 62,
 "/2_atm_app_oauth/delete200": 218,
 "/2_atm_app_oauth/delete400": 18,
 "/2_atm_app_oauth/put400": 62,
 "/2_atm_app_oauth/post400": 8,
 "/2_atm_app_oauth/get400": 122,
 "/2_atm_app_oauth/get200": 850
 },
 "apis": {
 "atm_app_oauth": 3278,
 "2_atm_app_oauth": 3278
 }
 }
 ]
 },
 "attack_types": {
 "API Memory Attack Type 1": [
 "atm_app_oauth",
 "2_atm_app_oauth"
 ],
 "Data Poisoning Attack": [
 "atm_app_oauth",
 "2_atm_app_oauth"
 ]
 },
 "anomaly_types": {}
 }
}

Forensics on an IP address

The IP Forensics report shows all activity associated with the specified IP address over a time period.
Report information includes a detailed activity trail of accessed URLs, methods, and attacks.

{
 "company": "ping identity",

PingIntelligence copyright © 2022

| 86



 "name": "api_abs_ip",
 "description": "This report contains a summary and detailed information on 
  metrics, attacks and anomalies for the specified ip across all APIs.",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "total_requests": 8192,
 "total_attacks": 2,
 "total_anomalies": 1
 },
 "details": {
 "metrics": {
 "no_session": [
 {
 "start_time": "Thu Feb 15 14:04:17:959 2018",
 "end_time": "Thu Feb 15 14:05:59:263 2018",
 "total_requests": 4096,
 "source_ip": "4.1.1.1",
 "path": "/atm_app_private/get200",
 "methods": [
 "GET"
 ]
 },
 {
 "start_time": "Thu Feb 15 14:14:00:724 2018",
 "end_time": "Thu Feb 15 14:14:47:999 2018",
 "total_requests": 4096,
 "source_ip": "4.1.1.1",
 "path": "/2_atm_app_private/get200",
 "methods": [
 "GET"
 ]
 }
 ],
 "session": []
 },
 "attack_types": {
 "Data Exfiltration Attack": [
 "2_atm_app_private",
 "atm_app_private"
 ],
 "Extreme App Activity Attack": [
 "2_atm_app_private",
 "atm_app_private"
 ]
 },
 "anomaly_types": {
 "Extreme Client Activity Anomaly": [
 "2_atm_app_private"
 ]
 }
 }
}

PingIntelligence copyright © 2022

| 87



Forensics on a cookie

The Cookie Forensics reports includes all activity associated with the specified Cookie over a time period.
Report information includes a detailed activity trail of accessed URLs, methods, and attacks.

{
 "company": "ping identity",
 "name": "api_abs_cookie",
 "description": "This report contains a summary and detailed information on 
all 
  attacks, metrics, and anomalies for the specified cookie on the defined 
API.",
 "earlier_date": "Thu Jan 25 18:00:00:000 2018",
 "later_date": "Fri Dec 28 18:00:00:000 2018",
 "api_name": "atm_app_public",
 "summary": {
 "total_anomalies": 0,
 "total_requests": 1,
 "total_ioc": 2
 },
 "details": {
 "ioc_types": [
 "data_poisoning_attack",
 "api_memory_attack_type_1"
 ],
 "metrics": [
 {
 "session_id": "session_datapoisoining",
 "start_time": "Mon Jan 29 15:51:23:408 2018",
 "end_time": "Mon Jan 29 15:51:23:408 2018",
 "total_requests": 1,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 1,
 "method": [
 "PUT"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 1
 }
 ],
 "path_info": [
 {
 "path": "/atm_app_public/put200",
 "count": 1
 }
 ],
 "device": [
 {

PingIntelligence copyright © 2022

| 88



 "device": "UNKNOWN",
 "count": 1
 }
 ],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 1
 }
 ]
 }
 ],
 "anomalies": []
 }
}

List hacker’s URL

The List Invalid URLs report provide information on the four types of invalid URLs: irregular URLs, system
commands, buffer overflow, and SQL injection.

{
 "company": "ping identity",
 "name": "api_abs_cookie",
 "description": "This report contains a summary and detailed information on 
metrics,
  attacks and anomalies for the specified cookie across all APIs.",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "total_requests": 32768,
 "total_attacks": 3,
 "total_anomalies": 1
 },
 "details": {
 "metrics": [
 {
 "session_id": "session_extremeactivity",
 "start_time": "Thu Feb 15 14:04:46:001 2018",
 "end_time": "Thu Feb 15 14:05:02:994 2018",
 "total_requests": 16384,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 16384,
 "method": [
 "GET"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",

PingIntelligence copyright © 2022

| 89



 "count": 16384
 }
 ],
 "path_info": [
 {
 "path": "/atm_app_public/get200",
 "count": 16384
 }
 ],
 "device": [
 {
 "device": "UNKNOWN",
 "count": 16384
 }
 ],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 16384
 }
 ]
 },
 {
 "session_id": "session_extremeactivity",
 "start_time": "Thu Feb 15 14:13:45:795 2018",
 "end_time": "Thu Feb 15 14:14:35:268 2018",
 "total_requests": 16384,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 16384,
 "method": [
 "GET"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 16384
 }
 ],
 "path_info": [
 {
 "path": "/2_atm_app_public/get200",
 "count": 16384
 }
 ],
 "device": [
 {
 "device": "UNKNOWN",
 "count": 16384
 }
 ],

PingIntelligence copyright © 2022

| 90



 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 16384
 }
 ]
 }
 ],
 "attack_types": {
 "Data Exfiltration Attack": [
 "2_atm_app_public",
 "atm_app_public"
 ],
 "Extreme Client Activity Attack": [
 "2_atm_app_public",
 "atm_app_public"
 ],
 "Extreme App Activity Attack": [
 "2_atm_app_public",
 "atm_app_public"
 ]
 },
 "anomaly_types": {
 "Stolen Cookie Anomaly": [
 "2_atm_app_public",
 "atm_app_public"
 ]
 }
 }
}

API metrics reporting
The API Metrics report provides information on client request/response activity to the requested API. It
includes a summary report and detailed reporting including API access by method.

Note: If ASE is deployed in sideband mode, then server field in the output shows the IP address
as 0.0.0.0. For ASE deployed in inline mode, the server field shows the IP address of the
backend API server. For more information on ASE sideband mode, see the ASE Admin Guide.

{
 "company": "ping identity",
 "name": "api_metrics",
 "description": "This report contains metrics for request/response traffic 
for the specified API",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "api_name": "atm_app_public",
 "req_resp_summary": {
 "api_url": "/atm_app_public",
 "total_requests": 2508,
 "success": 2246,
 "sessions": 2,

PingIntelligence copyright © 2022

| 91



 "no_sessions": 1,
 "most_popular_method": "POST",
 "most_popular_device": "UNKNOWN",
 "most_popular_ips": [
 "127.0.0.1",
 "3.1.1.4"
 ],
 "servers": [
 {
 "server": "127.0.0.1:3000",
 "count": 2507
 }
 ]
 },
 "req_resp_details": {
 "api_url": "/atm_app_public",
 "session_details": [
 {
 "session_id": "session_protocol",
 "total_requests": 1,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 1,
 "method": [
 "GET"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 1
 }
 ],
 "path_info": [
 {
 "path": "/atm_app_public/get400",
 "count": 1
 }
 ],
 "device": [
 {
 "device": "UNKNOWN",
 "count": 1
 }
 ],
 "server": []
 },
 {
 "session_id": "session11",
 "total_requests": 2506,
 "source_ip": [
 {

PingIntelligence copyright © 2022

| 92



 "ip": "127.0.0.1",
 "count": 2506,
 "method": [
 "DELETE",
 "POST",
 "PUT",
 "GET"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 2506
 }
 ],
 "path_info": [
 {
 "path": "/atm_app_public/post400",
 "count": 218
 },
 {
 "path": "/atm_app_public/put400",
 "count": 18
 },
 {
 "path": "/atm_app_public/delete200",
 "count": 208
 },
 {
 "path": "/atm_app_public/get400",
 "count": 14
 },
 {
 "path": "/atm_app_public/put200",
 "count": 152
 },
 {
 "path": "/atm_app_public/delete400",
 "count": 10
 },
 {
 "path": "/atm_app_public/get200",
 "count": 104
 },
 {
 "path": "/atm_app_public/post200",
 "count": 1782
 }
 ],
 "device": [
 {
 "device": "UNKNOWN",
 "count": 2506

PingIntelligence copyright © 2022

| 93



 }
 ],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 2506
 }
 ]
 }
 ],
 "no_session": {
 "request_details": [
 {
 "total_requests": 1,
 "source_ip": [
 {
 "ip": "3.1.1.4",
 "count": 1,
 "method": [
 "GET"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 1
 }
 ],
 "path": "/atm_app_public/get400",
 "device": [
 {
 "device": "UNKNOWN",
 "count": 1
 }
 ],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 1
 }
 ]
 }
 ]
 }
 }
}

API key-based metrics

ABS provides API key metrics including the total number of API keys and requests across all API keys. The
report also lists the IP address, requesting device information, methods used, URLs accessed, and API
affected. API key based metrics reporting spans all APIs.

PingIntelligence copyright © 2022

| 94



{
 "company": "ping identity",
 "name": "api_metrics",
 "description": "This report contains a summary and detailed api key 
  metrics across all APIs",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "api_name": "atm_app_public",
 "req_resp_summary": {
 "api_url": "/atm_app_public",
 "total_requests": 2508,
 "success": 2246,
 "sessions": 2,
 "no_sessions": 1,
 "most_popular_method": "POST",
 "most_popular_device": "UNKNOWN",
 "most_popular_ips": [
 "127.0.0.1",
 "3.1.1.4"
 ],
 "servers": [
 {
 "server": "127.0.0.1:3000",
 "count": 2507
 }
 ]
 },
 "req_resp_details": {
 "api_url": "/atm_app_public",
 "session_details": [
 {
 "session_id": "session_protocol",
 "total_requests": 1,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 1,
 "method": [
 "GET"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 1
 }
 ],
 "path_info": [
 {
 "path": "/atm_app_public/get400",
 "count": 1
 }
 ],

PingIntelligence copyright © 2022

| 95



 "device": [
 {
 "device": "UNKNOWN",
 "count": 1
 }
 ],
 "server": []
 },
 {
 "session_id": "session11",
 "total_requests": 2506,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 2506,
 "method": [
 "DELETE",
 "POST",
 "PUT",
 "GET"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 2506
 }
 ],
 "path_info": [
 {
 "path": "/atm_app_public/post400",
 "count": 218
 },
 {
 "path": "/atm_app_public/put400",
 "count": 18
 },
 {
 "path": "/atm_app_public/delete200",
 "count": 208
 },
 {
 "path": "/atm_app_public/get400",
 "count": 14
 },
 {
 "path": "/atm_app_public/put200",
 "count": 152
 },
 {
 "path": "/atm_app_public/delete400",
 "count": 10
 },

PingIntelligence copyright © 2022

| 96



 {
 "path": "/atm_app_public/get200",
 "count": 104
 },
 {
 "path": "/atm_app_public/post200",
 "count": 1782
 }
 ],
 "device": [
 {
 "device": "UNKNOWN",
 "count": 2506
 }
 ],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 2506
 }
 ]
 }
 ],
 "no_session": {
 "request_details": [
 {
 "total_requests": 1,
 "source_ip": [
 {
 "ip": "3.1.1.4",
 "count": 1,
 "method": [
 "GET"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 1
 }
 ],
 "path": "/atm_app_public/get400",
 "device": [
 {
 "device": "UNKNOWN",
 "count": 1
 }
 ],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 1
 }

PingIntelligence copyright © 2022

| 97



 ]
 }
 ]
 }
 }
}

OAuth2 token-based metrics

The OAuth2 token metrics report provides a summary with the total number of tokens and requests. For
each token, detailed information on all activity is provided for the time period.

{
 "company": "ping identity",
 "name": "oauth_token_metrics",
 "description": "This report contains a summary and detailed oauth token 
  metrics across all APIs",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "tokens": 30,
 "total_requests": 163250
 },
 "details": [
 {
 "token": "token_highresptime",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "GET": 2
 },
 "urls": {
 "/2_atm_app_oauth/longresponse": 1,
 "/atm_app_oauth/longresponse": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
 ]
 },
 {
 "token": "token13",
 "total_requests": 7452,
 "ip_list": [
 {

PingIntelligence copyright © 2022

| 98



 "ip": "127.0.0.1",
 "total_requests": 7452,
 "devices": {
 "UNKNOWN": 7452
 },
 "methods": {
 "DELETE": 564,
 "POST": 352,
 "GET": 4000,
 "PUT": 2536
 },
 "urls": {
 "/2_atm_app_oauth/put200": 1248,
 "/atm_app_oauth/delete200": 246,
 "/2_atm_app_oauth/put400": 20,
 "/2_atm_app_oauth/get400": 118,
 "/2_atm_app_oauth/get200": 1882,
 "/2_atm_app_oauth/post200": 162,
 "/2_atm_app_oauth/delete200": 246,
 "/2_atm_app_oauth/delete400": 36,
 "/atm_app_oauth/get200": 1882,
 "/atm_app_oauth/post400": 14,
 "/2_atm_app_oauth/post400": 14,
 "/atm_app_oauth/post200": 162,
 "/atm_app_oauth/put400": 20,
 "/atm_app_oauth/get400": 118,
 "/atm_app_oauth/put200": 1248,
 "/atm_app_oauth/delete400": 36
 },
 "apis": {
 "atm_app_oauth": 3726,
 "2_atm_app_oauth": 3726
 }
 }
 ]
 },
 {
 "token": "token_probing",
 "total_requests": 64,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 64,
 "devices": {
 "UNKNOWN": 64
 },
 "methods": {
 "GET": 64
 },
 "urls": {
 "/2_atm_app_oauth/get400": 32,
 "/atm_app_oauth/get400": 32
 },
 "apis": {

PingIntelligence copyright © 2022

| 99



 "atm_app_oauth": 32,
 "2_atm_app_oauth": 32
 }
 }
 ]
 },
 {
 "token": "token_type1memory",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "PUT": 2
 },
 "urls": {
 "/2_atm_app_oauth/put200": 1,
 "/atm_app_oauth/put200": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
 ]
 },
 {
 "token": "token_contenttype",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "PUT": 2
 },
 "urls": {
 "/2_atm_app_oauth/put400": 1,
 "/atm_app_oauth/put400": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
 ]
 },

PingIntelligence copyright © 2022

| 100



 {
 "token": "token_method",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "HEAD": 2
 },
 "urls": {
 "/2_atm_app_oauth/get400": 1,
 "/atm_app_oauth/get400": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
 ]
 }
 ]
}

List valid URL

The List Valid URLs report includes all URLs, access count, and allowed methods for a specified API. The
report provides insight into the activity on each API URL.

{
 "company": "ping identity",
 "name": "api_url_list",
 "description": "This report contains list of valid URL for the specified 
API",
 "api_name": "shop",
 "host_name": "app",
 "api_url": "shopapi",
 "allowed_methods": [
 "GET",
 "PUT",
 "POST",
 "DELETE",
 "HEAD"
 ],
 "url_list": [
 {
 "protocol": "HTTP/1.1",
 "urls": [
 {
 "url": "/shopapi/post",

PingIntelligence copyright © 2022

| 101



 "total_count": 2009,
 "methods": [
 {
 "method": "POST",
 "count": 2009
 }
 ]
 },
 {
 "url": "/shopapi/login",
 "total_count": 2956,
 "methods": [
 {
 "method": "POST",
 "count": 2956
 }
 ]
 },
 {
 "url": "/shopapi/login?username=v1&amp;password=v2",
 "total_count": 87,
 "methods": [
 {
 "method": "POST",
 "count": 87
 }
 ]
 },
 {
 "url": "/shopapi/put",
 "total_count": 2159,
 "methods": [
 {
 "method": "PUT",
 "count": 2159
 }

Backend errors

The Backend Error Response Codes report provides information for each error code including client IP,
server IP, and requested URL. ABS reports on a per API basis for the following error codes:

• 403: Forbidden
• 404: Not Found
• 500: Internal Server Error
• 503: Service Unavailable
• 504: Gateway Timeout

{
 "company": "ping identity",
 "name": "api_backend_errors",
 "description": "This report contains details of backend error codes for 
  the specified API",

PingIntelligence copyright © 2022

| 102



 "later_date": "Sun Feb 05 13:20:00:000 2017",
 "earlier_date": "Wed Feb 01 08:20:00:000 2017",
 "api_name": "atmapp",
 "backend_error_summary": [
 {
 "error_code": "403",
 "error": "Forbidden",
 "count": 0
 },
 {
 "error_code": "404",
 "error": "Not Found",
 "count": 0
 },
truncated
 ],
 "backend_error_details": [
 {
 "error_code": "500",
 "details": [
 {
 "server": "192.168.11.164:3001",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.5.183:24078",
 "request_cookie": ""
 }, 
 {
 "server": "192.168.11.164:3003",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.19.136:61494",
 "request_cookie": "JSESSIONID=5GMNKOGNGP6FCKF9"
 },

API DoS and DDoS threshold
API DoS and DDoS threshold 11

API Flow Control reports on API Security Enforcer configured flow control thresholds that are exceeded.
The reporting is done on the following parameters:

• Client Spike – inbound client traffic rate
• Server Spike – aggregate traffic to an API service
• Connection Queued – connection requests queued due to server at concurrent connection limit
• Bytes-in Spike – WebSocket aggregate inbound traffic exceeds limit
• Bytes-out Spike - WebSocket aggregate outbound traffic exceeds limit

Note: API DoS and DDoS threshold and reporting is only available when ASE is deployed in
inline mode.

For a specified API, the flow control API provides a summary of thresholds exceeded and detailed reporting
on each flow control threshold exceeded:

PingIntelligence copyright © 2022

| 103



{
 "company": "ping identity",
 "name": "api_flowcontrol",
 "description": "This report contains flow control information for the 
specified API",
 "earlier_date": "Thu Jan 25 18:00:00:000 2018",
 "later_date": "Fri Dec 28 18:00:00:000 2018",
 "api_name": "atm_app_private",
 "server_spike_ip_count": 0,
 "summary": {
 "client_spike": 990,
 "server_spike": 0,
 "connection_queued": 0,
 "connection_quota_exceeded": 0
 },
 "details": {
 "client_spike": [
 {
 "request_time": "Mon Jan 29 13:43:20:227 2018",
 "connection_id": "2081496566",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "1902346354",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "1999376747",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "2009947644",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "934081844",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:227 2018",
 "connection_id": "2081496566",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {

PingIntelligence copyright © 2022

| 104



 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "1902346354",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "1999376747",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "2009947644",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "934081844",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 }
 ],
 "server_spike": [],
 "connections_queued": [],
 "connection_quota_exceeded": []
 }
}

API reports using Postman
Multiple options are available for accessing the ABS REST API reporting including:

• Postman App for Google Chrome browser
• Java, Python, C Sharp, or similar languages.
• Java client program (such as Jersey)
• C sharp client program (such as RestSharp)

For the Postman application, Ping Identity provides configuration files which are used by Postman to
access the ABS REST API JSON information reports. Make sure to install Postman 6.2.5 or higher.

• ABS self-signed certificate with Postman
• View ABS reports in Postman

ABS self-signed certificate with Postman
Using ABS self-signed certificate with Postman

ABS ships with a self-signed certificate. If you want to use Postman with the self-signed certificate of ABS,
then from Postman’s settings, disable the certificate verification option. Complete the following steps to
disable Postman from certificate verification:

PingIntelligence copyright © 2022

| 105



1. Click on the spanner  on the top-right corner of Postman client. A drop-down window is
displayed.

2. Select Settings from the drop-down window:

3. In the Settings window, switch-off certificate verification by clicking on the SSL certificate verification
button:

Parent topic:API reports using Postman

View ABS reports in Postman
To view the reports, complete the following steps:

1. Download ABS_3.2.1_Environment and ABS_3.2.1_Reports JSON files from API Reports
Using Postman folder on Ping Identity Download site. These configuration files will be used by
Postman.

2. Download and install the Postman application 6.2.5 or higher.

3. In Postman, import the two Ping Identity files downloaded in step 1 by clicking the Import button.3.

PingIntelligence copyright © 2022

| 106

https://www.pingidentity.com/en/resources/downloads.html
https://www.getpostman.com


4. After importing the files, click the gear  button in the upper right corner.4.

5. In the MANAGE ENVIRONMENTS pop-up window, click ABS_3.2.1_Environment

6. In the pop-up window, configure the following values and then click Update
• Server: IP address of the ABS node for which the dashboard_node was set to true in the

abs.properties file.
• Port: Port number of the ABS node.
• Access_Key_Header and Secret_Key_Header: Use the Admin user or Restricted user

header. A Restricted user sees obfuscated value of OAuth token, cookie and API keys. For more
information of different types of user, see ABS users for API reports

• Access_Key and Secret_Key: The Access Key and Secret Key configured in the opt/
pingidentity/mongo/abs_init.js for either admin or restricted user. Make sure that
access key and secret key corresponds to the admin or restricted user header configured.

• API_Name: The name of the API for which you want to generate the reports.
• Later_Date: A date which is more recent in time. For example, if the query range is between

March 12 and March 14, then the later date would be March 14.
• Earlier_Date: A date which is past in time. For example, if the query range is between March

12 and March 14, then the earlier date would be March 12.

PingIntelligence copyright © 2022

| 107



Note: Do not edit any fields that start with the word System.

7. In the main Postman window, select the report to display on the left column and then click Send.
ABS external REST APIs section provides detailed information on each API call and the JSON report
response.

Parent topic:API reports using Postman

ABS and AAD CLI
ABS and AAD CLI provides the commands listed in the following table. The commands to obfuscate
passwords, to generate the master and to update the admin password are the same for ABS and AAD.

Basic commands

• Start ABS
• Stop ABS
• Start AAD
• Stop AAD
• Help
• Update password

Obfuscation commands

• Generate obfuscation key
• Obfuscate password

Start ABS

Description
Starts ABS. Run the command from /opt/pingidentity/abs/bin directory
Syntax
./start.sh

PingIntelligence copyright © 2022

| 108



Stop ABS

Description
Stops ABS. Run the command from/opt/pingidentity/abs/bin directory
./stop.sh

Help

Description
Displays cli.sh help
Syntax
./cli.sh help

Update Password

Description
Change ABS admin password
Syntax
./cli.sh update_password {-u admin}

Generate Master Key

Description
Generate the master obfuscation key abs_master.key
Syntax
./cli.sh -u admin -p admin generate_obfkey

Obfuscate Password

Description
Obfuscate the passwords configured in various configuration files
Syntax
./cli.sh -u admin -p admin obfuscate_keys

Start AAD

Description
Starts AAD. Run the command from/opt/pingidentity/abs/bin directory
Syntax
./start.sh

Stop AAD

Description
Stops AAD. Run the command from/opt/pingidentity/abs/bin directory
./stop.sh

ABS external REST APIs
ABS external REST APIs

Following is a list of Ping Identity ABS APIs. The sample outputs produced are for the Admin user. You can
generate the output for the restricted user as well where the cookie, token, and API keys are obfuscated.
For more information on different type of users for the ABS External REST APIs, see ABS Users for API
Reports and Dashboard.

• Admin API
• Discovery API
• Decoy API
• GET Threshold API
• PUT Threshold
• Metrics API

PingIntelligence copyright © 2022

| 109



• API Key Based Metrics API
• OAuth2 Token Based Metrics
• Anomalies API
• OAuth2 Token Forensics
• IP Forensics API
• Cookie Forensics API
• Attack Type API
• Flow Control API
• Blocked Connection API
• Backend Error API
• List Valid URLs API
• List Hacker’s URLs API

• Admin REST API
• Discovery REST API
• Decoy REST API
• GET Threshold REST API
• PUT Threshold REST API
• Metrics REST API
• API Key Metrics REST API
• OAuth2 Token Metrics REST API
• Anomalies REST API
• OAuth2 Token Forensics REST API
• IP Forensics REST API
• Cookie Forensics REST API
• Attack Types REST APIs
• Flow Control REST API
• Blocked Connection REST API
• Backend Error REST API
• List Valid URLs REST API
• List Hacker's URL REST API

Admin REST API
Description: Admin API is used to fetch the list of nodes in the ABS cluster, Mongo DB Nodes, the status
of each node (CPU, memory, file System etc) and logs processed that are sent by all API Security Enforcer
nodes.

Method: GET

URL: /v3/abs/admin

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response
{
    "company": "ping identity",
    "name": "api_admin",
    "description": "This report contains status information on all APIs, ABS 

PingIntelligence copyright © 2022

| 110



clusters, and ASE logs",
    "across_api_prediction_mode": false,
    "api_discovery": {
        "status": false
    },
    "apis": [
        {
            "api_name": "apikeyquery",
            "host_name": "*",
            "url": "/apikeyquery",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        },
        {
            "api_name": "apikeyheader",
            "host_name": "*",
            "url": "/apikeyheader",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        },
        {
            "api_name": "atmapp",
            "host_name": "*",
            "url": "/atmapp",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        },
        {
            "api_name": "pubatmapp",
            "host_name": "*",
            "url": "/pubatmapp",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",

PingIntelligence copyright © 2022

| 111



            "servers": 4,
            "protocol": "https",
            "cookie": "JSESSIONID",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        }
    ],
    "abs_cluster": {
        "abs_nodes": [
            {
                "node_ip": "192.168.11.165",
                "os": "Red Hat Enterprise Linux Server release 7.4 (Maipo)",
                "cpu": "24",
                "memory": "62G",
                "filesystem": "76%",
                "bootup_date": "Tue Feb 05 16:12:41 IST 2019"
            }
        ],
        "mongodb_nodes": [
            {
                "node_ip": "192.168.11.168",
                "status": "up"
            }
        ]
    },
    "ase_logs": [
        {
            "ase_node": "13eea2fc-64d0-4c51-b663-b1093b0bf7a5",
            "last_connected": "Wed Feb 06 19:41:07 IST 2019",
            "logs": {
                "start_time": "Wed Feb 06 19:36:26 IST 2019",
                "end_time": "Wed Feb 06 19:41:07 IST 2019",
                "gzip_size": "27.51MB"
            }
        }
    ],
    "percentage_diskusage_limit": "80%",
    "scale_config": {
        "scale_up": {
            "cpu_threshold": "70%",
            "cpu_monitor_interval": "30 minutes",
            "memory_threshold": "70%",
            "memory_monitor_interval": "30 minutes",
            "disk_threshold": "70%",
            "disk_monitor_interval": "30 minutes"
        },
        "scale_down": {
            "cpu_threshold": "10%",
            "cpu_monitor_interval": "300 minutes",
            "memory_threshold": "10%",
            "memory_monitor_interval": "300 minutes",
            "disk_threshold": "10%",

PingIntelligence copyright © 2022

| 112



            "disk_monitor_interval": "300 minutes"
        }
    }
}

Parent topic:ABS external REST APIs

Discovery REST API
Description: The Discovery API discovers all the APIs that are available in your API ecosystem.

Method: GET

URL: /v3/abs/discovery

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_discovery_summary",
 "description": "This report contains summary of discovered APIs",
 "summary": [
 {
 "api_name": "api_0",
 "host": "192.168.12.9",
 "base_path": "/shop_bp",
 "created": "Sun Jan 08 21:42:10:973 2018",
 "updated": "Sun Jan 08 22:02:12:243 2018"
 },
 {
 "api_name": "api_1",
 "host": "192.168.12.13",
 "base_path": "/bill_bp",
 "created": "Sun Jan 08 21:42:10:974 2018",
 "updated": "Sun Jan 08 22:22:22:393 2018"
 },
 {
 "api_name": "api_2",
 "host": "192.168.12.18",
 "base_path": "/cart_bp",
 "created": "Sun Jan 08 21:42:10:976 2018",
 "updated": "Sun Jan 08 22:02:12:249 2018"
 },
 {
 "api_name": "api_3",
 "host": "192.168.12.20",
 "base_path": "/login_bp",

PingIntelligence copyright © 2022

| 113



 "created": "Sun Jan 08 21:42:10:977 2018",
 "updated": "Sun Jan 08 22:02:12:251 2018"
 },
 
}

Parent topic:ABS external REST APIs

Decoy REST API
Description: Decoy API provides information about the IP address that accessed the decoy URL along
with the method used to access the decoy URL. It also reports about the type of device that was used to
access the decoy URL.

Method: GET

URL: /v3/abs/decoy?later_date<>&earlier_date<>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "decoy_api_metrics",
 "description": "This report contains detailed information on client access 
to each decoy API",
 "earlier_date": "Tue Jan 11 17:50:00:000 2018",
 "later_date": "Tue Jan 11 18:00:00:000 2018",
 "api_name": "atmapp",
 "api_type": "decoy-incontext",
 "decoy_url": [
 "/atmapp/decoy"
 ],
 "summary": [
 {
 "decoy_url": "/atmapp/decoy",
 "unique_ip_count": 122,
 "total_requests": 240,
 "most_used_methods": {
 "GET": 88,
 "DELETE": 32,
 "ABDU": 32,
 "POST": 30,
 "PUT": 26
 },
 "most_used_ips": {
 "100.64.9.37": 4,
 "100.64.10.79": 4,

PingIntelligence copyright © 2022

| 114



 "100.64.31.183": 2,
 "100.64.20.213": 2,
 "100.64.34.239": 2
 },
 "most_used_devices": {
 "UBUNTU": 76,
 "MAC_OS_X": 69,
 "WINDOWS_7": 61,
 "WINDOWS_XP": 34
 },
 "most_used_content_types": {
 "UNKNOWN": 184,
 "multipart/form-data": 56
 }
 }
 ],
 "details": [
 {
 "decoy_url": "/atmapp/decoy",
 "source_ip": [
 {
 "ip": "100.64.31.183",
 "total_requests": 2,
 "method_count": {
 "GET": {
 "count": 2
 }
 },
 "url_count": {
 "/atmapp/decoy": 2
 }
 },
 {
 "ip": "100.64.14.28",
 "total_requests": 2,
 "method_count": {
 "POST": {
 "count": 2,
 "payload_characteristics": {
 "multipart/form-data": [
 "354 bytes"
 ]
 }
 }
 },
 "url_count": {
 "/atmapp/decoy": 2
 }
 },
 {
 "ip": "100.64.0.55",
 "total_requests": 2,
 "method_count": {
 "GET": {

PingIntelligence copyright © 2022

| 115



 "count": 2
 }
 },
 "url_count": {
 "/atmapp/decoy": 2
 }
 },
 {
 "ip": "100.64.20.152",
 "total_requests": 2,
 "method_count": {
 "DELETE": {
 "count": 2
 }
 },
 "url_count": {
 "/atmapp/decoy": 2
 }
 }
 ]
 }
 ]
}

Parent topic:ABS external REST APIs

GET Threshold REST API
Description: The GET Threshold API fetches the threshold values for attack types.

Method: GET

URL for an API: /v3/abs/attack/threshold?api=<api_name>

URL for across API: /v3/abs/attack/threshold?id=<type_id>. The API name is not specified
in the URL for fetching the threshold value. Type ID is the attack ID

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response for an API

{
 "company": "ping identity",
 "name": "api_threshold",
 "description": "This report contains threshold settings for the 
  specified API",
 "api_name": "shop",
 "threshold": [
 {

PingIntelligence copyright © 2022

| 116



 "type": "api_ddos_attack_type_1",
 "system": {
 "A": {
 "tn": "2",
 "tx": "7"
 }
 }
 },
 {
 "type": "api_dos_attack",
 "system": {
 "A": {
 "tn": "5",
 "tx": "na"
 }
 }
 },
 {
 "type": "api_memory_attack_type_1",
 "system": {
 "A": {
 "tn": "10",
 "tx": "12"
 },
 "B": {
 "tn": "3",
 "tx": "5"
 },
 "C": {
 "tn": "2",
 "tx": "4"
 }
 }
 },
 {
 "type": "api_memory_attack_type_2",
 "system": {
 "A": {
 "tn": "9",
 "tx": "11"
 },
 "B": {
 "tn": "3",
 "tx": "5"
 },
 "C": {
 "tn": "2",
 "tx": "4"
 }
 }
 },
 {
 "type": "api_probing_replay_attack",
 "system": {

PingIntelligence copyright © 2022

| 117



 "A": {
 "tn": "2",
 "tx": "4"
 }
 }
 },
 {
 "type": "data_exfiltration_attack",
 "system": {
 "A": {
 "tn": "22",
 "tx": "24"
 },
 "B": {
 "tn": "4",
 "tx": "6"
 },
 "C": {
 "tn": "-1",
 "tx": "-1"
 }
 }
 },
 {
 "type": "data_poisoning_attack",
 "system": {
 "A": {
 "tn": "9",
 "tx": "11"
 },
 "B": {
 "tn": "4",
 "tx": "6"
 },
 "C": {
 "tn": "2",
 "tx": "4"
 }
 }
 },
 {
 "type": "extreme_client_activity_attack",
 "system": {
 "A": {
 "tn": "5",
 "tx": "7"
 }
 }
 },
 {
 "type": "extreme_system_response_time",
 "system": {
 "A": {
 "tn": "2",

PingIntelligence copyright © 2022

| 118



 "tx": "4"
 }
 }
 },
 {
 "type": "multi_client_login_attack",
 "system": {
 "A": {
 "tn": "34",
 "tx": "na"
 }
 }
 },
 {
 "type": "single_client_login_attack",
 "system": {
 "A": {
 "tn": "4",
 "tx": "6"
 },
 "B": {
 "tn": "4",
 "tx": "6"
 }
 }
 },
 {
 "type": "stolen_cookie_token_attack",
 "system": {
 "A": {
 "tn": "2",
 "tx": "na"
 },
 "B": {
 "tn": "5",
 "tx": "7"
 },
 "C": {
 "tn": "2",
 "tx": "na"
 }
 }
 }
 ]
}

Sample Response for across API

{
    "company": "ping identity",
    "name": "api_threshold",
    "description": "This report contains threshold settings for the 
specified API",

PingIntelligence copyright © 2022

| 119



    "api_name": "access_token",
    "threshold": [
        {
            "type": "extended_stolen_access_token",
            "system": {
                "A": {
                    "tn": "2",
                    "tx": "na"
                },
                "B": {
                    "tn": "1",
                    "tx": "na"
                },
                "C": {
                    "tn": "1",
                    "tx": "na"
                }
            }
        }
    ]
}

Parent topic:ABS external REST APIs

PUT Threshold REST API
Description: The PUT Threshold API is used to set the threshold values for attack types. If you set the
mode to system, the user set values are dropped. If you move the mode back to user, you would need to
configure the threshold values again. For more information on manually setting threshold values, see
Manually set thresholds.

Method: PUT

URL:: /v3/abs/attack/threshold

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Input for an API

{
 "api_name" : "atmapp",
 "mode": "system",
 "ioc_threshold": [
 {
 "type": "api_memory_post",
 "variable": "A",
 
 },
 {

PingIntelligence copyright © 2022

| 120



 "type": "api_memory_put",
 "variable": "B"
 }
 ]
}

The following is the response when the threshold values are set:

{
    "message": "success: new attack threshold is updated.",
    "date": "Wed Dec 05 14:26:41 IST 2018"
}

Sample Input for across API:

{
 "id":"18",
 "mode": "user",
 "ioc_threshold": [
{
     "type": "extended_probing_replay_cookie",
     "variable": "A",
     "tn": "25",
     "tx": "28"
   },{
     "type": "extended_probing_replay_cookie",
     "variable": "B",
     "tn": "3",
     "tx": "4"
   }
]
}

The following is the response when the threshold values are set:

{
    "message": "success: new attack threshold is updated.",
    "date": "Wed Dec 05 14:12:47 IST 2018"
}

Parent topic:ABS external REST APIs

Metrics REST API
DescriptionThe Metrics API is used to fetch API Traffic metrics. The response contains request count for
each API, bad request count, request success, failure count, and so on.

Note: If ASE is deployed in sideband mode, then server field in the output shows the IP address
as 0.0.0.0. For ASE deployed in inline mode, the server field shows the IP address of the
backend API server. For more information on ASE sideband mode, see the ASE Admin Guide.

Method: GET

PingIntelligence copyright © 2022

| 121



URL: /v3/abs/metrics?later_date=<>&earlier_date=<>api=<api_name>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_metrics",
 "description": " This report contains metrics for request/response traffic 
  for the specified API",
 "earlier_date": "Mon Jan 13 18:00:00:000 2018",
 "later_date": "Wed Jan 15 18:00:00:000 2018",
 "api_name": "shop",
 "req_resp_summary": {
 "api_url": "shopapi",
 "total_requests": 342102,
 "success": 279360,
 "sessions": 0,
 "no_sessions": 342102,
 "most_popular_method": "GET",
 "most_popular_device": "MAC_OS_X",
 "most_popular_ips": [
 "10.10.1.38",
 "10.10.1.39",
 "10.10.1.37"
 ]
 "servers": [
 {
 "server": "192.168.11.164:3001",
 "count": 5357
 },
 {
 "server": "192.168.11.164:3002",
 "count": 5354
 },
 {
 "server": "192.168.11.164:3003",
 "count": 5358
 },
 {
 "server": "192.168.11.164:3004",
 "count": 1667
 }
 ]
 },
 "req_resp_details": {
 "api_url": "shopapi",
 "session_details": [],

PingIntelligence copyright © 2022

| 122



 "no_session": {
 "request_details": [
 {
 "total_requests": 14865,
 "source_ip": [
 {
 "ip": "10.10.1.24",
 "count": 152,
 "method": [
 "POST"
 ]
 },
 {
 "ip": "10.10.1.71",
 "count": 482,
 "method": [
 "PUT"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "SAFARI",
 "count": 7187
 },
 {
 "user_agent": "FIREFOX",
 "count": 12536
 },
 {
 "user_agent": "MOZILLA",
 "count": 5509
 },
 {
 "user_agent": "CHROME",
 "count": 29241
 }
 ],
 "server": [
 {
 "server": "192.168.11.164:3001",
 "count": 723
 },
 {
 "server": "192.168.11.164:3002",
 "count": 689
 },
 {
 "server": "192.168.11.164:3003",
 "count": 749
 },
 {
 "server": "192.168.11.164:3004",
 "count": 237

PingIntelligence copyright © 2022

| 123



 }
 ]
 "path": "/shopapi/put",
 "device": [
 {
 "device": "WINDOWS_8",
 "count": 8338
 },
 {
 "device": "MAC_OS_X",
 "count": 14276
 }, 
 {
 "device": "WINDOWS_XP",
 "count": 5990
 },
 {
 "device": "UBUNTU",
 "count": 6546
 }
 ]
 },
 {
 "total_requests": 2,
 "source_ip": [
 {
 "ip": "10.10.1.69",
 "count": 2,
 "method": [
 "GET"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "CHROME",
 "count": 2
 }
 ],
 "path": "/shopapi/get/etc",
 "device": [
 {
 "device": "MAC_OS_X",
 "count": 3
 }
 ]
 }
 ]
 }
 }
}

Parent topic:ABS external REST APIs

PingIntelligence copyright © 2022

| 124



API Key Metrics REST API
Description: The API Key-based Metrics API is used to fetch the metrics for API Keys across all APIs.

Method: GET

URL: /v3/abs/apikeys?later_date=<yy-mm-dd>T<hh:mm>&earlier_date==<yy-mm-
dd>T<hh:mm>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_key_metrics",
 "description": "This report contains a summary and detailed api key 
  metrics across all APIs",
 "earlier_date": "Fri Jan 19 13:00:00:000 2018",
 "later_date": "Sat Jan 20 18:00:00:000 2018",
 "summary": {
 "api_keys": 325,
 "total_requests": 329
 },
 "details": [
 {
 "api_key": "87FYNG7Q8KP1V03O",
 "total_requests": 1,
 "ip_list": [
 {
 "ip": "100.64.5.79",
 "total_requests": 1,
 "devices": {
 "MAC_OS_X": 1
 },
 "methods": {
 "DELETE": 1
 },
 "urls": {
 "/apikeyheader/zipcode": 1
 },
 "apis": {
 "apikeyheader": 1
 }
 }
 ]
 },
 {
 "api_key": "NW0ODLM68PFQ3XTL",

PingIntelligence copyright © 2022

| 125



 "total_requests": 1,
 "ip_list": [
 {
 "ip": "100.64.20.62",
 "total_requests": 1,
 "devices": {
 "WINDOWS_XP": 1
 },
 "methods": {
 "DELETE": 1
 },
 "urls": {
 "/apikeyheader/zipcode": 1
 },
 "apis": {
 "apikeyheader": 1
 }
 }
 ]
 },
 {
 "api_key": "86ELLUSN6RAHEPF7",
 "total_requests": 1,
 "ip_list": [
 {
 "ip": "100.64.17.79",
 "total_requests": 1,
 "devices": {
 "MAC_OS_X": 1
 },
 "methods": {
 "GET": 1
 },
 "urls": {
 "/apikeyheader/zipcode": 1
 },
 "apis": {
 "apikeyheader": 1
 }
 }
 ]
 },
 {
 "api_key": "5JSKZZ53TGBQZ8V2",
 "total_requests": 1,
 "ip_list": [
 {
 "ip": "100.64.33.183",
 "total_requests": 1,
 "devices": {
 "WINDOWS_7": 1
 },
 "methods": {
 "POST": 1

PingIntelligence copyright © 2022

| 126



 },
 "urls": {
 "/apikeyheader/login": 1
 },
 "apis": {
 "apikeyheader": 1
 }
 }
 ]
 }
 ]
} 

Parent topic:ABS external REST APIs

OAuth2 Token Metrics REST API
Description: The OAuth2 token-based API is used to fetch the metrics for OAuth2 token across all APIs.

Method: GET

URL: /v3/abs/oauthtokens?later_date=<yy-mm-dd>T<hh:mm>&earlier_date==<yy-mm-
dd>T<hh:mm>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "oauth_token_metrics",
 "description": "This report contains a summary and detailed oauth token 
  metrics across all APIs",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "tokens": 30,
 "total_requests": 163250
 },
 "details": [
 {
 "token": "token_highresptime",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2

PingIntelligence copyright © 2022

| 127



 },
 "methods": {
 "GET": 2
 },
 "urls": {
 "/2_atm_app_oauth/longresponse": 1,
 "/atm_app_oauth/longresponse": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
 ]
 },
 {
 "token": "token10",
 "total_requests": 4596,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 4596,
 "devices": {
 "UNKNOWN": 4596
 },
 "methods": {
 "DELETE": 148,
 "POST": 1036,
 "GET": 1796,
 "PUT": 1616
 },
 "urls": {
 "/2_atm_app_oauth/put200": 656,
 "/atm_app_oauth/delete200": 68,
 "/2_atm_app_oauth/put400": 152,
 "/atm_app_oauth/delete400": 6
 },
 "apis": {
 "atm_app_oauth": 2298,
 "2_atm_app_oauth": 2298
 }
 }
 ]
 },
 {
 "token": "token14",
 "total_requests": 7604,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 7604,
 "devices": {
 "UNKNOWN": 7604
 },

PingIntelligence copyright © 2022

| 128



 "methods": {
 "DELETE": 1596,
 "POST": 160,
 "GET": 4000,
 "PUT": 1848
 },
 "urls": {
 "/2_atm_app_oauth/put200": 846,
 "/atm_app_oauth/delete200": 742,
 "/2_atm_app_oauth/put400": 78,
 "/2_atm_app_oauth/get400": 264
  },
 "apis": {
 "atm_app_oauth": 3802,
 "2_atm_app_oauth": 3802
 }
 }
 ]
 },
 {
 "token": "token_type2memory",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "POST": 2
 },
 "urls": {
 "/2_atm_app_oauth/post200": 1,
 "/atm_app_oauth/post200": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
 ]
 },
 {
 "token": "token_method",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {

PingIntelligence copyright © 2022

| 129



 "HEAD": 2
 },
 "urls": {
 "/2_atm_app_oauth/get400": 1,
 "/atm_app_oauth/get400": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
 ]
 }
 ]
}

Parent topic:ABS external REST APIs

Anomalies REST API
Description: The Anomalies API is used to fetch the list of anomalies. The response contains anomalies
count for the API, request success or failure count, and so on.

Method: GET

URL: /v3/abs/anomalies?later_date=<>earlier_date=<>&api=<api_name>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_anomalies",
 "description": "This report contains information on anomalous activity
  on the specified API.",
 "earlier_date": "Sun Jan 12 18:00:00:000 2018",
 "later_date": "Tue Jan 14 18:00:00:000 2018",
 "api_name": "shop",
 "anomalies_summary": {
 "api_url": "shopapi",
 "total_anomalies": 14,
 "most_suspicious_ips": [],
 "most_suspicious_anomalies_urls": []
 },
 "anomalies_details": {
 "url_anomalies": {
 "suspicious_sessions": [],
 "suspicious_requests": []

PingIntelligence copyright © 2022

| 130



 },
 "ioc_anomalies": [
 {
 "anomaly_type": "API Memory Attack Type 2",
 "cookies": [
 {
 "cookie": "AMAT_2_H",
 "access_time": [
 "Mon Jan 13 01:01:33:589 2018"
 ]
 },
 {
 "cookie": "AMAT_2_H",
 "access_time": [
 "Mon Jan 13 01:01:33:589 2018"
 ]
 }
 ]
 },
 {
 "anomaly_type": "Data Exfiltration Attack",
 "cookies": [
 {
 "cookie": "data_exfilteration_VH",
 "access_time": [
 "Mon Jan 13 04:54:49:222 2018"
 ]
 },
 {
 "cookie": "data_exfilteration_H",
 "access_time": [
 "Mon Jan 13 05:26:53:981 2018"
 ]
 }
 ]
 },
 {
 "anomaly_type": "Cookie DoS Attack",
 "cookies": [
 {
 "cookie": "data_exfilteration_VH",
 "access_time": [
 "Mon Jan 13 04:54:49:222 2018"
 ]
 },
 {
 "cookie": "AMAT_1_freq_VH",
 "access_time": [
 "Sun Jan 12 23:17:55:931 2018"
 ]
 },
 {
 "cookie": "data_exfilteration__H__H",
 "access_time": [

PingIntelligence copyright © 2022

| 131



 "Mon Jan 13 05:39:18:515 2018"
 ]
 },
 {
 "cookie": "AMAT_2_VH",
 "access_time": [
 "Sun Jan 12 23:59:39:483 2018"
 ]
 }
 ]
 },
 {
 "anomaly_type": "Extreme Client Activity Attack",
 "cookies": [
 {
 "cookie": "data_exfilteration_VH",
 "access_time": [
 "Mon Jan 13 04:54:49:222 2018"
 ]
 },
 {
 "cookie": "AMAT_1_VH",
 "access_time": [
 "Sun Jan 12 23:17:55:931 2018"
 ]
 },
 {
 "cookie": "data_exfilteration_H_H",
 "access_time": [
 "Mon Jan 13 05:39:18:515 2018"
 ]
 },
 {
 "cookie": "AMAT_2_VH",
 "access_time": [
 "Sun Jan 12 23:59:39:483 2018"
 ]
 }
 ]
 }
 ]
 }
}

Parent topic:ABS external REST APIs

OAuth2 Token Forensics REST API
Description: The OAuth2 token forensics provides information like total number of requests for a token
and the number of attacks identified using the token.

Method: GET

PingIntelligence copyright © 2022

| 132



URL: /v3/abs?
later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm>&token=<oauth2_token>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_abs_token",
 "description": "This report contains a summary and detailed information on
  metrics, attacks and anomalies for the specified token across all APIs.",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "total_requests": 6556,
 "total_attacks": 2,
 "total_anomalies": 0
 },
 "details": {
 "metrics": {
 "token": "token1",
 "total_requests": 6556,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 6556,
 "devices": {
 "UNKNOWN": 6556
 },
 "methods": {
 "DELETE": 472,
 "POST": 140,
 "GET": 1944,
 "PUT": 4000
 },
 "urls": {
 "/atm_app_oauth/delete200": 218,
 "/atm_app_oauth/get200": 850,
 "/atm_app_oauth/post400": 8,
 "/atm_app_oauth/post200": 62,
 "/atm_app_oauth/put400": 62,
 "/atm_app_oauth/get400": 122,
 "/atm_app_oauth/put200": 1938,
 "/atm_app_oauth/delete400": 18,
 "/2_atm_app_oauth/put200": 1938,
 "/2_atm_app_oauth/post200": 62,
 "/2_atm_app_oauth/delete200": 218,
 "/2_atm_app_oauth/delete400": 18,

PingIntelligence copyright © 2022

| 133



 "/2_atm_app_oauth/put400": 62,
 "/2_atm_app_oauth/post400": 8,
 "/2_atm_app_oauth/get400": 122,
 "/2_atm_app_oauth/get200": 850
 },
 "apis": {
 "atm_app_oauth": 3278,
 "2_atm_app_oauth": 3278
 }
 }
 ]
 },
 "attack_types": {
 "API Memory Attack Type 1": [
 "atm_app_oauth",
 "2_atm_app_oauth"
 ],
 "Data Poisoning Attack": [
 "atm_app_oauth",
 "2_atm_app_oauth"
 ]
 },
 "anomaly_types": {}
 }
}

Parent topic:ABS external REST APIs

IP Forensics REST API
Description: The IP forensics API provides forensics information for an IP address during a specified
period. Information delivered includes attack types, metrics, and anomaly details.

Method: GET

URL: /v3/abs?later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm>&IP=<IP_address>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_abs_ip",
 "description": " This report contains a summary and detailed information 
  on all attacks, metrics, and anomalies for the specified IP address on 
  the defined API.",
 "summary": {
 "total_requests": 18222,

PingIntelligence copyright © 2022

| 134



 "total_ioctypes": 0,
 "total_anomalies": 0
 },
 "details": {
 "ioc_types": [],
 "metrics": {
 "no_session": [
 {
 "start_time": "Sat Jan 04 15:30:00:000 2018",
 "end_time": "Sat Jan 04 15:39:59:952 2018",
 "total_requests": 2749,
 "source_ip": "100.64.10.203",
 "path": "/atmapp/login"
 "methods": [
 "GET"
 ]
 },
 {
 "start_time": "Sat Jan 04 15:30:00:000 2018",
 "end_time": "Sat Jan 04 15:39:59:952 2018",
 "total_requests": 2952,
 "source_ip": "100.64.10.203",
 "path": "/atmapp/upload"
 },
 {
 "start_time": "Sat Jan 04 15:30:00:000 2018",
 "end_time": "Sat Jan 04 15:39:59:952 2018",
 "total_requests": 9547,
 "source_ip": "100.64.10.203",
 "path": "/atmapp/zipcode"
 },
 {
 "start_time": "Sat Jan 04 15:30:00:000 2018",
 "end_time": "Sat Jan 04 15:39:59:952 2018",
 "total_requests": 2964,
 "source_ip": "100.64.10.203",
 "path": "/atmapp/update"
 }
 ],
 "session": [
 {
 "session_id": "ZP7FE32357SPVT5X",
 "start_time": "Sat Jan 04 15:35:14:241 2018",
 "end_time": "Sat Jan 04 15:35:14:241 2018",
 "total_requests": 1,
 "source_ip": [
 {
 "ip": "100.64.10.203",
 "count": 1,
 "method": [
 "POST"
 ]
 }
 ],

PingIntelligence copyright © 2022

| 135



 "user_agent": [
 {
 "user_agent": "IE11",
 "count": 1
 }
 ],
 "path_info": [
 {
 "path": "/atmapp/upload",
 "count": 1
 }
 ],
 "device": [
 {
 "device": "WINDOWS_7",
 "count": 1
 }
 ]
 },
 
 "device": [
 {
 "device": "MAC_OS_X",
 "count": 1
 }
 ]
 },
 
 "start_time": "Sat Jan 04 15:40:00:000 2018",
 "end_time": "Sat Jan 04 15:30:00:000 2018",
 "api_name": "atmapp"
}

Parent topic:ABS external REST APIs

Cookie Forensics REST API
Description: Cookie forensics API provides forensics information for a cookie during a specified period.
Information provided includes attack types, metrics, and anomaly details.

Method: GET

URL: /v3/abs?later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm>
&cookie=<cookie_value>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

PingIntelligence copyright © 2022

| 136



{
 "company": "ping identity",
 "name": "api_abs_cookie",
 "description": "This report contains a summary and detailed information 
  on all attacks, metrics, and anomalies for the specified cookie on 
  the defined API",
 "earlier_date": "Mon Jan 17 06:40:00:000 2018",
 "later_date": "Mon Jan 17 07:00:00:000 2018",
 "api_name": "shop",
 "summary": {
 "total_requests": 501,
 "total_anomalies": 0,
 "total_ioc": 3
 },
 "details": {
 "ioc_types": [
 "data_exfiltration_attack",
 "cookie_dos_attack",
 "extreme_client_activity_attack"
 ],
 "metrics": [
 {
 "session_id": "extreme_client_activity_500_request",
 "start_time": "Mon Jan 17 06:47:19:687 2018",
 "end_time": "Mon Jan 17 06:47:20:505 2018",
 "total_requests": 501,
 "source_ip": [
 {
 "ip": "100.100.10.12",
 "count": 501,
 "method": [
 "POST",
 "GET"
 ]
 }
 ],
 "user_agent": [
 {
 "user_agent": "CHROME",
 "count": 501
 }
 ],
 "path_info": [
 {
 "path": "/shopapi/get",
 "count": 500
 },
 {
 "path": "/shopapi/login",
 "count": 1
 }
 ],
 "device": [
 {

PingIntelligence copyright © 2022

| 137



 "device": "LINUX",
 "count": 501
 }
 ]
 }
 ],
 "anomalies": []
 }
}

Parent topic:ABS external REST APIs

Attack Types REST APIs
Description: The Attack Type API lists attack details based on the attack ID provided in the API query
parameter. The attack type ID ranges from 1-13 and 50-53.

Method: GET

URL: /v3/abs/attack?later_date<>&earlier_date<>&api=<api_name>&type=<type_id>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "description": " Client (IP or Cookie) extracting an abnormal amount of 
  data for given API",
 "earlier_date": "Wed Jan 01 08:20:00:000 2018",
 "later_date": "Sun Jan 05 13:20:00:000 2018",
 "api_name": "atmapp",
 "ioc_type": "Data Exfiltration",
 "ips": [
 {
 "ip": "100.64.6.50",
 "access_time": [
 "Sat Jan 04 16:09:59:935 2018"
 ]
 },
 {
 "ip": "100.64.6.51",
 "access_time": [
 "Sat Jan 04 16:09:59:935 2018",
 "Sat Jan 04 16:39:59:996 2018"
 ]
 }
 ]
}

PingIntelligence copyright © 2022

| 138



Parent topic:ABS external REST APIs

Flow Control REST API
Description: The Flow Control API is used to fetch details of all connections that exceeded the threshold
value for client spike, server spike, connection queued, connection rejected, bytes-in spike, and bytes-out
spike.

Note: The flow control report is only available when ASE is deployed in inline mode.

Method: GET

URL: /v3/abs/flowcontrol?later_date=<>&earlier_date=<>&api=<api_name>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_flowcontrol",
 "description": "This report contains flow control information for the 
  specified API.",
 "earlier_date": "Wed Jan 01 08:20:00:000 2018",
 "later_date": "Sun Jan 05 13:20:00:000 2018",
 "api_name": "websocket",
 "summary": {
 "client_spike": 610,
 "connection_queued": 0,
 "connection_quota_exceeded": 0,
 "bytes_in_spike": 2743,
 "bytes_out_spike": 287
 },
 "details": {
 "client_spike": [],
 "server_spike": [
 {
 "request_time": "Fri Jan 09 17:19:55:977 2016",
 "connection_id": "147378243",
 "source_ip": "100.64.26.163",
 "destination_api": "/atmapp/login"
 },
 {
 "request_time": "Fri Jan 09 17:19:55:991 2016",
 "connection_id": "1919058221",
 "source_ip": "100.64.20.230",
 "destination_api": "/atmapp/zipcode"
 }
 ],

PingIntelligence copyright © 2022

| 139



 "connections_queued": [],
 "connections_rejected": [],
 "bytes_in_spike": [],
 "bytes_out_spike": []
 }
}

Parent topic:ABS external REST APIs

Blocked Connection REST API
Description: The Blocked Connection API is used to fetch the list of blocked or dropped connections. The
response includes anomalies count for the given API, such as request success or failure count.

Method: GET

URL/v3/abs/bc?later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm>&details=true

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "earlier_date": "Wed Jan 01 08:20:00:000 2018",
 "later_date": "Sun Jan 05 13:20:00:000 2018",
 "api_blocked_connections": [
 {
 "date": "05September2016",
 "blocked_connections": [
 {
 "apiproxy_node":"204101a4-8b70-489d-98e9- 
 aa3f6e67a93f",
 "blocked_connections": [
 {
 "category": "ioc",
 "details": []
 },
 {
 "category": "api",
 "details": [
 {
 "source": "100.64.31.235",
 "type": "no_backend_available",
 "destination_api": "/atmapp/zipcode"
 },
 {
 "source": "100.64.25.184",
 "type": "no_backend_available",
 "destination_api": "/atmapp/zipcode"

PingIntelligence copyright © 2022

| 140



 },
 {
 "source": "100.64.6.137",
 "type": "no_backend_available",
 "destination_api": "/atmapp/zipcode"
 },
 {
 "source": "100.64.1.251",
 "type": "no_backend_available",
 "destination_api": "/atmapp/zipcode"
 }
 ]
 }
 ]
 }
 ]
 }
 ]
}

Parent topic:ABS external REST APIs

Backend Error REST API
Description: The Backend Error API displays errors reported by the backend servers.

Method: GET

URL: /v3/abs/be?ealier_date=<>T<hh:mm>&later_date=<>T<hh:mm>&api=<api_name>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_backend_errors",
 "description": "This report contains details of backend error 
  codes for the specified API",
 "earlier_date": "Wed Jan 01 08:20:00:000 2018",
 "later_date": "Sun Jan 05 13:20:00:000 2018",
 "api_name": "atmapp",
 "backend_error_summary": [
 {
 "error_code": "403",
 "error": "Forbidden",
 "count": 0
 },
 {

PingIntelligence copyright © 2022

| 141



 "error_code": "404",
 "error": "Not Found",
 "count": 0
 },
 {
 "error_code": "500",
 "error": "Internal Server Error",
 "count": 16
 },
 {
 "error_code": "503",
 "error": "Service Unavailable",
 "count": 0
 },
 {
 "error_code": "504",
 "error": "Gateway Timeout",
 "count": 0
 }
 ],
 "backend_error_details": [
 {
 "error_code": "403",
 "details": []
 },
 {
 "error_code": "404",
 "details": []
 },
 {
 "error_code": "500",
 "details": [
 {
 "server": "192.168.11.164:3001",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.5.183:24078",
 "request_cookie": ""
 },
 {
 "server": "192.168.11.164:3002",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.18.126:61932",
 "request_cookie": ""
 },
 {
 "server": "192.168.11.164:3004",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.27.176:2908",
 "request_cookie": "JSESSIONID=6UQANJWB42U4A4PF"
 },
 {
 "server": "192.168.11.164:3004",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.14.237:21973",

PingIntelligence copyright © 2022

| 142



 "request_cookie": "JSESSIONID=LJ66P3NQW5SDVW8Q"
 },
 {
 "server": "192.168.11.164:3003",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.5.101:5523",
 "request_cookie": ""
 },
 {
 "server": "192.168.11.164:3003",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.23.132:14473",
 "request_cookie": "JSESSIONID=NCTZ4RSOZP2IT2OU"
 },
 {
 "server": "192.168.11.164:3003",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.5.197:50811",
 "request_cookie": ""
 },
 {
 "server": "192.168.11.164:3003",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.26.70:49425",
 "request_cookie": ""
 }
 ]
 },
 {
 "error_code": "503",
 "details": []
 },
 {
 "error_code": "504",
 "details": []
 }
 ]
}

Parent topic:ABS external REST APIs

List Valid URLs REST API
Description: The List Valid URL API provides information on all the URLs for the API. The API reports the
allowed methods and the count of number of times each URL has been accessed.

Method: GET

URL: /v3/abs/validurl?api=<api_name

Header Value

Access Key x-abs-ak <string>

PingIntelligence copyright © 2022

| 143



Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_url_list",
 "description": "This report provides information on access to each 
  unique URL for the specified API",
 "api_name": "shop",
 "host_name": "app",
 "api_url": "shopapi",
 "allowed_methods": [
 "GET",
 "PUT",
 "POST",
 "DELETE",
 "HEAD"
 ],
 "url_list": [
 {
 "protocol": "HTTP/1.1",
 "urls": [
 {
 "url": "/shopapi/get_delay",
 "total_count": 11,
 "methods": [
 {
 "method": "GET",
 "count": 11
 }
 ]
 },
 {
 "url": "/shopapi/post",
 "total_count": 62109,
 "methods": [
 {
 "method": "POST",
 "count": 62109
 }
 ]
 },
 {
 "url": "/shopapi/get_mb",
 "total_count": 2,
 "methods": [
 {
 "method": "GET",
 "count": 2
 }
 ]

PingIntelligence copyright © 2022

| 144



 },
 {
 "url": "/shopapi/login",
 "total_count": 2686,
 "methods": [
 {
 "method": "POST",
 "count": 2686
 }
 ]
 },
 {
 "url": "/shopapi/get?dyanmic_cookie",
 "total_count": 378,
 "methods": [
 {
 "method": "GET",
 "count": 378
 }
 ]
 }, 
 {
 "url": "/shopapi/logout",
 "total_count": 16964,
 "methods": [
 {
 "method": "POST",
 "count": 16964
 }
 ]
 },
 {
 "url": "/shopapi/get?passwd",
 "total_count": 1,
 "methods": [
 {
 "method": "GET",
 "count": 1
 }
 ]
 },
 {
 "url": "/shopapi/put",
 "total_count": 62060,
 "methods": [
 {
 "method": "PUT",
 "count": 62060
 }
 ]
 }
 ]
 } ] }

PingIntelligence copyright © 2022

| 145



Parent topic:ABS external REST APIs

List Hacker's URL REST API
Description: The List Invalid URL API provides information on all invalid URLs accessed for an API. The
four types of invalid URLs are:

• Irregular URL
• System Commands
• SQL Injection, and
• Buffer Overflow

Method: GET

URL: /v3/abs/hackersurl?api=<api_name>&earlier_date=””&later_date=””

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "description": "This report contains list of hackers URL for given API",
 "name": "api_hackers_url",
 "api_name": "universal_api",
 "invalid_urls": [ 
 {
 "url": "/index.php?id=abc') UNION ALL SELECT NULL,NULL,NULL,NULL,NULL,-- ",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=abc') UNION ALL SELECT NULL,NULL,NULL,NULL#",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=(SELECT 46 FROM(SELECT COUNT(*),CONCAT(0x717a71,))",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=abc') UNION ALL SELECT NULL,NULL,NULL#",
 "ips": [
 "127.0.0.1"
 ]
 },

PingIntelligence copyright © 2022

| 146



 {
 "url": "/index.php?id=abc UNION ALL SELECT NULL,NULL,NULL,NULL,NULL,#",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=abc' UNION ALL SELECT NULL,NULL,NULL,NULL,,NULL#",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=abc UNION ALL SELECT NULL,NULL,NULL,NULL,NULL#",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=abc' UNION ALL SELECT NULL,NULL,NULL,NULL,NULL-- ",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=abc') UNION ALL SELECT NULL,NULL-- ",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=abc UNION ALL SELECT NULL,NULL,NULL,NULL,NULL#",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=abc%' UNION ALL SELECT NULL-- ",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=abc) UNION ALL SELECT NULL,NULL,NULL,NULL-- ",
 "ips": [
 "127.0.0.1"
 ]
 },
 {
 "url": "/index.php?id=abc' UNION ALL SELECT NULL,NULL,NULL-- ",
 "ips": [
 "127.0.0.1"
 ]
 }

PingIntelligence copyright © 2022

| 147



 ]
}

Parent topic:ABS external REST APIs

Threshold range for Tn and Tx
Threshold range for Tn and Tx

The following table details the range of Tn and Tx for each attack type. When manually adjusting the
threshold values, the values must fall within these range.

Attack Type type_id Variable A (Range) Variable B
(Range)

Variable C
(Range)

REST API

Data Exfiltration 1 Tn = [1-32] Tx = [2-33] Tn = [1-19] Tx =
[2-20]

Tn = [1-99] Tx =
[2-100]

Single Client
Login

2 Tn = [1-19] Tx = [2-20] Tn = [1-19] Tx =
[2-20]

NA

Multi Client
Login

3 Tn = [1-100] Tx = “na” NA NA

Stolen Cookie /
Access Token

4 Tn = [2-10] Tn = [1-19], Tx =
[2-20]

Tn = [2-10]

API Memory
Attack Type 1

5 Tn = [1-32] Tx = [2-33] Tn = [1-19] Tx =
[2-20]

Tn = [1-99] Tx =
[2-100]

API Memory
Attack Type 2

6 Tn = [1-32] Tx = [2-33] Tn = [1-19] Tx =
[2-20]

Tn = [1-99] Tx =
[2-100]

Cookie DoS 7 Tn = [1-99] Tx =
[2-100]

Tn = [1-19] Tx =
[2-20]

NA

API Probing
Replay

8 Tn = [1-99] Tx =
[2-100]

NA NA

API DoS Attack
Type 1

9 Tn = [1-100] Tx =
“[2-100]”

NA NA

Extreme Client
Activity

10 Tn = [1-19] Tx = [2-20] NA NA

Extreme App
Activity

11 Tn = [1-19] Tx = [2-20] NA NA

API DoS Attack 12 Tn = [1- 100] Tx = “na” NA NA

API DDoS Attack
Type 2

13 NA NA NA

PingIntelligence copyright © 2022

| 148



Data Deletion 14 Tn = [1- 19] Tx = [2-20] Tn = [1-99] Tx =
[2-100]

NA

Data Poisoning 15 Tn = [1- 19] Tx = [2-20] Tn = [1-99] Tx =
[2-100]

Tn = [1-32] Tx =
[2-33]

Stolen Token
Attack Type 2

16 Tn = [2-10] Tx = “na” Tn = [1-100] Tn = [1-100]

Stolen Cookie
Attack Type 2

17 Tn = [2-10] Tx = “na” Tn = [1-100] Tn = [1-100]

API Probing
Replay Attack 2
(client identifier:
cookie)

18 Tn = [1-99] Tx =
[2-100]

Tn = [1-19] Tx =
[2-20]

NA

API Probing
Replay Attack 2
(client identifier:
token)

19 Tn = [1-99] Tx =
[2-100]

Tn = [1-19] Tx =
[2-20]

NA

API Probing
Replay Attack 2
(client identifier:
IP address)

20 Tn = [1-99] Tx =
[2-100]

Tn = [1-19] Tx =
[2-20]

NA

Data Exfiltration
Attack Type 2

21 Tn = [1-42] Tx = [2-43] Tn = [0-30] Tn = [1-100]

Excessive Client
Connections
(client identifier :
cookie)

22 Tn = [1-19], Tx =[2-20] NA NA

Excessive Client
Connections
(client identifier :
token)

23 Tn = [1-19], Tx =[2-20] NA NA

Excessive Client
Connections
(client identifier :
IP address)

24 Tn = [1-19], Tx =[2-20] NA NA

Content
Scraping Type 1
(client identifier :
cookie)

25 Tn = [1-19] Tx = [2-20] Tn = [1-19] Tx =
[2-20]

Tn = [1-19] Tx =
[2-20]
This attack has
another variable
D. The threshold
range is Tn =
[1-19] Tx = [2-20]

PingIntelligence copyright © 2022

| 149



Content
Scraping Type 1
(client identifier :
token)

26 Tn = [1-19] Tx = [2-20] Tn = [1-19] Tx =
[2-20]

Tn = [1-19] Tx =
[2-20]
This attack has
another variable
D. The threshold
range is Tn =
[1-19] Tx = [2-20]

Content
Scraping Type 1
(client identifier :
IP address)

27 Tn = [1-19] Tx = [2-20] Tn = [1-19] Tx =
[2-20]

Tn = [1-19] Tx =
[2-20]
This attack has
another variable
D. The threshold
range is Tn =
[1-19] Tx = [2-20]

Content
Scraping Type 2

28 Tn = [1-29] Tx = [2-30] Tn = [1-100] NA

Unauthorized
client attack
(client identifier :
IP address)

29 Tn = [1-19] Tx = [2-20] Tn = [1-19] Tx =
[2-20]

NA

Single Client
Login Attack
Type 2 (client
identifier : IP
address)

30 Tn = [1-19] Tx = [2-20] Tn = [1-19] Tx =
[2-20]

NA

WebSocket API

WS Cookie
Attack

50 Tn = [1-99] Tx =
[2-100]

Tn = [1-19] Tx=
[2-20]

NA

WS Identity
Attack

51 Tn = [1-19] Tx = [2-20] Tn = [1-19] Tx =
[2-20]

NA

WS DoS Attack 53 Tn = [1- 100] Tx = “na” NA NA

WS Data
Exfiltration
Attack

54 Tn = [1- 100] Tx = “na” NA NA

Splunk for PingIntelligence
Splunk for PingIntelligence provides a pictorial view of various attacks in an API environment with granular
event details. The Splunk Dashboard makes periodic REST API calls to an ABS engine which returns JSON
reports that are used as events. All the connections between the browser and Splunk are either based on
secure token or Splunk universal forwarder. Organizations can utilize the attack information to develop and
detect any form of patterns to get a holistic view of attacks.

Installing and configuring Splunk for PingIntelligence is a two step process.

PingIntelligence copyright © 2022

| 150



1. Install and configure Splunk
2. Download and configure PingIntelligence ABS splunk script using one of the following two methods:

• Local input method, or
• Splunk universal forwarder method

After you have configured the method to send data, the PingIntelligence ABS script creates an individual
event based on the attacks reported by ABS and posts it to splunk.

There are two methods through which data is sent to Splunk.

• Local Input method: In local input method, a local script is run on the Splunk Enterprise which
fetches the attack data from PingIntelligence ABS and sends the information to Splunk using a
scripted input method.

• Splunk Universal Forwarder method: In this method, the Splunk Universal Forwarder monitors a
log directory which contains output of the attack data. The script which provides attack detail runs
periodically through a CRON job.

• System requirements
• Install and configure Splunk for PingIntelligence
• Types of data captured
• Local Input Method installation and configuration
• Splunk Universal Forwarder method installation and configuration

System requirements
Following are the system requirements to deploy Splunk for PingIntelligence:

• Splunk enterprise 7.1.3 or higher
• splunkuser must be configured and all files should be under the ownership of splunk.
• Python version:

◦ Python 2.7.5-69.el7_5

PingIntelligence copyright © 2022

| 151

https://www.pingidentity.com/en/resources/downloads.html


◦ Python-libs 2.7.5-69.el7_5
• Define SPLUNK_HOME if this local script is run from a Splunk Enterprise node.

Parent topic:Splunk for PingIntelligence

Install and configure Splunk for PingIntelligence
Prerequisites

To complete the configuration of Splunk for PingIntelligence, you need to create a source type. Creating a
source type helps Splunk to understand the event format.

Create Source type

The source type is one of the default fields that Splunk assigns to all the incoming data. Configuring the
source type informs Splunk about the type of data ABS provides. This helps Splunk in formatting data
intelligently during indexing.

To create a source type, complete the following steps:

1. Configure a new source type by navigating to Splunk Enterprise → Settings → Source Types →
New Source type. The source type events page is displayed.

2. Configure the New Source type. The fields are defined in the following table:

Name Value

Source type name pi_events_source_type

Destination app Search and Reporting (Can change for your
apps)

Category Structures

Indexed Extractions json

Timestamp %a %b %d %H:%M:%S %Y

BREAK_ONLY_BEFORE (\{)

MUST_BREAK_AFTER (\})

PingIntelligence copyright © 2022

| 152



Parent topic:Splunk for PingIntelligence

Types of data captured
Splunk for PingIntelligence captures the following three types of data:

• Attack type event
• Metrics summary
• Metrics details

Attack type event: The attack event captures the components listed in the following table:

Field Description

access_type Type of event

api_name Name of the API

attack_type The name and type of attack

identifier The value of attack identifier, for example, cookie, token, or IP
address

identifier_count The number of times a specific identifier was captured

identifier_type The type of identifier (cookie, token, or IP address)

source_ip Source IP address of the attack

timestamp Timestamp of the event

Following is a sample screen shot depicting the attack type event:

PingIntelligence copyright © 2022

| 153



Metrics summary: Each summary event contains an outline of activities occurred in this API for a time
period. The summary metrics captures the following:

Fields Description

access_type Type of event

api_name Name of the API

api_url URL of the API

earlier_date The time to check for results going back in time. For example, to
check results from 10th April, 6 PM to 14th April, 3 PM, the
earlier_date
would be 10th April, 6 PM.

later_date The time to check the results back in time. For example, to check
results from 10th April, 6 PM to 14th April, 3 PM, the
later_date
would be 14th April, 6 PM.

most_popular_device Most popular device accessing this API in the specific time
period

most_popular_ip Most popular IPs accessing this API in the specific time period

most_popular_method Most popular method used to access this API in the specific time
period

total_requests Total number of requests received by this API in the specific time
period

no_sessions Number of sessions connected through IP

sessions Number of sessions connected through token or cookie

PingIntelligence copyright © 2022

| 154



success Number of successful connections in the specific time period

servers List of backend servers accessed by this API in the specific time
period.

timestamp Time stamp of this event which in this case is same as later date
of this event

Following is a sample screen shot showing the summary metrics event:

Metrics details: Each detail event contains all the activities occurring in this API between earlier date and
later date. This is further classified into per session of token, cookie or IP. Metrics details captures the
following:

Fields Description

access_type Type of event

api_name Name of the API

device Device accessing API in this event

earlier_date The time to check for results going back in time. For example, to
check results from 10th April, 6 PM to 14th April, 3 PM, the
earlier_date
would be 10th April, 6 PM.

later_date The time to check the results back in time. For example, to check
results from 10th April, 6 PM to 14th April, 3 PM, the
later_date
would be 14th April, 6 PM.

path_info The API path accessed

servers List of backend servers accessed by this API in the specific time
period.

session_id Session ID name

source_ip Source IP of this event

PingIntelligence copyright © 2022

| 155



timestamp Time stamp of this event which in this case is same as later date
of this event

total_requests Total number of API requests for this event

user_agent The user agent used for accessing this API

Following is a sample screen shot showing the detailed metrics event:

Parent topic:Splunk for PingIntelligence

Local Input Method installation and configuration
The installation and configuration process of Local Input Method is depicted in the diagram below:

1. Download and install pi-splunk-3.2.1.tar.gz
After completing the prerequisite step, download the pi-splunk-3.2.1.tar.gz file from the
download site and extract it to scripts folder in Splunk Enterprise Server. At the Splunk Enterprise
command line, enter the following command:
tar -xvf pi-splunk-3.2.1.tar.gz -C $SPLUNK_HOME/bin/scripts/

root@splunk_enterprise:#> tar -xvf pi-splunk-3.2.1.tar.gz -C 
$SPLUNK_HOME/bin/scripts/
pingidentity/
pingidentity/splunk/
pingidentity/splunk/bin/

PingIntelligence copyright © 2022

| 156

https://www.pingidentity.com/en/resources/downloads.html


pingidentity/splunk/config/
pingidentity/splunk/logs/
pingidentity/splunk/data/
pingidentity/splunk/data/pi_events_data
pingidentity/splunk/logs/pi_events.log
pingidentity/splunk/config/pi_events.properties
pingidentity/splunk/bin/pi_events.py

The following table provides details of the directory structure after you untar the Splunk script:

Directory name Contents

bin • pi_events.py•
: The script to be run from Splunk
GUI.

config Contains
pi_events.properties

data Contains
pi_events.data

logs Contains
pi_events.log

2. Copy the pi_events.py script to $SPLUNK_HOME/bin/scripts/ and change the permissions.
a. Copy pi_events.py script to $SPLUNK_HOME/bin/scripts/

root@splunk_enterprise:#> cp 
$SPLUNK_HOME/bin/scripts/pingidentity/splunk/bin/pi_events.py 
$SPLUNK_HOME/bin/scripts/pi_events.py

Note: Splunk UI accepts script present only at $SPLUNK_HOME/bin/scripts/
directory

b. Change permissions of the script to splunk user
root@splunk_enterprise:#> chown -R splunk. $SPLUNK_HOME/bin/scripts/
pi_events.py
root@splunk_enterprise:#> chown splunk. $SPLUNK_HOME/bin/scripts/
pingidentity

3. Configure pi_events.properties file with ABS IP
[default]
# Dashboard properties file
# ABS Hostname/IPv4 address
abs.host=< Hostname / IPv4 address >

# ABS REST API port
abs.port=8080

# ABS access key
abs.access_key=<ABS Access Key>

PingIntelligence copyright © 2022

| 157



# ABS secret key
abs.secret_key=<ABS Secret Key>

# ABS query offset (seconds. default value 1800 seconds)
abs.query.offset=1800

# ABS query window (seconds. default value 600 seconds)
abs.query.window=600

# Splunk log (path of splunk log)
logfile=pi_events.log

The following table provides a description of the pi_events.properties file variables.

Entry Description

abs.host The hostname or IPv4 address of ABS
host

abs.port The management port of ABS for REST
API communication. The default port is
8080.

abs.access_key The abs access keys configured in
abs_init.js
file during installation. You can also get
these details in
auth_info
collection in
abs_metadata
in MongoDB.

abs.secret_key The abs secret keys configured in
abs_init.js
file during installation. You can also get
these details in
auth_info
collection in
abs_metadata
in MongoDB.

abs.query.offset The time in past for which the script
window fetches data. The value is
specified in seconds. Recommended value
is 1800 seconds.
Example: If the current time is 10 AM and
you have set an offset of 1800 secs (30-
minutes) with a query window (
abs.query.window
) of 600 secs (10-minutes), then the query
time would be from 9:20 AM to 9:30 AM.

PingIntelligence copyright © 2022

| 158



abs.query.window The query window is the time interval in
seconds for which the script fetches the
data from ABS. The minimum and
recommended value is 600-seconds.

logfile The log file name.

4. Configure pi_events.py script from UI to run at periodic intervals: Splunk Enterprise →
Settings → Data Inputs → Local Inputs → Scripts → Add new

Note: The interval is set to 10-minutes (600-seconds) as shown the in the screen shot
above.

PingIntelligence copyright © 2022

| 159



• Source type: The script output is JSON. Select the source type as JSON from Structured sub-
category.

• App Context: Use the search and reporting as Search
• Host: Provide hostname of the ABS server
• Index: Create an index name, for example, pi_events.

5. Complete the configuration. Verify whether events are flowing into splunk search app.

Parent topic:Splunk for PingIntelligence

Stopping the script
You can stop the script for local input method by navigating to Settings ->Data Inputs ->Scripts
(Local Inputs) ->Delete option

Splunk Universal Forwarder method installation and configuration
The installation and configuration process of Splunk universal forwarder method is depicted in the diagram
below:

1. Download the pi_splunk.tar.gz file from the download site and extract it to /opt directory:
root@pi_nodes:pi_dir:#> tar -xvf pi-splunk-3.2.1.tar.gz -C /opt/
pingidentity/
pingidentity/splunk/
pingidentity/splunk/bin/
pingidentity/splunk/config/
pingidentity/splunk/logs/
pingidentity/splunk/data/
pingidentity/splunk/data/pi_events_data
pingidentity/splunk/logs/pi_events.log
pingidentity/splunk/config/pi_events.properties
pingidentity/splunk/bin/pi_events.py

The following table provides details of the directory structure after you untar the Splunk script:

PingIntelligence copyright © 2022

| 160

https://www.pingidentity.com/en/resources/downloads.html


Directory name Contents

bin pi_events.py
: The script to be run from Splunk GUI.

config Contains
pi_events.properties

data Contains
pi_events.data

logs Contains
pi_events.log

Note: Details of pi_events.log, pi_events.properties and pi_events.py are
provided in Local input method.

2. Install and configure Splunk Universal forwarder and start the instance using following steps:
a. Download Splunk Universal Forwarder

b. Install the Splunk universal forwarder by entering the following command:
[root@ABS]# tar -xvf splunkforwarder-7.2.0-8c86330ac18-Linux-
x86_64.tgz
splunkforwarder/
splunkforwarder/share/

c. Start the Splunk universal forwarder
[root@ABS]# cd splunkforwarder/bin
[root@ABS]# ./splunk start --accept-license

d. Add forward server details
[root@ABS]# ./splunk add forward-server ip:port
Splunk username: admin

PingIntelligence copyright © 2022

| 161



Password:
Added forwarding to: 192.168.1.158:9997.

e. Add monitor directory
[root@ABS]# ./splunk add monitor /opt/pingidentity/splunk/data/
Added monitor of '/opt/pingidentity/splunk/data/'.

f. Edit inputs.conf on your splunk forwarder
[root@ABS]# cat /opt/splunkforwarder/etc/apps/search/local/
inputs.conf
[monitor:///opt/pingidentity/splunk/data]
index = pi_events
sourcetype=pi_events_source_type
disabled = false

g. Restart Splunk universal forwarder
[root@ABS]# ./splunk restart

3. Configure pi_events.properties file with ABS IP
[default]
# Dashboard properties file
# ABS Hostname/IPv4 address
abs.host=< Hostname / IPv4 address >

# ABS REST API port
abs.port=8080

# ABS access key
abs.access_key=<ABS Access Key>

# ABS secret key
abs.secret_key=<ABS Secret Key>

# ABS query offset (seconds. default value 1800 seconds)
abs.query.offset=1800

# ABS query window (seconds. default value 600 seconds)
abs.query.window=600

# Splunk log (path of splunk log)
logfile=pi_events.log

The following table provides details of the variables of pi_events.properties file:

Entry Description

abs.host The hostname or IPv4 address of ABS host

abs.port The management port of ABS for REST API
communication. The default port is 8080.

PingIntelligence copyright © 2022

| 162



abs.access_key The abs access keys configured in
abs_init.js
file during installation. You can also get these details in
auth_info
collection in
abs_metadata
in MongoDB.

abs.secret_key The abs secret keys configured in
abs_init.js
file during installation. You can also get these details in
auth_info
collection in
abs_metadata
in MongoDB.

abs.query.offset The time in past for which the script window fetches
data. The value is specified in seconds. Recommended
value is 1800 seconds.
Example: If the current time is 10 AM and you have set
an offset of 1800 secs (30-minutes) with a query window
(
abs.query.window
) of 600 secs (10-minutes), then the query time would be
from 9:20 AM to 9:30 AM.

abs.query.window The query window is the time interval in seconds for
which the script fetches the data from ABS. The
recommended value is 600-seconds.

logfile The log file name.

4. Add entry to crontab
a. Open crontab:

#crontab -e 

b. Add the following line:
*/10 * * * * /opt/pingidentity/splunk/bin/pi_events.py -c 
/opt/pingidentity/splunk/config/pi_events.properties >> 
/opt2/pingidentity/splunk/data/pi_events.data

Note: Script has to redirect the logs to pi_events.data

5. Verify if data is flowing to Splunk

PingIntelligence copyright © 2022

| 163



Note: If no data is available in Splunk, check your firewall settings.

Parent topic:Splunk for PingIntelligence

Stopping the script
You can stop the script for universal forwarder method by completing the following steps:

1. Open crontab
#crontab -e

2. Stop monitor of data recovery
# ./splunk remove monitor /opt/pingidentity/splunk/data/
Removed monitor of '/opt/pingidentity/splunk/data/'.

PingIntelligence for APIs Overview
Digital transformation initiatives founded on APIs are making business logic and data readily accessible to
internal and external users. However, APIs also present a new opportunity for hackers to reach into data
and systems, and predefined rules, policies and attack signatures can’t keep up with this evolving threat
landscape. PingIntelligence for APIs uses artificial intelligence (AI) to expose active APIs, identify and
automatically block cyberattacks on APIs, and provide detailed reporting on all API activity. Leveraging AI
models specifically tailored for API security, PingIntelligence for APIs brings cyberattack protection and
deep API traffic insight to existing API Gateways and application server-based API environments.

PingIntelligence for APIs detects anomalous behavior on APIs, as well as the data and applications
exposed via APIs, and can automatically block attacks across your API environment. For example,
attempts to bypass login systems using botnet credential stuffing attacks or stolen tokens are recognized
as cyberattacks. Attempts to exfiltrate, change or delete data that fall outside the range of normal behavior
for an API can also be blocked and reported on in near real time.

Introduction to API Security Enforcer

PingIntelligence copyright © 2022

| 164

https://www.pingidentity.com/en/platform/apiintelligence.html


ASE supports multiple deployments modes to provide customers flexibility in deploying PingIntelligence for
APIs API cybersecurity. This ASE admin guide covers the following deployment modes:

Inline ASE - ASE receives API client traffic and then routes the traffic to a backend API gateway or directly
to App Servers. ASE applies real time security and passes API metadata to the ABS Engine for AI powered
advanced attack detection. ABS engine notifies ASE of attacks, and ASE then blocks the rogue clients.

Sideband ASE – An API gateway receives API client traffic and then makes API calls to pass API
metadata to ASE for processing. ASE passes the API metadata to the ABS Engine for AI powered advanced
attack detection. ABS engine notifies ASE of attacks, and ASE then works with API gateway to block
inbound rogue client requests. See ASE sideband chapter for more information.

The following table shows a summary of features available in each deployment options.

Security Features Inline Sideband

Interface to ABS AI Engine
for AI powered attack detection

Yes Yes

API deception – decoy APIs
look like legitimate APIs to
hackers. After accessing a
decoy API, a hacker is
quarantined, plus activity
information is collected.

Yes Yes

Real-time client blocking
based on lists with ASE
detected attacks, ABS AI Engine
detected attacks, or customer-
built lists. Blocking can be based
on OAuth2 tokens, API keys,
cookies, and IP addresses.

Yes Yes

Black and whitelist
management of tokens, API
keys, cookies, IP addresses

Yes Yes

PingIntelligence copyright © 2022

| 165



Real-time blocking of API
clients with traffic that deviates
from API attributes.

Yes No

Dynamic mapping of public
API identity to private internal
API identity

Yes No

Custom API error messages
prevent disclosure of sensitive
error information.

Yes No

Admin Features

Simple deployment with
modular JSON configuration
files

Yes Yes

Live updates – Add/remove
without loss of traffic or
stopping services.

Yes Yes

Obfuscation – Keys and
passwords are obfuscated

Yes Yes

Active-active clustering –
Supports scaling and resiliency:
all nodes are peers and self-
learn the configuration, traffic
information, and security
updates.

Yes Yes

Syslog information
messages sent to Syslog
servers in RFC 5424 format.

Yes Yes

Automatic API discovery
discovers API JSON
configuration data

Yes Yes

CLI and REST API for
management and automation
tool integration.

Yes Yes

Linux PAM-based
administrator authentication
with existing Linux tools.

Yes Yes

Audit log captures
administrative actions for
compliance reporting.

Yes Yes

PingIntelligence copyright © 2022

| 166



Distributed inbound flow
control limits client traffic and
server traffic

Yes No

Multiprotocol Layer 7
routing and load balancing of
WebSocket, REST API

Yes No

Secure connection between
ASE and ABS. Secure
connection also between ASE
and ASE REST APIs

Yes Yes

Using the ASE Admin Guide
The API Security Enforcer (ASE) Admin Guide caters to two different deployment options, inline ASE and
sideband ASE.

The guide is divided into the following four parts:

• ASE Administration – This section is applicable to both the deployment types and contains basic
administrative configuration information.

• ASE Inline – This section is specific to ASE inline configuration and the protection features that ASE
inline offers.

• ASE Sideband – This section is specific to ASE sideband configuration and protection features that
the ASE sideband offers.

• Appendices – The appendices list the commands for inline and sideband, REST APIs, and audit
logs.

ASE administration
API Security Enforcer (ASE) is deployed by modifying configuration files to support your environment. The
configuration files consist of the following:

• ase.conf – the master configuration file with parameters to govern ASE functionality.
• cluster.conf – configures ASE cluster setup.
• abs.conf – configures ASE to ABS (AI Engine) connectivity. ASE sends log files to ABS for

processing and receives back client identifiers (for example, token, IP address, cookie) to block.

• ASE license
• ASE interfaces
• Start and stop ASE
• Change default settings
• Obfuscate keys and passwords
• PKCS#12 keystore
• ASE directory structure
• ASE cluster setup
• Tune host system for high performance
• Customizing ASE ports
• Configure SSL for external APIs
• Configure SSL for management APIs
• Configure native and PAM authentication
• ASE management, access and audit logs

PingIntelligence copyright © 2022

| 167



• Purge log files
• Configure syslog
• Configure email notifications

ASE license
To start ASE, you need a valid license. There are two types of ASE licenses:

• Trial license – The trial license is valid for 30 days. At the end of the trial period, ASE stops
accepting traffic.

• Subscription license – The subscription license is based on the subscription period. It is a good
practice to configure your email before configuring the ASE license. ASE sends an email notification
to the configured email ID in case the license has expired. Contact the PingIntelligence for APIs sales
team for more information.

Configure ASE license

To configure the license in ASE, request for a license file from the PingIntelligence for APIs sales team. The
name of the license file must be PingIntelligence.lic. Copy the license file to the /opt/
pingidentity/ase/config directory and start ASE.

Update an existing license

If your existing license has expired, obtain a fresh license from PingIntelligence for APIs sales team and
replace the license file in the /opt/pingidentity/ase/config directory. Make sure to stop and start
ASE after the license file is updated.

Parent topic:ASE administration

ASE interfaces
The interfaces to configure and operate ASE consist of:

• Command line interface (CLI)
• ASE REST API

ASE CLI

Located in the bin directory, cli.sh is the script that administers ASE and performs all ASE functions
except starting and stopping ASE. To execute commands, type cli.sh followed by the command name.
To see a list of all commands, type the following command at the CLI:

/opt/pingidentity/ase/bin/cli.sh

The following table lists some basic CLI commands. For a complete list, see CLI for inline ASE and CLI for
sideband ASE

PingIntelligence copyright © 2022

| 168



Option Description

help Displays cli.sh help

version Displays ASE’s version number

status Displays ASE’s status.

update_password Updates the password for ASE admin
account.

Note: After initial start-up, all configuration changes must be made using cli.sh or ASE
REST APIs. This includes adding a server, deleting a server, adding a new API, and so on. After
manually editing an operational JSON file, follow Updating a Configured API

CLI commands include the following:

help command

To get a list of CLI commands, enter the help command:

/opt/pingidentity/ase/bin/cli.sh help

version command

To query system information, enter the version command:
/opt/pingidentity/ase/bin/cli.sh version
Ping Identity Inc., ASE 3.1.1
Kernel Version : 3.10
Operating System : Red Hat Enterprise Linux Server release 7.0 (Maipo)
Build Date : Fri Aug 24 13:43:22 UTC 2018

status command

To get ASE status, enter the status command:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : disabled, ssl: enabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

PingIntelligence copyright © 2022

| 169



ASE REST API

The ASE REST API is used to administer ASE or integrate ASE with third-party products. Using the ASE
REST API, you can configure ASE and display ASE statistics, including the number of backend servers, the
number of APIs, and so on.

ASE REST API commands consist of the following:

• API: Create API (POST), Read API (GET), List API (GET), Update API (PUT), Delete API (DELETE)
• Server: Create Server (POST), Read Server (GET), Delete Server (DELETE)
• Session: Read Persistent Connections (GET)
• Cluster: Read Cluster (GET)
• Firewall: Read Firewall Status (GET), Update Firewall Status (POST)
• Flow Control: Read flow control (GET), Update flow control for API (POST), Update flow control of a

Server for an API (POST)

Parent topic:ASE administration

Start and stop ASE
Prerequisite:

For ASE to start, the ase_master.key must be present in the /opt/pingidentity/ase/config
directory. If you have moved the master key to a secured location for security reasons, copy it to the config
directory before executing the start script. You can run ASE as a non-root user also.

Start ASE

Change working directory to bin and run the start.sh script.

/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 3.2.1...
please see /opt/pingidentity/ase/logs/controller.log for more details

Stop ASE

Change working directory to bin and run the stop.sh script.

/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…sending stop request to ASE. please 
wait…
API Security Enforcer stopped

Parent topic:ASE administration

Change default settings
It is recommended that you change the default key and password in ASE. Following is a list of commands
to change the default values:

Change ase_master.key

Run the following command to create your own ASE master key to obfuscate keys and password in ASE.

Command: generate_obfkey. ASE must be stopped before creating a new ase_master.key

PingIntelligence copyright © 2022

| 170



/opt/pingidentity/ase/bin/cli.sh admin generate_obfkey -u admin -p admin
API Security Enforcer is running. Please stop ASE before generating new 
obfuscation master key

Stop ASE: Stop ASE by running the following command:
/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…sending stop request to ASE. please 
wait…
API Security Enforcer stopped

Change ase_master.key: Enter the generate_obfkey command to change the default ASE master
key:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin generate_obfkey
Please take a backup of config/ase_master.key, config/ase.conf,
config/abs.conf, config/cluster.conf before proceeding
Warning: Once you create a new obfuscation master key, you should 
obfuscate all config keys also using cli.sh obfuscate_keys
Warning: Obfuscation master key file /opt/pingidentity/ase/config/
ase_master.key already exist. 
This command will delete it create a new key in the same file
Do you want to proceed [y/n]:

Start ASE: After a new ASE master key is generated, start ASE by entering the following command:
/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 3.2.1...
please see /opt/pingidentity/ase/logs/controller.log for more details

Change keystore password

You can change the keystore password by entering the following command. The default password is
asekeystore. ASE must be running for updating the keystore password.

Command: update_keystore_password
/opt/pingidentity/ase/bin/cli.sh update_keystore_password -u admin -p admin
New password >
New password again >
keystore password updated

Change admin password
You can change the default admin password by entering the following command:
/opt/pingidentity/ase/bin/cli.sh update_password -u admin -p admin
Old password >
New password >
New password again >
Password updated successfully

Parent topic:ASE administration

Obfuscate keys and passwords

PingIntelligence copyright © 2022

| 171



Using the ASE command line interface, you can obfuscate keys and passwords configured in ase.conf,
cluster.conf, and abs.conf. Here is the obfuscated data in each file:

• ase.conf – Email and keystore (PKCS#12) password
• cluster.conf – ABS access and secret key
• abs.conf – Cluster authentication key

ASE ships with a default master key (ase_master.key) which is used to obfuscate other keys and
passwords. It is recommended to generate your own ase_master.key.

Note: During the process of obfuscation password, ASE must be stopped.

The following diagram summarizes the obfuscation process:

Generating your ase_master.key

You can generate the ase_master.key by running the generate_obfkey ASE CLI command.

/opt/pingidentity/ase/bin/cli.sh generate_obfkey -u admin -p 

Please take a backup of config/ase_master.key, config/ase.conf, config/
abs.conf, config/cluster.conf before proceeding
    
Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh obfuscate_keys
    
Warning: Obfuscation master key file /opt/pingidentity/ase/config/
ase_master.key already exists. This command will delete it and create a new 
key in the same file.
    
Do you want to proceed [y/n]:y
creating new obfuscation master key
Success: created new obfuscation master key at /opt/pingidentity/ase/config/
ase_master.key

The new ase_master.key is used to obfuscate the keys and passwords in the configuration files.

Important: In an ASE cluster, the ase_master.key must be manually copied to each cluster
node.

Obfuscate keys and passwords

Enter the keys and passwords in clear text in ase.conf, cluster.conf, and abs.conf. Run the
obfuscate_keys command to obfuscate keys and passwords:

PingIntelligence copyright © 2022

| 172



  
/opt/pingidentity/ase/bin/cli.sh obfuscate_keys -u admin -p 
  
Please take a backup of config/ase_master.key, config/ase.conf, config/
abs.conf, and config/cluster.conf before proceeding

If config keys and passwords are already obfuscated using the current master 
key, they are not obfuscated again

Following keys will be obfuscated:
config/ase.conf: sender_password, keystore_password
config/abs.conf: access_key, secret_key
config/cluster.conf: cluster_secret_key
    
Do you want to proceed [y/n]:y
obfuscating config/ase.conf, success
obfuscating config/abs.conf, success
obfuscating config/cluster.conf, success

Start ASE after keys and passwords are obfuscated.

Important: After the keys and passwords are obfuscated, the ase_master.key must be
moved to a secure location from ASE for security reasons. If you want to restart ASE, the
ase_master.key must be present in the /opt/pingidentity/ase/config/ directory.

Parent topic:ASE administration

PKCS#12 keystore
ASE ships with a default PKCS#12 keystore. The default password is “asekeystore”. The default
password is obfuscated and configured in the ase.conf file. You must update the default PKCS#12
keystore password by using the update_keystore_password command for security reasons. The
password is updated and obfuscated at the same time. ASE must be running for updating the keystore
password.

/opt/pingidentity/ase/bin/cli.sh update_keystore_password -u admin -p admin
New password >
New password again >
keystore password updated

Parent topic:ASE administration

ASE directory structure
During the installation process, ASE creates the following directories:

Directory Name Purpose

config Contains files and directories to configure ASE and its APIs.
The certs subdirectory contains the keys and certificates for SSL/TLS
1.2.

data For internal use. Do not change anything in this directory.

PingIntelligence copyright © 2022

| 173



logs Stores ASE log files including access log files sent to ABS for analysis.
The access log files are compressed and moved to abs_uploaded
directory after they have been uploaded to ABS.

lib For internal use. Do not change anything in this directory.

bin Contains scripts including the start and stop ASE, tuning script for ASE
performance.

Note: The scripts in the bin directory are not editable.

util The
util
directory contains scripts to check and open ABS ports as well as script
to purge logs.

• check_ports.sh Check ABS ports
• open_ports_ase.sh:Run this script on the ASE machine to

open the default ASE ports: 80, 443, 8010, and 8020.
• Purge logs

Parent topic:ASE administration

ASE cluster setup
ASE Cluster runs either in a single cloud or across multiple clouds. All ASE cluster nodes communicate
over a TCP connection to continuously synchronize the configuration in real time. Cluster nodes are
symmetrical which eliminates a single point of failure. Key features of ASE clustering are:

• ASE node addition to a live cluster without configuring the node – true auto-scaling
• Configuration (ase.conf, API JSON files) synchronization across all cluster nodes
• Update and delete operations using CLI and REST APIs
• Run time addition or deletion of cluster nodes
• Realtime blacklist synchronization across cluster
• A single cluster with nodes spanning across multiple data centers

Several cluster features are unique to the deployed environment including:

• Authentication token for API gateway (ASE sideband only)
• Cookie replication across all cluster nodes (ASE inline only)

CLI configuration commands executed at any cluster node are automatically replicated across all cluster
nodes. All nodes remain current with respect to configuration modifications. Cluster nodes synchronize
SSL certificates across a secured channel.

Add or remove a node from the cluster without disrupting any live traffic. The amount of time required to
activate a new cluster node is dependent on the time to synchronize the configuration and cookie
information from other nodes.

ASE cluster performs real-time synchronization of cookies for ASE inline configurations. This is critical for
session mirroring or handling a DNS flip between requests from the same client. Since no master or slave

PingIntelligence copyright © 2022

| 174



nodes exist, all cluster nodes synchronize cookie information – which means that each node has the same
cookies as other nodes.

ASE also synchronizes ase.conf files across cluster nodes with the exception of a few parameters: data
ports, management ports, and number of processes.

ASE cluster deployment

ASE cluster is a distributed node architecture. Ping Identity recommends that one cluster node be
designated the management node through which all configuration changes are performed. This helps
maintain consistency of operations across nodes. However, no restrictions exist on using other nodes in
the cluster to make changes. If two different nodes are used to modify the ASE cluster, then the latest
configuration change based on time-stamps is synchronized across the nodes.

ASE cluster uses a circular deployment. During setup, the first node of the cluster acts as the central node
of the cluster from which all cluster nodes synchronize configuration and cookie data. When the setup of
all nodes is complete, the nodes communicate with each other to synchronize the latest session
information.

Note: If the first node or management node goes down, the functioning of the other cluster
nodes is not affected. Make sure the peer node provided in the cluster.conf is running
before adding a new node.

When an ASE cluster is setup, the peer_node parameter must be configured with an IPv4 address and
port number. ASE uses this value to connect to other nodes of the cluster. To add new cluster nodes,
activate one node at a time. In the following example, the peer_node IP address for all nodes is the IP
address of the first node. Each node must wait until the process of adding the previous node is completed.

Use the status command to verify status before adding the next node in the cluster.

/opt/pingidentity/ase/bin/cli.sh status -u admin -p 
Status: starting

After all cluster nodes are added, use the management or first node to carry out all cluster operations.

PingIntelligence copyright © 2022

| 175



Note: Add one node at a time to the cluster. After the node completes loading data, add the
next node

Cluster nodes must be added sequentially, one node at a time, to ensure consistent cluster behavior.

• Start ASE cluster
• Scale up the ASE cluster
• Scale down ASE cluster
• Delete ASE cluster node
• Stop ASE cluster

Parent topic:ASE administration

Start ASE cluster
To setup an ASE cluster, the following three steps must be completed:

Pre-requisites

1. Obtain list of IP addresses and ports required for ASE cluster nodes
2. Enable NTP on your system.
3. If adding an existing ASE instance to a cluster, backup the ASE data first. When a node is added to a

cluster, it synchronizes the data from the other nodes and overwrites existing data.

To setup an ASE cluster node:

1. Navigate to the config directory
2. Edit ase.conf file:

a. Set enable_cluster=true for all cluster nodes.
b. Make sure that the value in the parameter mode is same on each ASE cluster node, either inline

or sideband. If the value of mode parameter does not match, the nodes will not form a cluster.
3. Edit the cluster.conf file

a. Configure cluster_id with an identical value for all nodes in a single cluster (for example,
cluster_id=shopping)

b. Enter port number in the cluster_management_port (default port is 8020) parameter. ASE
node uses this port number to communicate with other nodes in the cluster.

c. Enter an IPv4 address or hostname with the port number for the peer_node which is the first
(or any existing) node in the cluster. Keep this parameter empty for the first node of the cluster.

d. Provide the obfuscated cluster_secret_key. All the nodes of the cluster must have the
same obfuscated cluster_secret_key. This key must be entered manually on each node
of the cluster for the nodes to connect to each other.

e. For the first node of the ASE cluster, peer_node should be left empty. On other nodes of the
ASE cluster, enter the IP address or the hostname of the first cluster in the node in the
peer_node variable.

Here is a sample cluster.conf file:

; API Security Enforcer's cluster configuration.
; This file is in the standard .ini format. The comments start with a 

PingIntelligence copyright © 2022

| 176



semicolon (;).
; Section is enclosed in []
; Following configurations are applicable only if cluster is enabled with 
true in ase.conf
; unique cluster id.
; valid character class is [ A-Z a-z 0-9 _ - . / ]
; nodes in same cluster should share same cluster id
cluster_id=ase_cluster
; cluster management port.
cluster_manager_port=8020
; cluster peer nodes.
; a comma-separated list of hostname:cluster_manager_port or 
IPv4_address:cluster_manager_port
; this node will try to connect all the nodes in this list
; they should share same cluster id
peer_node=
; cluster secret key.
; maximum length of secret key is 128 characters (deobfuscated length).
; every node should have same secret key to join same cluster.
; this field cannot be empty.
; change default key for production.
cluster_secret_key=OBF:AES:nPJOh3wXQWK/
BOHrtKu3G2SGiAEElOSvOFYEiWfIVSdummoFwSR8rDh2bBnhTDdJ:7LFcqXQlqkW9kldQoFg0nJoLSojnzHDbD3iAy84pT84

After configuring an ASE node, start the node by running the following command:

/opt/pingidentity/ase/bin/start.sh

Post-install

Choose the first cluster node to run all CLI commands and REST API access for cluster consistency.

/opt/pingidentity/ase/bin/cli.sh delete_cluster_node <IP:Port>

Parent topic:ASE cluster setup

Scale up the ASE cluster
Scale up the ASE cluster by adding nodes to an active cluster without disrupting traffic. To add a new
cluster node, enter the peer_node IP address or hostname in the cluster.conf file of the ASE node
and then start the ASE node. The new node will synchronize configuration and cookie data from the peer
nodes. After loading, it will become part of the cluster. For example, if the IP of the first node is
192.168.20.121 with port 8020, then the peer_node parameter would be 192.168.20.121:8020.

; ASE cluster configuration. These configurations apply only when you have 
enabled cluster in the api_config file.
; Unique cluster ID for each cluster. All the nodes in the same cluster 
should have the same cluster ID.
cluster_id=ase_cluster
; Cluster management port.
cluster_manager_port=8020
; Cluster's active nodes. This can be a comma separated list of nodes in 

PingIntelligence copyright © 2022

| 177



ipv4_address:cluster_manager_port format.
peer_node=192.168.20.121:8020

Parent topic:ASE cluster setup

Scale down ASE cluster
A node can be removed from an active cluster without disrupting traffic by completing the following stops:

1. Stop the ASE node to be removed using the stop command
2. Set the enable_cluster option as falsein its ase.conffile.

Note: The removed node retains the cookie and certificate data from when it was part of the
cluster

Parent topic:ASE cluster setup

Delete ASE cluster node
An inactive cluster node has either become unreachable or has been stopped. When you delete a stopped
cluster node, the operation does not remove cookie and other synchronized data. To find which cluster
nodes are inactive, use the cluster_info command:

/opt/pingidentity/ase/bin/cli.sh cluster_info -u admin -p 
cluster id : ase_cluster
cluster nodes
127.0.0.1:8020 active
1.1.1.1:8020 active
2.2.2.2:8020 inactive
172.17.0.4:8020(tasks.aseservice) active
172.17.0.5:8020(tasks.aseservice) inactive
tasks.aseservice2:8020 not resolved

Using the cluster_info command output, you can remove the inactive cluster nodes 2.2.2.2:8020 and
172.17.0.5:8020.

To delete the inactive node, use the delete_cluster_node command:

Parent topic:ASE cluster setup

Stop ASE cluster
You can stop the entire cluster by running the following command on any ASE node in the cluster.

/opt/pingidentity/ase/bin/stop.sh cluster –u admin –p 

When the cluster stops, each cluster node retains all the cookie and certificate data.

Parent topic:ASE cluster setup

Tune host system for high performance
ASE ships with a script to tune the host Linux operating system for handling high TCP concurrency and
optimizing performance. To understand the tuning parameters, refer to the tuning script comments. When
running the tuning script, changes are displayed on the console to provide insight into system

PingIntelligence copyright © 2022

| 178



modifications. To undo system changes, run the untune script. It is not necessary to run this script for
ASE to work.

Note: If ASE is deployed in a Docker Container, run the tune script on the host system, not in the
container.

The following commands are for tuning RHEL 7. For tuning Ubuntu 16 LTS, use the Ubuntu tuning scripts.

Tune the host system:

Enter the following command in the command line:

/opt/pingidentity/ase/bin/tune_rhel7.sh

Untune the host system:

The “untune” script brings the system back to its original state. Enter the following command in the
command line:

/opt/pingidentity/ase/bin/untune_rhel7.sh

To secure your API environment, APIs need to be configured in API Security Enforcer using an API JSON
file. Each API has a unique API JSON file. For example, 5 APIs would require configuration of 5 API JSON
files. ASE ships with sample JSON files located in the /config/api directory.

Note: You should be a root user to run the tune and untune scripts.

Parent topic:ASE administration

Customizing ASE ports
ASE uses default ports as defined in the table below. If any port configured in ase.conf file is unavailable,
ASE will not start.

Port Number Usage

80 Data port. HTTP and WebSocket (ws) connections. If you are installing
ASE as a non-root user, then use port greater than 1024.

443 Data port. HTTPS and Secure WebSocket (wss) connections. If you are
installing ASE as a non-root user, then use port greater than 1024.

8010 Management port. Used by CLI and REST API for managing ASE.

8020 Cluster port. Used by ASE internally to set up the cluster.

8080, 9090 ABS ports. Used by ASE for outbound connections to ABS for sending
access logs and receive attack information.

Warning: The management ports 8010 and 8020 should not be exposed to the internet and are
strictly for internal use. Make sure that these ports are behind your firewall.

PingIntelligence copyright © 2022

| 179



In an AWS environment, both management ports should be private in the Security Group for ASE.

Security Group “ase”:

port 80: Accessible from any client (note: not secure)

port 443: Accessible from any client

port 8010: Accessible from management systems and administrators

port 8020: Accessible from peer ASE nodes

Note: If you are setting up the deployment in an AWS environment with security groups, use
private IPs for ABS connections to avoid security group issues.

Parent topic:ASE administration

Configure SSL for external APIs
ASE supports both TLS 1.2 and SSLv3 for external APIs. You can configure SSL in ASE for client side
connection using one of the following methods:

• Method 1: Using CA-signed certificate
• Method 2: Using self-signed certificate
• Method 3: Importing an existing certificate

The steps provided in this section are for certificate and key generated for connections between the client
and ASE as depicted in the illustration below:

In a cluster setup:

1. Stop all the ASE cluster nodes
2. Configure the certificate on the management node
3. Start the cluster nodes one by one for the certificates to synchronize across the nodes

Method 1: Use CA-signed certificate

To use Certificate Authority (CA) signed SSL certificates, follow the process to create a private key,
generate a Certificate Signing Request (CSR), and request a certificate as shown below:

PingIntelligence copyright © 2022

| 180



Note: ASE internally validates the authenticity of the imported certificate.

To use a CA-signed certificate:

1. Create a private key. ASE CLI is used to create a 2048-bit private key and to store it in the keystore.
/opt/pingidentity/ase/bin/cli.sh create_key_pair -u admin -p
Warning: create_key_pair will delete any existing key_pair, CSR and self-
signed certificate
Do you want to proceed [y/n]:y
Ok, creating new key pair. Creating DH parameter may take around 20 
minutes. Please wait
Key created in keystore
dh param file created at /opt/pingidentity/ase/config/certs/dataplane/
dh1024.pem

2. Create a CSR. ASE takes you through a CLI-based interactive session to create a CSR.
/opt/pingidentity/ase/bin/cli.sh create_csr -u admin -p 
Warning: create_csr will delete any existing CSR and self-signed 
certificate
Do you want to proceed [y/n]:y
please provide following info
Country Code >US
State > Colorado
Location >Denver
Organization >Pingidentity
Organization Unit >Pingintelligence
Common Name >ase
Generating CSR. Please wait...
OK, csr created at /opt/pingidentity/ase/config/certs/dataplane/ase.csr

3. Upload the CSR created in step 2 to the CA signing authority’s website to get a CA signed certificate.
4. Download the CA-signed certificate from the CA signing authority’s website.
5. Use the CLI to import the signed CA certificate into ASE. The certificate is imported into the keystore.

/opt/pingidentity/ase/bin/cli.sh import_cert <CA signed certificate 
path> -u admin -p 
Warning: import_cert will overwrite any existing signed certificate
Do you want to proceed [y/n]:y
Exporting certificate to API Security Enforcer...
OK, signed certificate added to keystore

6. Restart ASE by first stopping and then starting ASE.

PingIntelligence copyright © 2022

| 181



Method 2: Use self-signed certificate

A self-signed certificate is also supported for customer testing.

To create a self-signed certificate

1. Create a private key. ASE CLI is used to generate a 2048-bit private key which is in the /opt/
pingidentity/ase/config/certs/dataplane/dh1024.pem directory.
/opt/pingidentity/ase/bin/cli.sh create_key_pair -u admin -p
Warning: create_key_pair will delete any existing key_pair, CSR and self-
signed certificate
Do you want to proceed [y/n]:y
Ok, creating new key pair. Creating DH parameter may take around 20 
minutes. Please wait
Key created in keystore
dh param file created at /opt/pingidentity/ase/config/certs/dataplane/
dh1024.pem

2. Create a CSR file:
/opt/pingidentity/ase/bin/cli.sh create_csr -u admin -p
Warning: create_csr will delete any existing CSR and self-signed 
certificate
Do you want to proceed [y/n]:y
please provide following info
Country Code >US
State >colorado
Location >Denver
Organization >PI
Organization Unit >TEST
Common Name >yoursiteabc.com
Generating CSR. Please wait...
OK, csr created at /opt/pingidentity/ase/config/certs/dataplane/ase.csr

3. Create a self-signed certificate. Use the CLI to produce a self-signed certificate using the certificate
request located in/pingidentity/ase/config/certs/dataplane/ase.csr
/opt/pingidentity/ase/bin/cli.sh create_self_sign_cert -u admin -p
Warning: create_self_sign_cert will delete any existing self-signed 
certificate
Do you want to proceed [y/n]:y
Creating new self-signed certificate
OK, self-sign certificate created in keystore 

4. Restart ASE by stopping and starting.

Method 3: Import an existing certificate and key pair

To install an existing certificate, complete the following steps and import it into ASE. If you have
intermediate certificate from CA, then append the content to your server crt file.

1. Import key pair:
/opt/pingidentity/ase/bin/cli.sh import_key_pair private.key -u admin -p
Warning: import_key_pair will overwrite any existing certificates

PingIntelligence copyright © 2022

| 182



Do you want to proceed [y/n]:y
Exporting key to API Security Enforcer...
OK, key pair added to keystore

2. Import the .crt file in ASE using the import_cert CLI command
/opt/pingidentity/ase/bin/cli.sh import_cert server-crt.crt -u admin -p
Warning: import_cert will overwrite any existing signed certificate
Do you want to proceed [y/n]:y
Exporting certificate to API Security Enforcer...
OK, signed certificate added to keystore

3. Restart ASE by stopping and starting.

Parent topic:ASE administration

Configure SSL for management APIs
ASE supports both TLS 1.2 for management APIs. You can configure SSL in ASE for management APIs
using one of the following methods:

• Method 1: Using CA-signed certificate
• Method 2: Using self-signed certificate
• Method 3: Importing an existing certificate

The steps provided in this section are for certificate and key generated are for connections between a
management API client and ASE:

In a cluster setup:

1. Stop all the ASE cluster nodes
2. Configure the certificate on the management node
3. Start the cluster nodes one by one for the certificates to synchronize across the nodes

Method 1: Use CA-signed certificate

To use Certificate Authority (CA) signed SSL certificates, follow the process to create a private key,
generate a Certificate Signing Request (CSR), and request a certificate as shown below:

PingIntelligence copyright © 2022

| 183



Note: ASE internally validates the authenticity of the imported certificate.

To use a CA-signed certificate:

1. Create a private key. ASE CLI is used to create a 2048-bit private key and to store it in the /opt/
pingidentity/ase/config/certs/management directory.
/opt/pingidentity/ase/bin/cli.sh create_management_key_pair -u admin -p
Warning: create_management_key_pair will delete any existing management 
key_pair, CSR and self-signed certificate
Do you want to proceed [y/n]:y
Ok, creating new management key pair. Creating DH parameter may take 
around 20 minutes. Please wait
Management key created at keystore
Management dh param file created at /opt/pingidentity/ase/config/certs/
management/dh1024.pem

2. Create a CSR. ASE takes you through a CLI-based interactive session to create a CSR.
/opt/pingidentity/ase/bin/cli.sh create_management_csr -u admin -p
Warning: create_management_csr will delete any existing management CSR 
and self-signed certificate
Do you want to proceed [y/n]:y
please provide following info
Country Code >US
State >Colorado
Location >Denver
Organization >Pingidentity
Organization Unit >Pingintelligence
Common Name >management.ase
Generating CSR. Please wait...
OK, management csr created at /opt/pingidentity/ase/config/certs/
management/management.csr

3. Upload the CSR created in step 2 to the CA signing authority’s website to get a CA signed certificate.
4. Download the CA-signed certificate from the CA signing authority’s website.
5. Use the CLI to import the signed CA certificate into ASE. The certificate is imported into the /

pingidentity/config/certs/management/management.csr file
/opt/pingidentity/ase/bin/cli.sh import_management_cert <CA signed 
certificate path> -u admin -p 
Warning: import_management_cert will overwrite any existing management 
signed certificate
Do you want to proceed [y/n]:y
Exporting management certificate to API Security Enforcer...
OK, signed certificate added to keystore

6. Restart ASE by first stopping and then starting ASE.

Method 2: Use self-signed certificate

A self-signed certificate is also supported for customer testing.

To create a self-signed certificate

PingIntelligence copyright © 2022

| 184



1. Create a private key. ASE CLI is used to generate a 2048-bit private key which is in the /ase/
config/certs/ directory.
/opt/pingidentity/ase/bin/cli.sh create_management_key_pair -u admin -p
Warning: create_management_key_pair will delete any existing management 
key_pair, CSR and self-signed certificate
Do you want to proceed [y/n]:y
Ok, creating new management key pair. Creating DH parameter may take 
around 20 minutes. Please wait
Management key created at keystore
Management dh param file created at /opt/pingidentity/ase/config/certs/
management/dh1024.pem

2. Create a self-signed certificate. Use the CLI to produce a self-signed certificate using the certificate
request located in/pingidentity/ase/config/certs/management/management.csr
/opt/pingidentity/ase/bin/cli.sh create_management_self_sign_cert -u 
admin -p
Warning: create_management_self_sign_cert will delete any existing 
management self-signed certificate
Do you want to proceed [y/n]:y
Creating new management self-signed certificate
OK, self-sign certificate created in key store 

3. Restart ASE by stopping and starting.

Method 3: Import an existing certificate and key pair

To install an existing certificate, complete the following steps and import it into ASE. If you have
intermediate certificate from CA, then append the content to your server .crt file.

1. Convert the key from the existing .pem file:
openssl rsa -in private.pem -out private.key

2. Convert the existing .pem file to a .crt file:
openssl x509 -in server-cert.pem -out server-cert.crt

3. Import key pair from step 2:
/opt/pingidentity/ase/bin/cli.sh import_management_key_pair private.key 
-u admin -p
Warning: import_key_pair will overwrite any existing certificates
Do you want to proceed [y/n]:y
Exporting management key to API Security Enforcer...
OK, key pair added to keystore

4. Import the .crt file in ASE using the import_management_cert CLI command
/opt/pingidentity/ase/bin/cli.sh import_management_cert server-crt.crt 
-u admin -p
Warning: import_management_cert will overwrite any existing management 
signed certificate
Do you want to proceed [y/n]:y
Exporting management certificate to API Security Enforcer...
OK, signed certificate added to keystore

PingIntelligence copyright © 2022

| 185



5. Restart ASE by stopping and starting.

Parent topic:ASE administration

Configure native and PAM authentication
ASE provides two types of authentication:

• Linux Pluggable Authentication Module (PAM)
• ASE native authentication (default method)

All actions carried out on ASE require an authenticated user.

The two methods to choose the authentication method include:

• Configure auth_method parameter in ase.conf (see ASE Initial Configuration)
• Execute a CLI command (update_auth_method <method>).

The sections below provide more details on configuring the desired method. The following diagram shows
the transition between authentication modes. The authentication method can be changed during run-time
without restarting ASE.

ASE native authentication

By default, ASE uses native ASE authentication which ships with the system. Each user can execute CLI
commands by including the shared “username” and “password” with each command. The system ships
with a default username (admin) and password (admin). Always change the default password using the
update_password command. For more information on ASE commands, see Appendix A.

To configure ase.conf to support native authentication, use the default configuration values:
auth_method=ase::db

To change the authentication from Native authentication to PAM mode, enter the following command in
ASE command line. In the example, login is a PAM script used for authentication.

/opt/pingidentity/ase/bin/cli.sh update_auth_method pam::login -u admin -p 
password>

To switch from PAM mode authentication back to Native authentication, issue the following CLI command:

/opt/pingidentity/ase/bin/cli.sh update_auth_method ase::db -u <pam_user> -p 
password>

Here is an example of a CLI command with native authentication (-u,-p) enabled:

PingIntelligence copyright © 2022

| 186



/opt/pingidentity/ase/bin/cli.sh add_server -u admin -p 
password>

Linux Pluggable Authentication Modules (PAM) authentication

PAM-based authentication provides the flexibility to authenticate administrators using existing
authentication servers, such as your organization’s LDAP directory. When PAM authentication is active, ASE
logs the identity of the user executing each CLI command. This provides a user-specific audit trail of
administrative access to the ASE system.

To activate PAM-based authentication, configure auth_methodin ase.confas
pam::<service>,where <service> is the script that the PAM module reads to authenticate the users.
Service scripts include login, su, ldap, etc. For example, login script allows all system users
administrative access to ASE. To support PAM authentication with login script, update auth_method
configuration values in ase.conf :

auth_method=pam::login

Here is an example using the CLI to change from Native to PAM authentication with login script:

/opt/pingidentity/ase/bin/cli.sh update_auth_method pam::login -u admin -p 
password>

Warning: Make sure that the script name provided for PAM based authentication is the correct
one. If a wrong file name is provided, ASE administrators are locked out of ASE.

To write your own PAM module script, add a custom script (for example ldap) which defines PAM’s
behavior for user authentication to the /etc/pam.d directory. To set the authentication method and use
the ldap script, enter the following command:

/opt/pingidentity/ase/bin/cli.sh update_auth_method pam::ldap -u admin -p 
password>

Here is a snippet of a sample script:

root@localhost:/# cat /etc/pam.d/ldap
auth   sufficient   pam_ldap.so     # Authenticate with LDAP server.
#auth  sufficient   pam_permit.so   # Allow everyone. Pass-through mode.
#auth  sufficient   pam_deny.so     # Disallow everyone. Block all access. 

In the above example, the PAM module uses the organization’s LDAP server to authenticate users.

Recovering ASE from unavailable pam.dscript

When an invalid script name is entered while changing to PAM authentication, the PAM module defaults to
etc/pam.d/others for authentication. This makes ASE inaccessible to administrators. If this happens,
copy etc/pam.d/login to etc/pam.d/other. ASE will now use the credentials in etc/pam.d/
login to authenticate administrators. After logging back into ASE, change the authentication method to
use the correct file name. Copying the contents of etc/pam.d/login to etc/pam.d/other does not
need a restart of ASE or the host operating system.

PingIntelligence copyright © 2022

| 187



Parent topic:ASE administration

ASE management, access and audit logs
ASE generates two types of logs:

• Access log contains information about all API traffic
• Management log contains information about Controller and Balancers

Access logs

Access logs are generated for port 80 (default port) and 443 (default port) traffic. Each Balancer process
has a corresponding Access log file (i.e. two port 80 Balancer processes and two port 443 Balancer
processes require four log files). The log file name format is <protocol>_<port>_pid_<process-
ID>_access_<date>.log. Examples for port 80 and port 443 are:

• http__ws_80_pid_19017__access__2018-01-22_13-10.log
• https_wss_443_pid_19018__access__2018-01-22_13-10.log

Access logs are rotated every 10 minutes and archived. The archived log file format has.gz at the end of
the log file name (for example http_ws_80_pid_19017__access__2018-01-22_13-10.log.gz).

ASE sends all archived log files to API Behavioral Security (ABS) to detect attacks using Machine Learning
algorithms. The files are then moved to the abs_uploaded directory in the logs directory.

The following snippet shows an example log file:

-rw-r--r--. 1 root root 0 Aug 10 13:10 
http_ws_80_pid_0__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 0 Aug 10 13:10 
https_wss_443_pid_0__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 0 Aug 10 13:10 
http_ws_80_pid_19010__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 0 Aug 10 13:10 
http_ws_80_pid_19009__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 0 Aug 10 13:10 
https_wss_443_pid_19022__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 0 Aug 10 13:10 
https_wss_443_pid_19017__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 33223 Aug 10 13:11 balancer.log
-rw-r--r--. 1 root root 20445 Aug 10 13:11 controller.log
-rw-r--r--. 1 root root 33244 Aug 10 13:11 balancer_ssl.log

Management logs

Management log detail levels (for example INFO, WARNING, DEBUG) are configured in ase.conf.
Generated by controller and balancers, management logs are stored in the logs directory and include:

• Controller logs – controller.log
• Balancer log for port 80 (default port) – balancer.log
• Balancer log for port 443 – balancer_ssl.log

Controller logs

PingIntelligence copyright © 2022

| 188



controller.log is a log file with data from the CLI, REST API, configurations, IPC, SSL, cluster, and
ABS. Rotated every 24 hours, controller.log is the current file name, older files are appended with a
timestamp.

Balancer logs

balancer.log for port 80 and balancer_ssl.log for port 443 are static files which are not rotated.
These files contain information about IPC between controllers and balancer processes as well as IPC
between balancer processes.

Audit logs

ASE logs administrator actions (for example CLI commands, configuration changes) and stores audit logs
in the opt/pingidentity/ase/logs directory. Performed on a per ASE node basis, audit logging is
enabled by default.

Use the CLI to enable or disable audit logging using the commands enable_audit and
disable_audit. For example, to enable audit logs, enter the following at the command line:

/opt/pingidentity/ase/bin/cli.sh enable_audit -u admin -p password

The audit log captures information related to:

• System changes using CLI or REST API calls
• API JSON changes or ase.conf file updates
• SSL certificate updates

The logs are rotated every 24 hours with the current log file having no timestamp in its name. For more
information, see Audit log. The following is a snippet of audit log files:

-rw-r--r-- 1 root root 358 Aug 13 10:00 audit.log.2018-08-13_09-54
-rw-r--r-- 1 root root 301 Aug 13 10:12 audit.log.2018-08-13_10-00
-rw-r--r-- 1 root root 1677 Aug 13 11:16 audit.log.2018-08-13_10-12
-rw-r--r-- 1 root root 942 Aug 14 06:26 audit.log.2018-08-14_06-22
-rw-r--r-- 1 root root 541 Aug 15 08:19 audit.log

Parent topic:ASE administration

Purge log files
To manage storage space, you can either archive or purge access log, controller log, and audit log files that
have been uploaded to ABS. ASE provides a purge.sh script to remove access log files from the
abs_uploaded directory. The purge script is part of the /opt/pingidentity/ase/util directory.

Warning: When the purge script is run, the access log files are permanently deleted from ASE.

To run the purge script, enter the following in ASE command line:

/opt/pingidentity/ase/util/purge.sh -d 3
In the above example, purge.sh deletes all the access log files which are 
older than 3 days. Here is a sample output for the purge script.
admin@pingidentity# ./util/purge.sh -d 3
This will delete logs in /opt/pingidentity/ase/logs/abs_uploaded that is 

PingIntelligence copyright © 2022

| 189



older than 3 days.
Are you sure (yes/no): yes
removing /opt/pingidentity/ase/logs/abs_uploaded/
Processed_decoy_pid_27889__2017-04-01_11-04.log.gz : last changed at Sat Apr 
1 11:11:01 IST 2017
removing /opt/pingidentity/ase/logs/abs_uploaded/
Processed_http_ws_80_pid_27905__access__2017-04-01_11-04.log.gz : last 
changed at Sat Apr 1 11:11:01 IST 2017

External log archival

The purge script can also archive logs to secondary storage for future reference. The purge script
provides an option to choose the number of days to archive the log files. Use the -l option and the path of
the secondary storage to place the archived log files. For example:

admin@pingidentity# ./util/purge.sh -d 3 -l /tmp/

In the above example, log files older than three days are archived to the tmp directory. To automate log
archival, add the script to a cron job.

Parent topic:ASE administration

Configure syslog
Syslog messages are a standard for sending event notification messages. These messages can be stored
locally or on an external syslog server. ASE generates and sends syslog messages to an external syslog
server over UDP. All the syslog messages sent belong to the informational category.

Configuring syslog server

Configure the IP address or hostname and port number of the syslog server in the ase.conf file to send
syslog messages to the external server. To stop generating syslog messages, remove the syslog server
definition from the ase.conf file, stop and then start ASE. Here is a snippet from the ase.conf file:

; Syslog server settings. The valid format is host:port. Host can be an FQDN 
or an IPv4
address.
syslog_server=

Listing syslog server

Show the configured syslog server by executing the list_sys_log_server command:

/opt/pingidentity/bin/cli.sh list_syslog_server -u admin -p 
192.168.11.108:514, messages sent: 4, bytes sent: 565

Here is a sample message sent to the syslog server:

Aug 16 06:16:49 myhost ase_audit[11944] origin: cli, resource: add_api, 
info: config_file_path=/opt/pingidentity/ase/api.json, username=admin
Aug 16 06:16:56 myhost ase_audit[11944] origin: cli, resource: list_api, 
info: username=admin

PingIntelligence copyright © 2022

| 190



Parent topic:ASE administration

Configure email notifications
ASE sends email notifications under two categories:

• Alerts – alerts are event based.
• Reports – sent at a configured frequency (email_report) from one to seven days.

Email parameters in ase.conf are configured based on your email server.
An example configuration of email-related parameters is displayed below.
; Set this value to true to enable email for both alerts and daily reports
enable_email=false
; Defines report frequency in days [0=no reports, 1=every day, 2=once in two 
days and max is 7 days]
email_report=1
; Specify your email settings
smtp_host=smtp://smtp.your-domain.com
smtp_port=587
sender_email=sender-mail-id@yourdomain.com
sender_password=
receiver_email=receiver-mail-id@yourdomain.com
; Defines threshold for an email alert. Example, if CPU usage is 70%, you 
will get an alert
cpu_usage=70
memory_usage=70
filesystem_size=70

Email alerts

Email alerts are sent based on the following event categories:

• System resource – System resources are polled every 30 minutes to calculate usage. An email
alert is sent if the value exceeds the defined threshold. The following system resources are
monitored:

◦ CPU: average CPU usage for a 30-minute interval
◦ Memory: memory usage at the 30th minute
◦ Filesystem: filesystem usage at the 30th minute

• Configuration – When configuration changes occur, an email alert is sent for these events:
◦ Adding/removing an API
◦ Adding/deleting a server
◦ Nodes of a cluster are UP or DOWN

• Decoy API –When decoy APIs are accessed for the first time, an email alert is sent. The time
between consecutive alerts is set using decoy_alert_interval in ase.conf. The default value
is 180 minutes. For more information on decoy APIs, see Configuring In-Context decoy APIs.

• ASE-ABS log transfer and communication – ASE sends an alert in the following two
conditions:

◦ Access Log transfer failure - When ASE is not able to send access log files to ABS for more
than an hour, ASE sends an alert with the names of the log files.

◦ ASE-ABS communication failure – When interruptions occur in ASE-ABS communication,
an alert is sent identifying the error type:

▪ ABS seed node resolve
▪ ABS authentication
▪ ABS config post

PingIntelligence copyright © 2022

| 191



▪ ABS cluster INFO
▪ ABS service unavailable
▪ Log upload
▪ Duplicate log upload
▪ Log file read
▪ ABS node queue full
▪ ABS node capacity low
▪ ABS attack type fetch

Email reports

ASE sends reports at a frequency in number of days configured in ase.conf file. The report is sent at
midnight, 00:00:00 hours based on the local system time. The report contains the following:

• Cluster name and location
• Status information on each cluster node

◦ Operating system, IP address, management port, and cluster port
◦ Ports and the number of processes (PIDs)
◦ Average CPU, memory utilization – average during 30-minute polling intervals
◦ Disk usage and log size

• Information on each API: Name, Protocol, and Server Pool

Parent topic:ASE administration

Sideband API Security Enforcer
When deployed in sideband mode ASE receives API calls from an API gateway which passes API traffic
information for AI processing. In such a deployment, ASE works along with the API gateway to protect your
API environment. The following diagram shows a typical ASE sideband deployment:

The following is a description of the traffic flow through the API gateway and Ping Identity ASE.

1. Incoming request to API gateway
2. API gateway makes an API call to send the request detail in JSON format to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP against the AI

generated Blacklist. If all checks pass, ASE returns a 200-OK response to the API gateway. Else, a
different response code is sent to the Gateway. The request is also logged by ASE and sent to the AI
Engine for processing.

4. If the API gateway receives a 200-OK response from ASE, then it forwards the request to the backend
server, else the Gateway returns a different response code to the client.

5. The response from the backend server is received by the API gateway.

PingIntelligence copyright © 2022

| 192



6. The API gateway makes a second API call to pass the response information to ASE which sends the
information to the AI engine for processing.

7. ASE receives the response information and sends a 200-OK to the API gateway.
8. API gateway sends the response received from the backend server to the client.

Note: Make sure that XFF is enabled in the API gateway for ASE to detect the client IP
addresses correctly.

Configuring ASE for sideband

To configure ASE to work in the sideband mode, edit the ase.conf file located in the config directory.
Set the value of the mode parameter to sideband. The default value of the mode parameter is inline.
Following is a snippet of the ase.conf file with the mode parameter set to sideband.

; Defines running mode for API Security Enforcer.
mode=sideband

Enable sideband authentication
If you want to have a secure connection between your API gateway and ASE, enable sideband
authentication in ASE and generate a sideband token. This token is configured in the API gateway for it to
communicate securely with ASE.
/opt/pingidentity/ase/bin/cli.sh enable_sideband_authentication -u admin -p 
admin
Sideband authentication is successfully enabled

Generate sideband token: Enter the following command to generate ASE sideband token:
/opt/pingidentity/ase/bin/cli.sh create_sideband_token -u admin -p admin
Sideband token d9b7203c97844434bd1ef9466829e019 created.

• ASE configuration - ase.conf
• Activate API cybersecurity
• API deception environment
• ASE configuration for ABS AI-based security
• CLI for sideband ASE

ASE configuration - ase.conf
To secure your API environment using sideband ASE deployment, APIs need to be configured in API
security Enforcer using an API JSON file. Each API has a unique API JSON file. For example, 5 APIs would
require configuration of 5 API JSON files. ASE ships with sample JSON files located in the /config/api
directory. Two options exist for deploying API JSON files:

1. Automated deployment using AAD which is documented in the ABS Engine admin guide
2. Manually configure the JSON file with the required parameters as shown in the next section.

ASE system level configuration entails modifying parameters in the ase.conf file located in the config
directory. Some values have default settings which can be modified to support application requirements.
The parameter values and descriptions are included in the following table:

Parameter Description

ASE mode

PingIntelligence copyright © 2022

| 193



mode Change the mode to sideband for ASE to work in a sideband mode. The
default value is inline.

ASE ports

http_ws_port Data port used for http or WebSocket protocol.
The default value is 80.

https_wss_port Data port used for https or Secure WebSocket (wss).
The default value is 443.

management_port Management port used for CLI and REST API management.
The default value is 8010.

ASE administration and audit

admin_log_level The level of log detail captured. Options include:
Fatal – 1, Error – 2, Warning – 3, Info – 4, Debug – 5

enable_audit When set to true, ASE logs all actions performed in ASE in the audit log
files.
The default value is true.

syslog_server Syslog server hostname or IPv4 address:port number.
Leave this parameter blank for no syslog generation.

hostname_refresh N/A

auth_method Authentication method used for administrator access. See Configuring
Native and PAM Authentication for more information on the two options:

• ase::db (Default - Native authentication)
• pam::ldap (Linux-PAM authentication with script)

ase_health When true, enables load balancers to perform a health check using the
following URL:”http(s)://<ASE Name>/ase” where <ASE Name> is the ASE
domain name
The default value is false.

Note: Do not configure the /ase URL in an API JSON file.

enable_1G N/A

http_ws_process The number of HTTP processes. It is set to 1. Do not change this value.

https_wss_process The number of HTTPS or processes. It is set to 1. Do not change this value.

PingIntelligence copyright © 2022

| 194



enable_access_log When true, log client traffic request and response information. Default value
is true.

flush_log_immediate When true, log files are immediately written to the file system. When false,
log files are written after a time interval. The default value is true.

attack_list_memory The amount of memory used for maintaining black and whitelists. The
default value is 128 MB.

ASE cluster

enable_cluster When true, run setup in cluster mode.
The default value is false, run in standalone mode.

Security

enable_sslv3 When true, enable SSLv3. Default value is false.

server_ca_cert_path N/A

enable_xff N/A

enable_firewall When true,activates the ASE firewall.
The default value is true.

Real-time API security

enable_ase_detected_attack When true, activates the real-time security in ASE.
The default value is false.

API deception

decoy_alert_interval The time interval between decoy API email alerts.
The default value is 180 minutes.
Maximum value is 1440 minutes (i.e. 24 hours).

AI-based API security (ABS)

enable_abs When true, send access log files to ABS for generating API metrics and
detecting attacks using machine learning algorithms.

enable_abs_attack When true, ASE fetches attack list from ABS and blocks access by clients in
the attack list.
When false, attack list is not downloaded.

abs_attack_request_minute Time interval in minutes at which ASE fetches ABS attack list. The default
value is 10 minutes.

Alerts and reports

enable_email When true, send email notifications. See Configure email notifications for
more information. The default value is false.

PingIntelligence copyright © 2022

| 195



email_report Time interval in days at which ASE sends reports. Minimum value is one
day and the maximum is seven days.
The default value is 1.

smtp_host Hostname of SMTP server.

smtp_port Port number of SMTP server.

sender_email Email address for sending email alerts and reports.

sender_password Password of sender’s email account.

receiver_email Email address to notify about alerts and reports
See email alerts for more information.

ASE server resource utilization

cpu_usage Percentage threshold value of CPU utilization.
See email alerts for more information.

memory_usage Percentage threshold value of memory usage.
email alerts alerts for more information.

filesystem_size Percentage threshold value of filesystem capacity.
See email alerts for more information.

buffer_size Customizable payload buffer size to reduce the number of iterations
required for reading and writing payloads.
Default value is 16KB. Minimum is 1KB and maximum is 32KB.

; This is API Security Enforcer's main configuration file. This file is in 
the standard .ini format.
; It contains ports, firewall, log, ABS flags. The comments start with a 
semicolon (;).

; Defines http(s)/websocket(s) ports for API Security Enforcer. Linux user 
should have the privilege to bind to these ports.
; If you comment out a port, then that protocol is disabled.
http_ws_port=80
https_wss_port=443

; REST API
management_port=8010

; For controller.log and balancer.log only
; 1-5 (FATAL, ERROR, WARNING, INFO, DEBUG)
admin_log_level=4

; Defines the number of processes for a protocol.
; The maximum number of allowed process for each protocol is 6 (1 master + 5 

PingIntelligence copyright © 2022

| 196



child). The
; following defines 1 process for both http/ws and https/wss protocol.
http_ws_process=1
https_wss_process=1

; Enable or disable access logs to the filesystem (request/response).
; WARNING! It must be set to true for sending logs to ABS for analytics.
enable_access_log=true
; To write access log immediately to the filesystem, set to true.
flush_log_immediate=true

; Setting this value to true will enable this node to participate in an API 
Security Enforcer
; cluster. Define cluster configurations in the cluster.conf
enable_cluster=false

; Current API Security Enforcer version has 3 firewall features: API 
Mapping, API Pattern
; Enforcement, and Attack Types.
enable_firewall=true

; X-Forwarded For
enable_xff=false

; SSLv3
enable_sslv3=false

; enable Nagle's algorithm (if NIC card is 1G).
enable_1G=true

; tcp send buffer size in bytes(kernel)
tcp_send_buffer_size=65535
; tcp receive buffer size in bytes(kernel)
tcp_receive_buffer_size=65535

; buffer size for send and receive in KBs (user)
buffer_size=16KB

; Set this value to true, to allow API Security Enforcer to send logs to 
ABS. This
; configuration depends on the value of the enable_access_log parameter.
enable_abs=false

; Set this value to true, to allow API Security Enforcer to fetch attack 
list from ABS.
enable_abs_attack=false

; This value determines how often API Security Enforcer will get attack list 
from ABS.
abs_attack_request_minutes=10

; Set this value to true, to allow API Security Enforcer to block auto 
detected attacks.
enable_ase_detected_attack=false

PingIntelligence copyright © 2022

| 197



; Set this value to true to enable email for both alerts and daily reports.
enable_email=false

; Defines report frequency in days [0=no reports, 1=every day, 2=once in two 
days and max is 7 ; days]
email_report=1
; Specify your email settings
smtp_host=
smtp_port=587
sender_email=
sender_password=
receiver_email=

; Defines threshold for an email alert. For example, if CPU usage is 70%, 
you will get an
; alert.
cpu_usage=70
memory_usage=70
filesystem_size=70

; Authentication method. Format is <auth_agent>::<auth_service>
; Valid values for auth_agent are ase and pam
; ase agent only supports db auth_service
; pam agent can support user configured pam services
; For example ase::db, pam::passwd, pam::ldap etc
auth_method=ase::db

; Enable auditing. Valid values are true or false.
enable_audit=true

; Decoy alert interval in minutes. [min=15, default=3*60, max=24*60]
decoy_alert_interval=180

; Interval for a hostname lookup (in seconds). [min=10, default=60, 
max=86400]
hostname_refresh=60

; Syslog server settings. The valid format is host:port. Host can be an FQDN 
or an IPv4
; address.
syslog_server=

; Attack List size in MB or GB. [min=64MB, max=1024GB]
; ASE will take 3*(configured memory) internally. Make sure that the system 
has at least
; 3*(configured memory) available
; If you are running ASE inside a container, configure the container to use 
3*(configured
; memory) shared memory.
attack_list_memory=128MB

; Enable or Disable health check module. ASE uses '/ase' url for both http 
and https. This is

PingIntelligence copyright © 2022

| 198



; useful if ASE is deployed behind a load balancer.
enable_ase_health=false

; Location for server's trusted CA certificates. If empty, Server's 
certificate will not be
; verified.
server_ca_cert_path=

; enable client side authentication. This setting is applicable only in 
sideband mode. Once enabled
; request will be authenticated using authentication tokens.
enable_sideband_authentication=false

; Defines running mode for API Security Enforcer (Allowed values are inline 
or sideband).
mode=inline

; keystore password
keystore_password=OBF:AES:sRNp0W7sSi1zrReXeHodKQ:lXcvbBhKZgDTrjQOfOkzR2mpca4bTUcwPAuerMPwvM4

; WARNING! Following two are internal configurations. You should not change 
these values.

; IPC UNIX domain socket between controller and balancer.
controller_balancer_unixsocket=/tmp/ase.sock

; IPC UNIX domain socket between balancer processes.
inter_balancer_unixsocket=/tmp/ase_ipc.sock

• API naming guidelines
• Defining an API – API JSON configuration file

Parent topic:Sideband API Security Enforcer

API naming guidelines
The API name must follow the following guidelines:

• The name should not have the word “model”.
• The name should not have the word “threshold”.
• There should not be any spaces in the name of the API.

Parent topic:ASE configuration - ase.conf
Parent topic:ASE configuration - ase.conf

Defining an API – API JSON configuration file
The API JSON file parameters define the behavior and properties of your API. The sample API JSON files
shipped with ASE can be changed to your environment settings and are populated with default values.

The following table describes the JSON file parameters:

Parameter Description

PingIntelligence copyright © 2022

| 199



protocol API request type with supported values of:
http - HTTP

url The value of the URL for the managed API.
You can configure up to three levels of sub-
paths. For example,
"/shopping"- 
name of a 1 level API
"/shopping/electronics/phones" – 
3 level API
"/" 
– entire server (used for ABS API Discovery
or load balancing)

hostname Hostname for the API. The value cannot be
empty.
“*”
matches any hostname.

Configure the client identifiers (for example, cookie, API key, OAuth2 token)
used by the API

cookie Name of cookie used by the backend servers.

cookie_idle_timeout
logout_api_enabled
cookie_persistence_enabled

N/A

oauth2_access_token When true, ASE captures OAuth2 Access
Tokens.
When false, ASE does not look for OAuth2
Tokens.
Default value is false.
For more information, see Configuring
OAuth2 Token.

apikey_qs When API key is sent in the query string, ASE
uses the specified parameter name to
capture the API key value.
For more information, see Configuring API
keys.

apikey_header When API key is part of the header field, ASE
uses the specified parameter name to
capture the API key value.
For more information, see Configuring API
keys.

login_url Public URL used by a client to connect to the
application.

PingIntelligence copyright © 2022

| 200



enable_blocking When true, ASE blocks all types of attack on
this API. When false, no attacks are blocked.
Default value is false.

api_mapping N/A

API pattern enforcement
protocol_allowed
http_redirect
methods_allowed
content_type_allowed
error_code
error_type
error_message_body

N/A

Flow control
client_spike_threshold
client_connection_queuing

N/A

api_memory_size Maximum ASE memory allocation for an API.
The default value is 128 MB. The data unit
can be MB or GB.

Health_check
health_check_interval
health_retry_count
health_url

N/A

server_ssl N/A

Servers:
host
port

The IP address or hostname and port
number of each backend server running the
API.

server_spike_threshold
server_connection_quota

N/A

Decoy Config
decoy_enabled
response_code
response_def response_message
decoy_subpaths

When decoy_enabled is set to true, decoy
sub-paths function as decoy APIs .
response_code is the status code (for
example
200
) that ASE returns when a decoy API path is
accessed.
response_def is the response definition
(for example
OK

PingIntelligence copyright © 2022

| 201



) that ASE returns when a decoy API path is
accessed.
response_message is the response
message (for example
OK)
that ASE returns when a decoy API path is
accessed.
decoy_subpaths is the list of decoy API
sub-paths (for example
shop/admin, shop/root)
See Configuring API deception for details

Here is a sample JSON file for a REST API:

{ "api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing" : false
 },
 "api_memory_size": "128mb",
 "health_check": false,
 "health_check_interval": 60,
 "health_retry_count": 4,

PingIntelligence copyright © 2022

| 202



 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 }
 ],
 "decoy_config":
 {
 "decoy_enabled": false,
 "response_code" : 200,
 "response_def" : "",
 "response_message" : "",
 "decoy_subpaths": [
 ]
 } 
} 
}

Note: The sample JSON file has an extension of .example. If you are customizing the
example file, then save the file as a .json file.

Manually add API JSON to ASE
After configuring an API JSON file, add it to ASE to activate ASE processing. To add an API, execute the
following CLI command:
/opt/pingidentity/ase/bin/cli.sh –u admin -p admin add_api {file_path/
api_name}

After configuring API JSON files for each API, ASE configuration is complete.

Update a configured API JSON
After activation, an API JSON definition can be updated in real time. Edit the API JSON file located in the /
config/api directory and make the desired changes. Save the edited API JSON file and execute the
following CLI command:
/opt/pingidentity/ase/bin/cli.sh –u admin -p admin update_api <api_name>

For example,

/opt/pingidentity/ase/bin/cli.sh –u admin -p admin update_api shop
api shop updated successfully

Parent topic:ASE configuration - ase.conf

PingIntelligence copyright © 2022

| 203



Activate API cybersecurity
API Security Enforcer provides real-time API cybersecurity using the list of attacks generated by
PingIntelligence AI engine. Real time API Cyber Security is activated only when ASE firewall is enabled.

Enable API cybersecurity

To enable API security, enter the following command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_firewall
Firewall is now enabled

After enabling API Security, enter the following CLI command to verify cybersecurity is enabled:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : enabled 
abs : disabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

Disable API cybersecurity

To disable ASE’s cybersecurity feature, type the following CLI command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_firewall
Firewall is now disabled

After disabling ASE’s cybersecurity feature, enter the following CLI command to verify that cybersecurity is
disabled:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : disabled 
abs : disabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

• ASE attack detection
• Capture client identifiers
• Manage whitelist and blacklist
• ASE-generated error messages for blocked requests
• Per API blocking

PingIntelligence copyright © 2022

| 204

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer%2Fmanage_whitelist_and_blacklist%20-%20Copy.html


Parent topic:Sideband API Security Enforcer

ASE attack detection
API Security Enforcer supports real time ASE attack detection and blocking for API Deception. ASE blocks
hackers who probe a decoy API (see API Deception Environment) and later try to access a real business
API.

Enable ASE detected attacks
Enable real-time ASE attack detection by running the following ASE command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_ase_detected_attack

ASE detected attack is now enabled

Disable ASE detected attacks
Disable real-time ASE detected attacks by running the following command on the ASE command line:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin 
disable_ase_detected_attack
ASE detected attack is now disabled

Note: When you disable ASE detected attacks, the attacks are deleted from the Blacklist.

Parent topic:Activate API cybersecurity

Capture client identifiers
ASE identifies attackers for HTTP(s) protocol using four client identifiers:

• OAuth2 token
• Cookie
• IP address
• API keys

The following sections describe how to configure ASE to capture OAuth2 Tokens and API keys.

Configure ASE support for OAuth2 tokens

ASE supports capturing and blocking of OAuth2 tokens. To enable OAuth2 token capture, set the value of
oauth2_access_token to true in the API JSON file. Here is a snippet of an API JSON file with OAuth2
token capture activated. To disable, change the value to false.

"api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": true,
 "oauth2_access_token": true,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,

PingIntelligence copyright © 2022

| 205



 "api_mapping": {
 "internal_url": ""
 },

When blocking is enabled, ASE checks the token against the list of tokens in the whitelist and blacklist. If
the token is in the blacklist, the client using the token is immediately blocked.

The following diagram shows the traffic flow in an OAuth2 environment:

Configure ASE support for API keys

ASE supports capturing and blocking of API keys. Depending on the API setup, the API key can be captured
from the query string or API header. Each API JSON file can be configured with either the query string
(apikey_qs) or API header (apikey_header) parameter.

Here is a snippet of an API JSON file showing API key being configured to capture the API key from the
Query String (apikey_qs).

"api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": true,
 "oauth2_access_token": true,
 "apikey_qs": "key_1.4",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },

When an API key is included in the API JSON file, ASE supports blocking of API keys which are manually
added to the blacklist.

Parent topic:Activate API cybersecurity

PingIntelligence copyright © 2022

| 206



ASE-generated error messages for blocked requests
ASE blocks certain requests based on API Mapping or ABS detected attacks. For these blocked requests, it
sends a standard error message back to the client.

The following table describes the error messages:

Blocked Connection HTTP Error Code Error Definition Message Body

Unknown API 503 Service Unavailable Error: Unknown API

Unknown Hostname 503 Service Unavailable Error: Unknown Hostname

Malformed Request 400 Bad Request Error: Malformed Request

IP attack 401 Unauthorized Error: Unauthorized

Cookie attack 401 Unauthorized Error: Unauthorized

OAuth2 Token attack 401 Unauthorized Error: Unauthorized

API Key attack 401 Unauthorized Error: Unauthorized

Parent topic:Activate API cybersecurity
Parent topic:Real-time API cybersecurity

Per API blocking
ASE can be configured to selectively block on a per API basis by configuring an API JSON file parameter.
To enable per API blocking for each API, set the enable_blocking parameter to true in the API JSON.
For example:

api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,

PingIntelligence copyright © 2022

| 207



 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "enable_blocking": true,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },

If per API blocking is disabled, ABS still detect attacks for that specific API, however, ASE does not block
them. ASE will continue to block attacks on other APIs with the enable_blocking set to true.

Parent topic:Activate API cybersecurity
Parent topic:Real-time API cybersecurity

API deception environment
A decoy API is configured in ASE and the API gateway. It requires no changes to backend servers. It
appears as part of the API ecosystem and is used to detect the attack patterns of hackers. When a hacker
accesses a decoy API, ASE sends a predefined response (defined in the response_messageparameter in
API JSON file) to the client request and collects the request information as a footprint to analyze API
ecosystem attacks. ASE acts as a backend for decoy APIs configured in the API gateway.

Decoy API traffic is separately logged in files named with the following format:
decoy_pid_<pid_number>__yyyy-dd-mm-<log_file_rotation_time (for example,
decoy_pid_8787__2017-04-04_10-57.log). Decoy log files are rotated every 24-hours and stored
in the opt/pingidentity/ase/logs directory.

Decoy APIs are independent APIs where every path is a decoy API. Any sub-paths accessed in the API are
treated as part of the decoy API. The figure shows an example.

Note: In sideband ASE deployment you can configure only out-of-context decoy API.

PingIntelligence copyright © 2022

| 208



The following steps explain the flow of decoy API traffic:

1. The attacker sends decoy API request
2. API gateway forwards the request is to the configured decoy API which is ASE functioning as a

backend server for the decoy API.
3. The configured response is sent to the API gateway.
4. The configured response from ASE is sent back to the attacker.

The decoy request is logged in decoy.log file and sent to PingIntelligence ABS for further analysis.
Following is a snippet of an API JSON file which has been deployed as an out-of-context decoy API:

{
 "api_metadata": { 
 "protocol": "http",
 "url": "/account",
 "hostname": "*",
; 
; Note – other configuration parameters removed
;
 "decoy_config":
 {
 "decoy_enabled": true,
 "response_code" : 200,
 "response_def" : "OK",
 "response_message" : "OK", decoy API configuration
 "decoy_subpaths": [
 
 ]
 } 

Since the decoy_subpaths parameter is empty, any sub-path accessed by the attacker after /account
is regarded as a decoy path or decoy API.

After configuring a decoy API, check the API listings by running the list_api command:

opt/pingidentity/ase/bin/cli.sh list_api -u admin -p
flight ( loaded ), https
trading ( loaded ), https, decoy: out-context

Real-time API deception attack blocking

When a client probes a decoy API, ASE logs but does not drop the client connection. However, if the same
client tries to access a legitimate business API, then ASE block the client in real-time. Here is a snippet of
an ASE access log file showing real time decoy blocking:

[Tue Aug 1422:51:49:707 2018] [thread:209] [info] [connectionid:1804289383] 
[connectinfo:100.100.1.1:36663] [type:connection_drop] [api:decoy] 
[request_payload_length:0] GET /decoy/test/test HTTP/1.1
User-Agent: curl/7.35.0
Accept: */*
Host: app

PingIntelligence copyright © 2022

| 209



The blocked client is added to the blacklist which can be viewed by running the view_blacklist CLI
command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
Realtime Decoy Blacklist
1) type : ip, value : 100.100.1.1

Parent topic:Sideband API Security Enforcer

ASE configuration for ABS AI-based security
API Behavioral Security (ABS) engine detects attacks using artificial intelligence (AI) algorithms. After
receiving ASE access logs and API JSON configuration files, ABS applies AI algorithms to track API
connections and detect attacks. If enable_abs_attack is true, ABS sends attack lists to ASE which
blocks rogue clients on the list.

• Configure ASE to ABS connectivity
• Manage ASE blocking of ABS detected attacks

Parent topic:Sideband API Security Enforcer
Parent topic:Inline API Security Enforcer

Configure ASE to ABS connectivity
To connect ASE to ABS, configure the ABS address (IPv4:Port or Hostname:Port), access key, and secret
key in the abs.conf file located in the /opt/pingidentity/ase/config directory.

Note:enable_absmust be set to true in the ase.conf file. when ABS is in a different AWS
security group, use a private IP address

The parameter values and descriptions are included in the following table:

Parameter Description

abs_endpoint Hostname and port or the IPv4 and port of all the ABS nodes

access_key The access key or the username for the ABS nodes. It is the same for all
the ABS nodes. The same value has to be configured in ABS MongoDB
database. This value is obfuscated during the start of ASE.

PingIntelligence copyright © 2022

| 210



secret_key The secret key or the password for the ABS nodes. It is the same for all
the ABS nodes. The same value has to be configured in ABS MongoDB
database. This value is obfuscated during the start of ASE.

enable_ssl Set the value to true for SSL communication between ASE and ABS. The
default value is true. ASE sends the access log files in plain text if the
value is set to false.

abs_ca_cert_path Location of the trusted CA certificates for SSL/TLS connections from
ASE to ABS.
If the path parameter value is left empty, then ASE does not verify the
validity of CA certificates. However, the connection to ABS is still
encrypted.

Note: The access_key and secret_key are configured in ABS. For more information, see
ABS Admin Guide.

Here is a sample abs.conf file:

; API Security Enforcer ABS configuration.
; This file is in the standard .ini format. The comments start with a 
semicolon (;).
; Following configurations are applicable only if ABS is enabled with true.
; a comma-separated list of abs nodes having hostname:port or ipv4:port as 
an address.
abs_endpoint=127.0.0.1:8080
; access key for abs node
access_key=OBF:AES://
ENOzsqOEhDBWLDY+pIoQ:jN6wfLiHTTd3oVNzvtXuAaOG34c4JBD4XZHgFCaHry0
; secret key for abs node
secret_key=OBF:AES:Y2DadCU4JFZp3bx8EhnOiw:zzi77GIFF5xkQJccjIrIVWU+RY5CxUhp3NLcNBel+3Q
; Setting this value to true will enable encrypted communication with ABS.
enable_ssl=true
; Configure the location of ABS's trusted CA certificates. If empty, ABS's 
certificate
; will not be verified
abs_ca_cert_path=

Configuring ASE-ABS encrypted communication

To enable SSL communication between ASE and ABS so that the access logs are encrypted and sent to
ABS, set the value of enable_ssl to true. The abs_ca_cert_path is the location of ABS’s trusted CA
certificate. If the field is left empty, ASE does not verify ABS’s certificate, however, the communication is till
encrypted.

Check and open ABS ports
The default ports for connection with ABS are 8080 and 9090. Run the check_ports_ase.sh script on
the ASE machine to determine ABS accessibility. Input ABS host IP address and ports as arguments.
/opt/pingidentity/ase/util ./check_ports_ase.sh {ABS IPv4:[port]}

PingIntelligence copyright © 2022

| 211



Parent topic:ASE configuration for ABS AI-based security

Manage ASE blocking of ABS detected attacks
To configure ASE to automatically fetch and block ABS detected attacks, complete the following steps:

1. Enable ASE Security. Enter the following command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_firewall

2. Enable ASE to send API traffic information to ABS. Enter the following command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs

3. Enable ASE to fetch and block ABS detected attacks. Enter the following command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs_attack

After enabling automated attack blocking, ASE periodically fetches the attack list from ABS and blocks the
identified connections. To set the time interval at which ASE fetches the attack list from ABS, configure the
abs_attack_request_minute parameter in ase.conf file.

; This value determines how often ASE will query ABS.
abs_attack_request_minutes=10

Disable attack list fetching from ABS
To disable ASE from fetching the ABS attack list, entering the following CLI command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs_attack

After entering the above command, ASE will no longer fetch the attack list from ABS. However, ABS
continues generating the attack list and stores it locally. The ABS attack list can be viewed using ABS APIs
and used to manually configured an attack list on ASE. For more information on ABS APIs, see ABS Admin
Guide.

To stop an ASE cluster from sending log files to ABS, enter the following ASE CLI command.
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs

After entering this command, ABS will not receive any logs from ASE. Refer to the ABS documentation for
information on types of attacks.

Parent topic:ASE configuration for ABS AI-based security

CLI for sideband ASE
Start ASE

Description
Start ASE
Syntax
./start.sh

Stop ASE

Description
Stop ASE
Syntax
./stop.sh

PingIntelligence copyright © 2022

| 212



Help

Description
Displays cli.sh help
Syntax
./cli.sh help

Version

Description
Displays the version number of ASE
Syntax
./cli.sh version

Status

Description
Displays the running status of ASE
Syntax
./cli.sh status

Update Password

Description
Change ASE admin password
Syntax
./cli.sh update_password -u admin - p

Get Authentication Method

Description
Display the current authentication method
Syntax
./cli.sh get_auth_method -u admin -p

Update Authentication Method

Description
Update ASE authentication method
Syntax
./cli.sh update_auth_method {method} -u admin -p

Enable Sideband Authentication

Description
Enable authentication between API gateway and ASE when ASE is deployed in sideband mode
Syntax
./cli.sh enable_sideband_authentication -u admin – p

Disable Sideband Authentication

Description
Disable authentication between API gateway and ASE when ASE is deployed in sideband
mode
Syntax
./cli.sh disable_sideband_authentication -u admin – p

Create ASE Authentication Token

Description
Create the ASE token that is used to authenicate between the API gateway and ASE
Syntax
./cli.sh create_sideband_token -u admin – p

PingIntelligence copyright © 2022

| 213



List ASE Authentication Token

Description
List the ASE token that is used to authenicate between the API gateway and ASE
Syntax
./cli.sh list_sideband_token -u admin – p

Delete ASE Authentication Token

Description
Delete the ASE token that is used to authenicate between the API gateway and ASE
Syntax
./cli.sh delete_sideband_token {token} -u admin – p

Enable Audit Logging

Description
Enable audit logging
Syntax
./cli.sh enable_audit -u admin -p admin

Disable Audit Logging

Description
Disable audit logging
Syntax
./cli.sh disable_audit -u admin -p admin

Add Syslog Server

Description
Add a new syslog server
Syntax
./cli.sh –u admin -p admin add_syslog_server host:port

Delete Syslog Server

Description
Delete the syslog server
Syntax
./cli.sh –u admin -p admin delete_syslog_server host:port

List Syslog Server

Description
List the current syslog server
Syntax
./cli.sh –u admin -p admin list_syslog_server

Add API

Description
Add a new API file in JSON format. File should have .json extension. Provide the complete
path where you have stored the API JSON file. After running the command, API is added
to /opt/pingindentity/ase/config/api directory
Syntax
./cli.sh –u admin -p admin add_api {config_file_path}

Update API

Description
Update an API after the API JSON file has been edited and saved
Syntax

PingIntelligence copyright © 2022

| 214



./cli.sh –u admin -p admin update_api {api_name}
List APIs

Description
Lists all APIs configured in ASE
Syntax
./cli.sh –u admin -p admin list_api

API Info

Description
Displays the API JSON file
Syntax
./cli.sh –u admin -p admin api_info {api_id}

API Count

Description
Displays the total number of APIs configured
Syntax
./cli.sh –u admin -p admin api_count

Enable Per API Blocking

Description
Enables attack blocking for the API
Syntax
./cli.sh –u admin -p admin enable_blocking {api_id}

Disable Per API Blocking

Description
Disable attack blocking for the API
Syntax
./cli.sh –u admin -p admin disable_blocking {api_id}

Delete API

Description
Delete an API from ASE. Deleting an API removes the corresponding JSON file and deletes all
the cookies associated with that API
Syntax
./cli.sh –u admin -p admin delete_api {api_id}

Generate Master Key

Description
Generate the master obfuscation key ase_master.key
Syntax
./cli.sh -u admin -p admin generate_obfkey

Obfuscate Keys and Password

Description
Obfuscate the keys and passwords configured in various configuration files
Syntax
./cli.sh -u admin -p admin obfuscate_keys

Create a Key Pair

Description
Creates private key and public key pair in keystore
Syntax

PingIntelligence copyright © 2022

| 215



./cli.sh –u admin -p admin create_key_pair
Create a CSR

Description
Creates a certificate signing request
Syntax
./cli.sh –u admin -p admin create_csr

Create a Self-Signed Certificate

Description
Creates a self-signed certificate
Syntax
./cli.sh –u admin -p admin create_self_sign_cert

Import Certificate

Description
Import CA signed certificate into keystore
Syntax
./cli.sh –u admin -p admin import_cert {cert_path}

Create Management Key Pair

Description
Create a private key for management server
Syntax
/cli.sh –u admin -p admin create_management_key_pair

Create Management CSR

Description
Create a certificate signing request for management server
Syntax
/cli.sh –u admin -p admin create_management_csr

Create Management Self-signed Certificate

Description
Create a self-signed certificate for management server
Syntax
/cli.sh –u admin -p admin create_management_self_sign_cert

Import Management Key Pair

Description
Import a key-pair for management server
Syntax
/cli.sh –u admin -p admin import_management_key_pair {key_path}

Import Management Certificate

Description
Import CA signed certificate for management server
Syntax
/cli.sh –u admin -p admin import_management_cert {cert_path}

Cluster Info

Description
Displays information about an ASE cluster
Syntax
./cli.sh –u admin -p admin cluster_info

PingIntelligence copyright © 2022

| 216



Delete Cluster Node

Description
Delete and inactive ASE cluster node
Syntax
./cli.sh –u admin -p admin delete_cluster_node host:port

Enable Firewall

Description
Enable API firewall. Activates pattern enforcement, API name mapping, manual attack type
Syntax
./cli.sh –u admin -p admin enable_firewall

Disable Firewall

Description
Disable API firewall
Syntax
./cli.sh –u admin -p admin disable_firewall

Enable ASE detected attacks

Description
Enable ASE detected attacks
Syntax
./cli.sh –u admin -p admin enable_ase_detected_attacks

Disable ASE Detected Attacks

Description
Disable API firewall
Syntax
./cli.sh –u admin -p admin disable_ase_detected_attacks

Enable ABS

Description
Enable ABS to send access logs to ABS
Syntax
./cli.sh –u admin -p admin enable_abs

Disable ABS

Description
Disable ABS to stop sending access logs to ABS
Syntax
./cli.sh –u admin -p admin disable_abs

Adding Blacklist

Description
Add an entry to ASE blacklist using CLI. Valid type values are: IP, Cookie, OAuth2 token and API
Key

If type is ip, then Name is the IP address.

If type is cookie, then name is the cookie name, and value is the cookie value
Syntax
./cli.sh –u admin -p admin add_blacklist {type}{name}{value}
Example
/cli.sh -u admin -p admin add_blacklist ip 1.1.1.1

PingIntelligence copyright © 2022

| 217



Delete Blacklist Entry

Description
Delete entry from the blacklist.
Syntax
./cli.sh –u admin -p admin delete_blacklist {type}{name}{value}
Example
cli.sh -u admin -p delete_blacklist token 
58fcb0cb97c54afbb88c07a4f2d73c35

Clear Blacklist

Description
Clear all the entries from the blacklist
Syntax
./cli.sh –u admin -p admin clear_blacklist

View Blacklist

Description
View the entire blacklist or view a blacklist for the specified attack type (for example,
invalid_method)
Syntax
./cli.sh –u admin -p admin view_blacklist {all|manual|abs_generated|
invalid_content_type|invalid_method|invalid_protocol|decoy}

Adding Whitelist

Description
Add an entry to ASE whitelist using CLI. Valid type values are: IP, cookie, OAuth2 token and API
key

If type is IP, then name is the IP address.

If type is cookie, then name is the cookie name, and value is the cookie value
Syntax
./cli.sh –u admin -p admin add_whitelist {type}{name}{value}
Example
/cli.sh -u admin -p admin add_whitelist api_key AccessKey 
065f73cdf39e486f9d7cda97d2dd1597

Delete Whitelist Entry

Description
Delete entry from the whitelist
Syntax
./cli.sh –u admin -p admin delete_whitelist {type}{name}{value}
Example
/cli.sh -u admin -p delete_whitelist token 
58fcb0cb97c54afbb88c07a4f2d73c35

Clear Whitelist

Description
Clear all the entries from the whitelist
Syntax
./cli.sh –u admin -p admin clear_whitelist

PingIntelligence copyright © 2022

| 218



View Whitelist

Description
View the entire whitelist
Syntax
./cli.sh –u admin -p admin view_whitelist

ABS Info

Description
Displays ABS status information.

ABS enabled or disabled, ASE fetching ABS attack types, and ABS cluster information
Syntax
./cli.sh –u admin -p admin abs_info

Parent topic:Sideband API Security Enforcer

Inline API Security Enforcer
In the inline deployment mode, ASE sits at the edge of your network to receive the API traffic. It can also be
deployed behind an existing load balancers such as AWS ELB. In inline mode, API Security Enforcer
deployed at the edge of the datacenter, terminates SSL connections from API clients. It then forwards the
requests directly to the correct APIs – and app servers such as Node.js, WebLogic, Tomcat, PHP, etc.

To configure ASE to work in the Inline mode, set the mode=inline in the ase.conf file.

Some load balancers (for example, AWS ELB) require responses to keep alive messages from all devices
receiving traffic. In an inline mode configuration, ASE should be configured to respond to these keep alive
messages by updating the ase_health variable in the ase.conf file. When ase_health is true, load
balancers can perform an ASE health check using the following URL: http(s)://<ASE Name>/ase where
<ASE Name> is the ASE domain name. ASE will respond to these health checks.

• ASE configuration - ase.conf
• API routing
• Real-time API cybersecurity
• API deception environment
• ASE DoS and DDoS protection
• ASE configuration for ABS AI-based security
• CLI for inline ASE

ASE configuration - ase.conf

PingIntelligence copyright © 2022

| 219



ASE system level configuration entails modifying parameters in the ase.conf file located in the config
directory. Some values have default settings which can be modified to support your application
requirements. The parameter values and descriptions are included in the following table:

Parameter Description

ASE mode

mode The mode in which ASE works. Possible values are inline and sideband. The
default value is inline.

ASE ports

http_ws_port Data port used for http or WebSocket protocol.
The default value is 80.

https_wss_port Data port used for https or Secure WebSocket (wss).
The default value is 443.

management_port Management port used for CLI and REST API management.
The default value is 8010.

ASE administration and audit

admin_log_level The level of log detail captured. Options include:
Fatal – 1, Error – 2, Warning – 3, Info – 4, Debug – 5

enable_audit When set to true, ASE logs all actions performed in ASE in the audit log
files.
The default value is true.

syslog_server Syslog server hostname or IPv4 address:port number.
Leave this parameter blank if you do not want to generate for no syslog.

hostname_refresh Time interval at which hostnames are refreshed. The default value is 60
secs. When ASE attempts to refresh the hostname, the hostname
resolution must happen in 5 secs.

auth_method Authentication method used for administrator access. See Configuring
Native and PAM Authentication for more information on the two options:

• ase::db (Default - Native authentication)
• pam::ldap (Linux-PAM Authentication with script)

enable_ase_health When true, enables load balancers to perform a health check using the
following URL: http(s)://<ASE Name>/ase where <ASE Name> is the ASE
domain name
The default value is false.

PingIntelligence copyright © 2022

| 220



Note: Do not configure the /ase URL in an API JSON file.

enable_1G When true, enable 1Gbps Ethernet support.
The default value is true.

Note: Only applicable when using a 1G NIC card

http_ws_process The number of HTTP or WebSocket processes.
The default value is 1 and the maximum value is 6.

Note: When running ASE in a cluster deployment, all nodes
must have the same number of processes.

https_wss_process The number of HTTPS or secure WebSocket processes.
The default value is 1 and the maximum value is 6.

Note: When running ASE in a cluster deployment, all nodes
must have the same number of processes.

enable_access_log When true, log client traffic request and response information. Default value
is true.

flush_log_immediate When true, log files are immediately written to the file system. When false,
log files are written after a time interval. The default value is true.

attack_list_memory The amount of memory used for maintaining black and whitelists. The
default value is 128 MB.

keystore_password Password for the keystore. For more information on updating the keystore
password, see Updating Keystore Password.

ASE cluster

enable_cluster When true, run the setup in cluster mode.
The default value is false, run the setup in standalone mode.

Security

enable_sslv3 When true, enable SSLv3. Default value is false.

server_ca_cert_path Location of the trusted CA certificates for SSL/TLS connections from ASE
to backend servers.
If the path parameter value is left empty, then ASE does not verify the
validity of CA certificates. However, the backend connection is still
encrypted.
For RHEL 7 CA certificates, the default path is: /etc/pki/tls/certs/.
Multiple certificates can be placed in this directory.

PingIntelligence copyright © 2022

| 221



enable_xff When true, pass XFF header with originating IP address to the backend
server.

enable_firewall When true, activate the following API security features:

• API mapping
• API pattern enforcement
• Connection drop using attack types
• Flow control

Default value is true

Real-time API security

enable_ase_detected_attack When true, activates the real-time security in ASE. ASE detects and blocks
pattern enforcement violations, wrong API keys and clients probing decoy
API and later accessing real APIs. The default value is false.

API deception

decoy_alert_interval The time interval between decoy API email alerts.
The default value is 180 minutes.
Maximum value is 1440 minutes (i.e. 24 hours).

AI-based API security (ABS)

enable_abs When true, send access log files to ABS for generating API metrics and
detecting attacks using machine learning algorithms.

enable_abs_attack When true, ASE fetches attack list from ABS and blocks access by the
clients that are in the attack list.
When false, attack list is not downloaded.

abs_attack_request_minute Time interval in minutes at which ASE fetches ABS attack list. The default
value is 10-minutes.

Alerts and reports

enable_email When true, send email notifications. See Configure email notifications for
more information. The default value is false.

email_report Time interval in days at which ASE sends reports. Minimum value is 1 day
and the maximum is 7-days. The default value is 1-day.

smtp_host Hostname of SMTP server.

smtp_port Port number of SMTP server.

sender_email Email address for sending email alerts and reports.

sender_password Password of sender’s email account.

receiver_email Email address to notify about alerts and reports

PingIntelligence copyright © 2022

| 222



See email alerts for more information.

ASE server resource utilization

cpu_usage Percentage threshold value of CPU utilization.
See email alerts for more information.

memory_usage Percentage threshold value of memory usage.
See email alerts for more information.

filesystem_size Percentage threshold value of filesystem capacity.
See email alerts for more information.

buffer_size Customizable payload buffer size to reduce the number of iterations
required for reading and writing payloads.
Default value is 16KB. Minimum is 1KB and maximum is 32KB.

A sample ase.conf file is displayed below:

; This is API Security Enforcer's main configuration file. This file is in 
the standard .ini format.
; It contains ports, firewall, log, ABS flags. The comments start with a 
semicolon (;).

; Defines http(s)/websocket(s) ports for API Security Enforcer. Linux user 
should have the privilege to bind to these ports.
; If you comment out a port, then that protocol is disabled.
http_ws_port=80
https_wss_port=443

; REST API
management_port=8010

; For controller.log and balancer.log only
; 1-5 (FATAL, ERROR, WARNING, INFO, DEBUG)
admin_log_level=4

; Defines the number of processes for a protocol.
; The maximum number of allowed process for each protocol is 6 (1 master + 5 
child). The
; following defines 1 process for both http/ws and https/wss protocol.
http_ws_process=1
https_wss_process=1

; Enable or disable access logs to the filesystem (request/response).
; WARNING! It must be set to true for sending logs to ABS for analytics.
enable_access_log=true
; To write access log immediately to the filesystem, set to true.
flush_log_immediate=true

; Setting this value to true will enable this node to participate in an API 

PingIntelligence copyright © 2022

| 223



Security Enforcer
; cluster. Define cluster configurations in the cluster.conf
enable_cluster=false

; Current API Security Enforcer version has 3 firewall features: API 
Mapping, API Pattern
; Enforcement, and Attack Types.
enable_firewall=true

; X-Forwarded For
enable_xff=false

; SSLv3
enable_sslv3=false

; enable Nagle's algorithm (if NIC card is 1G).
enable_1G=true

; tcp send buffer size in bytes(kernel)
tcp_send_buffer_size=65535
; tcp receive buffer size in bytes(kernel)
tcp_receive_buffer_size=65535

; buffer size for send and receive in KBs (user)
buffer_size=16KB

; Set this value to true, to allow API Security Enforcer to send logs to 
ABS. This
; configuration depends on the value of the enable_access_log parameter.
enable_abs=false

; Set this value to true, to allow API Security Enforcer to fetch attack 
list from ABS.
enable_abs_attack=false

; This value determines how often API Security Enforcer will get attack list 
from ABS.
abs_attack_request_minutes=10

; Set this value to true, to allow API Security Enforcer to block auto 
detected attacks.
enable_ase_detected_attack=false

; Set this value to true to enable email for both alerts and daily reports.
enable_email=false

; Defines report frequency in days [0=no reports, 1=every day, 2=once in two 
days and max is 7 ; days]
email_report=1
; Specify your email settings
smtp_host=
smtp_port=587
sender_email=
sender_password=

PingIntelligence copyright © 2022

| 224



receiver_email=

; Defines threshold for an email alert. For example, if CPU usage is 70%, 
you will get an
; alert.
cpu_usage=70
memory_usage=70
filesystem_size=70

; Authentication method. Format is <auth_agent>::<auth_service>
; Valid values for auth_agent are ase and pam
; ase agent only supports db auth_service
; pam agent can support user configured pam services
; For example ase::db, pam::passwd, pam::ldap etc
auth_method=ase::db

; Enable auditing. Valid values are true or false.
enable_audit=true

; Decoy alert interval in minutes. [min=15, default=3*60, max=24*60]
decoy_alert_interval=180

; Interval for a hostname lookup (in seconds). [min=10, default=60, 
max=86400]
hostname_refresh=60

; Syslog server settings. The valid format is host:port. Host can be an FQDN 
or an IPv4
; address.
syslog_server=

; Attack List size in MB or GB. [min=64MB, max=1024GB]
; ASE will take 3*(configured memory) internally. Make sure that the system 
has at least
; 3*(configured memory) available
; If you are running ASE inside a container, configure the container to use 
3*(configured
; memory) shared memory.
attack_list_memory=128MB

; Enable or Disable health check module. ASE uses '/ase' url for both http 
and https. This is
; useful if ASE is deployed behind a load balancer.
enable_ase_health=false

; Location for server's trusted CA certificates. If empty, Server's 
certificate will not be
; verified.
server_ca_cert_path=

; enable client side authentication. This setting is applicable only in 
sideband mode. Once enabled
; request will be authenticated using authentication tokens.
enable_sideband_authentication=false

PingIntelligence copyright © 2022

| 225



; Defines running mode for API Security Enforcer (Allowed values are inline 
or sideband).
mode=inline

; keystore password
keystore_password=OBF:AES:sRNp0W7sSi1zrReXeHodKQ:lXcvbBhKZgDTrjQOfOkzR2mpca4bTUcwPAuerMPwvM4

; WARNING! Following two are internal configurations. You should not change 
these values.

; IPC UNIX domain socket between controller and balancer.
controller_balancer_unixsocket=/tmp/ase.sock

; IPC UNIX domain socket between balancer processes.
inter_balancer_unixsocket=/tmp/ase_ipc.sock

• API naming guidelines
• Define an API – API JSON configuration file

Parent topic:Inline API Security Enforcer

API naming guidelines
The API name must follow the following guidelines:

• The name should not have the word “model”.
• The name should not have the word “threshold”.
• There should not be any spaces in the name of the API.

Parent topic:ASE configuration - ase.conf
Parent topic:ASE configuration - ase.conf

Define an API – API JSON configuration file
The API JSON file parameters define the behavior and properties of your API. The sample API JSON files
shipped with ASE can be changed to your environment settings and are populated with default values.

The following table describes the JSON file parameters:

Parameter Description

protocol API request type with supported values of:
ws - WebSocket ; http - HTTP

url The value of the URL for the managed API. You can configure up to three levels of sub-
paths. For example,
"/shopping"- name of a 1 level API
"/shopping/electronics/phones" – 3 level API
"/" – entire server (used for ABS API Discovery or load balancing)

hostname Hostname for the API. The value cannot be empty.

PingIntelligence copyright © 2022

| 226



“*” matches any hostname.

cookie Name of cookie used by the backend servers.

cookie_idle_timeout The amount of time a cookie is valid – for example 20m for 20 min.
The time duration formats include:
s: seconds, m: minutes, h: hour, d: day

• w: week
• mnt: month
• yr: year

logout_api_enabled When true, ASE expires cookies when a logout request is sent.

cookie_persistence_enabled When true, the subsequent request from a client is sent to the server which initially
responded.

oauth2_access_token When true, ASE captures OAuth2 Access Tokens.
When false, ASE does not look for OAuth2 Tokens. Default value is false.
For more information, see Configuring OAuth2 Token.

apikey_qs When API Key is sent in the query string, ASE uses the specified parameter name to
capture the API key value.
For more information, see Configuring API Keys.

apikey_header When API Key is part of the header field, ASE uses the specified parameter name to
capture the API key value.
For more information, see Configuring API Keys.

login_url Public URL used by a client to connect to the application.

enable_blocking When true, ASE blocks all types of attack on this API. When false, no attacks are blocked.
Default value is false.

api_memory_size Maximum ASE memory allocation for an API.
The default value is 128 MB. The data unit can be MB or GB.

health_check When true, enable health checking of backend servers.
When false, no health checks are performed.
Ping Identity recommends setting this parameter as true.

health_check_interval The interval in seconds at which ASE sends a health check to determine backend server
status.

health_retry_count The number of times ASE queries the backend server status after not receiving a
response.

health_url The URL used by ASE to check backend server status.

PingIntelligence copyright © 2022

| 227

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/capturing_client_identifiers.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/capturing_client_identifiers.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/capturing_client_identifiers.html


server_ssl When set to true, ASE connects to the backend API server over SSL. If set to false, ASE
uses TCP to connect to the backend server.

Servers:
host
port
server_spike_threshold
server_connection_quota

The IP address or hostname and port number of each backend server running the API.
See REST API Protection from DoS and DDoS for information on optional flow control
parameters.

API Mapping:
internal_url

Internal URL is mapped to the public external URL
See API Name Mapping – Protect Internal URLs for more information

The following API Pattern Enforcement parameters only apply when API Firewall is activated

Flow Control
client_spike_threshold
server_connection_queueing
bytes_in_threshold
bytes_out_threshold

ASE flow control ensures that backend API servers are protected from surges (for example
DDoS, traffic spike) in API traffic.
See WebSocket API Protection from DoS and DDoS for information on parameters.

protocol_allowed List of accepted protocols
Values can be HTTP, HTTPS, WS, WSS.

Note: When Firewall is enabled, protocol_allowed takes precedence over
the protocol parameter.

http_redirect
response_code
response_def
https_url

Redirect unencrypted HTTP requests to http_redirect, the FQDN address of a HTTPS
secure connection.
See Configuring Pattern Enforcement for details.

methods_allowed List of accepted REST API methods. Possible values are:
GET, POST, PUT, DELETE, HEAD

content_type_allowed List of content types allowed. Multiple values cannot be listed. For example, application/
json.

error_code
error_type
error_message_body

Error message generated by ASE after blocking a client
See ASE Detected Error Messages for details

Decoy Config
decoy_enabled
response_code
response_def response_message
decoy_subpaths

When decoy_enabled is set to true, decoy sub-paths function as decoy APIs .
response_code is the status code (for example, 200) that ASE returns when a decoy API
path is accessed.
response_def is the response definition (for example OK) that ASE returns when a
decoy API path is accessed.
response_message is the response message (for example OK) that ASE returns when a
decoy API path is accessed.

PingIntelligence copyright © 2022

| 228



decoy_subpaths is the list of decoy API sub-paths (for example shop/admin, shop/
root)
See Configuring API deception for details

Here is a sample JSON file for a REST API:

{
 "api_metadata": {
   "protocol": "http",
   "url": "/",
   "hostname": "*",
   "cookie": "",
   "cookie_idle_timeout": "200m",
   "logout_api_enabled": false,
   "cookie_persistence_enabled": false,
   "oauth2_access_token": false,
   "apikey_qs": "",
   "apikey_header": "",
   "login_url": "",
   "enable_blocking": true,
   "api_mapping": {
   "internal_url": ""
   },
   "api_pattern_enforcement": {
   "protocol_allowed": "",
   "http_redirect": {
   "response_code": "",
   "response_def": "",
   "https_url": ""
   },
   "methods_allowed": [],
   "content_type_allowed": "",
   "error_code": "401",
   "error_def": "Unauthorized",
   "error_message_body": "401 Unauthorized"
   },
   "flow_control": {
   "client_spike_threshold": "0/second",
   "server_connection_queueing" : false
   },
   "api_memory_size": "128mb",
   "health_check": false,
   "health_check_interval": 60,
   "health_retry_count": 4,
   "health_url": "/health",
   "server_ssl": false,
   "servers": [
   {
     "host": "127.0.0.1",
     "port": 8080,
     "server_spike_threshold": "0/second",
     "server_connection_quota": 0

PingIntelligence copyright © 2022

| 229



   },
   {
     "host": "127.0.0.1",
     "port": 8081,
     "server_spike_threshold": "0/second",
     "server_connection_quota": 0
   }
  ],
   "decoy_config":
  {
   "decoy_enabled": false,
   "response_code" : 200,
   "response_def" : "",
   "response_message" : "",
   "decoy_subpaths": [
   ]
  }
 }
}
Note: The sample JSON file has an extension of .example. If you are 
customizing the example file, then save the file as a . json file.
A sample.json file for a WebSocket API:
{
 "api_metadata": {
 "protocol": "ws",
 "url": "/app",
 "hostname": "*",
 "cookie": "JSESSIONID",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "cookie_persistence_enabled": true,
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {

PingIntelligence copyright © 2022

| 230



 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "0/second",
 "bytes_out_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_connection_quota": 0
 }
 ],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

Add configured API JSON to ASE

After configuring an API JSON file, add it to ASE to activate ASE processing. To add an API, execute the
following CLI command:

/opt/pingidentity/ase/bin/cli.sh –u admin -p admin add_api {file_path/api_name}

After configuring API JSON files for each API, ASE configuration is complete.

Update a configured API

After activation, an API JSON definition can be updated in real time. Edit the API JSON file located in the /
config/api directory and make the desired changes. Save the edited API JSON file and execute the
following CLI command:

/opt/pingidentity/ase/bin/cli.sh –u admin -p admin update_api <api_name>

For example,

PingIntelligence copyright © 2022

| 231



/opt/pingidentity/ase/bin/cli.sh –u admin -p admin update_api shop
api shop updated successfully

Parent topic:ASE configuration - ase.conf

API routing
ASE uses a combination of header hostname and URL suffix to route incoming API requests to the correct
backend server. The following sections show scenarios for routing based on server and API name.

• Multiple host names with same API namefor example, shopping.xyz.com/index, trading.xyz.com/
index

• Single host name with different API namesfor example, shopping.xyz.com/index, shopping.xyz.com/
auth

• Wildcard host name and API name

Multiple host names with same API name

ASE supports configuring more than one hostname on one ASE node or cluster. It routes the incoming
traffic based on the host name and the API configured in the JSON file. For example, traffic to two hosts
named shopping.xyz.com and trading.xyz.com is routed based on the configurations in the respective API
JSON file.

For incoming API requests, ASE first checks for the host name in the JSON file. If the host name is
configured, then it checks for the API name. If both host and API name are defined, then the incoming API
request is routed to one of the configured servers.

In the above example, ASE checks whether shopping.xyz.com is configured in the JSON file
(shopping.json). It then checks for the API, /index. If it finds both to be present, then it routes the
traffic to one of the defined backend servers. Following is a snippet from a sample JSON file which shows
the values that should be configured for shopping.json:

"api_metadata": {
 "protocol": "https",
 "url": "/index,
 "hostname": "shopping.xyz.com",
 "cookie": "JSESSIONID",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": true,
 "cookie_persistence_enabled": false,

PingIntelligence copyright © 2022

| 232



For each API, configure a separate JSON file.

Single host name with different API names

ASE supports configuring the same hostname with different API names. For example, hostname
shopping.xyz.com has two different APIs, /index and /auth. Traffic to each API is routed using the API
specific JSON file: shopping-index.json or shopping-auth.json.

In the following illustration, any requests for shopping.xyz.com/index are routed by ASE to a server
configured in shopping-index.json. In this case, shopping-index.json file parameters must match for
both the hostname and API. Similarly, requests to shopping.xyz.com/auth, are routed by ASE to a server
configured in shopping-auth.json.

Simple routing

ASE can also be used as a simple load balancer to route traffic for legacy web applications. The load
balancing technique used for server load balancing is based on protocol and cookie information. To
configure ASE as a simple load balancer, set the following parameters in a JSON file:

“hostname”: “*”,
"url": "/",

When hostname “*” and url“/” are configured in a JSON file, any request that does not match a
specific hostname and url defined in another JSON file uses the destination servers specified in this file
to route the traffic.

PingIntelligence copyright © 2022

| 233



In the above illustration, hostname is configured as “*” and url as “/”. ASE does not differentiate
between hostname and API name. It simply balances traffic across all backend servers.

Note: For all scenarios, when connections are being routed to a backend server which goes
down, ASE dynamically redirects the connections to a live server in the pool.

Parent topic:Inline API Security Enforcer

Real-time API cybersecurity
API Security Enforcer provides real-time API cybersecurity to stop hackers. Violations are immediately
blocked, and attack information is sent to the ABS engine. Real time API Cyber Security is activated only
when ASE firewall is enabled.

Enable API cybersecurity

To enable API security, enter the following command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_firewall
Firewall is now enabled

After enabling API Security, enter the following CLI command to verify cybersecurity is enabled:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : enabled 
abs : disabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

Disable API cybersecurity

To disable ASE’s cybersecurity feature, type the following CLI command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_firewall
Firewall is now disabled

After disabling ASE’s cybersecurity feature, enter the following CLI command to verify that cybersecurity is
disabled:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : disabled 
abs : disabled
abs attack : disabled

PingIntelligence copyright © 2022

| 234



audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

• ASE attack detection
• API name mapping – hide internal URLs
• Capturing client identifiers
• Manage whitelist and blacklist
• Map server error messages to custom error messages
• ASE-generated error messages for blocked requests
• Per API blocking

Parent topic:Inline API Security Enforcer

ASE attack detection
API Security Enforcer supports the following real time ASE attack detection and blocking:

• API pattern enforcement – validate traffic to ensure it is consistent with the API definition
• API deception – blocks hackers probing a decoy API (see API deception environment)

Enable ASE detected attacks

Enable real-time ASE attack detection by running the following ASE command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_ase_detected_attack
ASE detected attack is now enabled

Disable ASE detected attacks

Disable real-time ASE detected attacks by running the following command on the ASE command line:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin 
disable_ase_detected_attack
ASE detected attack is now disabled

Note: When you disable ASE Detected attacks, the attacks are deleted from the blacklist.

Configure pattern enforcement

After enabling API cybersecurity, configure API pattern enforcement to block API traffic that does not
match the permitted criteria in the following categories:

• Protocol (HTTP, HTTPS, WS, WSS) – only allow the defined protocols
• Method (GET, POST, PUT, DELETE, HEAD) – only allow the specified methods
• Content Type – only allow the defined content type, not enforced if an empty string is entered
• HTTPS Only – only allow HTTPS traffic

ASE blocks attacks based on parameters configured in the API JSON file. If a client request includes values
not configured in the API JSON, ASE blocks the connection in real-time. When the connection is blocked,
the OAuth2 token, cookie, or IP address is blocked from accessing any APIs.

The following API JSON file snippet shows an example of pattern enforcement parameters:

PingIntelligence copyright © 2022

| 235



"api_pattern_enforcement": {
 "protocol_allowed": "https",
 "http_redirect": {
 "response_code": 301,
 "response_def": "Moved Permanently",
 "https_url": "https://shopping.xyz.com/login/"
 },
 "methods_allowed": [
 "GET",
 "POST"
 ],
 "content_type_allowed": "application/json",
 "error_code": 401,
 "error_def": "Unauthorized",
 "error_message_body": " Error: Unauthorized"
 },

The above example sets up the following enforcement:

• Only HTTPS traffic is allowed access to the API. If an HTTP request is sent, it will be redirected to the
https_url defined in the http_redirect section.

• Only GET and POST methods are allowed; PUT, DELETE, and HEAD will be blocked.
• Only application/json content type is allowed; other content types are blocked.

If a request satisfies all three parameters (protocol, method, and content type), ASE will send the request to
the backend API server for processing. Otherwise, ASE sends an error code using the following API JSON
parameters:

• Error_code – for example, “401”
• error_def – error definition, for example, “Unauthorized”
• error_message_body – error message content, for example, “Error: Unauthorized”

If an empty string is specified for content_type_allowed, ASE does not enforce content type for the
incoming traffic.

"content_type_allowed": ""

Note: When API security is enabled, the protocol_allowed parameter takes precedence
over the protocolparameter in the beginning of the API JSON file

Detection of attacks for pattern enforcement violation

The following is a snippet of access log file showing what is logged when a connection is blocked based
on any pattern enforcement violation.

Note: Make sure that ASE detected attacks are enabled.

The following example shows a method violation for an OAuth2 token:

[Fri Aug 10 15:59:12:435 2018] [thread:14164] [info] 
[connectionid:1681692777] [seq:1] [connectinfo:100.100.1.5:36839] 

PingIntelligence copyright © 2022

| 236



[type:request] [api_id:shop] PATCH /shopapi/categories/list HTTP/1.1
User-Agent: curl/7.35.0
Accept: */*
Host: app
Content-Type: application/text
Cookie: JSESSIONID=ebcookie
Authorization: Bearer OauthTokenusemethoid12345
[Fri Aug 10 15:59:12:435 2018] [thread:14164] [info] 
[connectionid:1681692777] [seq:1] [connectinfo:100.100.1.5:36839] 
[type:connection_drop] [enforcement:method] [api_id:shop] PATCH /shopapi/
categories/list HTTP/1.1
User-Agent: curl/7.35.0
Accept: */*
Host: app
Content-Type: application/text
Cookie: JSESSIONID=ebcookie
Authorization: Bearer OauthTokenusemethoid12345

Violations logged in the ASE access log files are sent to API Behavioral Security engine for further analysis
and reporting.

Parent topic:Real-time API cybersecurity

API name mapping – hide internal URLs
After enabling API cybersecurity, API name mapping can be configured to protect API servers by hiding
internal URLs from the outside world. Internal URLs may also be modified without updating entries in the
public DNS server.

For example, the following JSON snippet from an API JSON file maps an external URL (“/index”) for
shopping.xyz.com to an internal URL (“/a123”).

"api_metadata": {
 "protocol": "http",
 "url": "/index",
 "hostname": "127.0.0.1",
 "cookie": "JSESSIONID",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": true,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "cookie_persistence_enabled": true,
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "login_url": "/index/login",
 "api_mapping": {
 "internal_url": "/a123"
 },

PingIntelligence copyright © 2022

| 237



The following diagram illustrates the data flow from the client to the backend server through ASE:

Parent topic:Real-time API cybersecurity

Capturing client identifiers
ASE identifies attackers for HTTP(s) and WS(s) protocols using four client identifiers:

• OAuth2 token
• Cookie
• IP address
• API keys

The following sections describe how to configure ASE to capture OAuth2 Tokens and API keys.

Configure ASE support for OAuth2 tokens

ASE supports capturing and blocking of OAuth2 tokens. To enable OAuth2 token capture, set the value of
oauth2_access_token to true in the API JSON file. Here is a snippet of an API JSON file with OAuth2
Token capture activated. To disable, change the value to false.

"api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": true,
 "oauth2_access_token": true,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },

When blocking is enabled, ASE checks the token against the list of tokens in the whitelist and blacklist. If
the token is in the blacklist, the client using the token is immediately blocked.

PingIntelligence copyright © 2022

| 238



When pattern enforcement violations are detected on an API configured to support tokens, the attacking
client token is added to the blacklist in real-time, recorded in the ASE access log, and sent to ABS for
further analytics. The following diagram shows the traffic flow in an OAuth2 environment:

Configure ASE support for API keys

ASE supports capturing and blocking of API keys. Depending on the API setup, the API key can be captured
from the query string or API header. Each API JSON file can be configured with either the query string
(apikey_qs) or API header (apikey_header) parameter.

Here is a snippet of an API JSON file showing API Key being configured to capture the API Key from the
Query String (apikey_qs).

"api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": true,
 "oauth2_access_token": true,
 "apikey_qs": "key_1.4",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },

When an API Key is included in the API JSON file, ASE supports blocking of API keys which are manually
added to the Blacklist.

Parent topic:Real-time API cybersecurity

Manage whitelist and blacklist
ASE maintains two types of lists:

• Whitelist –List of “safe” IP addresses, cookies, OAuth2 Tokens, or API keys that are not blocked by
ASE. The list is manually generated by CLI commands.

• Blacklist – List of “bad” IP addresses, cookies, OAuth2 Tokens, or API keys that are always blocked
by ASE. The list consists of entries from one or more of the following sources:

◦ ABS detected attacks (for example data exfiltration)
◦ ASE detected attacks (for example invalid method, decoy API accessed)
◦ List of “bad” clients manually generated by CLI

PingIntelligence copyright © 2022

| 239



Manage whitelists

Valid operations for OAuth2 Tokens, cookies, IP addresses and API keys on a whitelist include:

Add an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist ip 
10.10.10.10
ip 10.10.10.10 added to whitelist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist cookie 
JSESSIONID cookie_1.4
cookie JSESSIONID cookie_1.4 added to whitelist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist token 
token1.4
token token1.4 added to whitelist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist api_key X-
API-KEY key_1.4
api_key X-API-KEY key_1.4 added to whitelist

View whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_whitelist
Whitelist
1) type : ip, value : 1.1.1.1
2) type : cookie, name : JSESSIONID, value : cookie_1.1
3) type : token, value : token1.4
4) type : api_key, name : X-API-KEY, value : key_1.4

Delete an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist ip 
4.4.4.4
ip 4.4.4.4 deleted from whitelist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist cookie 
JSESSIONID cookie_1.1
cookie JSESSIONID cookie_1.1 deleted from whitelist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist token 
token1.1
token token1.1 deleted from whitelist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist api_key 
X-API-KEY key_1.4
api_key X-API-KEY key_1.4 deleted from whitelist

Clear the whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin clear_whitelist
This will delete all whitelist Attacks, Are you sure (y/n) : y
Whitelist cleared
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin clear_whitelist
This will delete all whitelist Attacks, Are you sure (y/n) : n
Action canceled

PingIntelligence copyright © 2022

| 240



Manage blacklists

Valid operations for IP addresses, Cookies, OAuth2 Tokens and API keys on a blacklist include:

Add an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist ip 1.1.1.1
ip 1.1.1.1 added to blacklist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist cookie 
JSESSIONID ad233edqsd1d23redwefew 
cookie JSESSIONID ad233edqsd1d23redwefew added to blacklist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist token 
ad233edqsd1d23redwefew
token ad233edqsd1d23redwefew added to blacklist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist api_key 
AccessKey b31dfa4678b24aa5a2daa06aba1857d4
api_key AccessKey b31dfa4678b24aa5a2daa06aba1857d4 added to blacklist

View blacklist - entire Blacklist or based on the type of real time violation.
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist all
Manual Blacklist
1) type : ip, value : 10.10.10.10
2) type : cookie, name : JSESSIONID, value : cookie_1.4
3) type : token, value : token1.4
4) type : api_key, name : X-API-KEY, value : key_1.4
Realtime Decoy Blacklist
1) type : ip, value : 4.4.4.4
Realtime Protocol Blacklist
1) type : token, value : token1.1
2) type : ip, value : 1.1.1.1
3) type : cookie, name : JSESSIONID, value : cookie_1.1
Realtime Method Blacklist
1) type : token, value : token1.4
2) type : ip, value : 3.3.3.3
3) type : cookie, name : JSESSIONID, value : cookie_1.3
Realtime Content-Type Blacklist
1) type : token, value : token1.2
2) type : ip, value : 2.2.2.2
3) type : cookie, name : JSESSIONID, value : cookie_1.2

Blacklist based on decoy IP addresses

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist decoy
Realtime Decoy Blacklist
1) type : ip, value : 4.4.4.4

Blacklist based on protocol violations

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist 
invalid_protocol
Realtime Protocol Blacklist
1) type : token, value : token1.1

PingIntelligence copyright © 2022

| 241



2) type : ip, value : 1.1.1.1
3) type : cookie, name : JSESSIONID, value : cookie_1.1

Blacklist based on method violations

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist 
invalid_method
Realtime Method Blacklist
1) type : token, value : token1.4
2) type : ip, value : 3.3.3.3
3) type : cookie, name : JSESSIONID, value : cookie_1.3

Blacklist based on content-type violation

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist 
invalid_content_type
Realtime Content-Type Blacklist
1) type : token, value : token1.2
2) type : ip, value : 2.2.2.2
3) type : cookie, name : JSESSIONID, value : cookie_1.2

ABS detected attacks

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist 
abs_detected
No Blacklist

Delete an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_blacklist ip 
1.1.1.1
ip 1.1.1.1 deleted from blacklist
./bin/cli.sh -u admin -p admin delete_blacklist cookie JSESSIONID 
avbry47wdfgd
cookie JSESSIONID avbry47wdfgd deleted from blacklist
./bin/cli.sh -u admin -p admin delete_blacklist token 
58fcb0cb97c54afbb88c07a4f2d73c35
token 58fcb0cb97c54afbb88c07a4f2d73c35 deleted from blacklist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_blacklist api_key 
AccessKey b31dfa4678b24aa5a2daa06aba1857d4

Clear the blacklist

./bin/cli.sh -u admin -p admin clear_blacklist
This will delete all blacklist Attacks, Are you sure (y/n) :y
Blacklist cleared
./bin/cli.sh -u admin -p admin clear_blacklist
This will delete all blacklist Attacks, Are you sure (y/n) :n
Action canceled

PingIntelligence copyright © 2022

| 242



When clearing the blacklist, make sure that the real-time ASE detected attacks and ABS detected attacks
are disabled. If not disabled, the blacklist gets populated again as both ASE and ABS are continuously
detecting attacks.

Blacklist to whitelist transition

When you delete a blacklist entry which was detected by ABS or ASE, it is automatically added to the
whitelist and no longer blocked by ASE. However, CLI added entries deleted from the blacklist are not
added to the whitelist. When the blacklist is cleared, list entries are not transitioned to the whitelist.

Parent topic:Real-time API cybersecurity

Map server error messages to custom error messages
Backend server error messages (for example, Java stack trace) can reveal internal information to hackers.
ASE supports hiding the internal details and only sending a customized simple error message. The error
message mappings are defined in /config/server_error.json file.

For each custom HTTP error code, specify all three parameters in server_error.json. For example,
the snippet of server_error.json shows parameters for mapping error codes 500 and 503.

{
 "server_error": [
 {
 "error_code" : "500",
 "error_def" : "Internal Server Error", 
 "msg_body" : "Contact Your Administrator" 
 },
 {
 "error_code" : "503",
 "error_def" : "Service Unavailable",
 "msg_body" : "Service Temporarily Unavailable"
 } 
 ] 
}

In the above example, an ASE which receives an error 500 or 503 message from the application replaces
the message with a custom name error_def and message msg_body as defined in the
server_error.json file.

PingIntelligence copyright © 2022

| 243



To send the original error message from the backend server, do not include the associated error code in
the server_error.json file. An empty server_error.json file as shown below will not translate any
backend error messages.

{
 "server_error": [
 ]
}

Note: ASE checks for the presence of the server_error.json file. If this file is not available,
ASE will not start.

Parent topic:Real-time API cybersecurity

ASE-generated error messages for blocked requests
ASE blocks certain requests based on API Mapping or ABS detected attacks. For these blocked requests, it
sends a standard error message back to the client.

The following table describes the error messages:

Blocked Connection HTTP Error Code Error Definition Message Body

Unknown API 503 Service Unavailable Error: Unknown API

Unknown Hostname 503 Service Unavailable Error: Unknown Hostname

Malformed Request 400 Bad Request Error: Malformed Request

IP attack 401 Unauthorized Error: Unauthorized

Cookie attack 401 Unauthorized Error: Unauthorized

OAuth2 Token attack 401 Unauthorized Error: Unauthorized

API Key attack 401 Unauthorized Error: Unauthorized

Parent topic:Activate API cybersecurity
Parent topic:Real-time API cybersecurity

PingIntelligence copyright © 2022

| 244



Per API blocking
ASE can be configured to selectively block on a per API basis by configuring an API JSON file parameter.
To enable per API blocking for each API, set the enable_blocking parameter to true in the API JSON.
For example:

api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "enable_blocking": true,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },

If per API blocking is disabled, ABS still detect attacks for that specific API, however, ASE does not block
them. ASE will continue to block attacks on other APIs with the enable_blocking set to true.

Parent topic:Activate API cybersecurity
Parent topic:Real-time API cybersecurity

API deception environment
A decoy API is configured in ASE and requires no changes to backend servers. It appears as part of the API
ecosystem and is used to detect the attack patterns of hackers. When a hacker accesses a decoy API, ASE
sends a predefined response (defined inresponse_message parameter in API JSON file) to the client
request and collects the request information as a footprint to analyze API ecosystem attacks. ASE does
not forward Decoy API request traffic to backend servers.

Decoy API traffic is separately logged in files named with the following format:
decoy_pid_<pid_number>__yyyy-dd-mm-<log_file_rotation_time>(for example,
decoy_pid_8787__2017-04-04_10-57.log). decoy log files are rotated every 24-hours and stored
in the opt/pingidentity/ase/logs directory.

ASE Provides the following decoy API types:

• In-context decoy APIs
• Out-of-context decoy APIs

• In-context decoy API
• Out-of-context decoy API
• Real-time API deception attack blocking

Parent topic:Inline API Security Enforcer

In-context decoy API

PingIntelligence copyright © 2022

| 245



In-context decoy APIs consist of decoy paths within existing APIs supporting legitimate traffic to backend
servers. Any traffic accessing a decoy path receives a preconfigured response. For example, in the
shopping API, /root and /admin are decoy APIs;/shoes is a legitimate API path. Traffic
accessing /shoes is redirected to the backend API server, while the traffic that accesses /root or /
admin receives a preconfigured response.

The following snippet of an API JSON file shows an in-context decoy API:

{
 "api_metadata": {
 "protocol": "http",
 "url": "/shop",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },
;
; Note – other configuration parameters removed
;
 "decoy_config":
 { 
 "decoy_enabled": true, 
 "response_code" : 200, decoy API Configuration 
 "response_def" : "OK", 
 "response_message" : "OK", 
 "decoy_subpaths": [
 "/shop/root",
 "/shop/admin"
 ]
 }
 }
}

PingIntelligence copyright © 2022

| 246



The API JSON file defines normal API paths consisting of the path /shop. The decoy configuration is
enabled for “/shop/root” and “/shop/admin” with the following parameters:

• decoy_enabled parameter is set to true. If set to false, no decoy paths are configured.
• response_code is set to 200. When a decoy sub-path is accessed, return a 200 response.
• response_def is set to OK. When a decoy sub-path is accessed, return OK as the response.

An in-context decoy API can have a maximum of 32 sub-paths configured for an API.

Warning: When configuring in-Context decoy APIs, do not leave empty sub-paths which makes
your business API into an out-of-context API. No traffic will be forwarded to backend application
servers.

Parent topic:API deception environment

Out-of-context decoy API
Out-of-Context Decoy APIs are independent APIs where every path is a decoy API. Any sub-paths accessed
in the API are treated as part of the decoy API. The figure shows an example.

Following is a snippet of a trading API JSON which has been deployed as a decoy API:

{
    "api_metadata": {    
        "protocol": "http",
        "url": "/account",
        "hostname": "*",
;   
; Note – other configuration parameters removed
;
        "decoy_config":
        {
          "decoy_enabled": true,
          "response_code" : 200,

PingIntelligence copyright © 2022

| 247



          "response_def" : "OK",
          "response_message" : "OK",          Decoy API Configuration
          "decoy_subpaths": [
           
          ]
       }

Since the decoy_subpaths parameter is empty, any sub-path accessed by the attacker after /account
is regarded as a decoy path or decoy API.

After configuring In-Context or Out-of-Context Decoy API, check the API listings by running the list_api
command:

opt/pingidentity/ase/bin/cli.sh list_api -u admin -p
flight ( loaded ), https
shop ( loaded ), https, decoy: in-context
trading ( loaded ), https, decoy: out-context 

Parent topic:API deception environment

Real-time API deception attack blocking
ASE detects any client probing a decoy API. When a client probes an out-of-context decoy API, ASE logs
but does not drop the client connection. However, if the same client tries to access a legitimate path in the
in-context decoy API, then ASE block the client in real-time. Here is a snippet of an ASE access log file
showing real time decoy blocking:

[Tue Aug 14 22:51:49:707 2018] [thread:209] [info] [connectionid:1804289383] 
[connectinfo:100.100.1.1:36663] [type:connection_drop] [api:decoy] 
[request_payload_length:0] GET /decoy/test/test HTTP/1.1
User-Agent: curl/7.35.0
Accept: */*
Host: app
The blocked client is added to the blacklist which can be viewed by running 
the view_blacklist CLI command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
Realtime Decoy Blacklist
1) type : ip, value : 100.100.1.1

Parent topic:API deception environment

ASE DoS and DDoS protection
ASE flow control ensures that backend API servers are protected from unplanned or malicious (for
example DDoS) surges in API traffic. flow control combines client and backend server traffic control at an
API level to protect REST and WebSocket API servers.

Protection for REST APIs

• Client Rate Limiting – Protects against abnormally high traffic volumes from any client (for
example, Denial-of-Service - DoS attack). By controlling inbound requests from REST API clients,
client rate limiting protects API servers from being overloaded by a single client.

PingIntelligence copyright © 2022

| 248



• Aggregate Server TCP Connection Limits – Prevents server overload from too many
concurrent TCP connections across one or a cluster of ASE nodes. Restricts the total number of TCP
connections allowed from a cluster of ASE nodes to a specific API on each server.

• Aggregate Server HTTP Request Limits – Prevents REST API server overload from too many
concurrent HTTP requests across one or a cluster of ASE nodes. Unlike traditional per node flow
control, this implementation protects any REST API server from too much aggregate client traffic
coming from a cluster of ASE nodes (for example, traffic load bursts, Distributed Denial-of-Service
(DDoS) attacks).

• Client Request Queuing – Queues and retries REST API session requests when servers are busy.

Protection for WebSocket APIs

• Client Rate Limiting – Protects against abnormally high traffic volumes from any client (for
example, Denial-of-Service - DoS attack). By controlling the client HTTP requests and WebSocket
traffic volumes, rate limiting protects API servers from being overloaded by a single client.

• Aggregate Server Connection Limits – Prevents server overload from too many simultaneous
session connections across one or a cluster of ASE nodes. Restricts the total number of WebSocket
sessions allowed from a cluster of ASE nodes to a specific API on each server.

• Outbound Rate Limiting – Protects against abnormally high traffic volumes to a client. By
managing outbound traffic volumes to WebSocket clients, outbound rate limiting protects against
exfiltration.

The following table lists the control functions which apply to each protocol:

REST API (HTTP/HTTPS) WebSocket and Secure WebSocket

Client Spike Threshold

Server Connection Quota

Server Connection Queuing

Server Spike Threshold -NA-

Bytes-in Threshold -NA-

PingIntelligence copyright © 2022

| 249



Bytes-out Threshold -NA-

• REST API protection from DoS and DDoS
• WebSocket API protection from DoS and DDoS
• Server connection queuing for REST and WebSocket APIs

Parent topic:Inline API Security Enforcer

REST API protection from DoS and DDoS
flow control protects REST API servers using four control variables which are independently configured. By
default, no flow control is enabled.

Variable Description

Configured once in every API JSON file

client_spike_threshold Maximum requests per time-period from a single client IP to a specific
REST API.
Time can be in seconds, minutes or hours.

server_connection_queueing When true, queue API connection requests when all backend servers
reach server connection quota. Default value is false.

Configured for each server in every API JSON file

server_connection_quota Maximum number of concurrent connections to a specific REST API on
a server. Prevents aggregate connections from one or a cluster of ASE
nodes from overloading a REST API running on a specific server.

server_spike_threshold Maximum requests per time-period to the REST API running on the
specified server. Prevents the aggregate request rate from one or a
cluster of ASE nodes from overloading a REST API running on a specific
server.
Time can be in seconds, minutes, or hours.

Client flow control monitors incoming traffic from each client connection and drops the session when
traffic limits are exceeded. The diagram shows the following client scenarios:

• IP1 sending request volumes which exceed the client_spike_threshold value. ASE 1 sends an
error message and terminates the session to stop the attack.

• IP2 and IP3 sending request traffic which stays below the client_spike_threshold value.
Requests are passed to the backend API servers.

Server-side flow control manages traffic volumes and session count for an API on an application server.
server_connection_quota sets the maximum number of concurrent connections that can be
established to each API on a server. server_spike_threshold controls the aggregate traffic rate to an
API on a server. The concurrent connections and request rate consist of the aggregate traffic from all ASE
nodes forwarding traffic to an API on a server. The diagram shows two server scenarios including:

PingIntelligence copyright © 2022

| 250



• A new connection request from ASE 1 is allowed because it is within the
server_connection_quota threshold.

• ASE 2 detects the combined traffic rate from ASE 1 and ASE 2 will exceed the
server_spike_threshold for REST API 1. Thus, it drops IP 3 traffic and sends an error message
to the client.

The following diagram shows the effect of the parameters on traffic flow through ASE to backend servers.
In the diagram, client-side flow control is managed by client_spike_threshold and server-side flow
control is regulated by a combination of server_spike_threshold and
server_connection_quota.

Example:

Here is an example for an Application Server on the previous diagram.

Variable Configured value

client_spike_threshold 50,000 requests per second per IP

server_spike_threshold 30,0000 requests per second per server

server_connection_quota 20,000 concurrent connections per server

server_connection_queueing true

Client flow control permits a maximum of 50,000 requests/second from an individual IP. If IP 1, 2, or 3
exceeds the 50,000/second limit, ASE drops the client session. Otherwise, all requests are passed to the
backend servers.

Server flow control allows 30,000 requests/second to REST API 1 on the application server. If the sum of
requests/second from the ASE cluster nodes (i.e. ASE 1 + ASE 2 request rate) to REST API1 exceeds
30,000/second, then traffic is dropped from the client causing aggregate traffic to exceed the maximum
request rate. Otherwise, ASE 1 and ASE 2 forward all traffic.

PingIntelligence copyright © 2022

| 251



Server flow control allows 20,000 concurrent connections to REST API1 on the application server. If the
sum of connections from the ASE cluster nodes (i.e. ASE 1 + ASE 2 connection count) to REST API1
exceeds 20,000, then ASE will queue the request for a time since server_connection_queuing is
enabled. If queuing is not enabled, then the request is dropped.

Summary table for REST API flow control

Parameter Notes

client_spike_threshold Maximum request rate from a client to an API

server_spike_threshold Maximum aggregate request rate through ASE cluster nodes to an API
on a specific server.

server_connection_quota Maximum number of concurrent sessions from ASE cluster nodes to an
API on a specific server.

Note: You can also configure server connection quota and server spike threshold separately for
each backend server.

JSON configuration for REST API flow control

ASE flow control is configured separately for each API using the API JSON file. Here are the flow control
related definitions in an API JSON file:

{
 "api_metadata": {
 "protocol": "http",
 
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing" : false
 },
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "100/second",
 "server_connection_quota": 20
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "200/second",
 "server_connection_quota": 40
 }
 ]
 }
}

The flow control section includes definitions which apply globally across the API definition and include
client_spike_threshold and server_connection_queueing. Server specific definitions include

PingIntelligence copyright © 2022

| 252



server_spike_threshold and server_connection_quota which are configured on each
individual server. The default is no flow control with all values set to zero. Note that different values can be
specified for each server for server_connection_quota and server_spike_threshold.

Note: If server connection quota is set to zero for one server, then it must be zero for all other
servers in the API JSON definition.

Flow control CLI for REST API

ASE CLI can be used to update flow control parameters:

Update client spike threshold:

Enter the following command to update the client spike threshold:

update_client_spike_threshold {api_id} {+ve digit/(second|minute|hour)}

For example: update_client_spike_threshold shop_api 5000/second

Update server spike threshold

Enter the following command to update the server spike threshold:

update_server_spike_threshold {api_id} {host:port} {+ve digit/(second|minute|
hour)}

For example: update_server_spike_threshold shop_api 5000/second

Update server connection quota

update_server_connection_quota {api_id} {host:port}{+ve digit}

For example: update_server_connection_quota shop_api 5000

Note: API security must be enabled for ASE flow control to work. For more information on
enabling API security, seeEnable API security

Parent topic:ASE DoS and DDoS protection

WebSocket API protection from DoS and DDoS
Flow control protects WebSocket servers using five control variables which are independently configured.
By default, no flow control is enabled.

Variable Description

Configured once in every API JSON file

client_spike_threshold Maximum number of HTTP requests per
time-period from a single IP to a specific
WebSocket API.

PingIntelligence copyright © 2022

| 253



Time can be in seconds, minutes or hours.

bytes_in_threshold Maximum number of bytes per time-period
from a single IP to an ASE node.
Time can be in seconds, minutes or hours.

bytes_out_threshold Maximum number of bytes per time-period
sent from an ASE node to a single IP.
Time can be in seconds, minutes or hours.

server_connection_queueing When true, queue connection requests when
all backend servers reach the server
connection quota.
The default value is false.

Configured for each server in every API JSON file

server_connection_quota Maximum number of concurrent connections
to a specific WebSocket API on a server.
Prevents aggregate connections from one or
a cluster of ASE nodes from overloading a
WebSocket API on a specific server.

The following diagram shows the effect of the parameters on traffic flow through ASE. In the diagram,
client-side flow control is managed by client_spike_threshold, bytes_in_threshold, and
bytes_out_threshold. The bytes_out threshold protects against data exfiltration. Server flow
control is regulated by server_connection_quota.

Client flow control monitors incoming traffic from each client connection and drops sessions when HTTP
request or bytes in threshold limits are exceeded. In addition, outbound traffic from each ASE Node is
monitored to protect against exfiltration. The diagram shows client scenarios including:

• IP1 sending HTTP request volumes which exceed the client_spike_threshold value. ASE 1
sends an error message and terminates the session to stop the attack.

PingIntelligence copyright © 2022

| 254



• IP2 sending WebSocket streaming traffic volumes which exceed the bytes_in_threshold limits.
ASE 1 sends an error message and terminates the session to stop the traffic.

• IP3 and IP4 within client spike threshold and bytes in threshold criteria and requests are forwarded to
the backend server.

• Traffic from ASE 2 to IP5 exceeds the bytes out threshold value. ASE blocks the traffic and drops the
client session.

The server-side flow control provides the ability to control session count to an API on an application server.
server_connection_quota sets the maximum number of concurrent connections that can be
established to an API on a server. The concurrent connections are the aggregate connections from all ASE
nodes forwarding traffic to the specified API on a given server.

Example:

Here is an example with a hypothetical deployment for the Application Server in the previous diagram.

Variable Configured value

client_spike_threshold 50,000 requests per second per IP

bytes_in_threshold 2000 bytes per second per IP

bytes_out_threshold 1000 bytes per second per server

server_connection_quota 20,000 concurrent connections per server

server_connection_queueing true

Client flow control permits a maximum of 50,000 HTTP requests/second from an individual IP. If IP 1, 2, or
3 exceeds the 50,000/second limit, ASE drops the client session. Otherwise, all requests are passed to the
backend servers.

Client flow control allows a maximum of 2,000 bytes/second from each WebSocket client connection to an
ASE node. If IP 1, 2, or 3 exceeds the 2,000 bytes/second limit, ASE drops the client session. Otherwise, all
requests are passed to the backend servers.

Server flow control allows 20,000 concurrent connections to WebSocket API 1 on the application server. If
the sum of connections from the ASE cluster nodes (i.e. ASE 1 + ASE 2 connection count) to WebSocket
API1 exceeds 20,000, then ASE will queue the request for a time-period since
server_connection_queuing is enabled. If queuing is not enabled, then the request is dropped.

Client Flow Control allows a maximum of 1,000 bytes/second from a WebSocket API to any WebSocket
client connection. If outbound traffic exceeds the 1,000 bytes/second limit, ASE blocks the traffic and
drops the client session. Otherwise, all requests are passed to the backend servers.

Summary table for WebSocket flow control

Parameter Notes

client_spike_threshold Maximum HTTP request rate from a client to
an API

PingIntelligence copyright © 2022

| 255



bytes_in_threshold Maximum number of bytes per time-period
from a client to a specific ASE node

bytes_out_threshold Maximum number of bytes per time-period
from an ASE node

server_connection_quota Maximum number of concurrent sessions
from ASE cluster nodes to an API on a
specific server.

Configuring flow control for WebSocket API

ASE flow control is configured separately for each API using the API JSON file. Here are the flow control
related definitions in an API JSON file:

{
 "api_metadata": {
 "protocol": "ws",
 
 "flow_control": {
 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "0/second",
 "bytes_out_threshold": "0/second",
 "server_connection_queueing" : false
 },
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_connection_quota": 10
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_connection_quota": 20
 }
 ]
 }
}

The flow control section includes definitions which apply globally across all servers running the defined
WebSocket API. These are client_spike_threshold, bytes_in_threshold,
bytes_out_threshold, and server_connection_queueing. Server specific definitions include
server_connection_quota which is configured on each individual server. The default is no flow
control with all values set to zero. Note that different values can be specified for each server for
server_connection_quota.

Note: If server connection quota is set to zero for one server, then it must be zero for all other
servers in the API JSON definition..

PingIntelligence copyright © 2022

| 256



Note: API security must be enabled for ASE flow control to work. For more information on
enabling API security using the configuration file, see Define an API – API JSON configuration file
or using the CLI, see Enable API Cybersecurity

Flow control CLI for WebSocket API

ASE CLI can be used to update flow control parameters:

Update Client Spike Threshold:

Enter the following command to update the client spike threshold:
update_client_spike_threshold {api_id} {+ve digit/(second|minute|hour)}

For example: update_client_spike_threshold shop_api 5000/second

Update Bytes-in
update_bytes_in_threshold {api_id} {+ve digit/(second|minute|hour)}

For example: update_bytes_in_threshold shop_api 8096/second

Update Bytes-out
update_bytes_out_threshold {api_id} {+ve digit/(second|minute|hour)}

For example: update_bytes_out_threshold shop_api 8096/second

Update Server Quota

update_server_connection_quota {api_id} {host:port}{+ve digit}

For example: update_server_connection_quota shop_api 5000

Note: API security must be enabled for ASE flow control to work. For more information on
enabling API security, see Enable API Cybersecurity.

Parent topic:ASE DoS and DDoS protection

Server connection queuing for REST and WebSocket APIs
ASE can queue server connection requests when the backend API servers are busy. When enabled, server
connection queuing applies to both REST and WebSocket APIs and is configured in the API JSON file.

Connection queuing for stateless connections

Stateless connections are connections without cookies. Before enabling connection queuing, configure
connection quota values for the backend API servers. After both connection quota and connection queuing
are set, the requests are routed based on the following weightage formula:

PingIntelligence copyright © 2022

| 257



Where Qi is the server connection quota for servers from i=1 to i=n

For example, if two backend servers have connection quota set as 20,000 and 40,000 connections, then
the connections are served in a ratio of 20000/ (20000+40000) and 40000/ (20000+40000), that is, in the
ratio of 1/3 and 2/3 for the respective servers.

When queuing is enabled and the backend servers are occupied, the connections are queued for a period.
The connections are forwarded to the next available backend server during the queuing period based on
the weighted ratio of server connection quota.

Connection queueing for stateful connections

Stateful connections are connections with cookies. In this mode, cookies are used to establish sticky
connections between the client and the server. Before enabling connection queuing, configure connection
quota values for the backend API servers. After both connection quota and connection queuing are set, the
requests are routed based on the following formula:

Where Qi is the server connection quota for servers from i=1 to i=n

For example, if two backend servers have connection quota set as 20,000 and 40,000 connections, then
the connections are served in a ratio of 20000/ (20000+40000) and 40000/ (20000+40000), that is, in the
ratio of 1/3 and 2/3 for the respective servers. The weighted ratio of connection distribution is reached
when the server connection quota is reached for all backend servers. Stateful connection distribution
considers cookie stickiness with backend servers.

When queuing is enabled and the backend servers are occupied, the connections are queued for a period.
Stateful connections are attempted with the same backend server. If the server becomes available during
the queuing period, the connections are served. If the backend server is not available, the connections are
dropped.

Parent topic:ASE DoS and DDoS protection

ASE configuration for ABS AI-based security
API Behavioral Security (ABS) engine detects attacks using artificial intelligence (AI) algorithms. After
receiving ASE access logs and API JSON configuration files, ABS applies AI algorithms to track API
connections and detect attacks. If enable_abs_attack is true, ABS sends attack lists to ASE which
blocks rogue clients on the list.

PingIntelligence copyright © 2022

| 258



• Configure ASE to ABS connectivity
• Manage ASE blocking of ABS detected attacks

Parent topic:Sideband API Security Enforcer
Parent topic:Inline API Security Enforcer

Configure ASE to ABS connectivity
To connect ASE to ABS, configure the ABS address (IPv4:Port or Hostname:Port), access key, and secret
key in the abs.conf file located in the /opt/pingidentity/ase/config directory.

Note:enable_absmust be set to true in the ase.conf file. when ABS is in a different AWS
security group, use a private IP address

The parameter values and descriptions are included in the following table:

Parameter Description

abs_endpoint Hostname and port or the IPv4 and port of all the ABS nodes

access_key The access key or the username for the ABS nodes. It is the same for all
the ABS nodes. The same value has to be configured in ABS MongoDB
database. This value is obfuscated during the start of ASE.

secret_key The secret key or the password for the ABS nodes. It is the same for all
the ABS nodes. The same value has to be configured in ABS MongoDB
database. This value is obfuscated during the start of ASE.

enable_ssl Set the value to true for SSL communication between ASE and ABS. The
default value is true. ASE sends the access log files in plain text if the
value is set to false.

abs_ca_cert_path Location of the trusted CA certificates for SSL/TLS connections from
ASE to ABS.
If the path parameter value is left empty, then ASE does not verify the
validity of CA certificates. However, the connection to ABS is still
encrypted.

PingIntelligence copyright © 2022

| 259



Note: The access_key and secret_key are configured in ABS. For more information, see
ABS Admin Guide.

Here is a sample abs.conf file:

; API Security Enforcer ABS configuration.
; This file is in the standard .ini format. The comments start with a 
semicolon (;).
; Following configurations are applicable only if ABS is enabled with true.
; a comma-separated list of abs nodes having hostname:port or ipv4:port as 
an address.
abs_endpoint=127.0.0.1:8080
; access key for abs node
access_key=OBF:AES://
ENOzsqOEhDBWLDY+pIoQ:jN6wfLiHTTd3oVNzvtXuAaOG34c4JBD4XZHgFCaHry0
; secret key for abs node
secret_key=OBF:AES:Y2DadCU4JFZp3bx8EhnOiw:zzi77GIFF5xkQJccjIrIVWU+RY5CxUhp3NLcNBel+3Q
; Setting this value to true will enable encrypted communication with ABS.
enable_ssl=true
; Configure the location of ABS's trusted CA certificates. If empty, ABS's 
certificate
; will not be verified
abs_ca_cert_path=

Configuring ASE-ABS encrypted communication

To enable SSL communication between ASE and ABS so that the access logs are encrypted and sent to
ABS, set the value of enable_ssl to true. The abs_ca_cert_path is the location of ABS’s trusted CA
certificate. If the field is left empty, ASE does not verify ABS’s certificate, however, the communication is till
encrypted.

Check and open ABS ports
The default ports for connection with ABS are 8080 and 9090. Run the check_ports_ase.sh script on
the ASE machine to determine ABS accessibility. Input ABS host IP address and ports as arguments.
/opt/pingidentity/ase/util ./check_ports_ase.sh {ABS IPv4:[port]}

Parent topic:ASE configuration for ABS AI-based security

Manage ASE blocking of ABS detected attacks
To configure ASE to automatically fetch and block ABS detected attacks, complete the following steps:

1. Enable ASE Security. Enter the following command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_firewall

2. Enable ASE to send API traffic information to ABS. Enter the following command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs

3. Enable ASE to fetch and block ABS detected attacks. Enter the following command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs_attack

PingIntelligence copyright © 2022

| 260



After enabling automated attack blocking, ASE periodically fetches the attack list from ABS and blocks the
identified connections. To set the time interval at which ASE fetches the attack list from ABS, configure the
abs_attack_request_minute parameter in ase.conf file.

; This value determines how often ASE will query ABS.
abs_attack_request_minutes=10

Disable attack list fetching from ABS
To disable ASE from fetching the ABS attack list, entering the following CLI command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs_attack

After entering the above command, ASE will no longer fetch the attack list from ABS. However, ABS
continues generating the attack list and stores it locally. The ABS attack list can be viewed using ABS APIs
and used to manually configured an attack list on ASE. For more information on ABS APIs, see ABS Admin
Guide.

To stop an ASE cluster from sending log files to ABS, enter the following ASE CLI command.
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs

After entering this command, ABS will not receive any logs from ASE. Refer to the ABS documentation for
information on types of attacks.

Parent topic:ASE configuration for ABS AI-based security

CLI for inline ASE
Start ASE

Description
Starts ASE
Syntax
./start.sh

Stop ASE

Description
Stops ASE
Syntax
./stop.sh

Help

Description
Displays cli.sh help
Syntax
./cli.sh help

Version

Description
Displays the version number of ASE
Syntax
./cli.sh version

Status

Description
Displays the running status of ASE

PingIntelligence copyright © 2022

| 261



Syntax
./cli.sh status

Update Password

Description
Change ASE admin password
Syntax
./cli.sh update_password {-u admin}

Get Authentication Method

Description
Display the current authentication method
Syntax
./cli.sh get_auth_method {method} {-u admin}

Update Authentication Method

Description
Update ASE authentication method
Syntax
./cli.sh update_auth_method {method} {-u admin}

Enable Audit Logging

Description
Enable audit logging
Syntax
./cli.sh enable_audit -u admin -p admin

Disable Audit Logging

Description
Disable audit logging
Syntax
./cli.sh disable_audit -u admin -p admin

Add Syslog Server

Description
Add a new syslog server
Syntax
./cli.sh –u admin -p admin add_syslog_server host:port

Delete Syslog Server

Description
Delete the syslog server
Syntax
./cli.sh –u admin -p admin delete_syslog_server host:port

List Syslog Server

Description
List the current syslog server
Syntax
./cli.sh –u admin -p admin list_syslog_server

Add API

Description
Add a new API from config file in JSON format. File should have .json extension
Syntax

PingIntelligence copyright © 2022

| 262



./cli.sh –u admin -p admin add_api {config_file_path}
Update API

Description
Update an API after the API JSON file has been edited and saved.
Syntax
./cli.sh –u admin -p admin update_api {api_name}

List APIs

Description
Lists all APIs configured in ASE
Syntax
./cli.sh –u admin -p admin list_api

API Info

Description
Displays the API JSON file
Syntax
./cli.sh –u admin -p admin api_info {api_id}

API Count

Description
Displays the total number of APIs configured
Syntax
./cli.sh –u admin -p admin api_count

List API Mappings

Description
Lists all the external and internal URL mappings.
Syntax
./cli.sh –u admin -p admin list_api_mappings

Delete API

Description
Delete an API from ASE. Deleting an API removes the corresponding JSON file and deletes all
the cookies associated with that API
Syntax
./cli.sh –u admin -p admin delete_api {api_id}

Add a Server

Description
Add a backend server to an API. Provide the IP address and port number of the server
Syntax
./cli.sh –u admin -p admin add_server {api_id}{host:port}[quota]
[spike_threshold]

List Server

Description
List all servers for an API
Syntax
./cli.sh –u admin -p admin list_server {api_id}

Delete a Server

Description
Delete a backend server from an API. Provide the IP address and port number of the server

PingIntelligence copyright © 2022

| 263



Syntax
./cli.sh –u admin -p admin delete_server {api_id}{host:port}

Enable Per API Blocking

Description
Enables attack blocking for the API
Syntax
./cli.sh –u admin -p admin enable_blocking {api_id}

Disable Per API Blocking

Description
Disable attack blocking for the API
Syntax
./cli.sh –u admin -p admin disable_blocking {api_id}

Enable Health Check

Description
Enable health check for a specific API
Syntax
./cli.sh -u admin -p admin enable_health_check shop_api

Disable Health Check

Description
Disable health check for a specific API
Syntax
./cli.sh -u admin -p admin disable_health_check {api_id}

Generate Master Key

Description
Generate the master obfuscation key ase_master.key
Syntax
./cli.sh -u admin -p admin generate_obfkey

Obfuscate Keys and Password

Description
Obfuscate the keys and passwords configured in various configuration files
Syntax
./cli.sh -u admin -p admin obfuscate_keys

Create a Key Pair

Description
Creates private key and public key pair in keystore
Syntax
./cli.sh –u admin -p admin create_key_pair

Create a CSR

Description
Creates a certificate signing request
Syntax
./cli.sh –u admin -p admin create_csr

Create a Self-Signed Certificate

Description
Creates a self-signed certificate
Syntax

PingIntelligence copyright © 2022

| 264



./cli.sh –u admin -p admin create_self_sign_cert
Import Certificate

Description
Import CA signed certificate into keystore
Syntax
./cli.sh –u admin -p admin import_cert {cert_path}

Create Management Key Pair

Description
Create a private key for management server
Syntax
/cli.sh –u admin -p admin create_management_key_pair

Create Management CSR

Description
Create a certificate signing request for management server
Syntax
/cli.sh –u admin -p admin create_management_csr

Create Management Self-signed Certificate

Description
Create a self-signed certificate for management server
Syntax
/cli.sh –u admin -p admin create_management_self_sign_cert

Import Management Key Pair

Description
Import a key-pair for management server
Syntax
/cli.sh –u admin -p admin import_management_key_pair {key_path}

Import Management Certificate

Description
Import CA signed certificate for management server
Syntax
/cli.sh –u admin -p admin import_management_cert {cert_path}

Health Status

Description
Displays health status of all backend servers for the specified API
Syntax
./cli.sh –u admin -p admin health_status {api_id}

Cluster Info

Description
Displays information about an ASE cluster
Syntax
./cli.sh –u admin -p admin cluster_info

Server Count

Description
Lists the total number of APIs associated with an API
Syntax
./cli.sh –u admin -p admin server_count {api_id}

PingIntelligence copyright © 2022

| 265



Cookie Count

Description
Lists the live cookie count associated with an API
Syntax
./cli.sh –u admin -p admin cookie_count {api_id}

Persistent Connection Count

Description
Lists the WebSocket or http-keep alive connection count for an API
Syntax
./cli.sh –u admin -p admin persistent_connection_count {api_id}

Clear cookies

Description
Clear all cookies for an API
Syntax
./cli.sh –u admin -p admin clear_cookies{api_id}

Enable Firewall

Description
Enable API firewall. Activates pattern enforcement, API name mapping, manual attack type
Syntax
./cli.sh –u admin -p admin enable_firewall

Disable Firewall

Description
Disable API firewall
Syntax
./cli.sh –u admin -p admin disable_firewall

Enable ASE detected attacks

Description
Enable ASE detected attacks
Syntax
./cli.sh –u admin -p admin enable_ase_detected_attacks

Disable ASE Detected Attacks

Description
Disable API firewall
Syntax
./cli.sh –u admin -p admin disable_ase_detected_attacks

Enable ABS

Description
Enable ABS to send access logs to ABS
Syntax
./cli.sh –u admin -p admin enable_abs

Disable ABS

Description
Disable ABS to stop sending access logs to ABS
Syntax
./cli.sh –u admin -p admin disable_abs

PingIntelligence copyright © 2022

| 266



Enable ABS Detected Attack Blocking

Description
Enable ASE to fetch ABS detected attack lists and block access of list entries.
Syntax
./cli.sh –u admin -p admin enable_abs_attack

Disable ABS Detected Attack Blocking

Description
Stop ASE from blocking and fetching ABS detected attack list. This command does not stop
ABS from detecting attacks.
Syntax
./cli.sh –u admin -p admin disable_abs_attack

Adding Blacklist

Description
Add an entry to ASE blacklist using CLI. Valid type values are: IP, Cookie, OAuth2 token and API
Key

If type is ip, then Name is the IP address.

If type is cookie, then name is the cookie name, and value is the cookie value
Syntax
./cli.sh –u admin -p admin add_blacklist {type}{name}{value}
Example
/cli.sh -u admin -p admin add_blacklist ip 1.1.1.1

Delete Blacklist Entry

Description
Delete entry from the blacklist.
Syntax
./cli.sh –u admin -p admin delete_blacklist {type}{name}{value}
Example
cli.sh -u admin -p delete_blacklist token 58fcb0cb97c54afbb88c07a4f2d73c35

Clear Blacklist

Description
Clear all the entries from the blacklist
Syntax
./cli.sh –u admin -p admin clear_blacklist

View Blacklist

Description
View the entire blacklist or view a blacklist for the specified attack type (for example,
invalid_method)
Syntax
./cli.sh –u admin -p admin view_blacklist {all|manual|abs_generated|
invalid_content_type|invalid_method|invalid_protocol|decoy}

Adding Whitelist

Description
Add an entry to ASE whitelist using CLI. Valid type values are: IP, cookie, OAuth2 token and API
key

If type is IP, then name is the IP address.

PingIntelligence copyright © 2022

| 267



If type is cookie, then name is the cookie name, and value is the cookie value
Syntax
./cli.sh –u admin -p admin add_whitelist {type}{name}{value}
Example
/cli.sh -u admin -p admin add_whitelist api_key AccessKey
065f73cdf39e486f9d7cda97d2dd1597

Delete Whitelist Entry

Description
Delete entry from the whitelist
Syntax
./cli.sh –u admin -p admin delete_whitelist {type}{name}{value}
Example
/cli.sh -u admin -p delete_whitelist token 58fcb0cb97c54afbb88c07a4f2d73c35

Clear Whitelist

Description
Clear all the entries from the whitelist
Syntax
./cli.sh –u admin -p admin clear_whitelist

View Whitelist

Description
View the entire whitelist
Syntax
./cli.sh –u admin -p admin view_whitelist

ABS Info

Description
Displays ABS status information.

ABS enabled or disabled, ASE fetching ABS attack types, and ABS cluster information
Syntax
./cli.sh –u admin -p admin abs_info

Enable XFF

Description
Enable X-Forwarded For
Syntax
./cli.sh –u admin -p admin enable_xff

Disable XFF

Description
Disable X-Forwarded For
Syntax
./cli.sh –u admin -p admin disable_xff

Update Client Spike

Description
Update Client Spike Threshold
Syntax
update_client_spike_threshold {api_id} {+ve digit/(second|minute|
hour)}
Example
update_client_spike_threshold shop_api 5000/second

PingIntelligence copyright © 2022

| 268



Update Server Spike

Description
Update Server Spike Threshold

“*” - use the same value for all servers
Syntax
update_server_spike_threshold {api_id} {host:port} {+ve digit/
(second|minute|hour)}
Example
update_server_spike_threshold shop_api 127.0.0.1:9090 5000/second
update_server_spike_threshold shop_api "*" 5000/second

Update Bytes-in

Description
Update bytes in value for a WebSocket API
Syntax
update_bytes_in_threshold {api_id} {+ve digit/(second|minute|hour)}
Example
update_bytes_in_threshold shop_api 8096/second

Update Bytes-out

Description
Update bytes out value for a WebSocket API
Syntax
update_bytes_out_threshold {api_id} {+ve digit/(second|minute|hour)}
Example
update_bytes_out_threshold shop_api 8096/second

Update Server Quota

Description
Update the number of API connections allowed on a backend server

“*” - use the same value for all backend servers
Syntax
update_server_connection_quota {api_id} {host:port} {+ve digit}
Example
update_server_connection_quota shop_api 127.0.0.1:9090 5000
update_server_connection_quota shop_api "*" 5000

Parent topic:Inline API Security Enforcer

REST API for inline and sideband ASE
ASE REST API allows you to programmatically manage adding, removing, and modifying your backend
servers. The REST API payload uses a JSON format. REST API also helps in integrating ASE with third-
party products.

The following is a list of formats for ASE’s REST APIs:

• Create API (POST) – Inline and sideband ASE
• Read API (GET) – Inline and sideband ASE
• List API (GET) – Inline and sideband ASE
• Update API (PUT) – Inline and sideband ASE
• Create Server (POST) – Inline ASE

PingIntelligence copyright © 2022

| 269



• Read Server (GET) – Inline ASE
• Delete Server (DELETE) – Inline ASE
• Read Cluster (GET) – Inline ASE
• Read Persistent Connections (GET) – Inline ASE
• Read Firewall Status (GET) – Inline and sideband ASE
• Update Firewall Status (POST) – Inline and sideband ASE
• Add Attack Type to Blacklist (POST) – Inline and sideband ASE
• Delete Attack Type from the Whitelist (DELETE) – Inline and sideband ASE
• Clear the Blacklist (DELETE) – Inline and sideband ASE
• View Blacklist (GET) – Inline and sideband ASE
• Add Attack Type to Whitelist (POST) – Inline and sideband ASE
• Delete Attack Type from the Whitelist (DELETE) – Inline and sideband ASE
• Clear Whitelist (DELETE) – Inline and sideband ASE
• View Whitelist (POST) – Inline and sideband ASE
• Read Flow Control of an API (GET) – Inline ASE
• Update Flow Control for an API (POST) – Inline ASE
• Update Flow Control for a Server of an API (POST) – Inline ASE

Common request headers

Header Value

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Create API (POST)

Request

POST /v3/ase/api?api_id=sample_api

Content-Type application/json

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

REST API request

{
 "api_metadata": {
 "protocol": "http",
 "url": "/your_rest_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",

PingIntelligence copyright © 2022

| 270



 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 }
 ],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }

PingIntelligence copyright © 2022

| 271



 }
}

WebSocket API request

{
 "api_metadata": {
 "protocol": "ws",
 "url": "/your_websocket_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "0/second",
 "bytes_out_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_connection_quota": 0
 },

PingIntelligence copyright © 2022

| 272



 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_connection_quota": 0
 }
 ],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

Response

HTTP Code Status Content body (application/json)

200 success {“status” : “success” , “status_message” : 
“success”
            }

403 fail {“status” :”api_already_exists” ,”status_me
ssage” :”api sample_api
                 already exists”}

403 fail {“status” : “validation_error” , 
“status_message” : “<detailed
                validation error 
description” }

Read API (GET)

Request

GET /v3/ase/api?api_id=sample_api

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

PingIntelligence copyright © 2022

| 273



HTTP Code Status Content body (application/json)

200 success REST API
{
 "api_metadata": {
 "protocol": "http",
 "url": "/your_rest_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 }
 ],
 "decoy_config": {

PingIntelligence copyright © 2022

| 274



HTTP Code Status Content body (application/json)

 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

WebSocket API
{
 "api_metadata": {
 "protocol": "ws",
 "url": "/your_websocket_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "0/second",
 "bytes_out_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,

PingIntelligence copyright © 2022

| 275



HTTP Code Status Content body (application/json)

 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_connection_quota": 0
 }
 ],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

404 not found {“status” :”api_not_found” ,”status_messag
e” :”api sample_api does
                not exist”}

List API (GET)

Request

GET /v3/ase/api

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

200 success {
 "api_count": "1",
 "api": [
 {
 "api_id": "sample_api",
 "status": "loaded"
 }
 ]
}

PingIntelligence copyright © 2022

| 276



HTTP Code Status Content body (application/json)

404 not found {“status” :”api_not_found” ,”status_message
” :”api sample_api does
                not exist”}

Update API (PUT)

Request

PUT /v3/ase/api?api_id=sample_api

Content-Type application/json

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

REST API request

{
 "api_metadata": {
 "protocol": "http",
 "url": "/your_rest_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"

PingIntelligence copyright © 2022

| 277



 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 }
 ],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

WebSocket API request

{
 "api_metadata": {
 "protocol": "ws",
 "url": "/your_websocket_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""

PingIntelligence copyright © 2022

| 278



 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "0/second",
 "bytes_out_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_connection_quota": 0
 }
 ],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

Response

PingIntelligence copyright © 2022

| 279



HTTP Code Status Content body (application/json)

200 success {“status” : “success” , “status_message” : 
“success”
            }

404 fail {“status” :”api_not_found” ,”status_message”
 :”api sample_api does
                not  exist”}

Delete API (DELETE)

Request

DELETE /v3/ase/api?api_id=sample_api

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

200 success {“status” : “success” , “status_message” : 
“success”
            }

404 fail {“status” :”api_not_found” ,”status_message” 
:”api sample_api does
                not  exist”}

Create server (POST)

Request

POST /v3/ase/server?api_id=<api>

Content-Type application/json

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

PingIntelligence copyright © 2022

| 280



REST API request

{
 "server":
 {
 "host": "192.168.1.100",
 "port": 8080,
 "server_spike_threshold": "1/second",
 "server_connection_quota": 100
 }
}
WebSocket API Request
{
 "server":
 {
 "host": "192.168.1.100",
 "port": 8080,
 "server_connection_quota": 100
 }
}

Response

HTTP Code Status Content body (application/json)

200 success {“status” : “success” , “status_message” : 
“success”
            }

404 fail {“status” :”api_not_found” ,”status_message”
 :”api sample_api does
                not  exist”}

403 fail {“status” : “validation_error” , 
“status_message” : “detailed info
                about validation error”}

403 fail {“status” : “server_exists” , 
“status_message” :”server already
                exists”}

Read server (GET)

Request

GET /v3/ase/server?api_id=<api_id>

PingIntelligence copyright © 2022

| 281



x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

200 success REST API
{
“api_id” : “sample_api”
 “server_count” : 2,
 “server”:
 [ {
 “host” : “192.168.1.100”
 “port” : 8080,
 "server_connection_quota": 1000,
 "server_spike_threshold": "10/second",
 “health_status” :”Up”
 }, {
 “host” : “192.168.1.100”
 “port” : 8081,
 server_connection_quota": 1000,
 "server_spike_threshold": "10/second",
 “health_status” :”Down” 
 } ] }

WebSocket API
{
 “api_id” : “sample_api”
 “server_count” : 2,
 “server”:
 [ {
 "host" : “192.168.1.100”
 “port” : 8080,
 "server_connection_quota": 1000,
 “health_status” :”Up”
 }, {
 "host" : “192.168.1.100”
 “port” : 8081,
 "server_connection_quota": 1000,
 “health_status” :”Down”
 } ] }

404 fail {“status” :”api_not_found” ,”status_message”
 :”api sample_api does
                not  exist”}

PingIntelligence copyright © 2022

| 282



Delete server (DELETE)

Request

DELETE /v3/ase/server?api_id=<api>

Content-Type application/json

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

{
 “server”:
 {
 "host" : “192.168.1.100”,
 "port" : 8080
 }
}

Response

HTTP Code Status Content body (application/json)

200 success {“status” : “success” , “status_message” : 
“success”
            }

404 fail {“status” :”api_not_found” ,”status_message” 
:”api sample_api does
                not  exist”}

404 fail {“status” :”server_not_found” ,”status_messag
e” :”server does not
                 exist”}

403 fail {“status” : “validation_error” , 
“status_message” : “detailed info
                about json  validation 
error”}

Read cluster (GET)

Request

PingIntelligence copyright © 2022

| 283



GET /v3/ase/cluster

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

200 success {
 “cluster_id” : “test_cluster”
 “node_count” : 2
, “node”:
 [
 {
 "host" : “192.168.2.100”
 “port” : 8080
 “uuid” : “1c359368-22b6-4713-
a5be-15e5cbbddf7a”
 “status” :”active”
 },
 {
 "host" : “192.168.2.101”
 “port” : 8080
 “uuid” : “2d359368-20b6-4713-
a5be-15e5cbbde8d”
 “status” :”inactive”
 }
]
}

404 fail {“status” :”no_cluster_mode” ,”status_messag
e” :”ase is not in
                cluster mode”}

Read persistent connections (GET)

Request

GET /v3/ase/persistentconnection?
api_id=sample

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

PingIntelligence copyright © 2022

| 284



Response

HTTP Code Status Content body (application/json)

200 success {
 “api_id” : “sample”
 “persistent_connection_count” :
 {
 “ws”:1,
 “wss”:0
 }
}

404 fail {“status” :”api_not_found” ,”status_message” 
:”api sample does not
                 exist”}

Read firewall status (GET)

Request

GET /v3/ase/firewall

x-ase-access-key <Access
                Key>

x-ase-secret-key <Secret
                Key>

Accept application/json

Response

HTTP code Status Content body
(application/json)

200 success {
“status” :”enabled/
disabled”,
”status_message” :”Ok”
}

Update firewall status (POST)

Request

PingIntelligence copyright © 2022

| 285



POST /v3/ase/firewall?status=enable/
disable

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

200 success If there is a status change
{
“status” :”enabled/disabled”,
”status_message” :”Firewall is now enabled/
disabled”
}

If there is no change in status
{
“status” :”enabled/disabled”,
”status_message” :”Firewall is already 
enabled/disabled”
}

403 fail {“status” :”invalid_value” ,”status_message”
 :”query parameter status
                contains invalid value”}

Add attack type to blacklist (POST)

Request

POST /v3/ase/firewall/blacklist

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

PingIntelligence copyright © 2022

| 286



===============for IP===============
{
 "type" : "ip",
 "value" : "1.1.1.1"
}
===============for Token=============
{
 "type" : "token",
 "value" : "sadjhasiufgkjdsbfkgfa"
}
=============for Cookie/api_key=======
{
 "type" : "cookie/token/api_key",
 "name" : "JSESSIONID",
 "value" : "ljkhasioutfdqbjsfdmakhflia"
}

Response

Status code Response body

200 OK Cookie
JSESSIONID 
ljkhasioutfdqbjsfdmakhflia
added to blacklist

403 Forbidden Cookie
JSESSIONID 
ljkhasioutfdqbjsfdmakhflia
already exist

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

403 Forbidden json parsing error

500 Internal Server Error unknown error

Delete attack type to blacklist (DELETE)

Request

DELETE /v3/ase/firewall/blacklist

x-ase-access-key <Access
                Key>

PingIntelligence copyright © 2022

| 287



x-ase-secret-key <Secret
                Key>

Accept application/json

===============for IP===============
{
 "type" : "ip",
 "value" : "1.1.1.1"
}
===============for Token=============
{
 "type" : "token",
 "value" : "sadjhasiufgkjdsbfkgfa"
}
=============for Cookie/api_key=======
{
 "type" : "cookie/token/api_key",
 "name" : "JSESSIONID",
 "value" : "ljkhasioutfdqbjsfdmakhflia"
}

Response

Status code Response body

200 OK Cookie
JSESSIONID 
ljkhasioutfdqbjsfdmakhflia
deleted from blacklist

403 Forbidden Cookie
JSESSIONID 
ljkhasioutfdqbjsfdmakhflia
already exist

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

403 Forbidden json parsing error

500 Internal Server Error unknown error

Clear the blacklist (DELETE)

Request

PingIntelligence copyright © 2022

| 288



DELETE /v3/ase/firewall/blacklist?tag=all

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

Status code Response body

200 OK Blacklist cleared

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

500 Internal Server Error unknown error

View blacklist (GET)

Request

GET /v3/ase/firewall/blacklist?tag=

Tags tag=all (default is all)

• all•
• manual•
• abs_generated•
• invalid_content_type•
• invalid_method•
• invalid_protocol•
• decoy•

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

PingIntelligence copyright © 2022

| 289



Response

Status code Response body

200 OK {
 "manual_blacklist" : [
 {
 "type" : "cookie",
 "name" : "JSESSIONID",
 "value" : "ljkhasiosalia",
 },
 {
 "type" : "ip",
 "value" : "1.1.1.1",
 }
 ],
 "abs_generated_blacklist" : [
 {
 "type" : "cookie",
 "name" : "JSESSIONID",
 "value" : "ljkhasisadosalia",
 },
 {
 "type" : "ip",
 "value" : "1.1.1.2",
 }
 ]
}

403 Forbidden Cookie
JSESSIONID ljkhasioutfdqbjsfdmakhflia
already exist

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

500 Internal Server Error unknown error

Add attack type to whitelist (POST)

Request

POST /v3/ase/firewall/whitelist

x-ase-access-key <Access Key>

PingIntelligence copyright © 2022

| 290



x-ase-secret-key <Secret Key>

Accept application/json

===============for IP===============
{
 "type" : "ip",
 "value" : "1.1.1.1"
}
===============for Token=============
{
 "type" : "token",
 "value" : "sadjhasiufgkjdsbfkgfa"
}
=============for Cookie/api_key=======
{
 "type" : "cookie/token/api_key",
 "name" : "JSESSIONID",
 "value" : "ljkhasioutfdqbjsfdmakhflia"
}

Response

Status code Response body

200 OK Cookie
JSESSIONID 
ljkhasioutfdqbjsfdmakhflia
added to whitelist

403 Forbidden Cookie
JSESSIONID 
ljkhasioutfdqbjsfdmakhflia
already exist

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

403 Forbidden json parsing error

500 Internal Server Error unknown error

Delete attack type from the whitelist (DELETE)

Request

PingIntelligence copyright © 2022

| 291



DELETE /v3/ase/firewall/whitelist

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

===============for IP===============
{
 "type" : "ip",
 "value" : "1.1.1.1"
}
===============for Token=============
{
 "type" : "token",
 "value" : "sadjhasiufgkjdsbfkgfa"
}
=============for Cookie/api_key=======
{
 "type" : "cookie/token/api_key",
 "name" : "JSESSIONID",
 "value" : "ljkhasioutfdqbjsfdmakhflia"
}

Response

Status code Response body

200 OK Cookie
JSESSIONID 
ljkhasioutfdqbjsfdmakhflia
added to whitelist

403 Forbidden Cookie
JSESSIONID 
ljkhasioutfdqbjsfdmakhflia
already exist

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

403 Forbidden json parsing error

500 Internal Server Error unknown error

PingIntelligence copyright © 2022

| 292



Clear whitelist (DELETE)

Request

DELETE /v3/ase/firewall/whitelist?tag=all

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

Status code Response body

200 OK Whitelist cleared

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

500 Internal Server Error unknown error

View whitelist (POST)

Request

GET /v3/ase/firewall/whitelist

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

Status code Response body

200 OK {
 "whitelist" : [
 {

PingIntelligence copyright © 2022

| 293



Status code Response body

 "type" : "cookie",
 "name" : "JSESSIONID",
 "value" : "ljkhasiosalia",
 },
 {
 "type" : "ip",
 "value" : "1.1.1.1",
 }
 ]
}

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

500 Internal Server Error unknown error

Read flow control of an API (GET)

Request

GET /v3/ase/firewall/flowcontrol?
api_id=<api_name>

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP code Status Content body (application/json)

200 success Flow control for REST API
{
 “api_id”: “api_name”
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 }
}

Flow control for WebSocket API

PingIntelligence copyright © 2022

| 294



HTTP code Status Content body (application/json)

{
 “api_id”: “api_name”
 "flow_control": {
 "client_spike_threshold": "100/second",
 "bytes_in_threshold": "10/second",
 "bytes_out_threshold": "10/second",
 "server_connection_queueing": false
 }
}

403 fail {“status” : “validation_error” , 
“status_message” : “<detailed
                validation error 
description” }

404 fail {“status” :”api_not_found” ,”status_messag
e” :”api sample does not
                 exist”}

Update flow control for an API (POST)

Request

POST /v3/ase/firewall/flowcontrol?
api_id=<api_name>

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

REST APIs

{ "flow_control": {
 "client_spike_threshold": "0/second"
 } 
 }

WebSocket APIs

{ "flow_control": {
 "client_spike_threshold": "10/second",
 "bytes_in_threshold": "10/second",
 "bytes_out_threshold": "10/second"

PingIntelligence copyright © 2022

| 295



 } 
}

Response

HTTP code Status Content body (application/json)

200 success Flow control for REST APIs
{
 “api_id”: “api_name”
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 } }

Flow control for WebSocket APIs
{
 “api_id”: “api_name”
 "flow_control": {
 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "10/second",
 "bytes_out_threshold": "10/second",
 "server_connection_queueing": false
 }}

403 fail {“status” : “validation_error” , 
“status_message” : “<detailed
                validation error 
description” }

404 fail {“status” :”api_not_found” ,”status_messag
e” :”api sample does not
                 exist”}

Update flow control for a server of an API (POST)

Request

POST /v3/ase/firewall/flowcontrol/server?
api_id=<api_name>

x-ase-access-key <Access Key>

x-ase-secret-key <<Secret Key>

Accept application/json

PingIntelligence copyright © 2022

| 296



REST APIs

{
 "server":
 {
 "host": "127.0.0.2",
 "port": 8080,
 "server_connection_quota": 1000,
 "server_spike_threshold": "10/second"
 }
}

WebSocket APIs

{
 "server":
 {
 "host": "127.0.0.2",
 "port": 8080,
 "server_connection_quota": 100000
 }
}

Response

HTTP code Status Content body (application/json)

200 success {
 "status": "success",
 "status_message": "server updated 
successfully"
}

403 fail {“status” : “validation_error” , 
“status_message” : “<detailed
                validation error 
description” }

404 fail {“status” :”api_not_found” ,”status_messag
e” :”api sample does not
                 exist”}

Audit log
This appendix details audit log entries in the audit.log file. The entries in the audit log files have four
components as shown in the following table:

Date Subject Action Resources

PingIntelligence copyright © 2022

| 297



yyyy-mm-dd hh:mm:ss Subject is the module through
which actions are performed: CLI,
REST API or cluster

Actions are the executed
commands.

Resources are the
parameters associated with
the actions.

Following are the subjects and their description:

Subject Description

cli CLI commands executed

rest_api REST API requests received by ASE

cluster Changes requested by peer node in a cluster

Here is sample output of an audit log file:

2017-01-13 10:45:12 | cli | delete_api | username=admin, api_id=cart
2017-01-13 10:46:13 | rest_api | GET /v3/ase/cluster | x-ase-access-
key=admin, x-ase-secret-key=**********
2017-01-13 10:46:25 | cluster | delete_api | peer_node=192.168.11.108:8020, 
api_id=shop

CLI

The following table lists the actions and resources for ASE CLI

Action Resources

status -NA-

add_api username=, config_file_path=

list_api username=

api_info username=, api_id=

api_count username=

list_api_mappings username=

delete_api username=, api_id=

add_server username=, api_id=, server=,
server_spike_threshold=, server_connection_quota=

list_server username=, api_id=

server_count username=, api_id=

delete_server username=, api_id=, server=

create_key_pair username=

PingIntelligence copyright © 2022

| 298



create_csr username=

create_self_sign_cert username=

import_cert username=, cert_path=

health_status username=, api_id=

enable_health_check username=, api_id=

disable_health_check username=, api_id=

update_password username=

cluster_info username=

cookie_count username=, api_id=

enable_firewall username=

disable_firewall username=

enable_abs username=

disable_abs username=

enable_abs_attack username=

disable_abs_attack username=

abs_info username=

enable_xff username=

disable_xff username=

update_bytes_in_threshold username=, api_id=, bytes_in_threshold=

update_bytes_out_threshold username=, api_id=, bytes_out_threshold=

update_client_spike_threshold username=, api_id=, client_spike_threshold=

update_server_spike_threshold username=, api_id=, server=, server_spike_threshold=

update_server_connection_quota username=, api_id=, server=, server_connection_quota

get_auth_method -
NA
-

update_auth_method username=, auth_method=

enable_audit username=

disable_audit username=

stop username=

PingIntelligence copyright © 2022

| 299



REST API

Action Resource

POST /v3/ase/api Content-Type=application/json, x-ase-access-key=,
x-ase-secret-key=**********

GET /v3/ase/api -SAME AS ABOVE-

DELETE /v3/ase/api -SAME AS ABOVE-

POST /v3/ase/server -SAME AS ABOVE-

GET /v3/ase/server -SAME AS ABOVE-

DELETE /v3/ase/server -SAME AS ABOVE-

GET /v3/ase/cluster -SAME AS ABOVE-

POST /v3/ase/firewall -SAME AS ABOVE-

GET /v3/ase/firewall -SAME AS ABOVE-

POST /v3/ase/firewall/flowcontrol -SAME AS ABOVE-

GET /v3/ase/firewall/flowcontrol -SAME AS ABOVE-

POST /v3/ase/firewall/flowcontrol/
server

-SAME AS ABOVE-

Cluster

Action Resource

add_api peer_node=, api_id=

delete_api peer_node=, api_id=

add_server peer_node=, api_id=, server=,
server_spike_threshold=, server_connection_quota=

delete_server peer_node=, api_id=, server

enable_health_check peer_node=, api_id=

disable_health_check peer_node=, api_id=

enable_firewall peer_node=

disable_firewall peer_node=

enable_abs peer_node=

disable_abs peer_node=

PingIntelligence copyright © 2022

| 300



enable_abs_attack peer_node=

disable_abs_attack peer_node=

enable_xff peer_node=

disable_xff peer_node=

update_bytes_in_threshold peer_node=, api_id=, bytes_in_threshold=

update_bytes_out_threshold peer_node=, api_id=, bytes_out_threshold=

update_client_spike_threshold peer_node=, api_id=, client_spike_threshold=

update_server_spike_threshold peer_node=, api_id=, server=, server_spike_threshold=

update_server_connection_quota peer_node=, api_id=, api_id=, server=,
server_connection_quota=

enable_audit peer_node=

disable_audit peer_node=

stop peer_node=

Supported encryption protocols
A complete list of supported encryption protocols for TLS1.2 based on the operating system is shown in
the boxes below.

RHEL 7

ECDHE-RSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES128-GCM-SHA256

ECDHE-ECDSA-AES256-GCM-SHA384 DH-RSA-AES128-GCM-SHA256

ECDHE-RSA-AES256-SHA384 ECDHE-RSA-AES128-SHA256

ECDHE-ECDSA-AES256-SHA384 ECDHE-ECDSA-AES128-SHA256

DHE-DSS-AES256-GCM-SHA384 DHE-DSS-AES128-GCM-SHA256

DHE-RSA-AES256-GCM-SHA384 DHE-RSA-AES128-GCM-SHA256

DHE-RSA-AES256-SHA256 DHE-RSA-AES128-SHA256

DHE-DSS-AES256-SHA256 DHE-DSS-AES128-SHA256

ECDH-RSA-AES256-GCM-SHA384 ECDH-RSA-AES128-GCM-SHA256

ECDH-ECDSA-AES256-GCM-SHA384 ECDH-ECDSA-AES128-GCM-SHA256

ECDH-RSA-AES256-SHA384 ECDH-RSA-AES128-SHA256

ECDH-ECDSA-AES256-SHA384 ECDH-ECDSA-AES128-SHA256

PingIntelligence copyright © 2022

| 301



AES256-GCM-SHA384 AES128-GCM-SHA256

AES256-SHA256 AES128-SHA256

ECDHE-RSA-AES128-GCM-SHA256

Ubuntu 16

ECDHE-RSA-AES256-GCM-SHA384 DHE-DSS-AES128-GCM-SHA256

ECDHE-ECDSA-AES256-GCM-SHA384 DHE-RSA-AES128-GCM-SHA256

ECDHE-RSA-AES256-SHA384 DHE-RSA-AES128-SHA256

ECDHE-ECDSA-AES256-SHA384 DHE-DSS-AES128-SHA256

DHE-DSS-AES256-GCM-SHA384 ECDH-RSA-AES128-GCM-SHA256

DHE-RSA-AES256-GCM-SHA384 ECDH-ECDSA-AES128-GCM-SHA256

DHE-RSA-AES256-SHA256 ECDH-RSA-AES128-SHA256

DHE-DSS-AES256-SHA256 ECDH-ECDSA-AES128-SHA256

ECDH-RSA-AES256-GCM-SHA384 AES128-GCM-SHA256

ECDH-ECDSA-AES256-GCM-SHA384 AES128-SHA256

ECDH-RSA-AES256-SHA384 DH-RSA-AES128-GCM-SHA256

ECDH-ECDSA-AES256-SHA384 DH-DSS-AES128-GCM-SHA256

AES256-GCM-SHA384 DH-RSA-AES128-SHA256 

AES256-SHA256 DH-DSS-AES128-SHA256

ECDHE-RSA-AES128-GCM-SHA256 DH-DSS-AES256-GCM-SHA384

ECDHE-ECDSA-AES128-GCM-SHA256 DH-RSA-AES256-GCM-SHA384 

ECDHE-RSA-AES128-SHA256 DH-RSA-AES256-SHA256 

ECDHE-ECDSA-AES128-SHA256 DH-DSS-AES256-SHA256 

Autoscaling ASE in AWS environment
You can auto-scale ASE setup in AWS environment by completing the following steps:

1. Create and AMI for ASE
2. Create an IAM role in the Security, Identity, and Compliance
3. Create the Security Group
4. Create Launch Configuration
5. Create an Autoscale group

• Create an AMI for ASE
• Create an IAM role in the security, identity, and compliance
• Create the security group

PingIntelligence copyright © 2022

| 302



• Create launch configuration
• Create an auto-scale group

Create an AMI for ASE
Complete the following steps to create an AMI for ASE:

1. Create an RHEL 7.2 or later or Ubuntu 16.0 LTS EC2 instance
2. Install the AWS CLI by completing the following steps:

a. Install Python 2.7
b. Enter the following command:

sudo curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o 
"awscli-bundle.zip"

c. Unzip the CLI bundle
sudo unzip awscli-bundle.zip

d. Install the CLI:
sudo ./awscli-bundle/install -i /usr/local/aws -b /usr/bin/aws

3. Download the ASE AWS binary. After downloading the file, copy the ASE file to the /optdirectory.
4. Untar the binary in the EC2 instance. At the command prompt, type the following command to untar

the ASE file:
tar –zxvf <filename>

For example:

tar –zxvf ase-aws-rhel-3.2.2.tar.gz

5. To verify that ASE successfully installed, enter the ls command at the command prompt. This should
list the pingidentity directory and the build's tar file.For example:
/opt/$ ls
pingidentity ase-aws-rhel-3.2.2.tar.gz

6. Change directory to /opt/pingidentity/ase/bin
7. Run the install_service.sh aws script:

/opt/pingidentity/ase/bin$sudo ./install_service.sh aws
Installing ASE service for AWS Autoscale
This script will install ASE as a service
Do you wish to proceed (y/n)? y
Starting service installation
RHEL7.2 detected, installing ASE service
Created symlink from /etc/systemd/system/multi-user.target.wants/
ase.service to /etc/systemd/system/ase.service.
ASE service successfully installed

8. Create an AMI using this EC2 instance.

Note: When you are creating the AMI, do not select the “No Reboot” option

Parent topic:Autoscaling ASE in AWS environment

PingIntelligence copyright © 2022

| 303



Create an IAM role in the security, identity, and compliance
Complete the following steps to create an IAM role in the security, identity, and compliance:

1. Create an IAM role by selecting the EC2 instance:

2. Assign AmazonEC2ReadOnlyAccess privilege to the role.

PingIntelligence copyright © 2022

| 304



3. Provide the role name:

Parent topic:Autoscaling ASE in AWS environment

Create the security group
You must create a security group for the following ports used by ASE:

• Port 80: Accessible by API Clients/ELB
• Port 443: Accessible by API Clients/ELB
• Port 8010: Accessible by operations to execute CLI commands and REST API calls.
• Port 8020: Only accessible by peer ASE nodes in the same security group.

Create a security group based on the following table:

Type Protocol Port Source

Custom TCP TCP 80 API clients/ELB

Custom TCP TCP 443 API clients/ELB

Custom TCP TCP 80 Same security group

Custom TCP TCP 443 Same security group

Custom TCP TCP 8010 Same security group

Custom TCP TCP 8020 Same security group

Parent topic:Autoscaling ASE in AWS environment

Create launch configuration
Create the launch configuration that the auto-scaling group will use. To create the launch configuration,
complete the following steps:

1. Select the AMI created in Create an AMI for ASE section.
2. Create the EC2 instance based on the sizing requirement.
3. Assign the IAM role created in the Create an IAM Role in the Security, Identity, and Compliance

section to the launch configuration.
4. Complete the creation of launch configuration.

Parent topic:Autoscaling ASE in AWS environment

PingIntelligence copyright © 2022

| 305



Create an auto-scale group
Complete the following steps to create the auto scale group:

1. Create an auto-scale group using the launch configuration created in the previous section.
2. (Optional) Attach the ELB to the auto-scale group created in step 1.
3. Configure the following rules for the auto scale group:

a. Configure the “Increase Group Size” rule - Add one instance, when the Average CPU
utilization is greater than 90% for at least 2 consecutive periods of 5-minutes.

b. Configure the “Decrease Group Size” rule - Remove one instance, when the Average CPU
utilization is less than 10% for at least two consecutive periods of 5-minutes.

Optional: Uninstall the ASE service
If you wish to uninstall the ASE service installed in the Create an AMI for ASE section, run the
following command:
/opt/pingidentity/ase/bin$sudo ./uninstall_service.sh
This script will uninstall ASE service
Do you wish to proceed (y/n)? y
Starting service uninstallation 
RHEL 7.2 detected, uninstalling ASE Service..
ase stop/waiting
ASE service successfully uninstalled

Parent topic:Autoscaling ASE in AWS environment

PingIntelligence for APIs Dashboard
PingIntelligence for APIs Dashboard, also referred to as Dashboard, utilizes Elasticsearch and Kibana to
provide a graphical view of an API environment including traffic metrics, attack information, and blocked
connections. The Dashboard makes periodic REST API calls to an ABS engine which returns JSON reports
that are used to generate graphs. All the connections between browser to Kibana, from Kibana to
Elasticsearch, and from Elasticsearch to Dashboard are secured (SSL) connections. Organizations can
utilize the Dashboard examples to develop direct integration into in-house graphical management systems.

The following chart summarizes the software elements involved and data flow for generating ABS graphs:

For detailed information on installing and configuring an ABS engine, please see the ABS Admin Guide.

System requirements for Dashboard
PingIntelligence for APIs Dashboard, Elasticsearch, and Kibana should be installed on a separate Linux
server (x86_64 architecture, RHEL 7.2 or higher or Ubuntu 16 LTS). The following table shows the
recommended system requirements for up to 10,000 queries per second (QPS) of aggregate traffic.

CPU (2.4 GHz, Intel) Memory I/O Storage

4 CPU 8 GB 1 Gbps 500 GB

PingIntelligence copyright © 2022

| 306



The components can be installed in the following environments:

Component Environment

Kibana Browser: IE11+, Chrome, Firefox, and Safari
(Mac)

Elasticsearch RHEL 7.2 or higher and Ubuntu 16 LTS

PingIntelligence for APIs Dashboard RHEL 7.2 or higher and Ubuntu 16 LTS

Dashboard and Elasticsearch can be installed in any of the following environments:

• Amazon EC2
• VMware ESXi
• Bare Metal
• Docker Containers

Install and configure the PingIntelligence for APIs Dashboard
Install the following components on a RHEL 7.2 or higher or Ubuntu 16 LTS Linux Server:

• Elasticsearch 6.4.3
• Kibana 6.4.3
• Oracle JDK 8 update 161 or later

The Installation and configuration process of Dashboard is depicted in the diagram below:

Ensure that ports 9200 for Elasticsearch and 443 for Kibana are available for installation. If the ports are
not available, then configure different ports for Elasticsearch and Kibana in their respective configuration
files. To connect Kibana with Elasticsearch, edit kibana.yml and specify the Elasticsearch URL. Here is a
snippet from kibana.yml file showing the default Elasticsearch URL:

# The Elasticsearch instance to use for all your queries.
# elasticsearch.url: "https://localhost:9200"

During the installation and configuration process, the following user types are created:

PingIntelligence copyright © 2022

| 307



System users System users manage Elasticsearch and
Kibana

Dashboard users ping_admin
: Can view and edit Dashboard
ping_user
: Can only view the Dashboard

Make sure that you create strong passwords of more than six characters for all users. The default
password of all user types is changeme.

• Prerequisites to installation and configuration
• Download and install Dashboard
• Download and install Elasticsearch
• Download, install and initialize Kibana
• Install Ping styling plugin for Kibana
• Configure Dashboard
• Update the admin password

Prerequisites to installation and configuration
1. CA signed SSL certificates for Kibana and Elasticsearch
2. SSL private keys for Kibana and Elasticsearch
3. wget and openssl must be installed on your system
4. Dashboard, Elasticsearch and Kibana should run as a non-root user

Parent topic:Install and configure the PingIntelligence for APIs Dashboard

Download and install Dashboard
Download Dashboard from the download site to a Linux server. Complete the following steps:

1. Start shell as a non-root user
2. Change the directory to /opt

$cd /opt

3. Create a pingidentity directory
$ sudo mkdir pingidentity

4. Change the permissions for the pingidentity directory. The pingidentity directory will be
owned by a non-root user.
$ sudo chown -R "$(id -nu):$(id -ng)" /opt/pingidentity

5. Install Dashboard
$ tar -zxf dashboard-3.2.1.tar.gz

The following table shows the directories created when Dashboard is installed:

Directories Description

PingIntelligence copyright © 2022

| 308

https://www.pingidentity.com/en/resources/downloads.html


bin ABS Start and Stop scripts; Elasticsearch and
Kibana initialization scripts.

config dashboard.properties file used to
configure Dashboard
A subdirectory called dashboard
containing Kibana schema for each API

data Temporary storage for ABS data

lib Contains dashboard.jar and dependent
external jar files

plugins Contains the Ping styling plugin

logs Contains Dashboard log files which are
rotated every 24 hours

util Contains the
check_ports_dashboard.sh script to
check the availability of default Elasticsearch
and ABS ports to connect.

Parent topic:Install and configure the PingIntelligence for APIs Dashboard

Download and install Elasticsearch
Complete the following steps to download and install Elasticsearch:

1. Start shell as a non-root user
2. Change the directory to /opt

$cd /opt

3. Create an elasticsearch directory
$ sudo mkdir elasticsearch

4. Change the permissions for the elasticsearch directory. The elasticsearch directory will be
owned by a non-root user.
$ sudo chown -R "$(id -nu):$(id -ng)" /opt/elasticsearch

5. Change directory to elasticsearch
$ cd /opt/elasticsearch

6. Download Elasticsearch:
$ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.3.tar.gz

CAUTION: since this command wraps, enter it manually.

7. Install Elasticsearch:
$ tar -zxf elasticsearch-6.4.3.tar.gz

PingIntelligence copyright © 2022

| 309

https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.3.tar.gz


8. Change directory:
$ cd /opt/elasticsearch/elasticsearch-6.4.3

• Configure Elasticsearch

Parent topic:Install and configure the PingIntelligence for APIs Dashboard

Configure Elasticsearch
Configure Elasticsearch by running the dashboard_elasticsearch_init.sh script located in the
ABS Dashboard bin directory. The dashboard_elasticsearch_init.sh script asks for the full path
where you have saved the CA signed certificate. If you do not have a CA signed certificate, generate a self-
signed certificate without a passphrase using the OpenSSL commands.
$ /opt/pingidentity/dashboard/bin/dashboard_elasticsearch_init.sh

[pingidentity@localhost ~]$ /opt/pingidentity/dashboard/bin/
dashboard_elasticsearch_init.sh
updating elasticsearch configuration

Enter SSL CA Signed Certificate path >(full path)
Enter SSL Private Key Path >(full path)

enter pkcs#12 keystore new password >
enter pkcs#12 keystore new password again >

creating elasticsearch config keystore
config keystore created

creating password protected pkcs#12 keystore for private key and certificate
pkcs#12 keystore created at config/ssl/elastic-certificates.p12

Starting Elasticsearch to update default passwords. Please wait for 15 
seconds.
Elasticsearch started with pid 2532 and listening at https://localhost:9200

updating default user passwords

## elastic [superuser] password. Remember this password for the Dashboard 
setup
enter elastic user new password > 
enter elastic user password again >
password updated for user elastic

## kibana [kibana user] password. Remember this password for the Kibana setup
enter kibana user new password >
enter kibana user password again >
password updated for user kibana

Elasticsearch configuration is complete. Elasticsearch is running at https://
localhost:9200
[pingidentity@localhost ~]$

Parent topic:Download and install Elasticsearch

PingIntelligence copyright © 2022

| 310



Download, install and initialize Kibana
Complete the following steps to download and install Kibana:

1. Start shell as a non-root user
2. Change the directory to /opt

$cd /opt

3. Create a kibana directory
$ sudo mkdir kibana

4. Change the permissions for the kibana directory to ownership by a non-root user.
$ sudo chown -R "$(id -nu):$(id -ng)" /opt/kibana

5. Change directory to kibana
$ cd /opt/kibana

6. Download Kibana:
$ wget "https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-linux-x86_64.tar.gz" 

7. Install Kibana:
$ tar -zxf kibana-6.4.3-linux-x86_64.tar.gz

8. Change directory:
$ cd /opt/kibana/kibana-6.4.3-linux-x86_64

Note:
By default, the Kibana uses port 443 with su/sudo access. If you want to use any other port, for
example 5601, use:
$ export KIBANA_DEFAULT_PORT=5601

If you are a non-root user, use ports greater 1024.

Initialize Kibana: After installing Kibana, initialize Kibana by running the following command:
$ /opt/pingidentity/dashboard/bin/dashboard_kibana_init.sh

[pingidentity@localhost ~]$ /opt/pingidentity/dashboard/bin/
dashboard_kibana_init.sh 
updating Kibana configuration 
Enter SSL CA Signed Certificate path >(full path) 
Enter SSL Private Key Path >(full path) 
enter kibana [kibana user] password > 
enter kibana [kibana user] password again > 
Kibana configuration is complete. 
Starting Kibana in the background... 
Kibana started with pid 2535 and listening at https://[0.0.0.0]

Parent topic:Install and configure the PingIntelligence for APIs Dashboard

PingIntelligence copyright © 2022

| 311

https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-linux-x86_64.tar.gz
https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-linux-x86_64.tar.gz


Install Ping styling plugin for Kibana
Install the Ping styling plugin for Kibana by entering the following command:
./bin/kibana-plugin install
        file:///opt/pingidentity/dashboard/plugins/pingstyling-3.2.zip

After installing Kibana, initialize Kibana by running the following command:

$ /opt/pingidentity/dashboard/bin/dashboard_kibana_init.sh

[pingidentity@localhost ~]$ /opt/pingidentity/dashboard/bin/
dashboard_kibana_init.sh
updating Kibana configuration

Enter SSL CA Signed Certificate path >(full path)
Enter SSL Private Key Path >(full path)

enter kibana [kibana user] password >
enter kibana [kibana user] password again >

Kibana configuration is complete.

Starting Kibana in the background...
Kibana started with pid 2535 and listening at https://[0.0.0.0]

Parent topic:Install and configure the PingIntelligence for APIs Dashboard

Configure Dashboard
To configure the Dashboard, edit the dashboard.properties file which is part of the config directory
created when Dashboard was installed. In the dashboard.properties file, set the elasticsearch
password to match the password used when configuring Elasticsearch.

# Dashboard properties file
# ABS Hostname/IPv4 address
abs.host=127.0.0.1
# ABS REST API port
abs.port=8080
# ABS SSL enabled ( true/false )
abs.ssl=true
# ABS Restricted user access ( true/false )
abs.restricted_user_access=true
# ABS access key
abs.access_key=OBF:AES:NuBmDdIhQeNlRtU8SMKMoLaSpJviT4kArw==:HHuA9sAPDiOen3VU+qp6kMrkgNjAwnKO6aa8pMuZkQw=
# ABS secret key
abs.secret_key=OBF:AES:NuBmDcAhQeNlPBDmyxX+685CBe8c3/
STVA==:BIfH+FKmL5cNa1DrfVuyc5hIYjimqh7Rnf3bv9hW0+4=
# ABS query polling interval (minutes)
abs.query.interval=10
# ABS query offset (minutes. minimum value 30 minutes)
abs.query.offset=30
# elasticsearch URL
es.url=https://localhost:9200/

PingIntelligence copyright © 2022

| 312



# elasticsearch username. User should have manage_security privilege
es.username=elastic
# elasticsearch user password
es.password=OBF:AES:NOp0PNQvc/
RLUN5rbvZLtTPghqVZzD9V:+ZGHbhpY4HENYYqJ4wn50AmoO6CZ3OcfjqTYQCfgBgc=
# kibana version
kibana.version=6.4.3
# Log level
dashboard.log.level=INFO

Configure all parameters in the dashboard.properties file:

Parameter Description

abs.host IP address of the ABS server

Note: Two options exist to choose an ABS server: 1)
Utilize an existing ABS server. 2) For production
deployments, Ping Identity recommends dedicating
an ABS node exclusively for the Dashboard.

abs.port REST API port number of the ABS host – See
abs.properties
Default value is 8080

abs.ssl Setting the value to true ensures SSL communication between
ABS and PingIntelligence for APIs Dashboard

abs.restricted_user When set to
true
, Elasticsearch uses the restricted user header (configured in
pingidentity/abs/mongo/abs_init.js
file) to fetch the obfuscated values of OAuth token, cookie and
API keys. When set to
false
, the admin user header is used to fetch the data in plain text.
For more information on admin and restricted user header, see
ABS users for API reports

abs.access_key Access key from ABS – See
pingidentity/abs/mongo/abs_init.js
. Make sure to enter the access key based on the value set in
the previous variable. For example, if
abs.restricted_user
is set to true, then enter the access key for restricted user. If
abs.restricted_user
is set to false, then use the access key for the admin user.

abs.secret_key Secret key from ABS – See
pingidentity/abs/mongo/abs_init.js
. Make sure to enter the secret key based on the value set in the
previous variable. For example, if
abs.restricted_user

PingIntelligence copyright © 2022

| 313

https://docs.pingidentity.com/bundle/PingIntelligence_ABS_3.2_Admin_Guide_pingintel_32/page/abs_users_for_api_reports_and_dashboard.html


is set to true, then enter the secret key for restricted user. If
abs.restricted_user
is set to false, then use the secret key for the admin user.

abs.query.interval Polling interval to fetch data from ABS. The default is 10
minutes

abs.query.offset The time required by ABS to process access logs and generate
result. The minimum value is 30 mins and default value is 60
mins.

es.url Elasticsearch URL

es.username Elasticsearch username

es.password Elasticsearch password.

kibana.version Kibana version - default is 6.4.3

dashboard.log.level Log level for Dashboard
Default log level is
INFO
. Another log level is
DEBUG

Parent topic:Install and configure the PingIntelligence for APIs Dashboard

Update the admin password
Dashboard ships with the default user admin and the default password admin. You can change the default
password by using the update_password Dashboard CLI command:

/opt/pingidentity/dashboard/bin/cli.sh -u admin update_password -p
Password>

New Password>
Re-enter New Password>
Success. Password updated for CLI

Parent topic:Install and configure the PingIntelligence for APIs Dashboard

Obfuscate keys and passwords
Using Dashboard’s command line interface, you can obfuscate the keys and passwords configured in
dashboard.properties. The following keys and passwords are obfuscated:

• abs.access_key
• abs.secret_key
• es.password

Dashboard ships with a default dashboard_master.key which is used to obfuscate the various keys and
passwords. It is recommended to generate your own dashboard_master.key.

Note: During the process of obfuscation of keys and password, Dashboard must be stopped.

PingIntelligence copyright © 2022

| 314



The following diagram summarizes the obfuscation process:

Generate dashboard_master.key

You can generate the dashboard_master.key by running the generate_obfkey command in the
Dashboard CLI:

/opt/pingidentity/dashboard/bin/cli.sh generate_obfkey -u admin -p
Password>

Please take a backup of config/dashboard_master.key before proceeding.

Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh obfuscate_keys

Warning: Obfuscation master key file /opt/pingidentity/dashboard/config/
dashboard_master.key already exist. This command will delete it create a new 
key in the same file

Do you want to proceed [y/n]: y

creating new obfuscation master key
Success: created new obfuscation master key at /opt/pingidentity/dashboard/
config/dashboard_master.key

Obfuscate key and passwords

Enter the keys and passwords in clear text in dashboard.properties file. Run the obfuscate_keys
command to obfuscate keys and passwords:

/opt/pingidentity/dashboard/bin/cli.sh obfuscate_keys -u admin -p
Password>

Please take a backup of config/dashboard.properties before proceeding

Enter clear text keys and password before obfuscation.

Following keys will be obfuscated
 config/dashboard.properties: abs.access_key, abs.secret_key and es.password

Do you want to proceed [y/n]: y

obfuscating /opt/pingidentity/dashboard/config/dashboard.properties

Success: secret keys in /opt/pingidentity/dashboard/config/
dashboard.properties obfuscated

PingIntelligence copyright © 2022

| 315



Start Dashboard after passwords are obfuscated.

Important: After the keys and passwords are obfuscated and the Dashboard has started, move
the dashboard_master.key to a secure location away from the Dashboard for security
reasons. If you want to restart the Dashboard, the dashboard_master.key must be present
in the /opt/pingidentity/dashboard/config/ directory.

Start Dashboard
Prerequisite:

For Dashboard to start, the dashboard_master.key must be present in the /opt/pingidentity/
dashboard/config directory. If you have moved the master key to a secured location for security
reasons, copy it to the config directory before executing the start script.

To start the Dashboard, navigate to the /opt/pingidentity/dashboard/bin directory and enter the
following command:

[pingidentity@localhost bin]# ./start.sh

[pingidentity@localhost bin]# ./start.sh
Dashboard 3.2.1 starting…
Please see /opt/pingidentity/dashboard/logs/dashboard.log for more details
[pingidentity@localhost bin]#

After Dashboard is started, wait for 15 seconds for Dashboard to create the following two users:

• ping_admin
• ping_user

Note: Immediately after starting PingIntelligence for APIs Dashboard, change the password for
both the users.

Access the ABS Dashboard
Access the main dashboard with a browser at this URL: https://<ip:port>/app/kibana#/dashboard/
pingapiintelligence. In the above URL, <ip:port> is the IP address and port configured in kibana.yml.
The default port is 443. Change the password of the two users ping_admin and ping_user by
completing the following steps:

1. Navigate to the ABS Dashboard URL and log in using elastic user and the password set during
Elasticsearch configuration. The Kibana landing page is displayed.

PingIntelligence copyright © 2022

| 316



2. In the Kibana landing page, click Management. The Management page is displayed. In the
Management tab, click Users. The Users page is displayed:

3. On the Users page, click on ping_admin to change the email and password of ping_admin user.

4. On the ping_admin Users page, update the Email and Password fields and click Save:

Repeat steps 2 through 4 for ping_user to update Email and Password. Then log in with ping_user
credentials to view the dashboard. Here is a partial screen grab of the main dashboard:

PingIntelligence copyright © 2022

| 317



The main dashboard provides the following information:

• Attack Summary: total number of attacks, number of unique IP addresses and unique cookies
generating attacks. Note: a single IP or cookie could generate more than one attack, so the sum of
the unique IPs and cookies may be less than the total number of attacks.

• Time series chart of attacks: total number of attacks on each API over time
• Total number of attacks on each API
• API Metrics: Activity generated on each API - Requests Accepted (green) and Requests Rejected

(blue).
• API Information: information on each API including:

◦ Type – regular or decoy (see API Security Enforcer Admin Guide for decoy API explanation)
◦ Protocol – HTTP, WebSocket
◦ URL – URL to access API
◦ Hostname – host name for the API.
◦ Servers– number of servers hosting the API

For each API, an API-specific Dashboard can be displayed using the menu on the left-hand side (see
graphic to the right). Click Dashboard to display the list of APIs for which Dashboards are available.

PingIntelligence copyright © 2022

| 318



Click on a listed API name to display the detailed graphs. You can open more than one API by opening each
API dashboard in a new tab. A dashboard which is like the one shown below is displayed.

If graphs are not displayed due to Kibana errors, refresh your browser. Each dashboard displays the
following API specific reports:

Attack reporting:

• Attack summary: total number of attacks, number of unique IP addresses and unique cookies
generating attacks. Note: a single IP or cookie could generate more than one attack, so the sum of
the unique IPs and cookies may be less than the total number of attacks.

• Attack types: count of each type of attack. Attack type examples include data exfiltration, stolen
cookies, etc. See ABS Admin Guide for a complete list of attacks

API metric reporting

• Requests/API URLs – number of requests on each valid API URL
• Requests/Device-Type – number of requests per device type

Error and traffic control reporting

• Server error codes – Count of each error code returned from API servers.
• DoS/DDoS threshold exceeded per API – Count of traffic thresholds exceeded including Server

Spike, Client Spike, and Connection Quota Exceeded (See API Security Enforcer Admin Guide for
parameters).

• Blocked connections – Count of each blocked connection type.

Note: The graphs displayed are reference Kibana graphs. You can create scripts and graphs
that suit your deployment using REST API calls to the ABS engine.

PingIntelligence copyright © 2022

| 319



• Dashboard time series
• Stop Dashboard

Dashboard time series
ABS Dashboard shows the attacks in a time series format. Change the time series duration by clicking on
the time-period arrow located on the top right corner of the dashboard as shown in the following screen
capture:

Here is a screen capture of the time series data:

Parent topic:Access the ABS Dashboard

Stop Dashboard
To stop ABS Dashboard, navigate to the /opt/pingidentity/dashboard/bin directory and enter the
following command:

[piuser@localhost bin]# ./stop.sh

[piuser@localhost bin]# ./stop.sh
Dashboard 3.2.1 stopping…
Dashboard is stopped

Parent topic:Access the ABS Dashboard

Purge data from Elasticsearch
To manage storage on the Dashboard server, you can either archive or purge Elasticsearch data.
PingIntelligence provides a purge script to remove older Elasticsearch data.

PingIntelligence copyright © 2022

| 320



Warning: When the purge script is run, all files are permanently deleted from the Elasticsearch
data directory.

To run the purge script, enter the following in Dashboard command line:

/opt/pingidentity/util/purge_elasticsearch.sh -d 3

In the above example, purge.sh deletes all files older than 3 days. Here is a sample output:

/opt/pingidentity/util/purge_elasticsearch -d 3
This will delete the data in elastic search which is older than 3 days.
Are You sure(yes/no):yes
2017-04-17 11:13:07 INFO Starting purge with options, days : 3 
path : /opt/poc/pingidentity/dashboard/config/dashboard.properties

To delete all data and Elasticsearch templates, use the following:

curl -s https://<elasticsearch_ip_address>:<port>/_all -X DELETE

When you use the -X DELETE option, the system goes back to a fresh installation state.

Purge dashboard logs
A purge.sh script either archives or purges processed access log files which are stored in the /opt/
pingidentity/dashboard/logs directory.

Note: When the purge script is run, the log files are permanently deleted from the /opt/
pingidentity/dashboard/logs directory. Always backup the files before deleting.

Located in the /opt/pingidentity/dashboard/util directory, the purge script deletes logs older
than the specified number of days. Run the script using the ABS command line. For example:

/opt/pingidentity/dashboard/util/purge.sh -d 3
In the above example, purge.sh deletes all access log files older than 3 
days. Here is sample output.
/opt/pingidentity/dashboard/util/purge.sh -d 3
This will delete the data in /opt/pingidentity/dashboard/logs which is older 
than 3 days.
Are you sure (yes/no): yes
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-07 : last 
changed at Sat Feb  9 00:29:43 EST 2019
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-09 : last 
changed at Mon Feb 11 00:29:48 EST 2019
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-08 : last 
changed at Sun Feb 10 00:29:56 EST 2019
Done.

Force delete: You can force delete the Dashboard log files by using the -f option with purge.sh script.
When you use the force purge option, the script does not check for confirmation to purge the log files. You
can use the force purge option with the -d option to provide the number of days of logs you wish to keep.

PingIntelligence copyright © 2022

| 321



Example: The following snippet shows the usage of force purge option with the -d option:
/opt/pingidentity/dashboard/util/purge.sh -d 2 -f
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-07 : last 
changed at Sat Feb  9 00:31:26 EST 2019
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-09 : last 
changed at Mon Feb 11 00:31:30 EST 2019
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-08 : last 
changed at Sun Feb 10 00:31:35 EST 2019
Done.

In the above example, the script force purges the Dashboard log files while keeping log files of 2-days.

External log archival

The purge script can also archive logs older than the specified number of days to secondary storage. Use
the -l option and include the path of the secondary storage to archive log files. For example:

/opt/pingidentity/dashboard/util/purge.sh -d 3 -l /tmp/

In the above example, log files older than 3-days are archived to the tmp directory. To automate log
archival, add the script to a cron job.

Deployment
The topic gives a summary about PingIntelligence products, the different users that can install the product
and the time zone in which the products can be deployed.

PingIntelligence for APIs software combines real-time security and AI analytic to detect, report, and block
cyberattacks on data and applications exposed via APIs. The software consists of two platforms: API
Security Enforcer and API Behavioral Security Artificial Intelligence engine.

API Security Enforcer (ASE)

Applies real-time inline inspection of API traffic to detect and block attacks. ASE works with the ABS engine
to identify attacks.

API Behavioral Security (ABS)

Executes AI algorithms to detect in near real-time cyberattacks targeting data, applications, and systems
via APIs. Attack information can be automatically pushed to all ASEs to block ongoing breaches and
prevent reconnection.

PingIntelligence for APIs Dashboard

PingIntelligence for APIs Dashboard utilizes Elasticsearch and Kibana to provide a graphical view of an API
environment including traffic metrics, attack types and blocked connections. The PingIntelligence for APIs
Dashboard makes periodic REST API calls to an ABS engine which returns JSON reports that are used to
generate graphs. Organizations can utilize the PingIntelligence for APIs Dashboard examples to develop
direct integration into in-house graphical management systems.

PingIntelligence copyright © 2022

| 322



Users

You can install all the PingIntelligence products either as a root user or a non-root user. Make sure that the
entire deployment is a homogenous deployment. Either all the products should be installed as a root user
or as a non-root user.

Time zone

All the PingIntelligence products namely ASE, ABS, Dashboard, and AAD should be in the same timezone.
Make sure that the third-party product, MongoDB, is also in the same timezone as PingIntelligence
products.

Part A – Install ASE
The ASE installation process is summarized below:

• Provision the system based on number of APIs and the expected queries per second (QPS). For
information on sizing, contact PingIntelligence.

• Install ASE
• Configure ASE using the /opt/pingidentity/ase/config/ase.conf file
• Understand the ASE logical deployment options

• ASE ports
• API Security Enforcer deployment modes
• Install ASE software
• ASE license
• Change default settings
• Obfuscate keys and passwords
• Start and Stop ASE
• Configure SSL for external APIs
• ASE cluster setup (optional)

ASE ports
ASE uses default ports as defined in the table below. If any ports configured in ase.conf file is
unavailable, ASE will not start.

Port Number Usage

80 Data port for HTTP and WebSocket connections. Accessible from any
client (not secure). If you are installing ASE as a non-root user, choose
a port that is greater than or equal to 1024.

443 Data port for HTTPS and Secure WebSocket (wss) connections.
Accessible from any client. If you are installing ASE as a non-root
user, choose a port that is greater than or equal to 1024.

8010 Management port used by CLI and REST API for managing ASE.
Accessible from management systems and administrators

8020 Cluster port used by ASE for cluster communication. Accessible from
all cluster nodes.

8080, 9090 ABS ports used by ASE for outbound connections to ABS for sending
access logs and receive client identifiers of suspected attacks.

PingIntelligence copyright © 2022

| 323



Important: The management ports 8010 and 8020 should not be exposed to the Internet. If
you are setting up the deployment in an AWS environment with security groups, use private IPs
for ASE to ABS connections to avoid security group issues.

Parent topic:Part A – Install ASE

API Security Enforcer deployment modes
API Security Enforcer supports REST and WebSocket APIs and can dynamically scale and secure system
infrastructure. ASE can be deployed in Inline or Sideband mode.

Inline mode

In the inline deployment mode, ASE sits at the edge of your network to receive the API traffic. It can also be
deployed behind an existing load balancers such as AWS ELB. In inline mode, API Security Enforcer
deployed at the edge of the datacenter, terminates SSL connections from API clients. It then forwards the
requests directly to the correct APIs – and app servers such as Node.js, WebLogic, Tomcat, PHP, etc.

To configure ASE to work in the Inline mode, set the mode=inline in the /opt/pingidentity/ase/
config/ase.conf file.

Some load balancers (for example, AWS ELB) require responses to keep alive messages from all devices
receiving traffic. In an inline mode configuration, ASE should be configured to respond to these keep alive
messages by updating the enable_ase_health variable in the /opt/pingidentity/ase/config/
ase.conf file. When enable_ase_health is true, load balancers can perform an ASE health check
using the following URL: http(s)://<ASE Name>/ase where <ASE Name> is the ASE domain name. ASE will
respond to these health checks.

Sideband mode

ASE when deployed in the sideband mode, works behind an existing API gateway. The API request and
response data between the client and the backend resource or API server is sent to ASE. In this case, ASE
does not directly terminate the client requests.

To configure ASE to work in the Inline mode, set the mode=sideband in the /opt/
pingidentity/ase/config/ase.conf file.

PingIntelligence copyright © 2022

| 324



Following is a description of the traffic flow through the API gateway and Ping Identity ASE.

1. Incoming request to API gateway
2. API gateway makes an API call to send the request detail in JSON format to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP against the AI

generated Blacklist. If all checks pass, ASE returns a 200-OK response to the API gateway. Else, a
different response code is sent to the Gateway. The request is also logged by ASE and sent to the AI
Engine for processing.

4. If the API gateway receives a 200-OK response from ASE, then it forwards the request to the backend
server, else the Gateway returns a different response code to the client.

5. The response from the backend server is received by the API gateway.
6. The API gateway makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to the API gateway.
8. API gateway sends the response received from the backend server to the client.

Note: Complete the ASE sideband mode deployment by referring to API gateway specific
deployment section on the PingIdentity documentation site.

Parent topic:Part A – Install ASE

Install ASE software
ASE supports RHEL 7.2 or higher or Ubuntu 16 LTS on an EC2 instance, bare metal x86 server, and VMware
ESXi.

Complete the following steps to install ASE. You can install ASE as a root user or as a non-root user. The
example installation path assumes that you are root user. The installation works in a similar way for a non-
root user.

1. Go to the download site
2. Click on Select under PingIntelligence
3. Choose the correct build and click Download.
4. After downloading the file, copy the ASE file to the /opt directory or any other directory where you

want to install ASE.

PingIntelligence copyright © 2022

| 325

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/api_security_enforcer___sideband.html
https://www.pingidentity.com/en/resources/downloads.html


5. Change working directory to /opt if you are installing the product as a root user. Choose any other
location if you want to install ASE as a non-root user.

6. At the command prompt, type the following command to untar the ASE file:
tar –zxvf <filename>

For example:
tar –zxvf ase-aws-rhel-3.2.1.tar.gz

7. To verify that ASE successfully installed, type the ls command at the command prompt. This should
list the pingidentity directory and the build’s .tar file. For example:

/opt/pingidentity/ase/bin/$ ls
pingidentity ase-aws-rhel-3.2.1.tar.gz

Parent topic:Part A – Install ASE

ASE license
To start ASE, you need a valid license. There are two types of ASE licenses:

• Trial license – The trial license is valid for 30 days. At the end of the trial period, ASE stops
accepting traffic.

• Subscription license – The subscription license is based on the subscription period. It is a good
practice to configure your email before configuring the ASE license. ASE sends an email notification
to the configured email ID in case the license has expired. Contact the PingIntelligence for APIs sales
team for more information.

Configure ASE license

To configure the license in ASE, request for a license file from the PingIntelligence for APIs sales team. The
name of the license file must be PingIntelligence.lic. Copy the license file to the /opt/
pingidentity/ase/config directory and start ASE.

Update an existing license

If your existing license has expired, obtain a fresh license from PingIntelligence for APIs sales team and
replace the license file in the /opt/pingidentity/ase/config directory. Make sure to stop and start
ASE after the license file is updated.

Parent topic:Part A – Install ASE

Change default settings
It is recommended that you change the default key and password in ASE. Following is a list of commands
to change the default values:

Change ase_master.key

Run the following command to create your own ASE master key to obfuscate keys and password in ASE.

Command: generate_obfkey. ASE must be stopped before creating a new ase_master.key
/opt/pingidentity/ase/bin/cli.sh admin generate_obfkey -u admin -p admin
API Security Enforcer is running. Please stop ASE before generating new 
obfuscation master key

PingIntelligence copyright © 2022

| 326

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/configuring_email_notifications.html


Stop ASE: Stop ASE by running the following command:
/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…sending stop request to ASE. please 
wait…
API Security Enforcer stopped

Change ase_master.key: Enter the generate_obfkey command to change the default ASE master
key:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin generate_obfkey
Please take a backup of config/ase_master.key, config/ase.conf,
config/abs.conf, config/cluster.conf before proceeding
Warning: Once you create a new obfuscation master key, you should 
obfuscate all config keys also using cli.sh obfuscate_keys
Warning: Obfuscation master key file /opt/pingidentity/ase/config/
ase_master.key already exist. 
This command will delete it create a new key in the same file
Do you want to proceed [y/n]:

Start ASE: After a new ASE master key is generated, start ASE by entering the following command:
/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 3.2.1...
please see /opt/pingidentity/ase/logs/controller.log for more details

Change keystore password

You can change the keystore password by entering the following command. The default password is
asekeystore. ASE must be running for updating the keystore password.

Command: update_keystore_password
/opt/pingidentity/ase/bin/cli.sh update_keystore_password -u admin -p admin
New password >
New password again >
keystore password updated

Change admin password
You can change the default admin password by entering the following command:
/opt/pingidentity/ase/bin/cli.sh update_password -u admin -p admin
Old password >
New password >
New password again >
Password updated successfully

Parent topic:Part A – Install ASE

Obfuscate keys and passwords
You must obfuscate the keys and passwords configured in ase.conf,cluster.conf, and abs.conf
in the config directory. ASE ships with a default ase_master.key which is used to obfuscate the various
keys and passwords. It is recommended to generate your own ase_master.key.

The following keys and passwords are obfuscated in the three configuration files:

PingIntelligence copyright © 2022

| 327



• ase.conf – Email and Keystore (PKCS#12) password
• cluster.conf – ABS access and secret key
• abs.conf – Cluster authentication key

Note: During the process of obfuscation of keys and password, ASE must be stopped.

The following diagram summarizes the obfuscation process:

Generate your ase_master.key

You can generate the ase_master.key by running the generate_obfkey command in the ASE CLI:

/opt/pingidentity/ase/bin/cli.sh generate_obfkey -u admin -p 
Please take a backup of config/ase_master.key, config/ase.conf, 
config/abs.conf, config/cluster.conf before proceeding

Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh obfuscate_keys

Warning: Obfuscation master key file /opt/pingidentity/ase/config/
ase_master.key 
already exist. 

This command will delete it create a new key in the same file
Do you want to proceed [y/n]:y
creating new obfuscation master key
Success: created new obfuscation master key at 
/opt/pingidentity/ase/config/ase_master.key

The new ase_master.key is used to obfuscate the keys and passwords in the various configuration
files.

Important: In an ASE cluster, the new ase_master.key must be manually copied to each of
the cluster nodes.

Obfuscate key and passwords

Enter the keys and passwords in clear text in ase.conf, cluster.conf, and abs.conf. Run the
obfuscate_keys command to obfuscate keys and passwords:

/opt/pingidentity/ase/bin/cli.sh obfuscate_keys -u admin -p 
Please take a backup of config/ase_master.key, config/ase.conf, config/
abs.conf, and config/cluster.conf before proceeding
If config keys and password are already obfuscated using the current master 
key, it is not obfuscated again

PingIntelligence copyright © 2022

| 328



Following keys will be obfuscated:
config/ase.conf: sender_password, keystore_password
config/abs.conf: access_key, secret_key
config/cluster.conf: cluster_secret_key
Do you want to proceed [y/n]:y
obfuscating config/ase.conf, success
obfuscating config/abs.conf, success
obfuscating config/cluster.conf, success

Start ASE after keys and passwords are obfuscated.

Important: After the keys and passwords are obfuscated, the ase_master.key must be
moved to a secure location from ASE.

Parent topic:Part A – Install ASE

Start and Stop ASE
Prerequisite:

For ASE to start, the ase_master.key must be present in the /opt/pingidentity/ase/config
directory. If you have moved the master key to a secured location for security reasons, copy it to the
config directory before executing the start script.

Change working directory to bin and run the start.sh script.

/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 3.2.1...
please see /opt/pingidentity/ase/logs/controller.log for more details

Stop ASE

Change working directory to bin and run the stop.sh script.

/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…
sending stop request to ASE. please wait…
API Security Enforcer stopped

Parent topic:Part A – Install ASE

Configure SSL for external APIs
ASE supports both TLS 1.2 and SSLv3 for external APIs. You can configure SSL in ASE for client side
connection using one of the following methods:

• Method 1: Using CA-signed certificate
• Method 2: Using self-signed certificate
• Method 3: Importing an existing certificate

The steps provided in this section are for certificate and key generated for connections between the client
and ASE as depicted in the illustration below:

PingIntelligence copyright © 2022

| 329



In a cluster setup:

1. Stop all the ASE cluster nodes
2. Configure the certificate on the management node. For more information on management node, see

API Security Enforcer Admin Guide.
3. Start the cluster nodes one by one for the certificates to synchronize across the nodes

Enable SSLv3

By default, SSLv3 is disabled due to security vulnerabilities. To change the default and enable SSLv3, stop
ASE and then change enable_sslv3 to true in ase.conf file. Restart ASE to activate SSLv3 protocol
support. SSLV3 is only supported for client to ASE connections, not ASE to backend server connections.

; SSLv3
enable_sslv3=true

Method 1: Using CA-signed certificate

To use Certificate Authority (CA) signed SSL certificates, follow the process to create a private key,
generate a Certificate Signing Request (CSR), and request a certificate as shown below:

Note: ASE internally validates the authenticity of the imported certificate.

To use a CA-signed certificate:

1. Create a private key. ASE CLI is used to create a 2048-bit private key and to store it in the keystore.
/opt/pingidentity/ase/bin/cli.sh create_key_pair -u admin -p
Warning: create_key_pair will delete any existing key_pair, CSR and self-
signed certificate
Do you want to proceed [y/n]:y
OK, creating new key pair. Creating DH parameter may take around 20 
minutes. Please wait
Key created in keystore
dh param file created at /opt/pingidentity/ase/config/certs/dataplane/
dh1024.pem

PingIntelligence copyright © 2022

| 330



2. Create a CSR. ASE takes you through a CLI-based interactive session to create a CSR.
/opt/pingidentity/ase/bin/cli.sh create_csr -u admin -p 
Warning: create_csr will delete any existing CSR and self-signed 
certificate
Do you want to proceed [y/n]:y
please provide following info
Country Code >US
State > Colorado
Location >Denver
Organization >Pingidentity
Organization Unit >Pingintelligence
Common Name >ase
Generating CSR. Please wait...
OK, csr created at /opt/pingidentity/ase/config/certs/dataplane/ase.csr

3. Upload the CSR created in step 2 to the CA signing authority’s website to get a CA signed certificate.
4. Download the CA-signed certificate from the CA signing authority’s website.
5. Use the CLI to import the signed CA certificate into ASE. The certificate is imported into the keystore.

/opt/pingidentity/ase/bin/cli.sh import_cert <CA signed certificate path> -u 
admin -p 
Warning: import_cert will overwrite any existing signed certificate
Do you want to proceed [y/n]:y
Exporting certificate to API Security Enforcer...
OK, signed certificate added to keystore

6. Restart ASE by first stopping and then starting ASE.

Method 2: Use self-signed certificate

A self-signed certificate is also supported for customer testing.

To create a self-signed certificate

1. Create a private key. ASE CLI is used to generate a 2048-bit private key which is in the /opt/1.
pingidentity/ase/config/certs/dataplane/dh1024.pem directory.

/opt/pingidentity/ase/bin/cli.sh create_key_pair -u admin -p

Warning: create_key_pair will delete any existing key_pair, CSR and self-
signed certificate
Do you want to proceed [y/n]:y
OK, creating new key pair. Creating DH parameter may take around 20 
minutes. Please wait
Key created in keystore
dh param file created at /opt/pingidentity/ase/config/certs/dataplane/
dh1024.pem

2. Create a self-signed certificate. Use the CLI to produce a self-signed certificate located in /
pingidentity/ase/config/certs/dataplane/ase.csr
/opt/pingidentity/ase/bin/cli.sh create_self_sign_cert -u admin -p
Warning: create_self_sign_cert will delete any existing self-signed 
certificate

PingIntelligence copyright © 2022

| 331



Do you want to proceed [y/n]:y
Creating new self-signed certificate
OK, self-sign certificate created in keystore 

3. Restart ASE by stopping and starting.

Method 3: import an existing certificate and key-pair

To install an existing certificate, complete the following steps and import it into ASE. If you have
intermediate certificate from CA, then append the content to your server .crt file.

1. Create the key from the existing .pem file:
openssl rsa -in private.pem -out private.key

2. Convert the existing .pem file to a .crt file:
openssl x509 -in server-cert.pem -out server-cert.crt

3. Import key pair from step 2:
/opt/pingidentity/ase/bin/cli.sh import_key_pair private.key -u admin -p
Warning: import_key_pair will overwrite any existing certificates
Do you want to proceed [y/n]:y
Exporting key to API Security Enforcer...
OK, key pair added to keystore

4. Import the .crt file in ASE using the import_cert CLI command:
/opt/pingidentity/ase/bin/cli.sh import_cert server-crt.crt -u admin -p
Warning: import_cert will overwrite any existing signed certificate
Do you want to proceed [y/n]:y
Exporting certificate to API Security Enforcer...
OK, signed certificate added to keystore

5. Restart ASE by stopping and starting.

Important: You can also configure for Management APIs. For more information on configuring
SSL for management APIs, see Configure SSL for Management APIs.

Parent topic:Part A – Install ASE

ASE cluster setup (optional)
For production environments, Ping Identity recommends setting up a cluster of ASE nodes for improved
performance and availability.

Note: Enable NTP on each ASE node system. All cluster nodes must be in the same time zone.

To setup an ASE cluster node:

1. Navigate to the config directory
2. Edit ase.conf file:

a. Set enable_cluster=true for all cluster nodes.

PingIntelligence copyright © 2022

| 332

https://docs.pingidentity.com/bundle/PingIntelligence_API_Security_Enforcer_3.2_pingintel_32/page/configure_ssl_for_management_apis.html


b. Confirm that the parameter mode is the same on each ASE cluster node, either inline or
sideband. If parameter mode values do not match, the nodes will not form a cluster.

3. Edit the cluster.conf file:
a. Configure cluster_id with an identical value for all nodes in a single cluster (for example,

cluster_id=shopping)
b. Enter port number in the cluster_management_port parameter. ASE node uses this port

number to communicate with other nodes in the cluster.
c. Enter an IPv4 address or hostname with the port number for peer_node which is the first (or

any existing) node in the cluster. Keep peer_node empty for the first cluster node.
d. Provide the cluster_secret_key which must be the same in each cluster node. It must be

entered on each cluster node before the nodes to connect to each other.

Here is a sample cluster.conf file:

; API Security Enforcer's cluster configuration.
; This file is in the standard .ini format. The comments start with a 
; semicolon (;).
; Section is enclosed in []
; Following configurations are applicable only if cluster is enabled 
; with true in ase.conf
; unique cluster id.
; valid character class is [ A-Z a-z 0-9 _ - . / ]
; nodes in same cluster should share same cluster id
cluster_id=ase_cluster

; cluster management port.
cluster_manager_port=8020

; cluster peer nodes.
; a comma-separated list of hostname:cluster_manager_port or 
; IPv4_address:cluster_manager_port
; this node will try to connect all the nodes in this list
; they should share same cluster id
peer_node=

; cluster secret key.
; maximum length of secret key is 128 characters (deobfuscated length).
; every node should have same secret key to join same cluster.
; this field can not be empty.
; change default key for production.
cluster_secret_key=OBF:AES:nPJOh3wXQWK/BOHrtKu3G2SGiAEElOSvOFYEiWfIVSdu

4. After configuring an ASE node, start the node by running the following command:
/opt/pingidentity/ase/bin/start.sh

• Scale up the ASE cluster
• Scale down the ASE cluster
• Delete a cluster node
• Stop ASE cluster

Parent topic:Part A – Install ASE

PingIntelligence copyright © 2022

| 333



Scale up the ASE cluster
Scale up the ASE cluster by adding nodes to an active cluster without disrupting traffic. To add a new
cluster node, enter the peer_node IP address or hostname in the cluster.conf file of the ASE node
and then start the ASE node. The new node will synchronize configuration and cookie data from the peer
nodes. After loading, it will become part of the cluster. For example, if the IP of the first node is
192.168.20.121 with port 8020, then the peer_node parameter would be 192.168.20.121:8020.

; ASE cluster configuration. These configurations apply only when 
; you have enabled cluster in the api_config file.
; Unique cluster ID for each cluster. All the nodes in the same cluster 
; should have the same cluster ID.
cluster_id=ase_cluster
; Cluster management port.
cluster_manager_port=8020
; Cluster's active nodes. This can be a comma separated list of nodes in 
; ipv4_address:cluster_manager_port format.
peer_node=192.168.20.121:8020

Parent topic:ASE cluster setup (optional)

Scale down the ASE cluster
A node can be removed from an active cluster without disrupting traffic by performing the following:

1. Stop the ASE node to be removed.
2. Set the enable_cluster option as false in its ase.conf file.

Note: The removed node retains the cookie and certificate data from when it was part of the
cluster.

Parent topic:ASE cluster setup (optional)

Delete a cluster node
An inactive cluster node has either become unreachable or has been stopped. When you delete a stopped
cluster node, the operation does not remove cookie and other synchronized data. To find which cluster
nodes are inactive, use the cluster_info command:

/opt/pingidentity/ase/bin/cli.sh cluster_info -u admin -p 
cluster id : ase_cluster
cluster nodes
127.0.0.1:8020 active
1.1.1.1:8020 active
2.2.2.2:8020 inactive
172.17.0.4:8020(tasks.aseservice) active
172.17.0.5:8020(tasks.aseservice) inactive
tasks.aseservice2:8020 not resolved

Using the cluster_info command output, you can remove the inactive cluster nodes 2.2.2.2:8020 and
172.17.0.5:8020.

To delete the inactive node, use the delete_cluster_node command:

PingIntelligence copyright © 2022

| 334



/opt/pingidentity/ase/bin/cli.sh delete_cluster_node <IP:Port>

Parent topic:ASE cluster setup (optional)

Stop ASE cluster
Stop the entire cluster by running the following command on any node in the cluster.

/opt/pingidentity/ase/bin/stop.sh cluster –u admin –p 

When the cluster stops, each cluster node retains all the cookie and certificate data.

Parent topic:ASE cluster setup (optional)

Part B – Install ABS and MongoDB
The ABS Engine installation process is summarized below:

• Provision systems based on the queries per second (QPS)
• Install MongoDB in a replica set
• Install ABS engine
• Connect ABS engine to MongoDB

• Install ABS AI engine software
• ABS License
• Obfuscate passwords
• Configure SSL
• Import existing CA-signed certificates
• Install MongoDB software
• Change default settings
• Connect ABS to MongoDB
• Start and Stop ABS

Install ABS AI engine software
You can install ABS as a root user or as a non-root user. The example installation path assumes that you
are root user. The installation works in a similar way for a non-root user.

1. Go to the download site
2. Click on Select under PingIntelligence
3. Choose the build and click Download.

Copy the build file to the /opt directory if you are installing the product as a root user. Choose any other
location if you want to install ABS as a non-root user.

Install ABS

Before installing ABS, install Oracle JDK 8 update 161 or later on a 64-bit architecture machine with Ubuntu
16 LTS or RHEL7. To verify the Java version, run the following command:

# java -version

It is recommended to install only one instance of ABS on each machine. MongoDB should be installed on a
different machine from ABS.

PingIntelligence copyright © 2022

| 335

https://www.pingidentity.com/en/resources/downloads.html


To install ABS, complete the following steps.

1. Change working directory to /opt if you are installing the product as a root user. Choose any other
location if you want to install ABS as a non-root user.

2. At the command prompt, type: # tar –zxvf <file_name>

For example, # tar –zxvf abs-3.2.1.tar.gz

Parent topic:Part B – Install ABS and MongoDB

ABS License
To start ABS, you need a valid license. There are two types of ABS licenses:

• Trial license – The trial license is valid for 30-days. At the end of the trial period, ABS stops
processing.

• Subscription license – The subscription license is based on the peak number of transactions
subscribed for per month and the duration of the license. It is a good practice to configure your email
before configuring the ABS license. ABS sends an email notification to the configured email ID when
the license has expired. Contact the PingIntelligence for APIs sales team for more information.

Add an ABS license

If you have not received an ABS license, request a license file from Ping sales. The name of the license file
must be PingIntelligence.lic. Copy the license file to the/opt/pingidentity/abs/config
directory and then start ABS.

Update an existing license

If your existing license has expired, obtain a new license from Ping sales and replace the license file in
the /opt/pingidentity/abs/config directory. Stop and then start ABS after the license file is
updated.

Checking the current transaction count
The transaction count is updated every day after 00:00 hours midnight in the /opt/
pingidentity/abs/logs/abs.log file. To check the current monthly transaction count, grep for
Current Transactions in the abs.log file. Following is a sample snippet for the current number of
transactions:
$ grep "Current Transactions" *
abs.log:2018-12-19 00:01:25 INFO - Current Transactions: 289088158 between 
earlier date: Sat Dec 01 00:00:00 EST 2018 and later date: Tue Dec 18 
23:59:59 EST 2018

The earlier date is always the starting date of the month.
Parent topic:Part B – Install ABS and MongoDB

Obfuscate passwords
Using ABS command line interface, you can obfuscate the keys and passwords configured in
abs.properties. The following keys and passwords are obfuscated:

• mongo_password
• jks_password
• email_password

PingIntelligence copyright © 2022

| 336

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/configure_email_notifications.html


ABS ships with a default abs_master.key which is used to obfuscate the various keys and passwords. It
is recommended to generate your own abs_master.key. The default jks_passwordabs123 is
configured in the abs.properties file.

Note: During the process of obfuscation of keys and password, ABS must be stopped.

The following diagram summarizes the obfuscation process:

Generate abs_master.key

You can generate the abs_master.key by running the generate_obfkey command in the ABS CLI:

/opt/pingidentity/abs/bin/cli.sh generate_obfkey -u admin -p admin

Please take a backup of config/abs_master.key before proceeding.

Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh -obfuscate_keys

Warning: Obfuscation master key file
/pingidentity/abs/config/abs_master.key already exist. This command will 
delete it create a new key in the same file

Do you want to proceed [y/n]: y

creating new obfuscation master key
Success: created new obfuscation master key at /pingidentity/abs/config/
abs_master.key

The new abs_master.key is used to obfuscate the passwords in abs.properties file.

Important: In an ABS cluster, the abs_master.key must be manually copied to each of the
cluster nodes.

Obfuscate key and passwords

Enter the keys and passwords in clear text in abs.properties file. Run the obfuscate_keys
command to obfuscate keys and passwords:

/opt/pingidentity/abs/bin/cli.sh obfuscate_keys -u admin -p admin

Please take a backup of config/abs.password before proceeding

Enter clear text keys and password before obfuscation.

PingIntelligence copyright © 2022

| 337



Following keys will be obfuscated

config/abs.properties: mongo_password, jks_password and email_password
Do you want to proceed [y/n]: y

obfuscating /pingidentity/abs/config/abs.properties

Success: secret keys in /pingidentity/abs/config/abs.properties obfuscated

Start ABS after passwords are obfuscated.

Important: After the keys and passwords are obfuscated, the abs_master.key must be
moved to a secure location from ABS.

Parent topic:Part B – Install ABS and MongoDB

Configure SSL
ABS supports only TLS 1.2 and requires Java 8 u161 and later. You can configure SSL by setting the value
of enable_ssl parameter to true in pingidentity/abs/mongo/abs_init.js file. Setting the value to
true enables SSL communication between ASE and ABS as well as for ABS external REST APIs. Following
is a snippet of the abs.init file with enable_ssl parameter set to true:

db.global_config.insert({
"attack_initial_training": "24",
"attack_update_interval": "24",
"url_limit": "100",
"response_size": "100",
"job_frequency" : "10",
"window_length" : "24",
"enable_ssl": true,
"api_discovery": false,
"discovery_initial_period" : "24",
"discovery_subpath": "1",
"continuous_learning": true,
"discovery_update_interval": "1",
"attack_list_count": "500000",
"resource_monitor_interval" : "10",
"percentage_diskusage_limit" : "80"

});

ABS ships with a default self-signed certificate with Java Keystore at abs/config/ssl/abs.jks and
the default password set to abs123 in the abs.properties file. The default password is obfuscated in
the abs.properties file. It is recommended to change the default passwords and obfuscate the new
passwords. See Obfuscate passwords for steps to obfuscate passwords.

If you want to use your own CA-signed certificates, you can import them in ABS.

Parent topic:Part B – Install ABS and MongoDB

Import existing CA-signed certificates
You can import your existing CA-signed certificate in ABS. To import the CA-signed certificate, stop ABS if
it is already running. Complete the following steps to import the CA-signed certificate:

PingIntelligence copyright © 2022

| 338



1. Export your CA-signed certificate to PKCS12 store by entering the following command:
# openssl pkcs12 -export -in <your_CA_cerficate.crt> \
-inkey <your_certificate_key.key> \
-out abs.p12 -name <alias_name>

For example:
# openssl pkcs12 -export -in ping.crt -inkey ping.key -out \
abs.p12 -name exampleCAcertificate
Enter Export Password:
Verifying - Enter Export Password:

Note: If you have intermediate certificate from CA, then append the content to the
<your_CA_certificate>.crt file.

2. Import the certificate and key from the PKCS12 store to Java Keystore by entering the following
command. The command requires the destination keystore password. The destination keystore
password entered in the command should be same that is configured in the abs.properties file.

The following is a snippet of the abs.properties file where the destination keystore password is
stored. The password is obfuscated.

# Java Keystore password
jks_password=OBF:AES:Q3vcrnj7VZILTPdJnxkOsyimHRvGDQ==:daYWJ5QgzxZJAnTkuRlFpreM1rsz3FFCulhAUKj7ww4=

Enter the following command:

# keytool -importkeystore -destkeystore abs.jks -srckeystore \
abs.p12 -srcstoretype PKCS12 -alias <alias_name>

For example:

# keytool -importkeystore -destkeystore abs.jks -srckeystore \
abs.p12 -srcstoretype PKCS12 -alias exampleCAcertificate

Importing keystore abs.p12 to abs.jks...
Enter destination keystore password:
Re-enter new password:
Enter source keystore password:

3. Copy the abs.jks file created in step 2 to /opt/pingidentity/abs/config/ssl directory.
4. Start ABS by entering the following command:

# /opt/pingidentity/abs/bin/start.sh
Starting API Behavioral Security 3.2.1...
please see /opt/pingidentity/abs/logs/abs/abs.log for more details

Configure ABS system

1. Change your working directory to /opt/pingidentity/config
2. Edit abs.properties and update the following parameters:

PingIntelligence copyright © 2022

| 339



Parameter Description

host_ip The externally visible IP address of the ABS
system.

mongo_master_ip IP address of MongoDB master node.

mongo_username Match username that is in the
abs_init.js file.

mongo_password Match password that is in the abs_init.js
file. The default password is obfuscated.
Change the password

The following is the snippet of the abs.properties file showing the mongo_username and
mongo_password:

# If you don't have authentication enabled in MongoDB, leave blank following 
two keys
mongo_username=absuser
mongo_password=OBF:AES:Q3vcrnj7VZILTPdJnxkOsyimHRvGDQ==:daYWJ5QgzxZJAnTkuRlFpreM1rsz3FFCulhAUKj7ww4=

For more information on abs.properties file, see the API Behavioral Admin Guide.

Parent topic:Part B – Install ABS and MongoDB

Install MongoDB software
ABS uses a MongoDB database (3.4.6) to store analyzed logs and ABS cluster node information. MongoDB
is installed using a replica set. In a replica set, MongoDB is installed on three nodes for high-availability
(HA).

Update MongoDB default username and password

You can change the default username and password of MongoDB by editing the /opt/
pingidentity/abs/mongo/abs_init.js file. Change the username and password and save the file.
The following is a snippet of the abs_init.js file:

db.createUser(
{
 user: "absuser",
 pwd: "abs123",
 roles: [ { role: "userAdminAnyDatabase", db: "admin" },
 { role: "readWrite", db: "abs_metadata" },
 { role: "readWrite", db: "abs_data" },
 { role: "readWrite", db: "abs_mldata" },
 { role: "readWrite", db: "local" } ]
});

PingIntelligence copyright © 2022

| 340



Install MongoDB in replica set

Download either the RHEL 7 or Ubuntu 16 MongoDB 3.4.6 Linux tarball from the MongoDB website. For
more information, see https://www.mongodb.org/downloads. This document describes a RHEL 7
download, but the equivalent Ubuntu version of MongoDB is also supported.

Prerequistie:

• Copy /opt/pingidentity/abs/mongo/abs_init.js file to the MongoDB node.
• Copy /opt/pingidentity/abs/mongo/abs_rs.js file to the MongoDB node.

Download MongoDB on three nodes which would form the replica set for high-availability (HA).

Install MongoDB one each node:

1. Create the MongoDB directory structure: create mongo, data, logs, and key directory on each
MongoDB node.
# mkdir -p /opt/pingidentity/mongo/data /opt/pingidentity/mongo/logs \
/opt/pingidentity/mongo/key

2. Download MongoDB 3.4.6 on each node and extract to /opt/pingidentity/mongo
# cd /opt/pingidentity/
/opt/pingidentity# wget \
https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.4.6.tgz \
-O mongodb.tgz && tar xzf mongodb.tgz -C /opt/pingidentity/mongo/ --
strip-components=1

3. Update shell path variable and reload the shell.
/opt/pingidentity# echo PATH=$PATH:/opt/pingidentity/mongo/bin >> 
~/.bashrc;
/opt/pingidentity# source ~/.bashrc

4. Start the MongoDB database on each node. absrs01 is the name of the replica set. You can choose
your own name for the replica set.
/opt/pingidentity# cd mongo
/opt/pingidentity/mongo# mongod --dbpath ./data/ --logpath ./logs/
mongo.log --port 27017 --replSet absrs01 --fork -bind_ip 0.0.0.0

Note:bind_ip is required for MongoDB to accept connections coming from machines
other than the local host.

5. Check MongoDB connectivity among the three nodes. On MongoDB node 1, run the following
command to check connectivity with node 2:
/opt/pingidentity/mongo# mongo --host <mongo node 2 IP address> --port 
27017

6. Navigate to abs_rs.js file and edit to configure the IP address of the primary and secondary
MongoDB nodes:
rsconf = {

  _id: "absrs01",
  members: [

PingIntelligence copyright © 2022

| 341

https://www.mongodb.org/downloads


    {
     _id: 0,
     host: "127.0.0.1:27017",
     priority: 10
    },
    {
     _id: 1,
     host: "<Mongo Node 2 IP>:27017",
     priority: 2
    },
    {
     _id: 2,
     host: "<Mongo Node 3 IP>:27017",
     priority: 2
    }
   ]
};

rs.initiate(rsconf)
rs.conf();
exit

7. Initiate the configuration by entering the following command on MongoDB node 1’s shell:
/opt/pingidentity/mongo# mongo --port 27017 < abs_rs.js

8. Verify that all the MongoDB nodes are running. On each MongoDB node, enter the following:
 /opt/pingidentity/mongo# mongo --port 27017

The primary node will display the following prompt:

absrs01:PRIMARY>

The secondary nodes will display the following prompt:

absrs01:SECONDARY>

9. Create User and initialize the database using abs_init.js file after making necessary
modifications. You can set the following values in the file. However, ABS ships with default values

• Username and password
• Database names
• training_period
• system_threshold_update_interval
• discovery_interval
• url_limit
• discovery_subpath
• api_discovery
• response_size
• enable_ssl

On the primary node (node 1) Enter the following command:

# mongo --host <mongo node 1 IP> --port 27017 < abs_init.js

PingIntelligence copyright © 2022

| 342



Note: user name and password should be changed from the default values.

The following is a snippet of the abs_init.js file:

db.global_config.insert({
"attack_initial_training": "24",
"attack_update_interval": "24",
"url_limit": "100",
"response_size": "100",
"job_frequency" : "10",
"window_length" : "24",
"enable_ssl": true,
"api_discovery": false,
"discovery_initial_period" : "24",
"discovery_subpath": "1",
"continuous_learning": true,
"discovery_update_interval": "1"

});

10. Generate a MongoDB key file.
/opt/pingidentity/mongo# openssl rand -base64 741 >key/mongodb-keyfile

11. Change the key file permission.
 /opt/pingidentity/mongo# chmod 600 key/mongodb-keyfile

12. Copy the key file generated in step 11 on each node of the replica set
13. Shutdown MongoDB using the following command:

# mongod --dbpath ./data --shutdown

14. Restart all the MongoDB nodes with a key file and enable MongoDB authentication.
/opt/pingidentity/mongo# mongod --auth --dbpath ./data/ --logpath \
./logs/mongo.log --port 27017 --replSet absrs01 --fork --keyFile ./key/
mongodb-keyfile -bind_ip 0.0.0.0

Note:
• bind_ip is required for MongoDB to accept connections coming from machines

other than the local host.
• The MongoDB cache size should be restricted to 25% of system memory. You can
configure this by using MongoDB's wiredTigerCacheSizeGB option.

Parent topic:Part B – Install ABS and MongoDB

Change default settings
It is recommended that you change the default key and password in ABS. Following is a list of commands
to change the default values:

Change default JKS password
You can change the default password for KeyStore and the key. Complete the following steps to change
the default passwords. Make sure that ABS is stopped before changing the JKS password.

PingIntelligence copyright © 2022

| 343



Important: The KeyStore and Key password should be the same.

1. Change the KeyStore password: Enter the following command to change the KeyStore
password. The default KeyStore password is abs123.
# keytool -storepasswd -keystore config/ssl/abs.jks
Enter keystore password:  abs123
New keystore password: newjkspassword
Re-enter new keystore password: newjkspassword

2. Change the key password: Enter the following command to change the key password. The
default key password is abs123
# keytool -keypasswd -alias pingidentity -keypass abs123 -new 
newjkspassword -keystore config/ssl/abs.jks
Enter keystore password: newjkspassword

Start ABS after you have changed the default passwords.

Change abs_master.key

Run the following command to create your own ABS master key to obfuscate keys and password in ABS.

Command: generate_obfkey. ABS must be stopped before creating a new abs_master.key

Stop ABS: If ABS is running, then stop ABS before generating a new ABS master key. Enter the following
command to stop ABS:
# /opt/pingidentity/abs/bin/stop.sh
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

Change abs_master.key: Enter the generate_obfkey command to change the default ABS master
key:
/opt/pingidentity/abs/bin/cli.sh generate_obfkey -u admin -p admin
Please take a backup of config/abs_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh -obfuscate_keys
Warning: Obfuscation master key file
/pingidentity/abs/config/abs_master.key already exists. This command will 
delete it and create a new key in the same file
Do you want to proceed [y/n]: y
Creating new obfuscation master key
Success: created new obfuscation master key at /pingidentity/abs/config/
abs_master.key

Change CLI admin password
You can change the default admin password by entering the following command:
/opt/pingidentity/abs/bin/cli.sh update_password -u admin -p admin
New Password>
Reenter New Password>
Success. Password updated for CLI

PingIntelligence copyright © 2022

| 344



Change default access and secret key in MongoDB
To change the default access and secret key, complete the following steps:

1. Connect to MongoDB by entering the following command:
mongo --host <mongo-host> --port <mongo-port> --authenticationDatabase 
admin -u absuser -p abs123

absuser and abs123 is the default user name and password for MongoDB.
2. On the MongoDB prompt, run the following command:

use abs_metadata
db.auth_info.updateOne( { access_key: "<new-access-key>", secret_key: 
"<new-secret-key>"} )

Parent topic:Part B – Install ABS and MongoDB

Connect ABS to MongoDB
Check and open MongoDB default port

The MongoDB default port for connection with ABS is 27017. Run the check_ports_abs.sh script on
the ABS machine to determine whether the default port is available. Input the MongoDB host IP address
and default port as arguments. For example:

/opt/pingidentity/abs/util ./check_ports_abs.sh {MongoDB IPv4:[port]}

Run the script for MongoDB master and slave. If the default ports are not accessible, open the port from
the MongoDB machine.

Configure ABS to connect to MongoDB

ABS access key and secret key are used for MongoDB and REST API authentication. Edit abs_init.js
in /opt/pingidentity/mongo directory to set the key values. Here is a sample abs_init.js file:

db.auth_info.insert({
"access_key" : "abs_ak",
"secret_key" : "abs_sk"
});

Copy the abs_init.js file from ABS
/opt/pingidentity/abs
        mongo

folder to the MongoDB system /opt/pingidentity/mongo folder.

At the MongoDB command prompt, update the MongoDB settings with the latest abs_init.js file.

# mongo admin -u absuser -p abs123 < opt/pingidentity/abs/mongo/abs_init.js
MongoDB Shell version 3.4.6
connecting to: admin
switched to db abs_metadata
WriteResult({ “nInserted” : 1})
bye

PingIntelligence copyright © 2022

| 345



Parent topic:Part B – Install ABS and MongoDB

Start and Stop ABS
Prerequisite:

For ABS to start, the abs_master.key must be present in the /opt/pingidentity/abs/config
directory. If you have moved the master key to a secured location for security reasons, copy it to the
config directory before executing the start script.

Start ABS

To start ABS, run the start.sh script located in the /opt/pingidentity/abs/bin directory. Change
working directory to /opt/pingidentity/abs/bin. Then start ABS by typing the following command:

$ /opt/pingidentity/abs/bin/start.sh
Starting API Behavioral Security 3.2.1...
please see /opt/pingidentity/abs/logs/abs/abs.log for more details

To verify ABS has started, change working directory to data directory and look for two .pid files,
abs.pid and stream.pid. Check the newly added ABS node is connecting to MongoDB and has a
heartbeat.

> use abs_metadata
switched to db abs_metadata
> db.abs_cluster_info.find().pretty()
 {
 "_id" : ObjectId("58d0c633d78b0f6a26c056ed"),
 "cluster_id" : "c1",
 "nodes" : [
     {
         "os" : "Red Hat Enterprise Linux Server release 7.1 (Maipo)",
         "last_updated_at" : "1490088336493",
         "management_port" : "8080",
         "log_port" : "9090",
         "cpu" : "24",
         "start_time" : "1490077235426",
         "log_ip" : "2.2.2.2",
         "uuid" : "8a0e4d4b-3a8f-4df1-bd6d-3aec9b9c25c1",
         "dashboard_node" : false,
         "memory" : "62G",
         "filesystem" : "28%"
 } ] }

Stop ABS

To stop ABS, first stop API Security Enforcer (if it is running) or turn OFF the ABS flag in API Security
Enforcer. If no machine learning jobs are processing, run the stop.sh script available in the bin directory.

# /opt/pingidentity/abs/bin/stop.sh
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

PingIntelligence copyright © 2022

| 346



Parent topic:Part B – Install ABS and MongoDB

Part C – Integrate ASE and ABS
The ABS Engine installation process is summarized below:

• Connect ASE to ABS AI engine for ASE to send access log files to ABS.
• Enable ASE to ABS engine communication: Just connecting ASE and ABS engine does not mean that

access logs would be sent by ASE to ABS. ASE to ABS communication has to be enabled separately.
• Add API JSON files to ASE. The API JSON files define your API and its various parameters. For more

information, see Defining an API JSON file.
• ABS AI engine models need to be trained for it to analyze and report on your API traffic.

• Connect ASE to ABS AI engine
• Enable ASE to ABS engine communication
• Add APIs to ASE
• Train ABS AI engine

Connect ASE to ABS AI engine
Check ABS port availability

The default ports for connection with ABS are 8080 and 9090. Run the check_ports_ase.sh script on
the ASE machine to determine accessibility of ABS. Input ABS host IP address and ports as arguments.

/opt/pingidentity/ase/util ./check_ports_ase.sh {ABS IPv4:[port]}

Configure ASE

Update abs.conf located in the ASE config directory with ABS Engine address and authentication keys:

• Configure abs_endpoint with the ABS Engine management IP address / host name and port
number (Default: 8080) which was configured in the abs.properties file (see abs.properties in
Obfuscate passwords).

Note: Note: when ABS is in a different AWS security group, use a private IP address

• Configure ABS access_key and secret_key using the key values from the abs_init.js file
located in /opt/pingidentity/abs/mongo.

Here is a sample abs.conf file:

; API Security Enforcer ABS configuration.
; This file is in the standard .ini format. The comments start with a 
semicolon (;).
; Following configurations are applicable only if ABS is enabled with true.

; a comma-separated list of abs nodes having hostname:port or ipv4:port as 
an address.
abs_endpoint=127.0.0.1:8080

; access key for abs node
access_key=OBF:AES://
ENOzsqOEhDBWLDY+pIoQ:jN6wfLiHTTd3oVNzvtXuAaOG34c4JBD4XZHgFCaHry0

PingIntelligence copyright © 2022

| 347

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/defining_an_api___api_json_configuration_file.html


; secret key for abs node
secret_key=OBF:AES:Y2DadCU4JFZp3bx8EhnOiw:zzi77GIFF5xkQJccjIrIVWU+RY5CxUhp3NLcNBel+3Q

; Setting this value to true will enable encrypted communication with ABS.
enable_ssl=true

; Configure the location of ABS's trusted CA certificates. If empty, ABS's 
certificate
; will not be verified
abs_ca_cert_path=

Important: Make sure that ASE and ABS are in the same time zone.

Parent topic:Part C – Integrate ASE and ABS

Enable ASE to ABS engine communication
To start communication between ASE and the AI engine, run the following command:

./cli.sh enable_abs –u admin -p 

To confirm an ASE Node is communicating with ABS, issue the ASE status command:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status               : started
http/ws              : port 80
https/wss            : port 443
firewall             : enabled
abs                  : disabled, ssl : enabled (If ABS is enabled, then ASE 
is communicating with ABS)
abs attack           : disabled
audit                : enabled
ase detected attack  : disabled
attack list memory   : configured 128.00 MB, used 25.60 MB, free 102.40 MB

Parent topic:Part C – Integrate ASE and ABS

Add APIs to ASE
After installing ASE and ABS Engine, the next step is to add API definitions to the PingIntelligence for APIs
software. This process can be completed automatically or manually.

Automatic API discovery

ABS AI Engine supports automatic discovery of APIs. The ABS Engine Admin Manual API Discovery section
explains this process which operates as follows:

• When traffic from an unknown API is passed to the ASE, it forwards the traffic metadata to the AI
Engine which automatically discovers the API definition.

• Ping Identity Automated API Definition (AAD) tool will then generate an API JSON file and load it to
the ASE system.

PingIntelligence copyright © 2022

| 348



After the API JSON definition is loaded, the AI Engine begins the training process. See the "Training"
chapter in the ABS Admin Guide for more information on training the AI model.

Manual configuration of API definitions

To secure an API with PingIntelligence for APIs software, an administrator can add an API definition to the
Ping Identity ASE which will then pass the API information to the AI Engine for reporting and attack
detection. Complete the following steps to configure a simple REST API. For more information on
advanced options, see ASE Admin Guide.

1. Navigate to /opt/pingidentity/api_proxy/config/api and copy the file
rest_api.json.example to rest_api.json

2. Open the rest_api.json file and update the following information:
a. Update the “url” to the base path of the API (for example, /apiname)
b. Replace the server IP addresses and ports with the addresser/ports of your app servers.
c. Review the following parameter list and make other edits as applicable.

Key API JSON file parameters to configure include:

Parameter Description

protocol API type:
http
- HTTP /REST API,
ws
- WebSocket

url The value of the URL for the
managed API. You can
configure up to three levels
of sub-paths. For example,
"/shopping"- 
name of a 1 level API
"/shopping/electronics/
phones" – 
3 level API
"/"
                  – 

entire server (used for ABS
API Discovery or load
balancing)

hostname HTTP host header, for
example,
“api.xyz.com”
The value cannot be empty.
“*”
matches any hostname.

cookie Name of cookie used by
backend servers.

PingIntelligence copyright © 2022

| 349



Parameter Description

oauth2_access_token When
true
, ASE captures OAuth2
Access Tokens.

apikey_qs When API Key is sent in the
query string, ASE uses the
specified
parameter
         name
to capture the API key value.

apikey_header When API Key is part of the
header field, ASE uses the
specified
parameter
         name
to capture the API key value.

login_url Public URL used by a client
to connect to the application.

server_ssl When true, ASE uses
SSL/TLS to secure backend
connection. Default value is
false
.

Servers:
host
port

For each backend server
running the API, configure:

• Host - IP address or
hostname

• Port - the port number.

Flow Control:
client_spike_threshold
server_connection_queueing
bytes_in_threshold (WS)
bytes_out_threshold (WS)

ASE Flow Control ensures
that backend API servers are
protected from unplanned or
malicious (for example,
DDoS) surges in API traffic.

protocol_allowed Accepted protocols - HTTP,
HTTPS, WS, or WSS.

methods_allowed Accepted methods. GET,
POST, PUT, DELETE, HEAD

content_type_allowed Allowed content types
allowed. For example,
application/json

PingIntelligence copyright © 2022

| 350



Parameter Description

Decoy Config:
decoy_enabled
response_code
response_def

When decoy_enabled is
set to true, configured
decoy sub-paths work as
decoy APIs.
response_code is the
status code (for example,
200
) that ASE returns when a
decoy API path is accessed.

After configuring the API JSON file, add it to ASE for it to take effect. To add a runtime API, execute the
following CLI command:

/opt/pingidentity/ase/bin/cli.sh add_api {file_path/api_name} –u admin -p

Verify/List the API

To verify whether the API that you added has been successfully added or not, run the list API command:

/opt/pingidentity/ase/bin/cli.sh list_api -u admin -p 

Check the availability of access logs in ABS

Navigate to the data directory and check whether it has access logs sent by API Security Enforcer.

Enable attack blocking (optional)

ABS Engine generates a list of clients which executed attacks on an API service and can be configured to
automatically send the attack list to ASE which blocks client access. By default, automatic blocking is
inactive. Execute the following to activate automatic client blocking:

./cli.sh enable_abs_attack –u admin -p 

Parent topic:Part C – Integrate ASE and ABS

Train ABS AI engine
For ABS to start predicting various attacks types, the model needs to be trained. The number of hours
(default - 24 hours) is configurable for model training. Set the value of training_period parameter in
the abs_init.js file in the /opt/pingidentity/mongo directory. For more detailed information
about training AI model, see the ABS Admin Guide.

db.global_config.insert({
"attack_initial_training": "24",
"attack_update_interval": "24",
"url_limit": "100",
"response_size": "100",
"job_frequency" : "10",
"window_length" : "24",
"enable_ssl": true,

PingIntelligence copyright © 2022

| 351



"api_discovery": false,
"discovery_initial_period" : "24",
"discovery_subpath": "1",
"continuous_learning": true,
"discovery_update_interval": "1",
"attack_list_count": "500000",
"resource_monitor_interval" : "10",
"percentage_diskusage_limit" : "80"

});

Start the training

The training starts as soon as ABS receives the first API traffic from API Security Enforcer and continues
for the number of hours set in the training_period parameter. Training occurs automatically when a
new API is added.

Verify training completion

ABS training status is checked using the ABS Admin API which returns the training duration and prediction
mode. If the prediction variable is true, ABS has completed training and is discovering attacks. A false
value means that ABS is still in training mode. The API URL for Admin API is: https://<ip>:<port>/v3/abs/
admin. Following is a snippet of the output of the Admin API:

"message": "training started at Thu Aug 09 12:32:59 IST 2018",
"training_duration": "2 hours",
"prediction": true

IP and port number is of the ABS machine.

Note: ABS only detects attacks after the training period is over. During training, no attacks are
generated.

Parent topic:Part C – Integrate ASE and ABS

Part D – Install PingIntelligence for APIs Dashboard
The PingIntelligence for APIs Dashboard installation process is summarized below:

• Install PingIntelligence for APIs Dashboard
• Obfuscate keys and password
• Install Elasticsearch
• Install Kibana
• Integrate Dashboard with ABS AI engine
• Start PingIntelligence for APIs Dashboard

• Install PingIntelligence for APIs dashboard
• Change Dashboard default settings
• Obfuscate keys and passwords
• Install Elasticsearch
• Install Kibana
• Install Ping styling plugin for Kibana
• Integrate dashboard with ABS AI engine
• Start PingIntelligence for APIs Dashboard

PingIntelligence copyright © 2022

| 352



Install PingIntelligence for APIs dashboard
Prerequisites

1. wget and openssl must be installed on your system
2. PingIntelligence for APIs Dashboard, Elasticsearch and Kibana should run as a non-root user

Install PingIntelligence for APIs Dashboard

Download PingIntelligence for APIs Dashboard from the download site to a Linux server. Complete the
following steps:

1. Start shell as a non-root user
2. Change the directory to /opt

$cd /opt

3. Create a pingidentity directory
$ sudo mkdir pingidentity

4. Change the permissions for the pingidentity directory. The pingidentity directory will be
owned by a non-root user.
$ sudo chown -R "$(id -nu):$(id -ng)" /opt/pingidentity

5. Install PingIntelligence for APIs Dashboard
$ tar -zxf dashboard-3.2.1.tar.gz

The following table shows the directories created when PingIntelligence for APIs Dashboard is installed:

Directories Description

bin ABS Start and Stop scripts; Elasticsearch and Kibana
initialization scripts.

config dashboard.properties file used to configure
PingIntelligence for APIs Dashboard
A subdirectory called dashboard containing Kibana
schema for each API

data Temporary storage for ABS data

lib Contains dashboard.jar and dependent external jar files

logs Contains PingIntelligence for APIs Dashboard log files
which are rotated every 24 hours

util Contains the check_ports_dashboard.sh script to
check the availability of default Elasticsearch and ABS ports
to connect.

Parent topic:Part D – Install PingIntelligence for APIs Dashboard

PingIntelligence copyright © 2022

| 353

https://www.pingidentity.com/en/resources/downloads.html


Change Dashboard default settings
It is recommended that you change the default settings in Dashboard. Complete the following steps to
change the default settings:

1. Log in to the management t2.micro instance
2. Change directory to software
3. Untar Dashboard binary:

tar –zxvf dashboard-3.2.1.tar.gz

Change dashboard_master.key

Run the following command to create your own Dashboard master key to obfuscate keys and password in
Dashboard.

Command: generate_obfkey.

Change abs_master.key: Enter the generate_obfkey command to change the default ABS master
key:
/opt/pingidentity/dashboard/bin/cli.sh generate_obfkey -u admin -p
Password>

Please take a backup of config/dashboard_master.key before proceeding.

Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh obfuscate_keys

Warning: Obfuscation master key file /opt/pingidentity/dashboard/config/
dashboard_master.key already exist. This command will delete it create a new 
key in the same file

Do you want to proceed [y/n]: y

creating new obfuscation master key
Success: created new obfuscation master key at /opt/pingidentity/dashboard/
config/dashboard_master.key

Change CLI admin password

Dashboard ships with the default user admin and the default password admin. You can change the
default password by using the update_password Dashboard CLI command:
/opt/pingidentity/dashboard/bin/cli.sh -u admin update_password -p
Password>

New Password>
Re-enter New Password>
Success. Password updated for CLI

Change default passwords

Navigate to config directory and edit the dashboard.properties file to change the following values:

• dashboard.properties file – abs.access_key, abs.secret_key, es.password

PingIntelligence copyright © 2022

| 354



Repackage Dashboard
Tar Dashboard after changing the default values. Enter the following command:
tar -zcvf dashboard-3.2.1 pingidentity/

Make sure that the original file name is retained when you tar Dashboard and the file is saved in the
software directory on the management instance.
Parent topic:Part D – Install PingIntelligence for APIs Dashboard

Obfuscate keys and passwords
Using Dashboard’s command line interface, you can obfuscate the keys and passwords configured in
dashboard.properties. The following keys and passwords are obfuscated:

• abs.access_key
• abs.secret_key
• es.password

Dashboard ships with a default dashboard_master.key which is used to obfuscate the various keys
and passwords. It is recommended to generate your own dashboard_master.key.

Note: During the process of obfuscation of keys and password, Dashboard must be stopped.

The following diagram summarizes the obfuscation process:

Generate dashboard_master.key

You can generate the dashboard_master.key by running the generate_obfkey command in the
Dashboard CLI:

/opt/pingidentity/dashboard/bin/cli.sh generate_obfkey -u admin -p
Password>

Please take a backup of config/dashboard_master.key before proceeding.

Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh obfuscate_keys

Warning: Obfuscation master key file /opt/pingidentity/dashboard/config/
dashboard_master.key already exist. This command will delete it create a new 
key in the same file

Do you want to proceed [y/n]: y

creating new obfuscation master key
Success: created new obfuscation master key at /opt/pingidentity/dashboard/
config/dashboard_master.key

PingIntelligence copyright © 2022

| 355



Obfuscate key and passwords

Enter the keys and passwords in clear text in dashboard.properties file. Run the obfuscate_keys
command to obfuscate keys and passwords:

/opt/pingidentity/dashboard/bin/cli.sh obfuscate_keys -u admin -p
Password>

Please take a backup of config/dashboard.properties before proceeding

Enter clear text keys and password before obfuscation.

Following keys will be obfuscated
 config/dashboard.properties: abs.access_key, abs.secret_key and es.password

Do you want to proceed [y/n]: y

obfuscating /opt/pingidentity/dashboard/config/dashboard.properties

Success: secret keys in /opt/pingidentity/dashboard/config/
dashboard.properties obfuscated

Important: After the keys and passwords are obfuscated and the Dashboard has started, move
the dashboard_master.key to a secure location away from the Dashboard.

Parent topic:Part D – Install PingIntelligence for APIs Dashboard

Install Elasticsearch
Complete the following steps to download and install Elasticsearch:

1. Start shell as a non-root user
2. Change the directory to /opt

$cd /opt

3. Create an elasticsearch directory
$ sudo mkdir elasticsearch

4. Change the permissions for the elasticsearch directory. The elasticsearch directory will be
owned by a non-root user.
$ sudo chown -R "$(id -nu):$(id -ng)" /opt/elasticsearch

5. Change directory to elasticsearch
$ cd /opt/elasticsearch

6. Download Elasticsearch:
$ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.3.tar.gz

CAUTION: since this command wraps, enter it manually.

7. Install Elasticsearch:

PingIntelligence copyright © 2022

| 356

https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.3.tar.gz


$ tar -zxf elasticsearch-6.4.3.tar.gz

8. Change directory:
$ cd /opt/elasticsearch/elasticsearch-6.4.3

• Configure Elasticsearch

Parent topic:Part D – Install PingIntelligence for APIs Dashboard

Configure Elasticsearch
Configure Elasticsearch by running the dashboard_elasticsearch_init.sh script located in the
ABS Dashboard bin directory. The dashboard_elasticsearch_init.sh script asks for the full path
where you have saved the CA signed certificate. If you do not have a CA signed certificate, generate a self-
signed certificate without a passphrase using the OpenSSL commands.
$ /opt/pingidentity/dashboard/bin/dashboard_elasticsearch_init.sh

[pingidentity@localhost ~]$ /opt/pingidentity/dashboard/bin/
dashboard_elasticsearch_init.sh
updating elasticsearch configuration

Enter SSL CA Signed Certificate path >(full path)
Enter SSL Private Key Path >(full path)

enter pkcs#12 keystore new password >
enter pkcs#12 keystore new password again >

creating elasticsearch config keystore
config keystore created

creating password protected pkcs#12 keystore for private key and certificate
pkcs#12 keystore created at config/ssl/elastic-certificates.p12

Starting Elasticsearch to update default passwords. Please wait for 15 
seconds.
Elasticsearch started with pid 2532 and listening at https://localhost:9200

updating default user passwords

## elastic [superuser] password. Remember this password for the Dashboard 
setup
enter elastic user new password > 
enter elastic user password again >
password updated for user elastic

## kibana [kibana user] password. Remember this password for the Kibana setup
enter kibana user new password >
enter kibana user password again >
password updated for user kibana

Elasticsearch configuration is complete. Elasticsearch is running at https://
localhost:9200
[pingidentity@localhost ~]$

PingIntelligence copyright © 2022

| 357



Parent topic:Install Elasticsearch

Install Kibana
Complete the following steps to install Kibana:

1. Start shell as a non-root user
2. Change the directory to /opt

$cd /opt

3. Create a kibana directory
$ sudo mkdir kibana

4. Change the permissions for the kibana directory to ownership by a non-root user.
$ sudo chown -R "$(id -nu):$(id -ng)" /opt/kibana

5. Change directory to kibana
$ cd /opt/kibana

6. Download Kibana:$ wget "https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-linux-
x86_64.tar.gz"

CAUTION: since this command wraps, enter it manually.

7. Install Kibana:
$ tar -zxf kibana-6.4.3-linux-x86_64.tar.gz

8. Change directory:
$ cd /opt/kibana/kibana-6.4.3-linux-x86_64

Note:
By default, the Kibana uses port 443 with su/sudo access. If you want to use any other port, for
example 5601, use:
$ export KIBANA_DEFAULT_PORT=5601

If you are a non-root user, use ports greater 1024.

Initialize Kibana: After installing Kibana, initialize Kibana by running the following command:
$ /opt/pingidentity/dashboard/bin/dashboard_kibana_init.sh

[pingidentity@localhost ~]$ /opt/pingidentity/dashboard/bin/
dashboard_kibana_init.sh 
updating Kibana configuration 
Enter SSL CA Signed Certificate path >(full path) 
Enter SSL Private Key Path >(full path) 
enter kibana [kibana user] password > 
enter kibana [kibana user] password again > 
Kibana configuration is complete. 
Starting Kibana in the background... 
Kibana started with pid 2535 and listening at https://[0.0.0.0]

PingIntelligence copyright © 2022

| 358

https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-linux-x86_64.tar.gz
https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-linux-x86_64.tar.gz
https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-linux-x86_64.tar.gz


Parent topic:Part D – Install PingIntelligence for APIs Dashboard

Install Ping styling plugin for Kibana
Install the Ping styling plugin for Kibana by entering the following command:
./bin/kibana-plugin install
        file:///opt/pingidentity/dashboard/plugins/pingstyling-3.2.zip

Parent topic:Part D – Install PingIntelligence for APIs Dashboard

Integrate dashboard with ABS AI engine
For production environments with high traffic loads, it is recommended to install one or more dedicated
ABS nodes for PingIntelligence for APIs Dashboard processing. Install an ABS node (see Install ABS AI
engine software) and set dashboard_node to true in the abs.properties file (/opt/
pingidentity/config/). This ABS node will be used exclusively to process reports for the Dashboard;
no access log processing occurs on this node.

To configure the Dashboard, edit the dashboard.properties file which is part of the config directory
created when the Dashboard was installed. Set the Elasticsearch password to match the password used
when configuring Elasticsearch.

# Dashboard properties file
# ABS Hostname/IPv4 address
abs.host=127.0.0.1
# ABS REST API port
abs.port=8080
# ABS SSL enabled ( true/false )
abs.ssl=true
# ABS Restricted user access ( true/false )
abs.restricted_user_access=true
# ABS access key
abs.access_key=OBF:AES:NuBmDdIhQeNlRtU8SMKMoLaSpJviT4kArw==:HHuA9sAPDiOen3VU+qp6kMrkgNjAwnKO6aa8pMuZkQw=
# ABS secret key
abs.secret_key=OBF:AES:NuBmDcAhQeNlPBDmyxX+685CBe8c3/
STVA==:BIfH+FKmL5cNa1DrfVuyc5hIYjimqh7Rnf3bv9hW0+4=
# ABS query polling interval (minutes)
abs.query.interval=10
# ABS query offset (minutes. minimum value 30 minutes)
abs.query.offset=30
# elasticsearch URL
es.url=https://localhost:9200/
# elasticsearch username. User should have manage_security privilege
es.username=elastic
# elasticsearch user password
es.password=OBF:AES:NOp0PNQvc/
RLUN5rbvZLtTPghqVZzD9V:+ZGHbhpY4HENYYqJ4wn50AmoO6CZ3OcfjqTYQCfgBgc=
# kibana version
kibana.version=6.4.3
# Log level
dashboard.log.level=INFO

Configure all parameters in the dashboard.properties file:

PingIntelligence copyright © 2022

| 359



Parameter Description

abs.host IP address of the ABS server

Note: Two options exist to choose an ABS server: 1)
Utilize an existing ABS server. 2) For production
deployments, Ping Identity recommends dedicating
an ABS node exclusively for the Dashboard.

abs.port REST API port number of the ABS host – See
abs.properties
Default value is 8080

abs.ssl Setting the value to true ensures SSL communication between
ABS and PingIntelligence for APIs Dashboard

abs.restricted_user When set to
true
, Elasticsearch uses the restricted user header (configured in
pingidentity/abs/mongo/abs_init.js
file) to fetch the obfuscated values of OAuth token, cookie and
API keys. When set to
false
, the admin user header is used to fetch the data in plain text.
For more information on admin and restricted user header, see
ABS users for API reports

abs.access_key Access key from ABS – See
pingidentity/abs/mongo/abs_init.js
. Make sure to enter the access key based on the value set in
the previous variable. For example, if
abs.restricted_user
is set to true, then enter the access key for restricted user. If
abs.restricted_user
is set to false, then use the access key for the admin user.

abs.secret_key Secret key from ABS – See
pingidentity/abs/mongo/abs_init.js
. Make sure to enter the secret key based on the value set in the
previous variable. For example, if
abs.restricted_user
is set to true, then enter the secret key for restricted user. If
abs.restricted_user
is set to false, then use the secret key for the admin user.

abs.query.interval Polling interval to fetch data from ABS. The default is 10
minutes

abs.query.offset The time required by ABS to process access logs and generate
result. The minimum value is 30 mins and default value is 60
mins.

es.url Elasticsearch URL

PingIntelligence copyright © 2022

| 360

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html


es.username Elasticsearch username

es.password Elasticsearch password.

kibana.version Kibana version - default is 6.4.3

dashboard.log.level Log level for Dashboard
Default log level is
INFO
. Another log level is
DEBUG

Parent topic:Part D – Install PingIntelligence for APIs Dashboard

Start PingIntelligence for APIs Dashboard
To start the PingIntelligence for APIs Dashboard, navigate to the /opt/pingidentity/
dashboard/bin directory and enter the following command:

[pingidentity@localhost bin]# ./start.sh

[pingidentity@localhost bin]# ./start.sh
Dashboard 3.2.1 starting…
Please see /opt/pingidentity/dashboard/logs/dashboard.log for more details

After PingIntelligence for APIs Dashboard is started, wait 15 seconds for the Dashboard to create the
following two users:

• ping_admin
• ping_user

Note: Immediately after starting PingIntelligence for APIs Dashboard, change the password for
both the users.

Connect to the dashboard

Access https://<ip:port>/app/kibana#/dashboard/pingapiintelligence to load the main
dashboard. In the above link, <ip:port> is the IP address and port (default – 443) configured in
kibana.yml. Change the password of users ping_admin and ping_user by completing the following
steps:

1. Log in using elastic user and the password set during Elasticsearch configuration. The Kibana

landing page is displayed. 

PingIntelligence copyright © 2022

| 361



2. In the Kibana landing page, click Management. The Management page is displayed. In the
Management tab, click Users. The Users page is displayed:

3. On the Users page, click ping_admin to change the email and password of ping_admin user.

4. On the ping_admin Users page, update the Email and Password and click Save:

Repeat steps 2 through 4 for ping_user to update Email and Password. Then log in with ping_user
credentials to view the dashboard. Here is a partial screen grab of the main dashboard:

PingIntelligence copyright © 2022

| 362



Parent topic:Part D – Install PingIntelligence for APIs Dashboard

Part E – Access ABS reporting
The ABS AI Engine generates attack, metric, and forensics reports which are accessed using the ABS REST
API to access JSON formatted reports. Ping Identity provides Postman collections to generate various API
reports. You can use any other tool to access the reports using the URLs documented in the ABS Admin
Guide.

• Install Postman with PingIntelligence for APIs Reports
• Using ABS self-signed certificate with Postman
• View ABS Reports in Postman

Install Postman with PingIntelligence for APIs Reports
Ping Identity provides configuration files which are used by Postman to access the ABS REST API JSON
information reports. Make sure to install Postman 6.2.5 or higher.

Parent topic:Part E – Access ABS reporting

Using ABS self-signed certificate with Postman
ABS ships with a self-signed certificate. If you want to use Postman with the self-signed certificate of ABS,
then from Postman’s settings, disable the certificate verification option. Complete the following steps to
disable Postman from certificate verification:

1. Click on the spanner  on the top-right corner of Postman client. A drop-down window is
displayed.

2. Select Settings from the drop-down window:

PingIntelligence copyright © 2022

| 363

https://www.getpostman.com/


3. In the Settings window, switch-off certificate verification by clicking on the SSL certificate verification
button:

Parent topic:Part E – Access ABS reporting

View ABS Reports in Postman
To view the reports, complete the following steps:

1. Download ABS_3.2.1_Environment and ABS_3.2.1_Reports JSON files from API Reports
Using Postman folder on Ping Identity Download site. These configuration files will be used by
Postman.

2. Download and install the Postman application 6.2.5 or higher.

3. In Postman, import the two Ping Identity files downloaded in step 1 by clicking the Import button.3.

PingIntelligence copyright © 2022

| 364

https://https://www.pingidentity.com/en/resources/downloads.html/
https://www.getpostman.com


4. After importing the files, click the gear  button in the upper right corner.4.

5. In the MANAGE ENVIRONMENTS pop-up window, click ABS_3.2.1_Environment

6. In the pop-up window, configure the following values and then click Update
• Server: IP address of the ABS node for which the dashboard_node was set to true in the

abs.properties file.
• Port: Port number of the ABS node.
• Access_Key_Header and Secret_Key_Header: Use the Admin user or Restricted user

header. A Restricted user sees obfuscated value of OAuth token, cookie and API keys. For more
information of different types of user, see ABS users for API reports

• Access_Key and Secret_Key: The Access Key and Secret Key configured in the opt/
pingidentity/mongo/abs_init.js for either admin or restricted user. Make sure that
access key and secret key corresponds to the admin or restricted user header configured.

• API_Name: The name of the API for which you want to generate the reports.
• Later_Date: A date which is more recent in time. For example, if the query range is between

March 12 and March 14, then the later date would be March 14.
• Earlier_Date: A date which is past in time. For example, if the query range is between March

12 and March 14, then the earlier date would be March 12.

PingIntelligence copyright © 2022

| 365

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_initial_configuration.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html


Note: Do not edit any fields that start with the word System.

7. In the main Postman window, select the report to display on the left column and then click Send.
ABS external REST APIs section provides detailed information on each API call and the JSON report
response.

Parent topic:Part E – Access ABS reporting

Part F - Integrate API gateways for sideband deployment
If you have deployed ASE in the sideband mode, the next step is to integrate your API gateway with
PingIntelligence products. To deploy ASE in the sideband mode, set mode=sideband in the /opt/
pingidentity/ase/config/ase.conf file. This is the only configuration required on ASE for
sideband deployment. For more information on ASE in sideband, see Sideband API Security Enforcer

After you have completed the parts A to E of deployment, integrate one of the following API gateways with
PingIntelligence components and start sending the API traffic to your API gateway:

• PingAccess integration
• Axway integration
• Apigee integration

Deployment in AWS environment
Automated AWS setup

This Ansible package automates the deployment of PingIntelligence for APIs software in an AWS
environment. The package installs and configures four software components which include ASE (deployed
between the API clients and API Gateway or backend server), ABS AI Engine, MongoDB database, and the
PingIntelligence for APIs dashboard. Using the automated PingIntelligence deployment script, you can
choose from one of the following deployment types:

• Single instance deployment - In this type of deployment, all the PingIntelligence components are
deployed on a single EC2 instance.

PingIntelligence copyright © 2022

| 366

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/appendix_b__abs_external_rest_apis.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/api_security_enforcer___sideband.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/pa/pingintelligence_pingaccess_setup.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/axway/pingintelligence_axway_sideband_setup.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/apigee/eeeeeee/pingintelligence_apigee_integration.html


• Separate server deployment - In this type of deployment, all the PingIntelligence components are
deployed on different EC2 instances.

The following diagram shows the complete deployment architecture of the setup:

Important:
PingIntelligence automated deployment script creates AWS EC2 instances and installs the
PingIntelligence software. The installation is divided in the following steps:

1. In step 1, download and untar the automated installation package. Configure the
aws.config script that governs the installation. It is recommended to run the automation
script as a ec2-user. The script installs packages like Ansible and boto using sudo on
the management EC2 instance.

2. (Optional): Change the default passwords, keys, and port numbers
3. In step 2, launch the EC2 instances.
4. In step 3, configure few system parameters for PingIntelligence components.
5. In step 4, install the PingIntelligence components.

• ASE deployment modes
• Step 1: Set up the host system
• Change ASE's default settings
• Change ABS default settings
• Change Dashboard default settings
• Step 2: Launch EC2 instances
• Step 3: Configure system parameters
• Step 4: Install PingIntelligence for APIs software
• Verify the PingIntelligence installation
• Next steps - Integrate PingIntelligence into your environment
• Shutdown the deployment
• View installation logs

ASE deployment modes
Inline mode

In the inline deployment mode, ASE sits at the edge of your network to receive the API traffic. It can also be
deployed behind an existing load balancers such as AWS ELB. In inline mode, API Security Enforcer

PingIntelligence copyright © 2022

| 367



deployed at the edge of the datacenter, terminates SSL connections from API clients. It then forwards the
requests directly to the correct APIs – and app servers such as Node.js, WebLogic, Tomcat, PHP, etc.

To configure ASE to work in the Inline mode, set the mode=inline in the aws.config file.

Sideband mode

ASE when deployed in the sideband mode, works behind an existing API gateway. The API request and
response data between the client and the backend resouce or API server is sent to ASE. In this case, ASE
does not directly terminate the client requests.

To configure ASE to work in the Inline mode, set the mode=sideband in the aws.config file.

Following is a description of the traffic flow through the API gateway and Ping Identity ASE.

1. Incoming request to API gateway
2. API gateway makes an API call to send the request detail in JSON format to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP against the AI

generated Blacklist. If all checks pass, ASE returns a 200-OK response to the API gateway. Else, a
different response code is sent to the Gateway. The request is also logged by ASE and sent to the AI
Engine for processing.

PingIntelligence copyright © 2022

| 368



4. If the API gateway receives a 200-OK response from ASE, then it forwards the request to the backend
server, else the Gateway returns a different response code to the client.

5. The response from the backend server is received by the API gateway.
6. The API gateway makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to the API gateway.
8. API gateway sends the response received from the backend server to the client.

Note: Complete the ASE sideband mode deployment by referring to API gateway specific
deployment section on the PingIdentity documentation site.

Parent topic:Automated AWS setup

Step 1: Set up the host system
Step 1 of the installation is divided in following three parts:

• Download and untar the automation package
• Configure the aws.config file
• Copy the ASE and ABS license in the respective license directory
• Download PingIntelligence and third-party software

Download and untar the automation package

1. Create a t2.micro RHEL 7.3 instance and login to the server. The Ansible script creates the setup in
the same Amazon region and VPC subnet as the t2.micro instance.

2. Download the AWS Ansible file from the PingIntelligence section and, for example, save in the /
home/ec2-user directory.

3. Untar the downloaded file:
$ cd /home/ec2-user
$ tar -xf aws-production-3.2.2.tar.gz

Untarring the file creates the following subdirectories in the pingidentity/aws-production
directory:

Directory Description

ansible Contains the different
yml
files

bin Contains the
start.sh
and
stop.sh
scripts. Do not edit the contents of this directory.

certs The
certs
directory contains ASE, ABS, Elasticsearch, and Kibana
self-signed certificates and keys.

Note:

PingIntelligence copyright © 2022

| 369

https://docs.pingidentity.com/
https://www.pingidentity.com/en/resources/downloads.html


• If you want to use your certificates and
keys, then replace the default
certificates and keys with your
certificates. Use the same file names
as that of the files present in the
certs
directory.

• If you are replacing the default
certificates and keys, make sure that
the keys do not have a password.

• The certificates should be in
pem
format.

config Contains the following configuration and default
settings files:

• aws.config•
• abs-defaults.yml•
• ase-defaults.yml•
• dashboard-defaults.yml•

data Contains the MongoDB key file and SSH key

external The third-party components like MongoDB are
downloaded in the
external
directory.

keys Contains master key of ASE, ABS, and Dashboard.
Automated installation generates new master key for
each PingIntelligence component. These keys are
populated in this directory at the end of the installation
process.

license Contains
ase
and
abs
directories that have the ASE and ABS license file.

logs Contains the log files for automated installation

software Contains the binary files for PingIntelligence
components:

• ASE
• ABS
• Dashboard

• ASE and ABS license
• Configure aws.config file
• Manually download third-party components
• Download PingIntelligence software

PingIntelligence copyright © 2022

| 370



Parent topic:Automated AWS setup

ASE and ABS license
PingIntelligence ASE and ABS require a valid license to start. The license file for both the products is
named PingIntelligence.lic.

• ASE:
Copy the ASE license file in the license/ase directory. Make sure that the license file is named as
PingIntelligence.lic Following is a sample of the ASE license file:
ID=981894
Product=PingIntelligence
Module=ASE
Version=3.2
IssueDate=2018-11-30
EnforcementType=0
ExpirationDate=2018-12-30
Tier=Subscription
SignCode=
Signature=

Verify that the correct file has been copied: To verify that the correct license file has been
copied in the /license/ase directory, run the following command:
# grep 'Module' license/ase/PingIntelligence.lic
Module=ASE

• ABS:
Copy the ABS license file in the license/abs directory. Make sure that the license file is named as
PingIntelligence.lic. Following is a sample of the ABS license file:
ID=981888
Product=PingIntelligence
Module=ABS
Version=3.2
IssueDate=2018-11-30
EnforcementType=0
ExpirationDate=2018-12-30
Tier=Subscription
SignCode=
Signature=

Verify that the correct file has been copied: To verify that the correct license file has been
copied in the /license/abs directory, run the following command:
# grep 'Module' license/ase/PingIntelligence.lic
Module=ABS

Parent topic:Step 1: Set up the host system

Configure aws.config file
Complete the following steps to configure the aws.config file. This file controls the automation script to
install PingIntelligence software in an AWS environment.

PingIntelligence copyright © 2022

| 371



Navigate to the aws-production/config directory and edit the aws.config file. The following table
describes the various variables of the aws.config file. The configuration file has parameters where link to
download third-party component is configured. If your t3.micro instance, does not have internet access,
download the third-party components manually.

Variable Description

••
AWS_ACCESS
_KEY

••
AWS_SECRET
_KEY

The access and secret key of the AWS account

installation Configure the type of installation. Setting the value to
single
installs all the following components on a single EC2 instance:

• API Security Enforcer (ASE)
• API Behavioral System (ABS)
• PingIntelligence for APIs Dashboard
• MongoDB

Setting the value to
separate
, installs each component on a separate EC2 instance. The default value
is
single
.

installation_pa
th

Configure the path where you would want the PingIntelligence
components to be installed. The default value is
/home/ec2-user
.

Important: The path that you provide in the
installation_path
variable must exist on the EC2 instance. The automation
script does not create this path. If you have chosen
installation
as
separate
in the preceding variable, manually create the same path on
each EC2 instance before running the PingIntelligence setup
step.

install_with_su
do

When set to
false
, the script installs PingIntelligence for a normal user. When set to
true
, the script installs PingIntelligence as a root user.

PingIntelligence copyright © 2022

| 372



jdk8_download_u
rl

The automated script requires
Oracle JDK8 u161
and later. Complete the following steps to download and save JDK8:

1. Download and save
Linux_x64 Oracle JDK 8 update 161
                                        rpm
or later in the external directory.

Note: Make sure to download the
tar.gz
file and not the rpm file.

2. Rename the downloaded JDK 8 rpm file to
jdk8.tar.gz
.

Note: Make sure the JDK 8 download URL has not expired.

mongodb_downloa
d_url

MongoDB download URL. A default URL is populated in the
aws.config
file.

elasticsearch_d
ownload_url

Elasticsearch download URL. A default URL is populated in the
aws.config
file.

kibana_download
_url

Kibana download URL. A default URL is populated in the
aws.config
file.

EC2 instance
types for a
separate
deployment type:

••
ase_instan
ce_type
- ASE

••
abs_instan
ce_type
- ABS

••
mongo_inst
ance_size
- MongoDB

••
dashboard_
instance_t
ype
- Dashboard

••
abs_report

The following are the default instance sizes:

• ASE -
m4.2xlarge

• ABS -
m4.4xlarge

• MongoDB -
m4.2xlarge

• Dashboard -
m4.2xlarge

• ABS reporting node -
m4.2xlarge

Note: If
abs_reporting_instance_type
is left empty, then no separate ABS reporting node is
created. Dashboard connects to the first ABS node.

PingIntelligence copyright © 2022

| 373



ing_instan
ce_type
- ABS
reporting
node

Volume size for
different instance
type for a
separate
deployment:

••
ase_volume
_size
- ASE

••
abs_volume
_size
- ABS

••
mongo_volu
me_size
- MongoDB

••
dashboard_
volume_siz
e
- Dashboard

••
abs_report
ing_volume
_size
- ABS
reporting
node

The following are the default volume sizes:

• ASE - 1000 GB
• ABS - 1000 GB
• MongoDB - 1000 GB
• Dashboard - 1000 GB
• ABS reporting node - 250 GB

Number of
instances.
Applicable for
separate
deployment type.

••
ase_instan
ces
- ASE

••
abs_instan
ces
- ABS

••
mongo_inst
ances

The default number of instances:

• ASE - 1
• ABS - 1
• MongoDB - 1

PingIntelligence copyright © 2022

| 374



- MongoDB

Instance type for
single
deployment -
instance_type

The default value for a single instance deployment is
m4.4xlarge
.

Volume size for
single
deployment -
volume_size

The default value for volume for
single
instance deployment is 1000 GB.

Following is a sample aws.config file:

[all:vars]

# AWS keys
AWS_ACCESS_KEY=
AWS_SECRET_KEY=

# Installation type. Valid values are
# 1) single - single consolidated server for all PingIntelligence components
# 2) separate - separate servers for each PingIntelligence component
installation=single

# Installation Path
installation_path="/home/ec2-user"

# Configure install_with_sudo to true if the any of the ports configured for 
ASE,
# ABS and Dashboard is <1024. That component will be started using sudo.
install_with_sudo=false

# Download URLs for external packages
jdk8_download_url='jdk8-download-url'

mongodb_download_url='https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-
rhel70-3.4.6.tgz'
elasticsearch_download_url='https://artifacts.elastic.co/downloads/
elasticsearch/elasticsearch-6.4.3.tar.gz'
kibana_download_url='https://artifacts.elastic.co/downloads/kibana/
kibana-6.4.3-linux-x86_64.tar.gz'

# Configure EC2 Instance types(Valid for separate servers for each 
PingIntelligence component)
ase_instance_type=m4.2xlarge
abs_instance_type=m4.4xlarge
mongo_instance_type=m4.2xlarge
dashboard_instance_type=m4.2xlarge
abs_reporting_instance_type=m4.2xlarge

PingIntelligence copyright © 2022

| 375



# Configure volume size of instances in GBs(Valid for separate servers for 
each PingIntelligence component)
ase_volume_size=1000
abs_volume_size=1000
mongo_volume_size=1000
dashboard_volume_size=1000
abs_reporting_volume_size=250

# Configure number of instances for ASE and ABS(Valid for separate servers 
for each PingIntelligence component)
ase_instances=1
abs_instances=1
mongo_instances=1

#Configure instance type for a single consolidated server installation
instance_type=m4.4xlarge

#Configure volume for a single consolidated server installation
volume_size=1000

Parent topic:Step 1: Set up the host system

Manually download third-party components
If the t2.micro server does not have internet access, follow the steps below. Download the individual
components, save the files in the external directory.

1. Install Ansible version 2.6.2 on the t2.micro RHEL 7.3 instance.
2. Download the following packages and copy to the external directory using the specified names:

• MongoDB – Download MongoDB from: https://fastdl.mongodb.org/linux/mongodb-linux-
x86_64-rhel70-3.4.6.tgz and save the file in the external directory as mongodb.tgz.

• Elasticsearch – Download Elasticsearch from: https://artifacts.elastic.co/downloads/
elasticsearch/elasticsearch-6.4.3.tar.gz and save the file in the external directory as
elasticsearch-6.4.3.tar.gz.

• Kibana – Download Kibana from: https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-
linux-x86_64.tar.gz and save the file in the external directory as kibana-6.4.3-linux-x86_64.tar.gz.

Parent topic:Step 1: Set up the host system

Download PingIntelligence software
Download the following PingIntelligence for APIs software to the aws-production/software directory

• API Security Enforcer (AWS RHEL7)
• API Behavioral Security
• PingIntelligence Dashboard

Note: Do not change the downloaded file names.

The software directory should include the following files:

-rw-r--r--. 1 ec2-user ec2-user 2.5M Dec 05 00:01 dashboard-3.2.1.tar.gz
-rw-r--r--. 1 ec2-user ec2-user 159M Dec 05 00:01 abs-3.2.2.tar.gz

PingIntelligence copyright © 2022

| 376

https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.4.6.tgz
https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.4.6.tgz
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.3.tar.gz
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.3.tar.gz
https://artifacts.elastic.co/downloads/kibana/kibana-5.4.3-linux-x86_64.tar.gz
https://artifacts.elastic.co/downloads/kibana/kibana-5.4.3-linux-x86_64.tar.gz
https://www.pingidentity.com/en/resources/downloads.html


-rw-r--r--. 1 ec2-user ec2-user 38M  Dec 05 00:01 ase-aws-
rhel-3.2.2.tar.gz

Parent topic:Step 1: Set up the host system

Change ASE's default settings
You can change the default settings in ASE by editing the ase-defaults.yml file. The following table
lists the variables that you can set for ASE:

Variable Description

mode Sets the mode in which ASE is deployed. The
default value is
inline
. Set the value to
sideband
if you want ASE to work in the sideband
mode.

http_ws_port Data port used for HTTP or WebSocket
protocol. The default value is 8090.

https_wss_port Data port used for HTTPS or secure
WebSocket protocol. The default value is
8443.

management_port Management port used for CLI and REST API
management. The default value is 8010.

cluster_manager_port ASE node uses this port number to
communicate with other ASE nodes in the
cluster. The default value is 8020.

keystore_password The password for ASE keystore. The default
password is asekeystore.

cluster_secret_key This key is used for authentication among
ASE cluster node. All the nodes of the cluster
must have the same
cluster_secret_key
. This key must be entered manually on each
node of the ASE cluster for the nodes to
communicate with each other. The default
value is yourclusterkey.

Email default settings Configure the following settings:

• enable_emails•
: Set it to
true
for ASE to send email notifications.
Default value is false.

• smtp_host•
and
smtp_port

PingIntelligence copyright © 2022

| 377



• sender_email•
: Email address used from which email
alerts and reports are sent.

• email_password•
: Password of sender’s email account.

• receiver_email•
: Email address at which the email
alerts and reports are sent.

CLI admin password The default value for CLI admin is
admin
. To change the password, you need to know
the current password.

Important: Make sure to take a backup of the ase-defaults.yml file on a secure machine
after the automated installation is complete.

Following is a sample ase-defaults.yml file:
---
ase:
    # Deployment mode for ASE. Valid values are inline or sideband
    mode: inline

    # Define ports for the Pingintelligence API Security Enforcer
    # Make sure ports are not same for single server installation
    http_ws_port: 8090
    https_wss_port: 8443
    management_port: 8010
    cluster_manager_port: 8020
    
    # Password for ASE keystore
    keystore_password: asekeystore
    
    # cluster_secret_key for ASE cluster
    cluster_secret_key: yourclusterkey
    
    # Configure Email Alert. Set enable_emails to true to configure
    # email settings for ABS
    enable_emails: false
    smtp_host: smtp.example.com
    smtp_port: 587
    sender_email: sender@example.com
    email_password: password
    receiver_email: receiver@example.com
    
    # CLI admin password
    current_admin_password: admin
    new_admin_password: admin

Parent topic:Automated AWS setup

PingIntelligence copyright © 2022

| 378



Change ABS default settings
You can change the default settings in ABS by editing the abs-defaults.yml file. The following table
lists the variables that you can set for ABS:

Variable Description

management_port Port for ABS to ASE and REST API to ABS
communication. The default value is 8080.

log_port Port for ASE to send log files to ABS. The
default value is 9090.

mongo_username
and
mongo_password

MongoDB user name and password. The
default user name is
absuser
and the default password is abs123.

mongo_cache_size Default and maximum value is 40 for a multi-
instance deployment. If you are deploying all
the components on a single EC2 instance,
this value is internally set to 25.

access_key
and
secret_key

The access key and secret for the admin
user. For more information on different ABS
users, see ABS users

access_key_ru
and
secret_key_ru

he access key and secret for the restricted
user. For more information on different ABS
users, see ABS users

jks_password The password of the JKS Keystore. The
default password is abs123.

Email default settings Configure the following settings:

• enable_emails•
: Set it to
true
for ASE to send email notifications.
Default value is false.

• smtp_host•
and
smtp_port

• sender_email•
: Email address used from which email
alerts and reports are sent.

• email_password•
: Password of sender’s email account.

• receiver_email•
: Email address at which the email
alerts and reports are sent.

CLI admin password The default value for CLI admin is
admin

PingIntelligence copyright © 2022

| 379

https://docs.pingidentity.com/bundle/PingIntelligence_ABS_3.2_Admin_Guide_pingintel_32/page/abs_users_for_api_reports_and_dashboard.html
https://docs.pingidentity.com/bundle/PingIntelligence_ABS_3.2_Admin_Guide_pingintel_32/page/abs_users_for_api_reports_and_dashboard.html


. To change the password, you need to know
the current password.

Important: Make sure to take a backup of the abs-defaults.yml file on a secure machine
after the automated installation is complete.

Following is a sample abs-defaults.yml file:
---
abs:
    # Define ports for the Pingintelligence ABS
    # Make sure ports are not same for single server installation
    management_port: 8080
    log_port: 9090

    # Mongo DB User and password
    mongo_username: absuser
    mongo_password: abs123
    # Define cache size for MongoDB (% of total RAM).
    # MongoDB will be configured to use this percentage of host memory.
    mongo_cache_size: 50
    
    # Access keys and secret keys to access ABS
    access_key: abs_ak
    secret_key: abs_sk
    access_key_ru: abs_ak_ru
    secret_key_ru: abs_sk_ru

    # Password for ABS keystore
    jks_password: abs123

    # Configure Email Alert. Set enable_emails to true to configure
    # email settings for ABS
    enable_emails: false
    smtp_host: smtp.example.com
    smtp_port: 587
    sender_email: sender@example.com
    email_password: password
    receiver_email: receiver@example.com

    # CLI admin password
    current_admin_password: admin
    new_admin_password: admin

Parent topic:Automated AWS setup

Change Dashboard default settings
You can change the default settings in ABS by editing the dashboard-defaults.yml file. The following
table lists the variables that you can set for Dashboard:

Variable Description

PingIntelligence copyright © 2022

| 380



kibana_port Port used to access the PingIntelligence
Dashboard.

jks_password The password of the JKS Keystore. The
default password is abs123.

elastic_password Elasticsearch password. The default value is
changeme.

Note: Do not change the
elastic_password
after PingIntelligence installation is
complete.

kibana_password Kibana password. The default value is
changeme.

Note: Do not change the
kibana_password
after PingIntelligence installation is
complete.

ping_user_password Password for the default user name
ping_user
. The default value is changeme,

ping_admin_password Password for the admin. The default value is
changeme.

CLI admin password The default value for CLI admin is
admin
. To change the password, you need to know
the current password.

Important: Make sure to take a backup of the dashboard-defaults.yml file on a secure
machine after the automated installation is complete.

Following is a sample dashboard-defaults.yml file:
---
dashboard:
    # Define ports for the PingIntelligence Dashboard
    # Make sure ports are not same for single server installation
    kibana_port: 5601

    # Passwords for elasticsearch, kibana, ping_user, and ping_admin users
    # Dashboard will be accessible by these accounts
    # Please set strong passwords
    elastic_password: changeme
    kibana_password: changeme
    ping_user_password: changeme
    ping_admin_password: changeme
    

PingIntelligence copyright © 2022

| 381



    # CLI admin password
    current_admin_password: admin
    new_admin_password: admin

Parent topic:Automated AWS setup

Step 2: Launch EC2 instances
Run the following command to launch the EC2 instances:

[ec2-user@ip-172-31-8-101 aws-production]$ ./bin/start.sh launch
Please see /home/ec2-user/pingidentity/aws-production/logs/ansible.log for 
more details.

Note: Do not execute the run.sh script available in the bin directory.

An example ansible.log file for a successful launch of EC2 instances is shown below:

[ec2-user@ip-172-31-8-101 aws-production]$ tail -f logs/ansible.log
====================================================================================
Current Time: Thu Feb 14 05:35:36 UTC 2019
Starting launch scripts
====================================================================================
Thu Feb 14 05:35:36 UTC 2019: Setting up local environment
Thu Feb 14 05:35:36 UTC 2019: Installing packages

PLAY [Provision EC2 Instances] 
*************************************************
TASK [Launch of EC2 instances successful] 
**************************************
PLAY RECAP 
*********************************************************************
127.0.0.1                  : ok=30   changed=22   unreachable=0    failed=0

Thu Feb 14 05:37:36 UTC 2019: EC2 instances and security groups created 
successfully
====================================================================================

At the end of end of launch step, a hosts file is generated which has the IP addresses of all EC2 instances.
A snippet of a sample config/hosts file is shown below:

[ase]
172.31.0.19 id=i-0f342f32f92396425 public_ip=18.191.14.16

[elasticsearch]
172.31.15.183 id=i-01e154407b5bd0836 public_ip=18.188.93.156

[dashboard]
172.31.15.183 id=i-01e154407b5bd0836 public_ip=18.188.93.156

PingIntelligence copyright © 2022

| 382



[kibana]
172.31.15.183 id=i-01e154407b5bd0836 public_ip=18.188.93.156

[abs]
172.31.2.82 id=i-069d4f0d85a4a504c public_ip=18.219.99.40

[abs_reporting_node]
172.31.12.182 id=i-069d4f1d85a5b604d public_ip=18.219.98.20

[mongodb]
172.31.10.227 id=i-094c16d68fd03dd29 public_ip=18.220.185.142

[all:vars]
ansible_ssh_private_key_file=/home/ec2-user/pingidentity/aws-production/data/
pingid_apisecurity_production_key.pem
ansible_ssh_user=ec2-user

At the end of the automated deployment, the PingIntelligence software are installed on a single EC2
instance or on multiple EC2 instances based on the deployment type you configured in the aws.config
file. In order to access the EC2 instances, use the ansible_ssh_private_key_file available in the
hosts file.

• PingIntelligence AWS instance and security group name

Parent topic:Automated AWS setup

AWS instance and security group name
Instance names: Following are the instance names of the EC2 instances created during the deployment:

• pingid_apisecurity_production_ase
• pingid_apisecurity_production_abs
• pingid_apisecurity_production_dashboard
• pingid_apisecurity_production_abs_reporting_node
• pingid_apisecurity_production_mongodb

Security group names: AWS security groups are also built as part of the setup. Make sure that you do
not have any other instances or security groups with the same names.

Component Security Group

ASE pingid_apisecurity_production_ase_sg

ABS pingid_apisecurity_production_abs_sg

Dashboard pingid_apisecurity_production_dashbo
ard_sg

MongoDB pingid_apisecurity_production_mongod
b_sg

At the end of running of automated deployment, the master keys of all the products are deleted from the
individual instances for security reasons. The master keys are available only in the tar file of the software

PingIntelligence copyright © 2022

| 383



package on the management instance. Starting of any PingIntelligence component requires a master key
to be present in the config directory. To manually restart any of the PingIntelligence components, copy the
corresponding master key back to the config directory. For more information on master key of each
component, see the respective Admin Guide.

Parent topic:Step 2: Launch EC2 instances

Step 3: Configure system parameters
The following two system parameters are required to be set before installing the PingIntelligence software:

• vm.max_map_count: For Dashboard.
• ulimit: For ASE and Dashboard

Run the following command to configure the system parameters on the EC2 respective instances:
[ec2-user@ip-172-31-8-101 aws-production]$ ./bin/start.sh configure
Please see /home/ec2-user/pingidentity/aws-production/logs/ansible.log for 
more details.

An example ansible.log file for a successful launch of EC2 instances is shown below:
[ec2-user@ip-172-31-8-101 aws-production]$ tail -f logs/ansible.log
==========================================================================
Current Time: Thu Feb 14 05:57:18 UTC 2019
Starting configure scripts
==========================================================================
Successfully installed pip-19.0.2
Thu Feb 14 05:57:24 UTC 2019: Play configure scripts

PLAY [Configure system settings for elasticsearch] ************************

TASK [Get vm.max_map_count] ***********************************************
TASK [Set vm.max_map_count if less than 262144] ***************************
TASK [Get ulimit -n] ******************************************************
TASK [Set ulimit nofile to 65536 if value is low - softlimit] *************
TASK [Set ulimit nofile to 65536 if value is low - hardlimit] *************

PLAY [Configure system settings for ASE] **********************************

TASK [Get ulimit -n] ******************************************************
TASK [Set ulimit nofile to 65536 if value is low - softlimit] *************
TASK [Set ulimit nofile to 65536 if value is low - hardlimit] *************

PLAY RECAP ****************************************************************
172.31.2.34             : ok=16   changed=6    unreachable=0    failed=0

Thu Feb 14 05:57:52 UTC 2019: Configure successful
============================================================================

Parent topic:Automated AWS setup

Step 4: Install PingIntelligence for APIs software
Run the following command to install the PingIntelligence components

PingIntelligence copyright © 2022

| 384



[ec2-user@ip-172-31-8-101 aws-production]$ ./bin/start.sh install
Please see /home/ec2-user/pingidentity/aws-production/logs/ansible.log for 
more details.

Note: Do not execute the run.sh script available in the bin directory.

An example ansible.log file for a successful setup is shown below:

[ec2-user@ip-172-31-8-101 aws-production]$ tail -f logs/ansible.log
====================================================================================
Current Time: Fri Feb 15 04:43:55 UTC 2019
Starting setup scripts
====================================================================================
Fri Feb 15 04:43:55 UTC 2019: Setting up local environment
Fri Feb 15 04:43:55 UTC 2019: Installing packages
LAY RECAP 
*********************************************************************
127.0.0.1                  : ok=7    changed=0    unreachable=0    failed=0
172.31.2.34                : ok=126  changed=79   unreachable=0    failed=0

Fri Feb 15 04:54:49 UTC 2019: Setup successful
====================================================================================

At the end of the automated deployment, the PingIntelligence software are installed on a single EC2
instance or on multiple EC2 instances based on the deployment type you configured in the aws.config
file.

Updated PingIntelligence packages

The automated deployment framework creates the updated package for each PingIntelligence component
and stores them in the /pingidentity/aws-production/software/updated_packages
directory. The keys, passwords, and port number in these packages are the ones that you configured using
the yml files in the /pingidentity/aws-production/config directory. You can use these packages
to install PingIntelligence components on other instances.

Parent topic:Automated AWS setup

Verify the installation
Verify that all the components have installed and started successfully. Login to individual instances using
the management instance (t2.micro). The default security groups created for each component allow
access only on port number 22 by the management instance. The username is ec2-user and the SSH
key is available in data/pingid_apisecurity_prodcution_key.pem

Verify ASE installation

Log in to the ASE EC2 instance and navigate to /home/ec2-user/pingidentity/ase/bin directory
and run the status command:
/home/ec2-user/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status              : started

PingIntelligence copyright © 2022

| 385



http/ws             : port 8090
https/wss           : port 8443
firewall            : enabled
abs                 : disabled, ssl: enabled
abs attack          : disabled
audit               : enabled
ase detected attack : disabled
attack list memory  : configured 128.00 MB, used 25.60 MB, free 102.40 MB

If the status command runs successfully, then ASE has been installed and started.

Verify ABS and MongoDB installation

Log in to the ABS EC2 instance and run the ABS Admin REST API using a REST API client like Postman.
More information on installing and configuring Postman is available in the ABS Admin Guide.

The report can be accessed by calling the ABS system at the following URL:

https://<ip>:<port>/v3/abs/admin. Use the IP address from the hosts file generated at the end
of the deployment.

If ABS and MongoDB has installed successfully, the Admin REST API output will display the MongoDB
nodes. If the Admin API is not accessible, then ABS has not started. Following is a sample output of the
Admin REST API:
{
    "company": "ping identity",
    "name": "api_admin",
    "description": "This report contains status information on all APIs, ABS 
clusters, and ASE logs",
    "across_api_prediction_mode": true,
    "api_discovery": {
        "subpath_length": "1",
        "status": true
    },
    "apis": [
            ],
    "abs_cluster": {
        "abs_nodes": [
            {
                "node_ip": "192.168.11.166",
                "os": "Red Hat Enterprise Linux Server release 7.3 (Maipo)",
                "cpu": "16",
                "memory": "64G",
                "filesystem": "29%",
                "bootup_date": "Tue Nov 20 16:16:56 IST 2018"
            }
        ],
        "mongodb_nodes": [
            {
                "node_ip": "192.168.11.168",
                "status": "up"
            },
            {

PingIntelligence copyright © 2022

| 386



                "node_ip": " 192.168.11.169",
                "status": "up"
            },
            {
                "node_ip": " 192.168.11.171",
                "status": "up"
            }
        ]
    },
    "ase_logs": [
        
    ]
}

Verify Dashboard Installation

To verify the Dashboard installation, enter the kibana IP address from the hosts file in your web browser.
Log in using username ping_user and the default password changeme.

See the ASE, ABS and Dashboard admin guides to configuration and administration of PingIntelligence
products.

Parent topic:Automated AWS setup

Next steps - Integrate PingIntelligence into your environment
After the installation is complete, refer the following topics based on the type of deployment.

Sideband configuration: If you have configured PingIntelligence ASE for sideband connectivity with an
API Gateway, then refer to the deployment guide for your environment.

• Apigee Integration
• Axway Integration
• PingAccess Integration

Inline configuration: If you configured PingIntelligence ASE for inline connectivity, the next step is to add
API definitions to the PingIntelligence for APIs software. After this is complete, direct your API client to the
IP address of the ASE software on ports that you configured in the aws.config file.

It is recommended to read the following topics (part of the admin guides) apart from reading the ASE and
ABS Admin Guides:

• ASE port information
• API naming guidelines
• Adding APIs to ASE based on the deployment mode:

◦ Inline ASE, or
◦ Sideband ASE

• Connect ASE and ABS

After you have added your APIs in ASE, the API model needs to be trained. The training of API model is
completed in ABS. The following topics give a high level view, however it is a good practice to read the
entire ABS Admin Guide.

• Train your API model

PingIntelligence copyright © 2022

| 387

https://docs.pingidentity.com/bundle/pingintelligence-32/page/apigee/eeeeeee/pingintelligence_apigee_integration.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/axway/pingintelligence_axway_sideband_setup.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/pa/pingintelligence_pingaccess_setup.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/defining_an_api___api_json_configuration_file.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_introduction.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/customizing_ase_ports.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/api_naming_guidelines.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/defining_an_api___api_json_configuration_file.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/defining_an_api___api_json_configuration_file_0.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/ase_configuration_for_abs_ai_based_security_1.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/artificial_intelligence_training.html


• Generate and view the REST API reports using Postman
To access the ABS REST API reports you would require the following information:

◦ IP address: IP address of ABS generated in the config/hosts file.
◦ Port number: 8080
◦ API Name: Name of the API for which you want to generate REST API reports
◦ Later and Earlier date: The date range for which you want to generate the reports

• View PingIntelligence for APIs Dashboard: Access the main PingIntelligence for APIs Dashboard with
a browser at this URL: https://<kibana ip>:5601/. In the above URL, Kibana IP is the IP address of the
Kibana EC2 instance generated in config/hosts file.

Login to PingIntelligence for APIs Dashboard using the ping_user login ID and the default
password changeme. Change the default password after you login. The PingIntelligence for APIs
Dashboard takes approximately one hour to start showing attack information.

Parent topic:Automated AWS setup

Shutdown the deployment
To shut down the deployment and remove all EC2 instances and data, run the stop.sh command.

Note: When you shut down the deployment, all the EC2 instances along with the data is
deleted.

[ec2-user@ip-172-31-8-101 aws-production]$ ./bin/stop.sh
Please see /home/ec2-user/pingidentity/aws-production/logs/ansible.log for 
more details.

A snippet of the ansible.log file for a successful shutdown is shown below:

[ec2-user@ip-172-31-8-101 aws-production]$ tail -f logs/ansible.log
====================================================================================
Current Time: Wed Feb 20 05:37:36 UTC 2019
Starting stop scripts
====================================================================================
Wed Feb 20 05:41:36 UTC 2019: Play terminate scripts
.
.
PLAY RECAP 
*********************************************************************
127.0.0.1 : ok=20 changed=16 unreachable=0 failed=0 
Wed Feb 20 05:45:36 UTC 2019: Stop successful
====================================================================================

Parent topic:Automated AWS setup

View installation logs
The ansible.log file is available in the /opt/pingidentity/aws-production/logs directory.

Parent topic:Automated AWS setup

Deployment on VMs
Automated VM setup

PingIntelligence copyright © 2022

| 388

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/api_reports_using_postman.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/dashboard/accessing_the_abs_dashboard.html


This guide describes the installation and execution of an Ansible package which automatically builds a
VMWare ESXi environment with PingIntelligence for APIs software. The package installs and configures
four software components which include ASE (deployed between the API clients and API Gateway or
backend server), ABS AI Engine, MongoDB database, and the PingIntelligence for APIs dashboard. The
entire setup is deployed in an ESXi environment running RHEL 7.2 or later.

The following diagram shows the complete deployment architecture of the setup:

• ASE deployment modes
• Step 1: Setup host system
• Change ASE's default settings
• Change ABS's default settings
• Change Dashboard default settings
• Step 2: Configure system parameters
• Step 3: Install the PingIntelligence for APIs software
• Verify PingIntelligence Installation
• Restart PingIntelligence components (optional)
• Next steps - Integrate PingIntelligence into your environment
• Shut down the deployment
• Logs

ASE deployment modes
Inline mode

In the inline deployment mode, ASE sits at the edge of your network to receive the API traffic. It can also be
deployed behind an existing load balancer such as AWS ELB. In inline mode, API Security Enforcer
deployed at the edge of the datacenter, terminates SSL connections from API clients. It then forwards the
requests directly to the correct APIs – and app servers such as Node.js, WebLogic, Tomcat, PHP, etc.

PingIntelligence copyright © 2022

| 389



To configure ASE to work in the Inline mode, set the mode=inline in the aws.config file.

Sideband mode

ASE when deployed in the sideband mode, works behind an existing API gateway. The API request and
response data between the client and the backend resouce or API server is sent to ASE. In this case, ASE
does not directly terminate the client requests.

To configure ASE to work in the sideband mode, set the mode=sideband in the aws.config file.

Following is a description of the traffic flow through the API gateway and Ping Identity ASE.

1. Incoming request to API gateway
2. API gateway makes an API call to send the request detail in JSON format to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP against the AI

generated Blacklist. If all checks pass, ASE returns a 200-OK response to the API gateway. Else, a
different response code is sent to the Gateway. The request is also logged by ASE and sent to the AI
Engine for processing.

4. If the API gateway receives a 200-OK response from ASE, then it forwards the request to the backend
server, else the Gateway returns a different response code to the client.

5. The response from the backend server is received by the API gateway.

PingIntelligence copyright © 2022

| 390



6. The API gateway makes a second API call to pass the response information to ASE which sends the
information to the AI engine for processing.

7. ASE receives the response information and sends a 200-OK to the API gateway.
8. API gateway sends the response received from the backend server to the client.

Note: Complete the ASE sideband mode deployment by referring to API gateway specific
deployment section on the PingIntelligence documentaion site.

Parent topic:Automated VM setup

Step 1: Setup host system
Setup the management VM

Create RHEL 7.2 or higher VMs based on the sizing requirements. All the VMs must have internet
connectivity to download the third-party tools. Create the VMs based on the sizing decisions based on your
API environment.

Steps for all the VMs

Complete the following steps on all the VMs except the ping-management VM. ping-management is
the VM from which the ansible script is run to deploy the various PingIntelligence software.

Important: If you plan to install PingIntelligence software as a non-sudo user, then skip steps
3-5.

1. Create vm-user. The hosts file in the automation package has esxi-user as the default user. You
can create your own username.

#useradd vm-user

2. Change the password

#passwd vm-user

3. Add the user to the wheel group

#usermod -aG wheel vm-user

4. Configure password-less sudo access

#visudo

%wheel ALL=(ALL) NOPASSWD: ALL

5. Verify the /etc/ssh/sshd_config file for PubKeyAuthentication. If it is set to no, then set it
to yes and restart sshd service using the following command:

#systemctl restart sshd

Steps for ping-management VM

1. Login to VM as a root user.
2. Download the ESXi Ansible file and save it to the /opt directory
3. Untar the downloaded file:

PingIntelligence copyright © 2022

| 391

https://docs.pingidentity.com/category/pingintel_32
https://www.pingidentity.com/en/resources/downloads.html


#tar -xf /opt/esxi-production-3.2.1.tar.gz

Untarring the file creates the following subdirectories in the esxi-production directory:

Directory Description

ansible Contains the different yml files

bin Contains the
start.sh
and
stop.sh
scripts. Do not edit the contents of this directory.

certs Contains Elasticsearch and Kibana self-signed
certificates and keys.

Note: If you want to use your own
certificates and keys, then replace the
default certificates and keys with your
certificates. Use the same file names as that
of the files present in the
certs
directory.

config Contains the aws.config file. This file is used to
configure the various variables for installing
PingIntelligence components.

data Contains the MongoDB key file

external The third-party components like MongoDB are
downloaded in the
external
directory.

license Contains
ase
and
abs
directories that have the ASE and ABS license file.

logs Contains the log files for automated installation

software Contains the binary files for PingIntelligence
components:

• ASE
• ABS
• Dashboard

• Configure ASE and ABS license
• Configure hosts file
• Manually download third-party components
• Download PingIntelligence software

PingIntelligence copyright © 2022

| 392



• Secure PingIntelligence Components

Parent topic:Automated VM setup

Configure ASE and ABS license
PingIntelligence ASE and ABS require a valid license to start. The license file for both the products is
named PingIntelligence.lic.

• ASE:
Copy the ASE license file in the license/ase directory. Make sure that the license file is named as
PingIntelligence.lic Following is a sample of the ASE license file:
ID=981894
Product=PingIntelligence
Module=ASE
Version=3.2
IssueDate=2018-11-30
EnforcementType=0
ExpirationDate=2018-12-30
Tier=Subscription
SignCode=
Signature=

Verify that the correct file has been copied: To verify that the correct license file has been
copied in the /license/ase directory, run the following command:
# grep 'Module' license/ase/PingIntelligence.lic
Module=ASE

• ABS:
Copy the ABS license file in the license/abs directory. Make sure that the license file is named as
PingIntelligence.lic. Following is a sample of the ABS license file:
ID=981888
Product=PingIntelligence
Module=ABS
Version=3.2
IssueDate=2018-11-30
EnforcementType=0
ExpirationDate=2018-12-30
Tier=Subscription
SignCode=
Signature=

Verify that the correct file has been copied: To verify that the correct license file has been
copied in the /license/abs directory, run the following command:
# grep 'Module' license/ase/PingIntelligence.lic
Module=ABS

Parent topic:Step 1: Setup host system

Configure hosts file
The hosts file contains the various parameters to be configured for installation of PingIntelligence
components. Complete the following steps to configure the hosts file.

PingIntelligence copyright © 2022

| 393



The configuration file has parameters where link to download third-party component is configured. If the
Ping Management VM does not have internet access, download the third-party components manually.

1. Navigate to the esxi-production/config directory and edit the hosts file to add the IP address
of all the VMs. For more information see Configure the hosts file title below.

2. Run the following command on the Ping Management VM. The Ping Management VM is the VM
from which the automated deployment script is run to deploy the various PingIntelligence software.

#ssh-keygen -t rsa

This command generates the ssh-keys. Accept all the default options. Make sure that you do not
set the password for the key.

3. Run the following command to add the ssh key:

#ssh-add

4. Run the following command for each VM except the Ping Management VM:

# ssh-copy-id vm-user@<ping-VM IPv4 address>

For example, ssh-copy-id vm-user@192.168.11.101 (ping-ase)

5. Configure the hosts file5.

Configure the following fields in the config/hosts file:

Variable Description

IP addresses
• [ase]•
• [abs]•
• [mongodb]•
• [dashboard]•
••
[elasticsear
ch]

• [kibana]•
••
[abs_reporti
ng_node]

Configure the IP addresses of ASE, ABS, Dashboard,
Elasticsearch, Kibana, and MongoDB and ABS reporting node. If
you want to install all the components on a single VM, give the
same IP address for all the component. If you want a distributed
deployment, provide different IP addresses.

mode The mode in which you want to deploy API Security Enforcer
(ASE). Set the value to
inline
to deploy ASE in inline mode. Set the value to
sideband
to deploy ASE in sideband mode. The default value is
inline

installation_pat
h

Configure the path where you would want the PingIntelligence
components to be installed. The default value is
/home/vm-user
.

Important: The path that you provide in the

PingIntelligence copyright © 2022

| 394



installation_path
variable must exist on the VM. The automation script
does not create this path. If you are installing all the
PingIntelligence components on different VMs, then
manually create the same path on each VM before
running the automation script.

Ports Configure the following ports:
• ase_http_ws_port•
• ase_https_wss_port•
• ase_management_port•
• ase_cluster_manager_port•
• abs_management_port•
• abs_log_port•
• kibana_port•

Note: If you are installing the PingIntelligence
components without root access then make sure that
the ports numbers assigned are greater than or equal
to 1024.

install_with_sud
o

When set to
false
, the script installs PingIntelligence for a normal user. When set
to
true
, the script installs PingIntelligence as a root user.

jdk8_download_ur
l

The automated script requires
Oracle JDK8
                                                u161
and later. Complete the following steps to download and save
JDK8:

a. Download and save
Linux_x64 Oracle JDK 8
                                               
   update 161
or later in the
external
directory.

Note: Make sure to download the
tar.gz
file and not the rpm file.

b. Rename the downloaded JDK 8 file to
jdk8.tar.gz
.

Note: Do not edit the
jdk8_download_url
. The automated deployment uses the JDK 8
downloaded and saved in the
external

PingIntelligence copyright © 2022

| 395



directory in step a.

mongodb_download
_url

MongoDB download URL. A default URL is populated in the
hosts
file.

elasticsearch_do
wnload_url

Elasticsearch download URL. A default URL is populated in the
hosts
file.

kibana_download_
url

Kibana download URL. A default URL is populated in the
hosts
file.

elastic_password Password to access the elastic user. You can change the default
password.

Note: Change the default password before running
the deployment script.

kibana_password Password for Kibana. You can change the default password.

Note: Change the default password before running
the deployment script.

mongo_username The default username for MongoDB

mongo_password The default password for
mongo_username.

abs_reporting_in
stance_type

ABS reporting node. This is the node that is used by
PingIntelligence Dashboard to fetch data for displaying on the
Dashboard.

ansible_ssh_user Ansible
ssh
user. The default value is
esxi-user
.

Add Ansible username in the ansible_ssh_user field. The default value is esxi-user.
[ase]
192.168.11.148

[elasticsearch]
192.168.11.149

[dashboard]
192.168.11.149

[kibana]
192.168.11.149

PingIntelligence copyright © 2022

| 396



[abs]
192.168.11.145

[abs_reporting_node]
192.168.11.147

[mongodb]
192.168.11.146

[all:vars]

# Deployment mode for ASE. Valid values are inline or sideband
mode=inline

# Installation Path
installation_path="/home/esxi-user"

# Define ports for the Pingintteligence components
# Make sure ports are not same for the same host
ase_http_ws_port=8090
ase_https_wss_port=8443
ase_management_port=8010
ase_cluster_manager_port=8020
abs_management_port=8080
abs_log_port=9090
kibana_port=5601

# Configure install_with_sudo to true if the any of the ports in above 
list
# is <1024. That component will be started using sudo.
install_with_sudo=false

# Download URLs for external packages

jdk8_download_url='jdk8-download-url'

mongodb_download_url='https://fastdl.mongodb.org/linux/mongodb-linux-
x86_64-rhel70-3.4.6.tgz'
elasticsearch_download_url='https://artifacts.elastic.co/downloads/
elasticsearch/elasticsearch-6.4.3.tar.gz'
kibana_download_url='https://artifacts.elastic.co/downloads/kibana/
kibana-6.4.3-linux-x86_64.tar.gz'

# Passwords for elasticsearch and kibana users
# Dashboard will be accessible by these accounts
# Please set strong passwords 
elastic_password=elAstIc@123!
kibana_password=KibAnA@678!

# Mongo DB User and password
mongo_username=absuser
mongo_password=abs123

PingIntelligence copyright © 2022

| 397



#Ansible SSH user with password-less access
ansible_ssh_user=esxi-user

Parent topic:Step 1: Setup host system

Manually download third-party components
If your Ping Management VM does not have internet access then you can download the software using the
steps mentioned below. Download the individual components and save the file in the external directory.

1. Install Ansible version 2.6.2 on the Ping Management host. The Ping Management VM is the VM
from which the automated deployment script is run to deploy the various PingIntelligence software.

2. Download the following packages and copy to the external directory using the specified names:

MongoDB – Download MongoDB from: https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-
rhel70-3.4.6.tgz and save the file in the external directory as mongodb.tgz.

Elasticsearch – Download Elasticsearch from: https://artifacts.elastic.co/downloads/
elasticsearch/elasticsearch-6.4.3.tar.gz and save the file in the external directory as
elasticsearch-6.4.3.tar.gz.

Kibana – Download from: https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-linux-
x86_64.tar.gz and save the file in the external directory as kibana-6.4.3-linux-
x86_64.tar.gz.

Parent topic:Step 1: Setup host system

Download PingIntelligence software
Download the following PingIntelligence for APIs software to esxi-production/software directory.

• API Security Enforcer (ESXi RHEL 7)
• API Behavioral Security
• PingIntelligence Dashboard

Note: Do not change the name of the downloaded files.

The software directory should include the following files:

-rw-r--r--. 1 pingidentity pingidentity 2.5M Dec 07 00:01 
dashboard-3.2.1.tar.gz
-rw-r--r--. 1 pingidentity pingidentity 159M Dec 07 00:01 abs-3.2.1.tar.gz
-rw-r--r--. 1 pingidentity pingidentity 38M  Dec 07 00:01 ase-esxi-
rhel-3.2.1.tar.gz

At the end of automated deployment, the master keys of all the products are deleted from the individual
instances for security reasons. The master keys are available only in the tar file of the software package on
the management instance. Starting of any PingIntelligence component requires a master key to be
present. To manually restart any of the PingIntelligence components, copy the corresponding master key
back to the config directory.

PingIntelligence copyright © 2022

| 398

https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.4.6.tgz
https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.4.6.tgz
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.3.tar.gz
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.3.tar.gz
https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-linux-x86_64.tar.gz
https://artifacts.elastic.co/downloads/kibana/kibana-6.4.3-linux-x86_64.tar.gz
https://www.pingidentity.com/en/resources/downloads.html


For more information on the master key of each component see the respective Admin Guides.

Parent topic:Step 1: Setup host system

Secure Components
After you have downloaded the four PingIntelligence for APIs components, each PingIntelligence for APIs
software component has a master key (for example, ASE uses ase_master.key) which is used to secure
keys and passwords. Although a default master key is provided, PingIntelligence recommends generating
your own secure master key. Here is the process to follow to secure each software component.

ASE:ASE uses the master key defined in ase_master.key to obfuscate keys and passwords. Detailed
information on generating the master key and securing content is available in the Obfuscate keys and
password section of the ASE admin guide. The files containing secured content are:

• ase.conf file – Email and Keystore (PKCS#12) password
• cluster.conf file – Cluster authentication key
• abs.conf file – ABS access and secret key

After obfuscating the keys and password, tar and gzip the ASE build and save the build in the esxi-
production/software directory.
ABS: ABS uses the master key defined in abs_master.key to obfuscate keys and passwords. Detailed
information on generating the master key and securing content is available in the Obfuscate passwords
section of the ABS admin guide. The files containing secured content are:

• abs.properties file – mongo_password, jks_password, and email_password
• abs_init.js – default password, access, and secret key

After obfuscating the keys and password, tar and gzip the ABS build and save the build in the esxi-
production/software directory.
Dashboard: Dashboard uses the master key defined in dashboard_master.key to obfuscate keys and
passwords. Detailed information on generating the master key and securing content is available in the
Obfuscating keys and password section of the Dashboard admin guide.The files containing secured
content are:

• dashboard.properties file – abs.access_key, abs.secret_key, es.password

After obfuscating the keys and password, tar and gzip the Dashboard build and save the build in the esxi-
production/software directory.
Parent topic:Step 1: Setup host system

Change ASE's default settings
It is recommended that you change the default key and password in ASE. Following is a list of commands
to change the default values. Complete the following steps to change the default settings:

1. Log in to the management host
2. Change directory to software
3. Untar ASE binary:

tar –zxvf ase-aws-rhel-3.2.1.tar.gz

Change ase_master.key

Run the following command to create your own ASE master key to obfuscate keys and password in ASE.

PingIntelligence copyright © 2022

| 399

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/obfuscating_keys_and_passwords.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/obfuscating_keys_and_passwords.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/obfuscate_passwords.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/dashboard/obfuscating_keys_and_passwords.html


Command: generate_obfkey. ASE must be stopped before creating a new ase_master.key
/opt/pingidentity/ase/bin/cli.sh admin generate_obfkey -u admin -p admin
API Security Enforcer is running. Please stop ASE before generating new 
obfuscation master key

Enter the generate_obfkey command to change the default ASE master key:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin generate_obfkey
Please take a backup of config/ase_master.key, config/ase.conf,
config/abs.conf, config/cluster.conf before proceeding
Warning: Once you create a new obfuscation master key, you should 
obfuscate all config keys also using cli.sh obfuscate_keys
Warning: Obfuscation master key file /opt/pingidentity/ase/config/
ase_master.key already exist. 
This command will delete it create a new key in the same file
Do you want to proceed [y/n]:

Change keystore password

You can change the keystore password by entering the following command. The default password is
asekeystore. ASE must be running for updating the keystore password.

Start ASE: After a new ASE master key is generated, start ASE by entering the following command:
/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 3.2.1...
please see /opt/pingidentity/ase/logs/controller.log for more details

Command: update_keystore_password
/opt/pingidentity/ase/bin/cli.sh update_keystore_password -u admin -p admin
New password >
New password again >
keystore password updated

Change default passwords

Navigate to config directory and edit the following files to change the default key and passwords:

• ase.conf file – Email and Keystore (PKCS#12) password
• cluster.conf file – Cluster authentication key
• abs.conf file – ABS access and secret key

Change CLI admin password

You can change the default admin password by entering the following command:
/opt/pingidentity/ase/bin/cli.sh update_password -u admin -p admin
Old password >
New password >
New password again >
Password updated successfully

Stop ASE: Stop ASE by running the following command:

PingIntelligence copyright © 2022

| 400



/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…sending stop request to ASE. please 
wait…
API Security Enforcer stopped

Next step: Import your certificate and repackage ASE for automated deployment.

• Import existing certificate and repackage ASE

Parent topic:Automated VM setup

Import existing certificate and repackage ASE
ASE supports both TLS 1.2 and SSLv3 for external APIs.

To install an existing certificate, complete the following steps and import it into ASE. If you have
intermediate certificate from CA, then append the content to your server .crt file.

1. Create the key from the existing .pem file:
openssl rsa -in private.pem -out private.key

2. Convert the existing .pem file to a .crt file:
openssl x509 -in server-cert.pem -out server-cert.crt

3. Import key pair from step 2:
/opt/pingidentity/ase/bin/cli.sh import_key_pair private.key -u admin -p
Warning: import_key_pair will overwrite any existing certificates
Do you want to proceed [y/n]:y
Exporting key to API Security Enforcer...
OK, key pair added to keystore

4. Import the .crt file in ASE using the import_cert CLI command:
/opt/pingidentity/ase/bin/cli.sh import_cert server-crt.crt -u admin -p
Warning: import_cert will overwrite any existing signed certificate
Do you want to proceed [y/n]:y
Exporting certificate to API Security Enforcer...
OK, signed certificate added to keystore

Repackage ASE
Tar ASE after changing the default values. Enter the following command:
tar -zcvf ase-aws-rhel-3.2.1 pingidentity/

Make sure that the original file name is retained when you tar ASE and the file is saved in the software
directory on the management host.
Parent topic:Change ASE's default settings

Change ABS's default settings
It is recommended that you change the default key and password in ASE. Following is a list of commands
to change the default values. Complete the following steps to change the default settings:

1. Log in to the management host

PingIntelligence copyright © 2022

| 401



2. Change directory to software
3. Untar ABS binary:

tar –zxvf abs-3.2.1.tar.gz

Change default JKS password

You can change the default password for KeyStore and the key. Complete the following steps to change
the default passwords. Make sure that ABS is stopped before changing the JKS password.

Important: The KeyStore and Key password should be the same.

1. Change the KeyStore password: Enter the following command to change the KeyStore
password. The default KeyStore password is abs123.
# keytool -storepasswd -keystore config/ssl/abs.jks
Enter keystore password:  abs123
New keystore password: newjkspassword
Re-enter new keystore password: newjkspassword

2. Change the key password: Enter the following command to change the key password. The
default key password is abs123
# keytool -keypasswd -alias pingidentity -keypass abs123 -new 
newjkspassword -keystore config/ssl/abs.jks
Enter keystore password: newjkspassword

Start ABS after you have changed the default passwords.

Change abs_master.key

Run the following command to create your own ABS master key to obfuscate keys and password in ABS.

Command: generate_obfkey. ABS must be stopped before creating a new abs_master.key

Stop ABS: If ABS is running, then stop ABS before generating a new ABS master key. Enter the following
command to stop ABS:
# /opt/pingidentity/abs/bin/stop.sh
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

Change abs_master.key: Enter the generate_obfkey command to change the default ABS master
key:
/opt/pingidentity/abs/bin/cli.sh generate_obfkey -u admin -p admin
Please take a backup of config/abs_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh -obfuscate_keys
Warning: Obfuscation master key file
/pingidentity/abs/config/abs_master.key already exists. This command will 
delete it and create a new key in the same file
Do you want to proceed [y/n]: y
Creating new obfuscation master key

PingIntelligence copyright © 2022

| 402



Success: created new obfuscation master key at /pingidentity/abs/config/
abs_master.key

Change default passwords

Navigate to config directory for abs.properties and mongo directory abs_init.js and edit the
following files to change the default key and passwords:

• abs.properties file – mongo_password, jks_password, and email_password
• abs_init.js – default password, access, and secret key

Change CLI admin password

You can change the default admin password by entering the following command:
/opt/pingidentity/abs/bin/cli.sh update_password -u admin -p admin
New Password>
Reenter New Password>
Success. Password updated for CLI

Next step: Import your certificate and repackage ABS for automated deployment.

• Import existing certificate and repackage ABS

Parent topic:Automated VM setup

Import existing certificate and repackage ABS
You can import your existing CA-signed certificate in ABS. To import the CA-signed certificate, stop ABS if
it is already running. Complete the following steps to import the CA-signed certificate:

1. Export your CA-signed certificate to PKCS12 store by entering the following command:
# openssl pkcs12 -export -in <your_CA_cerficate.crt> \
-inkey <your_certificate_key.key> \
-out abs.p12 -name <alias_name>

For example:
# openssl pkcs12 -export -in ping.crt -inkey ping.key -out \
abs.p12 -name exampleCAcertificate
Enter Export Password:
Verifying - Enter Export Password:

Note: If you have intermediate certificate from CA, then append the content to the
<your_CA_certificate>.crt file.

2. Import the certificate and key from the PKCS12 store to Java Keystore by entering the following
command. The command requires the destination keystore password. The destination keystore
password entered in the command should be same that is configured in the abs.properties file.

The following is a snippet of the abs.properties file where the destination keystore password is
stored. The password is obfuscated.

PingIntelligence copyright © 2022

| 403



# Java Keystore password
jks_password=OBF:AES:Q3vcrnj7VZILTPdJnxkOsyimHRvGDQ==:daYWJ5QgzxZJAnTkuRlFpreM1rsz3FFCulhAUKj7ww4=

Enter the following command:

# keytool -importkeystore -destkeystore abs.jks -srckeystore \
abs.p12 -srcstoretype PKCS12 -alias <alias_name>

For example:

# keytool -importkeystore -destkeystore abs.jks -srckeystore \
abs.p12 -srcstoretype PKCS12 -alias exampleCAcertificate

Importing keystore abs.p12 to abs.jks...
Enter destination keystore password:
Re-enter new password:
Enter source keystore password:

3. Copy the abs.jks file created in step 2 to /opt/pingidentity/abs/config/ssl directory.
4. Start ABS by entering the following command:

# /opt/pingidentity/abs/bin/start.sh
Starting API Behavioral Security 3.2.1...
please see /opt/pingidentity/abs/logs/abs/abs.log for more details

Repackage ABS
Tar ABS after changing the default values. Enter the following command:
tar -zcvf abs-3.2.1 pingidentity/

Make sure that the original file name is retained when you tar ABS and the file is saved in the software
directory on the management host.
Parent topic:Change ABS's default settings

Change Dashboard default settings
It is recommended that you change the default settings in Dashboard. Complete the following steps to
change the default settings:

1. Log in to the management host
2. Change directory to software
3. Untar Dashboard binary:

tar –zxvf dashboard-3.2.1.tar.gz

Change dashboard_master.key

Run the following command to create your own Dashboard master key to obfuscate keys and password in
Dashboard.

Command: generate_obfkey.

PingIntelligence copyright © 2022

| 404



Change abs_master.key: Enter the generate_obfkey command to change the default ABS master
key:
/opt/pingidentity/dashboard/bin/cli.sh generate_obfkey -u admin -p
Password>

Please take a backup of config/dashboard_master.key before proceeding.

Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh obfuscate_keys

Warning: Obfuscation master key file /opt/pingidentity/dashboard/config/
dashboard_master.key already exist. This command will delete it create a new 
key in the same file

Do you want to proceed [y/n]: y

creating new obfuscation master key
Success: created new obfuscation master key at /opt/pingidentity/dashboard/
config/dashboard_master.key

Change CLI admin password

Dashboard ships with the default user admin and the default password admin. You can change the
default password by using the update_password Dashboard CLI command:
/opt/pingidentity/dashboard/bin/cli.sh -u admin update_password -p
Password>

New Password>
Re-enter New Password>
Success. Password updated for CLI

Change default passwords

Navigate to config directory and edit the dashboard.properties file to change the following values:

• dashboard.properties file – abs.access_key, abs.secret_key, es.password

Repackage Dashboard
Tar Dashboard after changing the default values. Enter the following command:
tar -zcvf dashboard-3.2.1 pingidentity/

Make sure that the original file name is retained when you tar Dashboard and the file is saved in the
software directory on the management host.
Parent topic:Automated VM setup

Step 2: Configure system parameters
The following two system parameters are required to be set before installing the PingIntelligence software:

• vm.max_map_count: For Elasticsearch
• ulimit: For ASE and Elasticsearch

PingIntelligence copyright © 2022

| 405



Run the following command to configure the system parameters on the respective VMs. The script has to
be run as a root user on the Elasticsearch and ASE hosts. The IP address of these hosts was configured
in the hosts file in Step 1.
[esxi-production]# ./bin/start.sh configure
Please see /opt/pingidentity/esxi-production/logs/ansible.log for 
more details.

An example ansible.log file for a successful launch of EC2 instances is shown below:
[esxi-production]# tail -f logs/ansible.log

================================================================================
Current Time: Mon Feb 11 06:05:25 EST 2019
Starting configure scripts
================================================================================
Mon Feb 11 06:05:25 EST 2019: Setting up local environment
Mon Feb 11 06:05:25 EST 2019: Installing packages
Mon Feb 11 06:05:25 EST 2019: Installing pip and ansible

PLAY [Configure system settings for elasticsearch] 
*****************************

TASK [Get vm.max_map_count] 
****************************************************
TASK [Set vm.max_map_count if less than 262144] 
********************************
TASK [Get ulimit -n] 
***********************************************************
TASK [Set ulimit nofile to 65536 if value is low - softlimit] 
******************
TASK [Set ulimit nofile to 65536 if value is low - hardlimit] 
******************

PLAY RECAP 
*********************************************************************
192.168.11.143             : ok=7    changed=1    unreachable=0    failed=0
192.168.11.144             : ok=3    changed=0    unreachable=0    failed=0
192.168.11.145             : ok=5    changed=2    unreachable=0    failed=0

Mon Feb 11 06:06:14 EST 2019: Configure successful
================================================================================
configure_esxi_pi.txt
Displaying configure_esxi_pi.txt.

Manually configuring the system parameters

If you cannot run the script as a root user, then manually edit the vm.max_map_count and ulimit
values. Complete the following steps:

1. Set the vm.max_map_count to 262144 on the Elasticsearch VM. To set the count, enter the
following command:
$sudo sysctl -w vm.max_map_count=262144

PingIntelligence copyright © 2022

| 406



To make the setting persistent across reboots, run the following command:
$sudo echo “vm.max_map_count=262144” >> /etc/sysctl.conf

2. Set the ulimit to 65536 on the ASE and Elasticsearch VMs. To set the ulimit, complete the
following:
edit /etc/security/limits.conf for increasing the soft limit and hard limit. Add the following
two lines:
esxi-user soft nofile 65536
esxi-user hard nofile 65536

Parent topic:Automated VM setup

Step 3: Install the PingIntelligence for APIs software
Run the following command to setup the deployment:

[esxi-production]# ./bin/start.sh setup
Please see /opt/pingidentity/esxi-production/logs/ansible.log for more 
details.

To verify a successful setup, view the ansible.log file. Here is a log file snippet for a successful setup:

[esxi-production]# tail -f logs/ansible.log
====================================================================================
Current Time: Mon Feb 11 06:06:22 EST 2019
Starting setup scripts
====================================================================================
Mon Feb 11 06:06:22 EST 2019: Setting up local environment
Mon Feb 11 06:06:22 EST 2019: Installing packages
Mon Feb 11 06:06:23 EST 2019: Installing pip and ansible
.
.
PLAY RECAP 
*********************************************************************
127.0.0.1                  : ok=9    changed=0    unreachable=0    failed=0
192.168.11.143             : ok=25   changed=13   unreachable=0    failed=0
192.168.11.144             : ok=57   changed=39   unreachable=0    failed=0
192.168.11.145             : ok=56   changed=35   unreachable=0    failed=0

Mon Feb 11 06:23:37 EST 2019: Setup successful
====================================================================================

Parent topic:Automated VM setup

Verify Installation
Verify that all the components have installed and started successfully.

Verify ASE installation

Log in to the ASE EC2 instance and navigate to /home/esxi-user/pingidentity/ase/bin directory
and run the status command:

PingIntelligence copyright © 2022

| 407



/home/esxi-user/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status              : started
http/ws             : port 8090
https/wss           : port 8443
firewall            : enabled
abs                 : disabled, ssl: enabled
abs attack          : disabled
audit               : enabled
ase detected attack : disabled
attack list memory  : configured 128.00 MB, used 25.60 MB, free 102.40 MB

If the status command runs successfully, then ASE has been installed and started.

Verify ABS and MongoDB installation

Log in to the ABS EC2 instance and run the ABS Admin REST API using a REST API client like Postman.
More information on installing and configuring Postman is available in the ABS Admin Guide.

The report can be accessed by calling the ABS system at the following URL:

https://<ip>:<port>/v3/abs/admin. Use the IP address from the hosts file.

If ABS and MongoDB has installed successfully, the Admin REST API output will display the MongoDB
nodes. If the Admin API is not accessible, then ABS has not started. Following is a sample output of the
Admin REST API:
{
    "company": "ping identity",
    "name": "api_admin",
    "description": "This report contains status information on all APIs, ABS 
clusters, and ASE logs",
    "across_api_prediction_mode": false,
    "api_discovery": {
        "status": false
    },
    "apis": [
        {
            "api_name": "apikeyquery",
            "host_name": "*",
            "url": "/apikeyquery",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        },
        {
            "api_name": "apikeyheader",
            "host_name": "*",

PingIntelligence copyright © 2022

| 408



            "url": "/apikeyheader",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        },
        {
            "api_name": "atmapp",
            "host_name": "*",
            "url": "/atmapp",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        },
        {
            "api_name": "pubatmapp",
            "host_name": "*",
            "url": "/pubatmapp",
            "api_type": "decoy-incontext",
            "creation_date": "Wed Feb 06 19:36:22 IST 2019",
            "servers": 4,
            "protocol": "https",
            "cookie": "JSESSIONID",
            "token": false,
            "training_started_at": "training not started yet",
            "training_duration": "24  hours",
            "prediction_mode": false
        }
    ],
    "abs_cluster": {
        "abs_nodes": [
            {
                "node_ip": "192.168.11.165",
                "os": "Red Hat Enterprise Linux Server release 7.4 (Maipo)",
                "cpu": "24",
                "memory": "62G",
                "filesystem": "76%",
                "bootup_date": "Tue Feb 05 16:12:41 IST 2019"
            }
        ],
        "mongodb_nodes": [
            {
                "node_ip": "192.168.11.168",

PingIntelligence copyright © 2022

| 409



                "status": "up"
            }
        ]
    },
    "ase_logs": [
        {
            "ase_node": "13eea2fc-64d0-4c51-b663-b1093b0bf7a5",
            "last_connected": "Wed Feb 06 19:41:07 IST 2019",
            "logs": {
                "start_time": "Wed Feb 06 19:36:26 IST 2019",
                "end_time": "Wed Feb 06 19:41:07 IST 2019",
                "gzip_size": "27.51MB"
            }
        }
    ],
    "percentage_diskusage_limit": "80%",
    "scale_config": {
        "scale_up": {
            "cpu_threshold": "70%",
            "cpu_monitor_interval": "30 minutes",
            "memory_threshold": "70%",
            "memory_monitor_interval": "30 minutes",
            "disk_threshold": "70%",
            "disk_monitor_interval": "30 minutes"
        },
        "scale_down": {
            "cpu_threshold": "10%",
            "cpu_monitor_interval": "300 minutes",
            "memory_threshold": "10%",
            "memory_monitor_interval": "300 minutes",
            "disk_threshold": "10%",
            "disk_monitor_interval": "300 minutes"
        }
    }
}

Verify Dashboard Installation

To verify the Dashboard installation, enter the kibana IP address from the hosts file in your web browser.
Log in using username ping_user and the default password changeme.

See the ASE, ABS and Dashboard admin guides to configuration and administration of PingIntelligence
products.

Parent topic:Automated VM setup

Restart PingIntelligence components (optional)
The automated deployment script removes the master key of each PingIntelligence component after the
deployment is complete. This is done for security reasons. If you want to restart any PingIntelligence
component, the master key using which you have obfuscated the keys and password must be present in
the config directory of the product.

Complete the following steps to copy the master key back to your PingIntelligence components:

PingIntelligence copyright © 2022

| 410



1. Log in to the management host
2. Change directory to software
3. Untar the product of which you want to copy the master key
4. Change directory to config
5. Copy the master key
6. Log in to host where the specific PingIntelligence component is installed
7. Paste the master key in the config directory

Parent topic:Automated VM setup

Next steps - Integrate PingIntelligence into your environment
After the installation is complete, refer the following topics based on the type of deployment.

Sideband configuration: If you have configured PingIntelligence ASE for sideband connectivity with an
API Gateway, then refer to the deployment guide for your environment.

• Apigee Integration
• Axway Integration
• PingAccess Integration

Inline configuration: If you configured PingIntelligence ASE for inline connectivity, the next step is to add
API definitions to the PingIntelligence for APIs software. After this is complete, direct your API client to the
IP address of the ASE software on port 80 or 443.

It is recommended to read the following topics (part of the admin guides) apart from reading the ASE and
ABS Admin Guides:

• ASE port information
• API naming guidelines
• Adding APIs to ASE based on the deployment mode:

◦ Inline ASE, or
◦ Sideband ASE

• Connect ASE and ABS

After you have added your APIs in ASE, the API model needs to be trained. The training of API model is
completed in ABS. The following topics give a high level view, however it is a good practice to read the
entire ABS Admin Guide.

• Train your API model
• Generate and view the REST API reports using Postman: To access the ABS REST API reports you

would require the following information:
◦ IP address: IP address of ABS configured in the config/hosts file.
◦ Port number: 8080
◦ API Name: Name of the API for which you want to generate REST API reports
◦ Later and Earlier date: The date range for which you want to generate the reports

• View PingIntelligence for APIs Dashboard: Access the main PingIntelligence for APIs Dashboard with
a browser at this URL: https://<kibana ip>:5601/. In the above URL, Kibana IP is the IP address of the
Kibana VM configured in config/hosts file.

Login to PingIntelligence for APIs Dashboard using the ping_user login ID and the default
password changeme. Change the default password after you log in. The PingIntelligence for APIs
Dashboard takes approximately one hour to start showing attack information.

PingIntelligence copyright © 2022

| 411

https://docs.pingidentity.com/bundle/pingintelligence-32/page/apigee/eeeeeee/pingintelligence_apigee_integration.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/axway/pingintelligence_axway_sideband_setup.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/pa/pingintelligence_pingaccess_setup.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/defining_an_api___api_json_configuration_file.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_introduction.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/customizing_ase_ports.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/api_naming_guidelines.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/defining_an_api___api_json_configuration_file.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/defining_an_api___api_json_configuration_file_0.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/ase_configuration_for_abs_ai_based_security_1.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/artificial_intelligence_training.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/api_reports_using_postman.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/dashboard/accessing_the_abs_dashboard.html


Parent topic:Automated VM setup

Shut down the deployment
To shut down the deployment and remove all VMs and data, run the stop.sh command. When you shut
down the deployment, all the VMs along with the data is deleted.

[esxi-production]# ./bin/stop.sh
Please see /opt/pingidentity/esxi-production/logs/ansible.log for more 
details.

To verify whether the deployment was successfully stopped, check the ansible.log file:

[esxi-production]# tail -f logs/ansible.log
====================================================================================
Current Time: Mon Feb 11 07:23:11 EST 2019
Starting stop scripts
====================================================================================
Mon Feb 11 07:23:11 EST 2019: Play stop setup
PLAY RECAP 
*********************************************************************
192.168.11.124 : ok=2 changed=1 unreachable=0 failed=0 
192.168.11.145 : ok=2 changed=1 unreachable=0 failed=0 
192.168.11.146 : ok=2 changed=1 unreachable=0 failed=0 
192.168.11.148 : ok=2 changed=1 unreachable=0 failed=0 
192.168.11.149 : ok=4 changed=3 unreachable=0 failed=0 
Mon Feb 11 07:32:53 EST 2019: Stop successful
====================================================================================

Parent topic:Automated VM setup

Logs
The ansible.log file for all the stages is available in the /opt/pingidentity/esxi-production/
logs directory.

Parent topic:Automated VM setup

Apigee Integration
PingIntelligence provides a shared flow to integrate Apigee Edge with PingIntelligence for APIs platform.
The two mechanisms of calling shared flows are flow callout and flow hook policies. A Flow Hook in
Apigee Edge applies the PingIntelligence shared flow globally to all APIs in an environment under an
organization. The Flow Call Out policy in Apigee Edge applies the PingIntelligence shared flow on a per API
basis in an environment under an organization.

PingIntelligence provides an automated tool to deploy both Flow Hook and Flow Call Out polices.

PingIntelligence copyright © 2022

| 412



The following diagram shows the logical setup of PingIntelligence ASE and Apigee Edge:

Here is the traffic flow through the Apigee Edge and PingIntelligence for APIs components.

1. Incoming request to Apigee Edge
2. Apigee Edge makes an API call to send the request information to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP, cookie, OAuth2

token or API key against the Blacklist. If all checks pass, ASE returns a 200-OK response to the
Apigee Edge. If not, a different response code (403) is sent to Apigee Edge. The request information
is also logged by ASE and sent to the AI Engine for processing.

4. If Apigee Edge receives a 200-OK response from ASE, then it forwards the request to the backend
server. Otherwise, the Gateway optionally blocks the client.

5. The response from the backend server is received by Apigee Edge.
6. Apigee Edge makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to Apigee Edge.
8. Apigee Edge sends the response received from the backend server to the client.

Prerequisites to deploying PingIntelligence shared flow
Confirm that the following prerequisites are met before using the PingIntelligence Apigee tool.

Prerequisite:

• Apigee version - PingIntelligence 3.2.1 works with Apigee Edge Cloud 18.12.04
• Machine where PingIntelligence Apigee tool is installed has JDK 8 installed.
• PingIntelligence software installation

PingIntelligence 3.2.1 software are installed and configured. For installation of PingIntelligence
software, see the manual or platform specific automated deployment guides.

• Verify that ASE is in sideband mode•

Make sure that in ASE is in sideband mode by running the following command in the ASE
command line:
/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status                  : started
mode                    : sideband
http/ws                 : port 80
https/wss               : port 443
firewall                : enabled
abs                     : enabled, ssl: enabled
abs attack              : disabled
audit                   : enabled
sideband authentication : disabled

PingIntelligence copyright © 2022

| 413



ase detected attack     : disabled
attack list memory      : configured 128.00 MB, used 25.60 MB, free 
102.40 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

• Enable sideband authentication: For a secure communication between Apigee Edge and ASE,
enable sideband authentication by entering the following command in the ASE command line:
# ./bin/cli.sh enable_sideband_authentication -u admin –p

• Generate sideband authentication token

A token is required for Apigee Edge to authenticate with ASE. This token is generated in ASE and
configured in the apigee.properties file of PingIntelligence automated policy tool. To generate
the token in ASE, enter the following command in the ASE command line:

# ./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.

Download and configure automated policy tool
Download

Complete the following steps to download and install the PingIntelligence policy tool:

1. Download the PingIntelligence policy tool to the /opt directory.
2. Complete the following steps to untar the policy tool:

a. At the command prompt, type the following command to untar the policy tool file:
tar –zxvf <filename>

For example:
tar –zxvf pi-apigee-3.2.1.tar.gz

b. To verify that the tool successfully installed, type the ls command at the command prompt.
This should list the pingidentity directory and the build .tgz file.

The following table lists the directories:

Directory Description

bin Contains the following scripts:

• deploy.sh•
: The script to deploy the PingIntelligence policy.

• undeploy.sh•
: The script to undeploy the PingIntelligence policy.

• status.sh•
: Reports the deployment status and configured
Apigee credentials.

PingIntelligence copyright © 2022

| 414

https://https://www.pingidentity.com/en/resources/downloads.html


lib Jar files and various dependencies. Do not edit the contents
of this directory.

policy Contains the shared flows:

• request_sharedflow.zip•
: Shared flow policy for request

• response_sharedflow.zip•
: Shared flow for response.

Contains the self-signed certificate that is shipped by
default with ASE. The name of the file is
ase32.pem
.

config Contains the
apigee.properties
file.

logs Contains the log and status files.

Configure the automated tool
Configure the apigee.properties file available in the /pingidentity/pi/apigee/config/
directory. The following table describes the various variables of the apigee.properties file:

Variable Description

configuration_store Choose where ASE token is stored. The
possible values are
kvm
and
custom
. The default is
custom
. When
custom
is chosen, the ASE token is configured inside
the PingIntelligence policy and uploaded to
Apigee Edge directly. When
kvm
is chosen, the ASE token is stored in the KVM
store.

apigee_url URL to connect to Apigee Edge

apigee_username Username to connect to Apigee Edge

apigee_password Password to connect to Apigee Edge

apigee_environment The target environment for the
PingIntelligence shared flow

apigee_organization The target organization for the
PingIntelligence shared flow

PingIntelligence copyright © 2022

| 415



ase_host_primary The ASE primary host IP address and port or
hostname and port

ase_host_secondary The ASE secondary host IP address and port
or hostname and port.

Note: This field cannot be left
empty. In a testing environment,
you can provide the same IP
address for primary and
secondary ASE host.

ase_ssl Enable or disable SSL communication
between Apigee Edge and ASE. The default
value is
true
.

ase_sideband_token Configure the ASE token generated during
the prerequisite step.

Following is a sample apigee.properties file:

# Copyright 2018 Ping Identity Corporation. All Rights Reserved.
# Ping Identity reserves all rights in The program as delivered. 
Unauthorized use, copying,
# modification, reverse engineering, disassembling, attempt to discover any 
source code or
# underlying ideas or algorithms, creating other works from it, and 
distribution of this
# program is strictly prohibited. The program or any portion thereof may not 
be used or
# reproduced in any form whatsoever except as provided by a license without 
the written
# consent of Ping Identity.  A license under Ping Identity's rights in the 
Program may be
# available directly from Ping Identity.

#KVM Mode kvm/custom
configuration_store=custom
#Apigee management server URL
apigee_url=
#Apigee management server username
apigee_username=
#Apigee management server username
apigee_password=
#Apigee environment to which it should be deployed
apigee_environment=
#Apigee organization name
apigee_organization=

PingIntelligence copyright © 2022

| 416



#ASE Primary Host <IP/Host>:<port>
ase_host_primary=
#ASE Secondary Host <IP/Host>:<port>
ase_host_secondary=
#ASE SSL status
ase_ssl=true
#ASE sideband authentication token
ase_sideband_token=

Deploy the PingIntelligence policy
Using the PingIntelligence automated policy tool, you deploy the shared flow either by Flow Hook or the
Flow Call Out policy which is configured in the command line. Choose either the included ASE self-signed
certificate or a CA signed certificate

• Deploy PingIntelligence Policy for Flow Hook
• Deploy PingIntelligence Policy for Flow Call Out
• Configure PingIntelligence Flow Call Out in Apigee

Deploy PingIntelligence Policy for Flow Hook
With a Flow Hook, the PingIntelligence shared flow is applied to all APIs in the environment of an
organization.

Deploy with self-signed certificate: Run the following command to deploy the PingIntelligence policy
with self-signed certificate:
/opt/pingidentity/pi/apigee/bin/deploy.sh -fh 
Checking Apigee connectivity
Apigee connectivity ... success
Generating policies

Deploying PI Apigee policy Flow Hook

1) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
2) PingIntelligence-Config-KVM status ... not-applicable
3) ASE Server status ... deployed
4) Truststore status ... deployed
5) Upload pem file status ... deployed
6) Cache status ... deployed
7) Request policy upload status ... deployed
8) Response policy upload status ... deployed
9) Request policy deployment status ... deployed
10) Response policy deployment status ... deployed
11) Preproxy Flow hook status ... deployed
12) Postproxy Flow hook status ... deployed

Deployment of PI Policy finished successfully

Deploy with CA signed certificate: Run the following command to deploy the PingIntelligence policy
with CA-signed certificate:
/opt/pingidentity/pi/apigee/bin/deploy.sh -fh -ca

Checking Apigee connectivity
Apigee connectivity ... success

PingIntelligence copyright © 2022

| 417



Generating policies

Deploying PI Apigee policy Flow Hook

1) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
2) PingIntelligence-Config-KVM status ... not-applicable
3) ASE Server status ... deployed
4) Truststore status ... not-applicable - running using CA signed certificate
5) Upload pem file status ... not-applicable - running using CA signed 
certificate
6) Cache status ... deployed
7) Request policy upload status ... deployed
8) Response policy upload status ... deployed
9) Request policy deployment status ... deployed
10) Response policy deployment status ... deployed
11) Preproxy Flow hook status ... deployed
12) Postproxy Flow hook status ... deployed

Deployment of PI Policy finished successfully

Verify the status

After deploying the Flow Hook using the PingIntelligence tool, check the status of the deployment by
entering the following command:
/opt/pingidentity/pi/apigee/bin/status.sh
Checking Apigee connectivity
Apigee connectivity ... success

Checking the PI Apigee Policy Flow Hook deployment status

1) PingIntelligence-Config-KVM status ... not applicable
2) PingIntelligence-Encrypted-Config-KVM status ... not applicable
3) ASE target status ... deployed
4) Cache status ... deployed
5) Truststore status ... deployed
6) Request Policy status ... deployed
7) Response Policy status ... deployed
8) Preproxy hook status ... deployed
9) Postproxy hook status ... deployed

PI Apigee Policy is already installed

Parent topic:Deploy the PingIntelligence policy

Deploy PingIntelligence Policy for Flow Call Out
In the Flow Call Out, the PingIntelligence policy is applied on an per API basis in the environment of an
organization.

Deploy with self-signed certificate: Run the following command to deploy the PingIntelligence policy
with self-signed certificate:

PingIntelligence copyright © 2022

| 418



/opt/pingidentity/pi/apigee/bin/deploy.sh -fc 
Checking Apigee connectivity
Apigee connectivity ... success
Generating policies

Deploying PI Apigee policy Flow Call Out

1) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
2) PingIntelligence-Config-KVM status ... not-applicable
3) ASE Server status ... deployed
4) Truststore status ... deployed
5) Upload pem file status ... deployed
6) Cache status ... deployed
7) Request policy upload status ... deployed
8) Response policy upload status ... deployed
9) Request policy deployment status ... deployed
10) Response policy deployment status ... deployed
11) Preproxy Flow call out status ... deployed
12) Postproxy Flow call out status ... deployed

Deployment of PI Policy finished successfully

Deploy with CA signed certificate: Run the following command to deploy the PingIntelligence policy
with CA-signed certificate:
bin/deploy.sh -fc -ca

Checking Apigee connectivity
Apigee connectivity ... success
Generating policies

Deploying PI Apigee policy Flow Call Out

1) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
2) PingIntelligence-Config-KVM status ... not-applicable
3) ASE Server status ... deployed
4) Truststore status ... not-applicable - running using CA signed certificate
5) Upload pem file status ... not-applicable - running using CA signed 
certificate
6) Cache status ... deployed
7) Request policy upload status ... deployed
8) Response policy upload status ... deployed
9) Request policy deployment status ... deployed
10) Response policy deployment status ... deployed
11) Preproxy Flow call out status ... deployed
12) Postproxy Flow call out status ... deployed

Deployment of PI Policy finished successfully

Verify the status

After deploying the Flow Call Out using the PingIntelligence tool, check the status of the deployment by
entering the following command:

PingIntelligence copyright © 2022

| 419



/opt/pingidentity/pi/apigee/bin/status.sh
Checking Apigee connectivity
Apigee connectivity ... success

Checking the PI Apigee Policy Flow Call Out deployment status

1) PingIntelligence-Config-KVM status ... not applicable
2) PingIntelligence-Encrypted-Config-KVM status ... not applicable
3) ASE target status ... deployed
4) Cache status ... deployed
5) Truststore status ... deployed
6) Request Policy status ... deployed
7) Response Policy status ... deployed
8) Preproxy call out status ... deployed
9) Postproxy call out status ... deployed

PI Apigee Policy is already installed

Parent topic:Deploy the PingIntelligence policy

Configure PingIntelligence Flow Call Out in Apigee
After deploying the Flow Call Out policy using PingIntelligence, configure the PingIntelligence for APIs
shared flow. Complete the following steps for Flow Call Out for request and response. The steps listed are
for request, complete the same steps for response.

1. Log in to your Apigee Edge account and choose the API Proxy.

2. Click on the API name on which you want to apply the policy. The Develop page is displayed:

PingIntelligence copyright © 2022

| 420



3. On the Develop page, click on the DEVELOP tab:

4. In the DEVELOP tab, choose PreFlow under Proxy Endpoints, and click on + Step for request.
The Add Step window is displayed:

5. In the Add Step window, select Flow Callout. From the Shared Flow drop down list, select the
Request rule and click on Add:

6. Repeat step 5 for Response rule.

7. Request and Response rules are added. Click on Save:

8. Click on default and enter the following lines in the <HTTPTargetConnection> tag:
<Properties>
            <Property name="success.codes">1xx,2xx,3xx,4xx,5xx</Property>
</Properties>

PingIntelligence copyright © 2022

| 421



9. Save the Revision: 

Parent topic:Deploy the PingIntelligence policy

Change deployed policy mode
You can change the type of policy deployed from Flow Hook to Flow Call Out or Flow Call Out to Flow Hook
using the PingIntelligence policy tool. To change the type of policy complete the following steps:

1. Undeploy the deployed policy by entering one of the following command based on the policy and
certificate used:

• Undeploy a Flow Hook policy using self-signed certificate:
/opt/pingidentity/pi/apigee/bin/undeploy.sh -fh
Checking Apigee connectivity
Apigee connectivity ... success

Undeploying PI Apigee policy Flow Hook

1) Preproxy hook status ... undeployed
2) Postproxy hook status ... undeployed
3) Request policy undeployment status ... undeployed
4) Response policy undeployment status ... undeployed
5) Request policy deleting status ... deleted
6) Response policy deleting status ... deleted
7) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
8) PingIntelligence-Config-KVM status ... not-applicable
9) ASE Primary target server status ... undeployed
10) ASE Secondary target server status ... undeployed
11) Truststore status ... undeployed
12) Cache status ... undeployed

Undeployment of PI Policy finished successfully

• Undeploy a Flow Hook policy using CA-signed certificate:
opt/pingidentity/pi/apigee/bin/deploy.sh -fh -ca

PingIntelligence copyright © 2022

| 422



Checking Apigee connectivity
Apigee connectivity ... success

Undeploying PI Apigee policy Flow Hook

1) Preproxy hook status ... undeployed
2) Postproxy hook status ... undeployed
3) Request policy undeployment status ... undeployed
4) Response policy undeployment status ... undeployed
5) Request policy deleting status ... deleted
6) Response policy deleting status ... deleted
7) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
8) PingIntelligence-Config-KVM status ... not-applicable
9) ASE Primary target server status ... undeployed
10) ASE Secondary target server status ... undeployed
11) Truststore status ... not-applicable - running using CA signed 
certificate
12) Cache status ... undeployed

Undeployment of PI Policy finished successfully

• Undeploy a Flow Call Out policy using self-signed certificate:
/opt/pingidentity/pi/apigee/bin/undeploy.sh -fc
Checking Apigee connectivity
Apigee connectivity ... success

Undeploying PI Apigee policy Flow Call Out

1) Preproxy hook status ... undeployed
2) Postproxy hook status ... undeployed
3) Request policy undeployment status ... undeployed
4) Response policy undeployment status ... undeployed
5) Request policy deleting status ... deleted
6) Response policy deleting status ... deleted
7) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
8) PingIntelligence-Config-KVM status ... not-applicable
9) ASE Primary target server status ... undeployed
10) ASE Secondary target server status ... undeployed
11) Truststore status ... undeployed
12) Cache status ... undeployed

Undeployment of PI Policy finished successfully

• Undeploy a Flow Call Out policy using CA-signed certificate:
opt/pingidentity/pi/apigee/bin/deploy.sh -fc -ca

Checking Apigee connectivity
Apigee connectivity ... success

PingIntelligence copyright © 2022

| 423



Undeploying PI Apigee policy Flow Call Out

1) Preproxy hook status ... undeployed
2) Postproxy hook status ... undeployed
3) Request policy undeployment status ... undeployed
4) Response policy undeployment status ... undeployed
5) Request policy deleting status ... deleted
6) Response policy deleting status ... deleted
7) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
8) PingIntelligence-Config-KVM status ... not-applicable
9) ASE Primary target server status ... undeployed
10) ASE Secondary target server status ... undeployed
11) Truststore status ... not-applicable - running using CA signed 
certificate
12) Cache status ... undeployed

Undeployment of PI Policy finished successfully

2. Deploy the other policy by following the steps detailed for Flow Hook or Flow Call Out

Note: Using the above steps you can also change the use of security certificate from self-
signed to CA-signed or from CA-signed to self-signed.

Add APIs to ASE
After the policy has been deployed to Apigee using the PingIntelligence automated policy tool, add APIs to
ASE. Read the following topics to define and add APIs to ASE:

• API naming guidelines
• Define and add an API JSON

For more information on ASE sideband deployment, see Sideband API Security Enforcer.

Axway Integration
This guide describes the PingIntelligence - Axway integration steps. For detailed information about ASE in
the sideband mode, see the ASE Admin Guide.

The following diagram shows the complete deployment:

PingIntelligence copyright © 2022

| 424

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/api_naming_guidelines_1.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/defining_an_api___api_json_configuration_file_0.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/api_security_enforcer___sideband.html


Here is the traffic flow through Axway and PingIntelligence for APIs components.

1. Incoming request to Axway
2. Axway makes an API call to send the request information to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP, cookie or OAuth2

token against the AI generated Blacklist. If all checks pass, ASE returns a 200-OK response to the
Axway. If not, a different response code is sent to Axway. The request information is also logged by
ASE and sent to the AI Engine for processing.

4. If Axway receives a 200-OK response from ASE, then it forwards the request to the backend server.
Otherwise, the Gateway optionally blocks the client.

5. The response from the backend server is received by Axway.
6. Axway makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to Axway.
8. Axway sends the response received from the backend server to the client.

• Prerequisites for PingIntelligence - Axway Integration
• Deploy PingIntelligence policy
• Install and configure PingIntelligence AAD

Prerequisites - Axway Integration
Prerequisites:

• Axway version PingIntelligence 3.2.1 works with Axway 7.5.3

• PingIntelligence software installation•

Make sure that PingIntelligence software, ASE, ABS, and Dashboard are installed and configured. For
installation of PingIntelligence software, see the manual or platform specific automated deployment
guides.

• Verify that ASE is in sideband mode•

Make sure that in ASE is in sideband mode by running the following command in ASE command line:

PingIntelligence copyright © 2022

| 425



/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status                  : started
mode                    : sideband
http/ws                 : port 80
https/wss               : port 443
firewall                : enabled
abs                     : enabled, ssl: enabled
abs attack              : disabled
audit                   : enabled
sideband authentication : disabled
ase detected attack     : disabled
attack list memory      : configured 128.00 MB, used 25.60 MB, free 
102.40 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

• Enable sideband authentication: For a secure communication between Axway and ASE, enable
sideband authentication by entering the following command in the ASE command line:
# ./bin/cli.sh enable_sideband_authentication -u admin –p

• Generate sideband authentication token

A token is required for Axway to authenticate with ASE. To generate the token in ASE, enter the
following command in the ASE command line:

# ./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.
• AAD Port Make sure to open the management port which is used by AAD to fetch API definitions

from Axway. The default port is 8075. Make sure to open port 8010 in ASE for AAD to add API
definitions.

To connect PingIntelligence ASE with Axway API Gateway, complete the following steps:

• Import the Axway Policy in Axway Policy Studio
• Deploy the Axway Policy
• Import the APIs from the Management VM to Axway API Manager.

Parent topic:PingIntelligence Axway API Gateway Integration

Deploy PingIntelligence policy
Deploying PingIntelligence policy requires completing the following two parts:

• Configuring Axway Policy Studio
• Configuring Axway API Manager

• Axway Policy Studio configuration
• Axway API Manager configuration

Parent topic:PingIntelligence Axway API Gateway Integration

PingIntelligence copyright © 2022

| 426



Axway Policy Studio configuration
1. Launch Axway Policy Studio and create a new project from an API Gateway instance:

2. In the New Project pop-up window, enter the details and click Next:

3. Enter Host details, Username, and Password of the API Gateway to connect and click Next:

4. Click Import configuration fragment from the File sub menu in the menu bar

PingIntelligence copyright © 2022

| 427



From the pop-up window, import the Axway Policy from the directory where it was saved. Select the
policy and click OK:

5. After the Axway Policy is imported, click Environment Settings in the left-hand column and Click
Add HTTP Header. In the HTTP Header Value field, enter the ASE authentication token that was

created. 
6. After the Axway Policy is imported, click Environment Settings in the left-hand column and click

Connect to ASE Request under ASE_Request_Connector. Enter the IP address or the
hostname of your ASE in the URL field as shown in the screen shot:

PingIntelligence copyright © 2022

| 428



7. In the Environment Settings in the left-hand column, click Connect to ASE Response under
ASE_Response_Connector. Enter the IP address or the hostname of your ASE in the URL field as
shown in the screen shot:

8. In the left pane of the window, click Server Settings.
9. In the Server Settings window, double-click Request Policies under API Manager

10. In the Add Request Policy pop-up window, check the ASE Request Handler and click OK

PingIntelligence copyright © 2022

| 429



11. Click Add and then Save

12. Repeat step 9-10 for Response Policies.
13. Deploy the Policies by clicking Deploy.

Parent topic:Deploy PingIntelligence policy

Axway API Manager configuration
Complete the following steps to configure Axway API Manager:

1. Login to the Axway API Manager.

PingIntelligence copyright © 2022

| 430



2. In the Axway API Manager, click Frontend API and Create new API

.
3. Click Outbound tab and enter Backend Service URL (your backend application server) and Request

Policy details:

Parent topic:Deploy PingIntelligence policy

Install and configure AAD
Install and configure AAD to capture API definitions from your Axway API gateway. These APIs are
discovered by AAD and converted into API JSON by AAD and added to ASE.

Install AAD

Download the AAD tool from the download site. Oracle Java 8 must already be installed on the AAD
machine.

Copy the downloaded file to /opt directory and run the following command to install:

# tar -zxf aad-3.2.1.tar.gz

The above step installs AAD and creates the following directories:

• bin – Contains start.sh, stop.sh and status.sh scripts
• config – Contains aad.properties file. This file is used to configure AAD
• data – For internal use
• logs – Contains AAD’s logs
• util – Contains thecheck_ports.sh. Run on the machine with the AAD tool to check ASE and

ABS default ports.

PingIntelligence copyright © 2022

| 431

https://https://www.pingidentity.com/en/resources/downloads.html/


The following table describes the AAD configuration parameters:

Property Description

aad.mode Set the value to
gateway
when ASE is deployed in sideband mode.
For more information on ASE modes, see the
ASE Admin Guide.

abs.host NA

abs.port NA

abs.access_key NA

abs.secret_key NA

ase.host Hostname or IPv4 IP address of the ASE host
machine.

ase.port Port number of the ASE service.

abs.ssl Set to true for ABS-AAD communication to
use SSL.

ase.access_key The username of ASE. Default value is
admin

ase.secret_key The password of ASE. Default value is
admin

abs.query.interval NA.

aad.log.level The log level of AAD log files. The default
value is
INFO
. Other possible values are:
ALL<DEBUG<INFO<WARN<ERROR<FATAL<OFF

gateway.management.url URL of the API Gateway.
Only valid when
aad.mode
is
gateway
.

gateway.management.username Username to connect to the API Gateway.
Only valid when
aad.mode
is
gateway
.

PingIntelligence copyright © 2022

| 432



gateway.management.password Password to connect to the API Gateway.
Only valid when
aad.mode
is
gateway
.

Following is a sample aad.properties file:

# Automated API Discovery (AAD)
# AAD mode. Valid values discovery,span_port, and axway
# discovery will pull discovered APIs from ABS
# span_port will pull discovered APIs from ABS
# gateway will pull APIs from Axway API Gateway
# pingaccess will pull APIs from PingAccess
aad.mode=gateway
# AAD query polling interval (minutes) to ABS or Gateway
aad.query.interval=10
# Log level
aad.log.level=INFO
### ASE config
# ASE Host ( hostname or IPv4 address)
ase.host=127.0.0.1
# ASE management port
ase.port=8010
# ASE REST API access key
ase.access_key=OBF:AES:Rs7NPeYGCU0Zku7TANJbwEl2rW7+:v7j6VGWaoMjUNcc4IMAtOMtLL8hUPOLWrq7BPMcq3m0=
# ASE REST API secret key
ase.secret_key=OBF:AES:Rs7NPeYGCU0Zku7TANJbwEl2rW7+:v7j6VGWaoMjUNcc4IMAtOMtLL8hUPOLWrq7BPMcq3m0=
### ABS config. Only valid if aad.mode=discovery or aad.mode=span_port
# ABS Host ( hostname or IPv4 address )
#abs.host=127.0.0.1
# ABS management port
#abs.port=8080
# ABS SSL enabled ( true or false )
#abs.ssl=true
# ABS access key
#abs.access_key=OBF:AES:RsjTC+lxddGqv3XUUV/
YX8iA8kg6Ng==:0vOu0XUVpbvV4AaSmv5mZllw3WpAsj1oPF3d5Etl70Y=
# ABS secret key
#abs.secret_key=OBF:AES:RsjTC/tx/
sp+7XXtr8+1rnaty1BFug==:78i6bQcdVSavuKm2TXQMOKga/OOEa/ON4RoiUMYu3Rc=

### Axway API Gateway config. Only valid if aad.mode=gateway
# API Manager URL
gateway.management.url=https://127.0.0.1:8075/
# API Manager admin username
gateway.management.username=apiadmin
# API Manager admin password
gateway.management.password=OBF:AES:RMLBOu9/DIVOEAojYV/
Otw74LahxfEgp:dLfCNugFUCcfsg1nBXQzflTvAWiPit8ulseHxi+Z0tk=

PingIntelligence copyright © 2022

| 433



### PingAccess config. Only valid if aad.mode=pingaccess
# Admin URL
pingaccess.management.url=https://127.0.0.1:9000/
# Admin username
pingaccess.management.username=Administrator
# Admin password
pingaccess.management.password=OBF:AES:FevDN+1pEqcKQnFG/UN3Efz0DMa/
kmI=:Az82rlUFftMGPmxF7unelJZUucX191lO2QgKvHD36vU=

Obfuscate keys and passwords

Using AAD’s command line interface, you can obfuscate the keys and passwords configured in
aad.properties. Following keys and passwords are obfuscated:

• ase.access_key
• ase.secret_key
• gateway.management.password

AAD ships with a default aad_master.key which is used to obfuscate the various keys and passwords. It
is recommended to generate your own aad_master.key.

Note: During the process of obfuscation of keys and password, AAD must be stopped.

Generate aad_master.key

You can generate the aad_master.key by running the generate_obfkey using the AAD CLI.

opt/pingidentity/aad/bin/cli.sh -u admin generate_obfkey -p
Password>
Please take a backup of config/aad_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh obfuscate_keys
Warning: Obfuscation master key file /opt/pingidentity/aad/config/
aad_master.key already exist. 
This command will delete it create a new key in the same file
Do you want to proceed [y/n]: y
creating new obfuscation master key
Success: created new obfuscation master key at /opt/pingidentity/aad/config/
aad_master.key

The new aad_master.key is used to obfuscate the passwords in aad.properties file.

Note: After the keys and passwords are obfuscated, the aad_master.key must be moved to
a secure location from AAD. If you want to restart AAD, the aad_master.key must be present
in the /opt/pingidentity/aad/config/ directory.

Obfuscate keys and passwords

Enter the keys and passwords in clear text in the aad.properties file. Run the obfuscate_keys
command to obfuscate keys and passwords:

PingIntelligence copyright © 2022

| 434



/opt/pingidentity/aad/bin/cli.sh obfuscate_keys -u admin -p
Password>
Please take a backup of config/aad.properties before proceeding
Enter clear text keys and password before obfuscation.
Following keys will be obfuscated
 config/aad.properties: ase.access_key, ase.secret_key, abs.access_key, 
abs.secret_key and gateway.management.password
Do you want to proceed [y/n]: y
obfuscating /opt/pingidentity/aad/config/aad.properties
Success: secret keys in /opt/pingidentity/aad/config/aad.properties 
obfuscated

Start AAD after passwords are obfuscated.

Start AAD

Prerequisite:

For AAD to start, the aad_master.key must be present in the /opt/pingidentity/aad/config
directory. If you have moved the master key to a secured location for security reasons, copy it to the config
directory before executing the start script.

To start AAD, navigate to /opt/pingidentity/aad/bin directory and run the following command:

bin/start.sh
AAD 3.2.1 starting...
please see /opt/pingidentity/aad/logs/aad.log for more details

Stop AAD

To stop AAD, navigate to /opt/pingidentity/aad/bin directory and run the following command:

bin/stop.sh
Ping Identity Inc.
AAD is stopped.

• Axway API Manager configuration for AAD
• OAuth2 Token and API Keys

Parent topic:PingIntelligence Axway API Gateway Integration

Axway API Manager configuration for AAD
AAD pulls the API definition from Axway API Manager and converts them to a JSON format compatible
with ASE. AAD needs certain tags to be configured in Axway API Manager for AAD to import the normal
and decoy API definitions. The following topics provide more information on configuring tags in Axway API
Manager and configuring tags for the decoy API:

• Configure tags in API Manager
• Configure tags for decoy API

• Configure tags in API Manager
• Configure tags for decoy API

PingIntelligence copyright © 2022

| 435



Parent topic:Install and configure PingIntelligence AAD

Configure tags in API Manager
Tags are a medium to let ASE know which APIs from the API ecosystem need to be processed for
monitoring and attack detection. Tags are also required for cookie and login URL parameters to be
captured by AAD for adding to ASE API JSON definition.

Tagging the API for AI processing:

You need to configure ping_ai tag for all the APIs for which you want the traffic to be processed using
the AI engine. For example, if you have 10 APIs in your ecosystem and you want only 5 APIs traffic to be
processed using the AI engine, then apply the ping_ai tag on those 5 APIs.

In the Axway API Manager, click on Frontend API > API tab. In the API tab, navigate to Tags section and
add the following tag and value:

ping_ai – true

Tags for Cookie and Login URL (Optional)

If your APIs use a cookie or log in URL then configure the following two tags and values for a cookie and
login URL.

In the Axway API Manager, click Frontend API > API tab. In the API tab, navigate to Tags section and
add the following tag and value:

• ping_cookie – JSESSIONID•

• ping_login – yourAPI/login•

Note: If the API has API Key or OAuth2 token configured, the AAD tool automatically learns it
and adds it to the API JSON definition. You do not need to configure any tags for API Key and
OAuth2 token.

The following illustration shows the tags to be added:

PingIntelligence copyright © 2022

| 436



Parent topic:Axway API Manager configuration for AAD

Configure tags for decoy API
You can configure Decoy APIs in Axway API Manager. A Decoy API is an API for which the traffic does not
reach the backend API servers. The Decoy API is deployed to gather information about potential threats
that your API ecosystem may face. Traffic directed to Decoy API configured in Axway API Gateway is
redirected to ASE which functions as the backend server. ASE sends a preconfigured response, like 200
OK, for requests sent to a Decoy API.

You need to configure the following TAGS and VALUES in the API tab for Frontend API in Axway API
Manager:

• ping_ai – true•

• ping_decoy – true•

API JSON for decoy API: The converted API JSON will have the decoy section configured as highlighted
in the following JSON file:
{
    "api_metadata": {
        "protocol": "https",
        "url": "/decoy",
        "hostname": "*",
        "cookie": "",
        "cookie_idle_timeout": "",
        "logout_api_enabled": false,
        "cookie_persistence_enabled": false,
        "oauth2_access_token": false,
        "apikey_qs": "",
        "apikey_header": "",
        "enable_blocking": true,
        "login_url": "",
        "api_mapping": {
            "internal_url": ""
        },
        "api_pattern_enforcement": {
            "protocol_allowed": "",
            "http_redirect": {

PingIntelligence copyright © 2022

| 437



                "response_code": "",
                "response_def": "",
                "https_url": ""
            },
            "methods_allowed": [],
            "content_type_allowed": "",
            "error_code": "",
            "error_def": "",
            "error_message_body": ""
        },
        "flow_control": {
            "client_spike_threshold": "0/second",
            "server_connection_queueing": false
        },
        "api_memory_size": "64mb",
        "health_check": false,
        "health_check_interval": 60,
        "health_retry_count": 4,
        "health_url": "/",
        "server_ssl": false
        "servers": [],
        "decoy_config": {
            "decoy_enabled":true,
            "response_code": 200,
            "response_def": "OK",
            "response_message": "OK",
            "decoy_subpaths": []
        }
    }
}

Parent topic:Axway API Manager configuration for AAD

OAuth2 Token and API Keys
If you have configured the API Key in Request Header or in Query String, AAD reads and converts these
values to apikey_qs or apikey_header values in the ASE API JSON. PingIntelligence's AI engine
considers API Key values only in request headers or the query string.

Similarly, if you have configured OAuth2 token, AAD marks the value of oauth2_access_token as true
in the ASE API JSON.

Note: You do not need to configure any tags for API Keys or OAuth2 token.

Following API JSON file shows the converted parameters. The protocol, url, and hostname are
picked from the values that you configure in Resource path when you create the Frontend API.

PingIntelligence copyright © 2022

| 438



{
    "api_metadata": {
        "protocol": "https",
        "url": "/shop",
        "hostname": "192.168.11.103",
        "cookie": "JSESSIONID",
        "cookie_idle_timeout": "",
        "logout_api_enabled": false,
        "cookie_persistence_enabled": false,
        "oauth2_access_token":true,
        "apikey_qs": "KeyId",
        "apikey_header": "",
        "enable_blocking": true,
        "login_url": "/shop/login",
        "api_mapping": {
            "internal_url": ""
        },
        "api_pattern_enforcement": {
            "protocol_allowed": "",
            "http_redirect": {
                "response_code": "",
                "response_def": "",
                "https_url": ""
            },
            "methods_allowed": [],
            "content_type_allowed": "",
            "error_code": "",
            "error_def": "",
            "error_message_body": ""
        },
        "flow_control": {
            "client_spike_threshold": "0/second",
            "server_connection_queueing": false
        },
        "api_memory_size": "64mb",
        "health_check": false,
        "health_check_interval": 60,
        "health_retry_count": 4,
        "health_url": "/",
        "server_ssl": false
        "servers": [],
        "decoy_config": {
            "decoy_enabled": false,

PingIntelligence copyright © 2022

| 439



            "response_code": 200,
            "response_def": "",
            "response_message": "",
            "decoy_subpaths": []
        }
    }
}

Parent topic:Install and configure PingIntelligence AAD

PingAccess Integration
This guide describes the installation of PingIntelligence for APIs 3.2.1 with PingAccess 5.2.

This diagram depicts the architecture of PingIntelligence for APIs components along with PingAccess:

Here is the traffic flow through the PingAccess and PingIntelligence for APIs components.

1. Incoming request to PingAccess
2. PingAccess makes an API call to send the request information to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP, cookie or OAuth2

token against the AI generated Blacklist. If all checks pass, ASE returns a 200-OK response to the
PingAccess. If not, a different response code is sent to PingAccess. The request information is also
logged by ASE and sent to the AI Engine for processing.

4. If PingAccess receives a 200-OK response from ASE, then it forwards the request to the backend
server. Otherwise, the Gateway optionally blocks the client.

5. The response from the backend server is received by PingAccess.
6. PingAccess makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to PingAccess.
8. PingAccess sends the response received from the backend server to the client.

• Prerequisites for PingIntelligence - PingAccess Integration
• Deploy the PingIntelligence policy
• Install and configure PingIntelligence AAD

PingIntelligence copyright © 2022

| 440



Prerequisites - PingAccess Integration
Make sure that the following prerequisites are met before configuring PingAccess:

• PingAccess version - PingIntelligence 3.2.1 works with PingAccess 5.2.

• PingIntelligence software installation•

Make sure that PingIntelligence software, ASE, ABS, and Dashboard are installed and configured. For
installation of PingIntelligence software, see the manual or platform specific automated deployment
guides.

• Verify that ASE is in sideband mode•

Make sure that in ASE is in sideband mode by running the following command in ASE command line:
/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status                  : started
mode                    : sideband
http/ws                 : port 80
https/wss               : port 443
firewall                : enabled
abs                     : enabled, ssl: enabled
abs attack              : disabled
audit                   : enabled
sideband authentication : disabled
ase detected attack     : disabled
attack list memory      : configured 128.00 MB, used 25.60 MB, free 
102.40 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

• Enable sideband authentication: For a secure communication between PingAccess and ASE,
enable sideband authentication by entering the following command in the ASE command line:
# ./bin/cli.sh enable_sideband_authentication -u admin –p

• Generate sideband authentication token

A token is required for PingAccess to authenticate with ASE. To generate the token in ASE, enter the
following command in the ASE command line:

# ./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.
• Port for AAD

Make sure to open the management port which is used by AAD to fetch API definitions from
PingAccess. The default port is 9000. Make sure to open port 8010 in ASE for AAD to add API
definitions.

Parent topic:PingIntelligence – PingAccess Integration

Deploy the PingIntelligence policy

PingIntelligence copyright © 2022

| 441



To integrate PingAccess with PingIntelligence components, complete the following steps on PingAccess:

1. Download the Ping Access Policy from the download site and unzip it.
2. Copy the PingIntelligence.jar file in the lib directory in PA_home.
3. Restart PingAccess
4. Add Applications in PingAccess with Application Type as API. Make sure that the following

description is added in the DESCRIPTION section when you add an Application:
{
"ping_ai": true,
"ping_host": "",
"ping_url": "",
"ping_login": "",
"ping_cookie": "",
"apikey_qs": "",
"apikey_header": "",
"ping_decoy": false,
"oauth2_access_token": false
}

The following table describes the parameters. This description is required for AAD to fetch the API
definition from PingAccess and add to ASE:

Parameter Description

ping_ai Configures whether the artificial intelligence (AI)
processing should be carried out on this API or not.
Default value is
true
. Set to
false
if you do not want AI processing on an API.

ping_host Hostname of the API. You can also configure
*
as
hostname
.

ping_url The URL of the managed API, for example,
/shopping
. This field cannot be empty.

ping_login Login URL for the API. The field can be empty.

ping_cookie Cookie name for the API. The field can be empty.

apikey_qs When API Key is sent in the query string, ASE uses the
specified parameter name to capture the API key value.

apikey_header When API Key is part of the header field, ASE uses the
specified parameter name to capture the API key value.

PingIntelligence copyright © 2022

| 442

https://www.pingidentity.com/en/resources/downloads.html


ping_decoy Whether API is a decoy or not. The values can be true
or false.

oauth2_access_token Whether API is OAuth2 aware or not. The values can be
true or false.

5. Add two ASEs to Third-Party Services.

In the New Third-Party Service page, add ASE IP address. Add two separate sites for ASE.

6. Add a Rule for the two ASEs. Click Rules Tab. In the New Rule page, enter the name of the rule for
PingIntelligence. In the TYPE drop-down list, select Ping Intelligence. This appears in the drop-
down list after adding the PingIntelligence.jar in PA_Home in step 1.

7. Select the ASE SERVICE ENDPOINT to which you want to apply the rule.

PingIntelligence copyright © 2022

| 443



8. Add the generated ASE sideband token which is used for authentication between PingAccess and

ASE.

Note: In case of an ASE node failure, traffic is automatically routed to the standby ASE
node.

9. Apply the rule to the application by completing the following steps:
•

a. Edit the existing application
b. In the edit application page, click on API Policy

c. Under Available Rules, Click the sign for PingIntelligence rule. After clicking on the

 sign, the PingIntelligence Rule moves under API Application Policy as shown in the
screen capture below:

d. Save the rule by clicking on the Save button.

PingIntelligence copyright © 2022

| 444



Note: It is a good practice to connect PingAccess to PingIntelligence ASE using HTTPS.

Parent topic:PingIntelligence – PingAccess Integration

Install and configure AAD
Install and configure AAD to capture API definitions from your Axway API gateway. These APIs are
discovered by AAD and converted into API JSON by AAD and added to ASE. For detailed information on
AAD, see Automated API Definition tool information in the ABS admin guide.

Install AAD

Download the AAD tool from the download site. Oracle Java 8 must already be installed on the AAD
machine.

Copy the downloaded file to /opt directory and run the following command to install:

# tar -zxf aad-3.2.1.tar.gz

The above step installs AAD and creates the following directories:

• bin – Contains start.sh, stop.sh and status.sh scripts
• config – Contains aad.properties file. This file is used to configure AAD
• data – For internal use
• logs – Contains AAD’s logs
• util – Contains thecheck_ports.sh. Run on the machine with the AAD tool to check ASE and

ABS default ports.

The following table describes the AAD configuration parameters:

Property Description

aad.mode Set the value to
pingaccess
when ASE is deployed in sideband mode.
For more information on ASE modes, see the ASE
Admin Guide.

abs.host NA

abs.port NA

abs.access_key NA

abs.secret_key NA

ase.host Hostname or IPv4 IP address of the ASE host
machine.

ase.port Port number of the ASE service.

abs.ssl Set to true for ABS-AAD communication to use SSL.

ase.access_key The username of ASE. Default value is

PingIntelligence copyright © 2022

| 445

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/automated_api_definition__aad_.html
https://www.pingidentity.com/en/resources/downloads.html


admin

ase.secret_key The password of ASE. Default value is
admin

abs.query.interval NA.

aad.log.level The log level of AAD log files. The default value is
INFO
. Other possible values are:
ALL<DEBUG<INFO<WARN<ERROR<FATAL<OFF

pingaccess.management.url URL of the API Gateway.
Only valid when
aad.mode
is
pingaccess
.

pingaccess.management.username Username to connect to the API Gateway.
Only valid when
aad.mode
is
pingaccess
.

pingaccess.management.password Password to connect to the API Gateway.
Only valid when
aad.mode
is
pingaccess
.

Following is a sample aad.properties file:

# Automated API Discovery (AAD)
# AAD mode. Valid values discovery,span_port, and axway
# discovery will pull discovered APIs from ABS
# span_port will pull discovered APIs from ABS
# gateway will pull APIs from Axway API Gateway
# pingaccess will pull APIs from PingAccess
aad.mode=pingaccess
# AAD query polling interval (minutes) to ABS or Gateway
aad.query.interval=10
# Log level
aad.log.level=INFO
### ASE config
# ASE Host ( hostname or IPv4 address)
ase.host=127.0.0.1
# ASE management port
ase.port=8010
# ASE REST API access key
ase.access_key=OBF:AES:Rs7NPeYGCU0Zku7TANJbwEl2rW7+:v7j6VGWaoMjUNcc4IMAtOMtLL8hUPOLWrq7BPMcq3m0=

PingIntelligence copyright © 2022

| 446



# ASE REST API secret key
ase.secret_key=OBF:AES:Rs7NPeYGCU0Zku7TANJbwEl2rW7+:v7j6VGWaoMjUNcc4IMAtOMtLL8hUPOLWrq7BPMcq3m0=
### ABS config. Only valid if aad.mode=discovery or aad.mode=span_port
# ABS Host ( hostname or IPv4 address )
#abs.host=127.0.0.1
# ABS management port
#abs.port=8080
# ABS SSL enabled ( true or false )
#abs.ssl=true
# ABS access key
#abs.access_key=OBF:AES:RsjTC+lxddGqv3XUUV/
YX8iA8kg6Ng==:0vOu0XUVpbvV4AaSmv5mZllw3WpAsj1oPF3d5Etl70Y=
# ABS secret key
#abs.secret_key=OBF:AES:RsjTC/tx/
sp+7XXtr8+1rnaty1BFug==:78i6bQcdVSavuKm2TXQMOKga/OOEa/ON4RoiUMYu3Rc=

### Axway API Gateway config. Only valid if aad.mode=gateway
# API Manager URL
gateway.management.url=https://127.0.0.1:8075/
# API Manager admin username
gateway.management.username=apiadmin
# API Manager admin password
gateway.management.password=OBF:AES:RMLBOu9/DIVOEAojYV/
Otw74LahxfEgp:dLfCNugFUCcfsg1nBXQzflTvAWiPit8ulseHxi+Z0tk=

### PingAccess config. Only valid if aad.mode=pingaccess
# Admin URL
pingaccess.management.url=https://127.0.0.1:9000/
# Admin username
pingaccess.management.username=Administrator
# Admin password
pingaccess.management.password=OBF:AES:FevDN+1pEqcKQnFG/UN3Efz0DMa/
kmI=:Az82rlUFftMGPmxF7unelJZUucX191lO2QgKvHD36vU=

Obfuscate keys and passwords

Using AAD’s command line interface, you can obfuscate the keys and passwords configured in
aad.properties. Following keys and passwords are obfuscated:

• ase.access_key
• ase.secret_key
• gateway.management.password

AAD ships with a default aad_master.key which is used to obfuscate the various keys and passwords. It
is recommended to generate your own aad_master.key.

Note: During the process of obfuscation of keys and password, AAD must be stopped.

Generate aad_master.key

You can generate the aad_master.key by running the generate_obfkey using the AAD CLI.

PingIntelligence copyright © 2022

| 447



opt/pingidentity/aad/bin/cli.sh -u admin generate_obfkey -p
Password>
Please take a backup of config/aad_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh obfuscate_keys
Warning: Obfuscation master key file /opt/pingidentity/aad/config/
aad_master.key already exist. 
This command will delete it create a new key in the same file
Do you want to proceed [y/n]: y
creating new obfuscation master key
Success: created new obfuscation master key at /opt/pingidentity/aad/config/
aad_master.key

The new aad_master.key is used to obfuscate the passwords in aad.properties file.

Note: After the keys and passwords are obfuscated, the aad_master.key must be moved to
a secure location from AAD. If you want to restart AAD, the aad_master.key must be present
in the /opt/pingidentity/aad/config/ directory.

Obfuscate keys and passwords

Enter the keys and passwords in clear text in the aad.properties file. Run the obfuscate_keys
command to obfuscate keys and passwords:

/opt/pingidentity/aad/bin/cli.sh obfuscate_keys -u admin -p
Password>
Please take a backup of config/aad.properties before proceeding
Enter clear text keys and password before obfuscation.
Following keys will be obfuscated
 config/aad.properties: ase.access_key, ase.secret_key, abs.access_key, 
abs.secret_key and gateway.management.password
Do you want to proceed [y/n]: y
obfuscating /opt/pingidentity/aad/config/aad.properties
Success: secret keys in /opt/pingidentity/aad/config/aad.properties 
obfuscated

Start AAD after passwords are obfuscated.

Start AAD

Prerequisite:

For AAD to start, the aad_master.key must be present in the /opt/pingidentity/aad/config
directory. If you have moved the master key to a secured location for security reasons, copy it to the config
directory before executing the start script.

To start AAD, navigate to /opt/pingidentity/aad/bin directory and run the following command:

bin/start.sh
AAD 3.2.1 starting...
please see /opt/pingidentity/aad/logs/aad.log for more details

PingIntelligence copyright © 2022

| 448



Stop AAD

To stop AAD, navigate to /opt/pingidentity/aad/bin directory and run the following command:

bin/stop.sh
Ping Identity Inc.
AAD is stopped.

Parent topic:PingIntelligence – PingAccess Integration

AWS API Gateway Integration
PingIntelligence provides an automated tool to deploy a PingIntelligence policy which is implemented
using the AWS Lambda functions. The policy requires AWS CloudFront to be present with all types of
caching disabled. Lambda functions must be initially deployed in the US-East-1 region and the policy
definition is pushed to any region with your API Gateways after the PingIntelligence policy is added. The
PingIntelligence sideband policy requires a CloudFront instance which can be an existing or newly created
instance.

Important: Up to 1000 QPS, the default Lambda memory value is sufficient. (See the
aws.properties file for default origin response value). For a larger QPS, contact the
PingIntelligence team.

The following diagram shows the logical setup of PingIntelligence ASE and CloudFront:

Here is the traffic flow through the CloudFront and PingIntelligence for APIs components.

1. Incoming API Client request destined for the API Gateway arrives at CloudFront
2. A PingIntelligence AWS Lambda policy makes an API call to send the request information to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP, cookie, OAuth2

token or API key against the Blacklist. If all checks pass, ASE returns a 200-OK response to the AWS
Lambda. If not, a different response code (403) is sent to AWS Lambda. The request information is
also logged by ASE and sent to the AI Engine for processing.

PingIntelligence copyright © 2022

| 449



4. If CloudFront receives a 200-OK response from ASE, then it forwards the client request to the
backend server. Otherwise, the CloudFront blocks the client when blocking is enabled for the API.

5. The response from the backend server is received by CloudFront.
6. The Lambda response function makes a second API call to pass the response information to ASE.
7. ASE receives the response information and immediately sends a 200-OK to AWS Lambda. The

response information is also logged by ASE and sent to the AI Engine for processing.
8. CloudFront sends the response received from the backend server to the client.

Prerequisites to deploying the PingIntelligence Lambda Policy
The following prerequisites must be met before running the PingIntelligence AWS policy tool.

Prerequisite:

• JDK 8 must be installed on the system running the PingIntelligence policy tool.
• PingIntelligence software installation

PingIntelligence 3.2.1 software are installed and configured. For installation of PingIntelligence
software, see the manual or platform specific automated deployment guides.

• AWS admin account: To deploy PingIntelligence policy, you must have AWS admin account.
• Edit CloudFront configuration: Make sure that the following options are configured correctly:

◦ Disable Caching: The PingIntelligence policy deployment tool requires that CloudFront be
available with caching disabled for all CloudFront behaviors. Select None (Improves
Caching) from the Cache Based on Selected Request Headers drop-down list.

◦ TTL: Make sure that the Minimum TTL, Maximum TTL, and the Default TTLis set to 0
◦ Forward Cookies: Select All from the drop-down list
◦ Query String Forwarding and Caching: Select Forward all, cache based on all from

the drop-down list

• Lambda function: PingIntelligence policy tool requires viewer request and origin response Lambda
functions. Make sure that there is no viewer request or origin response Lambda function defined in
the caching behavior.

PingIntelligence copyright © 2022

| 450



• Verify that ASE is in sideband mode•

Check if ASE is in sideband mode by running the following command in the ASE command line:
/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status                  : started
mode                    : sideband
http/ws                 : port 80
https/wss               : port 443
firewall                : enabled
abs                     : enabled, ssl: enabled
abs attack              : disabled
audit                   : enabled
sideband authentication : disabled
ase detected attack     : disabled
attack list memory      : configured 128.00 MB, used 25.60 MB, free 
102.40 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

• Enable sideband authentication: For a secure communication between CloudFront and ASE,
enable sideband authentication by entering the following command in the ASE command line:
# ./bin/cli.sh enable_sideband_authentication -u admin –p

• Generate sideband authentication token

A token is required for CloudFront to authenticate with ASE. This token is generated in ASE and
configured in the aws.properties file of PingIntelligence automated policy tool. To generate the
token in ASE, enter the following command in the ASE command line:

# ./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.

Download and configure automated policy tool
Download

Complete the following steps to download and install the PingIntelligence policy tool:

1. Download the PingIntelligence policy tool to the /opt directory.
2. Complete the following steps to untar the policy tool:

a. At the command prompt, type the following command to untar the policy tool file:
tar –zxvf <filename>

For example:
tar –zxvf pi-aws-3.2.1.tar.gz

b. To verify that the tool successfully installed, type the ls command at the command prompt.
This should list the pingidentity directory and the build .tgz file.

The following table lists the directories:

PingIntelligence copyright © 2022

| 451

https://www.pingidentity.com/en/resources/downloads.html


Directory Description

bin Contains the following scripts:

• deploy.sh•
: The script to deploy the
PingIntelligence policy.

• undeploy.sh•
: The script to undeploy the
PingIntelligence policy.

• status.sh•
: Reports the deployment status of IAM
role and Lambda function.

lib Jar files and various dependencies. Do not
edit the contents of this directory.

policy Contains the request and response Lambda
functions:

• request_lambda.zip•
• response_lambda.zip•

config Contains the
aws.properties
file.

logs Contains the log and status files.

Configure the automated tool
Configure the aws.properties file available in the /pingidentity/pi/aws/config/ directory. The
following table describes the variables in the aws.properties file:

Variable Description

mode Choose the authentication mode between
keys
and
role

Note: If you running the
PingIntelligence policy tool from
your local machine, use the
keys
mode. If you are running the tool
from an EC2 instance, use the
role
mode.

access_key AWS access key. This is applicable when the
mode is set to

PingIntelligence copyright © 2022

| 452



keys

secret_key AWS secret key. This is applicable when the
mode is set to
keys

aws_lambda_memory AWS Origin Response Lambda memory in
MB. Default value is 1024 MB. The memory
can be configured in multiple of 64. Minimum
and maximum value are 128 and 3008
respectively. For more information, see AWS
Lambda Pricing

cloudfront_distribution_id The CloudFront distribution ID.

ase_host_primary The ASE primary host IP address and port or
hostname and port

ase_host_secondary The ASE secondary host IP address and port
or hostname and port. ASE secondary host
receives traffic only when the primary ASE
host is unreachable.

Note: This field cannot be left
blank. In a testing environment,
enter the same IP address for
primary and secondary ASE host.

If both the ASE hosts are unreachable, the
request is directly sent to the backend API
server.

ase_ssl Enable or disable SSL communication
between Lambda functions and ASE. The
default value is
true
.

ase_sideband_token Enter the ASE token generated during the
prerequisite step.

Following is a sample aws.properties file:

# Copyright 2019 Ping Identity Corporation. All Rights Reserved.
# Ping Identity reserves all rights in The program as delivered. 
Unauthorized use, copying,
# modification, reverse engineering, disassembling, attempt to discover any 
source code or
# underlying ideas or algorithms, creating other works from it, and 
distribution of this
# program is strictly prohibited. The program or any portion thereof may not 
be used or
# reproduced in any form whatsoever except as provided by a license without 
the written

PingIntelligence copyright © 2022

| 453

https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/


# consent of Ping Identity.  A license under Ping Identity's rights in the 
Program may be
# available directly from Ping Identity.

#Authentication mode access-key & secret-key / role based access. Values can 
be keys or role.
mode=keys
#AWS access key
access_key=AKIAID7MDWSCUUVHMTNA
#AWS secret key
secret_key=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
#AWS Lambda memory in MB. It should be a multiple of 64. Minimum and maximum 
value are 128 and 3008 respectively.
aws_lambda_memory=1024
#Cloudfront distribution ID
cloudfront_distribution_id=EGQ9OEG3ZDABP

#ASE Primary Host <IP/Host>:<port>
ase_host_primary=test.elasticbeam.com
#ASE Secondary Host <IP/Host>:<port>
ase_host_secondary=test.elasticbeam.com
#ASE SSL status
ase_ssl=true
#ASE sideband authentication token
ase_sideband_token=283ded57cd5f48e6bcd8fa3ba9d2888d

Create Role
If you have set theauthentication mode as role in the aws.properties file, create a role for the EC2
instance. This role is required for the PingIntelligence policy deployment tool. Complete the following steps
to create and configure.

1. Select EC2 as service and click on Next: Permissions button:

2. Choose the following three Policies and provide a name for each role (for example,
PIDeploymentToolRole):

PingIntelligence copyright © 2022

| 454



• AWSLambdaFullAccess
• CloudFrontFullAccess
• AmazonEC2FullAccess

After providing the name, click on Create role.

3. In the Summary page of the role that you created in step 2, click on the Trust relationships tab and
then click on Edit trust relationship button:

4. In the Edit Trust Relationship page, enter the following lines and click on Update Trust Policy:
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {

PingIntelligence copyright © 2022

| 455



        "Service": "ec2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "lambda.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

5. Configure the IAM role, as the role that you created (for example, PIDeploytmentToolRole):

PingIntelligence copyright © 2022

| 456



Deploy PingIntelligence Policy for AWS
Using the PingIntelligence AWS policy tool, deploy the PingIntelligence policy in AWS @Lambda in North
Virginia (US-East-1) region. Note that the policy must currently be deployed in this region. The Lambda
function pushes the PingIntelligence policy to Amazon CloudFront in the local AWS instances. The
PingIntelligence Lamba policy communicates with PingIntelligence ASE to collect request and response
data and check whether the client request should be blocked or passed to the AWS gateway.

To deploy the PingIntelligence policy, run the following command:
/opt/pingidentity/pi/aws/bin$ deploy.sh -ca

Deploying PI AWS Policy with CA-signed certificate

1) Create IAM Role named PI-Role - status... done
2) Create a policy named LambdaEdgeExecution-PI - status... done
3) Attach LambdaEdgeExecution-PI Policy to Role PI-Role... done
4) Generating policy... done
5) Deploying PI-ASE-Request Lambda... done
6) Fetching PI-ASE-Request Lambda version... done
7) Deploying PI-ASE-Response Lambda... done
8) Fetching PI-ASE-Response Lamda version... done
9) Deploying PI-ASE-Request Lamda CloudFront... done
10) Deploying PI-ASE-Response Lambda CloudFront... done

Successfully deployed PI AWS Policy.

When the deploy.sh script is run without ca option, the policy is deployed using the self-signed
certificate. The self-signed certificate is part of the PingIntelligence policy. By the running the policy tool,
the following two policies are deployed:

• Request Lambda
• Response Lambda

Check the status of deployment: To check the status of the PingIntelligence policy deployment, run
the status.sh command:
/opt/pingidentity/pi/aws/bin$ status.sh
Checking the PI AWS Policy deployment status

1) IAM Role named PI-Role deployment - status... deployed
2) IAM Policy named LambdaEdge-PI deployment - status... deployed
3) PI-ASE-Request Lamda deployment - status... deployed
4) PI-ASE-Response Lamda deployment - status... deployed
5) PI-ASE-Request Lamda CloudFront deployment - status... deployed
6) PI-ASE-Response Lamda CloudFront deployment - status... deployed

PI AWS Policy is already installed.

Next steps - Integrate PingIntelligence into your environment
After the policy deployment is complete, refer to the following topics for next steps:

It is recommended to read the following admin guide topics apart from reading the ASE and ABS Admin
Guides:

PingIntelligence copyright © 2022

| 457

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_introduction.html


• ASE port information
• API naming guidelines
• Adding APIs to ASE in Sideband ASE. You can add individual APIs or you can configure a global API.
• Connect ASE and ABS

After you have added your APIs in ASE, the API model needs to be trained. The training of the API model is
completed in ABS AI engine. The following topics provide a high level view of the process.

• Train your API model
• Generate and view the REST API reports using Postman
• View PingIntelligence for APIs Dashboard.

Undeploy PingIntelligence AWS Policy
Undeploy the PingIntelligence AWS policy using the undeploy tool which detaches the policy from
CloudFront. The time to detach the policy from CloudFront depends on which CloudFront region the policy
is deployed.

To undeploy the policy, run the following command:
/opt/pingidentity/pi/aws/bin$ undeploy.sh
Undeploying PI AWS Policy

1) Fetching PI-ASE-Request Lambda version... done
2) Fetching PI-ASE-Response Lamda version... done
3) Undeploy PI-ASE-Request Lamda CloudFront... done
4) Undeploy PI-ASE-Response Lamda CloudFront... done
5) Undeploy PI-ASE-Request Lamda... done
6) Undeploy PI-ASE-Response Lamda... done
7) Detaching IAM Role named PI-Role from policy LambdaEdgeExecution-PI - 
status... done
8) Deleting  IAM Role named PI-Role - status... done
9) Deleting policy named LambdaEdgeExecution-PI - status... done

Successfully undeployed PI AWS Policy.

Check the progress of detaching the policy from the CloudFront in the AWS GUI as shown in the following

screenshot: 

After the State has moved from Enabled to Disabled, delete the Request and Response Lambda functions.
Use the cloud_front_id from the aws.properties file to search for PingIntelligence Lambda
functions.

PingIntelligence copyright © 2022

| 458

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/customizing_ase_ports.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/api_naming_guidelines.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/defining_an_api___api_json_configuration_file_0.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/discover_the_apis___ase_inline.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/ase_configuration_for_abs_ai_based_security_1.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/artificial_intelligence_training.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/api_reports_using_postman.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/dashboard/accessing_the_abs_dashboard.html


Note: If the Lambda functions are not deleted, then the following message is displayed on the
console: Deletion of the Lambda function may take up to one hour. Please
re-run undeploy.sh after one hour.

Mulesoft API Gateway Integration
PingIntelligence provides a policy to integrate PingIntelligence ASE 3.2.1 and Mulesoft Anypoint API
gateway. The following diagram shows the logical setup of PingIntelligence ASE and Mulesoft:

Here is the traffic flow through the Mulesoft and PingIntelligence for APIs components.

1. Incoming request to Mulesoft
2. Mulesoft makes an API call to send the request information to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP, cookie, OAuth2

token or API key against the Blacklist. If all checks pass, ASE returns a 200-OK response to the
Mulesoft. If not, a different response code (403) is sent to Mulesoft. The request information is also
logged by ASE and sent to the AI Engine for processing.

4. If Mulesoft receives a 200-OK response from ASE, then it forwards the request to the backend server.
Otherwise, the Mulesoft optionally blocks the client.

5. The response from the backend server is received by Mulesoft.
6. Mulesoft makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to Mulesoft.
8. Mulesoft sends the response received from the backend server to the client.

Prerequisites to deploying PingIntelligence Policy
Confirm that the following prerequisites are met before deploying PingIntelligence policy:

Prerequisite:

• PingIntelligence software installation

PingIntelligence 3.2.1 software are installed and configured. For installation of PingIntelligence
software, see the manual or platform specific automated deployment guides.

PingIntelligence copyright © 2022

| 459



• Verify that ASE is in sideband mode•

Make sure that in ASE is in sideband mode by running the following command in the ASE
command line:
/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status                  : started
mode                 : sideband
http/ws                 : port 80
https/wss               : port 443
firewall                : enabled
abs                     : enabled, ssl: enabled
abs attack              : disabled
audit                   : enabled
sideband authentication : disabled
ase detected attack     : disabled
attack list memory      : configured 128.00 MB, used 25.60 MB, free 
102.40 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

• Enable sideband authentication: For a secure communication between Mulesoft Anypoint and
ASE, enable sideband authentication by entering the following command in the ASE command line:
# ./bin/cli.sh enable_sideband_authentication -u admin –p

• Generate sideband authentication token

A token is required for Mulesoft Anypoint to authenticate with ASE. To generate the token in ASE,
enter the following command in the ASE command line:

# ./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.

Deploy PingIntelligence policy
PingIntelligence provides a policy to deploy PingIntelligence 3.2.1 with Mulesoft 3.9 and 4.0. The policy
package has the following two files, an xml and a yaml:

• pi_policy.yaml
• pi_policy.xml

Follow the steps to deploy PingIntelligence policy based on the version of Mulesoft API gateway.

• PingIntelligence for Mulesoft 3.9
• PingIntelligence for Mulesoft 4.0

PingIntelligence for Mulesoft 3.9
Complete the following steps to deploy the policy. Before applying the PingIntelligence policy, make sure
that the API to which you want to apply the policy is defined. The steps mentioned below use an API
named PingIntelligenceAPI for illustration purpose.

PingIntelligence copyright © 2022

| 460



Deploying PingIntelligence policy to Mulesoft Anypoint

1. Login to your Mulesoft Anypoint account
2. Open API Manager by expanding the menu on the left-hand side:

3. In the API Administration page, click on Custom Policies:

PingIntelligence copyright © 2022

| 461



4. In the Custom policies page, click on Add custom policy:

5. In the Add custom policy pop-up window, add the policy name, for example, PingIntelligence Policy
and upload the pi_policy.yaml and pi_policy.xml files:

PingIntelligence copyright © 2022

| 462



PingIntelligence Policy is added as shown below:

Parent topic:Deploy PingIntelligence policy

PingIntelligence for Mulesoft 4.0
To deploy the PingIntelligence policy for Mulesoft 4.0, you need to upload the policy to Exchange. Before
applying the PingIntelligence policy, make sure that the API to which you want to apply the policy is
defined.

Follow the steps mentioned at Getting started with Custom Policies development link to upload the
PingIntelligence policy.

When the project's directory structure is created, replace the contents of my-custom-policy.yaml with
that of pi_policy.yaml file. Similarly, replace the contents of template.xml with that of
pi_policy.xml. The following screen shot shows the reference directory structure created by following
the steps mentioned at the Getting started with Custom Policies development:

After the project is set up, complete the steps mentioned in the following two links to upload the
PingIntelligence policy:

• Packaging a Custom Policy
• Uploading a Custom Policy to Exchange

Parent topic:Deploy PingIntelligence policy

PingIntelligence copyright © 2022

| 463

https://docs.mulesoft.com/api-manager/2.x/custom-policy-getting-started
https://docs.mulesoft.com/api-manager/2.x/custom-policy-getting-started
https://docs.mulesoft.com/api-manager/2.x/custom-policy-packaging-policy
https://docs.mulesoft.com/api-manager/2.x/custom-policy-uploading-to-exchange


Apply PingIntelligence policy
Complete the following steps to attach PingIntelligence policy to your API:

1. Navigate to the API manager and click on the Version of the API to which you want to attach the

PingIntelligence policy: 
2. In the API page, click on Policies as shown in the following illustration:

The Policies page is displayed from where you can apply the PingIntelligence policy to the API. Click

on Apply New Policy: 

PingIntelligence copyright © 2022

| 464



3. In the Select Policy pop-up window, select the PingIntelligence Policy and click on Configure

Policy:
4. In the Apply policy page, enter the following values:

• ASE Token that was generated as part of prerequisite
• ASE primary and secondary host and port. The traffic is sent to the ASE secondary host only

when the primary ASE node is unreachable
• Enable SSL if you want Mulesoft to connect to ASE over HTTPS
• Check the Allow self-signed certificate check-box, if you want Mulesoft to accept self-

signed certificate from ASE

PingIntelligence copyright © 2022

| 465



5. Navigate to your API and click on version number as described in step 6. In the API page, scroll down
to the Deployment Configuration section and click on Redeploy:

Next steps - Integrate PingIntelligence into your environment
After the policy deployment is complete, refer the following topics for next steps:

It is recommended to read the following topics (part of the admin guides) apart from reading the ASE and
ABS Admin Guides:

• ASE port information
• API naming guidelines
• Adding APIs to ASE in Sideband ASE. You can add individual APIs or you can configure a global API.
• Connect ASE and ABS

After you have added your APIs in ASE, the API model needs to be trained. The training of API model is
completed in ABS. The following topics give a high level view, however it is a good practice to read the
entire ABS Admin Guide.

• Train your API model
• Generate and view the REST API reports using Postman.
• View PingIntelligence for APIs Dashboard.

API discovery
You can discover APIs in your environment using PingIntelligence ABS. For more information on enabling
discovery, see Enable and disable discovery. APIs are discovered when a global API JSON is defined in the
ASE. For more information, see API discovery. After the APIs are discovered by ABS, AAD adds the API
JSON to ASE. Install AAD to add discovered APIs to ASE.

Install AAD

Download the AAD tool from the download site. Oracle Java 8 must already be installed on the AAD
machine.

Copy the downloaded file to /opt directory and run the following command to install:

PingIntelligence copyright © 2022

| 466

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_introduction.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/customizing_ase_ports.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/api_naming_guidelines.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/defining_an_api___api_json_configuration_file_0.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/discover_the_apis___ase_inline.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/ase_configuration_for_abs_ai_based_security_1.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/artificial_intelligence_training.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/api_reports_using_postman.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/dashboard/accessing_the_abs_dashboard.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/enable_and_disable_discovery_and_update_discovery_interval.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/discover_the_apis___ase_inline.html
https://www.pingidentity.com/en/resources/downloads.html


# tar -zxf aad-3.2.1.tar.gz

The above step installs AAD and creates the following directories:

• bin – Contains start.sh, stop.sh and status.sh scripts
• config – Contains aad.properties file. This file is used to configure AAD
• data – For internal use
• logs – Contains AAD’s logs
• util – Contains thecheck_ports.sh. Run on the machine with the AAD tool to check ASE and

ABS default ports.

The following table describes the AAD configuration parameters:

Property Description

aad.mode Set the value to
discovery
for AAD to work in discovery mode.

abs.host ABS host IP address

abs.port ABS host port number

abs.access_key ABS access key

abs.secret_key ABS secret key

ase.host Hostname or IPv4 IP address of the ASE host
machine.

ase.port Port number of the ASE service.

abs.ssl Set to true for ABS-AAD communication to
use SSL.

ase.access_key The username of ASE. Default value is
admin

ase.secret_key The password of ASE. Default value is
admin

abs.query.interval NA.

aad.log.level The log level of AAD log files. The default
value is
INFO
. Other possible values are:
ALL<DEBUG<INFO<WARN<ERROR<FATAL<OFF

gateway.management.url NA

gateway.management.username NA

PingIntelligence copyright © 2022

| 467



gateway.management.password NA

Following is a sample aad.properties file:

# Automated API Discovery (AAD)
# AAD mode. Valid values discovery,span_port, gateway and pingaccess
# discovery will pull discovered APIs from ABS
# span_port will pull discovered APIs from ABS
# gateway will pull APIs from Axway API Gateway
# pingaccess will pull APIs from PingAccess
aad.mode=discovery
# AAD query polling interval (minutes) to ABS or Gateway
aad.query.interval=10
# Log level
aad.log.level=INFO
### ASE config
# ASE Host ( hostname or IPv4 address)
ase.host=127.0.0.1
# ASE management port
ase.port=8010
# ASE REST API access key
ase.access_key=OBF:AES:Rs7NPeYGCU0Zku7TANJbwEl2rW7+:v7j6VGWaoMjUNcc4IMAtOMtLL8hUPOLWrq7BPMcq3m0=
# ASE REST API secret key
ase.secret_key=OBF:AES:Rs7NPeYGCU0Zku7TANJbwEl2rW7+:v7j6VGWaoMjUNcc4IMAtOMtLL8hUPOLWrq7BPMcq3m0=
### ABS config. Only valid if aad.mode=discovery or aad.mode=span_port
# ABS Host ( hostname or IPv4 address )
abs.host=127.0.0.1
# ABS management port
abs.port=8080
# ABS SSL enabled ( true or false )
abs.ssl=true
# ABS access key
abs.access_key=OBF:AES:RsjTC+lxddGqv3XUUV/
YX8iA8kg6Ng==:0vOu0XUVpbvV4AaSmv5mZllw3WpAsj1oPF3d5Etl70Y=
# ABS secret key
abs.secret_key=OBF:AES:RsjTC/tx/
sp+7XXtr8+1rnaty1BFug==:78i6bQcdVSavuKm2TXQMOKga/OOEa/ON4RoiUMYu3Rc=
### Axway API Gateway config. Only valid if aad.mode=gateway
# API Manager URL
gateway.management.url=https://127.0.0.1:8075/
# API Manager admin username
gateway.management.username=apiadmin
# API Manager admin password
gateway.management.password=OBF:AES:RMLBOu9/DIVOEAojYV/
Otw74LahxfEgp:dLfCNugFUCcfsg1nBXQzflTvAWiPit8ulseHxi+Z0tk=
### PingAccess config. Only valid if aad.mode=pingaccess
# Admin URL
pingaccess.management.url=https://127.0.0.1:9000/
# Admin username
pingaccess.management.username=Administrator
# Admin password

PingIntelligence copyright © 2022

| 468



pingaccess.management.password=OBF:AES:FevDN+1pEqcKQnFG/UN3Efz0DMa/
kmI=:Az82rlUFftMGPmxF7unelJZUucX191lO2QgKvHD36vU=

Obfuscate keys and passwords

Using AAD’s command line interface, you can obfuscate the keys and passwords configured in
aad.properties. Following keys and passwords are obfuscated:

• ase.access_key
• ase.secret_key
• gateway.management.password

AAD ships with a default aad_master.key which is used to obfuscate the various keys and passwords. It
is recommended to generate your own aad_master.key.

Note: During the process of obfuscation of keys and password, AAD must be stopped.

Generate aad_master.key

You can generate the aad_master.key by running the generate_obfkey using the AAD CLI.

opt/pingidentity/aad/bin/cli.sh -u admin generate_obfkey -p
Password>
Please take a backup of config/aad_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate 
all config keys also using cli.sh obfuscate_keys
Warning: Obfuscation master key file /opt/pingidentity/aad/config/
aad_master.key already exist. 
This command will delete it create a new key in the same file
Do you want to proceed [y/n]: y
creating new obfuscation master key
Success: created new obfuscation master key at /opt/pingidentity/aad/config/
aad_master.key

The new aad_master.key is used to obfuscate the passwords in aad.properties file.

Note: After the keys and passwords are obfuscated, the aad_master.key must be moved to
a secure location from AAD. If you want to restart AAD, the aad_master.key must be present
in the /opt/pingidentity/aad/config/ directory.

Obfuscate keys and passwords

Enter the keys and passwords in clear text in the aad.properties file. Run the obfuscate_keys
command to obfuscate keys and passwords:

/opt/pingidentity/aad/bin/cli.sh obfuscate_keys -u admin -p
Password>
Please take a backup of config/aad.properties before proceeding
Enter clear text keys and password before obfuscation.
Following keys will be obfuscated
 config/aad.properties: ase.access_key, ase.secret_key, abs.access_key, 

PingIntelligence copyright © 2022

| 469



abs.secret_key and gateway.management.password
Do you want to proceed [y/n]: y
obfuscating /opt/pingidentity/aad/config/aad.properties
Success: secret keys in /opt/pingidentity/aad/config/aad.properties 
obfuscated

Start AAD after passwords are obfuscated.

Start AAD

Prerequisite:

For AAD to start, the aad_master.key must be present in the /opt/pingidentity/aad/config
directory. If you have moved the master key to a secured location for security reasons, copy it to the config
directory before executing the start script.

To start AAD, navigate to /opt/pingidentity/aad/bin directory and run the following command:

bin/start.sh
AAD 3.2.1 starting...
please see /opt/pingidentity/aad/logs/aad.log for more details

Stop AAD

To stop AAD, navigate to /opt/pingidentity/aad/bin directory and run the following command:

bin/stop.sh
Ping Identity Inc.
AAD is stopped.

Docker Inline PoC Deployment
Docker Inline PoC setup

This guide describes the installation and execution of PingIntelligence for APIs software in a Docker
environment. The automation script imports and installs the Docker images. A script is run to generate
normal API traffic to train the AI engine. After training is complete, another script is run to send a mixture of
normal and attack traffic. The guide then explains how to access a graphical dashboard which shows
activity on the test environment and detailed reporting on the API activity.

This Docker Evaluation Guide provides instructions for deploying a test configuration as shown in the
diagram:

PingIntelligence copyright © 2022

| 470



Note: The Docker images provided are only for evaluation purpose of PingIntelligence for APIs
product and should not be used in production deployments.

• Installation requirements
• Download and untar Docker package
• Install and load Docker images
• Setup the PoC environment
• Start the training
• Generate sample attacks
• API deception
• API discovery
• View dashboard reports
• ABS detailed reporting
• Shutdown the PoC environment
• Appendix: Verify the Setup

Installation requirements
Here is a summary of the software and documentation to download from the download site as noted
below.

Docker images

Download the Docker PoC package. The Docker package creates the following five containers on the host
machine:

1. API Security Enforcer (ASE)
2. API Behavioral Security Engine (ABS)
3. PingIntelligence for APIs Dashboard
4. Tsung Traffic Generator
5. Google Go App server

ASE and ABS license: ASE and ABS licenses are required to start both the products. Contact the
PingIntelligence team to access the trial license.

Postman reporting

PingIntelligence copyright © 2022

| 471

https://download.elasticbeam.com/


ABS generates various REST API reports. You can view these reports using Postman client or any other
REST API client. PingIntelligence provides a Postman collection to view the various ABS reports. Download
the Postman client from the Postman site.

Documentation

Refer the following Admin Guides:

• ASE Admin Guide- Refer the ASE admin guide to learn about administering ASE, inline ASE, real-time
cybersecurity and so on.

• ABS Admin Guide- Refer to the ABS admin guide to learn about administering ABS, AI engine training,
various REST API reports and so on.

• Dashboard Admin Guide- Refer to the Dashboard admin guide to learn about how to access and use
Dashboard.

Server requirements
The set up requires one machine which hosts all the six Docker images. The server requirement for the
machine is specified in the following table:

OS Ubuntu 16.04

Hardware 8 CPUs, 16 GB RAM, 500 GB Storage

Note: The server requirement is for a single server for evaluation purpose only.

Docker version

The setup requires the Community Version (CE) of Docker 17.06 or higher. Make sure that the Docker
infrastructure is set up before proceeding with installation and setup of PingIntelligence for APIs software.

Parent topic:Docker Inline PoC setup

Download and untar Docker package
Download the Docker package from the download site and save it in the /opt directory.

Complete the following steps before Installing and loading the Docker images:

1. Untar the package by running the following command:

$sudo tar -xf /opt/docker-inline-poc.tar.gz

2. Change the directory to /opt/pingidentity/docker-inline-poc.

PingIntelligence copyright © 2022

| 472

https://www.getpostman.com/
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_introduction.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/dashboard/pingintelligence_for_apis_dashboard.html
https://download.elasticbeam.com/


Directory structure

After you untar the Docker package, the following directory structure is created:

Install ASE and ABS license
PingIntelligence ASE and ABS require a valid license to start. The license file for both the products is
named PingIntelligence.lic. Complete the following

• ASE:
Copy the ASE license file in the pingidentity/docker-inline-poc/license/ase directory.
Make sure that the license file is named as PingIntelligence.lic Following is a sample of the
ASE license file:
ID=981894
Product=PingIntelligence
Module=ASE
Version=3.2
IssueDate=2018-11-30
EnforcementType=0
ExpirationDate=2018-12-30
Tier=Subscription
SignCode=
Signature=

Verify that the correct file has been copied: To verify that the correct license file has been
copied in the pingidentity/docker-inline-poc/license/ase directory, run the following
command:
# grep 'Module' license/ase/PingIntelligence.lic
Module=ASE

• ABS:
Copy the ABS license file in the pingidentity/docker-inline-poc/license/abs directory.
Make sure that the license file is named as PingIntelligence.lic. Following is a sample of the
ABS license file:
ID=981888
Product=PingIntelligence
Module=ABS
Version=3.2
IssueDate=2018-11-30
EnforcementType=0
ExpirationDate=2018-12-30
Tier=Subscription
SignCode=
Signature=

PingIntelligence copyright © 2022

| 473



Verify that the correct file has been copied: To verify that the correct license file has been
copied in the pingidentity/docker-inline-poc/license/abs directory, run the following
command:
# grep 'Module' license/ase/PingIntelligence.lic
Module=ABS

Parent topic:Docker Inline PoC setup

Install and load Docker images
To install and load Docker images, enter the command on the host Ubuntu 16.04 machine. This command
loads and installs the Docker images from the images directory:

/opt/pingidentity/docker-inline-poc$sudo ./bin/start.sh install
root@ip-172-31-25-146:/opt/pingidentity/docker-inline-poc# ./bin/start.sh 
install
Mon Jan 14 05:30:57 UTC 2019 : loading ASE image
Loaded image: pingidentity/ase:3.2.1
Mon Jan 14 05:31:00 UTC 2019 : loading ABS image
Loaded image: pingidentity/abs:3.2.1
Mon Jan 14 05:31:07 UTC 2019 : loading AAD image
Loaded image: pingidentity/aad:3.2.1
Mon Jan 14 05:31:11 UTC 2019 : loading Dashboard image
Loaded image: pingidentity/dashboard:3.2.1
Mon Jan 14 05:31:25 UTC 2019 : loading client image
Loaded image: pingidentity/client:3.2.1
Mon Jan 14 05:31:29 UTC 2019 : loading server image
Loaded image: pingidentity/server:3.2.1
Mon Jan 14 05:31:32 UTC 2019 : loading mongo image
Loaded image: pingidentity/mongo:3.4.6
Mon Jan 14 05:31:37 UTC 2019 : Installation completed successfully

Parent topic:Docker Inline PoC setup

Setup the PoC environment
To start the Docker containers and setup, enter the following command the on the host Ubuntu 16.04
machine:

/opt/pingidentity/docker-inline-poc$sudo ./bin/start.sh setup
Mon Jan 14 05:33:03 UTC 2019 : Starting setup scripts
Creating network pingidentity_net
Creating config pingidentity_abs_license
Creating config pingidentity_shop_api_json
Creating config pingidentity_shop_books_api_json
Creating config pingidentity_shop_electronics_api_json
Creating config pingidentity_decoy_api_json
Creating config pingidentity_ase_license
Creating service pingidentity_client
Creating service pingidentity_mongo
Creating service pingidentity_abs
Creating service pingidentity_ase
Creating service pingidentity_dashboard
Creating service pingidentity_aad

PingIntelligence copyright © 2022

| 474



Creating service pingidentity_server
Mon Jan 14 05:33:26 UTC 2019 : Setup successful

Verify ASE and ABS startup

Wait for a minute after the successful completion of the set up and enter the following command to verify
that ASE and ABS have started:
#sudo docker service logs pingidentity_ase | grep 'API Security Enforcer 
started'
#sudo docker service logs pingidentity_abs | grep 'ABS started'

If a wrong license was installed, the following error is displayed:
/opt/pingidentity/docker-inline-poc#sudo ./bin/start.sh setup
Sat Jan  5 16:55:12 UTC 2019 : Starting setup scripts
Creating network pingidentity_net
open /opt/pingidentity/docker-inline-poc/license/ase/PingIntelligence.lic: 
no such file or directorySat Jan  5 16:55:13 UTC 2019 : Error : Error during 
setup

Parent topic:Docker Inline PoC setup

Start the training
The PingIntelligence for APIs AI engine needs to be trained before it can start detecting attacks on your
APIs. Enter the following command to start the training. The training duration is 85 minutes.

/opt/pingidentity/docker-inline-poc$sudo ./bin/start.sh training
root@vortex-108:/opt/pingidentity/docker-inline-poc$sudo ./bin/start.sh 
training
Mon Dec 10 13:44:25 IST 2018 : Starting model training scripts
Mon Dec 10 13:44:25 IST 2018 : Model training started. Wait 85 minutes for 
the model training to complete.

Parent topic:Docker Inline PoC setup

Generate sample attacks
To generate sample attacks on the preconfigured APIs, enter the following command:

/opt/pingidentity/docker-inline-poc$sudo ./bin/start.sh attack
root@vortex-108:/opt/pingidentity/docker-inline-poc$sudo ./bin/start.sh 
attack
Mon Dec 10 15:40:51 IST 2018 : Starting attack scripts
Mon Dec 10 16:40:51 IST 2018 : Attack started.

Parent topic:Docker Inline PoC setup

API deception
You can view the deception APIs by running the following command. The deception API is part of the set
up. The deception command completes the following steps:

• Enables ASE detected attacks

PingIntelligence copyright © 2022

| 475



• Fetches the list of configured APIs from ASE
• Sends traffic to the decoy API and receives a 200 OK response
• Send traffic to a regular API (for example, shopapi). The connection is blocked because any client

which previously accessed a decoy API is not allowed access to “production” APIs.

Execute the following script to test API deception:
root@vortex-108:/opt/pingidentity/docker-inline-poc$sudo./bin/start.sh 
deception
Enabling enable_ase_detected_attack on ASE...
Press any key to continue 
ASE Detected Attack is now enabled
Fetching the list of APIs from ASE
Press any key to continue 
decoy ( loaded ), http, decoy: out-context, client_spike_threshold: 0/
second, server_connection_queueing: disabled
shop-books ( loaded ), http, client_spike_threshold: 300/second, 
server_connection_queueing: disabled
shop-electronics ( loaded ), http, decoy: in-context, 
client_spike_threshold: 700/second, server_connection_queueing: enabled
shop ( loaded ), http, decoy: in-context, client_spike_threshold: 300/
second, server_connection_queueing: disabled
Sending traffic to "decoy API" with client IP 10.10.10.10...
Press any key to continue 
curl -v http://localhost:8000/decoy/myhome -H "X-Forwarded-For: 10.10.10.10"
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 8000 (#0)
> GET /decoy/myhome HTTP/1.1
> Host: localhost:8000
> User-Agent: curl/7.47.0
> Accept: */*
> X-Forwarded-For: 10.10.10.10
>
< HTTP/1.1 200 OK
< Server: ASE
< Content-Length: 2
< Connection: close
<
* Closing connection 0
OK
Accessing regular API using client IP 10.10.10.10...
Press any key to continue 
curl -v http://localhost:8000/shopapi/login -H "Host: shopapi" -H "Content-
Type: application/text" -H "X-Forwarded-For: 10.10.10.10" -d 'user=root'
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 8000 (#0)
> POST /shopapi/login HTTP/1.1
> Host: shopapi
> User-Agent: curl/7.47.0
> Accept: */*
> Content-Type: application/text
> X-Forwarded-For: 10.10.10.10
> Content-Length: 9
>
* upload completely sent off: 9 out of 9 bytes

PingIntelligence copyright © 2022

| 476



< HTTP/1.1 401 Unauthorized
< Server: ASE
< Connection: close
< content-length: 19
<
* Closing connection 0
Error: Unauthorized
Error: Unauthorized

Parent topic:Docker Inline PoC setup

API discovery
Automated API Definition (AAD) tool is installed as part of the setup. ABS discovers the APIs when the
discovery is enabled. The automated setup sets up the discovery mode. APIs are discovered by ABS when
a global API is defined in PingIntelligence ASE. AAD fetches the discovered APIs from ABS and adds them
in ASE. API model training starts after the APIs are added in ASE. For more information, See API discovery.

Parent topic:Docker Inline PoC setup

View dashboard reports
Access the main dashboard with a browser at this URL: https://<host-machine>ip:5601/app/
kibana#/dashboard/pingintelligence. In the above URL, <ip:port> is the IP address of the
host machine where the PingIntelligence PoC is set up. The default username and password of for logging
is: ping_user/changeme

To navigate to the main dashboard, click PingIntelligence for APIs Dashboard. To navigate to a
specific API’s dashboard, click PingIntelligence for APIs Dashboard: <api name> for example,
PingIntelligence for APIs Dashboard: shop-books.

The PingIntelligence for APIs Dashboard provides information on attack activity across all APIs, and
separate Dashboards are also available for each individual API and Decoy APIs.

The Dashboard for each API looks like the following:

PingIntelligence copyright © 2022

| 477

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/discover_the_apis___ase_inline.html


Parent topic:Docker Inline PoC setup

ABS detailed reporting
ABS Engine’s REST API interface provides access to a range of JSON reports on attacks, metrics, and
anomalies. To view these reports, Ping Identity provides templates which can be loaded into Postman to
simplify viewing of the JSON reports.

Install and Configure Postman Software

1. Download and install the Postman application 6.2.5 or higher.
2. Download “API Reports Using Postman Collection” from the Automated Docker PoC Installation

section of the download site. ABS_3.2.1_Environment and ABS_3.2.1_Reports are files for
Postman.

3. Launch the Postman application. Make sure to disable SSL verification in Postman. For more
information, see Using self-signed certificate with Postman

4. Import the downloaded reports files by clicking the Import button

5. Click the gear  button in the top right corner
6. In the pop-up window, click ABS_3.2.1_Environment.
7. In the Edit Environment pop-up window, configure the following values and click Update.

a. Server IP Address – IP address of the Docker machine
b. Port – Default is 8080
c. Access_Key, Secret_Key - Default Access_Key is abs_ak and default Secret_Key is abs_sk
d. API_Name – the name of API to view in reports
e. Later_date, Earlier_date – a range of dates to query

8. In the main Postman app window, select the report to display in the left column and then click Send.

PingIntelligence copyright © 2022

| 478

https://www.getpostman.com/
https://download.elasticbeam.com/
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/using_abs_self_signed_certificate_with_postman.html


Other reports which can be generated for a specified time-frame (make sure you specify a time range
which covers the time that you ran the attack scripts) include:

• Metrics – shows all activity on the specified API
• Attacks (set Type=0) – shows a list of all attack categories and client identifiers (for example, token,

IP address, cookie) associated with the attack
• Backend Errors – shows activity which generated the errors
• IP Forensic Info - set the IP address to an attacker identified in the Attacks report– shows all API

activity for the specified IP
• Token Forensic Info - set the Token address to an attacker identified in the Attacks report - shows all

API activity for the specified token

Parent topic:Docker Inline PoC setup

Shutdown the PoC environment
You can stop the Docker PoC setup by entering the following command to delete all containers and the
data.
root@vortex-108:/opt/pingidentity/docker-inline-poc$sudo ./bin/stop.sh
Wed Dec 12 18:45:42 IST 2018 : Starting stop scripts
Removing service pingidentity_abs
Removing service pingidentity_ase
Removing service pingidentity_client
Removing service pingidentity_dashboard
Removing service pingidentity_server
Removing config pingidentity_shop_electronics_api_json
Removing config pingidentity_shop_books_api_json
Removing config pingidentity_decoy_api_json
Removing config pingidentity_shop_api_json
Removing network pingidentity_net
Wed Dec 12 18:45:42 IST 2018 : Stop successful

Parent topic:Docker Inline PoC setup

Appendix: Verify the Setup
Carry out the following basic steps to verify the setup:

1. Listing the Docker Containers

List all the containers with the docker ps command.

PingIntelligence copyright © 2022

| 479



2. Get Console Access:

To get console access for any of the Docker, fetch the Container ID of the Docker using the docker
ps command output and use it in the following command:

#docker exec -it <docker-container-id> /bin/bash

3. PingIntelligence for APIs Products:

The Intelligence products are installed in the /opt/pingidentity directory within the Docker.

4. Checking the service names:

To get the service names of the containers, run the following command:

#docker service ls

The service name is the second column in the output.

5. Checking the logs of service:

To check the log of any service, use the following command:

#docker service logs <service name>

For exampledocker service logs pingidentity_ase

Parent topic:Docker Inline PoC setup

Cloud PoC Service Deployment
Cloud PoC Service

PingIntelligence Cloud deployment has two components which work together to complete your
PingIntelligence PoC environment. The PingIntelligence Cloud environment is distributed between the
following:

• PingIntelligence ABS, Dashboard, and MongoDB are hosted as a cloud service managed by Ping
Identity

• PingIntelligence SaaS ASE is deployed in your API environment.

PingIntelligence Cloud service can be deployed in two modes:

• Inline mode
• Sideband mode

Inline mode

In inline mode, ASE receives API client traffic and routes the traffic to API servers. It can be deployed behind
an existing load balancer, such as AWS ELB. In inline mode, ASE terminates SSL connections from API
clients and then routers the API requests to the target APIs – running on an API Gateway or app servers,
such as Node.js, WebLogic, Tomcat, PHP, etc. To configure ASE to work in Inline mode, set the

PingIntelligence copyright © 2022

| 480



mode=inline in the ase.conf file. The following diagram shows the inline deployment:

Sideband Mode

In sideband mode, ASE receives API calls from an API gateway which uses policies to send API request
and response metadata to ASE. In this mode, the API Gateway still terminates the client requests and
manages the traffic flow to the API servers. Ping currently supports sideband policies on the following
platforms: Apigee API Gateway, Axway API Gateway, and PingAccess.

To configure ASE to work in sideband mode, set the mode=sideband in the ase.conf file. The following
diagram shows the sideband mode of deployment:

For more informatio on different ASE modes, see the ASE Admin Guide.

• Download and install ASE software
• ASE License
• Obfuscate access and secret key
• Configure ASE and Dashboard
• Configure PingIntelligence Cloud Connection
• Start and stop ASE

PingIntelligence copyright © 2022

| 481

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html


• Enable ASE to ABS engine communication
• Integrate PingIntelligence into your API environment
• Add APIs to ASE
• Download and install AAD
• AI engine training
• Connect to the PingIntelligence dashboard
• Access ABS reporting

Download and install ASE software
ASE supports RHEL7 or Ubuntu 16 LTS on an EC2 instance, bare metal x86 server, and VMware ESXi. You
can install ASE as a root or a non-root user.

Execute the following steps to install ASE:

1. Go the download site
2. Under PingIntelligence, click on Select and navigate to the ASE section to download the ASE binary.

Make sure you choose the correct platform binary.
3. After downloading the file, copy the ASE file to the /opt directory if you are installing as a root user.

You can choose any other location if you want to install ASE as a non-root user.
4. Change the working directory to /opt
5. At the command prompt, type the following command to untar the ASE file:

tar -zxvf <filename>

For example:
tar -zxvf ase-aws-rhel-3.2.1.tar.gz

6. To verify that ASE successfully installed, the ls command at the command prompt. This will list the
pingidentity directory and the build's tar file. For example:
/opt/pingidentity/ase/bin/$ ls
pingidentity ase-aws-rhel-3.2.1.tar.gz

Parent topic:PingIntelligence Cloud PoC Service

ASE License
To start ASE, you need a trial license which is valid for 30-days. At the end of the trial period, ASE stops
accepting the traffic.

Note: Contact PingIdentity sales to get an ASE trial license.

Configure ASE license

After receiving the ASE license key, download and save the license file as PingIntelligence.lic. Copy
the license file to the /opt/pingidentity/ase/config directory and start ASE.

Update an existing license If your license expires, obtain an updated license from PingIntelligence for
APIs sales and replace the license file in the /opt/pingidentity/ase/config directory. Stop and
then start ASE to activate the new license.

Parent topic:PingIntelligence Cloud PoC Service

Obfuscate access and secret key

PingIntelligence copyright © 2022

| 482

https://www.pingidentity.com/en/resources/downloads.html


Using the ASE command line interface, obfuscate the access key and secret key in abs.conf. The access
key and secret key has been sent to you through the PingIdentity welcome email.

ASE ships with a default master key (ase_master.key) which is used to obfuscate other keys and
passwords. You can generate your own ase_master.key. For more information, see Obfuscate key and
passwords

Note: During the process of obfuscation password, ASE must be stopped.

Obfuscate access and secret keys

Enter the access key and secret key provided to you in clear text in abs.conf. Run the obfuscate_keys
command to obfuscate:

  
/opt/pingidentity/ase/bin/cli.sh obfuscate_keys -u admin -p 
  
Please take a backup of config/ase_master.key, config/ase.conf, config/
abs.conf, and config/cluster.conf before proceeding

If config keys and passwords are already obfuscated using the current master 
key, they are not obfuscated again

Following keys will be obfuscated:
config/ase.conf: sender_password, keystore_password
config/abs.conf: access_key, secret_key
config/cluster.conf: cluster_secret_key
    
Do you want to proceed [y/n]:y
obfuscating config/ase.conf, success
obfuscating config/abs.conf, success
obfuscating config/cluster.conf, success

Start ASE after keys are obfuscated.

Important:ase_master.key must be present in the /opt/pingidentity/ase/config/
directory for ASE to start.

Parent topic:PingIntelligence Cloud PoC Service

Configure ASE and Dashboard
To configure the ASE system and Dashboard to work with PingIntelligence cloud, use the configuration
details that you received in an email from PingIntelligence. The following details have been emailed to you:

ABS configuration

• ABS IP
• ABS access key
• ABS secret key

Dashboard Configuration

PingIntelligence copyright © 2022

| 483

https://docs.pingidentity.com/bundle/PingIntelligence_API_Security_Enforcer_3.2_pingintel_32/page/obfuscating_keys_and_passwords.html
https://docs.pingidentity.com/bundle/PingIntelligence_API_Security_Enforcer_3.2_pingintel_32/page/obfuscating_keys_and_passwords.html


• Dashboard IP
• Dashboard username
• Dashboard password

Parent topic:PingIntelligence Cloud PoC Service

Configure Cloud Connection
Navigate to /opt/pingidentity/ase/config/abs.conf and refer to the PingIntelligence cloud
information received via email to configure the following:

• Set abs_endpoint to ABS IP
• Set access_key to ABS access key
• Set secret_key to ABS secret key
• Set enable_ssl to true

Here is a sample abs.conffile:
; API Security Enforcer ABS configuration.
; This file is in the standard .ini format. The comments start with a 
semicolon (;).
; Following configurations are applicable only if ABS is enabled with true.

; a comma-separated list of abs nodes having hostname:port or ipv4:port as 
an address.
abs_endpoint=127.0.0.1:8080

; access key for abs node 
access_key=OBF:AES://
ENOzsqOEhDBWLDY+pIoQ:jN6wfLiHTTd3oVNzvtXuAaOG34c4JBD4XZHgFCaHry0

; secret key for abs node
secret_key=OBF:AES:Y2DadCU4JFZp3bx8EhnOiw:zzi77GIFF5xkQJccjIrIVWU+RY5CxUhp3NLcNBel+3Q

; Setting this value to true will enable encrypted communication with ABS.
enable_ssl=true 

; Configure the location of ABS's trusted CA certificates. If empty, ABS's 
certificate
; will not be verified
abs_ca_cert_path=

Parent topic:PingIntelligence Cloud PoC Service

Start and stop ASE
Start ASE

PrerequisiteFor ASE to start, the ase_master.key must be present in the /opt/pingidentity/ase/
config directory. If you have moved the master key to a secured location for security reasons, copy it to
the config directory before executing the start script.

Change working directory to bin and run the start.sh script.

PingIntelligence copyright © 2022

| 484



/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 3.2.1...
please see /opt/pingidentity/ase/logs/controller.log for more details

Stop ASE

Change working directory to bin and run the stop.sh script.
/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…sending stop request to ASE. please 
wait…
API Security Enforcer stopped

Parent topic:PingIntelligence Cloud PoC Service

Enable ASE to ABS engine communication
To start communication between ASE and the AI engine, run the following command:
./cli.sh enable_abs –u admin -p 

To confirm an ASE Node is communicating with ABS, issue the ASE status command:
/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status              : started
http/ws             : port 80
https/wss           : port 443
firewall            : enabled
abs                 : enabled, ssl: enabled  (If ABS is enabled, then ASE is 
communicating with ABS)
abs attack          : disabled
audit               : enabled
ase detected attack : disabled
attack list memory  : configured 128.00 MB, used 25.60 MB, free 102.40 MB
abs_attack_request_minutes=10

Parent topic:PingIntelligence Cloud PoC Service

Integrate PingIntelligence into your API environment
Sideband configuration

If you configured PingIntelligence ASE for sideband connectivity with an API Gateway, then refer to the
deployment guide for your environment:

• Apigee Integration
• Axway Integration
• PingAccess Integration

After completing the setup steps in the integration guide, go to AI Engine training.

Parent topic:PingIntelligence Cloud PoC Service

Add APIs to ASE

PingIntelligence copyright © 2022

| 485

https://docs.pingidentity.com/bundle/pingintelligence-32/page/apigee/eeeeeee/pingintelligence_apigee_integration.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/axway/pingintelligence_axway_sideband_setup.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/pa/pingintelligence_pingaccess_setup.html


To secure an API with PingIntelligence for APIs software, an administrator can add an API definition to the
Ping Identity ASE which will then pass the API information to the AI Engine for reporting and attack
detection. Complete the following steps to configure a simple REST API. For more information on
advanced options, see the ASE Admin Guide.

1. Navigate to /opt/pingidentity/ase/config/api and copy the file
rest_api.json.example to rest_api.json

2. Open the rest_api.json file and update the following information:
a. Update the “url” to the base path of the API, for example, “/apiname”
b. Replace the server IP addresses and ports with the addresser/ports of your app servers.
c. Review the following parameter list and make other edits as applicable.

Key API JSON file parameters to configure include:

Parameter Description

protocol API request type with supported values of:
ws - WebSocket ; http - HTTP

url The value of the URL for the managed API. You can configure up to three levels of sub-paths. For example,
"/shopping"- name of a 1 level API
"/shopping/electronics/phones" – 3 level API
"/" – entire server (used for ABS API Discovery or load balancing)

hostname Hostname for the API. The value cannot be empty.
“*” matches any hostname.

cookie Name of cookie used by the backend servers.

oauth2_access_token When true, ASE captures OAuth2 Access Tokens.
When false, ASE does not look for OAuth2 Tokens. Default value is false.
For more information, see Configuring OAuth2 Token.

apikey_qs When API Key is sent in the query string, ASE uses the specified parameter name to capture the API key value.
For more information, see Configuring API Keys.

apikey_header When API Key is part of the header field, ASE uses the specified parameter name to capture the API key value.
For more information, see Configuring API Keys.

login_url Public URL used by a client to connect to the application.

health_check When true, enable health checking of backend servers.
When false, no health checks are performed.
Ping Identity recommends setting this parameter as true.

health_check_interval The interval in seconds at which ASE sends a health check to determine backend server status.

health_retry_count The number of times ASE queries the backend server status after not receiving a response.

health_url The URL used by ASE to check backend server status.

PingIntelligence copyright © 2022

| 486

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/capturing_client_identifiers.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/capturing_client_identifiers.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/capturing_client_identifiers.html


server_ssl When set to true, ASE connects to the backend API server over SSL. If set to false, ASE uses TCP to connect to the backend server.

Servers:
host
port
server_spike_threshold
server_connection_quota

The IP address or hostname and port number of each backend server running the API.
See REST API Protection from DoS and DDoS for information on optional flow control parameters.

The following API Pattern Enforcement parameters only apply when API Firewall is activated

Flow Control
client_spike_threshold
server_connection_queueing
bytes_in_threshold
bytes_out_threshold

ASE flow control ensures that backend API servers are protected from surges (for example DDoS, traffic spike) in API traffic.
See WebSocket API Protection from DoS and DDoS for information on parameters.

protocol_allowed List of accepted protocols
Values can be HTTP, HTTPS, WS, WSS.

Note: When Firewall is enabled, protocol_allowed takes precedence over the protocol parameter.

methods_allowed List of accepted REST API methods. Possible values are:
GET, POST, PUT, DELETE, HEAD

content_type_allowed List of content types allowed. Multiple values cannot be listed. For example, application/json.

Decoy Config
decoy_enabled
response_code
response_def response_message
decoy_subpaths

When decoy_enabled is set to true, decoy sub-paths function as decoy APIs .
response_code is the status code (for example, 200) that ASE returns when a decoy API path is accessed.
response_def is the response definition (for example OK) that ASE returns when a decoy API path is accessed.
response_message is the response message (for example OK) that ASE returns when a decoy API path is accessed.
decoy_subpaths is the list of decoy API sub-paths (for example shop/admin, shop/root)
See API deception for details

After configuring the API JSON file, add it to ASE for it to take effect. To add a runtime API, execute the
following CLI command:
/opt/pingidentity/ase/bin/cli.sh add_api {file_path/api_name} –u admin -p

Verify/List the API

To verify whether the API that you added has been successfully added or not, run the list API command:
opt/pingidentity/ase/bin/cli.sh list_api -u admin -p

Parent topic:PingIntelligence Cloud PoC Service

Download and install AAD
PingIntelligence provides AAD tool to automatically add APIs to ASE. The AAD tool works in the following
two modes. You can refer to this section to configure AAD.

PingIntelligence copyright © 2022

| 487

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/rest_api_protection_from_dos_and_ddos.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/websocket_api_protection_from_dos_and_ddos.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/api_deception_environment.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/configure_aad.html


• In the discovery mode, AAD fetches the APIs discovered by ABS and deploys to ASE. By default,
discovery is enabled in ABS. For ABS to discover APIs, a global API should be configured in
PingIntelligence ASE.

• In the gateway mode (for PingAccess and Axway), AAD connects to the gateway and fetches the
API definition and deploys to ASE. To use AAD with an API gateway, you should the management
host IP address and port number. This information is configured in AAD's properties file.

Follow the instructions at this link to download and install AAD.

Note: For detailed information on ASE administration, see the ASE admin guide

Parent topic:PingIntelligence Cloud PoC Service

AI engine training
The PingIntelligence AI Engine needs to be trained before it can detect anomalies or attacks on API
services or generate reports. The AI training runs until a minimum amount of data is received, and the
training period is completed for the given API.

ABS must be trained on all APIs before they can be secured. Whenever a new API is added, ABS
automatically trains itself before looking for attacks

For detailed information on training the AI Engine, see the ABS Admin guide.
Parent topic:PingIntelligence Cloud PoC Service

Connect to the PingIntelligence dashboard
The PingIntelligence Dashboard provides information on the APIs monitored by PingIntelligence for APIs.
Until the training period is complete (based on volume of traffic) for an API, only a minimal amount of
Dashboard data will be available. If traffic volume is low, it may take several days before many of the
Dashboard graphs have data.

The dashboard URL that you received in the email from Ping is used to load the PingIntelligence
dashboard. You are supplied with the following username and password:

• Dashboard user and password: Use this username and password to see the PingIntelligence
dashboard.

PingIntelligence copyright © 2022

| 488

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/discover_the_apis___ase_inline.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/pa/pingintelligence_pingaccess_setup.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/axway/pingintelligence_axway_sideband_setup.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/install_aad.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/artificial_intelligence_training.html


After you log into the Dashboard, click on Dashboard to display the list of available Dashboards.

Click on PingIntelligence for APIsDashboard to display the main dashboard.

Click on a listed API name to display the detailed graphs. You can open more than one API by opening each
API dashboard in a new tab. A dashboard which is like the one shown below is displayed.

PingIntelligence copyright © 2022

| 489



The following screen shot shows an API specific dashboard:

If graphs are not displayed due to Kibana errors, refresh your browser. Each dashboard displays the
following API specific reports:

Attack reporting:

• Attack summary: total number of attacks, number of unique IP addresses and unique cookies
generating attacks. Note: a single IP or cookie could generate more than one attack, so the sum of
the unique IPs and cookies may be less than the total number of attacks.

• Attack types: count of each type of attack. Attack type examples include data exfiltration, stolen
cookies, etc. See ABS Admin Guide for a complete list of attacks

API metric reporting

• Requests/API URLs – number of requests on each valid API URL
• Requests/Device-Type – number of requests per device type

Error and traffic control reporting

• Server error codes – Count of each error code returned from API servers.
• DoS/DDoS threshold exceeded per API – Count of traffic thresholds exceeded including Server

Spike, Client Spike, and Connection Quota Exceeded (See API Security Enforcer Admin Guide for
parameters).

• Blocked connections – Count of each blocked connection type.

Parent topic:PingIntelligence Cloud PoC Service

Access ABS reporting
The ABS AI Engine generates attack, metric, and forensics reports which are accessed using the ABS REST
API to access JSON formatted reports. Ping Identity provides templates to use Postman, a free tool for
formatting REST API reports.

Note:Until the training period is complete (based on volume of traffic) for an API, only a minimal
amount of reporting data will be available. If traffic volume is low, it may take several days before
some of the reports (e.g. attack reports) have data.

Install Postman with PingIntelligence for API reports

PingIntelligence copyright © 2022

| 490



Ping Identity provides configuration files which are used by Postman to access the ABS REST API JSON
information reports. Make sure to install Postman 6.2.5 or higher.

Using ABS self-signed certificate with Postman

ABS ships with a self-signed certificate. To use Postman with the self-signed certificate of ABS, disable the
certificate verification option by following the steps at this link

View ABS reports in Postman

To view the reports in Postman, complete the steps mentioned in the View ABS reports in Postman topic.
In configuring the environment, the following details are required:

1. Server: Use the ABS URL provided in the email
2. Port: Use the port number located at the end of the ABS URL in the email
3. Access_Key: Use the ABS access key provided in the email
4. Secret_key: Use the ABS secret key provided in the email

API_Nameis the name of the API. Do not edit any variables that start with “system”.

Note: For detailed information on ABS reports, see Attack Reporting in the ABS Admin Guide.

Following is a list of reports that you can generate using Postman or any other REST API client:

• Metrics report
• Anomalies report
• API key metrics report
• OAuth2 token metrics report
• OAuth2 token forensics report
• IP forensics report
• Cookie forensics report
• Various attack types
• Flow control report
• Blocked connections report
• Backend error report
• List of valid URLs
• List of hacker’s URLs

Parent topic:PingIntelligence Cloud PoC Service

Docker toolkit
PingIntelligence for APIs provides a Docker toolkit using which you can create Docker images of the
various PingIntelligence products, tools, and MongoDB. The output of the Docker toolkit are Docker
images.

Prerequisites:Download the following PingIntelligence products and tools. You also need to download
few third-party products.

• Download products:
◦ PingIntelligence ASE 3.2.1
◦ PingIntelligence ABS 3.2.1
◦ PingIntelligence AAD 3.2.1
◦ PingIntelligence Dashboard 3.2.1

PingIntelligence copyright © 2022

| 491

https://www.getpostman.com/
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/using_abs_self_signed_certificate_with_postman.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/view_abs_reports_in_postman.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/attack_reporting.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/appendix_b__abs_external_rest_apis.html
https://download.elasticbeam.com/


◦ MongoDB
◦ JDK 8 update 161 or higher
◦ Kibana 6.4.3
◦ Elasticsearch 6.4.3

• License Obtain valid ASE and ABS license files from the PingIntelligence sales team.

Note:

• Make sure to download the correct ASE binary (RHEL7 or Ubuntu 16 LTS) based on the
base image you want to create.

• Download the correct MongoDB binary (RHEL7 or Ubuntu) based on the Docker image you
want to build.

Untar the Docker toolkit
To use the Docker toolkit, you need to untar the toolkit. Run the following command to untar the toolkit:
tar -zxf docker-toolkit-3.2.1.tar.gz

Untarring the Docker toolkit, creates the directory structure as shown in the following table:

Directory Description

bin Contains the
build.sh
script to build the Docker images

config Contains the
docker.conf
file to configure the base image name and the base image
operating system

data For internal use

external Contains the third-party software:

• MongoDB
• Elasticsearch 6.4.3
• Kibana 6.4.3
• JDK 8 update 161 or higher

images Contains the created Docker images using the
build.sh
script

lib For internal use

license Contains the
ase
and
abs
directory to copy the respective license files.

PingIntelligence copyright © 2022

| 492



Note: You can build the images without adding the
license files to the ase and abs directory. If you build
the Docker images without the license file in ase and
abs directory, then you need to map or mount the
license file in the following exact location:

• ASE:
/opt/pingidentity/ase/config/
PingIntelligence.lic

• ABS:
/opt/pingidentity/abs/config/
PingIntelligence.lic

logs Contains the log files

software Contains PingIntelligence ASE, ABS, and AAD

Configure docker.conf
Navigate to the config directory and edit the docker.conf file for base image name and base image
operating system. Following is a sample docker.conf field:
# Base image name using which all the PingIntelligence images are created
base_image=ubuntu:16.04

# Operating system of the base image. The valid values are ubuntu or rhel
base_image_os=ubuntu

# Define the username for images. This user is added to the Docker 
# images. Containers created from these Docker images use the configured # 
user to run PingIntelligence software
user_name=pinguser

Note: Do not set the user_name as root in docker.conf file.

Build the PingIntelligence Docker images
Use the build.sh script available in the bin directory to build the Docker images. You can build all the
following Docker images at once or you can choose to build the images individually. The following Docker
images are built:

• ASE
• ABS
• Dashboard
• AAD
• MongoDB

It is a good practice to obfuscate the various keys and password in ASE, ABS, AAD and Dashboard before
building the Docker images. For more information on obfuscating keys and passwords, see the following
topics:

• ASE - Obfuscate keys and passwords
• ABS - Obfuscate passwords

PingIntelligence copyright © 2022

| 493

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/obfuscating_keys_and_passwords.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/obfuscate_passwords.html


• AAD - Obfuscate keys and passwords
• Dashboard - Obfuscate keys and passwords

Complete the following steps to build the Docker images:

1. Configure the base image name and base image operating system details in the config/
docker.conf file.

2. Download the PingIntelligence software in the software directory and save them with the name as
shown in the following table:

Software File name

ASE ase.tar.gz

ABS abs.tgz

Dashboard dashboard.tar.gz

AAD aad.tar.gz

3. Download JDK 8 update 161 or later, Kibana 6.4.3, Elasticsearch 6.4.3 and MongoDB 3.4.6 in the
external directory and save them with the name as shown in the following table:

Software File name

Elasticsearch elasticsearch.tar.gz

JDK 8 jdk8.tar.gz

Kibana kibana.tar.gz

MongoDB mongodb.tgz

Note: Make sure that MongoDB is as per the base image configured in docker.conf
file.

4. Run the build.sh script to build the Docker images:
docker-setup# ./bin/build.sh all
Base image os: rhel
Creating build context for ASE
Creating Image
Image created with tag pingidentity/ase:3.2.1
Image saved to /home/ubuntu/docker-setup/images/pingidentity_ase.tar
Creating build context for abs
Creating Image
Image created with tag pingidentity/abs:3.2.1
Image saved to /home/ubuntu/docker-setup/images/pingidentity_abs.tar
Creating build context for aad
Creating Image
Image created with tag pingidentity/aad:3.2.1
Image saved to /home/ubuntu/docker-setup/images/pingidentity_aad.tar
Creating build context for dashboard
Creating Image
Image created with tag pingidentity/dashboard:3.2.1

PingIntelligence copyright © 2022

| 494

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/obfuscate_keys_and_passwords.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/dashboard/obfuscating_keys_and_passwords.html


Image saved to /home/ubuntu/docker-setup/images/
pingidentity_dashboard.tar
Creating build context for mongo
Creating Image
Image created with tag pingidentity/mongo:3.4.6
Image saved to /home/ubuntu/docker-setup/images/pingidentity_mongo.tar
root@ip-172-31-25-146:/home/ubuntu/docker-setup# vim lib/dashboard/
context/entrypoint.sh

The other options that you can give with build.sh are: ase, abs, aad, dashboard, mongo.

5. Verify that the images are created by checking the local registry. Run the following command:
# docker image ls
REPOSITORY                         TAG            IMAGE ID            
CREATED             SIZE
pingidentity/dashboard             3.2.1            b172c856756a        
32 minutes ago      1.24GB
pingidentity/ase                   3.2.1            a29b708d9467        
2 hours ago         329MB
pingidentity/mongo                 3.4.6          0460e8717341        47 
hours ago        485MB
pingidentity/aad                   3.2.1            04ed26b185cd        
47 hours ago        589MB
pingidentity/abs                   3.2.1            0ddda6aa3755        
47 hours ago        771MB

6. Verify that the Docker images are saved in the images directory:
docker-setup# ls -ltra images/
total 3437116
drwxr-xr-x 11 root root       4096 Jan 18 18:39 ..
-rw-------  1 root root  782182400 Jan 21 10:18 pingidentity_abs.tar
-rw-------  1 root root  600428544 Jan 21 10:18 pingidentity_aad.tar
-rw-------  1 root root  495038976 Jan 21 10:20 pingidentity_mongo.tar
-rw-------  1 root root  339437568 Jan 23 06:57 pingidentity_ase.tar
-rw-------  1 root root 1302484480 Jan 23 08:08 
pingidentity_dashboard.tar
drwxr-xr-x  2 root root       4096 Jan 23 08:08 .

The Docker images that are built do not have any additional packages like vi editor and so on.

Environment variables exposed in Docker images
Environment variables are exposed in the Docker images. If you do not set the environment variable, the
default values are used. The following tables list the environment variables for ASE, ABS, Dashboard, AAD,
and MongoDB.

ASE Environment Variables: The following table lists the ASE environment variables and the values:

Environment Value Usage

ASE_MODE inline/
sideband

ASE can be deployed either in inline mode or sideband
mode. For more information, see the ASE admin guide.

PingIntelligence copyright © 2022

| 495

https://docs.pingidentity.com/bundle/pingintelligence-32/page/enforcer/features_at_a_glance.html


ASE_ENABLE_
CLUSTER

true/false Set the value to
true
to enable ASE cluster.

ASE_ENABLE_
ABS

true/false Set the value to
true
to enable ABS.

ASE_PEER_NO
DE

<IP or 
hostname>:po
rt

ASE cluster peer node's IP address and port number

ASE_ABS_END
POINT

<IP or 
hostname>:po
rt

IP address or host name of the ABS endpoint

ASE_ABS_ACC
ESS_KEY

string Access key to connect to ABS

ASE_ABS_SEC
RET_KEY

string Secret key to connect to ABS

ABS Environment Variables: The following table lists the ABS environment variables and the values:

Environment Value Usage

MONGO_RS <IP or hostname>:port MongoDB replica set IP address or
host name and port.

MONGO_USERNAME string MongoDB username

MONGO_PASSWORD string MongoDB password

MongoDB Environment Variables: The following table lists the MongoDB environment variables and
the values:

Environment Value Usage

ABS_ACCESS_K
EY

string The access key for the ABS admin user. For more
information, see ABS users

ABS_SECRET_K
EY

string The secret key for the ABS admin user. For more
information, see ABS users

ABS_ACCESS_K
EY_RU

string The access key for the restricted user. For more information
on restricted user, see ABS users.

ABS_SECRET_K
EY_RU

string The secret key for the restrict ired user. For more information
on restricted user, see ABS users.

MONGO_USERNA
ME

string MongoDB username

MONGO_PASSWO
RD

string MongoDB password

PingIntelligence copyright © 2022

| 496

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html


ATTACK_INITI
AL_TRAINING

integer The attack training period

API_DISCOVER
Y

true/
false

Set the value to true to enable API discovery in ABS. For ABS
to discover APIs, a global API JSON must be configured in
ASE. See API discovery for more information.

API_DISCOVER
Y_INITIAL_PE
RIOD

integer The initial period set in hours in which ABS has to be
discover APIs. It is a good practice to keep the API discovery
interval period less than the initial attack training interval.

API_DISCOVER
Y_UPDATE_INT
ERVAL

integer The time period in hours in which ABS reports the newly
discovered APIs

API_DISCOVER
Y_SUBPATH

integer The number of subpaths that are discovered in an API. The
maximum value is 3.

WIRED_TIGER_
CACHE_SIZE_G
B

float Memory in GB to be used by MongoDB cache.

Dashboard Environment Variables: The following table lists the Dashboard environment variables and
the values:

Environment Value Usage

KIBANA_PASSW
ORD

string Password for Kibana

ELASTIC_PASS
WORD

string Password for Elasticsearch

PINGUSER_PAS
SWORD

string Password for
pinguser

PINGADMIN_PA
SSWORD

string Password for
ping_admin

ABS_ACCESS_K
EY

string The access key for the ABS admin user. For more
information, see ABS users

ABS_SECRET_K
EY

string The secret key for the ABS admin user. For more
information, see ABS users

ABS_HOST string IP address of ABS host

ABS_RESTRICT
ED_USE_ACCES
S

true/
false

Set to true if you want to use ABS restricted user. For more
information on restricted user, see ABS users.

AAD Environment Variables: The following table lists the AAD environment variables and the values:

Environment Value Usage

PingIntelligence copyright © 2022

| 497

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/discover_the_apis___ase_inline.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html


AAD_MODE string

ABS_HOST string IP address of ABS host

ABS_ACCESS_K
EY

string The access key for the ABS admin user. For more
information, see ABS users

ABS_SECRET_K
EY

string The secret key for the ABS admin user. For more
information, see ABS users

ASE_HOST string IP address of ASE host

ASE_ACCESS_K
EY

string Access key to connect to ASE

ASE_SECRET_K
EY

string Secret key to connect to ASE

GATEWAY_MANA
GEMENT_URL

string Gateway management URL. Configure if you have Axway API
gateway in your deployment.

GATEWAY_MANA
GEMENT_USERN
AME

string Gateway management username. Configure if you have
Axway API gateway in your deployment.

GATEWAY_MANA
GEMENT_PASSW
ORD

string Gateway management password. Configure if you have
Axway API gateway in your deployment.

PINGACCESS_M
ANAGEMENT_UR
L

string PingAccess management URL. Configure when
mode
is set to
pa
.

PINGACCESS_M
ANAGEMENT_US
ERNAME

string PingAccess management username. Configure when
mode
is set to
pa
.

PINGACCESS_M
ANAGEMENT_PA
SSWORD

string PingAccess management password. Configure when
mode
is set to
pa
.

Using environment variables - example
The following sections show example of using environment variables to create containers. The containers
must be created in the following order:

1. MongoDB
2. ABS
3. ASE
4. AAD

PingIntelligence copyright © 2022

| 498

https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html
https://docs.pingidentity.com/bundle/pingintelligence-32/page/abs/abs_users_for_api_reports_and_dashboard.html


5. Dashboard

Launch MongoDB container: Run the following command with some sample environment variables to
launch the MongoDB container:
# docker run -d --name mongo --hostname mongo -e ABS_ACCESS_KEY="new_abs_ak" 
-e\
ABS_SECRET_KEY="new_abs_sk" -e ABS_ACCESS_KEY_RU="new_abs_ak_ru" -e\
ABS_SECRET_KEY_RU="new_abs_sk_ru" -e MONGO_USERNAME="new_mongo_user" -e\
MONGO_PASSWORD="new_mongo_password" -e ATTACK_INITIAL_TRAINING="24" -e\
API_DISCOVERY="true" -e API_DISCOVERY_INITIAL_PERIOD="6" -e 
API_DISCOVERY_UPDATE_INTERVAL="1" -e\
API_DISCOVERY_SUBPATH="3" -e WIRED_TIGER_CACHE_SIZE_GB="1.8" pingidentity/
mongo:3.4.6

Running this command creates the MongoDB container with settings in environment variable provided. If
any of the environment variable is not used, then the container is launched with default values.

Launch ABS container: Run the following command with some sample environment variables to launch
the ABS container:
  # docker run -d --name abs --hostname abs --link mongo:mongo -e 
MONGO_RS=mongo:27017 -e\
MONGO_USERNAME="new_mongo_user" -e MONGO_PASSWORD="new_mongo_password" 
pingidentity/abs:3.2.1

Launch ASE container: Run the following command with some sample environment variables to launch
the ABS container:
# docker run -d --name ase --link abs:abs --hostname ase -e 
ASE_MODE="inline" -e\
ASE_ENABLE_CLUSTER="true" -e ASE_ENABLE_ABS="true" -e 
ASE_ABS_ENDPOINT="abs:8080" -e\
ASE_ABS_ACCESS_KEY="new_abs_ak" -e ASE_ABS_SECRET_KEY="new_abs_sk" --shm-
size=1g \
pingidentity/ase:3.2.1

Launch the second ASE node in ASE cluster: Run the following command with some sample
environment variables to launch the ABS container:
# docker run -d --name ase1 --link abs:abs --link ase:ase --hostname ase1 -e 
-e\
ASE_MODE="inline" ASE_ENABLE_CLUSTER="true" -e ASE_PEER_NODE="ase:8020"  -e 
-e\
ASE_ENABLE_ABS="true" ASE_ABS_ENDPOINT="abs:8080" -e 
ASE_ABS_ACCESS_KEY="new_abs_ak" -e\
ASE_ABS_SECRET_KEY="new_abs_sk" --shm-size=1g pingidentity/ase:3.2.1

Launch AAD container: Run the following command with some sample environment variables to
launch the ABS container:
 # docker run -d --name aad --link abs:abs --link ase:ase --hostname 
aad -e AAD_MODE="discovery" ABS_HOST="abs" -e ABS_ACCESS_KEY="new_abs_ak" -e 
-e\
ABS_SECRET_KEY="new_abs_sk" -e ASE_HOST="ase" -e\
ASE_ACCESS_KEY="admin" -e ASE_SECRET_KEY="admin" pingidentity/aad:3.2.1

PingIntelligence copyright © 2022

| 499



Launch Dashboard: Run the following command with some sample environment variables to launch the
ABS container:
# docker run -d --name dashboard --link abs:abs --hostname dashboard -e\
KIBANA_PASSWORD="new_kibana_password" -e 
ELASTIC_PASSWORD="new_elastic_password" -e\
PINGUSER_PASSWORD="new_ping_user_password" -e 
PINGADMIN_PASSWORD="new_ping_admin_password" -e\
ABS_RESTRICTED_USE_ACCESS="true" -e ABS_ACCESS_KEY="new_abs_ak_ru" -e\
ABS_SECRET_KEY="new_abs_sk_ru" -e ABS_HOST="abs" pingidentity/dashboard:3.2.1

Port mapping
When the containers are created, the exposed ports are not mapped. To map the ports, you need to
complete port mapping using the -p option in the docker run command. The following table lists the
ports that should be exposed in the container.

Component Port Usage

ASE 8080 HTTP data plane

8443 HTTPS data plane

8010 Management port

8020 Cluster port

ABS 8080 API server port

9090 Access log upload port

Dashboard 5601 Kibana port

MongoDB 27017 MongoDB port

PingIntelligence copyright © 2022

| 500


